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ABSTRACT
High‐accuracy point cloud (self‐) reconstruction is crucial for point cloud editing, translation, and unsupervised representation
learning. However, existing point cloud reconstruction methods often sacrifice many geometric details. Altough many tech-
niques have proposed how to construct better point cloud decoders, only a few have designed point cloud encoders from a
reconstruction perspective. We propose an autodecoder architecture to achieve detail‐preserving point cloud reconstruction
while bypassing the performance bottleneck of the encoder. Our architecture is theoretically applicable to any existing point
cloud decoder. For training, both the weights of the decoder and the pre‐initialised latent codes, corresponding to the input
points, are updated simultaneously. Experimental results demonstrate that our autodecoder achieves an average reduction of
24.62% in Chamfer Distance compared to existing methods, significantly improving reconstruction quality on the ShapeNet
dataset. Furthermore, we verify the effectiveness of our autodecoder in point cloud generation, upsampling, and unsupervised
representation learning to demonstrate its performance on downstream tasks, which is comparable to the state‐of‐the‐art
methods. We will make our code publicly available after peer review.

1 | Introduction

In recent years, point cloud learning has become a mainstream
research area in the field of computer graphics, including point
cloud classification [1–11], segmentation [12], reconstruction
[13, 14], and generation [15–19]. Extracting high‐fidelity and
low‐dimensional point cloud features is crucial for these tasks
and forms the basis for subsequent point cloud operations.
Many deep learning models have been proposed to encode point
cloud data and have achieved significant results. Yet, due to the
irregular, sparse, and unordered nature of point cloud data,
point cloud learning faces some unique challenges. As such, an

effective method for encoding point cloud data is a core chal-
lenge in point cloud learning research.

A widely used method for the above goal is to train a point cloud
encoder. Training can be supervised using classification and
segmentation labels [1–5], or unsupervised [20, 21], as
commonly done in point cloud reconstruction [22] (sometimes
also called self‐reconstruction to distinguish it from surface
reconstruction from point clouds). Recent studies have intro-
duced attention blocks [3, 4] and graph convolution networks
(GCNs) [5] to make a point cloud encoder network better cap-
ture its inputs. It is worth noting that the evaluation of such
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encoders mainly uses their performance in point cloud classi-
fication and segmentation. For such tasks, the cloud encoding
must only capture the distinctive features of different classes in
order to accurately distinguish among them. In contrast, for
high‐quality point cloud reconstruction, the encoding must
preserve information as fully as possible, including all shape
details. Only a few encoders are specifically designed to achieve
better point cloud reconstruction results. Such detail‐preserving
reconstructions are critical to downstream tasks such as latent
space editing and translation [23, 24].

To obtain high‐quality point cloud reconstruction encoding,most
unsupervised point cloud encoding networks adopt an autoen-
coder architecture where the encoder maps the point cloud to a
latent code space and thedecoder generates a point cloud from the
latent code. A good representation is expected to guide the
decoder to generate a point cloud as similar as possible to the
input cloud. Somemethods aim to generate better point clouds by
designing a decoder with prior knowledge about the point cloud
surface, including FoldingNet [13] and AtlasNet [14]. These
methods rely on Chamfer Distance (CD) or Earth's mover dis-
tance (EMD) which have been shown to be challenging metrics
for guiding the network to learn accurate point cloud recon-
struction [25, 26]. Othermethodsmodel the process of generating
point clouds using continuous normalising flow, variable
gradient fields, or denoising diffusion models [15, 18].

Although decoders have been continuously improved and the
metrics for point cloud reconstruction have been enhanced,

high‐accuracy capturing of shape details in point cloud recon-
struction has been limited so far and presents a bottleneck in the
current state‐of‐the‐art methods (see Figure 1).

To address these limitations, inspired by Variational Auto‐
Decoder (VAD) [27] and DeepSDF [28], we have designed a
point cloud autodecoder architecture, called PAD, that achieves
high‐quality point cloud reconstruction and low‐dimensional
representations (see Figure 2). The autodecoder—not to be
confused with an autoencoder—has been used in image
decoder [27] and signed distance function (SDF) decoder [28]
training. However, as far as we know, no work has used an
autodecoder to map encodings to the point cloud domain. The
main difference of our method is that our architecture includes
only one decoder, and the point cloud representations are
initialised as a set of learnable parameters that are optimised
jointly with the decoder during training. During inference, the
parameters of the point cloud decoder are frozen and only the
corresponding point cloud representations of the test set are
iteratively updated.

To show our method's scalability and flexibility (the fact that
our decoder is not limited to a specific architecture) we incor-
porate our decoder in DPM [15], ShapeGF [16], and AtlasNet
[14]. Our results show significant improvements in reconstruc-
tion accuracy compared to previous methods. Qualitative ana-
lyses show that our method preserves more shape details, such
as chair back structures and chair leg types in Figure 1
compared to previous methods.

FIGURE 1 | Point cloud reconstruction results generated by PAD (ours) in combination with DPM, ShapeGF, and AtlasNet on chair and aeroplane
datasets. It can be seen that our PAD method can preserve more shape details in the reconstruction of all decoder architectures, such as the hollow
back of the chair and the protrusion of the tail. The shape edges reconstructed by PAD are generally smooth, while the autoencoder methods tend to
generate point clouds including noise and outliers.
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We show that our obtained point cloud representation improves
downstream tasks by experiments on shape generation, point
cloud upsampling, and unsupervised representation learning
tasks using the pre‐trained decoder. Our point cloud autode-
coder achieves outcomes comparable to state‐of‐the‐art
methods.

In summary, our main contributions are as follows:

� We propose a detail‐preserving point cloud reconstruction
method, PAD, based on an autodecoder that does not
require an encoder and can be integrated with existing
decoders of various architectures.

� We use our autodecoder to design a framework for point
cloud generation and upsampling, thus expanding the
application scope of PAD.

� We show by quantitative and qualitative experiments that
PAD has significantly higher reconstruction performance
compared to previous methods and achieves evaluation
results comparable to state‐of‐the‐art methods in down-
stream tasks (point cloud generation, upsampling, and
unsupervised representation learning).

2 | Related Work

We describe relevant work related to point cloud reconstruction
(Section 2.1) and generation (Section 2.2).

2.1 | Point Cloud Autoencoders

Point cloud autoencoders have been widely studied in recent
years and have shown great potential in various 3D computer
vision tasks such as shape reconstruction [13–16, 18, 29] and
unsupervised learning [20, 21]. The aim of a point cloud
autoencoder is to learn a low‐dimensional representation of the
input point cloud while maintaining its essential geometric

information. Most of such methods are based on encoder‐
decoder architectures, where the encoder maps the input
point cloud to a low‐dimensional latent code, and the decoder
reconstructs the point cloud from this code.

2.1.1 | Decoders

Early point cloud decoders [23, 25, 26, 29, 30] treated point
clouds as a fixed matrix. This setting meant that upsampling
operations could not be directly applied and also ignored the
permutation invariance of point clouds. To overcome these
limitations, FoldingNet [13] and AtlasNet [14] proposed folding‐
based approaches that map 2D grids to the 3D point cloud
surface. Both methods can select any number of points during
shape generation, and the points on the surface patches are also
unordered. Yet, in order to train the autoencoders, both Fol-
dingNet and AtlasNet use CD or EMD as a metric to output the
point cloud reconstruction compared to the input. As pointed
out in refs. [18, 25], CD leads to local clustering of reconstructed
points, while an accurate EMD computation is slow and its
estimation may result in biased or noisy gradients.

Recent methods have approached point cloud decoding differ-
ently by modelling clouds as samples obtained from a 3D dis-
tribution. PointGrow [29] uses an auto‐regressive model to
recursively generate each point, but the generation process
needs to determine the order of points. PointFlow models the
point cloud distribution with normalising flows. Its generation
process can be seen as gradually moving the sampled noise
points to the shape surface. Similarly, ShapeGF [16] and DPM
[15] propose methods for gradually restoring shapes. ShapeGF
uses a score‐based generative model where the network directly
predicts the gradient of the logarithmic density field to compute
the movement direction of the noise points. In contrast, DPM is
based on a diffusion model that generates the target shape by
gradually denoising the sampled points. These methods gener-
ally yield better reconstructions than methods that use CD or
EMD for the reconstruction loss.

FIGURE 2 | The pipeline of our PAD method including (a) training, (b) reconstruction, (c) point cloud generation, and (d) upsampling. During the
training process, the learnable latents and weights of the decoders are updated. For generating reconstruction results, the latents remain learnable
while the decoders are frozen.
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2.1.2 | Encoders

While the architecture of point cloud decoders has been
evolving, point cloud encoders for reconstruction purposes often
only involve the direct application of classification or segmen-
tation encoders or their simple modifications. AtlasNet, Point-
Flow, ShapeGF, and DPM all use a simple PointNet‐based
encoder. FoldingNet, on the other hand, adds graph‐based max‐
pooling layers to PointNet to increase the use of neighbourhood
information. LOGAN [23], a point cloud translation network,
designed an over‐complete encoder based on PointNetþþ [2].
However, its design is aimed at facilitating the disentanglement
of style features and its reconstruction performance is slightly
worse than that of PointNetþþ. Overall, these encoders are
usually modifications of previous methods, and there has not
been sufficient quantitative comparison. Considering the dif-
ference between classification and reconstruction (regression)
tasks, existing point cloud encoders may not be fully suitable for
reconstruction tasks.

2.2 | Other Point Cloud Generative Methods

Most existing point cloud generation approaches are based on
generative adversarial networks (GAN). However, these ap-
proaches suffer from limited generation capacity due to the
difficulty of designing a discriminator that is sensitive enough to
the distribution of points. Some methods, such as [31], use
variational autoencoder (VAE)‐based architectures [32] to ach-
ieve point cloud generation. With the rising popularity of
diffusion models [33], researchers have explored their potential
in point cloud generation. Luo and Hu [15] proposed DPM, a
diffusion probability model for denoising the generation process
of point clouds, using a flow‐based model to sample codes from
prior distributions that guide the point cloud diffusion. PVD
[17] directly denoises using a point‐voxel CNN [12] to generate
point clouds. LION [34] combines three‐dimensional spatial
diffusion similar to PVD with shape latent code diffusion to
generate point clouds. It achieves excellent generation results,
albeit at a higher computational cost.

3 | PAD Method

We now detail our PAD method (see Figure 2) in terms of its
architecture, training, inference and advantages(Section 3.1),
three different types of decoders (Section 3.2), and point cloud
generation (Section 3.3) and upsampling (Section 3.4).

3.1 | Preliminaries

Given a point cloud x ∈ X froma collectionX of such clouds, point
cloud reconstruction aims to obtain an encoding z of x so that,
when passing x through a decoder Dθ parameterised by θ, one
obtains a reconstructed cloud x̃ = Dθ(z) as close to x as possible.

In an autoencoder, obtaining z often requires training the
autoencoder and then using the trained encoder E to encode the
point cloud to get z = E(x). In contrast, an autodecoder only

contains a decoder that reads a one‐dimensional encoding z as
input to output the reconstructed point cloud x̃ = Dθ(z). Since
there is no encoder, a set of learnable codes z must given to the
autodecoder, typically one for each cloud in the training set. The
decoding loss L is given by the following:

L(x, z, θ) = dist(x,Dθ(z)),

where dist(⋅, ⋅) is a distance function determined by the type of the
decoder, for example, Chamfer Distance (CD) for AtlasNet or the
mean squared error (MSE) for DPM and ShapeGF. The decoder's
weights θ and the learnable codes z are updated based on the loss
L. During inference, the decoder weights θ are no longer updated.
The same loss function L is used to obtain the encoding of the test
set shapes by updating the learnable codes of the training‐set
point clouds. This encoding of the test set is then input into the
decoder to create the reconstructed point clouds.

Autodecoders perform well in small sample learning and per-
sonalised optimisation, preserving fine details while handling
sparse or irregular point clouds more effectively than traditional
autoencoders. By assigning independent latent codes to each
sample, they simplify model design, reduce computational
overhead, and enable more accurate shape reconstruction.

3.2 | Decoder

In an autodecoder, the decoder is not limited to a particular
type—in theory, any point cloud generator/decoder that takes
latent codes as input can be used. To show the versatility of our
method, we use decoder frameworks based on DPM [15],
ShapeGF [16] and AtlasNet [14] networks. We now discuss
them next in turn.

The DPM method treats point clouds as a particle set in a
continuously evolving thermodynamic system and models the
generation process using a diffusion model. During forward
diffusion, noise is gradually added to the input point cloud x0 to
obtain a set of points xT that approximate the noise points
sampled from a given distribution. This process is modelled as a
Markov chain

q(x1:T ∣ x0) = ∏
T

t=1
q(xt ∣ xt−1).

In the reverse diffusion phase, a neural network uses the
encoding z of the point cloud x0 to estimate noise at each step
and gradually remove the noise to form the point cloud.

In the autodecoder, there is no encoder block included. Hence,
when using this as an autodecoder, only the decoder module is
used, and the loss function needs to be modified accordingly,
leading to

L(x, z, θ) =∑
T

t=2
KL(q(xt−1 ∣ xt, x0)

⃦
⃦pθ(xt−1∣xt, z)),

where pθ is one time‐step forward in the decoder Dθ and KL is
the Kullback–Leibler divergence. When training the decoder,
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the above optimisation goal is reflected in computing the MSE
loss between the predicted and prior noises. For the inference
process, the decoder runs iteratively, from t = T downwards, to
generate the point cloud output.

In ShapeGF, sampling point clouds entails moving a set of
points sampled from the prior distribution to the high proba-
bility region of the shape. The method learns a gradient field of
the logarithmic density that changes over time to guide noise
points to move to the shape surface. Similar to DPM, this is also
an iterative denoising generative model. During training, the
optimisation aims to fit the noise from the noisy point cloud. In
the autodecoder, the loss function for training one step is given
by the following:

L(σ, x, z,ψ) = ‖gψ(x
∼
, z, σ) −

x − x∼

σ2
‖22 with x∼ ∼ N(x, σ2I),

where ψ is the standard deviation of the Gaussian noise added to
the input cloud in that step and gψ is the decoder part respon-
sible for computing noise in each denoising step. During point
cloud generation, a point set is first sampled from a standard
Gaussian distribution, and then the decoder is used to gradually
remove noise under the guidance of the code z, thereby yielding
the target shape.

The AtlasNet method approximates a target surface by locally
mapping a set of square patches onto the input shape, thus
representing the complete shape. To generate point clouds, the
decoder randomly samples multiple point sets on two‐
dimensional square patches and maps them to the three‐
dimensional space to fit the surface of the original shape un-
der the guidance of the latent code. This network can be directly
used in an autoencoder and trained with CD as the loss func-
tion. Yet, since the network uses different network parameters
for each patch, it lacks the ability to perceive the shape globally,
which results in poor performance in subsequent tasks (as
observed in experiments). To overcome this limitation, we
modified the network to use the same set of parameters to map
all patches and provide patch embeddings to the network
simultaneously with input latent codes. This setting enhances
the global perceptual ability of the AtlasNet decoder. The
parameter count of the modified network does not change with
the number of patches, and the loss function is given by the
following:

L(x, z, θ) = CD(x,Dθ(z)).

3.3 | Point Cloud Generation

Point cloud generation aims to map the encoding sampled from
a prior distribution to the point cloud space in order to generate
point cloud shapes that are as realistic as possible. A good point
cloud generator should not only ensure the realism of the
generated point clouds, but also be able to generate shapes that
differ from its training data. Given the excellent performance of
autodecoders in reconstruction tasks, we design a generation
framework based on autodecoders to leverage their capabilities

for generating more detailed shapes. This also extends the
application domain of our autodecoder framework.

We implement point cloud generation using autodecoders by
training a latent diffusion model [34, 35] for the decoder's latent
space. This model has 11 multi‐layer linear blocks, each having
3 linear layers, a dropout layer, and a residual connection. When
training the diffusion model, the input consists of representa-
tions of the point clouds from the training set rather than using
a pre‐trained point cloud decoder. During the generation phase,
the diffusion model samples latent codes from the prior distri-
bution and maps them to the latent space of the autodecoder,
and then generates the corresponding point clouds by the
decoder.

3.4 | Point Cloud Upsampling

Point cloud upsampling methods aim to generate a dense point
set with the same shape as a given sparse point set while
achieving distribution uniformity. Since the resolution of the
autodecoder is adaptive, it can find the latent code for point
clouds of arbitrary resolution—that is, it can do point cloud
upsampling similar to an autoencoder. The process of point
cloud upsampling is consistent with the reconstruction process
(see Figure 2d). The pre‐trained autodecoder encodes the low‐
resolution point cloud and then generates a high‐resolution
point cloud based on the encoding.

4 | Experiments and Results

We next present the validation of our PAD method. Section 4.1
outlines the datasets and metrics used in our experiments.
Section 4.2 illustrates the point cloud reconstruction results,
Sections 4.3 and 4.4 show our results for point cloud generation
and upsampling, respectively. Section 4.5 discusses the perfor-
mance of unsupervised representation learning.

4.1 | Experimental Setup

4.1.1 | Dataset

We measure the performance of our autodecoder for both
reconstruction and generation using the ShapeNet dataset [36]
which has 51,127 shapes across 55 categories. It is one of the
most commonly used datasets in the field of shape generation.
Following previous work [15], we randomly split this dataset
into an 80% training set, 15% test set, and 5% validation set. For
reconstruction, we conduct experiments on the full dataset and
three subsets (aeroplane, chair, and car) separately. For gener-
ation, we conduct experiments on two subsets (aeroplane and
chair). For the unsupervised representation learning task, we
pre‐train the autodecoder on the ShapeNet training set and
evaluate classification accuracy on ModelNet10 and Mod-
elNet40 [37]. For each shape, we randomly sample 2048 points
and normalise the point clouds to zero mean and unit variance.
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4.1.2 | Metrics

Following prior reconstruction tasks [15, 16, 18], we use CD and
EMD to evaluate our reconstruction results. To evaluate the
generation task, we use popular metrics as the minimum
matching distance (MMD), coverage score (COV), Jensen–
Shannon divergence (JSD) [25] and 1‐NN classifier accuracy
(1‐NNA) [18]. For a set of generated shapes, MMD computes the
average distance between each point cloud in the test set and its
nearest neighbour in the generated set. COV measures diversity
by calculating the fraction of point clouds in the reference set that
are the nearest neighbours of each generated set of point clouds
in terms of CD or EMD. The JSD score evaluates the similarity of
point distributions by computing the Jensen–Shannon diver-
gence between the marginal point distributions of the generated
and reference sets. Yang et al. [18] noticed that the above three
metrics assigned a better score to generated shapes than to
training shapes, indicating that these metrics are sub‐optimal. In
contrast, 1‐NNAdoes not have this problem, as it was specifically
designed to distinguish between generated and reference sam-
ples [38]. If the generated and reference samples have the same
distribution, 1‐NNA should converge to 50% given enough
samples. The closer the accuracy is to 50%, the better themodel is
at learning the target distribution.

4.1.3 | Implementation Details

In our experiments, the latent code is initialised as a zero vector
for a neutral optimisation start. We use the Adam optimiser
with separate learning rate schedules: the decoder starts at
0.002, linearly decaying to 0.00005 over 500 steps after 1200
steps, while the latent code starts at 0.001, decaying to 0.0001
under the same schedule. Inspired by DPM, our autodecoder
employs a U‐Net‐based denoising network to capture multi‐
scale features. The diffusion process includes 200 denoising
steps, balancing efficiency and quality, with variance ranging
from 0.0001 to 0.05 for stable training and high‐quality
reconstruction.

4.2 | Point Cloud Reconstruction

We compared state‐of‐the‐art autoencoder architectures with
our method on point cloud reconstruction tasks, including
AtlasNet, PointFlow, ShapeGF, and DPM.

For the autodecoder, we tested three types of decoders, based
on AtlasNet, ShapeGF, and DPM. Additionally, we also used
the theoretical lower bound ‘oracle’ of [15] which measures the
distance between two different point cloud samples from the
same shape. As Table 1 shows, our method achieves signifi-
cantly lower CD and EMD than other methods across the
datasets and is already close to the theoretical lower bound.

Following previous work [15, 16], we sample 4096 points for
each shape and divide them equally into two different point
clouds, one as the reconstruction input and the other as the
reference shape for evaluation. This setting avoids the recon-
struction accuracy being overly fitted to the input points and T
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results in reconstruction metrics lower than those provided by
the oracle. If we use the same point cloud as both input and
reference shape, the EMD accuracy in reconstruction will
generally be lower than the lower bound. Figure 1 compares the
reconstruction results with previous methods. We see that our
method generates a reconstructed point cloud that better cap-
tures the features of the original point cloud, resulting in more

realistic details (such as the chair backs and the aeroplane tails).
We show more reconstruction results on other shape categories
of the ShapeNet dataset in Figure 3. These results are generated
by an autodecoder trained on all 55 categories of ShapeNet.

Although our method demonstrates superior precision in
reconstructing certain fine‐grained details, it may encounter

FIGURE 3 | More point cloud reconstruction results generated by PAD with DPM on the ShapeNet dataset.
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limitations when handling highly complex models or regions
with extremely fine and concentrated details. We attribute this
to the inherent challenges of optimising local geometric features
under a global Chamfer Distance (CD) loss, which may not
sufficiently prioritise localised structural accuracy. To provide a
comprehensive analysis, we illustrate several failure cases in
Figure 4, highlighting scenarios where the method struggles to
capture intricate local details.

Our autodecoder uses iterative updates during encoding. This
inevitably consumes more time than an autoencoder. For
example, on an RTX3090 GPU, with a batch size of 128, DPM‐
based PAD takes about 15.8 s to reconstruct one batch of shapes
(1000 iterations) while DPM takes 4.1 s. Note, however, that the
extra time comes from the encoding stage. There is almost no
performance gap in downstream tasks that only use the decoder
such as point cloud editing and generation. Also, since we do
not need to train an encoder, our method improves training
speed—we need approx. 0.06 s per iteration in contrast to 0.19 s
for DPM. In terms of computational resources, our autodecoder
omits encoder architectures such as PointNet or PointNetþþ,
but we need to maintain a latent code for each input, so it is
similar to previous encoder methods in terms of computational
resources.

4.3 | Point Cloud Generation

We compare several state‐of‐the‐art point cloud generation
models, including PC‐GAN [25], GCNGAN [39], TreeGAN [40],
PointFlow [18], ShapeGF [16] and DPM [15]. Following
ShapeGF and DPM, we normalise the generated point clouds
and reference point clouds to the bounding box of [− 1, 1]3 to
emphasise the features of shapes rather than the scale. Table 2
shows our quantitative evaluation results. PAD with the DPM‐
based decoder exceeds previous methods in some metrics,
especially in 1‐NN scores on two datasets. Additionally, we also
visualise the qualitative results to demonstrate the advantages of
our method in generating shapes. Our generated results typi-
cally exhibit smoother surfaces and finer details as shown in
Figure 5.

4.4 | Point Cloud Upsampling

We compare our autodecoder based on DPM with two autoen-
coders (ShapeGF and DPM) in the task of upsampling. Both the
autoencoder and the autodecoder are pre‐trained on the training
dataset and then used to encode‐and‐upsample the test samples.
We randomly sample 128 points from the point cloud shapes of
the ShapeNet dataset as inputs, including chairs and aeroplanes,
and generate upsampling results of 2048 points. Table 3 shows
the quantitative evaluation results, which include the CD and
EMD values between the ground truth shapes and the upsam-
pled shapes generated by different methods. To show that the
improvement of upsampling performance is due to the better
shape‐awareness of PAD, rather than the effect of the iterative
encoding method, we also test the upsampling results using
iterative encoding on a pre‐trained autoencoder architecture.

The results show that although iterative encoding improves
upsampling performance (as shown by DPM þ iter. and
ShapeGF þ iter. in Table 3), it still falls behind our PAD
method. Figure 6 shows the results of these methods. We see
that our method generates upsampling results that are clearly
closer to the real shape. These results show that the autodecoder
can better leverage prior information and thus achieve a better
surface reconstruction from low‐resolution point clouds. This
holds even in extreme cases when the output resolution is about
200 times larger than the input one, see Figure 7.

4.5 | Unsupervised Representation Learning

In our method, the effectiveness of unsupervised classification
can measure the semantic information obtained by the latent. If
we can achieve better unsupervised classification results while
obtaining better reconstruction performance, this means that
the learnt latent space preserves not only more shape details but
also more semantic information. Similar to previous work [15,
16, 18], we train an autodecoder on all subcategories of
ShapeNet. Using the pre‐trained decoder, we obtained the
encoding of ModelNet40 and ModelNet10. We used the encod-
ing of the training‐set shapes to train a linear SVM (support
vector machine) classifier and tested it on the encoding of the
test set shapes.

Since our method needs to define a one‐to‐one correspondence
between the shape and the representation, input point clouds
cannot directly benefit from rotation augmentation, unlike in
existing methods [15, 16, 25]. As such, for a fair comparison, we
tested the classification accuracy of ShapeGF and DPM without
data augmentation. Even without data augmentation, the results
in Table 4 show that our method still outperforms the
augmented methods on ModelNet40. On ModelNet10, our
autodecoder also achieves comparable results to previous
methods.

FIGURE 4 | Failed results generated by PAD þ DPM on aeroplane
and chair datasets.
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It is worth mentioning that if we train an autodecoder from
scratch on the ModelNet40 dataset, and use the encodings of the
training shapes and their corresponding class labels as inputs to
train a classifier module consisting of two linear layers and one
activation function (similar to the supervised point cloud clas-
sification without augmentation), then the classification accu-
racy on the test set can reach 92.0%, which is close to popular
point cloud classification networks [2, 5], especially considering
the fact that our decoder did not use any classification data for
training.

4.6 | Ablation Study

Given the limited number of hyperparameters in our model,
we conduct an ablation study focussing on the dimension of
the latent code. We evaluate the model's performance across
different latent code dimensions by comparing the number of
trainable parameters, as well as the Chamfer Distance (CD)
and Earth Mover's Distance (EMD) metrics. Here, the
parameter count refers to the total trainable parameters dur-
ing model training, while CD and EMD represent the average
metrics computed over the entire ShapeNet dataset. For a

comprehensive comparison, detailed results are provided in
Table 5.

5 | Conclusion

We have presented PAD, a point cloud reconstruction frame-
work based on an autodecoder architecture without any
encoder. Our experimental results demonstrate that the pro-
posed method significantly outperforms previous state‐of‐the‐
art methods, achieving an average reduction of 24.62% in
Chamfer Distance on the ShapeNet dataset, which underscores
its superior reconstruction accuracy. Furthermore, PAD ach-
ieves a 68.42% reduction in computation time for downstream
tasks, demonstrating its ability to enhance both reconstruction
quality and efficiency. Additionally, we have validated the
effectiveness of PAD by constructing a generative model and
testing an unsupervised classification method on the autode-
coder. Our PAD method can be directly applied to existing
point cloud decoders to improve their performance and
training speed. PAD is scalable and capable of preserving
detailed shapes which is expected to aid downstream tasks
such as point cloud editing and completion. Despite these

TABLE 2 | Comparison of point cloud generation performance. MMD‐CD and JSD figures are multiplied by 103; MMD‐EMD is multiplied by 101.
The arrow ↓ means the lower the better; ↑ means the higher the better. Bold figures indicate optima per dataset‐and‐metric.

Shape Model
MMD (↓) COV (%, ↑) 1‐NNA (%, ↓) JSD (↓)

CD EMD CD EMD CD EMD —
Aeroplane PC‐GAN 3.819 1.810 42.17 13.84 77.59 98.52 6.188

GCN‐GAN 4.713 1.650 39.04 18.62 89.13 98.60 6.669

TreeGAN 4.323 1.953 39.37 8.40 83.86 99.67 15.646

PointFlow 3.688 1.090 44.98 44.65 66.39 69.36 1.536

ShapeGF 3.306 1.027 50.41 47.12 61.94 70.51 1.059

DPM 3.276 1.061 48.71 45.47 64.83 75.12 1.067

PVD 3.713 1.086 46.77 48.42 75.32 70.07 1.291

PointTrans‐G 3.126 1.073 51.02 48.58 75.21 75.40 1.062

PAD þ AtlasNet 4.059 1.091 38.72 34.10 75.65 81.96 3.762

PAD þ ShapeGF 3.948 1.139 37.23 34.43 81.96 86.16 4.385

PAD þ DPM 3.609 0.994 44.81 46.29 62.77 57.50 1.539

Chair PC‐GAN 13.436 3.104 46.23 22.14 69.67 100.00 6.649

GCN‐GAN 15.354 2.213 39.84 35.09 77.86 95.80 21.708

TreeGAN 14.936 3.613 38.02 6.77 74.92 100.00 13.282

PointFlow 13.631 1.856 41.86 43.38 66.13 68.40 12.474

ShapeGF 13.175 1.785 48.53 46.71 56.17 62.69 5.996

DPM 12.276 1.784 48.94 47.52 60.11 69.06 7.797

PVD 13.073 1.763 47.19 47.13 58.44 60.02 8.472

PointTrans‐G 13.247 1.774 47.17 46.37 58.55 60.74 8.837

PAD þ AtlasNet 13.758 3.224 44.08 32.24 61.88 100.00 12.500

PAD þ ShapeGF 14.696 1.862 43.78 44.19 68.00 70.88 15.810

PAD þ DPM 13.328 1.728 43.98 44.39 60.40 59.71 7.727
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advantages, our method has two primary limitations. First, it
exhibits weak generalisation capability because it requires
training individual latent codes for each model, which com-
promises its performance on unseen shapes. Second, the

inference speed is relatively slow due to the necessity of opti-
mising latent codes during the testing phase.

There are many avenues for future research in point cloud
reconstruction and generation. First, the autodecoder is not
constrained by the encoder architecture, it is possible to explore
new encoding formats other than one‐dimensional vectors to
better represent point cloud information. Moreover, finding how
to use the latent space of the autodecoder to improve encoder
performance is another promising research avenue. Finally,
integrating other cross‐modal information as input conditions
such as text, images, etc. to control the generation of point cloud is
a recent research hotspot. We believe that combining our PAD
with the cross‐model conditioned point cloud generation can
effectively improve the generation quality from many aspects.

FIGURE 5 | Point cloud generation results generated by PAD, DPM
and ShapeGF on chair and aeroplane datasets.

TABLE 3 | Comparison of upsampling accuracy among DPM,
ShapeGF, and PAD. DPM þ iter. and ShapeGF þ iter. denote using
PAD's iterative method to find encodings in the pre‐trained autoencoder
architectures.

Shape Aeroplane Chair
Decoder CD EMD CD EMD
ShapeGF 7.022 5.748 16.666 8.738

DPM 4.808 4.771 12.979 6.726

ShapeGF þ iter. 4.447 4.923 8.804 6.312

DPM þ iter. 4.406 4.324 12.315 6.343

PAD þ ShapeGF 3.101 4.455 8.62 6.029

PAD þ DPM 3.153 3.467 9.196 5.055
Note: The bold values indicate the best performance.

FIGURE 6 | Point cloud upsampling results generated by PAD, DPM,
and ShapeGF on chair and aeroplane datasets. Pre‐trained networks
encode point clouds with 128 points to obtain latent codes, and then
reconstruct them into point clouds with 2048 points. The upsampling
results of PAD are closer to the ground truth than those of the
autoencoder methods. The latter fails to capture the complete shape
features—see for instance the missing spaceship wing‐tips and holes
in the chair backpiece for the results of DPM and ShapeGF.

FIGURE 7 | Point cloud upsampling results generated by PAD þ
DPM. Pre‐trained networks encode a 128‐point cloud and then
reconstruct it into a 20K‐point cloud.
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