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Abstract. We propose a new approach to digital hair removal from dermoscopic
images, based on a threshold-set model. For every threshold, we adapt a recent gap-
detection algorithm to find hairs, and merge results in a single mask image. Next,
we find hairs in this mask by combining morphological filters and medial descriptors.
We derive robust parameter settings for our method based on its application on over
300 skin images. We detail a GPU implementation of our method and show how it
compares favorably with five existing digital hair removal methods.
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1 Introduction
Automatic analysis of pigmented skin lesions [14,7] occluded by hair is a challenging task.
Several digital hair removal (DHR) methods address this by finding and replacing such hairs
by plausible colors based on surrounding skin. Despite much work in this area [19,30,15,12,2,13],
DHR methods are challenged by hairs which are thin, entangled, of similar contrast or color
to underlying skin, or overlaid on a highly-textured skin structure.

We present a new DHR approach that addresses most above problems. After converting
the skin image into a luminance threshold-set, we adapt a recent gap-detection technique
to find thin structures that are potential hairs in each threshold layer. All found gaps are
next merged into a single hair mask, from which we find actual hairs using a combination
of morphological techniques and 2D medial axes, and finally remove these by image inpaint-
ing. We implement our pipeline on the GPU, which yields speeds comparable to all DHR
algorithms we are aware of, while producing results of similar or higher quality.

Section 2 reviews related work on digital hair removal. Section 3 details our DHR method.
Section 4 presents implementation details. Section 5 compares our results with five DHR
methods and also shows a separate application for the restoration of CBCT images. Section 6
discusses our method’s speed, robustness, and parameters. Section 7 concludes the paper.

2 Related Work
In the past decade, several DHR methods have been proposed. DullRazor, the first and
arguably best known method, finds dark hairs on light skin by a generalized morphological
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closing using three structuring elements that model three line orientations [19]. Different mor-
phological operators were used in [23,20]. DullRazor removes hairs by basic image inpainting
(bilinear color interpolation), further extended to PDE-based inpainting [29]. Yet, DullRazor
cannot find and remove low-contrast hairs or thin or highly curled hairs. E-shaver improves
upon DullRazor by Prewitt edge detection to find light-colored and/or thin hairs [15]. How-
ever, the found edges are thresholded, so hair close to skin color is hard to find. Top-hat
filtering has also been used to find hairs [30]. Huang et al. find hairs by multiscale matched
filtering and hysteresis thresholding and remove these by region growing with PDE-based
inpainting [13]. However, this method is quite slow (minutes for a typical dermoscopy im-
age). VirtualShave finds hairs by top-hat filtering, similar to [30], and uses three density,
sphericity, and convex-hull sphericity metrics to separate thin elongated structures (hairs)
from other high-contrast details (false positives) [12]. Abbas et al. propose to find hairs by
a derivatives-of-Gaussian (DOG) filter [1,2]. While this method shows good results on a few
selected images, it has many parameters whose setting is complex. Finding other elongated
objects such as arterial vessels and fibers is also addressed by path opening methods [8] and
grayscale skeletons [10]. The last method also permits filling thin gaps similar to our hairs.

Table 1 summarizes several aspects of the key DHR methods reviewed above. As visible,
there is little comparison done across existing methods. As implementations of these methods
are not publicly available (except for [19,13]), assessing an existing (or newly proposed) DHR
method is hard. Hence, when presenting our new DHR method next, one main aim is to
show how it compares to all reviewed methods on a large image set.

Table 1: Comparison of existing digital hair removal methods.
Method Hair detector Inpainting by Compared with # test images Implementation

DullRazor [19] generalized bilinear – 5 available
morphological closing interpolation

Huang et al. [13] multiscale matched median DullRazor 20 available
filters filtering

Fiorese et al. [12] top-hat operator PDE-based [4] DullRazor 20 not available
Xie et al. [30] top-hat operator anisotropic DullRazor 40 not available

diffusion [21]
E-shaver [15] Prewitt color DullRazor 5 not available

edge detector averaging
Abbas et al. [2] derivative of Gaussian coherence DullRazor, 100 not available

transport [5] Xie et al. [30]

Our method gap-detection fast marching DullRazor, over 300 available
by multiscale skeletons method [27] Xie et al. [30],

Huang et al. [13],
Fiorese et al. [12]
Abbas et al. [2]

3 Proposed Method

Most DHR methods detect hairs by local analysis of the image luminance (see Tab. 1, column
2). Such approaches often have difficulties to find hairs that have variable color, contrast,
thickness, or crispness across an image. Hence, our main idea is to perform a conservative hair
detection at all possible luminance values. For this, we propose the following pipeline. First,
we convert the input image into a luminance threshold-set representation (Sec. 3.1). For
each threshold layer, we find thin hair-like structures using a morphological gap-detection
algorithm (Sec. 3.2). Potential hairs found in all layers are merged in a mask image, which
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we next analyze to remove false-positives (Sec. 3.3). Finally, we remove true-positive hairs
by using a classical image inpainting algorithm (Sec. 3.4). These steps are discussed next.

3.1 Threshold-set Decomposition

We reduce color images first to their luminance component in their HSV representation.
Next, we compute a threshold-set representation of this image [31]: Given a luminance image
I : R2 → R+ and a value v ∈ R+, the threshold-set T (v) for v is defined as

T (v) = {x ∈ R2|I(x) ≥ v}. (1)

For n-bits-per-pixel images, Eqn. 1 yields 2n layers Ti = T (i), 0 ≤ i < 2n. We use n = 8
(256 luminances), which models commonly-used 8-bit images. Note that Tj ⊂ Ti,∀j > i, i.e.
brighter layers are ‘nested’ within darker ones. Moreover, if I(x) 6= i,∀x ∈ R2, we find that
Ti = Ti+1. In such cases, we simply skip Ti from our threshold-set decomposition, as it does
not add any information. Our decomposition {Ti} will thus have at most 2n layers.

3.2 Potential Hair Detection

We find thin-and-long structures in each layer Ti by enhancing a recent general-purpose
gap-detection algorithm based on morphological openings/closings and skeletonization [24].
We next present the original algorithm, followed by our enhancements for hair detection.

Original gap-detection: Given a binary shape Ω ⊂ R2 with boundary ∂Ω, we compute
the open-close image Ωoc = (Ω◦H)•H and close-open image Ωco = (Ω•H)◦H. Here, ◦ and •
denote morphological opening and respectively closing with a disk of radius H as structuring
element. In both Ωoc and Ωco, small gaps get filled; yet, Ωco has more gaps filled than Ωoc,
but also fills shallow concavities (dents) along ∂Ω. Next, the skeleton or medial axis SΩoc

of
Ωoc is computed. For this, we first define the distance transform DT∂Ω : R2 → R+ as

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖. (2)

The skeleton SΩ of Ω is next defined as

SΩ = {x ∈ Ω|∃f1, f2 ∈ ∂Ω, f1 6= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (3)

where f1 and f2 are the contact points with ∂Ω of the maximally inscribed disc in Ω centered
at x, known also as feature transform (FT) points [25]. The FT itself assigns to any point
in R2 its closest point on ∂Ω, and is defined as

FT∂Ω(x ∈ Ω) = arg min
y∈∂Ω

‖x− y‖. (4)

From SΩoc
, the gap-filling algorithm removes branch fragments that overlap with the shape

Ω, yielding a set F = SΩoc \Ω. The set F thus contains skeleton-fragments located in thin
gaps that cut deeply inside the shape Ω. To find all pixels in the gaps, the proposed method
convolve the pixels x ∈ F with disk kernels centered at the respective pixels and of radius
equal to DTco(x). As shown in [24], this produces an accurate identification of deep inden-
tations, or gaps, in Ω, while ignoring pixels in shallow dents along ∂Ω.
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Hair-detection modification: We observe that, in a binary image with hairs in the fore-
ground, hairs are gaps of surrounding background. We next aim to find hairs in all layers Ti.
To robustly find such hairs in our images Ti, several changes to [24] are needed. First, we note
that [24] uses DTΩco

as disk-radius values for gap-filling since they argue that Ωco closes more
gaps than Ωoc. This is supported by the observation that DTΩco

(x) ≥ DTΩoc
(x),∀x ∈ F .

However, for our hair-removal context, using DT∂Ωco
on every layer Ti, and subsequently

merging gaps into a single hair-mask, results in too many areas being marked as hair. The
resulting mask proves to be too dense – thus, creates too many false-positive hairs for our
next filtering step (Sec. 3.3). Using the smaller DT∂Ωoc

as disk radius prevents this problem,
but fails to find many hair fragments – thus, creates too many false-negatives. To overcome
these issues, we propose to use a linear combination of DT∂Ωoc

and DT∂Ωco
. In detail, we

define a set of pairs disk-centers x and corresponding disk-radii ρ as

Dλ = {(x, ρ = (1− λ)DT∂Ωco
(x) + λDT∂Ωoc

(x)) |x ∈ F} (5)

where λ ∈ [0, 1] gives the contribution of the two distance transforms DT∂Ωoc
and DT∂Ωco

to the disk radius. A value of λ = 0.2, found empirically (see Sec. 6), avoids finding too
many gaps (false-positives), while also preventing too many false-negatives.

Let D be the union of pixels in all disks described by Dλ. We next find the gaps G that
potentially describe hairs as the difference

G = D \Ω. (6)

We apply Eqn. 6 to compute a gap Gi from every shape Ωi := Ti. Next, we merge all resulting

gaps Gi together into a single hair-mask image M =
⋃2n

i=0Gi.
Morphological closing finds only hairs darker than surrounding skin. To find hairs lighter

than skin, we replace closing by morphological opening. Having the dark-hair and light-hair
masks Md and M l, we can next either combine the two or select one mask to use further. We
observed in virtually all our test images that dark and light hairs do not occur together. So,
we use next the mask M ∈ {Md,M l} that most likely contains hairs, i.e., which maximizes
the length of the longest skeleton-branch in S∂M . For example, for the image in Fig. 1 a,
which has mainly dark hairs, our method will select to use the mask M := Md (Fig. 1 b).

3.3 False Positive Elimination

Since we conservatively find gaps that occur on every threshold-level, we inherently find
more gaps than traditional approaches, e.g. [19,30,15,13]. Filtering out ‘false positives’ (gaps
unlikely to be hairs), is thus necessary. We achieve this in four steps, outlined below.

Component detection: First, we extract from M all 8-connected foreground components
Ci ⊂M . We skip components less than 1% of the size of image M , as these cannot possibly
be elongated hairs. Remaining components are analyzed next to see if they are hairs or not.

Hair skeletons: Hair fragments are long and thin shapes. To measure such properties on
our components Ci, we use their skeletons S∂Ci . Yet, hair-like shapes in M may have jagged
borders, due to input-image noise, shadows, or resolution limitations (Fig. 1 b). Hence, the
skeletons S∂Ci will have many short spurious branches. We discard such branches and keep
those describing each component ‘core’ by pruning each S∂Ci

following [28]: Given a skeleton
S∂Ω , we produce a skeleton Sτ∂Ω which keeps only points in S∂Ω caused by details of ∂Ω
longer than τ . We adapt this pruning by making τ proportional to the component’s boundary
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a) b)

c) d)

e) f)

Fig. 1: a) Input image. b) Full hair mask M found by our method. c) Simplified mask skeleton
SτM . d) Filtered mask Mf . e) Mask created by Huang et al. [13]. f) Inpainted hair using Mf .

length ‖∂Ci‖, so that longer branches are pruned more than shorter ones. We also impose a
minimum τmin to discard tiny spurious fragments, and a maximum τmax so as to preserve
large branches. Overall, the pruning parameter τ for a component Ci is given by

τ = max(τmin,min(‖∂Ci‖ · µ, τmax)) (7)

where µ ∈ [0, 1] is used as a scaling parameter. Figure 1 c shows the simplified skeleton Sτ∂M
obtained from the mask M in Fig. 1 b.

Hair detection: In DHR, finding if a component is thin and long is done by e.g. (a) fitting
lines in a finite number of orientations and checking the length of the longest such line [19];
(b) using principal component analysis to find if the major-to-minor eigenvalue ratio exceeds
a given threshold [18]; and (c) computing an elongation metric comparing a component’s
skeleton-length with its area [30]. Xie et al. argue that (a) and (b) are ineffective, as they
favor mainly straight hairs and yield false-negatives for highly curled hairs [30]. To alleviate
this, they use an elongation metric equal to the ratio of the area ‖Ci‖ to the squared length
of the ‘central axis’ of Ci. However, they give no details on how this central-axis (and its
length) are precisely computed. In particular, for crossing hairs, i.e., when the skeleton of
Ci has multiple similar-length branches, multiple interpretations of the notion of a ‘central
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axis’ are possible. We also found that (c) also yields many false-negatives, i.e., marks as hair
shapes which do not visually resemble a hair structure at all.

To overcome such issues, we propose a new metric to find if a thin-and-long shape is likely
a hair. Let Ji = {xi ∈ Sτ∂Ci

} be the set of junctions of Sτ∂Ci
, i.e., pixels where at least three

branches of Sτ∂Ci
meet. If the maximum distance dmax = maxx∈Ji,y∈Ji,x6=y ‖x−y‖ between

any two junctions is small, then Ci is too irregular to be a hair. We also consider the average
branch-length between junctions davg = ‖S∂Ci‖/‖Ji‖, i.e., the number of skeleton-pixels
divided by the junction count. If either dmax < δmax or davg < δavg, then Ci has too many
branches with respect to its overall size to be a thin elongated hair (or a few crossing hairs), so
we erase Sτ∂Ci

from the skeleton image. Good values for δmax and δavg are discussed in Sec. 6.

Mask construction: We construct the final mask Mf that captures hairs by convolving
the filtered skeleton-image (in which false-positives have been removed) with disks centered
at each skeleton-pixel x and of radius equal to DT∂M (x). Figure 1 d shows the mask Mf

corresponding to the skeleton image in Fig. 1 c. Comparing it with the hair-mask produced
by [13] (Fig. 1 e), we see that our mask succeeds in capturing the same amount of elongated
hairs, but contains fewer small isolated line-fragments (thus, has fewer false-positives).

3.4 Hair Removal

We remove hairs by using a classical inpainting algorithm [27] on the hair-mask Mf . To
overcome penumbras (pixels just outside Mf are slightly darker due to hair shadows), which
get smudged by inpainting into Mf , we first dilate Mf isotropically by a 3 × 3 square
structuring element. This tells why hairs in Mf in Fig. 1 d are slightly thicker than those in
e.g. in Fig. 1 b. Figure 1 f shows our final DHR result, illustrating the hair removal.

4 Implementation

The most expensive part of our method is the computation of M , which requires computing
distance transforms and skeletons from up to 256 binary images (Sec. 3.2). As these images
can be large, e.g. over 10242 pixels for modern dermoscopy devices, processing a single image
must be done within milliseconds to yield an acceptable total processing time. To achieve
this, we use the efficient GPU-based method for computing exact Euclidean distance and
feature transforms in [6]. A simple modification of this method, implemented in CUDA, also
allows us to compute dilations and erosions (by thresholding the distance transform with the
radius of the desired disk structuring element) and simplified skeletons (by implementing the
boundary-collapse in [28]). For implementation details, we refer to [31]. We also implemented
our method on multi-GPU machines by starting k MPI processes for k GPUs. Each process
p ∈ [0, k) performs gap-detection on a subset of the threshold-set, further launching CUDA
threads to parallelize gap-detection at image block level, see [6]. This yields k separate masks
Mp, 1 ≤ p ≤ k. Process 0 collects all masks Mp and merges them into a single mask M , after
which it continues with false-positive removal (Sec. 3.3). Connected component detection,
done with union-find [22], and hair inpainting [27], are implemented in C++ on the CPU, as
they are done on a single image. Performance figures are discussed next in Sec. 5.

5 Results and Comparison

Material: We have tested our method on a set of over 300 skin images. These cover a wide
range of skin lesions, hair types (thickness, color, length, density), and skin colors, acquired
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Input image DullRazor Our methodHuang et al.

a)

c)

e)

f)

b)

d)

h)

g)

Fig. 2: Comparison of our method with DullRazor [18] and Huang et al. [13]. Insets show
details.
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by several types of dermoscopes, by three different research groups. Some images contain no
hair at all; this lets us see how well can our method avoid false positives. This is important,
as removing non-hair details may affect subsequent analyses and should be avoided [2,13].

Methods: We compared our results with five existing DHR methods: Where an implemen-
tation was available [19,13], we ran our entire image-set through the respective tools. For the
other methods [30,2,12], we processed the images from the respective papers by our method.

Input Xie et al. Huang
et al.

Our
method

Fig. 3: Comparison between Xie et al. [30], Huang et al. [13], and our method.

Input Abbas
et al.

Huang
et al.

Our
method

a)

b)

c)

Fig. 4: Comparison between Abbas et al. [2], Huang et al. [13], and our method.

Results: We first compare with DullRazor and Huang et al. [13] (Fig. 2). We see that Dull-
Razor cannot remove low-contrast hairs (a,d) and/or creates ‘halos’ around removed hairs
(c,f). Halos are also created by Huang et al. (e,f). Images (g,h) show two very challenging
lesions, where overlapping hair has variable tints, opacity, thickness, and density. For image
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(g), our method creates less halos around removed hairs than both DullRazor and Huang et
al. For image (h), our method removes considerably more hair than both previous methods.

Figure 3 compares our results with Xie et al. [30] and Huang et al. While our method
removes more hairs than Xie et al., it also removes a small fraction of the skin texture (which
is suboptimal). In contrast, Huang et al. removes all hairs but also massively blurs out the
skin pattern. This is highly undesirable, since such patterns are crucial for further lesion
analysis. Figure 4 compares our method with Abbas et al. [2] and Huang et al. We see that
we produce comparable results to Abbas et al. In contrast, Huang et al. has problems with
thick hairs (a) and also produces undesired hair halos (c). Finally, Figure 5 compared our
method with Fiorese et al. [12]. Our results show a similar ability in removing both stubble
and elongated hairs. Interestingly, Fiorese et al. changes the overall hue of the input image,
which is undesired. In contrast, our method correctly preserves the hue of the image.

Input image Fiorese et al. Our method

a)

b)

Fig. 5: Comparison between Fiorese et al. [12] and our method.

Validation: To get more insight into the quality of our method, we have shown the input
images, and corresponding DHR results produced by our tool, to two dermatologists hav-
ing both over 11 years of clinical experience. We asked whether the two images would lead
them to different interpretations or diagnoses. In all cases, the answer was negative. While a
more formal, quantitative, test would bring additional confidence, this assessment tells that
our DHR method does not change the images in undesirable ways. Separately, hair removal
is obviously desirable, e.g. when using images in automated image-analysis procedures [2,13].

Other applications: Our method can be used in contexts beyond DHR. Figure 6 shows an
use-case for cone-beam computed tomography (CBCT) images. Positron emission tomog-
raphy (PET) is a functional imaging modality used to deduce the spatial distribution of a
radio-labelled pharmaceutical injected into a subject. To put PET data in spatial context,
high-resolution CBCT images can be acquired and co-registered with PET data. Two types
of elongated sensors are inserted into the subject (a mouse undergoing physiological monitor-
ing): soft plastic tubes (S) and hard metal wires (H). H implements cause streak artifacts,
making the CBCT reconstruction (onto which the PET data is superimposed) unusable.
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Hence, we would like to automatically remove them. Doing this by processing the CBCT
volume is possible but quite expensive and complex. We remove such artifacts on-the-fly, be-
fore reconstruction, from the 2D X-ray images used to create the CBCT volume. Our DHR
method is suitable for this, since the H implements appear as thin, elongated, and dark
2D shapes in such projections (see Figs. 6 a-c). Figures 6 e-g show the H implement-removal
results. As visible, the H implements present in the input images have been successfully de-
tected and removed. In contrast, the S implements, which have lower contrast and are thicker,
are left largely untouched. Figure 6 d shows the 3D reconstruction done from the raw X-ray
images (without our artifact removal). In the lower part, the image is massively affected by
streak artifacts. Figure 6 h shows the reconstruction done from our DHR-processed images.
As visible, most streak artifacts have been removed. In contrast, the thick soft (S) tubes
have been preserved by our DHR method and the resulting reconstruction.

a) b) c)

e) f) g)

S

S
H

H

H

H

S

S

H

H

H

H

d)

h)

S

SS

Fig. 6: Artifact removal from CBCT X-ray images. (a-c) Input images, with soft (S) and
hard-and-thin metal-wire (H) implements. (e-g) Reconstructed images with removed wires.
3D volumetric reconstructions from original images (d) vs our images (h).

6 Discussion

Parameters: To obtain full automation, we ran our method on several tens of skin images
(at resolution 10242), varying all its parameters, and selected those values which visually
yielded the best results (most true-positive and least false-positive hairs). Next, we computed
final parameters by averaging, and tested that these values give good results on our full image
test-set. Table 2 presents the final parameter values, used to produce all images in this paper.

Robustness: Our method reliably removes hairs regardless of thickness, curvature, color,
or underlying skin pattern. Very thin and low-contrast hairs or stubble may not get (fully)
removed, as they are either not found in the mask Mf or do not meet the elongation criteria
(Sec. 3.3). Yet, we argue that such leftover details do not influence further analysis tasks.

Speed: We compute an open-close, a close-open, a skeletonization, and a skeleton-to-shape
reconstruction step for all 256 thresholds. For a 10242 pixel image, this takes 28 seconds
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Table 2: Empirically established parameter values.
Description Definition Value

H Structuring element radius Section 3.2 5.0 pixels
λ Gap detection parameter Equation 5 0.2
µ Skeleton simplification parameter Equation 7 0.05
τmin Minimum skeleton pruning Equation 7 3.0 pixels
τmax Maximum skeleton pruning Equation 7 40.0 pixels
δmax Hair detection parameter Section 3.3 20.0 pixels
δavg Hair detection parameter Section 3.3 10.0 pixels

on a MacBook Pro Core i7 laptop with a GT 750M GPU, and 18 seconds on a compara-
ble desktop PC with a GTX 690 GPU. For the same image and desktop PC, DullRazor
needs 4 seconds, Fiorese et al. 7 seconds, Abbas et al. 40 seconds, Xie et al. 150 seconds,
and Huang et al. needs about 10 minutes (following our tests and/or timings given in the
respective papers). Our method is thus close to the average speed of the competitor methods.

Implementation: We use the method in [6] to compute feature and distance transforms of
binary shapes on the GPU in linear time with the foreground pixel count. This method can
be easily adapted to compute multiscale skeletons with the same complexity and compute
morphological opening and closing by thresholding the distance transform [31]. For inpaint-
ing, we use the simple method in [27]. C++ source code of our full method is available at [16].

Limitations: For very dense hairs of varying color, overlaid on a high-contrast skin texture
(e.g. Fig. 2 h), our method cannot fully eliminate all hairs. However, this type of image is
extremely atypical – we found very few such images in all dermoscopic collections we had
access to. Moreover, other methods [19,13] remove significantly less hairs in such cases.

7 Conclusions

We have proposed a new approach for digital hair removal (DHR) by decomposing an image
into its threshold-set and detecting gaps in all layers. We remove false-positives by a new
filtering that uses medial descriptors to find thin and elongated shapes. We compared our
method against five known DHR methods on a set of over 300 skin images – which, to our
knowledge, is the broadest DHR method comparison published so far.

Machine learning techniques (k-NN [3], LVQ [17] or SVM [9] )could improve false-positive
filtering. Further false-negative avoidance can be improved by extending our method to use
additional input dimensions besides luminance, such as hue and texture.
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