
Combined visualization of structural and metric
information for software evolution analysis

Antonio Gonzalez
Universidad de Salamanca

Facultad de Ciencias, 37008
Salamanca, Spain

agtorres@usal.es

Roberto Theron
Universidad de Salamanca

Facultad de Ciencias, 37008
Salamanca, Spain
theron@usal.es

Alexandru Telea
University of Groningen

Institute of Mathematics and
Computer Science

Netherlands
a.c.telea@rug.nl

Francisco J. Garcia
Universidad de Salamanca

Facultad de Ciencias, 37008
Salamanca, Spain
fgarcia@usal.es

ABSTRACT

This paper discusses a proposal for the visualization of software
evolution, with a focus on combining insight on changes that affect
software metrics at project and class level, the project structure,
the class hierarchy and the indirect class coupling. The proposed
visualization supports several tasks: the comparison of structural
information, including class hierarchies, across several revisions;
uncovering collaboration patterns between developers; and deter-
mining which classes have been added or deleted to the project
during the creation of a given revision. We discuss several design
elements supporting these tasks, including interaction patterns and
and linked views.

Keywords

Visualization of software evolution, structure and metrics visual-
ization, visualization design

1. INTRODUCTION
Software evolution is the process of software change and im-

provement over years and releases [?]. Software evolution analy-
sis is concerned with understanding software changes, their causes,
and their effects [?]. Software evolution analysis enables project
managers in decision-making affected by factors such as the dy-
namics of software quality measured by quality metrics; controlling
the contribution frequency and contribution patterns of program-
mers to the software project for team and productivity assessments;
and reporting activities to upper management. Evolution analysis
supports developer tasks such as learning new code bases, com-
paring the actual and desired architectures of a product, and plan-
ning development activities. While the needs of project managers
and developers may differ, both groups require methods and tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

that enable one to compare and correlate the evolution of structural

and metric information from a software project. Structural data
includes project containment trees, class hierarchies, and entity de-
pendency graphs. Metric data includes tens of attributes measured
on the evolving entities, ranging from names, types, and IDs up to
derived metrics such as size, complexity, cohesion and coupling.

While numerous visualizations have been proposed to get insight
in the evolution of metrics and structural data, combining several
such attributes in scalable, effective, and efficient views is still an
ongoing endeavor. In this paper, we propose and discuss three vi-
sualization designs for the exploration and comparison of software
project revisions, project structural and class hierarchy data, and the
correlation of structural data with metrics defined at revision and
class level. The design contributions are the proposal of two novel
visualization designs: a circular granular timeline for the visualiza-
tion of all revisions of a project, and a hierarchical representation
for the project structure and class hierarchies.

This paper is structured as follows. Section 2 reviews related
work. Section 3 discusses our proposed visualization designs. Sec-
tion ?? discusses the proposed designs and outlines ongoing work
directions.

2. RELATED WORK
I am going to complete this section today (27/05/2009).

3. PROPOSED VISUAL DESIGNS
Software visualization is arguably a perfect instance of the re-

cently emerging visual analytics discipline, which studies the de-
sign of interactive visual tools that help analytical reasoning about
a given body of data [?]. Central to this process is the creation of
tools and techniques based on various design, visual perception, in-
teraction, and cognition principles to support a given set of tasks on
a given set of data types. Here, we apply this design methodology
to create useful visual tools for a set of tasks concerning software
evolution analysis, on structure-and-metrics data mined from soft-
ware repositories. The remainder of this paper describes the created
tools, addressed tasks, and supported data types.

Our overall design combines three linked views. In decreasing
level-of-detail order, these are: a timeline view, a hierarchy view,
and a parallel coordinates view for software metrics. The views and
their interactions are described next.

Figure 1: This timeline allows the granular representation of time.

3.1 Timeline visualization
This first visualization design uses a modified circular ring chart

layout, to show an entire overview of the time dimension of a project
(Fig. 1). Concentric rings show the different time scales that record
change events, from coarse (years, outer ring) to fine (hours or finer,
innermost ring). A similar layout was used by Holten et al. to
show software project hierarchies [?]. This type of layout com-
pactly presents large quantities of data and provides and overview
+ detail view. We augmented the basic design by drill-down selec-
tions, i.e. selecting a year to display data on its months, and the
same for months-to-days and days-to-hours drill-downs. The de-
tails on the selected time-frame are displayed in the linked views
discussed in the next sections.

Figure 1 illustrates this design for 4255 revisions of the project
Freecol [?]. The user has selected November 26th, 2008, which
is shown by highlighting the logical containment path day-month-
year. As opposed to most applications using circular ring charts,
we use the space within each chart cell to embed different types
of visualizations that solve a task centered at that cell’s level-of-
detail, as follows. First, the ’years’ ring cells embed bar charts

that show two metrics for each month for each year. In Fig. 1, we
map the number of revision to bar heights and a change in time of
a user-chosen software metric of interest to a hue-luminance col-
ormap. Light reddish colors indicate metric increases, while dark
reddish colors indicate metric decreases. A separate golden hue in-
dicates no changes in the metric. Similar colormap designs have
been shown to be perceptually intuitive and better than pure lumi-
nance or hue colormaps in similar applications interested in show-
ing metric fluctuations [?].

The ’months’ ring embeds a different chart showing the number
of committed revisions per month day using a height plot. Next,
the ’day’ ring shows revisions within each day, so this ring has 30
or 31 cells. For each cell, a matrix dot plot is drawn in polar (ρ, φ)
coordinates. The radial ρ coordinate maps the creation hour of a
revision. All revisions created within the same hour are placed at
the same ρ but different angles φ. Finally, the innermost ring shows
the placement of revisions by ’hour’, so it has 24 cells. Within a
cell, the radial position of the revision shows the creation minute.
If more than two revisions were created in the same hour, the icons
that depict them change, as e.g. for November 6th, 2008: the num-
ber of sides of the polygon depicts the variation of the metrics,

Figure 2: H-V tree navigation of a small software package. Lines represent sub-packages and circles show classes.

Figure 3: Parallel coordinates showing the metrics for revi-

sions.

if more sides greater is the metric variation. Dot colors indicate,
again, developer identity as for the ’days’ ring.

3.2 Structure evolution visualization
The second visualization targets the task of analyzing the evo-

lution of the structure of a given subsystem, which is selected by
clicking a dot in the circular timeline overview (Section 3.1). For
this task, we propose a variation of the H-V tree (a reference to
Graph Drawing Algorithms for the Visualization of Graphs will be
here), as shown in Figure 2. The advantage of this layout is a very
compact usage of the 2D space. In this layout, horizontal or verti-
cal lines represent non-leaf nodes, e.g. packages in a containment
hierarchy or superclasses in a class hierarchy. Circles represent leaf
nodes, e.g. functions in a containment hierarchy or classes without
subclasses in a class hierarchy.

A second advantage of this structure visualization is that, com-
bined with interaction, it allows the side-by-side comparison of a
moderate number of hierarchies extracted from different project re-
visions. In our design, H-V trees can be navigated interactively by
opening and closing non-leaf nodes. Figure 2 illustrates this, show-
ing eight snapshots from the successively deeper drilling-down in
the structure of a small software package (one version). The upper
images show a classical file browser metaphor for the same nav-
igation. Arguably, the H-V layout shows more information and

Figure 4: Parallel coordinates representing class metrics for

revisions as well as the addition, deletion and re-addition of

classes to revisions.

more structural insight using the same amount of screen space. Ex-
actly the same navigation can be used to compare different versions
(not shown in the figure). This trades off more space for details
in one or a few revisions (when opening many nodes) to showing
more revisions along each other (when opening only a few toplevel
nodes). This type of interaction supports common structural evo-
lution analyses where one is interested to see the overall structure
changes together with detailed changes in a few selected hierar-
chy sub-branches, all in the same view. If desired, events such as
the addition or modification of entities can be emphasized by using
different colors.

3.3 Metrics visualization
The third and final visualization targets the We propose the use

of the well known parallel coordinates visualization for the rep-
resentation of metrics. It is a multivariate visualization that uses
vertical bars for representing variables and horizontal lines for an
object that have associated several variable values. The idea behind
this is that the user selects a period of time from the circular granu-
lar timeline and its associated revisions are displayed in the metrics

Figure 5: View of the visualization proposal integrating the three designs.

viewer. If the user selects to view the metric values for each revi-
sion, figure 3 is shown; the vertical bars represent revisions and the
horizontal lines the metric values for the project at each particular
revision. However, if the user is interested in analyzing the met-
ric values associated to classes at each revision he/she can select to
display figure 4. In this case vertical bars also represent revisions
and horizontal lines classes. In addition, this representation also
shows how classes are added (1), deleted (2) or created again and
added (3) to a revision.

3.4 Discussion
Figure 5 shows a snapshot of our tool with the three linked views

discussed so far. In visual analytics terms, the so-called interac-
tion path that users follow in our tool starts with the selection of a
time period from the timeline. The interaction path branches here.
Managers, or users new to a project, will most likely ask for an
overview of revision-level or class-level software metrics for the
selected time period. Our current implementation supports typi-
cal object-oriented static analysis metrics such as size, number of
members, LOC, cyclomatic complexity, fan-in, fan-out, coupling
and cohesion [?], computed directly from the (Java) source code
in the examined repository. The metric view in the lower panel
shows the selected metrics’ evolution. Developers or architects
with detailed project knowledge and finer-grained maintenance or
refactoring tasks will typically want to see the structure evolution
across several revisions of an entity. For all selected revisions, the
project hierarchy (packages-classes-methods in Java) or the inher-

itance tree are displayed using the H-V layout (Sec. 3.2). In ad-
dition, the user can select a class and the indirect coupling of that
class is displayed. Moreover, when a user selects one of the vi-
sual elements in the indirect coupling representation the fragment
of source code is displayed for a carefully analysis (this figure will
will be included today).

This design offers several interaction possibilities, i.e. when the
user selects a revision the other revisions created by the same pro-
grammer are highlighted in the circular granular timeline and the
metrics visualizer, the user has the possibility of filtering metric by
ranges, minimize packages, show the inheritance class path, and
many other possibilities.

Although we have not conducted a formal validation of the ef-
fectiveness of our linked-view evolution visualization, we have de-
signed and used a different type of evolution visualization for evolv-
ing software, targeting very similar tasks and users for a period
of over four years, several tens of users, and around 15 academic
and commercial analyses [?, ?]. It is interesting to compare the
two approaches. The metrics visualization in [?] is very similar
in technique and purpose to the one presented here, except that in
this paper we explicitly add the user identity, mapped to color, to
the revision dots along the x axis. The timeline presented here is
fundamentally different, i.e. it uses a circular layout with four hi-
erarchy levels and different types of embedded visualizations and
metrics at each level. In contrast, the timeline in [?] uses a flat
2D Cartesian layout with time along the x axis and files along the
y axis; whereas visually more scalable, this layout does not of-

fer a multilevel aggregation of information as we do here. Finally,
the structure evolution view shown here is new and supports finer-
grained tasks that the design in [?] does not address yet.

4. CONCLUSIONS

