
EZEL: a Visual Tool for Performance Assessment
of Peer-to-Peer File-Sharing Networks

Lucian Voinea *

Technische Universiteit Eindhoven
Alex Telea †

Technische Universiteit Eindhoven
Jarke J. van Wijk ‡

Technische Universiteit Eindhoven

ABSTRACT

In this paper we present EZEL, a visual tool we developed for the
performance assessment of peer-to-peer file-sharing networks. We
start by identifying the relevant data transferred in this kind of
networks and the main performance assessment questions. Then
we describe the visualization of data from two different points of
view. First we take servers as focal points and we introduce a new
technique, faded cushioning, which allows visualizing the same
data from different perspectives. Secondly, we present the
viewpoint of files, and we expose the correlations with the server
stance via a special scatter plot. Finally, we discuss how our tool,
based on the described techniques, is effective in the performance
assessment of peer-to-peer file-sharing networks.
CR Categories: H.5.2[User Interfaces]: Evaluation/methodology;
I.3.2 [Graphic Systems]: Stand-alone systems; J.7 [Computers in
Other Systems]: Command and control
Keywords: process visualization, distributed file systems
visualization, P2P file-sharing networks visualization, small
displays

1. INTRODUCTION

Process visualization is one of the oldest forms of information
visualization. It appeared once with the need of gaining insight in
the behavior of a system, and it dates back in time to the ancient
builders of the Stonehenge, which used the temple as a
‘visualization instrument’ for the succession of seasons. The
appearance of the graphic display computer marked the birth of a
plethora of process visualization techniques [1,4,5,7]. These
techniques address different domains, from the visualization of
application behavior [4] to the visualization of web site accesses
[5]. Visualization of distributed systems’ performance is,
however, one of the less explored domains. Most work in this area
is related to the visualization of the structure of such systems
[2,3].

We propose a new approach to the visualization of performance
of Peer-to-Peer (P2P) file-sharing networks, a branch of
distributed processing that has recently gained enormous
popularity. We illustrate the proposed visualization techniques by
a prototype tool, called EZEL, which we developed for the
assessment of performance in the ED2K P2P file-sharing network
[11]. We first present the issues that are relevant for the
assessment of performance in distributed processing systems, with
a focus on P2P file-sharing networks (Section 2). In Section 3, we
describe the data that is transferred in this kind of systems, and we
identify the transactions that are important for performance
evaluation.
*e-mail: lvoinea@win.tue.nl
†e-mail: alext@win.tue.nl
‡e-mail: vanwijk@win.tue.nl

Next, we detail the challenges that arise when supporting the
assessment with visual tools, and we present our approach to
address them.

In Section 4, we describe the visualization of data taking
servers as focal points. We show how, via the use of shading and
color, multiple aspects can be shown simultaneously in a compact
way. We elaborate on the space partitioning power of cushions,
and we introduce a novel technique: fading cushions. We
demonstrate how this technique allows visualizing the same data
from different perspectives. In Section 5, we add the viewpoint of
the file, and in Section 6 we expose the correlation between file
and servers via a special scatter plot.

Finally, we discuss in Section 7 the suitability of our approach
for the assessment of P2P file-sharing networks, and we conclude
by outlining future research directions.

2. PROBLEM DESCRIPTION

A distributed processing system is a collection of entities whose
purpose is to reduce the overall processing time for a given task
by dividing the processing load among its constituent parts. We
outline the most important concepts in such a system, with an eye
on their implementation in a P2P file-sharing system (see Figure 1
for a conceptual model).

Clients generate requests (e.g., file read requests) and assign
them to proxy entities. A proxy divides requests in smaller parts
(i.e., segments) that are uniquely identifiable and can be
independently fulfilled by server entities.

Client

Proxy

Server 1

Request segments

A B C

Processing Request

A B C Assign

A B C

A B C

Divide

Dispatch A B C

A

Schedule

A serve segment

B

Schedule
B serve segment

C

Distributed System

Server 2

Figure 1: Distributed processing system (conceptual model)

Every proxy has an internal dispatcher algorithm that decides to
what servers the requested segments will be sent for processing.
Every server has limited processing resources to handle request
segments from proxies, and uses a priority based scheduling to
manage them. The priorities are internally maintained by the
server for each client request.

Visualization of a distributed system’s performance aims at
helping the user to understand such a system, based on
information obtained from transactions between its constituent
parts. Both snapshots and history recordings are therefore
important [1].

The user can employ this understanding to navigate the
transaction data and answer a number of performance related
questions. In the case of our distributed file-sharing systems, one
is mainly interested in two issues, as follows.
Dispatcher algorithm assessment
When the network of processing servers is large and dynamic
(e.g., P2P networks), the segment dispatching algorithm has a
strong influence on the request servicing time. The performance
visualization should help users to easily assess the dispatcher
algorithm, and reveal the factors and the circumstances that might
influence it. For example, users should be able to identify the
reasons for which a slower server is selected at a certain moment
instead of a faster one.
Server assessment
When the dispatcher algorithm on the proxy allows direct
selection of the servers, performance visualization should help to
determine which server delivers the best value. The interesting
case appears when the selection is based on a number of
independent performance figures. The most important questions
and quantities relevant to P2P networks are:
- download speed: how long does it take till one gets a requested

file?
- server popularity: how long do clients wait in the server-side

queue, and how frequently do other clients with higher priority
enter that queue?

- server specialization: what kind of requests can a server satisfy?
When assessing the performance of a P2P file-sharing network,

one has to investigate the evolution of a number of independent
parameters. An effective assessment should consider the loosely
coupled parameters together, and should be based on tradeoffs
that depend on the purpose of the assessment. The very nature of
tradeoff making requires the user to divide its focus over more
assessment criteria at once. This turns out to be rather difficult
when the number of criteria becomes higher than two. A typical
download session for a 700 MB movie file contains around
200,000 transactions. If one uses just standard time graphs to
visualize the above three quantities, the overall image is quickly
lost, and the dispatcher algorithm and server assessment questions
remain unanswered. The challenge is to build a unified
visualization, in which the user can focus on a particular quantity
of interest without losing overview.

For P2P file sharing networks, we use four main criteria to
assess a server:
- download speed (higher is better)
- size of segments (larger is better)
- queue evolution (fast advance and less re-queuing after
 admittance is better)
- segment position (depending on the download purpose,
 some segments may be more important than others)

The ideal server should be fast, able to provide large contiguous
segments, and should have a small waiting time. Additionally, it
should not be very popular, to reduce the chance that other clients
with a higher priority interrupt the download by acquiring the
server. However, such servers usually do not exist. Moreover, the
assessment depends on several characteristics of the downloaded
file, as explained next. For the fast download of a small file, such

as a 3 MB MP3 music file, selecting the fastest server may not be
the most appropriate decision. When the waiting time in the queue
of the fast server exceeds the time that another slower server
requires to perform the task, we prefer the slower server. Another
example is the download of an archive, (e.g., a ZIP file). Such a
download should not be attempted from a server providing
fragmented segments, even if it is fast. A slower server that
provides contiguous segments is preferred, as it makes archive
recovery simpler when the download cannot be completed.

In the following sections, we walk through the challenges of
building a visualization tool for P2P file-sharing networks. We
illustrate our solutions with snapshots from EZEL, a visualization
tool that we developed for the performance assessment of the
popular ED2K P2P network. A copy of the tool and example
datasets may be downloaded from
 http://www.win.tue.nl/~lvoinea/Ezel.htm.

3. DATA MODELING

The first issue we have to consider when building a visualization
tool is which data to visualize. P2P file-sharing networks are
characterized by a large number of terminals connected via the
Internet. Each terminal connected to such a network can act both
as a server and as a client in the same time. Clients generate file
read requests that proxies break down into segment requests. A
segment request is fulfilled by a single server, which provides the
client with the related file segment. A file segment consists of file
blocks and has a variable size (expressed in blocks).

All terminals in the network exchange transactions based on a
specific protocol. These transactions may contain either file
blocks, or control information (e.g., download requests, file
availability info, queue evolution info). In the case of the ED2K
network, the exact protocol in use is not disclosed, which makes
our assessment task considerably more difficult.

As mentioned in the previous section, server and dispatcher
algorithm assessment are central issues for performance
evaluation of P2P file-sharing networks. We address these issues
by analyzing the transaction data that a client exchanges with the
rest of the network.

To study the dynamic behavior of servers, we record two types
of transaction events: file block arrivals and queue position
reports. With this information, we build three functional
descriptions for a server, from the point of view of a given client.
In the following, we consider that a client is serviced by NS
servers S1,...,SNS , every server Si being identified by an integer
server id. The download time t runs from 0 to the download
completion moment TC. The three server descriptions are:

Queue position: () NRNtSQ i →×:,
Gives the position of the client segment request in the queue
of server Si at time t. If Q(Si,t) is zero, the client can start
downloading from Si.

Download Speed: () RRNtSV i →×:,
Gives the speed with which the client receives data from the
server Si at time t.

Contribution: () NRNtSC i →×:,
Gives the data downloaded from a server Si from the
beginning till a given time t. In other words:

() ()∫=
t

ii dSVtSC
0

ττ,,

The total amount of downloaded data is thus:

∑=
=

NS

i Ci TSCD
1

),(

To assess the performance of the dispatcher algorithm, one has
to consider both the server assessment and the evolution of the
downloaded file itself. For that, we record the block arrival events
and correlate them with the file segment requests. With this
information, we construct three functional descriptions of a
download:

Provider: () NNpP →:
Gives the server that provided the block at a position p, for all
positions p in a downloaded file

Time of Arrival: () RNpT →:
Gives the moment when the client received the block at
position p, for all positions p in a downloaded file.

Segment: () NNpS →:
Gives the file segment to which the block at position p
belongs to, for all positions p in a downloaded file.

The quantities mentioned above are discrete. For example, a
typical movie download consists of around 200,000 time moments
t, NS=150 servers, and a total downloaded value of D=700 MB.

All above functional descriptions are equally important for the
performance evaluation of our P2P file-sharing network.
Consequently, the challenge we face is to build a visualization
that facilitates access to all of them and shows how they relate to
each other.

We want to assess the dynamic behavior of individual servers,
view how a file is downloaded, and see the relation between these
processes. Since the functional descriptions to be visualized have
several implicit, non-trivial dependencies, we find a
straightforward visualization (for instance using separate graphs)
not a good solution.

Given that our set of functional descriptions has three main
axes (Servers Si, Time t, block Position p), a visual representation
using a 3D scatter plot may appear to be a direct solution. Figure 2
depicts such an approach. Every dot represents the transmission of
a block from a server at a certain moment. However, this
visualization would be very hard to interpret, given the large
amount of time samples (hundreds of thousands), the inherent 3D
occlusion problems, and the data scattering.

Position

Time

Servers

1

2
3

4

5

Figure 2: 3D visualization for P2P performance assessment

Therefore, we split the visualization in two parts (one focusing
on servers, the other on the downloaded file) and we correlate
them using a scatter plot. The server visualization is described
next. The downloaded file visualization is described in Section 5.
Finally, Section 6 presents the custom made scatter plot.

4. SERVER VISUALIZATION

To support the assessment of servers with a visual representation,
we use a horizontal sequence of small diagrams, one per server.
This allows the user to easily compare the functional descriptions
of different servers (i.e., Q, V and C). Additionally, the
representation of each server should offer enough provisions to
relate it to the visualization of the downloaded file (Section 5).

There are several alternatives for an individual server
representation. The obvious choice is to use the horizontal axis for
Time, the vertical axis for Queue (Q) and Contribution (C) and to
display their variation as graphs (Figure 3.a). The Download
Speed (V) can be estimated in this setup from the slope of C.

Contribution

Time

Contribution
Queue position

Time
a)

b)

Queue
position Contribution

Speed

Speed

Queue
position

Contribution

Figure 3: Server diagram, with graphs only a)

 with graph and luminance strips b)

However this first alternative is quite noisy for real world cases.
Due to the mutual exclusion in time of downloading and queuing,
the evolution of Queue position and Contribution are not
continuous, but interleaved. To remove the noise from the
visualization, we replace the spatial encoding of Queue position
with a luminance encoding. We use rectangular strips whose gray
shade indicates queue position (darker shades indicate lower
positions). Although graphs are more precise, grayscale encoding
of the queue position is sufficient for our purposes. After all, the
user needs only to identify the overall position and to spot general
queue trends such as advance or high / low position alternations.

Additionally, we use solid color filling for the area under the C
graph to enhance the feeling of quantity that Contribution has.
Figure 3.b depicts the result of the second approach. Both C and Q
variations appear now continuous, which makes interpretation
easier. Moreover, while their representations do no interfere, they
still allow users to easily make correlations. The horizontal parts
in the variation of C, for example, indicate periods in which the
Contribution stagnated. The user can easily verify if queuing was
the cause of idleness, and can also check the queue evolution of
the segment request in that period. Similarly to the first approach,
the Download Speed evolution can be estimated from the slope of
C.

The next visualization design step is to arrange the server
images such that they allow easy comparative assessment. For
this, we need a way to easily distinguish and identify the
diagrams. We use color encoding for that, and in each image we
fill the area below the Contribution graph with a server dependent
color. Color allows one to easily distinguish the different
diagrams and also preserves server identity over changes in the
diagram arrangement.

To allow easy comparison of the server diagrams, we need to
arrange (sort) them along one of the spatially encoded axes, i.e.,
the Time axis or the Contribution axis. Using the Time axis for
arranging the server images (Figure 4) proves to have two major
drawbacks. First, it is hard to compare server quantities (queue
position, contribution) at the same given time instant. For
example, one could hardly decide if the contribution of a source
exceeds that of another, at a given time t0 (Figure 4).

T im e

C o n tr ib u tio n t0

A B C

S e rve rs
Figure 4: Server diagram arrangement along the Time axis

Secondly, the time interval (width of server diagrams in Figure
4) is identical for all servers, so no meaningful comparison could
be made along the Time axis itself.

The second alternative (i.e., arrange on Contribution axis) is
better, as it allows easy comparison of servers based on their total
contribution (Figure 5).

Time

Contribution
A B C D E

Servers

t0

Figure 5: Arranging server diagrams

along the Contribution axis

Additionally, for a given time t, this allows comparing the
queue position and the cumulated contribution to that moment t.

Figure 6 presents a typical visualization obtained with the
method presented so far: a file download served using five
servers. We see that the first server (purple) is the most productive
one: It gives about 50% of the total amount (half of the horizontal
axis), has a stable throughput (constant slope), we are promptly
getting on the first queue position, and we maintain this position
for the total download duration (purple image slope has no step-
like jumps, and its queue area has a constant light shade after we
get on the first position). We can also identify in this image the
less productive servers, i.e., the slow one (orange) and those
exhibiting frequent falls in the queue position (yellow and cyan).

Figure 6: Basic server visualization

However, this visualization is still limited. First, using only
color to encode server identity is not a good solution when the
server arrangement (horizontal axis sorting) can change. It may
happen that two servers with the same, or perceptually similar,
colors are arranged one next to the other (Figure 7.a). Indeed, we
wish to use only a few (10..16) perceptually different colors,
whereas we typically have over 150 servers. Using only
luminance (gray value) to encode the queue position causes
similar problems. On the other hand, color encoding of server
identity keeps visual coherence when rearrangement occurs.

4.1 Spatial partition with bi-level cushions

We solve the above problem using the space partitioning
properties of cushions. For a detailed description of cushions, see
[6]. As depicted in Figure 7, cushioning makes separation clear
between different severs encoded with the same or similar colors,
without using extra screen space. It also delineates the borders
where the difference in luminance makes distinction hard.

 Figure 7: Server arrangement : without cushioning (top) with one

level cushioning (down)

In the above server diagrams, the total contribution of a server
consists of a set of segments. As the size of the segments varies,
we would like to visualize it. That would be also useful later on
for making correlations with the download visualization.

With the server visualization presented so far, it is hard to
figure out the individual segments, as they are encoded using the
same color (i.e., the color of the server). To emphasize the
segment partitioning inside the diagram of a server, while
maintaining clear separation between servers, we use the bi-level
cushioning technique described by van Wijk and van de Wetering
in [6]. Figure 8.a depicts the main idea behind this approach. By
each server diagram we visualize the illumination of a height-
modulated surface. The height assigned to a point in a server
diagram is the sum of two parabolas (i.e., cushions), one that
describes the server, and one that describes the segment to which
the point belongs. The surface is illuminated using a spot light that
forms an incidence angle α with the normal on the base plane.
Each server diagram depicts the image projected by light
reflection on a plane parallel with the base.

Figure 8.b depicts the result of this technique. By using
OpenGL texturing, we obtain a much higher performance than the
similar software-only implementation of van Wijk and van de
Wetering [6]. In detail, we blend the server rectangle image and
each of its segment rectangle images, as in Figure 7.(top), with a
1D texture containing the respective server or segment luminance
profile in the alpha channel.

Contribution

Surface Height
(Geometry)

First layer of cushioning

Second layer of cushioning

Segments

Servers

α
Light

900

Projection plane

Base

a)

b)

Figure 8: Bi-level cushioning for segment and source partitioning: a)
principle; b) result

4.2 Focus migration with faded cushions

Using the bi-level cushioning is very effective for delimiting
servers and segments within servers. However, the above method
draws cushioned segment information also over the area that
displays queue information (gray area in Figure 9) . Segment
partitioning is not relevant for that area, and this makes server
comparison based on queue evolution, i.e., following horizontal
correlations, difficult.

Figure 9: Basic bi-level cushion visualization

In order to maintain the desired segment and source partitioning
effect, and, in the same time, remove the undesired influence on
the queue evolution visualization, we extend our bi-level
cushioning. We change the perceived shape of the segment
cushions in the vertical direction from constant curvature to a
gradually flattening profile. To achieve this, we introduce a height
variation in the vertical direction using a decreasing profile as
sketched in Figure 10.a. For this profile, we use an asymptotic
function (e.g., the root of order n). The segment cushions are now
efficiently implemented as 2D alpha textures and blended atop of
the original 1D server cushions.

Eventually, we obtain a visualization that emphasizes both
segment and server segregation at the top of the image, and then
progressively focuses only on the partition in servers, as the user’s
focus moves to the bottom of the image. The gradual transition
makes focus migration smooth while preserving the server context
(Figure 10.b). In other words, the visualization exhibits vertical
coherence at the top (segment-server area), which smoothly

changes into horizontal coherence at the bottom (queue area). The
overall visual effect resembles the draping of a curtain, and nicely
scales up for visualizations containing over 100 servers and 1000
segments.

Y position
X position

Height of the second
cushioning level

First level
cushioning

Second level
cushioning

a)

b)

Figure 10: Enhanced bi-level cushioning for smooth focus
migration: a) principle b) results

5. DOWNLOAD VISUALIZATION

In this section, we address the visualization of the download itself
and the creation of correlations with the server visualization
described in Section 4.

The only alternative in this part is to use the block Position as
one of the main axes in the representation, and report the
functional descriptions to it. The challenges are, however, in
choosing the right visual encoding for the Provider (P), Time of
Arrival (T) and Segment (S) descriptions. To make correlation
with the server visualization easy, we use color to encode P, and
we choose the same color assignment as for the server
visualization.

For Segment encoding (i.e., S), we use a similar approach with
the one from the server visualization: we build one-level cushions
on top of fixed-width rectangles arranged along the Position axis
(Figure 11). We don’t need bi-level cushions, as the emphasis is
only on segment segregation, and has to be visible along the entire
width of the rectangles.

Position

Segments

Color encoded
Provider

Time (first block of segment)

Fixed
width

Figure 11: Visual encoding of functional description for a file
download

For Time encoding, we may consider a graph-like
representation. Neighboring segments on the Position axis,

however, may arrive at non-adjacent time intervals which
immediately leads to a very noisy visualization. Therefore, we
chose to use a rainbow colormap (t=0 is blue, t=T is red) to
encode the time on a per segment basis (Figure 11). While this
alternative is visually less accurate for identifying the arrival time
of a block, it consumes little space and attenuates the visual noise
caused by neighboring segments that arrive at different moments
in time. Moreover, the above color scheme highlights
discontinuities, i.e., segments that arrive at moments distant in
time with respect to their neighbors. To improve the image
generation speed, we don’t report the time to every single block in
a segment, as the T description specifies. Instead, we use for all
the blocks in a segment the same time description as for the first
block, and we try to implement a more accurate representation
through server correlations, which we describe next.

6. CORRELATION VISUALIZATION

In this section we present the visualization component that allows
making correlations between the server and download
visualizations. In the design of the visualization so far, we have
already a color-based correlation between the Provider description
(i.e., P) and the server diagrams. This allows to identify and
compare servers that provide some particular blocks in a
downloaded file.

Next to this, we also need a correlation that would make the T
description more accurate. Since the server visualization has a
good mapping from Time to Contribution (i.e., C), we extend this
mapping to the download visualization through a correlation along
the block axes (i.e., the Contribution and the Position axes).
However, given that the two axes are spatially encoded, a relation
at block level would be too fine-grained and hard to visualize. For
that reason, we choose to visualize the connections at the (higher
abstraction) segment level.

The discrete nature of the block axes favors using a scatter plot
representation to visualize the correlation. A simple scatter plot,
however, makes visual associations difficult, once the number of

segments is greater than 10 (Figure 12.a). A possible workaround
is to add lines that make connections explicit. However, this
alternative proves to be ineffective too, as it clutters the image,
and suffers from aliasing once the distance between lines becomes
too small (e.g., the black line in Figure 12.b). These problems are
only aggravated by the large number of correlations (hundreds)
that must be displayed for a standard download dataset.

In order to make the connections more explicit while keeping
the image uncluttered, we replace the solid lines with shades that
start from the points of the scatter plot and fade away as they
approach the axes (Figure 12.c). This alternative reduces the
confusion created by crossing lines, and offers still enough visual
clues for recognizing connections. Additionally, it introduces no
artifacts and scales very well with the image size. When the
distance between the points of the scatter plot becomes to small
to observe differences, the shades merge naturally, as if they were
addressing the same element. To accomplish this, we draw the
shades using OpenGL’s GL_MIN blending function, which
always keeps the darkest shade element at intersections,
regardless of the shade drawing order.

The complete visualization, obtained after linking the server
and download visualizations using the correlation methods
described in this section, is depicted in Figure 13. For easy
navigation, we added interactive selection facilities to allow
restricting the download visualization part and the corresponding
correlations to:
- specific parts of a file (by individual segment selection on

Position axis)
- specific time intervals (using a time cursor on the Time

axis).
- specific servers (by individual server selection on

Contribution axis)
These selection mechanisms easily allow one to answer

questions such as “which are the servers active at a given time
moment”, “which are the file blocks provided by a given server”,
and “which are the servers a given file part came from”.

Server visualization

D
ow

nl
oa

d
vi

su
al

iz
at

io
n

a) b) c)
Figure 12: Correlation visualization alternatives a) basic scatter plot; b) adding connecting lines; c) adding shading

A D E F G H IB C

Contribution

D
ow

nl
oa

d
vi

su
al

iz
at

io
n

S
erver

visualization

Position

Time cursor

Time

Correlation Area

Figure 13: Visual tool for the assessment of performance in P2P file-sharing networks (EZEL snapshot)

7. DISCUSSION

In this section, we discuss how our P2P visualization tool
EZEL can be used to answer the main performance related
questions in distributed file-sharing networks.

In order to experiment with the tool, one needs real-life
information about transactions in P2P file-sharing networks.
We obtained such datasets by instrumenting eMule [10], an
open source download client for the ED2K network. The
instrumented client provides us with a log file from which the
functions Q,P,C,V,T, and S discussed in Section 3 may be
computed.

Figure 13 shows a visualization of the download of a large
movie file (702,4MB). The complete download took several
hours and contained 201,261 transactions. In this image, the
servers are sorted in the decreasing order of their total
contribution. The upper half of the image shows the segment
fragmentation on a per server basis. We see that the most
suitable download sources for archive files are A, B, E and H,
as they provide large sets of contiguous segments, which
makes archive recovery simpler in case of incomplete
download. The least preferred in this sense are sources D, F
and G, which provide tiny segments scattered along the entire
length of the file. Analyzing the slopes in the image (i.e., the
server speed) we see that I is one of the fastest sources.
Unfortunately, it is also a very popular one, as most of the
time our request waited in the server queue. A better
alternative, especially for the download of a small file, is
using servers B,C, F or G. Although F and G are slow and
provide fragmented segments, they are unpopular, and thus
start satisfying our requests very fast. Finally, if one were
asked to single out an overall ‘good’ download source, A
would qualify, as it gives us many data, with constant
throughput, and little waiting time.

Figure 14 depicts a situation where we spotted a
“weakness” of the dispatcher algorithm. For a downloaded

file (350MB) we arranged the servers in decreasing speed
order. In Figure 14.b, we switched off the display of segment
evolution in time. Using a time cursor, we selected those
segments that were downloaded at a certain moment t0 close
to the end of the download.

 Contribution /
servers Position

Time

A

A

B

B

a)

b)

Time
cursor

t0

t0

Figure 14: Dispatcher algorithm assessment

Figure 14.a shows that at t0 the downloaded segment came
from server A, while Figure 14.b shows that at the same time,
the faster source B was also available (i.e., we were not in
queue but ready to be served). That means the dispatching

algorithm in the eMule client is not optimized for the
minimization of waiting time.

Finally, Figure 15 illustrates the possibilities that the
techniques we described in this paper have for the field of
visualization on small displays. The good scaling behavior for
the server visualization combined with the efficiency of
shading in scatter plots, and the partitioning qualities of
cushions create uncluttered images that allow performance
assessment of P2P file-sharing networks even on low-
resolution displays.

Figure 15: Download visualization of a MP3 song on a
Nokia 7650 display using EZEL

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new approach for the visual
assessment of performance in P2P file-sharing networks, and
we validated it using EZEL, a prototype assessment tool for
the ED2K network.

We started by identifying the data transferred in P2P file-
sharing networks, and then we tried to find relevant
performance descriptions based on it. Subsequently, we built
a custom visualization made of two correlated parts: a server
and a download visualization. For each part we visually
encoded a number of descriptions and we proposed a number
of enhancements and combinations of existing visualization
techniques. Notably, we used shaded cushions for virtually all
data elements (servers, segments, queue positions, and
correlation plot elements). Overall, our visualization gives a
compact and scalable way to present a download consisting of
thousands of transactions, from over 100 sources, on a single
screen. To our knowledge, this is the first attempt to visually
explore the data transfer dynamics in the rapidly growing
world of P2P file-sharing networks. The other work we are
aware of in this field addresses a different task, namely
visualizing the topology of a P2P network of a different type
[9].

The examples presented in this paper address the
visualization of data obtained at the end of a download.
However, using the same approach for building a dynamic,
“real-time” visualization of the acquired data is in theory
possible. The only issue in this case would be the frame rate at
which images are produced. In the worst case, more than
200.000 transactions have to be considered for the generation
of each frame. This would require an impressive processing

power in order to update the image at the arrival of each new
transaction (on average every 100 ms). The current
implementation of EZEL generates images at 0.5 – 1.0 fps on
a Pentium 4 processor running at 2.6 GHz. A scenario in-
between would be to generate on demand images with the
partial information available during the download. While
differences between consecutively generated images could be
too large to make meaningful correlations, the individual
images may be used to interact with the download process
based on intermediate assessments.

In the future, we would like to generalize our visualization
and extend it to the larger domain of distributed processing in
general. The challenges we foresee there relate to the process
visualization of the dispatching and scheduling entities.

ACKNOWLEDGEMENTS

This research was part of the ITEA project Space4U, whose
aim is to define a component based software framework for
the middleware layer of high volume embedded appliances
(http://www.win.tue.nl/space4u).

REFERENCES
[1] K. Matkovic, H. Hauser, R. Sainitzer, M. E. Gröller, Process

Visualization with Levels of Detail, Proc. Info Vis ‘02, pp. 67-70

[2] R.A. Becker, S.G. Eick, A.R. Wilks, Visualizing Network Data,
IEEE TVCG, vol. 1, no. 1 , March 1995, pp.16-28

[3] S.T. Eick, Aspects of Network Visualization, IEEE Comp. Graph.
& Appl., vol. 16 , no. 2 , March 1996, pp. 69-72

[4] C. Stolte, R. Bosch, P. Hanrahan, M. Rosenblum, Visualizing
Application Behavior on Superscalar Processors, Proc. Info Vis
‘99, pp. 10-17,141

[5] E. H. Chi, S. K. Card, Sensemaking of Evolving Web Sites Using
Visualization Spreadsheets, Proc. Info Vis ‘99, pp. 18-25,142

[6] J. J. van Wijk, H. van de Wetering, Cushion Treemaps:
Visualization of Hierarchical Information, Proc. Info Vis, 1999,
pp. 73-78

[7] R. Spence, Information Visualization, ACM Press, 2001.

[8] R. M. Wilson, R. D. Bergeron, Dynamic Hierarchy Specification
and Visualization, Proc. Info Vis ’99, pp. 65-72

[9] K.-P. Yee, D. Fisher, R. Dhamija, M. Hearst, Animated
Exploration of Dynamic Graphs with Radial Layout, Proc. Info
Vis ’01, pp. 43 – 50

[10] eMule : http://www.emule-project.net/

[11] ED2K : http://www.edonkey2000.com/

