Skeleton-Based Edge Bundling for Graph Visualization
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Abstract—In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for bundles,
we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering, distance
fields, and 2D skeletonization to construct progressively bundled layouts for general graphs by iteratively attracting edges towards
the centerlines of level sets of their distance fields. Apart from clustering, our entire pipeline is image-based with an efficient imple-
mentation in graphics hardware. Besides speed and implementation simplicity, our method allows explicit control of the emphasis on
structure of the bundled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We demonstrate our method
on several large real-world graphs.

Index Terms—Graph layouts, edge bundles, image-based information visualization.
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1 INTRODUCTION network. Instances hereof are examining the local hierarchy ofdraffi
rT;I:ES)_nnections in aroad or airline network, or identifying the number and
Rize of branches (fan in/out patterns) in software structures.

f. The structure of this paper is as follows. In Section 2, we review
lated work on edge bundles. Section 3 presents our bundling algo-
hm. Section 4 details implementation. Section 5 presents appli-
ations on large real-world graphs. Section 6 discusses our method.
ection 7 concludes the paper and outlines future work directions.

Graphs are among the most important data structures in infor
tion visualization, and are present in many application domains i
cluding software comprehension, geovisualization, analysis of tra
fic networks, and social network exploration. Classical visualizaticﬁe['
metaphors for general graphs include node-link diagrams [17]j)matF'
plots [34], and graph splatting [35]. For specific types of graphd) su
as hierarchies (trees), additional methods exist such as treemaps.

As the number of nodes and edges of a graph increases, node-gnk
graph visualizations become challengeddbytter, i.e. unorganized
groups of nodes and edges onto small screen areas. To reduce &efated work in reducing clutter in large graph visualizations can be
ter, and also address use-cases which focus on simplified depictiwganized as follows.
of large graphs with an emphasis on graph structure, several method&raph simplificationtechniques reduce clutter by simplifying the
have emerged. Specificallpundling methods are an interesting al-graph prior to layoue.g. by grouping strongly connected nodes and
ternative for classical node-link metaphors. Bundling typically staredges into so-called metanodes, followed by using classical node-
with a given set of node positions, either present in the input datak layouts for visualization. Several simplification methods exist,
or computed using a layout algorithm. Edges found to be close éng.[1, 2]. Graph simplification is attractive as it reuses existing node-
terms of graph structure, geometric position of their endpoints, data ftk layouts out of the box, but can be sensitive to simplification pa-
tributes, or combinations thereof, are drawn as tightly bundled curveameters, which further depend on the type of graph being processed
This trades clutter for overdraw and produces images which are easiefoes not allow a continuous treatment of the graph: the simplifica-
to understand and/or better emphasize the graph structure. Edge biam events yield a set of discrete graphs rather than a smooth explo-
dles can be rendered using various effects such as blending or shratlon scale [22]. Also, simplification typically changes node positions
ing [15, 22, 32]. Edge bundling algorithms exist for both compoungtollapse to metanodes), which can be undesiralgjavhen positions
(hierarchy-and-association) [14] and general graphs [15,, 224 encode information.

In this paper, we present a novel approach for constructing edgeEdge bundlindechniques trade clutter for overdraw, by routing ge-
bundles for general graphs. We adapt a recent result which demplometrically and semantically related edges along similar paths. Fur-
centerlines, or skeletons, of groups of edges [32] and use the skéker details on clutter causes and reduction strategies in information
ton for actual edge bundling rather than shading only. In detail, wesualization are given in [11]. Bundling can be seen as condensing
combine edge clustering, distance fields, and 2D skeletonizationthe edges’ angle distribution along a reduced set of directions and also
construct bundled layouts by iteratively attracting edges towards thlearpening the local edge spatial density, by making it high at bun-
centerlines of level sets of their distance fields. Apart from clusterindle locations and low elsewhere. This improves readability in terms
our pipeline is image-based, which allows an efficient implementatiaf finding groups of nodes related to each other by groups of edges
in graphics hardware. Besides speed, our method allows users to(#xe bundles). Bundling increases the amount of white space between
plicitly control the emphasis on bundle structuice, create strongly bundles, which makes their visual separation easier.
branching (organic-like) or smooth bundles which always have a treeDickersonet al. merge edges by reducing non-planar graphs to
structure. This type of control can be helpful in applications wheggdanar ones [9]. Holten pioneered edge bundling under this name for
one is interested to see how several edges ’'join’ together into, or sgidmpound (hierarchy-and-association) graphs by routing edgeg alo
from, main structures, for example when exploring the structure oftlae hierarchy layout using B-splines [14]. Gansner and Koren bundle
edges in a circular node layout similar to [14] using area optimiza-
tion metrics [13]. Dwyeret al. use curved edges in force-directed
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Fig. 1. Skeleton-based edge bundling pipeline. End user parameters are marked in green. System preset parameters are in red.

interpolation along edges for edge directions [14, 7]; transparencyrank, Kendallsr) distances. HBA with full linkage and Euclidean dis-
hue for local edge density,e. the importance of a bundle, or for tance given by
edge lengths [22]. Whole bundles can be drawn as compact shapes

whose structure is emphasized by shaded cushions [32]. Graph splat-

ting visualizes node-link diagrams as continuous scalar fields using

N
Y llex —ejll? 1)
color and/or height maps [35, 16]. K=t

whereelk’kel‘—N are uniformly spaced sample points along the edges,
3 ALGORITHM with N € [50,100, gives the best resultse. clusters with geomet-
The inspiration behind our method relates to a well-known fact ifcally close edges which naturally follow the graph structure. Using
shape analysis: given a 2D shape, its skeleton is a curve locally cée sameN for all edges removes edge length bias. HBA delivers a
tered with respect to the shape’s boundary [6]. Skeleton branches cgendrogramD = {Ci} with the edge seE as leaves and similarity
ture well the topology of elongated shapes [20, 29]. Hence, if we couinkage) valuesi(C), equal to the full linkage of cluste based on
create such shapes from sets of edges in a graph, their skeletons cBifilistance metric in Eqn. 1, increasing from root to leaves. We select
be suitable locations for bundling. To this end, we propose a skeletéh'cut’ in D, or partition,P = {C; € D|d(Cj) < &} of E based on a sim-
based edge bundling method, as follows (see Fig. 1): ilarity value &, set by our algorithm as explained further in Secs. 3.5
and 4. If desiredd in Egn. 1 can be easily adapted to incorporate edge
1. weclusteredges into groups, or clustef®, which have strong data attributes, as outlined in [32].
geometrical and optionally attribute-based similarity;
3.2 Shape construction
2. for each cluste€, we compute a thin shag® surrounding its Clustering delivers sets of spatially close edgies, the bundling
edges using a distance-based method; candidates. Given such a clus@r= {g}, we consider its draw-
ing A(C) C R?, e.g. the set of polylines corresponding to its edges
3. for each shap®, we compute its skeleto®, and feature trans- ¢ if we use the default linear edge interpolation. We construct a

form of the skeletorr Ts; compact 2D shap@ c R? surroundingA(C), as follows (see also
] ] Fig. 2). Given any shap® c R2, we first define its distance transform
4. for each cluste€, we attract its edges towar@s usingFTs; DTe:R%2—> R, as
5. we repeat the process from step 1 or step 2 until the desired DTo(x € R?) = min|x—vy| )
bundling level is reached; yeo

6. we perform a final smoothing and next render the graph using a
cushion-like technique to help understanding bundle overlaps.

We start with an unbundled grapgh = (V,E) with nodesV and
edgesE. We assume that we have node positians R2, either from
input data, or from laying ou® with any existing methoe.g. spring
embedders [17]. Edges< E are sampled as a set of points connected
by linear interpolation; other schemes such as splines work equally
well. The start and end points of an edge, denefednde’ respec-
tively, are the positions of the nodes the edge connects. Edge points
may come from input data.g. when we bundle a graph which has
explicit edge geometry. If no edge positions are available, we initial-
ize the edge points by uniformly sampling the line segméets®)
with some small step. Our bundling algorithm iteratively updates these
edge points. Its output is a bundled layout@®tvhich keeps node po-
sitions intact and adjusts the edge points to represent bundled edges.

The six steps of our method are explained next.

3.1 Clustering

To obtain elongated 2D shapes, needed for our bundling (described
next in Sec. 3.3), we first cluster edges using a similarity metric
which groups same-direction, spatially close, edges, using the clus-
tering method described in [32]. We have tested several clustering al-
gorithms: hierarchical bottom-up agglomerative (HBA) clustering us-

ing fuII,_centroiq, single, and average Iinkagg, &ntheans clustering, Fig. 2. Shape construction: a) dQ and S b) DTs; ¢) FTs; d) bundling
both with Euclidean and statistical correlation (Pearson, Spearmags it See Secs. 3.2-3.4 for details.




Given a distance valu®, we next define our shafie as We now uset(eg) to bundleg along the skeleton, as follows. Con-
sider a poinix € g located at arc-length distan@gx) from €. We
Q={xe RZ\DTA(C) (x) < w} (3) movex towardsF Tg(x) with a distance which is large ¥ is far away
from FTg(x) and/or close to the middle of the edge:
where DTy ¢ is the distance transform of the drawidgC) of C's AX) AX)
edges. The shape’s bound@ is the level set of valuey of DTy c) XNeW — {1— agp (7)} X+ae (7) FTs(x) 7
(see Fig. 2 a). This is equivalent to inflatingC) with a distancew in A(€f) A(€)

all directions. In practice, we set to a small fraction€.g. 0.05) of a6 o ¢ [0,1] controls the tightness of bundling: Large values bring
the bounding box o6. Efficient computation of distance transformsye eqge closer to the skeleton, whereas small values bundle less. The
is detailed further in Sec. 4. function: [0,1] — [0,1] defined as

3.3 Shape creation

Given a shap& computed from an edge cluster drawing as outlined
above, we next compute its skelet&g defined as modulates the motion amount so that the edge’s end pejraade’
do not move at all, points close to these end points move less, and
So={x€Q|Fy,z€dQ,y#z|x—y||=|Xx—2z|| =DTya(X)} (4) points around the middle of the edge move most. This produces the
curved edge profile we require for bundling, and also keeps edge end
i.e. the set of points if2 which admit at least two different so-calledpoints fixed to their node locations. The paraméfecontrols how
feature points o@Q, at distance equal to the distance transfordd@f smoothly edges twist, or curve, from their nodes to reach their bundled

o(t) = [2 min(t, 1— 1)< ®

(Fig. 2 a). location. HigherK values produce more twists, and |dw values
GivenS, we now compute its so-called one-point feature transforproduce smoother twists. Valueskfe [3,6] give very similar results
FTs: R? — R?, defined as to known bundling methods.g.[14, 15, 22]. Also, for any € S,
FTs(x) =X (Sec. 3.3), so for such points we hat#"¥= x (Eqgn. 7),i.e.
FTs(x) ={y € YDTs(x) = [|x—YI|[} (5) points which have reached the skeleton, the extreme bundling location,
do not move any longer.
i.e. one of the feature points af Figure 2 b,c show thBTgandF Ts of Equation 7 is equivalent to advecting edge poits the gradi-

a skeleton. Gray values in Fig. 2 b indicate Bigs value (low=black, ent field—[DTs. Distance transforms of any shape except a straight
high=white). Colors in Fig. 2 c indicate the identity of different featuréine have divODTs # 0 [28]. Hence, our attraction typically shortens
points: same-color regions correspond roughly to the Voronoi regioand/or lengthens edges, since these get immediately curved after one
of the skeleton branches [33]. The skeleton is the identity sEffef application of Eqn. 7. We compute the edge pointssed in Eqn. 7

i.e. ¥x € SFTg(x) = x. Note that, in Eqn. 5, we use the distanceyy uniformly sampling edges in arc-length space with a distance equal
transformDTs of the skeletor§, and not the distance transfoldTy;o  to a small fixed fraction (0.05) of the layout’s bounding box. This

of the shape. Also, note that the one-point feature transform is simptemoves points where the edge contracts (@¥Ts < 0) and inserts

than the so-called full feature transform points where the edge dilates (diDTs > 0) as needed, thus ensuring

full a uniform edge sampling density.

FTg™ (x) = argmin|x—y|| (6)

yes 3.4.1 Attraction singularities
As explained, Eqn. 7 is equivalent to advectinip the field—ODTs.

which recordsall feature points ok [6]. I SN s ;
In practice, we compute distance transforms, one-point featu-lr—glsfm?ld N smgoth eyerywhere IR™ except on pointsc where ,
transforms, and skeletons in discrete image (screen) space. ThislElls  (X)[| > 1,i.e. points located on the skeleton of the skeleton’s

lows efficient implementation (see Sec. 4) and also further processitymplement, or Voronoi diagram & S= Sre\s- Intuitively, Scorre-

of the skeleton for edge bundling, as described next. sponds in Fig. 2 c to color discontinuities. Although this singularity set
. is small,i.e. a set of curves in 2D, we need special treatment for such
3.4 Edge attraction situations. If we were to directly advect a curve using Eqn. 7 with no

Using the skeletoBand its feature transforfTs, we now bundle the further precaution, singularities would appear where the curve @osse

edgesg € C by attracting a discrete representation of each edge to-SincelDTs has a high absolute divergenée. changes direction

wardsS. This idea is based on the following observations. First, giveigpidly, in such areas [28]. Such singularities appear as sharp kinks in

the way we combine clustering and edge bundling, a cluster contathg curve, which defeats our purpose of creating smooth bundles. For

only edges having close trajectories; the reasons for this are detaf@mple, attracting the blue edgén Fig. 3 a towards the Y-shaped

in Sec. 3.5. By construction, the skelet®nf a cluster is locally cen- skeleton yields the red line which shows two kinks, wheoeossess

tered with respect to the (similar) edges in that cluster, a good (dotted line) at points.andb. The problem is made only more com-

candidate for the position to bundle towards. Seconllig(x) —x  Plex by the fact that we use a sampled edge representationmey

gives, for each point € R2, the direction vector from to the closest D€ close, butnotorg. o o

skeleton point tx, i.e. the direction to bundle towards. We use these We Solve such situations by an implicgégularizationof the ad-

observations to bundig as follows. vection field determined b Ts. First, we enforce the con§tra|nt that
First, we compute all branch termination points tips, T = {t;} POiNtsx € e can only be advected to points on the edge’s pz#).

of S. Given thatSis represented in image space, we use a simple anfis ensures that, during advection, part@chnnot be attracted to-

efficient 3x 3 pixel template-based method [19] to locste Next, wayds other skeletqn branches than the setarftiguousbranches

we compute all skeleton patlis = {77 C S} between any two tips which form 7. Intuitively, Eqn. 7 should not pule towards non-

ti andtj. The paths are represented as pixel chains and are fomnepted skeleton branches. We achleve this constraint as follows

using depth-first search from eatgton the skeleton pixel-adjacency- (S€€ Fig. 3 b). For eache e, we evaluate its Ts(x). If FTs(x) € ri(e),

graph. We next use these paths to robustly attract the edges towd¥§ttract the regular’ point using Eqgn. 7, else we markas special

the skeleton. case. Special points alorg(yellow in Fig. 3 b) form compact sets
For eachg € C with start and end points® ande® respectively, we 0i» Which are preceded and followed eiby regular pointss*2" and

select a skeleton pathi(e) € I so that{FTs(e’), FTs(ef)} C m(a), qie”d respectively, whose feature points belongri@) by construc-

i.e. a path passing through the feature points of both edge end poiriign. We next map each special pointo a corresponding poind"@P

If there are several such pathslih we pick any one of them, the on 7i(€) using arc-length interpolation along both and their corre-

particular choice having no influence on the algorithm. sponding path fragmenf8 Ts(o512"), FTs(0°")] ¢ S (dark green in
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3.5 lterative algorithm

For a given graph layout, one application of the clustering, shape con-
struction, and edge attraction steps outlined above yields a new layout
whose edges are closer to their respective cluster skeletons. Toechiev
full bundling, we repeat this process iteratively until a user-specified
number of iterations is reached. More iterations yield tighter bun-
dled edges. This process is strictly monotonie, edges can only get
closer to their clusters’ skeletons (hence to each other) by construction,
as explained below (see also Fig. 4).

First, let us explain why clustering needs to be repeated during the
iterative process. For the first clustering, we use a high similarity
thresholdd in order to guarantee elongated, thin, clusters regardless
of the edge spatial distribution in the input graph (Sec. 3.1). This
is essential for getting the initial bundling under way. Indeed, if we
had weakly coherent clusters, these would contain edges that inter-
sect each other at large angles, hence the shapes surrounding them,
and their skeletons, would be meaningless as bundling cues. For sub-
sequent iterations, we decreaSeand recluster the graph each few
(3tob) iterations. This produces fewer, increasingly larger, clusters,
which allows fine-scale bundles to group into coarse-scale ones. How-
ever, these large clusters doeally elongated, since they contain al-
ready partially bundled edges. Hence, coarsening the clustering will
not group unrelated edges. The overall effect is bottom-up bundling:
First, the closest edges get bundled, yielding fine-scale local bundles,
followed by increasingly coarser-scale bundle merging.

Similarly, we decrease during the iterative process. Initial large
a values yield strongly coherent initial bundles, needed for cluster-

FTs(e) skeleton S ing stability as explained above. Subsequent relaxedlues allow
/ edges in more complex, larger, bundles to adjust themselves. Concrete
values ford anda are given in Sec. 4.2.

3.6 Postprocessing
~ curve to bundle 3.6.1 Relaxation and smoothing

FTs(ejn)

The output of our bundling algorithm has a strong branch-like structure
Fig. 3. Attraction singularities. Naive solution (a,c) and corresponding (seee.qg. Fig. 6 f). This is the inherent effect of using skeletons as

solutions with regularization (b,d). Final bundled curve is shown in red. Pundling cues. Indeed, skeleton branches asymptotically meet at large
Voronoi regions of the branches of Sare shown in different hues. angles [25]. This visual signature of our bundles may be desirable for

use-cases where one is interested to see the branching structure of a
graph. However, often the fact that two bundles join at some point
- . in a thicker bundle is irrelevant, and should not be over-emphasized.
both special and regular points are attracted to the samew@thand e offer this possibility by performing a final postprocessing on the
thus, sincer(e) is a compact curve, that the motioneis smooth.  hgjed layout. Here, two variations are proposed. First, we apply

_However, the above regularization does not eliminaffesharp 5 simple Laplacian smoothing filter along the edgesimes, much
kinks |n_the advection of an edge: Consecu_tlve points of the edg_e AR [15]. This removes sharp bundle turns, which by construction
‘'see’ points on the same skeleton pattand still be separated by a sin-anpear precisely, and only, where skeleton branches meet. Irateed,
gularity (see poin&in Fig. 3 c). As explained, advecting such point§nown from medial axis theory, a skeleton branch is always a smooth
a using Eqn. 7 would produce undesirable bends. Since the featg@rye; the only curvature discontinuities along a skeleton appear at
point ofais located on the same pattte) as those oé's neighbors on  yranch junctions [25]. A second postprocessing we found useful is to
the edge, we cannot firmusing the path-based detection criterion outyerpolate linearly with a valug € [0, 1] between the bundled graph
lined above. We solve this problem by using an angle-based criterigfyq its initial layout. This relaxes the bundling, which is desirable
Given our discrete edge representatéon {x; }, we test if the feature \yhen ysers want to see the individual edges within a bundle and/or
vectorsF Ts(x;) —xi andFTs(x; 1) —Xi 1 of consecutive edge sample,yhere these come from in the initial layout. The effect is similar to the
pointsx; andx;,1 form a large anglg8. If B exceeds a user-deflnedsp“ne tightness parameter in [14].

valueBnax We markx; as a special point and treat it as explained ear- Figure 6 a,b show the effect of smoothing on a graph whose nodes

Fig. 3 b), and us&™@Pin Eqgn. 7 instead oF Tg(x). This ensures that

o X - t we obtain our bundling with no graplferarchyinformation. Fig-

regularization, Fig. 2.d s_hows the bundling of a set of edges (greqﬂ s 6 e,f show the effect of smoothing and relaxation on the well-

close to the ske_let_on in Fig. 2 a. . . . known US airlines graph, whose bundled layout is shown in Fig. 7 j.
Our angle criterion is a one-dimensional version of the dlvergencgmoothing removes the skeleton effect’ from the bundles, while re-

based Hamilton-Jacobi skeleton detector of [28]. It subsumes the pally 5tion makes these thicker with less effect on their curvature. As
based criterion. In theory, it would be sufficient to use the angle Clich, the two effects serve complementary goals.

terion to achieve smooth motion. However, the path-based criterion is

more numerically robust as it involves no angle estimation or thres 6.2 Renderin
olding. Since its application is equally fast (we need paths anyway 1o 9
regularize the attraction in both cases), we use it when applicableRimally, we propose a simple but effective rendering technique for eas

reduce any chance for numerical instabilities. ier visual following of the rendered bundles (Fig. 6 c,d). The principle
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Fig. 4. Iterative bundling of the US migrations graph. Colors indicate edge clusters (see Sec. 3.5).

follows [32]: We render each bundle in back-to-front order, daste physically correct shading model (like [22]), we found our pseudo-
ingly sorted by skeleton pixel couft§, as if they were covered by a illumination adequate in terms of our goal of understanding overlap-
3D cushion profile bright at the bundle’s center and dark at its peripping bundles.

ery. This helps following a given bundle, especially in regions where

several bundles cross. In contrast to [32], we use a much simpler tec

nigue (see Fig. 5). Edges are rendered as alpha-blended polyliees. W4 B

modulate the saturatiof and brightnes® of each polyline poini 1 1
based on its distance to the skelettii®m) = DTg(x), which is already

computed for the attraction phase (Sec. 3.3). For this, we use

S(d) = VvV 1- d/és (9) te—skeleton

bundle local width

Bd) = 1-vd/& (10) dp DT, 05 <0g DT, ‘
This yields thin, specular-like, white highlights in the middle of the
bundles (where the skeleton is located) and darkens the edges as Bigyb. Cushion shading for bundles (Sec. 3.6.2).
get further from the skeleton. The paramedgris the local thick-
ness of the bundle. For an edge poirt Q, dg(x) = DTg(FTyq (X)),
i.e. the distance of the closest point on the shape boung@ryo the
shape’s skeleton. This does not require any extra computations, silée have experimented with several types of interactive exploration
we anyway computé Ty andDTgs as part of the shape constructionatop of our method. In particular, our image-based pipeline and ex-
(Sec. 3.2, see also Sec. 4 for implementation details). The paramei@it representation of edge clusters allows us to easily brush or select
ds < &g controls the highlight thickness and is set to a small fractiogroups of edges showing up as bundles or branches thereof. Three
(e.g.0.2) of dg. This technique has several differences as comparedtygpes of selection were found useful, as follows (see also Fig. 8 e-g
splatting-based shading techniques for bundles [32, 22]. First, our rand example discussed in Sec. 5). Given the mouse poszitige first
dering does not change the screen-space thickness of a bundll, whkalect all bundled edges within a disc of small radiuentered ak
is determined by the bundling layout — thin bundles stay thin. In coiyy computing the feature transform of thendlededges and then se-
trast, splatting techniques tend to make thin bundles relatively thick&rcting all edges which contain feature points in the disc. This query
which consumes screen space and increases occlusion chances. iSaseful for basic edge brushing and for building the next two queries.
ondly, if we relax the bundling as described earlier, individual edgé&econdly, we want to select all edges in the most prominent bundle,
become visible but still show up as a coherent whole due to the cusin-bundle branch, passing through the disc. We repeat the basic se-
ion shading. Figure 6 d shows this. To better illustrate the effect, Mection, count the number of selected edges having the same cluster
decreased here the overall opacity of the edges. The inset shows lityvand retain the ones having the cluster id for which the most edges
bundles appear as shaded profiles even though they are not, teciweie found. This selects the thickest bundle branch close to the mouse,
cally speaking, compact surfaces. Thirdly, although we could uses&ce edges within any bundle branch always have the same cluster ids,

S

3.6.3 Interaction
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Fig. 6. Layout postprocessing. Edge smoothing (a vs b, Fig. 7 j vs e). Edge relaxation (Fig. 7 j vs f). Cushion shading (c), see-through detail (d).

by construction. Finally, to select an entire cluster, we do the basic se/ ‘?’f‘%h Tips [Points (Inflation |Holes |Skel. |Paths iAttraction

lection and return all edges in the cluster whose id is the one for whichl (=5 (ms) | (ms) |(ms) |(ms.) (ms)

US migrations | 28 | 9780 78 | 134 | 339 | 170 77

4 |MPLEMENTATION Radial 14 [21580 80 96 | 357 45 17

. . . . - France air 34 [23759 81 | 148 | 374 | 222 88

ﬁee;/srg}l érflﬁgﬁghatg)snfgﬁ;ews are crucial to the efficiency and robust Bokar 8 | 2385 o2 T 117 238 [ 145 13
’ ' [ CuDAimplem. | [ 2] 8] 2]<12] 3]

4.1 Image-based operations
: : 2. SBEB performance. Figures are averages for all clusters at it-
We compute shapes, skeletons, skeleton tips, and distance and feéﬁggn | = 5for different graphs. First rows show CPU timings. Last row

it:%n:l‘gm;:rhn ggénmégepgg?iﬁg:et&ggt SJLSEngear?\Ir:/?;;agS ggeig\ows CUDA-based timings (which are uniform for the tested graphs).
based implementation of exact Euclidean distance-and-feature trans-
forms [4]. We extended this technique to compute robust skeletons
based on the augmented fast marching method (AFMM) in [33]. In The original CPU-based AFMM [33] is too slow for our task. Ta-
brief, we arc-length parameterize the shape bound&nand detect ble 2 show the inflation (Eqn. 2) and skeletonization times (Eqn. 4),
Sy as pixels whose neighbors’ feature points subtend an a@n the latter also including the skeleton feature transform, on a 2.8 GHz
larger than a given valug. The valuep indicates the minimal detail quad-core Windows PC (Sec. 5) for several graphs at an imagefsize
size ondQ which creates a skeleton point. Sin2@ is a level-set of a 1024. Table 1 gives statistics on these graphs, including the (decreas-
distance transform at value of a set of smooth curves (edges), it onlying) number of clusters at several iterations. On the average, the time
contains 'sharp’ details at the curve end points. Hence, sgitiagico, needed by the AFMM to process a cluster sums up to 0.4 seconds (in
i.e. half the perimeter of a circle of radius, guarantees that skele- line with [33]). For a graph with 200 clusters (Fig. 7 a-b), this yields
ton tips correspond to edge end points. The skeletonization metrg@lseconds/iteration. The AFMM B(3|C| log(d|C|)) where|C| is
choice is essential: the AFMM guarantees that no spurious branchies number of pixels on all edges in a clus&rsince the AFMM
appear due to boundary perturbations, which in turn guarantees staj@mputes within a band of thicknegsaround its input shapd,e.
bundling cues. However, even if all skelettips correspond to edge |Q| = O(5|C|). In contrast, our CUDA implementation takes 4 mil-
end points, this does not mean that all eege pointscorrespond to liseconds per distance, feature transform, and skeletonization for the
skeleton tips. Short edges within a large cluster do not produce skedame image on a Nvidia GT 330M GT card, in line with performance
ton tips. This is another reason for using the displacement fungtiorveported in [4],.e. 0.8 seconds per iteration for the graph in Fig. 7 a-
(Egn. 8) to guarantee that no edge end points move during bundling. Graphs with fewer clusters require proportionally less time, since
the speed of the CUDA method B(N) for an image ofN pixels,

Graph Nodes | Edges Clusters/iteration Total (GPU) thus image-size-bounded. Overall, the CUDA solution is roughly 100
=1 ]1=5]1=10 (sec.) times faster than the CPU-based AFMM.

US airlines 235 | 2099 90 15 9 6.3 The complexity of the skeleton path computations (Sec. 3.4) is

US migrations | 1715 | 9780 57 14 7 4.1 discussed next. Following earlier comments on the distance-level-

Radial 1024 | 4021 | 94 | 30 24 74 set nature ofdQ, the number of skeleton tipfl| for a shape is

France air 34550 | 17275 207 ] 40 26 292 | 0(|0Q|/(nw)). Since we seto to a fixed fraction of the image size

Poker 89 | 2127 ] 8] 28 = 52| (0.05, see Sec. 3.2), we get on the average a few tens of tips per ske

ton, regardless of the number of edges in a cluster (Tab. 2 (Tips)).
AFMM guarantees 1-pixel-thin skeletons [33], so all nodes in the
skeleton pixel-adjacency-graph are of degree 2, except skeleton jun

Table 1. Graph statistics for datasets used in this paper.



tions which areO(|T|) in number. The length of the skeleton of asets of edges to bundle at the current iteration (Sec. 3.1). We aet
shapedQ is O(]dQ|). Hence, the depth-first-search finding of skelea linearly decreasing function on the iteration number[1,!] from
ton paths between tips (Sec. 3.4)3¢|T|?|dQ|) using a brute-force 8(1) = 0.95 to &(I) = 0.7. This yields strongly coherent clusters in
method. Table 2 (Paths) shows the costs for the graphs in this pafher first iteration, regardless of the initial edge position distribution,
using quad-core multithreading with one depth-first-search per threafid alsdocally strongly coherent clusters in the subsequent iterations
The same implementation on CUDA reduces the costs to 12 millisd&ec. 3.5).
onds (or less for skeletons with fewer tips) as more cores are avail-
able. This cost could be reduced further, if desired, by using the safége advection factor a: The advection valuer € (0,1) controls
depth-first search on the much simpler graph whose nodes are skelétow much edges approach the skeleton at one iteration. This implic-
tips and skeleton branch junctions and edge weights given by skeleiibyr controls the bundling convergence speed. Too high values yield
branch lengths, or faster all-pairs shortest path algorithms at the éght bundles and convergence after the first few iterations, which
pense of a more complex implementation [18]. is fine for graphs which already have relatively grouped edges, but
The attraction step is linear in the number of edge discretizatidimits the freedom in decluttering complex graphs. Too low values
points,i.e. tens of thousands for large graphs (Tab. 2 (Points)). Edgatiow the iterative process to adapt itself better to newly discovered
are attracted independently to their cluster skeleton, so CUDA paralusters as the edges approach each other, but convergencesequir
lelization of this step is immediate. more iterations. In practice, we setas a linearly decreasing function
Inflating edges can produce shapes of genu i.e. with holes. of the iteration number fromx(0) =0.9toa(l) =0.2.
Technically, this is not a problem, as skeletonization, path computa-
tion, and attraction can handle this. However, we noticed that suslumber of iterations: In practice, afted € [10,15 iterations, we
holes are rarely meaningful. Holes create loops in the skeleton agistain tight bundles of a few pixels in width for all graphs we worked
thus loops in asinglebundle, which is supposed to be a tight objectwith. This is expectable, given thdl — a)' becomes very small
To remove this, we fill all holes in our shapes prior to skeletonizatidior a < 1,1 > 10. In practice, we always sét= 10 and then use
using an efficient CUDA-based scan fill method, as follows: Givensmoothing and relaxation to interactively adjust the result as desired.
background seed pixel outside the imd@ee.qg. the pixel(0,0), we
mark it with a special valug. Next, we fill horizontal scan line seg- Smoothing: The smoothing amoung € N describes the number of
ments of background value from eaetvalued pixel in parallel, one |aplacian smoothing steps executed on the bundled layout (Sec. 3.6).
scan line per thread. We repeat alternating horizontal with verticghluesys < [3,10] give an optimal amount of smoothing which keeps
scan line passes until no pixel is filled any more. Checking the stefe structured aspect of the layout but eliminates the skeleton-like
condition requires only non-synchronized writing to a global booledgok. Larger values make our layout look similar to the force-directed
variable, set to false before each pass. This parallelizes more effiethod of [15]. In practice, we noticed that the smoothing amount
ciently than classical scan line or flood fill. Marking all nempixels  strongly depends on the task at hand: In some cases, users attach
as foreground fills all holes i@. The entire fill takes under 20 scansemantics to the branching structure, want to clearly see which
iterations for all images we examined. CUDA filling adds around groups of edges get merged together, so no smoothing is needed. In
milliseconds/image of 10Z4pixels in comparison with around 0.15the general case, however, the exact bundle merging events are not
seconds/image for classical CPU flood fill (Tab. 2 (Holes)) up to @levant, so we use by defayl= 5.
total of roughly 25 milliseconds per cluster per iteration. Note that,

due to filling, all skeletons, and thus the created bundles, become trg@faxation: The relaxation amoung € [0,1] controls the interpo-
rather than graphs. Although we do not use this property now, it M@ition between the fully bundled layout and original one (Sec. 3.6).
enable future interaction work such as user manipulation of the layqtg|axation is most conveniently applied interactively, after a bundled

by means of bundle handles. _ o layout has been computed. Valugse [0,0.2] give a good trade-off
Clustering using HBA is fast. The CPU implementation in [8] conpetween bundling and overdraw.

structs the complete dendrogram of a graph of 10K edges in 0.1 sec-

onds on our considered machine. We next added the GPU-based qGsra], the entire method is not sensitive to precise parameter set-
tering in [5], which is roughly 10 to 15 times faster. Note that onlyings  For the graphs in this paper and other ones we investigated,
a few clustering passes are needed for a complete layout (Sec. ‘have obtained largely identical bundled layouts with different pa-
Also, we do not need to construct the entire dendrogram, but only tigneter settings in the ranges indicated above. We explain this by the
bottom-most part thereof, until we reach the cut vadugSec. 3.1) at  gapility of the inflated shape skeletons to small local variations of the
which we extract the clusters to bundle further. positions of edges, and the smoothing effect of the entire iterative pro-
Finally, postprocessing (Sec. 3.6) poses no performance probleifisss on the layout. As such, the only two parameters we expose to

so we implement it in real-time using standard OpenGL polylingsers arey and y, the others being set to predefined values as ex-
rendering and CPU-based smoothing and relaxation. All in all, trbqained above.

CUDA-based bundling takes 5 to 30 seconds for producing a final lay-
out for the graphs we tested (Tab. 1, right colunir@, 25 millisec-
onds per cluster times the total number of clusters processed durthg APPLICATIONS

thel = 10 iterations plus the clustering time. In terms of memory, OWVe now demonstrate our skeleton-based edge bundling (SBEB)
method is scalable: we only need a few 192#ages (distance and method for several large, real-world, graphs. Statistics on thesbgrap
feature transforms and skeletons) and discard these once a clustgtdSshown in Tab. 1.
processed; all paths between skeleton tips for the current cluster; a”ﬁdfigure 7 illustrates the SBEB and compares it with several exist-
the graph edge polylines. For all graphs presented here, this amoyatsyndling methods. Note that in all images here generated with our
to under 100 MB total application memory requirements per graph. method, we used simple additive edge blending only, as our focus here
is the layout, not the rendering. Images (a,b) show an air traffic graph
(nodes are city locations, edges are interconnecting flights). Images
Our entire method has a few parameters: the clustering similariy,d) show a graph of poker players from a social network. Edges in
thresholdd, edge advection factar, total number of iterationk, and  dicate pairs of players that played against each other. The node layout
smoothing and relaxation amourgsandy:. These parameters allow is done with the spring embedder provided by the Tulip framework [3].
covering a number of different scenarios, as follows. Given the average node degree and node layout algorithm useddrelate
nodes tend to form relatively equal-size cliques. Bundling further sim-
Clustering similarity threshold d: This parameter specifies theplifies this structure; here, bundles can be used to find sets of players
granularity level at which we cut the cluster dendrogram to obtaimhich played against each other.

4.2 Parameter setting



Fig. 7. Air traffic graph (a: original, b: bundled). Poker graph (c: original, d: bundled). US migrations graph (e: FDEB, f: GBEB, g: WR, h: SBEB).
US airlines graph (i: FDEB, j: SBEB). Colors in (a-d,h,j) indicate clusters (displayed for method illustration only).

Images (e-h) show the US migrations graph bundled with the WRijth the same ease as for actual graphs. Bundling puts close flight
GBEB, FDEB, and our method (SBEB) respectively. Overall, SBEBaths naturally into the same cluster. The bundled version emphasizes
produces stronger bundling, due to the many iteratioasl0 being the connection pattern between concentrated take-off and landing loca-
used), and emphasizes the structure of connections between gfougas, which are naturally the airports. The zoom-in details (Fig. 8 c,d)
close cities (due to the skeleton layout cues). If less bundling is dehow the organic effect achieved by bundling.
sired, fewer iterations can be used (Fig. 4). Adjusting the postprocessFigure 8 e-g show a citations graph (433 nodes, 1446 edges). Nodes
ing smoothing and relaxation parameters, SBEB can create bundlarg@ InfoVis papers, laid out according to content similarity: close
styles similar to either GBEB (higher bundle curvatures, more emedes indicate papers within the same, or strongly related, topics.
phasis on the graph structure) or FDEB (smoother bundles). Finallhe layout algorithm used for the nodes is multidimensional scaling
images (i,j) show the US airlines graph bundled with the FDEB anith least-square projection [23]. Paper similarity is measured using
SBEB respectively. SBEB generates stronger bundling (more ovepsine-based distance between term feature vectors [27]. Topies wer
draw) but arguably less clutter. Note also that SBEB generates treelded as annotations to the image to help explanation. Bundling ex-
like bundle structures which is useful when the exploration task pbses a structure of the citations between topics. We use the bundle-
hand has an inherent (local) hierarchical naterg, see how traffic based selection (Sec. 3.6.3) to highlight one of the bundles, which
connections merge into and/or split from main traffic routes. becomes now dark blue (Fig. 8 f). It appears that this bundle con-

Figure 8 shows further examples. The images (a,b) show flighécts papers related to the Graph drawing and Treemap topics. The
paths within France, as recorded by the air traffic authorities [1G]irection of edges is indicated by node label colors: citing papers are
Edge endpoints indicate start and end locations of flight records. Tépeen, cited papers are blue. Green and blue labels are mixed within
original edges are not straight lines, but actual flight paths (polylineshis bundle, which is expected, since papers in these two topics typ-
Note that this dataset is not a graph in the strict sense, since only vieglly cross-reference each other. Figure 8 g shows a selection of all
few edge endpoints are exactly identical within the dataset. This hedges which end at nodes within the ball centered at the mouse cur-
to do with the fact that flight monitoring systems record flights (trailssor. Concretely, we highlighted here all papers citing papers in the
However, edge endpoints are spatially grouped since flights typicaBraph drawing topic. Note that this selection is a purely node-based
start and end in geographically concentrated locations such as airpatee, i.e. it does not use bundles for choosing the edges. However,
Given this, our method is able to create a bundled layout of this databendles have now another use: they alloghlighting specific edges
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Fig. 8. Bundling of airline trails (a,b) and details (c,d). Bundling of citations graph (e). Selected bundle (in dark blue) shows citations involving two
topics (f). Citations to a selected topic (g). In (f,g), node labels indicate edge direction (citing papers=green,cited papers=blue).

in the graph without increasing clutter, since these edges follow the ainall changes in the input graph and so are their skeletons too.

ready computed bundles. Also, note that for this type of node layout,

our clustering-based bundling makes sense: edges will be groupedjireed and simplicity: Due to the CUDA implementation of its core
the same bundle if they have similar positions, meaning start/end fromage-based operations, our method is considerably faster than [15]
similar topics; if the node layout effectively groups nodes into relateghd slightly faster than [22]. However, we should note that it is not
topics, then bundles have a good chance to show inter-topic relati@hsar if the timings reported in [22] include also the cost of comput-

in a simplified manner. ing the Voronoi diagram underlying the grid graph. The only faster
bundled method we are aware of is the MINGLE method [12], which
6 DISCUSSION takes 1 second for the US migrations graph and 0.1 seconds for the

] o ] ) US airlines graph, in contrast to our 4.1 seconds and 6.3 seconds re-
In comparison to existing bundling techniques, our method has tggectively. MINGLE and SBEB share some resemblance in bottom-up
following advantages and limitations: aggregation of edges, but also have some differences. MINGLE com
pares edges essentially based on end point positions, whereas we use
Generality: Our method can treat directed or undirected graphs. Byie entire edge trajectory (which may allow us to bundle graphs with
default, we assume the graph is directed, so edges running betweefved edges better). The complexity of MINGLEJ$|E |log|E|) for
the same sets of nodes in opposite directions will belong to differeaigraph withE edges, whereas SBEB is essenti@/C|) whereC is
clusters, hence create different bundles. For undirected graghs, the average cluster size. By using a better cluster selection than our
only need to symmetrize the edge similarity function (Eqgn. 1). current iso-linkage cut in the cluster tree (Sec. 3.1), it is possible to
reduce|C| and thus make SBEB faster.
Structured look control: Users can control the 'structured look’ of ~ Apart from this, our method works entirely image-based, rather
a bundled layout, ranging between smoothly merging bundles atithn manipulating a combination of hierarchical mesh-based and
bundles meeting at sharp angles, by manipulating a single paramétesge-based data structures. The CUDA-based image processing cod
(smoothingys, Sec. 3.6). This implicitly allows removing sharpused by our method is available at [31].
ramifications when these are meaningless. Other methods, with thezpart from the above, there are several other differences between
exception of HEB, do not allow explicit control of this aspect, sinceur method and recent edge bundling techniques. In contrast to
there is no explicit hierarchy aspect in the bundles. In our cagerce-directed bundling [15] which bundles pairs of edges iteratively,
hierarchy is modeled by the cluster skeletons (at fine level) and by tiiea point-by-point manner, we bundle increasingly larger groups
progressively simplified cluster structures (at coarse level). of edges (our clusters) along their common center in one single
step, using skeletons. In the limit, our method can behave like the
Robustness: Our method operates robustly on all graphs we eXerce-directed bundlingi.e. if we were to treat, at each iteration,
perimented on,i.e. yields a set of stable skeletons and bundlesnly the most cohesive leaf cluster. However, this is practically not
progressively converging towards an equilibrium state. This isteresting, as it would artificially increase the computational cost
explained by the regularization of the feature transform (Sec. 3.4) awithout any foreseeable benefits. Further, while Lambeédil. [22]
the inherent robustness of the skeletonization method used (Sec. 318 shortest paths in a node-based grid graph to route edges, in our
Briefly put, adding or removing a small number of nodes or edges witiethod edges bundle themselves using only edge information. As
not change the bundling since the distance-based shapes are robustith, there is no relation between the Voronoi diagrams used in [22]



and our skeletons (which, formally, can be seen as a Voronoi diagrafd] D. Chang, M. Kantardzic, and M. Ouyang. Hierarchicalstiring with

in which inflated edges are the sites). Distance fields and skeletons cuda/gpu. IrProc. ISCA pages 130-135, 2009.

are also used in [32], but in different ways; first, an edge distanck] L. Costa and R. CesarShape analysis and classification: Theory and
field is computed using a considerably less accurate quad-splat-based practice CRC Press, 2000.

method, whereas our distance transform is pixel-accurate. Secondly] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-baseded
skeletons are used abadingcues and not for layout, whereas we use __ clustering for graph visualizatiodEEE TVCG 14(6):1277-1284, 2008.
skeletons to actually compute edge layouts. In comparison to [24f8] M. de Hoon, S.Imoto, J. Nolan, and S. Myiano. Open sourasteting
where bundles split in exactly two sub-bundles, our bundle splits capn_Software.Bioinformatics 20(9):1453-1454, 2004.

have in general any degree, as implied by the underlying skeletonis] M- Dickerson, D. Eppstein, M. Goodrich, and J. Meng. Coefit draw-
Also. our method can handle general araphs ings: Visualizing non-planar diagrams in a planar way.Phoc. Graph
' 9 grapns. Drawing, pages 1-12, 2003.

ST . 10] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edgeuting into
Limitations: There is no fundamental reason why a skeleton-baslec? forcedirected layout. Ifroc. Graph Drawing pages 8-19, 2007.

layout should be preferable to other bundling heuristics, apart from i@ . Ejiis and A. Dix. A taxonomy of clutter reduction forfarmation
intuition that a skeleton represents the local center of a shape. Hence, jgalisation.|EEE TVCG 13(6):1216-1223, 2007.
the quality of our layouts (or any other bundled layout) is still to bgz] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Muitlagglomera-

judged subjectively. Moreover, any bundling inherently destroys in- " tive edge bundling for visualizing large graphs.Aroc. PacificVis pages
formation: edges are overdrawn, so cannot be identified separately; 187-194, 2010.

and edge directions are distorted. Hence, bundling should be used[f@] E. Gansner and Y. Koren. Improved circular layouts. Phoc. Graph
those applications where one is interested in coarse-scale connectivity Drawing, pages 386-398, 2006.

patternsand when one cannot apply explicit graph simplificatiely. [14] D. Holten. Hierarchical edge bundles: Visualizatidnadjacency rela-
due to the lack of suitable node clustering guidelines and metrics. If tions in hierarchical datdEEE TVCG 12(5):741-748, 2006.
desired, SBEB can be modified to incorporate additional bundling cdd5] D. Holten and J. J. van Wijk. Force-directed edge burgifor graph
straintse.g. maximal deformation of certain edges - the skeletons pro-  Visualization.Comp. Graph. Forun28(3):670-677, 2009.

vide only bundlingcuesbut the attraction phase can decide whethell6] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: &giry data
and how much, to bundle any given edge. In the longer run, it is in-  Cross views to support iterative exploration of aircnafjeictories|EEE
teresting to use shape perception results from computer vision [6, 20 TVCG 15(6):1017-1024, 2009.

to quantitatively reason about the quality of a bundled layout. Her[élrJ ] gz‘r’i'tlr']sr;]Sf'o'r)'thia\t/ti'ssljz'nzpétiidgfsé;”p‘:};;eﬁi'::iﬁaggg‘gaw'”g: Al-
our image-based approach may prove more amenable to quantit Ji\é? G. Katz and J. Kider. All-pairs shortest-paths for kmgraphs on the

analysis than other bundling heuristics which are harder to describ GPU. InProc. Graphics Hardwarepages 208-216, 2008.

terms of operators having WeII-knoyvn perceptL_JaI properties. Howevtelg] R. Klette and A. RosenfeldDigital geometry: Geometric methods for

this is a challenging task and requires further in-depth study. digital picture analysis Morgan Kaufmann, 2004.

[20] I. Kovacs, A. Feher, and B. Julesz. Medial-point dgst@wn of shape: A
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