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Improved Part-Based Segmentation of
Voxel Shapes by Skeleton Cut Spaces
Abstract: We present a refined method for part-based segmentation of voxel shapes by constructing
partitioning cuts from every voxel of the shape’s medial surface. Our cuts have several desirable prop-
erties – smoothness, tightness, and orientation with respect to the shape’s local symmetry axis, making
it a good segmentation tool. We analyze the space of all cuts created for a given shape and detect cuts
which are good segment borders. We present a detailed analysis of the parameter space of our method,
which yields good preset values for all its parameters. Our method is robust to noise, pose invariant,
independent on the shape geometry and genus, and is simple to implement. We demonstrate our method
for both automatic and interactive segmentation on a wide selection of 3D shapes.
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1 Introduction
Shape segmentation aims to decompose a 3D shape into a set of parts that obey certain application-
related properties, and is used in many contexts such as image analysis, registration, content-based
retrieval, and 3D modeling [43]. Patch-based segmentation detects quasi-flat segments whose borders
follow local curvature maxima on the shape surface, and is most used for faceted shapes [39]. Part-
based segmentation follows a semantics-oriented approach, aiming to find shape parts that one would
intuitively perceive as being logically distinct, and is used for natural shapes [37].

For a shape Ω ⊂ R3, part-based segmentations (PBS) using partitioning cuts create a set of cuts
c ⊂ ∂Ω that divide the shape boundary ∂Ω into disjoint parts. Desirable PBS properties, e.g. smoothness,
orientation, tightness, and position of the cuts that create segments, can be stated in terms of the cut-set
B = {c}. Finding a good segmentation is thus mapped to finding a cut-set B having such properties, a
hard problem due to the high dimensionality of the cut space.

We present a new way to produce PBS of 3D voxel shapes by skeleton cuts. First, we construct,
at any shape point, a cut that is locally and globally smooth, tightly wraps around the surface, is
self-intersection free, and is locally orthogonal to the shape’s local symmetry axis. For this, we use
the shape’s medial surface. Next, we construct the cut-space S ⊂ ∂Ω that contains all such cuts for a
given shape. We extract the cut-set B ⊂ S yielding our PBS by analyzing the global distribution of cut
properties over S. We demonstrate our method on a variety of 3D shapes and compare our results with
eight existing PBS methods. Our proposal shows that medial surfaces can be efficiently and effectively
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used to construct PBS segmentations of 3D shapes. This makes this type of skeletal descriptors, which
are so far rarely used in shape-processing applications, more interesting for practical purposes.

In this paper, we extend the related segmentation framework proposed in [13] with the following
main contributions:
– We present a clustering-based segmentation technique using the shape cut-space, which works more

robustly, and is easier to use, than the earlier histogram-based technique in [13];
– We present a detailed analysis of the parameter space of the entire pipeline, which allows us to find

good preset values for the method’s free parameters, and also gives detailed insight in the method’s
behavior;

– We present a new application of our cut-space segmentation technique for the interactive, user-
driven, segmentation of 3D shapes.

Besides these main contributions, we also present a number of technical improvements in terms of
computational performance and robustness of the cut construction that make our method competitive
in speed and quality with related state-of-the-art methods.

The structure of this paper is as follows. Section 2 reviews related work. Section 3 presents the basic
method and our proposed enhancements. Section 4 shows how we can use our method for interactive part-
based segmentation of 3D shapes. Section 5 presents the parameter space analysis. Section 6 illustrates
our method on a wide variety of 3D shapes and also compares it with related methods. Section 7 discusses
our method. Section 8 concludes the paper.

2 Related Work
Two main segmentation approaches for 3D shapes exist [1, 5, 44]: Patch-based methods segment a shape’s
surface into quasi-flat patches bounded by sharp surface creases, and are suitable for synthetic shapes
such as polyhedral models created by CAD-CAM applications. Part-based segmentation (PBS), our
focus, cuts a shape’s surface into its logical components. Such methods are suitable for shapes formed
of articulated parts, e.g. human bodies, plants, and other natural structures that exhibit a part-whole
hierarchical structure.

Most PBS methods find segments along what a human would see as logical shape parts, in two steps:
(a) find where to cut a shape to isolate a part; and (b) find how to build a cut, once its location is set.
These steps are addressed in different ways, as follows. Attene et al. segment a shape by fitting primitives
from a predefined library to the shape’s polygonal surface in a minimal-cost way. This approach works
best when reverse-engineering shapes produced by CAD-like modeling, but less well for organic shapes [4].
Lee et al. construct partitioning cuts on a surface mesh by analyzing local mesh features such as curvature
and centricity, using snakes to optimize for cut smoothness [23, 24]. Liu et al. encode the local similarity
of faces in a mesh into an affinity matrix which they next decompose by spectral clustering to yield a
segmentation [27]. Many similar clustering methods exist, such as based on algebraic multigrid clustering
of the surface curvature matrix [9], or the fuzzy clustering approach in [20]. In a related way, mesh models
can be segmented by watershed approaches applied to their surface curvature [30, 35]. An important issue
of all clustering methods is that it is very hard to explicitly enforce global properties on the resulting
cluster borders, which ultimately define the segmentation result.

As the topology of the shape skeleton or medial axis matches the part-whole shape structure [47],
many methods use medial axes to place cuts. Au et al. use curve skeletons [6], where each skeleton
branch maps to a part. Cuts are built by optimizing for cut concavity and length via minimal cuts [19].
Golovinskiy et al. create a large randomized cut-set and find part borders as the cuts on which most
surface edges lie [15]. Shapira et al. note that skeletonization and segmentation are related, and compute a
scalar shape-diameter function (SDF) on the shape surface to segments as surface faces with similar SDF
values [45]. Their SDF function is related to approaches which compute histograms of shape thickness for
shape retrieval tasks [28, 42]. Conversely, Lien et al. use shape decomposition to compute progressively
refined curve skeletons [26]. Tierny et al. segment shapes hierarchically by topological and geometrical
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analysis of their Reeb graphs, which are similar to curve skeletons [50]. Chang et al. compute shape
medial surfaces, separate their manifolds, and back project each manifold on the shape surface to find
a segment [8]. A similar segmentation method, using high-resolution point-cloud skeletons computed
on the GPU [17] along the method of Reniers et al. [40], is proposed in [22]. Similar high-resolution
surface and curve skeletons can be computed in voxel space using an advection model [18]. However,
such skeletons have not yet been used for segmentation purposes. Dey and Sun extract curve skeletons
as the maxima of the medial geodesic function (MGF) which encodes the length of the shortest path
between feature points of points in the shape [12], and segment tubular parts as those which minimize
the eccentricity of such paths. Reniers et al. generalize the MGF metric to extract simplified surface
and curve skeletons [40], and next construct a part for each branch of a shape’s curve skeleton [37]. Part
borders correspond to curve-skeleton junction points, and are created by shortest paths traced on the
shape surface around these junctions [12]. However, curve skeletons can contain many spurious junctions
which change widely when the shape is slightly perturbed. Reniers et al. alleviate this by heuristics that
shift cut-points along the curve skeleton to optimize for cut stability and planarity [38]. Yet, this method
cannot segment shapes of large geometric, but little topological, variability, like a pawn chess piece: Its
curve skeleton has no junction points, so [38] cannot separate the pawn’s head, body, and base, although
these have different thicknesses.

Summarizing, the two elements of a good PBS (where to cut, and how to cut) are targeted in
complement by different methods: Skeleton-based methods construct good partitioning-cuts efficiently,
e.g. by shortest-paths [12, 38]. Yet, curve skeletons do not encode enough of the shape geometry. Global
search methods that analyze a wide set of shape cuts offer good ways to select where to partition [15, 45].
Yet, they do not offer explicit constraints for the cut shapes, and exhaustive cut-space search is expensive.
Our method combines the advantages of the two above classes of methods, while minimizing their
limitations.

3 Method
Our method has a simple intuition: Say we want to cut the shape in Fig. 1a close to points A . . . E.
Which properties should these cuts have to yield a ‘natural’ PBS? In other words: How would a human
draw such cuts? Figure 1 a shows five undesirable cuts: A is noisy, although it crosses a perfectly smooth
surface zone; B is self-intersecting; C and D are too loose (long); and E is unnaturally slanted – a human
asked to cut the shape at that point would arguably do it so across the finger’s symmetry axis. Figure 1 b
shows five cuts for the same points, computed with the method in this paper. We argue that these cuts
are more suitable for PBS than those in Fig. 1 a, as they are (1) tight, (2) locally smooth, (3) self-
intersection free, (4) and locally orthogonal to the shape’s symmetry axis. An additional property that
cuts should satisfy is (5) being closed curves, so that they divide the shape’s surface into different parts.
Note that these properties follow well-known perceptual principles that model how humans understand
shape and its parts, such as the minima and short-cut rules [7, 16, 49].

We construct such cuts as follows: First, we compute a simplified medial surface of the input shape
(Sec. 3.1). For each medial point, we next construct a cut having the above properties (Sec. 3.2). This
answers the question “how to cut”. By analyzing the resulting cut-space, we next select a cut-set that
gives us the borders of salient shape-parts (Sec. 3.3). This answers the question “where to cut”.

3.1 Skeletonization
For a binary shape Ω ⊂ Z3 with boundary ∂Ω, its Euclidean distance transform DT∂Ω : Ω→ R+ is

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖. (1)

The medial surface, or surface skeleton, of ∂Ω is next defined as

S∂Ω = {x ∈ Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (2)
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Fig. 1. Possible cuts for part-based segmentation. Suboptimal cuts (a). Cuts created by our method (b). Medial surface
colored by its importance metric (c).

where f1 and f2 are the contact (or feature) points with ∂Ω of the maximally inscribed ball in Ω centered
at x [14, 41, 47]. These, in turn, define the so-called feature transform FT∂Ω : Ω→ P(∂Ω)

FT∂Ω(x ∈ Ω) = argmin
y∈∂Ω

‖x− y‖. (3)

Medial surfaces are sensitive to small-scale noise on Ω, especially when using voxel-based models to
sample the embedding space. To alleviate this, medial surfaces can be regularized by a computing a
so-called importance metric ρ : S∂Ω → R+, such as the medial geodesic function (MGF), which sets
ρ(x) to the length of the shortest path on ∂Ω between the two feature points of x [12, 40]. As the
MGF monotonically increases from the medial-surface boundary to its center, upper thresholding it by
a minimal importance ρmin yields connected and noise-free simplified medial surfaces (though tunnel
preservation requires additional work) [40]. Figure 1c shows a regularized medial surface obtained by
upper-thresholding the MGF metric in [40].

3.2 Cut model
The first step of our PBS is to compute a rich set of cuts, or cut-space S, which all satisfy properties
(1-5) listed in Sec. 3. To build a cut c ∈ S, consider a point x ∈ S∂Ω. Here and in the following, we
use for S∂Ω the simplified surface skeleton of Ω, obtained by upper-thresholding the MGF importance
metric by a given value ρmin. By definition, x has at least two feature points f1 and f2 on ∂Ω (Eqn. 2).
Consider, for now, that there are precisely two such points. We first trace the shortest path γ1 ⊂ ∂Ω
between f1 and f2 (Fig. 2a), whose length is the MGF value for x (Sec. 3.1). Next, we find the midpoint
m of γ1, i.e. the voxel of γ1 furthest in arc-length distance from both f1 and f2. We then trace a ray
through x and oriented in the direction x−m, and find the point o where this ray ‘exits’ Ω (Fig. 2b).
Intuitively, o is on the ‘other side’ of S∂Ω as opposed to m. Finally, we trace the two shortest paths
on ∂Ω connecting (f1,o) and (f2,o) respectively (Fig. 2 c,d). Our final cut c for point x is given by
γ1 ∪ γ2 ∪ γ3.

While c is piecewise geodesic (so locally smooth), it can be non-smooth at the three endpoints f1, f2

and o of γi. Also, our construction does not globally make c as tight as possible. To fix both issues,
we perform 5 iterations of constrained Laplacian smoothing over c, with a kernel size of 10 voxels. We
prevent c leaving the surface by reprojecting its voxels to their closest points on ∂Ω after each iteration.
This smooths out possible ‘kinks’ at f1, f2 and o, thus making c globally smooth and tight. If such kinks
are very small or inexistent, smoothing has no effect, as c is globally geodesic. In that case, Laplacian
smoothing shifts c’s points along the surface normal, since c’s acceleration c′′ is normal to the surface,
so reprojection moves the smoothed points back to their original location.

3.2.1 Cut properties:

Our cuts meet the desired properties we require for PBS, as follows:
1. Tight: Cut parts γi are piecewise-geodesic, thus shortest curves on ∂Ω. Also, the constrained Lapla-

cian smoothing shortens potential kinks present at the geodesic endpoints f1, f2, and o, thus making
the entire c wrap tightly around the shape;
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Fig. 2. Cut construction (a-d) and cut-space analysis (e-g) for part-based segmentation.

2. Smooth: Smoothness is guaranteed by the same properties as for tightness, i.e., piecewise geodesic-
ness and constrained Laplacian smoothing;

3. Self-intersection free: c is a geodesic triangle (three geodesics linking three different points on ∂Ω)
whose edges do not intersect except at endpoints, by definition;

4. Locally orthogonal to the symmetry axis: The cut c(x) surrounds the medial surface S∂Ω around
point x, by construction. Hence, it also surrounds the so-called curve skeleton of ∂Ω, which is a
1D structure locally centered within S∂Ω with respect to its boundary ∂S∂Ω. While we do not have
a formal proof of local orthogonality, we observed in practice that our construction always creates
cuts that are visually orthogonal to the curve skeleton;

5. Closed: The cut c is a closed (Jordan) curve by construction.

3.2.2 Implementation

Our method requires the efficient and robust computation of regularized medial surfaces for 3D voxel
shapes. For this, we tested the methods in [40] and [18]. As also described in [18], both methods produce
very similar medial surfaces, and also deliver a skeleton importance metric, required to simplify skeletons
to e.g. eliminate noise or small details. As the method in [18] is on average 10 times faster, we use this
technique to compute our surface skeletons.

To build γ1, we need two feature points f1 and f2 for each medial surface point x. Two issues
exist here: (1) Computing the feature transform FT (x) on digital shapes cannot be done via Eqn. 3,
given the finite voxel grid resolution [36, 40]. To fix this, we compute the so-called extended feature
transform EFT (x) which finds all closest-points on ∂Ω to all 26 neighbors of x, and which is a superset
of FT (x) [40]. From this superset, we select exactly two feature points that best represent the symmetric
embedding of S∂Ω in Ω. For this, we select the two feature points {f1, f2} ⊂ EFT (x) that maximize
the angle f̂1xf2. We trace the ray used to find o by Bresenham’s 3D line-tracing algorithm on the voxel
shape. We compute geodesics by Dijkstra’s shortest-path algorithm on the connectivity graph of voxels
of ∂Ω, using A∗ heuristics to speed the search, and using edge weights that approximate neighbor-voxel
distances by Eppstein’s scheme [21] for better path-length accuracy. Finally, we reproject Laplacian-
smoothed points on the shape surface by using the fast ANN library for finding nearest-neighbors [33].
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Fig. 3. Refinement of cut construction.

In a few cases, point o found as above does not lie on the opposite side of S∂Ω with respect to m,
so the resulting cut will not wrap around the medial surface (Fig. 3 a). When this happens, we trace
a ray in direction f1 − f2 from the midpoint v of the current ray, and set o to the voxel where this
new ray exits Ω (Fig. 3 b). If the new o still does not yield a wrapping cut, we repeat the refinement
(Fig. 3 c). This produces cuts wrapping around the medial surface for all our test shapes within 3 up to
4 refinement steps.

3.3 Cut space partitioning

For any voxel x of a shape’s medial surface S∂Ω, we can create a cut c(x) which has good properties
for PBS. Intuitively, c(x) is a good way to cut the shape at point x, if we want a cut there. We now
must decide where we want to cut to get a PBS with desired global properties. Let S = {c(x)|x ∈ S∂Ω}
be the space of all cuts created from S∂Ω. Given our cut properties, cuts on the same shape-part
share similar properties e.g. position, orientation, and length. Cuts for different parts have different
properties. Consider our hand model: Finger cuts are short; wrist cuts have average length; and palm
cuts are longest. For a shape having a rump and protruding parts, cuts for parts are shorter than cuts
for the rump. We use these insights to partition S in subsets Si so that ∪iSi = S and Si ∪ Sj 6=i = ∅.
We discuss next two ways to achieve this partitioning.

3.3.1 Histogram-based partitioning

A first way to do this is to use the histogram of cut lengths over S, as described in [13]. This works as
follows. Histogram peaks show large similar-length cuts, so partitioning it by thresholds in the valleys
between peaks gives our desired subsets Si. Figure 4a shows the cut-length histogram for the hand
model. Its three main peaks describe cuts on the fingers, wrist, and palm; the two valleys give the two
thresholds needed to separate fingers from the palm and the palm from the wrist. Figure 4b shows the
final segmentation computed by partitioning the histogram into the three aforementioned parts.
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Fig. 4. (a) Cut-length histogram for hand model. (b) Segmented hand model based on left histogram (Sec. 3.3.1).
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An important problem of the histogram-based partitioning is how to find its valleys robustly and
automatically. As visible in Fig. 4a, the cut-length histogram is quite noisy, mainly due to the discrete
nature of our cuts which are constructed in voxel space. Hence, robustly finding these valleys is a delicate
process. To decrease the noise influence, we filter the histogram by mean shift [10]. This has the effect of
‘sharpening’ the cut-distribution and separate peaks from valleys more clearly. Following [13], we define
a peak as a histogram value exceeding λ times the cut count ‖S‖, and a valley as a value less than a
fraction µ of λ. Setting λ ' 0.01 and µ ' λ/3 gives good results for a large range of shapes. However,
problems appear for shapes having small-scale surface details. Such small details, on the one hand,
cause noise-level variations in the cut lengths; on the other hand, their cut counts ‖S‖ are low, and thus
separated from each other by very shallow, thus hard to detect, valleys in the histogram. Figure 5 shows
such an example. Here, ideally, we would like to segment the limbs, head, and details (fingers, hears,
muzzle) of the armadillo model. The four instances in the figure show different results obtained for quite
similar values of λ and µ. All these results show various degrees of over- or undersegmentation. A second
issue of the histogram-based partitioning is that it does not offer an intuitive control of the parameters λ
and µ: We cannot easily determine optimal values for them based on the number of segments we would
finally like to obtain.

S1

λ=0.01

μ=0.4λ

S2 S2 S3S1

λ=0.006
μ=0.25λ

λ=0.006
μ=0.3λ

S2S1

λ=0.006

μ=0.6λ

S4S1 S5

S2 S3

Fig. 5. Subsets and corresponding segmentations obtained for different values of λ and µ (Sec. 3.3.1).

3.3.2 Clustering-based partitioning

To alleviate the aforementioned problems of histogram-based partitioning, we propose to partition the
cut-space S using a clustering approach. We first define a dissimilarity function δ : S × S → R+ as

δ(c1 ∈ S, c2 ∈ S) = α‖l(c1)− l(c2)‖+ β‖x(c1)− x(c2)‖, (4)

where, for a cut c, l(c) denotes the cut length and x(c) denotes the location of the skeleton-point from
which c was generated, respectively (see Fig. 2); and α ∈ [0, 1] and β ∈ [0, 1] are weight factors for
the length, respectively distance, components of δ. To allow for a meaningful comparison between cut-
lengths and cut-positions, we first normalize all cut lengths to the range [0, 1] and the voxel shape to
the range [0, 1]3, respectively. The function δ will thus take low values for cuts which are similar in
length and close to each other, and high values for cuts of different lengths and/or located far away
over ∂Ω. Next, we use hierarchical bottom-up agglomerative clustering to iteratively group all cuts in S,
represented by the distance matrix given by δ. During this process, the most similar two cut-clusters, as
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determined by a so-called linkage function, are iteratively merged in a new cluster, until a single cluster
containing all cuts is obtained. This creates a binary tree, or dendrogram, D. Full algorithm details,
including a public implementation, are available at [11]. Cutting D at a desired level from its root next
gives us a set of nodes, which are precisely our partitions Si.

Compared to the histogram-based partitioning, the clustering-based method is significantly more
robust with respect to noisy cuts, as it has no thresholds or similar parameters. The only end-user
parameter it requires is the number N of parts to create, which determines the level where to cut the
dendrogram D. Compared to the parameters λ and µ of the histogram-based method, specifying the
desired number of parts N is much simpler and more intuitive. As such, this is the method of choice for
constructing the partitions Si which we will use in the remainder of this paper.

3.3.3 Segment border construction

Subsets Si do not (yet) coincide with our desired segments. Indeed, an Si can contain logically disjoint
cuts of similar lengths – e.g. all cuts on the fingers (blue in Fig. 2 e) are in the same subset. Also, S
does not fully cover ∂Ω, since we compute it from the simplified medial surface (Sec. 3.2).This is shown
by the gaps between cuts in Fig. 2 d. To fix this, the method in [13] proposes to define a cut c(x) as
being a border Bi of subset Si if c(x) belongs to a different subset than any of the cuts c(y), where y
are the 26-neighbors of x on S∂Ω. Using this definition, we can find the set of cuts {Bi} that represent
the borders of our final segments (Fig. 2 f). Note that, if a cut is marked as border, at least one of its
neighbor cuts will be in a different cut subset, by definition. Hence, that neighbor cut will also be a
border, so more than one border will be produced from a 3× 3× 3 voxel neighborhood. To remove such
duplicates, we keep, for each such neighborhood, the shortest border.

b) c)

regular points

ligature points

a)

∂Ω

S∂Ω

part 1

part 2

ligature branch

final border
between
parts 1 and 2

ligature-cut area

Fig. 6. (a) Border construction problems withture regions. Part borders computed by (b) the original method in [13] and
(c) our new ligature-sensitive method (Sec. 3.3.3).

While this method finds borders located close to areas where different partitions Si meet, it has
problems for parts which meet along so-called ligature skeleton branches [47]. To explain this, consider
the situation sketched in Fig. 6a. The skeleton S∂Ω consists here of three branches that correspond to
the three shape parts that meet at the central junction point. Consider now the vertical branch that
describes the thinner (red) part. The first part of this branch corresponds to so-called regular skeleton
points, which have a one-to-one mapping with the shape surface ∂Ω via the feature transform FT∂Ω.
The second part of this branch contains ligature points (blue), which have a many-to-one mapping to
∂Ω, as also indicated by the black feature vectors in the drawing. Ligature points do also generate cuts
in our cut-space, like regular points. However, as compared to regular cuts, such as the red and green
ones drawn in the figure, ligature cuts are far less stable – they can fall anywhere in the blue surface area
indicated in the figure. Separately, note that our desired red and green segments will meet precisely in
this ligature area, so their separating border, when computed by the method in [13], can fall anywhere
in this area.
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We propose next a way to fix this problem. Consider two parts S1 and S2 which are adjacent, i.e.,
have at least two neighbor cuts in the sense described earlier in this section, e.g. the green and red parts
in Fig. 6a. Let l1 and l2 be the average cut-lengths over S1 and S2 respectively. We next decide that
the border B separating S1 from S2 should come from the part Si that has the smaller average-length
li. This heuristic models the idea that we want to cut the smaller part S1 as precisely as possible from
the larger adjoining part S2. To find the exact location of this border, we proceed as follows. Let S1 be
the part having the smaller average-length, i.e., l1 < l2. We next collect all cuts P = {ci} ⊂ S1 whose
lengths l(ci) are smaller than l1 + a · σ1, where σ1 is the cut-length standard deviation over S1, and a
is a constant set to 1.2 for all tested shapes. The set P skips the potential ligature-cuts in S1, which
are longer than regular cuts. From this candidate border-set P , we next select the border B as being
the cut which is geometrically closest to S2, i.e. cuts S2 as closely as possible with respect to S2. This
also favors creating short borders, in line with requirement 1 (Sec. 3.2.1). For the shape in Fig. 6a, this
yields the border B indicated in the drawing, which is outside the ligature area and is short. Figure 6
compares our new variance-based borders with the ones produced by the original method in [13] for a
shape having many ligature regions (e.g. palm-hand, arm-torso, and ears-head junctions). As visible, the
new borders separate the perceived shape segments better than the original ones, and are also shorter,
while producing the same overall segmentation (number and location of parts).

a) original improved

d) original improved

b) original improved c) original improved

e) original improved

f) original improved

non-smooth
borders

undersegmentation

Fig. 7. Comparison of original border construction [13] and improved ligature-sensitive method (Sec. 3.3.3).

Once the part borders Bi are determined, we compute the final segments by finding the connected
components of ∂Ω separated by these borders, via a simple flood-fill algorithm on ∂Ω, and visualize
these segments, for illustration, by coloring them so that adjacent segments get different colors (see
Fig. 4b and following figures in the paper).
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3.3.4 Final results

Figure 7 shows several examples where we compare our improved segmentation pipeline (using clustering-
based partitioning of the cut space and ligature-sensitive border creation) with the original segmentation
results in [13] (which use histogram-based partitioning and the ligature-agnostic border creation). For
shapes (a,b,e) the new method removes the severe undersegmentation effects of the old method which
are due to the difficulty of finding appropriate histogram thresholds λ and µ. For shapes (c,d), the new
method removes the border instability due to skeleton ligature points, and creates tighter and better
oriented segment borders. Image (f) shows that the new method detects more small-scale details and
also creates smoother segment borders (see markers in figure). Additionally, images (b,d,e) show that
our method can handle shapes of genus larger than zero, i.e., having tunnels.

4 Interactive segmentation for shape editing
While useful, fully automated segmentation is not a solution in many contexts. Consider, for instance, the
task of editing a 3D shape to e.g. enhance, deform, or remove certain features. The main time-consuming
part here is accurately selecting the shape parts to process. This is typically done by interactive selection
tools such as 2D or 3D bounding boxes or lasso tools [32, 52]. While such tools are quite efficient in a
2D setting, selecting details from complex 3D shapes still requires considerable user effort [9, 51, 52].

We present next a method to assist the process of efficiently selecting parts of a 3D shape using our
cut-space model. The key idea is simple: Given a 3D shape, the user can select any salient protruding
part thereof by simply clicking on it in a 2D rendering of the shape. Next, once such a part is selected
in 3D, the user can decide how to process the part, e.g., deform, remove, or paint it.

a) click to select x2D b) compute cut c(xS) c) slide cut upstream  
    along skeleton 

d) stop sliding when cut

    stretches over 30% 

e) final cut delivers the

    part segmentation

clicked point xSmedial surface S
∂Ωinput surface ∂Ω cut’s sliding direction final cut

Fig. 8. Interactive segmentation pipeline, starting from clicking a surface point (a) until obtaining the surrounding part (e).

Our proposal works as follows (see Fig. 8). Given a 3D rendering of the input shape Ω, the user
clicks on a surface point x2D thereof, in a classical 2D rendering of Ω (Fig. 8a). We next determine
the corresponding 3D point x3D ∈ ∂Ω. Thirdly, we find the closest surface-skeleton point xS ∈ S∂Ω to
x3D, using the inverse of the feature transform FT of ∂Ω, and construct the corresponding cut c(x3D),
following the method outlined in Sec. 3.2 (Fig. 8b). This cut represents a way to ‘slice’ the input shape
based on the clicked location x2D. Assuming the user clicked anywhere on a shape detail, this does not
yet give us the entire shape detail containing the point x3D. To segment this detail from the rest of
the shape, we proceed as follows. Let ρ(xS) be the MGF importance of the skeleton point xS ∈ S∂Ω

(Sec. 3.1). We then move xS along the medial surface S∂Ω upstream, with a distance of one voxel,
in strictly increasing order of the medial-surface importance ρ(xS) (Fig. 8c). Since the importance ρ
increases monotonically from the medial-surface boundary to its center [18, 40], the point xS moves
strictly ‘upstream’ along the medial surface S∂Ω, towards the center of the skeleton S∂Ω, which is the
point of maximal importance [18, 40]. We stop this motion when the cut-length ‖c(xS)‖ for the current
skeleton point xS increases over 30% as compared to the previous skeleton point in this upstream motion
process. Practically, this stops the upstream motion of xS once the sliding cut reaches the location where
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a part joins the main shape rump (Fig. 8d). Note that this location precisely corresponds to a large
negative-curvature loop on the shape surface, which in turn is exactly the definition of the minima rules
proposed by many researchers to segment protruding parts from a shape [7, 16, 19, 49]. When this event
is detected, we use the current cut c(xS) to separate the clicked shape part from the rump (Fig. 8e).
Next, any shape-processing operations can be applied on this separated part, as desired by the user.

a) selection of parts b) edited model

Fig. 9. (a) Model with selected parts in blue. (b) Model with deleted parts. Bottom row: Method of Clarenz et al. [9]. Top
row: our method.

Figure 9 shows a simple example of such editing. Here, the user clicked three times, once inside each
detail marked in blue in Fig. 9a, top-row. Using our part-selection procedure described earlier, we auto-
matically select the three clicked parts, i.e., the dragon’s horn, tail, and hind leg spike. Next, we apply a
simple erasing operation (for illustration purposes) to remove the selected details. Other shape-editing
operations can be applied with the same ease, as desired. The final result is shown in Fig. 9b, top row.
For comparison, Fig. 9 bottom-row shows the selection and editing operations performed by the related
method of Clarenz et al. [9]. Our method achieves the same results, while being significantly simpler.
Indeed, Clarenz et al. need to compute a differential surface classifier, encode it into a matrix, feed the
matrix to an algebraic multigrid method that decomposes the matrix into a multiscale representation,
select a suitable multiscale level, and threshold the basis functions representing the classifier on that
level to find the clicked segment (for full details, we refer to [9]). In contrast, we only need to compute
the shape’s medial surface, select a point on it, and slide the cut generated by this point upstream the
medial surface until its length increases by a desired threshold. Our interactive part selection method
works in real-time as, upon a user click, we only need to compute a few tens of cuts from consecutive
medial-surface points.

5 Parameter analysis
Our proposed segmentation pipeline involves several parameter values. For the method to be practically
usable, end users need to understand (a) how these parameters affect the segmentation results, and (b)
what are good preset values for them. In this section, we explore our method’s parameter space and
thereby address the above understanding goals. For this, we vary every parameter over its allowable
range while keeping all other parameters at their preset values, and analyze the resulting segmentation
results. The complete set of parameters of our method is listed in Tab. 1 and discussed next.
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Description Introduced in Allowed values Good preset
Skeleton simplification Sec. 3.2 ρmin ∈ (0, 1) ρmin = 0.01
Cut dissimilarity δ Eqn. 4 {length–only (β = 0), length–and–position (β > 0)} length–only
Linkage choice Sec. 3.3.2 {single, centroid, full, average} average

Input resolution Sec. 1 ‖Ω‖ > 0 ‖Ω‖ > 2003

Number of desired parts Sec. 3.3.2 N ∈ N>0 task-dependent

Table 1. Complete set of method parameters with optimal preset values.

Simplification level: We use a simplified surface skeleton S∂Ω so as to avoid creating cuts from
irrelevant spurious skeleton branches. Besides this, simplification allows removing skeleton details cor-
responding to small shape parts, to produce coarser segmentations. Thirdly, using simplified skeletons
reduces computation time, as our method needs to create one cut per skeleton voxel. We empirically
found that a skeleton simplification level of ρmin = 0.01‖∂Ω‖ gives optimal results in terms of removing
noise but keeping small shape details, and use this value as default for ρmin. This result is in line with
the independent observation that the same simplification level yields noise-free skeletons that capture all
significant details of a 3D shape [40]. Additionally, simplified skeletons have voxels with large importance
values, which in turn implies far-apart feature points f1 and f2 (see definition of the MGF importance
metric in [12, 40]). This ensures that the ray casting used to compute cuts robustly finds cuts that wrap
around the medial surface (Sec. 3.2). Figure 10 shows the effects of varying the simplification level ρmin

for the armadillo shape: Low ρmin values capture finer-scale shape parts, while higher values produce
coarser segmentations.

ρmin=0.005 ρmin=0.01

ρmin=0.5

ρmin=0.1

ρmin=0.25

ρmin=0.05

Fig. 10. Segmentation results as function of skeleton simplification level ρmin.

Linkage choice: Hierarchical bottom-up clustering works by iteratively merging the two most similar
cut-clusters. To compute the similarity of two clusters S1 and S2, a so-called linkage function is used [11].
Well-known variants hereof are single linkage (the minimum of all pairwise distances between cuts in S1

and S2); full linkage (the maximum of all pairwise distances between cuts in S1 and S2); average linkage
(the average of all pairwise distances between cuts in S1 and S2); and centroid linkage (distance between
the averages of cuts in S1 and S2). We tested all four linkage strategies for the shapes presented in this
paper. An example is shown in Fig. 11. Single linkage yields no segmentation, since border-cuts are
shared by adjoining segments, so the single linkage of such segments is zero. Centroid linkage typically
produces a visible degree of undersegmentation, as the cut averaging acts like a low-pass filter eliminating
the effect of small shape details. Full linkage, in contrast, yields a small amount of oversegmentation,
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due to the maximum function involved in its computation. Finally, average linkage yields, in all tested
cases, a balanced segmentation. As such, we set average linkage as the default value for our pipeline.

a) single linkage b) centroid linkage c) average linkage d) full linkage

Fig. 11. Segmentation results as function of the linkage method used in hierarchical clustering.

Dissimilarity function: As explained in Sec. 3.3.2, we construct partitions by clustering by comparing
cuts based on their length only or length-and-position, as determined by the ratio of the parameters
α and β in Eqn. 4. To test the effect of these parameters, we fix α = 1 (since we always want to
compare cut lengths), vary β between 0 and 1, and analyze the produced segmentations. Figure 12
shows several results. For testing, we use here a shape exhibiting both thick and very thin parts and
also having several elongated parts, so that both components of the dissimilarity function δ become
important (Eqn. 4). We see that, when we use a non-zero importance β for the cut position (Fig. 12b),
we obtain an oversegmentation of the length-only result: Long tubular-like parts, such as the trident
shaft, torso, or limbs, are split into shorter segments. Also, we see a slight undersegmentation of details
which only slightly differ in terms of local thickness, such as the bulge at the basis of the trident fork
(Fig. 12a). Increasing β further yields an undersegmentation of the length-only result (Fig. 12c), as close
cuts will be grouped in the same segment, regardless of their length – see e.g. the grouping of the trident
spikes or fingers in the same segment. If oversegmentation of long tubular parts is not desired, then
setting δ to length-only (β = 0) is a good default value. This is the value used for all examples in this
paper except Fig. 12.

a) α=1, β=0 b) α=1, β=0.5 c) α=1, β=1

undersegmentation
of small parts

undersegmentation
of small parts

oversegmentation
of tubular parts

Fig. 12. Segmentation results as function of the dissimilarity function δ. (a) Length-only. (b,c) Length-and-position.

Resolution: As our entire pipeline works in voxel space, the sampling resolution, or number of voxels
used to represent our input shape, its skeleton, and the cut-space, is an important parameter to examine.
Figure 13 shows the segmentation results for four different resolutions. Overall, we see that the same
segments are detected in all four cases, which tells that our method is robust with respect to sampling
resolution. This is due to the fact that, once the used resolution is fine enough to capture skeletal
details corresponding to small shape parts, then segments for those parts will be detected. Separately,
we notice however an effect of the resolution in terms of smoothness of the produced cuts (see marked
cut on the armadillo torso in Fig. 13). Low resolutions produce less smooth cuts, since the extended
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feature transform EFT of the input shape becomes inaccurate (see Sec. 3.2.2), and thus the feature-
points used in our cut construction get noisy. As the resolution increases, so does the accuracy of our
EFT in approximating the true FT , and thus the cuts become smoother and more orthogonal to the
local symmetry axis of the shape. Combining the previous observations, we noticed, in practice, that a
resolution of 4003 voxels is sufficient to capture all salient shape segments and also produce smooth and
well-oriented cuts.

a) 200 x 200 x 200 b) 300 x 300 x 300 c) 400 x 400 x 400 d) 500 x 500 x 500

Fig. 13. Segmentation results as function of the voxel resolution of the input shape.

Number of desired parts: The last parameter of our pipeline determines the number of desired parts
to be produced by segmentation (value N , Sec. 3.3.2). This is the single free parameter of our method.
Its setting depends largely on the specific application context, e.g., what is the scale of details that we
consider relevant and thus want to segment separately; and what is the amount of noise that is present
on the input shape, which we do not want to yield separate segments. As such, we leave the setting of
N to the end user. Segmentations for different N values can be created interactively, since the most
expensive part of our pipeline, skeleton computation and cut creation, needs to be done only once for
a given shape (see Sec. 6, Tab. 2 next). Figure 14 shows three settings for N for two different models
which have a clear part-whole structure. As visible, increasing N produces more detailed segmentations,
in a multiscale fashion.

Fig. 14. Segmentation results for different numbers of desired parts (increasing from left to right).

6 Results and Comparison
We have tested our method on over 70 shapes provided as 3D polygon meshes, from the well-known
shape repositories [2, 31], which we voxelized by binvox [34] at resolutions between 1003 and 5003 voxels.
Results and comparison with related methods are discussed next.
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Medial PBS methods: We first compare our results with [38], the best voxel-based PBS method that
we are aware of which also uses medial descriptors for segmentation. We get very similar results, but
find more fine-grained segments than [38] – see finger and ear details of the animal models, pig tail,
dragon spikes, and microscope lens. Segment borders are smooth and locally orthogonal to the shape’s
symmetry axis, i.e., similar to how a human would cut the shape at the respective places (Sec. 3). Our
method finds segments of various sizes, ranging from details (dragon’s tail, hound’s ears), to large parts
(limbs of various models).
General PBS methods: We next compare our method with a larger class of general-purpose PBS
methods (Fig. 16 a-k). The considered methods are [4, 24–27, 37, 38, 50]. Here, Reniers et al. (1) denotes
[37], and Reniers et al. (2) denotes [38]. These methods span from voxel-based to mesh-based, and use
various segmentation heuristics (skeleton, curvature, salience, and topology-based). We argue that our
method creates equally or, in some cases, more plausible PBSs. Since both our method and [38] use
medial descriptors, computed by the same underlying method [40], a relevant question is how the two
methods differ. We use (a) medial surfaces, while [38] uses curve skeletons; and (b) we find segment
borders by analyzing all possible cuts, while [38] places such borders around the curve-skeleton branch
junctions. Fig. 16 l-p shows five examples where the public implementation of [38] fails to segment at
all. We find two causes for this: The shape parts in Fig. 16 l cannot be well described by curve-skeleton
branches, as they are nearly rotationally symmetric. As few (if any) such junctions exist, [38] fails. The
shape in Fig. 16 n is described by a mix of medial surfaces (base plate) and curve skeletons (tubular
parts). As [38] only uses curve skeletons, data on the base plate is incomplete or missing. For the shapes
in Fig. 16m-p, the many heuristics in [38] to select cuts centered on the curve-skeleton fail, as they
imply that such cuts should be nearly planar. This does not happen for the above shapes.
Multiscale: As described in Sec. 5, we can produce a multiscale segmentation by simply changing the
number N of desired parts. This is a much simpler way to specify the desired level-of-detail than the
earlier proposal in [13], where one had to simultaneously control two parameters λ and µ to yield the
same result (see Sec. 3.3.1). Figure 16 r shows three such scales for the armadillo shape.
Invariance: Our method is pose invariant, as shown in Fig. 16 s. Indeed, our cut-space essentially
captures local shape thickness, which does not depend on pose. Additionally, as the cut clustering
essentially depends on the relative difference in cut lengths and positions, and not on their absolute
values, our method is also scale, translation, and rotation invariant.
Performance: Table 2 shows the time for creating cuts (tcuts), medial surfaces (tskel), cut-space analysis
(tspace), the total time of the original method in [13] (ttotal), and total time for [38] (tReniers), for our
method coded in C++ on an 8-core 3.5 GHz PC. As cuts are computed independently, we parallelized
our method by pthreads, getting a speed boost factor of 7, close to the optimal value of 8 for our
hardware. As visible, the original method [13] is slightly faster than [38]. We observe that most of the
time is spent in the cut computation (tcuts vs ttotal). As such, we optimized the A∗ method used to
trace geodesics for cut construction (Sec. 3.2.2), by using a fast priority queue implementation. The
performance yielded by this optimization (Tab. 2, toptim) is now significantly higher than the original
method (ttotal) and also much higher then [38]. Finally, we note that our method could successfully
segment all tested shapes, while [38] failed on several shapes (Tab. 2, empty cells in column tReniers).

7 Discussion
We next discuss several aspects of our proposed part-based segmentation method.
Global search: We create a PBS by finding all part-inducing cuts from the medial surface, and
selecting a cut-subset by globally optimizing for part-similarity as captured by cut lengths and/or
positions. In contrast to purely topological PBS methods [37, 38], we search a much wider space of
possible partitionings; yet, our search space is much smaller than that of other methods which look for
cuts of any possible orientation [15], thereby achieving a good flexibility-performance balance. This is
also visible if we compare our running times (Tab. 2, toptim) with those reported in [15]: We process
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Our method

Reniers et al.

Our method

Reniers et al.

Our method

Reniers et al.

Fig. 15. Part-based segmentations of our method vs Reniers et al. [38] (Sec. 6).
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a) Liu and Zhang b) Lien et al. c) Attene et al. d) Tierny et al. e) Reniers et al. (2) f) Our method

g) Li et al. h) Lee et al. i) Reniers et al. (1) j) Reniers et al. (2) k) Our method 

l) screwdriver m) heptoroid n) engine part o) airplane p) lion

r) multiscale segmentation, three different scales, armadillo model s) pose-invariant segmentation

) i l

Fig. 16. Comparison of our method with eight PBS methods (a-k). Our results for shapes where Reniers et al. fails (l-p).
Multiscale (r) and pose-invariant (s) segmentations.

voxel shapes having tens up to hundreds of thousands of surface voxels (‖∂Ω‖) in under 10 seconds; on
similar hardware, [15] processes meshes having only 4000 triangles in 4 minutes on average.
Simplicity: In our approach, we can use any medial surface skeletonization method, e.g. [3, 18, 40,
41, 46], as long as it outputs regularized skeletons. This makes our method directly applicable to mesh-
based shapes, which allow fast medial-surface extraction [17], without the additional cost of voxelization.
Multiscale: Multiscale PBS occurs at two levels: (1) Simplified medial surfaces yield cuts only for
important shape parts; (2) The user can specify the number of parts to be extracted from the shape.
Invariance: Our method is scale, translation, rotation, and pose invariant [38, 48], as shown by the
model in Fig. 16 s (which is also used in [48] to show pose invariance). Note that pose-invariance is not
guaranteed by default by other cut-space segmentation methods, e.g. [15].
Robustness: We robustly segment noisy or detail-rich surfaces, e.g. dragon and dino (Fig. 15) or lion
(Fig. 16). Segment borders are smooth by construction (Sec. 3.2). Since our segmentation uses a subset
of these cuts, and only considers integral cut properties (length, position) rather than differential ones
(e.g. curvature), noise and/or small-scale details are robustly handled. Moreover, we avoid constructing
segment borders from unstable cuts created from ligature skeletal points (Sec. 3.3.3).
Limitations:Our method’s cost is O(‖S∂Ω‖‖∂Ω‖log‖∂Ω‖). As our method parallelizes easily (Sec. 6), its
practical cost is much lower than other skeleton-based PBS methods [37, 38] or cut-based methods [15].
For space constraints, we compare with only eight related PBS methods. More PBS methods exist, and
quantitative metrics can be further used to measure segmentation quality [29]. Yet, even without such
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Shapes cuts ‖S‖ voxels ‖Ω‖ voxel volume tcuts tskel tpart ttotal toptim tReniers

Dragon 2789 283238 400*400*400 50.8 1.90 0.03 52.73 9.19 40.26
Hound 1530 245759 300*300*300 23.24 1.51 0.01 24.76 6.39 25.1
Hyptoroid 4873 651478 400*400*400 400.5 3.36 0.04 403.90 47.5 -
Fertility 1354 199581 300*300*300 20.85 2.02 0.01 22.88 4.83 22.89
Gargoyle 488 129420 300*300*300 12.62 3.26 0.005 15.885 7.28 69.89
Microscope 1397 307863 300*300*300 44.14 1.58 0.01 45.73 8.12 198.02
Lucy 6201 1.04× 106 300*300*300 68.01 0.63 0.09 68.73 12.7 52.65
Engine part 1501 135416 300*300*300 15.55 0.27 0.01 15.83 1.50 -
Screwdriver 1372 306480 300*300*300 13.14 0.60 0.01 13.75 4.48 -
Noisydino 1375 194117 300*300*300 14.79 1.19 0.015 16.00 3.72 20.2
Cow 1009 143938 256*256*256 8.15 0.96 0.01 9.12 2.41 14.34
Neptune 1908 211723 420*185*251 34.7 1.22 0.02 35.94 22.67 -
Airplane 741 76700 300*300*300 6.00 0.28 0.08 6.37 0.91 -
Bird 476 45638 300*300*300 2.28 0.18 0.003 2.47 0.40 7.98
Hand 584 58071 200*84*140 2.15 0.22 0.004 2.37 0.51 -
Lion 2181 381968 300*300*300 23.16 1.08 0.02 24.27 6.58 -
Horse 884 109555 142*300*251 9.58 1.24 0.008 10.83 2.56 -
Pig 959 145215 300*300*300 10.97 1.51 0.01 12.50 3.01 22.26
Dog 1241 184805 300*300*300 15.65 1.29 0.02 16.97 3.63 18.87
Hippo 838 166932 300*300*300 12.13 2.41 0.01 14.55 4.40 25.18
Rhino 1746 403399 300*300*300 25.20 2.15 0.03 27.39 7.57 -
Armadillo 2242 436933 300*229*252 47.55 2.67 0.03 50.26 12.21 -

Table 2. Shape sizes and segmentation times (in seconds) for [13], our optimized method, and Reniers et al. [38].

extra insights, we argue that our goal of showing that surface skeletons have added both theoretical and
practical value for PBS, as opposed to the well-known use of curve skeletons for PBS, is well defended.

8 Conclusions
We have presented a new method for part-based segmentation of 3D voxel shapes by analyzing the entire
space of potential partitioning cuts constructed by using the shape’s medial surface. To our knowledge,
our approach is the first which uses medial surfaces for part-based segmentation, and thereby shows the
added-value of medial surfaces for segmentation, as opposed to the well-known use of curve skeletons for
the same task. We demonstrate our method on a wide variety of 3D shapes, and compare it with eight
related segmentation methods. Our method can produce similar segmentations with less computational
effort, and has a single intuitive end-user parameter to set – the number of desired segments.

Different ways to partition the cut space can be easily tried, e.g. cut similarities based on e.g.
curvature, eccentricity, and orientation. This would lead to an entire family of PBS methods in a single
simple implementation. Separately, cut-length-and-position histograms computed by our method could
be an effective shape descriptor for retrieval and matching [42]. Finally, implementing our method for
mesh-based shapes on the GPU should lead to massive scalability increases.
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