
Mining Software Repositories with CVSgrab

Lucian Voinea
Technische Universiteit Eindhoven

The Netherlands
l.voinea@tue.nl

Alexandru Telea

Technische Universiteit Eindhoven
The Netherlands
alext@win.tue.nl

ABSTRACT
In this paper we address the process and team analysis categories
of the MSR Mining Challenge 2006. We use our CVSgrab tool to
acquire the data and interactively visualize the evolution of
ArgoUML and PostgreSQL, in order to answer three relevant
questions. We conclude summarizing the strong and weak points
of using CVSgrab for mining large software repositories.

Keywords
Evolution visualization, Software visualization, CVS

1. INTRODUCTION
The MSR Mining Challenge brings together researchers and
practitioners in the field of software repository mining, and
stimulates them to compare their tools and approaches. To
establish a common ground for comparison, two benchmarking
datasets are proposed: the ArgoUML and PostgreSQL CVS
repositories. ArgoUML is an open source project with a history of
6 development years, 4452 evolving files, contributed by 37
authors. PostgreSQL is an open source project with a history of
10 development years, 2829 evolving files, contributed by 27
authors. We used our CVSgrab tool [1] from the Visual Code
Navigator toolset [2] to analyze the process and the team structure
of these projects. The process and findings are described below.

2. SETUP
CVSgrab [1] is a tool for visualizing the evolution of large
software projects. CVSgrab includes mechanisms to query CVS
repositories locally or over the Internet. File contents are retrieved
on demand and cached locally, which massively speeds up the
mining process. CVSgrab can detect and cluster files with similar
evolution patterns, using several evolution similarity metrics [1].
Unlike classical CVS clients such as WinCvs or TortoiseCVS,
CVSgrab provides extensive support for interactively showing
evolutions of huge projects on a single screen, with minimal
browsing. Figure 1 depicts the architectural pipeline of CVSgrab:

CVS
Repository

Cache

2D
visualization

CVSgrab

CVS
Input parser

Internet

Evolution
analyzer

Figure 1: CVSgrab architectural pipeline

CVSgrab uses a simple 2D layout (see Figures 2,3,4): Each file is
drawn as a horizontal strip, made of several segments. The x-axis
encodes time, so each segment corresponds to a given version of
its file. Color encodes version attributes, e.g. author, type, size,
release, presence of a given word in the version’s CVS comment,
etc. Atop of color, texture may be used to indicate the presence of

a specific attribute for a version. File strips can be sorted along
the y-axis in several ways, thereby addressing various user
questions.

3. RESEARCH QUESTIONS
We used CVSgrab to acquire, analyze and visualize the evolution
information for ArgoUML and PostgreSQL. We formulated a
number of relevant team and process related questions and tried to
answer them using CVSgrab’s interactive visual mechanisms:
Q1: What is / was the development process?
Assessing the development process is important for project and/or
process auditors. Usually, the assessment outcome is based on
developer interviews and not on the real situation. We propose
using CVSgrab to base such assessments on the real data in CVS.
We used CVSgrab to visually compare the development process
behind both ArgoUML and PostgreSQL (Figure 2). We sorted the
files in the increasing order of their creation time. We used color
to encode file type: In Figure 2 left, documentation files are
yellow (HTML) and light green (images) and Java sources are
red. In Figure 2 right, C sources are blue, C headers are light
green, test suites are red, and documentation files are green.

creation
time

Figure 2: Evolution of file type: ArgoUML (left), PostgreSQL
(right). Creation time increases from top to bottom.
We now easily see that the development of ArgoUML started
with some documentation files (yellow, light green), possibly
containing the system specification and/or design. Implementation
source files followed only later. For a significant period, i.e. more
than 1/3 of the development time, no new source files appear.
This suggests the system architecture was stable in this period.
Next, source and documentation files are alternatively added in
large chunks, suggesting a coarse iterative development process
with few architectural changes. In contrast, the development of
PostgreSQL starts directly with a set of C source files, followed
shortly after by a set of header files (light green). This suggests
the system, as present in CVS, was not developed from scratch,
but started atop of some previous project. However, the system
specification / design either does not exist, or it is not maintained:
There are just a few documentation files (green) and these appear
much later in the project. The system architecture appears to be

mailto:l.voinea@tue.nl
mailto:alext@win.tue.nl

less stable, as header files containing interfaces and corresponding
implementation files are added throughout the entire project. The
set of committed files is frequently interrupted by test suites (red).
This suggests an iterative development process in which added
functionality is tested before implementing new one.

Q2: What are the main contributors and their
responsibilities?
During the development and maintenance of large software
projects, new developers often join and/or leave the team. It is
very important that newcomers quickly get familiar with the rest
of the development team and their responsibilities. In Figure 3,
we used the same file layout as in Figure 2 to show the evolution
of the two projects. However, color encodes now the ID of the
developers, so Figure 3 shows the evolution of contributions.

major initial
contributions,
different
authors

major initial
contribution

Figure 3: Evolution of author contributions: ArgoUML (left),
PostgreSQL (right)
We can see that, both for ArgoUML and PostgreSQL, there is
only one author for each major initial contributions, i.e. areas with
a steep slope of the time curve. However, these contributions
might represent the work of more developers, initially committed
by one configuration manager. The evolution of PostgreSQL
reveals another interesting pattern: alternative contribution of two
developers, e.g. green and blue vertical stripes for the middle
period of evolution. The responsibilities of the two developers are
however different. We can see that the contributions of the
‘green’ author involve many files simultaneously, while the ‘blue’
author commits fewer files, but more often. This suggests the
‘green’ author has rather the role of a configuration manager that
applies formatting changes to the entire code (e.g. indentation),
while the ‘blue’ author affects the system functionality in small
increments.

Q3: Where are located the development issues discovered and
solved during alpha testing of some given release?
To track errors during debugging, it is of paramount importance
to narrow down the location of the code introducing the fault.
This might not always coincide with the location where the
program crashes. Moreover, an error might be caused by the
resolution of another issue. In such situations, it is useful to easily
identify the code that changes from one system release to another
and in the same time addresses a given issue. In Figure 4, we used
the same file layout as in Figure 2 to show the evolution of
ArgoUML. Color encodes versions that belong to a given system
release: light green = VERSION_0_14_ALPHA_1, dark cyan =
VERSION_0_14_F, red = both releases, grey = none. Grainy
texture shows versions that contain a reference to the word
“issue” in their associated CVS comment file. We see that only a
few files that have been changed during the alpha testing of
release VERSION_0_14 appear to reference the word “issue”. This

is shown as light green horizontal segments followed by textured
dark cyan ones. At close inspection, we saw that all this code
refers to ArgoUML’s parsing mechanism.

selected region
of interest

zoomed-in view of selection

Figure 4: Identifying ArgoUML version changes between
release VERSION_0_14_ALPHA_1 and release VERSION_0_14_F
that contain the word “issue” in their commit comment. Inset
shows a zoomed-in region, for better insight.

4. DISCUSSION
We have briefly illustrated the use of the CVSgrab tool [1] for
process and team analysis of large software projects. We used as
input data the MSR Challenge 2006 projects: ArgoUML and
PostgreSQL. The presented use cases confirmed us that CVSgrab
has a very good scalability: It can give comprehensive evolution
overviews for projects of thousands of files and hundreds of
versions, thus meeting industry size requirements. CVSgrab can
easily answer questions that involve the formation of a large
uniform color pattern, e.g. Q1 and Q2 in this paper, or questions
involving comparison of a small number of colors, e.g. Q3.
Secondly, the tight integration of the on-demand, Internet-based
CVS data browsing, acquisition, and visualization in CVSgrab
massively simplified the process of getting quick overviews of
huge projects. Finally, CVSgrab can be easily extended to support
different scenarios, by adding different file sorting techniques,
attribute-to-color mappings, and file similarity metrics, yielding a
powerful CVS mining tool. A complete version of the CVSgrab
tool is available for download on the Visual Code Navigator home
page at: http://www.win.tue.nl/~lvoinea/VCN.html

References
[1] Voinea, L., Telea, A. CVSgrab: Mining the History of Large

Software Projects. Proc. EUROVIS 2006, ACM Press, 2006,
to appear.

[2] Lommerse G., Nossin F., Voinea S.L., Telea A.: The Visual
Code Navigator: An Interactive Toolset for Source Code
Investigation. Proc. IEEE InfoVis, IEEE Press, 2005, 24 – 31

http://www.win.tue.nl/~lvoinea/VCN.html

	INTRODUCTION
	SETUP
	RESEARCH QUESTIONS
	DISCUSSION

