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I think the main thing a musician would like to do is give a picture to the listener of the
many wonderful things he knows of and senses in the universe..

That’s what I would like to do.
I think that’s one of the greatest things you can do in life, and we all try to do that in some

way. The musician’s is through his music.

— John Coltrane [9]





A B S T R A C T

DTI fiber tracking is the process of approximating neural pathways in the human
brain by tracing streamlines using reconstructed diffusion tensors and estimates of
anisotropy obtained through diffusion tensor imaging (DTI). In this thesis, we pro-
pose methods for the geometric simplification and visualization of complex DTI fiber
tract structures, in order to convey a clear impression of the main structure, shape,
and topology of neural pathways.

Our contribution is two-fold: First, we demonstrate an approach to the simplifi-
cation of DTI fiber tracts that is based on CUBu edge bundling. Our simplification
approach shows promising computational performance through GPU parallelization,
and allows various ways to control the simplification process, leading to a clearer
impression of the type of anisotropy within the fiber structures.

Secondly, we propose a new illustrative rendering method for DTI fiber tracts, and
compare this method to several other pre-existing methods. Our work was tested
using DTI datasets obtained from a variety of subjects.
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We have to abandon the idea that schooling is something restricted to youth.
How can it be, in a world where half the things a man knows at 20 are no longer true at 40 -

and half the things he knows at 40 hadn’t been discovered when he was 20?

— Arthur C. Clarke [72]
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1
I N T R O D U C T I O N

DTI is a neuroimaging technique based on Magnetic Resonance Imaging (MRI) which
makes it possible to estimate the location and orientation of white matter tracts in the
human brain in vivo. By measuring the diffusivity of water molecules through the
process of Diffusion Weighted Imaging (DWI) it is possible to estimate diffusion ten-
sors and implicitly the anisotropy of the diffusion data. Clinical applications of DWI
and DTI include the localization of tumors or white matter lesions and pre-operative
assessment (surgical planning).

DTI fiber tracking is the process of approximating neural pathways by tracing stream-
lines using reconstructed diffusion tensors and estimates of anisotropy obtained
through DTI. The fiber tracking process can produce large sets of dense polylines that
are challenging to visualize due to their scale and structural complexity. Traditionally,
filtering and selective fiber tracking in a Region of Interest (ROI) have been applied to
limit the extent of the data to more manageable quantities. A more recent set of tech-
niques such as graph- and trail bundling, that are based on the notion of geometric
simplification, allow for a different approach: by simplifying dense sets of fiber tracts
it becomes possible to present whole-brain tractography in a more insightful manner.

The most common approach to fiber tractography is to trace streamlines in the major
diffusion direction since this is a strong indicator for the orientation of white matter
fibers. There are however many areas within the human brain where diffusion is non-
linear, but exhibits for instance plane-like diffusion[2, 53, 62]. These structures may
occur in areas with e.g. crossing or branching fibers, which conventional fiber track-
ing does not convey very well. Alternative approaches to conventional fiber tracking
include stream-surface tracking [67] and multi-tensor tractography methods such as
UKF-tractography [35]. Although these methods also provide more insight into re-
gions of higher planar anisotropy, output produced by such methods may still suffer
from occlusion.

High density fiber tractography of the entire brain can be a requirement depending
on application. For instance, in a healthy subject where the anatomy is known, the lo-
cation of interesting bundles and structures can reasonably be determined. However,
in patients, existing insight about possible underlying structure of the brain may not
apply and therefore manual seeding of fiber tracts can miss important structures [67].
Rather than placing seedpoints selectively, or by filtering tracts, it is therefore more
suitable to trace an entire DTI image in order to create the largest possible coverage
of the brain. Consequently this produces very dense path data with a lot of occlusion
(or clutter). . Hence rises the possible need for a simplified representation of whole-
brain tractography data that exhibits reduced occlusion.

Visualization and analysis of (planar) anisotropy is of use in topics where the under-
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2 introduction

lying structure of neural fiber tracts is of interest. Teipel et al. [63] for example have
linked Alzheimer’s Disease (AD) dementia to a loss of crossing fibers, and Speckter
et al. [59] have indicated that planar anisotropy is a predictor for the responsiveness
of meningiomas to Stereotactic Radiosurgery (SRS). Wedeen et al. [70] have proposed
that fiber pathways in the human brain form sheet structures, a phenomenon that is
actively studied as the organizing principles of cerebral connectivity remain unclear.
Developing adequate visualization methods could provide more insight in the under-
lying structure of the human brain and facilitate further research in this area.

We propose a two-fold approach to clearly showing structural information of dense
DTI fiber tracts that is based on simplification of these tracts in conjunction with a
rendering method. Geometric simplification of the fiber tracts is applied to reduce
occlusion and adequate rendering can complement this to clearly convey structural
information and data attributes within the simplified set of fiber data.

1.1 problem statement

Tensor fields, such as for example emerging from DTI scanning techniques, are com-
monly visualized by two main techniques: streamlines (fiber tracts) and glyphs. Both
techniques have specific advantages and disadvantages [64], but a major problem for
both glyphs and fibers is occlusion.

A relatively recent set of techniques for reducing occlusion relates to the idea of ge-
ometric simplification of the spatial structure created by either fibers or glyphs. The
aim of such simplification is to reduce the adverse effects of occlusion and clutter, but
to still convey a clear impression of the main structure, shape, and topology existent
in the DTI data. Within geometric simplification, bundling techniques have proven
recently high potential: they can indeed reduce clutter by effectively ‘thinning’ a fiber-
set; they can be combined with glyphs to yield a more compact, and therefore more
clutter-free and easier to understand, rendering of the shape of the fiber-set; and they
can be controlled in various ways to limit and/or guide the amount of deformation.

Structural simplification also requires adequate complementary rendering, for which
there is a variety of methods available. Even when the shapes embedded in a DTI
dataset are approximated by a (simplified) set of fibers, it is possible to represent
(render) these shapes by drawing more than the set of fibers itself. Essentially, this
bypasses the modeling limitations of a set of 3D curves, by adding extra informa-
tion to them during rendering, so they better approximate the underlying data and
shapes. Current examples hereof include the depth-dependent halos in [15, 17]. The
key question to address here is: how can we adapt/extend these mechanisms to con-
vey a clearer or better impression of the type of anisotropy the simplified shapes have.
In other words how to render curved surfaces, tubular fiber bundles, and individual
‘stray’ fibers respectively, so that these different structures are easier to recognize in
the simplified visualization?
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1.1.1 Research Question

Based on the above problem statement, we define the Research Question (RQ) to be:
"How can we depict a large and dense set of 3D paths obtained by tractography in a simplified
way, so that key structures are easy to see?"

We address the RQ along two technical axes: simplification and rendering. To estab-
lish a framework for our research we have defined several requirements for both
technical axes. We will refer to these requirements throughout the document as they
are fundamental to the explanation of rationale and also allow qualitative assessment
of the proposed methods.

1.1.2 Simplification Requirements

We define two main requirements by which we validate the simplification process.
The simplification should:

• S1: Reduce occlusion in dense sets of fiber tracts, while preserving important
structures.

• S2: Quickly generate a simplified model, ensuring that interactive exploration
of the data is possible.

1.1.3 Rendering Requirements

Once simplification is performed, an appropriate rendering method is required to dis-
play the simplified model. Based on analysis of related DTI visualization methods and
the properties that makes these methods particularly suitable for DTI visualization
(see also section 2.4), we define four (functional- and non-functional-) requirements,
by which we compare existing and new rendering approaches.

In order to complement the simplification process, a rendering method should:

• R1: Show the nature of local brain structures. Tube-like structures should be ren-
dered as such and surface-like structures should be rendered as clear surfaces
without gaps.

• R2: Clearly convey shape and orientation of fiber structures. The method should
show convexity and concavity of structures and allow a user to distinguish the
orientation of different structures with respect to each other.

• R3: Allow depiction of data attributes through e.g. scalar color coding.

• R4: Allow rendering at interactive framerates.

1.2 thesis structure

The structure of this document is as follows; in the related work chapter (chapter 2)
we describe DTI, fiber tractography and visualization methods related to our research.
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Chapter 3 covers fiber tract simplification based on edge bundling and consecutively
a new DTI rendering method is discussed in chapter 4. An overview of results, includ-
ing various approaches to rendering is presented in chapter 5. Finally, in chapter 6 we
discuss these results and compare several DTI fiber tract rendering methods, and in
particular how these are applicable to the simplified fiber tract model. We conclude
our work in chapter 7 in which we summarize our findings and present directions
for further research.



2
R E L AT E D W O R K

In order to place our work on fiber tract simplification and visualization into context,
we describe various topics related to DTI, DTI-visualization and edge bundling in this
chapter. In section 2.1 we discuss basic fundamentals of DTI and how this is derived
from DWI. Next, in section 2.2 we discuss tensor shape classification which provides
metrics that are essential to our methods. Several related DTI visualization techniques
that are conceptually similar to our approach are discussed in section 2.4. Finally, this
chapter is concluded with an overview of current edge bundling applications in the
area of functional- and anatomical connectivity visualization of the human brain.

2.1 diffusion tensor imaging

Conventional structural imaging techniques such as T1-, T2- and proton density–
weighted imaging generally create high contrast between major tissue groups in
the brain, which are: Gray Matter (GM), White Matter (WM), and Cerebrospinal
Fluid (CSF). Such structural imaging techniques are generally well suited for the
study of tissue macrostructure yet provide little insight into the orientation of white
matter fibers.

DWI [32, 38] is a variant of conventional MRI based on the tissue water diffusion
rate, which is better suited for the study of white matter pathways. While DWI refers
to the contrast of the acquired images, DTI is a specific type of modeling (or abstrac-
tion) of the DWI datasets, in which diffusivity of water molecules is represented by
tensors[28]. As an in-vivo non-destructive technique that requires no chemical trac-
ers, DTI is presently one of the most promising methods for the study of white matter
architecture in living humans [56].

DTI provides quantitative estimates of white matter integrity and orientation by
measuring molecular diffusion of water molecules (or Brownian motion). It is based
on the phenomenon of diffusion anisotropy in the nerve tissue: water molecules dif-
fuse faster along the neural fiber direction and slower in the fibertransverse direction
[30]. WM neural fibers consist of bundles of myelin covered axons of which the loca-
tion and orientation can be approximated by measuring the diffusion from multiple
directions through DWI.

In the single-tensor DTI model, diffusion at each voxel within the imaging volume
is represented by a 3× 3 diffusion tensor matrix (also known as a Hessian matrix, Eqn.
2.1) and is often referred to as the Apparent Diffusion Tensor (ADT)[28]. The term
apparent is conventionally applied to emphasize the fact that the tensor is derived
from observed (or measured) diffusivity, which is subject to measurement conditions
[42].
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λ1~e1

λ2~e2

λ3~e3

(a) Linear diffusion (λ1 = 0.75, λ2 = 0.15, λ3 =
0.1).

λ1~e1

λ2~e2

λ3~e3

(b) Planar diffusion (λ1 = λ2 = 0.45, λ3 = 0.1).

Figure 2.1: Diffusion tensor ellipsoids.

As the frame of reference of the ADT corresponds to the MRI scanner (also re-
ferred to as the laboratory frame of reference) and therefore does not represent the
local orientation of anatomical structures, this is generally transformed to a repre-
sentation independent of any coordinate system through Principal Component Anal-
ysis (PCA)[64], also known as tensor reconstruction. Standard tensor reconstruction
algorithms include linear least squares and the potentially more accurate weighted
linear least squares method [66].

The resulting rotationally invariant representation of the ADT is commonly visual-
ized as an ellipsoid (shown in figure 2.1) defined by three eigenvectors (the principal
axes) and three eigenvalues. The eigenvectors e1, e2 and e3 are mutually orthogonal
unit vectors that represent directions in which the diffusion has extremal value (also
known as principal directions) proportional to the corresponding eigenvalues λ1, λ2

and λ3.
For each voxel within the imaging volume, direction e1 (the major eigenvector) is

the direction of maximal diffusion by λ1, and e3 (the minor eigenvector) is the di-
rection of minimum diffusion by λ3. This information allows for numerous tensor
visualization techniques, most notably fiber tractography.

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.1)

The DWI acquisition process involves measurement of diffusivity by applying pulse
sequences from multiple directions around a subjects body, at various b-values. This
sequence of gradients (consisting of diffusion sensitizing directions and b-values)
is referred to as the gradient table. To estimate the diffusion tensors, a minimum
of seven diffusivity measurements is required (six diffusion directions and one b0-
image for a non-diffusion-weighted baseline), yet modern scanning usually involves
many more of these diffusion sensitizing directions to obtain more accurate results
(see also appendix A.1 for datasets in the context of this document). Application
of higher b-values produces more diffusion-weighted contrast but also reduces the
Signal-to-Noise Ratio (SNR)[28].
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DWI has low SNR, low resolution and is very susceptible to motion distortion [48],
for this reason the image acquisition pipeline generally involves a sequence of prepro-
cessing steps. These steps include algorithms for noise correction, motion correction,
phase correction, and eddy-current correction [13, 20].

Although such additional processing can mitigate some of the distortions com-
monly affecting the DWI process, these are not always effective at completely remov-
ing all artefacts, and as such the SNR of DWI is relatively low despite the extensive
corrections. Brain masking is a commonly applied method for DWI- and DTI datasets
to limit the adverse effects of signal noise in areas outside the brain (see also section
3.1). As a postprocessing step, subject facial features are also commonly stripped or
obscured to preserve subject anonymity[41].

The tensor information as obtained through PCA allows for a variety of useful
quantitative parameters to be derived from it. Various of these DTI-derived parame-
ters (described in the next section) that are based on the eigenvalues of the diffusion
tensor (λ1, λ2, λ3) provide measures of the degree of diffusion anisotropy. These scalar
measures combined with the estimates of fiber direction provide a means to WM trac-
tography, which leads to a unique multiscale description of tissue architecture and
organization[28].

2.2 tensor shape classification

Westin et al. have defined a number of geometrical diffusion measures to describe the
shape of tensors reconstructed from DWI [71]. Any tensor within the DTI dataset can
be classified as being a linear-, planar-, or spherical diffusion-tensor (not mutually
exclusive). These measures, that are based on the relation between the three ordered
eigenvalues (λ1, λ2, λ3 with λ1 ≥ λ2 ≥ λ3 ) are defined as follows:

cl =
λ1 − λ2

λ1 + λ2 + λ3
(2.2)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(2.3)

cs =
3λ3

λ1 + λ2 + λ3
(2.4)

Equations 2.2, 2.3 and 2.4 are commonly referred to as the linear-, planar- and
spherical certainty metrics. All three measures are normalized to the range of [0, 1]
and form barycentric coordinates [74] as is depicted in figure 2.2a.

From these estimates follows a measure for anisotropy (Eqn. 2.5) which can be
used to indicate regions in the data where the diffusion is planar or linear (fiber-like)
as opposed to isotropic (i.e. equal in all directions):

ca = cl + cp =
λ1 + λ2 + 2λ3

λ1 + λ2 + λ3
= 1− cs (2.5)
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ca = 1

cl = 1 cp = 1(0, 1
2 ,

1
2 )

( 12 ,
1
2 , 0) ( 12 , 0,

1
2 )

( 13 ,
1
3 ,

1
3 )

(a) Barycentric coordinates(ca, cl , cp) depicted
on an equilateral triangle.

(b) Tensor ellipsoids with FA colormap, image
from[53].

Figure 2.2: Barycentric space of tensor shapes.

Fractional anisotropy is another widely used measure for anisotropy[4], and can
be used as a measure for deviation from isotropic diffusion. Fractional anisotropy is
defined as:

FA =

√
1
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(2.6)

Figure 2.2b shows a clear example of how FA maps to the various tensor shapes.
The image shows that highest values of FA apply to linear tensors (the cigar shaped
ellipsoids) and that lowest FA values for the spherical ellipsoids, which represent
more isotropic diffusion.

An important aspect of these equations (2.2),(2.3),(2.5),(2.6) is that the eigenvalues
are ordered by convention (λ1 ≥ λ2 ≥ λ3). For this reason the eigenvalues are also
referred to as the major- (λ1), medium (λ2) and minor (λ3) eigenvalues. The metrics
listed above are generally very useful because the more complex tensors are reduced
to much simpler scalar attributes.

Besides various clinical applications in medical image analysis[28], anisotropy mea-
sures are also essential to the reconstruction and visualization of neural pathways
(white matter tractography). Fractional anisotropy (FA, Eqn. 2.6) for instance is a
strong indicator for white matter and is therefore commonly used in fiber tractog-
raphy seeding criterions (discussed in the next section). On the contrary, diffusion
within CSF is unrestricted in all directions (isotropic, with cs ∼ 1) which is one of the
strongest indicators for absence of neural fibers [56].

2.3 fiber tractography

The orientation information of the diffusion tensor may be used to reconstruct es-
timates of white matter pathways in the human brain. The class of methods that
performs such reconstruction is referred to as white matter tractography, fiber tractogra-
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phy or fiber tracking.

From a meta perspective fiber tracking techniques can be categorized as determin-
istic or probabilistic methods. Deterministic methods use the directional information
described by the diffusion tensor directly, assuming that this is the best estimate of
the underlying fiber orientation, while probabilistic methods provide some degree of
confindence or a measure for error in the tracking procedure[28].

A primary assumption of many tractography algorithms is that the direction of great-
est diffusivity (the major eigenvector, e1) is roughly parallel to the local white matter
fiber bundle direction. The simplest tractography algorithms integrate streamlines in
the direction e1 [19, 43], yet more elaborate approaches include streamlines defined
by tensor deflection[28], bi-tensor modelling [35] and streamsurface tracking[67].

Streamline propagation using only the direction of the major eigenvector has draw-
backs since this approach is not able to accurately generate crossing or branching
fibers. These fibers (illustrated in figure 2.4) occur in regions characterized by higher
planar anisotropy that are present troughout the human brain. Figure 2.3 shows an
example of such regions as indicated by the cp measure (Eqn.2.3).

(a) Sagittal slice. (b) Axial slice.

Figure 2.3: Planar estimate (Eqn2.3) displayed on slices of DWI (grayscale). Values are thresh-
olded, showing only regions of higher planarity (cp ≥ 0.2).

Tractography approaches vary in their methods for integration of the streamlines,
seeding and stopping criteria, and in which constraints are applied on the streamline
propagation. Research in the area of anatomical validation of fiber tractography has
shown that tractography algorithms can produce anatomically correct results, yet are
also limited by image noise, low SNR and crossing fibers.

Fiber tracking has several applications, including noninvasive visualization of white
matter pathways, segmenting of specific tracts in the brain for image analysis, and
relating white matter tract anatomy to brain tumors and lesions in patients who are
candidates for neurosurgery[28].
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Figure 2.4: Viewer aligned illustration of fibers in regions where anisotropy is planar: (left)
kissing fibers, (middle) two fiber bundles crossing and (right) diverging fibers.
Gray regions have a tensor with planar diffusion. Image from [68].

It is important to note that DTI fiber tracts present a higher level abstraction of neu-
ral pathways rather than individual neural fibers. For example, axons in the human
brain have a varying diameter of somewhere between 0.2µm and 20µm [1, 3], while
current DTI typically produces a much larger voxel size in the order of a few mm3

(∼ 0.5..2mm3), and as such DTI represents generalized properties of all nerve tissue
contained within a voxel.

2.4 dti visualization

Conventional line rendering is a simple and efficient baseline rendering technique
that has been employed since fiber tracking was first introduced[43, 74]. More ex-
tensive illumination[45], ambient occlusion[11] and alpha blending[64] have been ap-
plied to line rendering of fiber tracts to further improve the shading of the lines.

Rendering 3D tubes with Phong shading, such as the labeled tuboids by Petro-
vic, Fallon, and Kuester [46], is based on more detailed geometric modelling than
line rendering, and can produce even higher quality visualizations. The methods by
Stoll, Gumhold, and Seidel [60] and Merhof et al. [39] (shown in figure 2.5a) produce
similar shading using screenspace techniques and incorporate illustrative rendering
techniques as well. Hyperstreamlines [53, 64] are an extension of cylindrical tubes
that provide a richer representation of the diffusion tensor field.

Various proposed methods for DTI- and fiber tract visualization are based on the
notion of combining or merging geometry in order to show an enhanced image of
the local nature of fiber bundles. These methods include: streamsurface tracking by
Vilanova, Berenschot, and Pul (in which surfaces and tubes are combined, see figure
2.5c), merging ellipsoids [10, 57] (in which tubes or surfaces are formed by merging
tensor ellipsoids), and Depth Dependent Halos (DDH) by Everts et al. [15] (which
groups colinear fibers with halos).

Several of the previously mentioned related methods [15, 17, 60, 64] apply view-
aligned rendering (or billboarding) in the context of fiber tract visualization, which is
a concept that is also applied by our proposed method (further explained in chapter
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4). Illustrative techniques such as the rendering of silhouettes[44], contours, outlines
and halos[15, 60] have also been proposed to provide additional visual cues in the
context of complex fiber tract visualization.

Surface reconstruction or extraction from DTI datasets have also been applied as
a means for indirect volume visualization[53]. For instance Merhof et al. [40] have
shown that encompassing fiber tract bundles with isosurfaces yields a more prefer-
eable representation for use in neurosurgery, and FA ridge and valley surfaces [53]
are demonstrated to capture the cores of sheet-like tracts.

(a) Hybrid visualization for white matter
tracts, image from [39].

(b) Depth-Dependent Halos, image from [15].

(c) DTI Visualization with Streamsur-
faces, image from [67].

(d) Labeled tuboids, image from [46].

Figure 2.5: Various related DTI fiber tract visualization methods.
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2.5 edge bundling and fiber tract simplification

Edge bundling is a mechanism for geometric simplification of large sets of dense path
data, such as large scale graph drawings. By applying edge bundling techniques to
complex data, it is possible to generate a simplified view that shows underlying struc-
tures in an easier to understand manner. Such simplification can lead to new insight
as certain features of the data become more apparent. Applications of edge bundling
include graph drawing simplification[23, 75], trajectory exploration[34], eye-tracking
analysis[47] and streamline bundling[73].

Image-based edge bundling techniques, including SBEB[12], ADEB[47], KDEEB[23],
CUBu[75], and FFTEB[33], are amongst the most performant bundling algorithms[34].
In this class of methods, CUBu [75] is presently one of the fastest proposed edge
bundling algorithms and has been demonstrated to achieve sub-second running
times for large scale 2D graphs. Through Graphics Processing Unit (GPU) paralleliza-
tion, the algorithm surpasses the computational performance of related methods pre-
sented so far[75]. Besides the GPU-based design that addresses scalability, Zwan,
Codreanu, and Telea [75] have shown various visual styles, directional bundling and
relaxation[24] as examples of how additional constraints can be incorporated to con-
trol the shape of resulting bundles.

Edge bundling has also been applied in the context of DTI and fiber tract visual-
ization as a method to simplify dense sets of fiber tracts or connectivity data. For
example, Bottger et al. [8] have proposed mean-shift bundling of 3D connectivity
graphs obtained through functional Magnetic Resonance Imaging (fMRI)[7, 8]. Sim-
plification of anatomical connectivity using edge-bundling is a relatively new topic,
and one example thereof is KDEEB[23] applied to fiber tracts [25, 64]. Other examples
of fiber tract simplification methods include: multi-scale local fiber tract contraction by
Everts et al. [16] and two-dimensional neural maps by Jianu, Demiralp, and Laidlaw [27].

2.6 current challenges

The main limitations of current methods that are related to our goal of exploring
and visualizing dense sets of DTI fiber tracts are in the areas of simplification and
rendering.

As listed in the previous section, there are various edge bundling methods for
general 3D polylines and some for fiber tracts specifically. These methods are gen-
erally not adapted in order to recover plausible anatomical structures. Instead, these
bundling methods often produce 1D bundles, and create gaps in key areas. Control
of the fiber tract bundling is therefore an important challenge.

Computational scalability of the proposed simplification is another important con-
cern, as geometric simplification is generally a computationally extensive process.
Another major challenge is therefore to allow interactive exploration of all simplifica-
tion parameters. GPU parallelization of algorithms has shown promising results, yet
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not all of these have been applied to 3D simplification.

Control of the rendering, so that the emerging structures are as close as possible
to suggesting the ’underlying’ anatomical elements, such as bundles, sheets and man-
ifolds of fibers is also not trivial using methods presented so far (see section 2.4).
Various of the mentioned DTI visualization methods address this in one or more
ways, yet to fulfill all requirements mentioned in subsection1.1.3 is challenging.

In section 4.1 we discuss several challenges associated with fiber tract rendering
in detail, as part of an introduction to our rendering method presented in chapter 4,
which we propose to address those challenges.





3
F I B E R T R A C T S I M P L I F I C AT I O N

As we have outlined in chapter 1, we aim at both simplifying large sets of DTI
tracts, and rendering this simplification so that one can easily recover the (simpli-
fied) anatomical structures from them. In this chapter, we present our proposals for
simplification (rendering is discussed separately in chapter 4).

Zwan, Codreanu, and Telea [75] have demonstrated the CUBu method to be a
highly parallelizable algorithm, achieving sub-second running time for the bundling
of large 2D datasets. We propose to extend this bundling method to 3D and to apply
it in the context of DTI fiber tracts in order to simplify dense sets of fiber tracts.

Figure 3.1 shows the proposed simplification process as a part of the complete the
visualization pipeline. As indicated in this diagram, the flow of data starts with the
Diffusion Weighted MRI (DW-MRI) and is followed by several processing steps (brain
maksing, tensor reconstruction and fiber tracking) which together yield the input dataset
for the simplification process.

Next in the pipeline is our proposed simplification approach that consists of two as-
pects: tract bundling, which performs modification of the tracts, and reseeding which
ensures sufficiently dense fiber placement in all regions of interest. Once simplifica-
tion is performed, the visualization is concluded with a rendering step for which
various possible approaches are available (further discussed in chapters 4 and 5).

Diffusion
MRI

Brain Masking
Tensor Reconstruction

and
Classification

Fiber Tracking Tract Bundling
(CUBu)

Tract Reseeding Rendering Final
Image

Raw DWI Brain Segmented FA, cp .. Dense Fiber
Tracts Obtained

Occlusion
reduced

Additional
Structures

Emphasized

Simplification Process

Figure 3.1: Flowchart of the visualization pipeline.

The structure of this chapter is as follows: prior to any fiber tracking or simplifi-
cation, a brain mask must be obtained, this is briefly discussed in section 3.1. Next
in section 3.2 we discuss the CUBu[75] bundling algorithm as the foremost means to
our simplification approach. Bundling shape control is discussed in section 3.3, which
covers various ways to control the bundling specifically in the context of DTI, these
are endpoints bundling (subsection 3.3.3 and DTI edge profiles (subsection 3.3.4).
Next to the bundling algorithm, our fiber tract simplification approach also relies on
selective fiber tracking in specific regions of higher planar-anisotropy, this reseeding
principle is discussed in section 3.4. The extension of the CUBu method to 3D in-
troduces various options and trade-offs in terms of computational performance and
memory requirements, these are discussed in section 3.5.

15
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3.1 brain masking

Indicating areas of brain tissue within the DTI dataset is an important prerequisite
for fiber tracking and subsequent simplification (see also Fig. 3.1). Since the input
volumes contain a variety of areas that are not used in the context of fiber tracking,
but for which diffusion is measured, it becomes important to partition the data. Such
regions include for instance bone tissue of the skull and extracorporeal areas (i.e.
where there is no tissue), which should be excluded from the tractography- or tensor
reconstruction process for the reason that these contain no nerveous tissue.

A simple and effective method to distinguish between relevant and irrelevant vox-
els within the dataset, is to apply a binary mask image (M : R3 → {0, 1}) that
indicates brain tissue. On occasion a preconstructed mask is available as part of the
input dataset (see appendix A.1), but otherwise this volume can be constructed from
the DWI signal using a clustering-based image thresholding algorithm such as Otsu’s
method [54].

Once obtained, the mask image serves a two-fold purpose: first it is used the de-
termine potentially suitable locations for seedpoints placement, thereby preventing
the tracking of false fiber tracts in regions outside the brain. Secondly we can use
the bounding volume indicated by the mask image, that is the smallest possible axis-
aligned bounding box that will contain all voxels that indicate brain tissue, to opti-
mize memory usage (this is discussed further in section 3.5).

Since mask M is used for both the seeding- and stopping criterion during fiber
tracking (explained earlier in section 2.3), areas for which M ≡ 0 are guaranteed to
not contain any fiber tracts. We can therefore safely clip the space defined by the
diffusion data based on the bounds indicated by mask M, without discarding any in-
formation that is relevant to the creation, simplification or visualization of fiber tracts.

As is listed in table 3.1 the maximum partition of relevant data for fiber tracking
within the tested DTI volumes is approximately 25%, which is indicated by the per-
centage of voxels for which M ≡ 1. Obviously the organic shape of the human brain
is not cuboid and some redundancy is therefore expected when sampling DTI data
on a structured grid (in this case a cuboid volume). Clipping the volumes however
does yield a significant size reduction of about 35..50% for our datasets, as is also
listed in table 3.1.
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dataset #1 dataset #2 dataset #3 dataset #4

Volume dimensions 128× 128× 94 96× 96× 50 140× 140× 96 140× 140× 96

Masked brain

bounds dimensions

88× 111× 82 61× 82× 42 84× 98× 83 86× 116× 88

% of voxels

indicated as brain

tissue

365980 /

1540096 voxels

in mask

(23.76%) of

entire volume

113725 /

460800 voxels

(24.68%) of

entire volume

345004 /

1881600 voxels

in mask

(18.34%) of

entire volume

384297 /

1881600 voxels

indicated as

brain by mask

(20.42%) of

entire volume

% of original size 47.99 % of

original size

54.41 % of

original size

63.69 % of

original size

53.34% of

original size

Size reduction % 52.01% 45.59% 36.31% 46.64%

Table 3.1: Brain masking metrics for all datasets.

Figure 3.2 shows a mask constructed from the DWI volumes of dataset #4 (see table
A.1) on a sagittal slice. The mask that is visible in the right image (indicated in blue
where M ≡ 1) clearly shows that the skull can be stripped by applying mask M.

(a) Sagittal slice of a DWI volume. (b) Same image as 3.2a, with binary mask M over-
layed in blue.

Figure 3.2: Binary mask constructed from a DWI signal, depicted on a sagittal slice.

3.2 fiber tract bundling using cubu

Starting with a set of fiber tracts (a set of sampled polylines) the objective of tract
bundling is to produce a simpler, easier to understand layout of these same tracts.
Much like related image-based bundling methods (most notably KDEEB and FFTEB),
CUBu is based on the notion of Kernel Density Estimation (KDE) [23]. By estimat-
ing density of sampling points within a local neighbourhood (commonly labeled ρ,
Eqn.3.1) we can establish suitable locations for alternate tract placement, which al-
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lows the generation of the simplified layout of these tracts.

In our proposed method, fiber tracts are iteratively shifted towards nearby regions
where ρ is already high (many paths exist) by advection in the direction of the density
gradient ∇ρ. This process essentially trades off clutter for overdraw, as the number
of intersections of bundles should be significantly lower than the number of intersec-
tions of input paths[34].

For consistency with the modeling proposed in[75] we apply the same terminology,
and for this reason fiber tracts are also called edges. Starting with a set of fiber tracts
(G), consisting of edges E ⊂ R3, the algorithm’s first phase creates a bundling B ⊂
R3of G.

Edges ei are modeled as uniformly-sampled polylines ei = {xj}, for which ‖xj −
xj+1‖ is a user-given sampling- step σ. The control points xj of these polylines are
referred to as sites, and the first- and last points {x0, xn} as endpoints.

To generate bundling B ⊂ R3 of G, several iterations are performed until a stable
bundling is achieved. Each iteration incorporates four steps, these are: density estima-
tion, advection, smoothing and resampling. Figure 3.3 shows these four steps (discussed
next), as part of the iterative KDE bundling process.

PN iterations

Original Tracts In Bundled Tracts Out1: Density map

ρ

2:
A
dv
ec
ti
o
n

3: Resampling

4
:
S
m
oo
th
in
g

Figure 3.3: Iterative KDE bundling steps.

density map As a first step, a den-
sity map (ρ : R3 → R+) is con-
structed for the drawing of G. To com-
pute ρ, the set P of all sites xj on
all edges in E is convolved with a
spherical non-linear kernel K of ra-
dius pR. Common choices for K are
an Epanechnikov kernel or a Gaussian
kernel[23, 75], however we found that
K(x) = e−4‖x‖ also yields high qual-
ity results in the context of fiber tract
bundling.

To estimate the density, first a (per-pixel) site count map C : R3 → R+ is computed
for P. Next the count map C is convoled with kernel K to produce the density map
according to equation 3.1:

ρ(y) = ∑
x∈T(y)

K (‖x− y‖)C(x) (3.1)

With T(y) being a sphere or radius PR centered at y. After each iteration, the kernel
radius PR is reduced which gradually results in a stable bundling state.
Density map ρ is efficiently computed in parallel using a gathering strategy[75]. The
3D convolution (Eqn. 3.1) can be split into three 1D passes (for each row, column and
slice), as the density kernel (K) is symmetric and separable. This approach leads to
increased performance (discussed further in section 3.5), which is rather important
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(a) Original edges with bounding
box (140× 140× 96).

(b) Bundled edges with sites (blue)
and edge endpoints (green).

Fan-like clusters

Fan-like clusters

(c) Bundled edges with directional
colormap (α = 0.2).

Figure 3.4: Bundling of a pseudo-random dataset containing 50K crossing edges.

since density estimation is one of the more computationally expensive aspects of the
bundling algorithm.

advection Next, the sites xj are advected upwards in the normalized gradient of
ρ with a distance pR, according to equation 3.2. The gradient ∇ρ is computed from
ρ using a finite differences method, for the fiber tract simplification, we found that
central differences is a sufficient method.

xnew
j = xj + pR

∇ρ

‖∇ρ‖ (3.2)

Equation 3.2 can be further adapted to exibit control over the bundling, for instance
using edge profiles[75], which is discussed in subsection 3.3.4. During advection,
edge endpoints are generally constrained (i.e. not advected). However, for applica-
tion to fiber tracts we propose an alternate approach for the bundling of endpoints
specifically, which is furter discussed in subsection 3.3.3.

smoothing In order to produce smooth bundles, Laplacian smoothing according
to equation 3.3 is applied after advection. Smoothing removes small scale jitters that
arise from imprecisions in the density estimation.

xsmooth
i = (1− φ)xi + φ

∑i+L
j=i−L xj

2L + 1
(3.3)

In equation 3.3, φ is the smoothing factor, and L determines the number of neigh-
bouring sites for which the window average is computed.
Although it is an essential step, smoothing should applied with some restraint, as
oversmoothing may remove an undesirable amount of curvature from the fiber tracts.
For fiber tract bundling φ = 0.2 is generally sufficient when smoothing once each
bundling iteration.

resampling Edges are next resampled to get an uniform and dense spatial distri-
bution of the sites xj over G , which is needed for a good kernel density estimation. A
sensible default value for the user-given sampling distance is σ ∼ 1 (close to 1 voxel).

To provide a simple example, bundling of a pseudo-random dataset using the ap-
proach described above is shown in figure 3.4. The first figure (Fig. 3.4a) shows the
original dataset and bounds, and the next images (figures 3.4band 3.4c) show the
main topology obtained through bundling. For this bundling result, a relatively large
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starting kernel radius pR = 51 was applied (φ = 0.25, PN = 40) and edge endpoints
where blocked. The third subfigure also clearly shows fan-like clusters that occur
when edge enpoints are kept in place (see also subsection 3.3.3 for details).

Each of the above steps (again see figure 3.3) is performed in parallel on the GPU
which yields a significant performance boost compared to the earlier CPU-bound
method KDEEB[23] that follows a very similar approach.

3.3 bundling shape control

Various mechanisms for shape control of tract bundling as discussed in the previous
section (section 3.2) are possible. In this section we first describe two mechanisms
originally proposed by Zwan, Codreanu, and Telea [75], which are: choice of kernel
radius (subsection 3.3.1) and relaxation (subsection 3.3.2). Next we also propose two ad-
ditional mechanisms for shape control, being: endpoints bundling and DTI edge profiles.

The bundling of endpoints can yield further reduction of occlusion, which is ben-
eficial in the context of fiber tract bundling. DTI edge profiles are an adaption of
the edge profiles described in [75], in which DTI tensor shape classification measures
(section 2.2) are incorporated to preserve certain structures during the simplification
process.

3.3.1 Kernel Radius Controls Bundling Coarseness

The initial kernel size pR (equations 3.2 and 3.1), specified in voxels, controls bundling
coarseness. Increasing pR includes sites from within a larger spherical region in the
density estimation, which results in a courser bundling result as sites from a wider
area are advected towards higher-density locations.

Figure 3.5 shows a side-by-side comparison of fiber tract bundling using two dif-
ferent kernel sizes. The left column (Fig. 3.5a and 3.5d) shows the original fibers
(viewed along the sagittal axis and the transverse axis), the middle column (Fig. 3.5b
and 3.5e) shows a finer bundling result produced by a relatively small starting ker-
nel size pR = 9 , and the right column (Fig. 3.5c and 3.5f) shows coarser bundling
produced by selecting a larger starting kernel size (pR = 51).
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(a) Original fiber tracts. (b) Finer bundling using smaller
kernel (pR = 9).

(c) Courser bundling using larger
kernel (pR = 51).

(d) Original fiber tracts. (e) Finer bundling using smaller
kernel (pR = 9).

(f) Courser bundling using larger
kernel (pR = 51).

Figure 3.5: Course-to-fine bundling produced by varying density kernel radius pR.

3.3.2 Relaxation Controls Bundle Thickness

In addition to the adjustment of the kernel radius PR (as described in the previous
subsection), relaxation[24] is another approach to bundle shape control which allows
for the control of bundle thickness. Bundling relaxation is the process of interpolating
between the bundled fiber tracts and their original counterparts, thereby relaxing the
bundled output towards the original input. The application of a moderate amount
of relaxation (generally 5..20%) results is slightly thicker (more pronounced) bundles
that can be easier to observe.

As an example, figure 3.6 shows a bundled set of fiber tracts with three levels of
relaxation applied, rendered in context of the original fiber tracts (in gray). The first
subfigure (Fig. 3.6a) displays very fine bundles without any relaxation applied, which
is the bundling result as created using te algorithmn described in section 3.2. Compar-
ing this to the next two figures (Fig. 3.6b and 3.6c) shows that bundles become more
pronounced as relaxation is applied. The amount of relaxation is a user-controlled
parameter that can be adjusted interactively to determine a suitable level.
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(a) No relaxation (fine bundles). (b) 10% relaxation (slightly thicker
bundles).

(c) 20% relaxation (thicker bun-
dles).

Figure 3.6: Relaxation applied to bundling result (100K fiber tracts).

3.3.3 Endpoints Bundling

Keeping edge endpoints in place is an important aspect of the CUBu bundling
method. In general bundling applications, endpoints may represent important in-
formation such as a specific location on a map, or a node of a graph, in which case
it may be undesirable to alter the representation of such a node. Another important
motivation for keeping endpoints in place is that this approach prevents the under-
lying structure of the data from shrinking during bundling. There is a side effect
to keeping all endpoints in place: upon completion of the bundling process, various
groups of endpoints are typically visible as fan-like clusters (see for example Fig. 3.4c
and Fig. 3.8b). This is a common phenomenon for various bundling algorithms that
employ a similar strategy for edge endpoints, also referred to as the FDEB style [34,
75].

Due to the fact that they are intentionally unaffected, the reduction of occlusion is
not optimal for these fan-like clusters of endpoints. For 2D trail- or graph datasets
this generally poses less of a problem, as the point of view usually remains un-
changed. For interactive exploration of our 3D fiber tracts however, this becomes
more problematic as the user changes the viewpoint. Any occlusion that is not re-
duced due to keeping all endpoints in place can have a negative impact on the visu-
alization of the bundling result. For example clusters of endpoints closer to the skull
may prevent us from looking inward into the simplified set of fibers.

Various rendering approaches that de-emphasize low-density areas (such as the
groups of endpoints described above) are available, these are discussed in more de-
tail in chapter 4. In essence, these rendering methods implicitly tune out low-density
areas by means of i.e. alpha-blending[22]. Another option for decreasing the occlu-
sion further, is to prune the endpoints; thereby effectively trimming the fan-like clus-
ters described above. This trimming approach does yield a cleaner visualization, but
this is at the cost of shortening bundles and possibly omitting important information.
Therefore both of these options have drawbacks in terms of conveying the best pos-
sible simplified model of the neural fiber structures, i.e. we either impose additional
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requirements on our rendering approach (such as the need for alpha-blending) or
we present an image that may not adequately reflect the underlying structure of the
original fibers in the best possible way due to shortening.

An effective solution to the problem described above is to include all endpoints in
the advection process, similar to all other sample points, while also controlling the
deformation of the line segments in such a way that no fibrous structures are unnec-
essarily shortened. Similar to the approach that limits advection in the direction of
the local tangent (tangent drift) to improve sampling quality of edges while bundling
[75], we can also use the tangent direction τ(xj) ∈ R3 (eq. 3.4) to guide the advection
of all fiber endpoints.

τ(xj) =
xj+1 − xj

‖xj+1 − xj‖
(3.4)

Based on the observation that displacement of endpoint xj in the direction of τ(xj)

is guaranteed to shrink a fiber, we can assume that using a direction (d′) that is per-
pendicular to the tangent will likely not do so. In the case of 2D bundling we have
τ(xj) ∈ R2 for which d′ ⊥ τ(xj) can be determined directly. In the case of fiber-
bundling we have τ(xj) ∈ R3 and therefore there are infinite possible d′ and we need
to establish a suitable plane containing d′ ⊥ τ(xj) first. To achieve this we can use the
displacement (d) according to for example equation 3.2(i.e. d = xj− xnew

j ) and project
this vector d onto the alternate displacement vector d′ that is in the same plane as
tangent τ(xj) as well as displacement d, but also orthogonal to τ(xj).

Equation 3.5 shows how we compute the projection of d onto d′, where we refrain
from advection when the displacement is nearly parallel to the tangent (d ‖ τ(xj) ),
do not project the vector when it is already orthogonal (d ⊥ τ(xj) ) and project d
otherwise. A schematic example of such a projection is given in figure 3.7 where the
w =

d×xj
‖d×xj‖ (the normal of the plane containing the orthogonal bundling direction)

and u =
w×τ(xj)

‖w×τ(xj)‖ .

d′(xj, d) =


0 i f d

‖d‖ · τ(xj) ≈ 1

d i f d
‖d‖ · τ(xj) ≈ 0

(d · u) · u with u =
d×xj
‖d×xj‖ × τ(xj) otherwise

(3.5)
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(a) Original fibers. (b) Simplified fibers with blocked endpoints.

(c) Bundling applied to all sampling points. (d) Endpoints (green) after bundling.

Figure 3.8: Endpoints bundling demonstrated on bundles of the left- and right cingulum.

xjxj

u

τ

w

d′

d

d
‖d‖ · τ

Figure 3.7: Schematic view of projection of displacement d of endpoint xj of the green poly-
line onto d′. Vectors u, τ, d and d′ are all in the plane defined by normal w (indi-
cated by the gray ellipsoid), with w ⊥ u ⊥ τ.

The effect of endpoint bundling using equation 3.5 is demonstrated on a local scale
in figure 3.8 where we compare original fibers to simplified fibers with and without
endpoints bundling on fibers from the left- and right cingulum. Figure 3.8a shows
these bundles using simple line rendering with directional color coding (eq. A.1)
viewed along the vertical axis. Figure 3.8b shows the exact same set of fiber-tracts
with simplification applied according to equation 3.2, while in figure 3.8c alternate
advection was applied according to eq. 3.5. In this last image (fig. 3.8c) it clearly vis-
ible that the fan-like structures appearing in fig. 3.8b are more folded into the main
bundle, which leads to a cleaner simplification result.

Comparing figures 3.8b and 3.8c shows that occclusion can be reduced much fur-
ther when applying constrained advection to all sampling points (as opposed to only
sites), while ensuring that the resulting bundles are not shrunk unnecessarily. An im-
portant side note is that although we apply alternate advection to all endpoints they
are still exempt from any Laplacian smoothing (as is the case for any bundling style
described in[75]) since this would also shrink the fibers by definition (eq. 3.3).
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(a) Original fibers. (b) Endpoints blocked. (c) Endpoints bundled.

(d) Original fibers. (e) Endpoints blocked. (f) Endpoints bundled.

Figure 3.9: Side-by-side comparison of endpoints bundling on a set of 50K fibers covering the
entire brain.

From a global perspective the difference is also very apparent as is shown in figures
3.9a through 3.9f. Again these images show a side-by-side comparison between the
original fibers, bundling with blocked endpoints and bundling with guided advec-
tion of endpoints. The top row shows a view along the vertical axis (alpha blended
lines with directional colormap eq. A.1 and α = 0.6) and the bottom row shows the
same set of fibers viewed along the transverse axis with the exact same rendering
parameters. The differences are most noticeable in regions where white matter tran-
sitions into other tissue, e.g. regions closer to the skull, since endpoints are typically
densely distributed in these areas due to the fact that a stopping-criterion is met
during fiber-tracking.

3.3.4 DTI Edge Profiles for Constrained Advection

To further control the bundling specifically in the context of DTI, we modulate site
advection (Eqn. 3.2) by an edge-profile function[75]. We apply such a profile function
in order to restrain bundling based on scalar DTI measures, in particular FA (Eqn.
2.6),cp (Eqn. 2.3) and cl (Eqn. 2.2).

Our profile is defined as:

λFA(xj) =

1 FA(xj) ≥ tFA

0 otherwise
(3.6)
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λcl (xj) =

1 cl(xj) ≥ tcl

0 otherwise
(3.7)

λcp(xj) =

1 cp(xj) ≥ tcp

0 otherwise
(3.8)

Where tFA, tcl and tcp are user-defined thresholds for each scalar measure (FA,cl and
cp).

As besides advection (Eqn. 3.2), each site xj is subject to smoothing and resampling
as well (which all may alter a site in some way). To completely restrain the bundling,
we also limit smoothing based on the above edge profiles.

Figure 3.10 shows bundling constrained by FA using equation 3.6. By comparing
e.g. subfigures 3.10b and 3.10d, we can observe that several key structures within the
fibertracts are preserved, most notably the corpus callosum.

A similiar result is shown in figure 3.11 where a cl-constrained edge profile was
applied (cl ≥ 0.4) and a larger kernel radius (PR = 23) was used. Constrained struc-
tures are shown using a rainbow colormap in context of the bundled fibers (dark
gray) and original fibers (light gray). This image highlights the preserved corpus cal-
losum (amongst other structures) as well.
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(a) Original (100K fibers). (b) Bundled (uniform edge profile).

(c) Constrained bundling where FA ≥ 0.7 (thresh-
olded colormap shows affected fibers).

(d) Same as figure 3.10c with directional colormap.

Figure 3.10: FA-constrained edge profile (100K tracts).



28 fiber tract simplification

(a) Transverse axis view. (b) Viewed along the vertical axis.

Figure 3.11: Bundling using cl-constrained edge profile rendered in context of original fibers
(cl ≥ 0.4, 100K tracts).

3.4 reseeding

To complement the bundling as described in the previous section, our simplifica-
tion approach features additional fiber tracking in specific regions of higher planar
anisotropy, which we call reseeding. The purpose of reseeding is to reveal or uncover
sheets of fiber tracts that are characteristic for areas of higher cp. Since the input
dataset may not contain all these (required) fiber structures, we ensure this aspect by
performing additional tracking of fibers in these regions.

The fiber tract reseeding, like tract bundling, is part of the simplification process
as shown in figure 3.1.

Similiar to the approach proposed by Vilanova, Berenschot, and Pul [67] we apply
a (re)seeding and stopping criterion based on: cp ≥ 0.25∧ cl ≤ 0.2. This criterion indi-
cates regions of higher planar certainty (cp, Eqn. 2.3) yet not too high linear certainty
(cl , Eqn. 2.2).
Fiber tracking is performed using a deterministic method (see section 2.3) that ap-
plies Euler integration, trilinear interpolation of the eigenvectors and scalar certainty
metrics, as well as random seepoint placement within each voxel.

An example of such reseeding is shown in figure 3.12 where a relatively small set
of fiber tracts (∼ 15K, indicated in gray) is complemented with approximately 65K
additional fibers (indicated in red).
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dataset tract count average #points average iteration time total running time

random data 50.000 3.271.979 30ms 444ms

dataset #3 50.000 1.441.486 11ms 170ms

dataset #2 50.000 4.145.785 8ms 314ms

random data 500.000 32.762.628 254ms 3812ms

dataset #2 500.000 12.639.524 57ms 858ms

dataset #3 500.000 14.850.241 69ms 1029ms

Table 3.2: Measured bundling running times on a system with a single GTX-1080 GPU (2560

CUDA cores).

(a) Anterior view. (b) View along the transverse axis.

Figure 3.12: Original fiber tracts (grey) reseeded with additional fiber tracts (red) in planar
regions (cp ≥ 0.25).

3.5 scalability

Scalability is important for interactive DTI visualization and has two sub-aspects.
First, data scalability refers to ways in which we can handle large amounts of data
points (e.g. voxels in the DTI volume, but also sample-points in the set of fiber tracts).
Secondly, computational scalability refers to ways in which we can process such
datasets quickly in order to generate the final simplified models.

To provide an indication of the computational scalability of the bundling (section
3.2) we show a listing of running times for several datasets in table 3.2, as obtained
from a single GTX-1080 GPU system. Measurements include roundtrip CPU to GPU
transfer of fiber tracts (yet do not include timings of aspects related to rendering).

As described in section 3.2 we use separable convolution to compute ρ (Eqn. 3.1).
Doing so requires a buffer for reading and writing during three consecutive passes
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dataset /
scale factor

×1 * ×2 ×4 ×8

dataset1 88× 111× 82
(3.2 MB)

176× 222× 164
(25.63 MB)

352× 444× 328
(205.05 MB)

704× 888× 656
(1.64 GB)

dataset2 61× 82× 42
(840.34 KB)

122× 164× 84
(6.72 MB)

244× 328× 168
(53.78 MB)

488× 656× 336
(430.25 MB)

dataset3 84× 98× 83
(2.73 MB)

168× 196× 166
(21.86 MB)

336× 392×
332(174.91 MB)

672× 784× 664
(1.4 GB)

dataset4 86× 116× 88
(3.51 MB)

172× 232× 176
(28.09 MB)

344× 464× 352
(224.74 MB)

688× 928× 704
(1.8 GB)

Table 3.3: Memory usage for storing a 32-bit precision density map (per dataset).

(one pass for each dimension). This approach is performant, yet requires 2× the
amount of memory during density estimation. Alternatively we can gather ∇ρ from
a sphere of size PR from within site count map C(x). This only requires a single
buffer, yet is also much slower as it is an O(P3

R) operation, while separable convolu-
tion is O(PR). By applying separable convolution, we therefore trade off memory for
computation, which is favorable if sufficient memory is available.

* original
resolution of

brain mask M.
As oppossed to normalizing the input tracts to fit the volume resolution PI (as

proposed in[75]), we set PI to the axis-aligned bounding box indicated by brain mask
M (since all tracts are contained within), and scale this resolution as needed. This
approach allows for easier mapping to the DTI data during simplification.
Example memory requirements for a single density buffer, based on this approach,
are listed in table 3.3. Besides the density buffers, fiber tract information and DTI
data are also required to be stored in device memory. For example, handling 1M
tracts with on average 100 sample points requires approximately 1.2 GB of memory.
Adding this to the figures shown in table, we can see that a GPU that has 4 GB of
memory is sufficient to handle a dataset of this magnitude when using our proposed
simplification method.

As pointed out by Zwan, Codreanu, and Telea [75], the output volume size PI

controls the accuracy of density estimation (Eqn. 3.1), and thus also of the gradient
(∇ρ) estimation by finite differences. In order to obtain the best possible result using
the smallest possible volume resolution, we sample ρ using trilinear interpolation
(with 32-bit precision).



4
F I B E R T R A C T R E N D E R I N G

Following the simplification approach (as discussed in the previous chapter 3) we
have a (simplified) set of fiber tracts that requires adequate rendering. We propose a
number of rendering techniques that aim to produce effective views of the actual fiber
structures within the brain. By effective, we mean views which add more informa-
tion cues to the original tracts (3D polylines) in such a way that the final images more
suitable for providing insight. Such insight relates to the reduction of clutter; under-
standing of local anisotropy (e.g. planar vs. linear); filling in small gaps that exist
even in densely sampled sets of fiber tracts, and simplifying the view by highlighting
the coarse-scale structure of the underlying geometries.

4.1 challenges related to fiber tract rendering

Fiber tracts are commonly visualized using illustrative rendering- or Non-Photorealistic
Rendering (NPR) techniques (see also section 2.4). Fiber tracts differ from streamlines
originating from e.g. aerodynamic trail data or fluid flow data in the sense that they
have a clearer mapping to physically existing biological tissue - WM bundles[17].
DTI fiber tracts generally represent complex, organic shapes and have many more
structural variations than streamlines originating from other forms of vector field vi-
sualization.

One detailed example of such a complex structure is given in in figure 4.1, where
bundles from the corona radiata and the corpus callosum passing through a spherical
ROI (indicated by a yellow sphere) are displayed. This image clearly shows branching
tubular structures within the bundles of fibers as well as surface-like structures. The
corona radiata bundle (in blue) contains a flat, surface-like part with several branches,
and it also merges into the U-shaped bundle from the corpus callosum area (red).

To provide some context on the location of the bundles each image contains a
greyscale slice of fractional anisotropy (Eqn. 2.6), which was also the scalar attribute
that was used in the seeding- and stopping criterion. Such complex fibrous structures
are characteristic for the human brain and can be found throughout the result of a
whole-brain tractography (previously given examples are figures 3.9a and 3.9d).

31
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(a) Bundles with coronal FA slice. (b) Bundles with sagittal FA slice.

Figure 4.1: Bundles from the corona radiata and the corpus callosum depicted with slices of
FA (Eqn. 2.6) from two viewpoints.

Traditional rendering methods for the aforementioned DTI structures are line ren-
dering and shaded 3D tubes [36, 64]. Though both have proven to be effective render-
ing methods and are therefore commonly used [18, 36, 69], they do not fulfill all of
our rendering requirements (as listed in subsection 1.1.3). This is mostly due to the
fact that we are trying to convey the local nature of fiber bundles, and thus intend
to also create a surface-like appearance from fiber tracts wherever applicable (see re-
quirement R1). Even if there is a dense surface-like distribution of fiber tracts, creating
the appearance of a surface from this (without gaps) can be challenging when apply-
ing techniques such as line rendering. In essense this originates from the modeling
limitations of a set of 3D curves, which raises the question how to bypass this by
rendering more than just the fiber tracts in order to obtain a more preferable approx-
imation of the underlying structure.

Basic line rendering offers limited options in terms of shading and scaling, which
can be improved by rendering 3D tubes instead. In the case of tube rendering, fibers
are modelled with 3D geometry, which naturally offers more options for shading
and scaling but at the cost of much more complex modelling. Screenspace rendering
techniques applied in the context of DTI, such as [39, 60], address this by recreating
3D tube shading with simpler modelling. Though this approach may solve certain
performance issues and provides interesting options for shading as well, this still
raises the question how to merge or blend geometry (visually or otherwise) in order
to create solid looking structures with smooth shading. The DDH method [15, 17, 61]
is an example of a method that performs this merging of structures quite well, as
colinear fibers are visually combined into thicker bundles with illustrative halos. The
major downside of the DDH method is that the black and white rendering (a stylistic
choice motivated by NPR) offers limited scalar visualization capabilities.

In this chapter we describe an alternative DTI rendering technique that is able to
depict a wide variety of fiber structures and that provides various options for shading
and color mapping, while also rendering at interactive framerates.



4.2 introduction to alpha blended pointsprites 33

4.2 introduction to alpha blended pointsprites

Provided that we have sufficiently dense sampling, it is possible to create solid-
looking geometry by rendering (circular) 2D sprites at all sampling points of the
fiber tracts. For 3D curves this can be achieved by rendering the curves using bill-
boarded pointsprites [6], which are 3D elements rendered as 2D sprites.

Billboarding refers to a rendering approach where rendered elements have a 3D
position, but are not modeled with a particular orientation, and instead are always
oriented towards the viewer. Elements may also be scaled to create the suggestion of
perspective projection. In the case of billboarded pointsprites, all sprites are modelled
as equally oriented squares that are always tangent to the viewing plane (facing the
viewer). The geometric representation of a billboarded pointsprite is a point in R3 (a
worldspace position) with a certain attributed pointsize that yields the screenspace
size of the sprite upon rasterization. The purpose of billboarding in this case is to
present solid structures to the viewer (i.e. close to orthogonal to the viewing plane).

By rendering pointsprites along densely sampled fiber tracts, we can create both
shaded tubes as well as surface-like objects (requirement R1), yet conveniently we
do not need to explicitly distinguish between these types of structures. It is also pos-
sible to smoothly transition between those two categories of shapes, for instance a
tube-like structure transitioning into a surface-like structure (like the example previ-
ously given in figure 4.1), all while using the same geometric primitive (a polyline,
rendered using only sprites).

Figure 4.2 shows this concept applied to the exact same set of fibers that was
used in the introduction of this chapter (Fig. 4.1). The left image shows simple line
rendering (1 pixel linewidth), and the right image shows the same set rendered using
pointsprites. All fiber tracts in the second image appear slightly thicker, because
additional scaling of the rendered elements was applied to create solid appearing
bundles (this is discussed further in section 4.5).

In addition to clearly showing the local nature and orientation of fiber tracts, each
individual sprite can easily be colored, which allows for color coding as required by
e.g. scalar visualization.

Our pointsprites rendering approach is closely related to surface-splatting tech-
niques [26, 29] in the sense that splats (or sprites) are used to create the appearance
of a surface from an underlying datastructure that does not represent such a surface
explicitly, yet also different due to the fact that besides surfaces we also aim to ren-
der tube- or line-like bundles. Since each sprite can be regarded as a simple form
of glyph, a relation to DTI glyph rendering techniques [52, 57, 64] is also apparent.
Similar to glyph rendering, each sprite can encode DTI attributes through e.g. scalar
color coding or scaling, yet unlike glyph rendering individual elements are indis-
tinguishable from another, since these are densely placed (and blended) in order to
create solid structures. For these reasons this method could be considered a hybrid of
glyph-based techniques, surface splatting and conventional streamline visualization.
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(a) Lines (1px). (b) Alpha blended pointsprites.

Figure 4.2: Bundles from the corona radiata and the corpus callosum.

There are various steps involved in the rendering as described above. In order to
achieve smooth shading without artefacts we render all sprites using alpha blend-
ing. This blending and associated render order details are discussed in section 4.3 in
which we propose a multi-pass rendering method for smooth shape reconstruction.
Each of the sprites can be textured in various ways to produce distinct shading that
enhances shape perception, we describe several shading profiles in section 4.4. To
produce solid looking fibers and surface-like structures without gaps, sufficient over-
lap between rendered sprites is required. While billboarding in general is a proficient
mechanism to achieve such overlap as rendered elements always face the viewer, we
can also achieve such overlap by either introducing additional points in areas with
insufficient density (through e.g. on the fly resampling, see section 4.6) or by increas-
ing the size of the rendered sprites which is discussed in section 4.5. We optionally
complement our pointsprites rendering with illustrative distance attenuated outlines
in order to convey a simplified visualization, which we cover in detail in section 4.8.
Finally, an overview of implementation details for all of the above is provided in
section 4.7.

4.3 multi-pass blending for interactive smooth shape reconstruc-
tion

Rendering all sprites in one pass using conventional depth buffering can produce vi-
sually appealing results (shown in fig. 4.3a). This single-pass approach may however
suffer from certain rendering artefacts. This is particularly the case when the cam-
era orientation is changed or wherever sprites with different color encoding coincide.
We can improve the visual quality of the rendering further by blending the sprites,
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which results in smoother shading of all rendered structures. Figure 4.3 shows the
difference between these two variants on the same dataset. Figure 4.3a is rendered
without blending, while figure 4.3b is the same image with the improved shading
that is based on alpha blending.

(a) No alpha blending applied. (b) Improved shading with blending.

Figure 4.3: Point sprites with- and without blending. Demonstrated on a slice-filtered set of
fibertracts using a directional colormap (eq. A.1).

Blending the sprites introduces a complication: because the blending operation is
not commutative, the order in which fragments are rendered becomes important [50].
One possible solution is to render all elements from back to front, that is: starting
with the elements furthest away from the camera and ending with those that are
closest. This can be done by transforming all vertices to eye-space using the model-
view matrix associated with the current camera setup, and then by sorting them by
vector length (since the “eye” in eye-space is located at the origin).

Although explicit sorting will likely ensure a correct render order, it is also po-
tentially a very expensive procedure when the camera setup is subject to frequent
change. Ideally we would like to render all sprites with blending in an arbitrary or-
der, yet with a final result that is equal to- or at least very similar to sorted rendering.

The class of techniques that deals with this problem is generally referred to as
Order-Independent Transparency (OIT)[5, 14]. There are various proposed methods
that all share a common objective: to allow the rendering of geometry with alpha
blending yet without an explicit render order.

OIT techniques such as Weighted Blended Order-Independent Transparency [37]
are generally designed for scenes containing highly transparent objects, such as over-
lapping layers of glass or smoke particles. For our usecase we do not nescessarily
need complete transparency of all rendered objects, since our goal is to blend these
pointsprites and create smoothly shaded geometry while still maintaining some level
of occlusion culling as a mechanism for showing relations between fibertracts (re-
quirement R2). In other words: we do not need to blend all overlapping fragments,
yet we would like to blend as many topmost fragments as needed in order to create
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smooth shading.

To solve the render order problem described above we propose a multi-pass render-
ing method that applies a custom depth test procedure, in order to blend fragments
that have a similiar depth value. The custom depth test essentially allows for peaking
into or probing the set of all available fragments, selectively blending only the topmost
fragments within a certain depth range. This rendering approach allows for the use
of alpha blending for the creation of smooth surfaces as well as tube-like shading
without explicitly sorting the geometry.

overview of multi-pass rendering pipeline A higher level overview of
the proposed multi-pass rendering pipeline for the alpha blended pointsprites is
displayed in figure 4.4. This diagram shows how the final image is produced from an
input set of fiber tracts in three consecutive rendering passes, being: a depth sampling
pass, a shading pass and a compositing pass.

In the first pass we construct a depth buffer and create a flat-shaded background
for the blending operation. In the second pass we apply shading and blending based
on the custom depth test, using the previously constructed buffers. Next, in the third
pass, we composite the final image and color the optional depth attenuated outlines
(see section 4.8). During this last pass, the final image is rendered to the screen by
means of a viewport sized rectangle. Two render targets (textures) are used to share
information between the rendering passes, these are an RGBA texture (RTrgbα) and
a depth texture (RTd). We discuss further implementation details of this multi-pass
rendering approach in section 4.7.

Fiber Tracts Depth Sampling Pass Shading Pass Compositing Pass Final Image

+

Figure 4.4: Diagram of alpha blended pointsprites rendering passes.

4.4 shading for enhanced depth and shape perception

To produce assorted shading effects, such as visible in the previous example figure
4.3b, each individual sprite is textured using a 2D splat profile f (x) : R2 → R+, that
determines color luminance. As the pointsprites rendering is a screenspace technique,
and no particular lighting model is applied, the splat profile choice and parameteriza-
tion of this profile are important factors for the final shading result. For instance, we
can choose a profile that emphasizes fiber orientation with tube-like shading, or we
can choose a profile with lower contrast for less pronounced (diffuse-like) shading of
for instance surfaces.

A splat profile can be applied to the sprites in a sampled form (e.g. as a single
channel texture), or in an analytical form (e.g. through evaluation in the fragmenta-
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tion stage). While the first option may be beneficial in terms of performance, the latter
is more convenient for further parameterization of the shading, making it easier to
adjust the shading per sprite as needed. For example an asymmetrical profile could
be rotated to align with a certain axis, or we could transform f (~x) to obtain a par-
ticular level of brightness or contrast. In this section we discuss several splat profiles
and describe how these can be parameterized. Each splat profile is transformed to a
desired shading range [smin, smax] ∈ [0, 1] accoriding to:

f (~x) = (smin − smax) p(~x) + smin (4.1)

where
~x ∈ R2 Texture coordinate within the unit circle

smin ∈ [0, 1] Shading range lower bound

smax ∈ [0, 1] Shading range upper bound, with smin ≤ smax

p(~x) ∈ [0, 1] Splat profile function

To match the texture coordinates generally used in graphics frameworks (e.g. OpenGL),
the domain of Eqn. 4.1 is within [−1, 1]. The range of Eqn. 4.1 is within [0, 1] which is
convenient for color modulation used in for instance scalar color coding: to produce
a colored sprite f (~x) is simply multiplied with an RGB color. The profile function
p(−→x ) can be substituted by a suitable function that produces the desired shading.
In the next subsections four of such profiles are discussed, being: the flat-, conical-,
smooth- and the Gaussian profile.

4.4.1 Flat Splat Profile

The simplest profile is created by defining p(~x) = 1, which results in uniform color
luminance. The flat splat profile is defined as:

p f lat(~x) = 1, ‖~x‖ ≤ 1 (4.2)

, where ~x is constrained within the unit cirle in order to produce a disc shaped sprite
(fragments not within the unit circle are discarded).

4.4.2 Conical Splat Profile

A very effective splat profile is created by using the angular distance between each
texture coordinate and a predefined shading axis ~a, relative to the center at (0, 0).
This can be computed by taking the vector dot product of a normalized texture
coordinate

−→x
‖−→x ‖with~a. We name this profile the “conical” splat profile as it resembles

a shaded 3D cone observed along the z-axis (shown in figure 4.5a). Use of the round
conical profile generates fake shading that emphasizes the orientation of fibers and
can provide depth cues similar to (for example) 3D tubes rendered with traditional
Phong shading [60]. The profile is defined as:

pcone(~x) =
(

1
2
· ( ~x
‖~x‖ ·~a) +

1
2

)d

, ‖~x‖ ≤ 1, ‖~a‖ = 1 (4.3)

where
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~x ∈ R2 Texture coordinate within the unit circle

~a ∈ R2 Normalized shading axis

d Shading power

The conical splat profile is defined with several parameters that allow for further
finetuning of the shading. Figure 4.5b shows a surface plot of eq. (4.3) with smin = 0
and smax = 1, this surface is transformed to 0 ≤ smin ≤ smax ≤ 1 (using Eqn. 4.1),
which allows for the adjustment of the overal brightness to a desired level. Shading
power d is applied to make the shading more pronounced, where d = 0 is equal to
applying a flat profile , and higher values of d emphasize darker shades.

(a) Viewed along the z-axis the plot of Eqn.
4.3 has the appearance of a shaded cone.

(b) 3D plot of Eqn. 4.3.

Figure 4.5: Plots of the conical splat profile (Eqn. 4.3) using a grayscale colormap.

The conical profile has a single axis of symmetry (see also Fig. 4.5a), which can be
aligned with a specific direction to enhance the produced shading. We propose two
schemes for determining shading axis~a: uniform and tangent-perpendicular.

Choosing a uniform ~a (meaning the same direction for all rendered sprites) is
the simplest approach and requires no rotation or adjustment per sprite. A uniform
shading axis may however in some occasions produce shading that does not show
local fiber orientation in the best possible way, due to the fact that all sprites are
aligned equally.

Alternatively, aligning axis~a with a direction that is perpendicular to the tangent of
the line segment (in screenspace), produces shading that emphasizes local orientation
consistently throughout the image. As a result of orienting the sprites in this fashion
along the polyline, a shading is obtained for which one side of the line tangent re-
ceives darker shades, and the other is shaded lighter (thereby emphasizing the line
orientation visually).

Figure 4.6 shows this perpendicular splat orientation scheme on a local scale and in
particular how the conical profile generates the final tube-like shading of a single fiber
tract. Subfigure 4.6a shows a sparsely sampled tract and how ~a is aligned with the
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direction perpendicular to the local tangent (orthogonal vectors are shown with red
indicators). Next, in figure 4.6b, the rendering is improved by adding more sprites. In
this image it also becomes apparent that the shading axis~a is piecewise constant (i.e.
no interpolation is applied), as is further described in subsection 4.4.2.1. The third
subfigure (Fig. 4.6c) shows the final shading as a result of dense sprite placement,
and finally figure 4.6d shows the same image with color modulation applied.

(a) Red indicators show splat orientation. (b) Additional sprites.

(c) Full shading with outline (uniform color). (d) Same as fig. 4.6c with color modulation applied.

Figure 4.6: Single fiber tract rendered with tangent-perpendicular conical splats.

An example of the shading axis concept on a more global scale is displayed in
figure 4.7, where the left image (Fig. 4.7a) was created with a uniform~a (indicated by
the legend), and the right image (Fig. 4.7b) shows more consistent cues for the local
fiber orientation using the tangent-perpendicular scheme.

(a) Uniform shading axis. (b) Perpendicular to screenspace tangent.

Figure 4.7: Shading axis schemes for the conical splat profile (Eqn. 4.3), α = 0.15.

4.4.2.1 Computing the perpendicular shading axis

The perpendicular shading axis ~a ∈ R2 as used in Eqn. 4.3 can be computed as
follows. First the normalized screenspace tangent of point xi is determined as:
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τ =
Ps(xi+1)− Ps(xi)

‖Ps(xi+1)− Ps(xi)‖

with Ps : R4 → R2 being the screenspace projection (Eqn. 4.4) of each point.
Next, the direction orthogonal to τ that lies in the viewing plane is derived as
â ∈ R3 = τ×Ẑ

‖τ×Ẑ‖ , with τz = 0 and Ẑ = (0, 0,−1)T, which is the viewing plane
normal. From this acquired vector â, the x- and y-components can be used for the 2D

shading profile:~a ∈ R2 =

(
−âx

ây

)
.

To produce the accurate perpendicular vectors in screenspace (as shown by the
red indicators in in figure 4.6a), we apply equation 4.4 to transform homogeneous
coordinates to screenspace. This calculation follows a common rendering pipeline
procedure for transforming between spaces, by first multiplying with the Model-
View-Projection (MVP) matrix, then converting to Normalized Device Coordinates
(NDC) and finally transforming to screen space coordinates as determined by the
size of the viewport:

Ps(~x) =
(

1
2

M~x
~xw

+
1
2

)
~V (4.4)

for which:
~x ∈ R4 homogeneous coordinate in worldspace

(
x y z w

)T

~xw w component of ~x for perspective division

M MVP matrix obtained from the current camera setup
~V ∈ R2 size of the viewport (in pixels)

Sensible default parameters for the conical splat profile are: smin = 0, smax = 1 and
p = 1

2 , in combination with the tangent-perpendicular scheme for −→a .

4.4.3 Smooth Splat Profile

A smoother profile based on the distance transform

psmooth(~x) = 1− ‖~x‖ , ‖~x‖ ≤ 1 (4.5)

As opposed to the conical splat profile (Eqn. 4.3) the smooth profile is symmetric
(across any axis), and therefore rotation of the sprites (as described in 4.4.2) does not
apply.
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(a) Viewed along the z-axis the plot of Eqn.
4.5 is a symmetrical splat with constant
fall-off.

(b) 3D suface plot.

Figure 4.8: Plots of the smooth splat profile (Eqn. 4.5) using a grayscale colormap.

4.4.4 Gaussian Splat Profile

We can create mellow shading that slightly resembles the diffuse lighting aspect of
Phong shading by applying a splat profile that is based on a Gaussian function.
Choosing a Gaussian with σ = 1√

2π
ensures an amplitude of 1, the proposed Gaus-

sian profile is therefore defined as:

pgauss(~x) = e−
~x·~x
π , ‖~x‖ ≤ 1 (4.6)

Plots of equation 4.6 are displayed in figure 4.9. Like the smooth profile, the Gaus-
sian profile is also symmetrical and can therefore not aligned with a specific axis like
the conical splat profile.

(a) Viewed along the z-axis the plot of Eqn.
4.3 is a symmetrical splat with exponen-
tial fall-off.

(b) 3D suface plot.

Figure 4.9: Plots of the Gaussian splat profile (Eqn. 4.6) using a grayscale colormap.
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4.4.5 Overview of Splat Profiles

An overview of the various proposed splat profiles (equations 4.2, 4.3, 4.5 and 4.6).
is shown in figure 4.10 in which the same set of simplified fiber tracts is depicted
using the four different profiles. In this image it is visible that the conical profile (Fig.
4.10a ) produces more pronounced tube-like shading, the Gaussian profile produces
subtler mellow shading (Fig 4.10a), and that the Smooth profile provides a mix of
those properties. The last subfigure (Fig. 4.10d) shows that even though the flat splat
profile (Eqn. 4.2) was applied, the resulting shading is not entirely flat, which is a re-
sult of blending with the background (α ≈ 0.2 and δ = 1× 10−4). This shows that the
final shading is not exclusively determined by the profile p(~x), as it depends on e.g.
blending as well. Comparing the flat profile (Fig. 4.10d) with the other profiles (fig-
ures 4.10a-4.10c) clearly shows the added value (distinct shading effects) produced
by the splat profiles.

In figure 4.11 a more detailed view of the profiles comparison is shown using
the same bundle selection that was introduced at the beginning of this chapter (Fig.
4.1). These images show the effect of complementing the shading produced by the
various proposed profiles with illustrative dark outlines (these are further discussed
in section 4.8).
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(a) Conical splat profile. (b) Smooth splat profile.

(c) Gaussian splat profile. (d) Flat splat profile.

Figure 4.10: Simplified fiber tracts rendered with various splat profiles (directional colormap
Eqn A.1, α ≈ 0.2).
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(a) Conical splat profile. (b) Smooth splat profile. (c) Gaussian splat profile. (d) Flat splat profile.

Figure 4.11: Splat profiles with outlines on a filtered bundle (uniform color).

4.5 sprite size parameterization for compact shape reconstruction

As explained earlier, the size of all rendered sprites is important since we want to
close gaps in surface-like DTI structures. For this, we can modulate the size of the
sprites in screen space based on the DTI data. Moreover, this type of modulation is
needed to achieve correct perspective effects, e.g. structures farther from the viewer
should be rendered with smaller sprites.

distance attenuation Since the size of a pointsprite in worldspace is not au-
tomatically subject to perspective projection (in modern versions of OpenGL), it is
required to explicitly define a method for point size distance attenuation in order to
provide adequate depth cueing and to make the rendering more zoomlevel indepen-
dent. We apply distance attenuation using the following heuristic:

adist =

√
1

d + d2 (4.7)

Where d is the projected depth value obtained after perspective projection. Equa-
tion 4.7 is based on distance attenuation commonly used in lighting [55].

planar emphasis In conjunction with the distance attenuation (Eqn. 4.7) we
can also introduce an attenuation factor based on scalar data from the DTI dataset, in
particular the planar estimate cp (Eqn. 2.3) which indicates regions of higher planar
anisotropy.

By applying this form of scalar attenuation it becomes possible to emphasize these
regions of higher planar anisotropy and increase the possiblity of creating the ap-
pearance of a surface without gaps in these areas. The complete point size attenua-
tion function S(~v) : R3 → R+ (as performed in the vertex shader, see section 4.7),
featuring both scalar- and distance attenuation, is defined as:
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(a) Conical splat profile. (b) With additional planar
emphasis (cp ≥ 0.2).

(c) With mixed profiles.

p(~x) =

cp < 0.2 pcone(~x)

cp ≥ 0.2 pgauss(~x)

Figure 4.12: Planar emphasis demonstrated on a slice-filtered set of fiber tracts shown using
a rainbow (cp) colormap.

S(~v) = max

bsize +

cp ≥ t psize

cp < t 0

 ~vsize adist, smax

 (4.8)

where
~v Vertex

adist Distance attenuation factor (Eqn. 4.7)

~vsize ∈ [0, 1] Relative point size (an attribute of ~v)

smax Uniform maximum point size (in pixels)

bsize Base point size (in pixels), applies to all points

psize Additional point size (in pixels), applied to vertices that pass the cp threshold t ∈ [0, 1]

Figure 4.12 shows effect of applying the planar emphasis as described above. First,
figure 4.12a shows a slice filtered set of fiber tracts using a rainbow colormap (show-
ing cp) and the conical splat profile for shading. Next in figure 4.12b, the sprite size
was incread for regions where cp ≥ 0.2. In the third figure the shading was adjusted
as well by applying mixed splat profiles. In this case, the gaussian splat was used to
shade the sprites in emphasized regions (again cp ≥ 0.2) and the conical profile for
all other sprites.

line tapering Similar to the visual enhancements described in [15] we also op-
tionally apply line tapering, a useful construct to de-emphasize polyline endings
by gradually narrowing line ends. In this case a point-size modulation is applied
to a predefined number of points, ntapered ≥ 1. For vertex vi with index i ∈ [0, n),
taper(vi) ∈ [0, 1] is defined as:
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taper(vi) = min(min(i, i− (n− 1)) · 1− smin

ntapered
, 1) (4.9)

Where smin is the minimum factor applied to both end-points. Equation 4.9 yields
an interpolation between [smin, 1] for tapered points and 1 for unaffected points. We
found that using ntapered = 5 and smin = 0.5 generally yields acceptable results.

4.6 sprite density modulation for rendering quality control

As explained at the beginning of the current chapter (see section 4.2), we want to
use billboarded sprites to convey the DTI tube and surface-like structures. For this,
we however have to decide where to place these sprites, and how many of them we
need. Our only 3D spatial information comes in terms of the DTI fiber tracts intro-
duced in section 2.3. Hence, we need to place our sprites along these curves. The
remaining question is how many sprites we need, or how densely should we sample
these curves with 2D sprites.

Recall that we represent DTI fibers in an already sampled manner, i.e., as a poly-
lines. However, the sampling density of these polylines may not be optimal, for var-
ious reasons. For instance the sampling density may be a given value for the input
fiber dataset (originating from parameters such as the integration step size or applied
spline-filtering [43, 69]), or it can be determined by the simplification as described
in chapter 3. Moreover, since billboarding is a screenspace technique, while these
polylines are sampled in world (3D) space, we may need to adapt the sampling of
polylines with sprites as we interactively zoom-in/out while viewing the data.

In figure 4.13 the sprite density is demonstrated on a single fiber tract (each sub-
figure depicts the exact same 3D fiber with the various rendering parameters, no
colormapping was applied). The first image (Fig. 4.13a) shows the input fiber and
samling points for reference (sampling distance is approximately 1 voxel). Figure
4.13b shows the same fiber, with sprites shaded with the conical splat profile (Eqn.
4.3) rendered at these sampling points. As is visible, the the number of sprites was
insufficient to create a solid structure. Next in figure 4.13c the sampling density was
increased by a factor of 7 (resulting in the output of 7 additional sprites per line
segment). In the last figure (Fig. 4.13d), blending was applied as described in section
4.3. With blending enabled the previously shown artefacts disappear and the result
is a smoothly shaded polyline.

The sprite placement density requires careful tuning since besides undersampling,
which may lead to gaps in the rendered structures and low quality visualization
(as shown in figure 4.14a), there is also the possibility of oversampling which will
have a negative impact on rendering performance. We propose to approach this by
an on-the-fly resampling of the 3D polyline fibers to create splat placement points.
A convenient method for adding additional pointsprites is to apply tessellation to
the line segments, which is comparable to resampling the polyline on the fly. The
implementation of such (optional) tessellation is discussed in the next section (section
4.7). Figure 4.14 shows a side-by-side comparison of an undersampled rendering (Fig.
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(a) Line rendering, sites
marked as red dots.

(b) Pointsprites with in-
sufficient density.

(c) Same as (b) but with
×7 more points.

(d) Same as (c) but
without artefacts
due to blending
(α = 0.55).

Figure 4.13: Pointsprites density demonstrated on a single fiber tract.

(a) Lower quality due to undersampling. (b) Improved rendering quality (4x more sprites).

Figure 4.14: Sprite placement density reflected in rendering quality.

4.14a, interpoint distance ≈ 1voxel) and a higher quality rendering with a (4x) higher
sampling rate (Fig. 4.14b).

4.7 implementation

We implement all steps described in this chapter efficiently using OpenGL tech-
niques including various shaders, indexed VAO’s, tessellation and alpha blending.
The multi-pass rendering approach as introduced in section 4.3 (in particular see the
diagram in Fig. 4.4) is displayed in a source code snippet (C++) in listing 4.1.

4.7.1 Line Segments to Points Conversion

As explained earlier the fiber tract data comes in the form of polylines, which are
naturally represented by line primitives. For the sprites to be rendered along a line,
the GPU can convert the line primitives to points on the fly. This can be achieved by
configuring the primitive generator to generate a point primitive for each vertex dur-
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Listing 4.1: Alpha blended pointsprites rendering (C++).

1 void depthSamplingPass()
2 {
3 // disable blending, but enable depth-test and depth-write
4 glDisable(GL_BLEND);
5 glEnable(GL_DEPTH_TEST);

6 glDepthMask(GL_TRUE);
7

8 // render fiber tracts as pointsprites with flat shading
9 flatShader.enable();

10 fiberTracts.render();
11 }
12

13 void shadingPass()
14 {
15 glEnable(GL_BLEND); // enable blending

16 glDisable(GL_DEPTH_TEST); // disable depth test
17 glDepthMask(GL_FALSE); // don’t write to the depth buffer

18 glBlendEquation(GL_FUNC_ADD);
19 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
20

21 // render fiber tracts as pointsprites with splat profile shading + blending
22 splatProfileShader.enable();
23 fiberTracts.render();
24 }
25

26 void compositingPass()
27 {

28 compositingShader.enable();
29 // render contents to screen by means of a viewport aligned quad
30 fullScreenQuad.render();
31 }
32

33 void render()
34 {
35 // multi-pass rendering

36 depthSamplingPass();
37 shadingPass();

38 compositingPass();
39 } �

ing primitive assembly. For OpenGL implementations this referred to as point-mode
output (a tessellation layout qualifier) which is enabled in the Tessellation Evaluation
Shader (TES) (see also fig. 4.15) and can produce equally spaced points along a line
segment. Once produced, these points are rasterized as shaded sprites (as described
in section 4.4).

An outer tessellation level of 1 will result in a point primitive for the start- and
endpoint of a line segment, thereby matching the original sampling density of the
fiber tracts. By using a higher tessellation level (> 1) additional points can be gener-
ated along each line segment, which is a flexible on-the-fly resampling mechanism in
the case that the uniform arc-length sampling is insufficiently dense (as discussed in
section 4.6).

4.7.2 Shaders

A diagram of the shading pipeline of is shown in figure 4.15. The diagram shows
four shading stages (including a vertex shader, a Tessellation Control Shader (TCS),
a TES and a fragment shader for each geometry pass), and in particular where the
conversion to points (as described in the previous paragraph) fits in.
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First the vertex shader performs common per-vertex operations such as screenspace
projection (using the applied MVP matrix) and the output of per-vertex attributes.
This includes the sprite size (pointsize) parameterization as explained in section 4.5.
The second stage is performed in the TCS, which determines per patch output vari-
ables (e.g. the local shading axis, section 4.4) and prepares the interpolation per-
formed in the next stage (TES). The TES defines the third stage in which linear inter-
polation of position, pointsize and color is performed. Finally the fragment shader
produces the shading for the rasterized points (which we call sprites), by means of
the splat profiles as described in section 4.4.

VBO Vertex Shader Tessellation
Control Shader

Tessellation Eval-
uation Shader

Fragment Shader Shaded
Pointsprites

Line segments in

layout (vertices=2) out;

layout (isolines, equal_spacing, point_mode) in;

Points generated

Figure 4.15: Diagram of the alpha blended pointsprites shading pipeline.

4.7.3 Preventing Redundant Point Output

Since the fibers are modelled as polylines, and each line segment shares one vertex, it
becomes important to prevent duplicate (redundant) point output from the primitive
generator. This is particularly the case when applying tessellation as described above
in combination with alpha blending, because rendering a sample point twice will
result in visual artefacts (see Fig. 4.16 where Fig. 4.16a displays the artefacts, and Fig.
4.16b is the same image with proper tessellation). In order to solve this we set the
pointsize for every first tessellated point of a line segment to 0 (thereby preventing
output during the fragmentation stage for this vertex), with the exception of the very
first line segment of each polyline. As the tessellation is applied to each line segment
individually (without information available regarding the polyline) we store the para-
metric arc-length position t = i

N−1 ∈ [0, 1] as a vertex attribute (with t = 0.0 for the
first vertex, and t = 1.0 for the last), and use this information to prevent duplicate
points output in the TES.

4.7.4 Alternate Depth Testing

In the first pass (as shown in listing 4.1) all tracts are rendered as sprites to a texture
(RTrgbα) using conventional depth buffering and flat shading. The depth buffer, which
on completion contains the topmost depth value for each frament, is sampled in a
secondary texture (RTd). Figure 4.17a shows the flat shaded framebuffer contents of
RTrgbα after the depth sampling pass (again see the diagram of fig. 4.4). During the
second pass, the shading pass, these contents are blended with fragments that pass
an alternate depth test, which results in shaded rendering as shown in (fig. 4.17b).
This custom depth test is defined as:
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(a) Rendering artefacts caused by duplicate tessella-
tion output. Each shared vertex is rendered twice.

(b) Skipping redundant points eliminates the arte-
facts.

Figure 4.16: Visual artefacts as a result of redundant tessellation output.

depthtest(~f ) =

{
true i f (d′ − δ) < RT′d
f alse otherwise

}
(4.10)

where
~f ∈ R4 Fragment

d′ ∈ [0, 1] Linear depth value for fragment ~f

RT′d ∈ [0, 1] Linear depth buffer value for the fragment coordinate of ~f

δ ∈ [0, 1] Uniform probe depth

By applying equation 4.10 all fragments within the range defined by δ and the
depth texure [RT′d, RT′d + δ] are blended (in no particular order).

The linear depth value d′ is computed from the (non-linear) gl_FragCoord.z, and
RT′d is likewise computed from the non-linear depth that is stored in RTd (the depth-
texture). We use only these linear depth values for depth testing (Eqn. 4.10) in order to
make the user-defined probe-depth δ consistently applicable at any camera distance.
A conversion is in this case required because GPU hardware depth buffers don’t use a
linear representation of the distance, a mechanism that allows for increased precision
closer to the near viewing plane [31]. The conversion from non-linear depth to linear
depth values is performed according to equation 4.11, where Dnear and D f ar are the
depths of the near and far plane respectively.

d′ =
dnear(d + 1)

d f ar + dnear − d(d f ar − dnear)
(4.11)
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(a) RGBA framebuffer contents after the first pass. (b) Shading after the second rendering pass (α = 0.1,
δ = 5× 10−3).

Figure 4.17: Multi-pass blending (Shown with a directional colormap).

4.8 outlines for simplified visualization

A final addition to the alpha blended pointsprites method is the rendering of outlines.
Rather than creating halos around individual fibers, a common illustrative technique
is to create outlines around bundles or groups of fibers [15, 44]. The effect of such
outlines is that groups of co-linear fibers are emphasized, which is most apparent at
the crossing or overlap of bundles.

Outlines provide additional cues to the viewer as to which structure appears in
front of another, which is a helpful property for clearly conveying structural rela-
tions between bundles. An illustration of combining the pointsprite rendering with
additional outlines is given in figure 4.18, where we show various crossing bundles
of a slice-filtered set of fiber tracts with and without black outlines. Central in this
image are the left- and right cingulum, that run above and across a section of the corpus
callosum.

(a) No outlines. (b) Thick outlines (bsize = 3px,t = 15px).

Figure 4.18: Outlines applied to crossing bundles.
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4.8.1 Determining Outline Fragments

We can use the sprite size parameterization described earlier (section 4.5) and the
fact that we render all sprites in two consecutive passes, to incorporate the creation
of outlines in the rendering method with only some minor adjustments of the ren-
dering parameters. Moreover, rather than spending significant effort on the creation
of outlines specifically, in this case much of the required information is already avail-
able and it is therefore possible to add outlines with limited overhead.

The outlines can be created by dilating the rendered sprites: if we apply an in-
creased size S′ = S + t (with S eq. 4.8) during the first pass (the depth sampling
pass), but retain the originally intended size S during the second pass (the shading
pass), we can use the difference in size to create outlines around areas of similar
depth in the final fragmentation stage.

By sampling the depth texture (RTd ∈ [0, 1], for which we have defined dnear =

0 and d f ar = 1) we can discern foreground fragments (d < 1) from background
fragments (d ≡ 1). Beside the depth texture we also have our RGBA rendering target
(RTrgbα ∈ [0, 1]4) for which we have set α = 0 as a default. Following this analysis, we
define our set of outline fragments as:

Fo = {∀ f ∈ RTrgba| α = 0∧ RT′d < 1} (4.12)

, being all fragments that were output from the first pass, but that were not shaded
in the following pass.

4.8.2 Outline Shape Control

The shape of the outlines is controlled by two parameters, first the thickness (t) of
the outlines is controlled by the sprite size difference, t = S′ − S, and secondly the
area around which contours are drawn is determined by the uniform probe depth δ

(see section 4.7).
Figure 4.21 shows outlines with a uniform black color and a thickness of 2 pixels

rendered on a slice filtered set of fiber tracts. The left image shows a rendering with-
out outlines (bsize = 4), and the middle image has outlines added (t = 2). For clarity
the right image shows only the outlines, which clearly visualizes the difference be-
tween the first two images. By increasing the δ-parameter more fragments will pass
the depth test (Eqn. 4.10). As a result of this, less of the interior contours will be
incorporated in the set of outline fragments (Eqn. 4.12). To illustrate this, figure 4.19

shows a comparison for two levels of δ with t = 2 (a detailed view of Fig. 4.18),
where the top row has a smaller δ ≈ 4× 10−4, and the bottom row has an increased
probe-depth δ ≈ 4× 10−1.
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(a) Pointsprites with ountlines (δ ≈ 4× 10−4). (b) Outlines only (δ ≈ 4× 10−4).

(c) Pointsprites with outlines (δ ≈ 1× 10−4) (d) Outlines only (δ ≈ 1× 10−4).

Figure 4.19: Detailed view of outlines for two levels of uniform probe-depth δ.

4.8.3 Distance Attenuation

A uniform outline thickness may in some usecases put to much emphasis on stray
fibers or bundles further away from the viewer. This can be resolved by applying
distance attenuation (Eqn. 4.7) to sprite size S′, which will result in depth-dependent
outlines. These distance attenuated outlines are (like all other elements) scaled accord-
ing to distance, and therefore provide more depth cues to the viewer. A comparison
of outline approaches is displayed in figure 4.20, where figure 4.20a has no outlines,
figure 4.20b has uniformly sized outlines (t = 5px ) and figure 4.20c shows the subtler
distance attenuated outlines.

(a) No outlines. (b) Uniformly sized outlines. (c) Depth attenuated outlines.

Figure 4.20: Outlines on a whole-brain fiber set.
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4.8.4 Coloring

For the coloring of outlines we propose two options: 1) applying a uniform color,
or 2) reusing the already created framebuffer contents (as in Fig. 4.17a) to color the
outlines matching the currently applied colormap. In general it makes sense to use a
uniform color (such as black or white) because this can clearly separate outlines from
both background- and foreground fragments using a distinct color. Creating outlines
that match the colormap (with darker shading) works well with clustering-based
colormaps (e.g. as proposed by Otten et al. [44]).

(a) No outlines. (b) Black outlines. (c) Outlines only.

Figure 4.21: Rendering outlines on a slice-filtered set of fiber tracts.



5
R E S U LT S

In this chapter we present various results of our simplification approach (as dis-
cussed in chapter 3), shown using several different rendering methods. These render-
ing methods are: alpha blended lines (as introduced in chapter 3), DDH by Everts
et al. [15] (as discussed in section 2.4, and 4.1), and our own method Alpha Blended
Pointsprites (ABP) (described fully in chapter 4).

For our pointsprites rendering method (ABP) we show both the multi-pass blend-
ing version (as described in 4.3), and a single-pass version for reference. It should be
noted that both the single-pass ABP and alpha blended lines are rendered with sorted
geometry (ordered back-to-front) without depth buffering, while DDH and ABP do
not require such explicit render ordering.

5.1 simplification with planar reseeding

Figure 5.1 shows a side-by-side comparison of simplification results using various
rendering methods. The left column shows the original set of fibers, and the right col-
umn shows the simplified fibers with planar reseeding applied. Each column shows
the exact same set of (60K) fibers from precisely the same point of view. Applied
bundling parameters in this case are: PR = 13, PN = 15, φ = 0.25 and σ = 1 (with-
out relaxation, endpoints were bundled). Reseeding was performed in regions where
cp ≥ 0.25∧ cl < 0.2.
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(a) Alpha blended lines (original). (b) Alpha blended lines (simplified).

(c) DDH (original). (d) DDH (simplified).

(e) ABP (original). (f) ABP (simplified).

(g) Single-pass ordered ABP (original). (h) Single-pass ordered ABP (simplified).

Figure 5.1: Comparison of various rendering methods, shown for original fibers (left column)
and simplified fibers with planar reseeding (right column).
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As is visible in the top row of figure 5.1, alpha blended lines an effect that can be
increased by lowering the uniform α value. Lowering alpha is generally complemen-
tary to the bundling, yet has the disadvantage that the reseeded structures become
transparent.

The DDH method (second row in Fig. 5.1) clearly emphasizes these densely re-
seeded structures by visually merging the tracts and displaying halos around the
bundles, an effect that can be enhanced by decreasing e.g. the strip width wstrip, or
increasing the strip depth dmax to suitable levels (for details see [15]). Single (or stray)
fibers are emphasized by DDH which results in a sub-optimal reduction of occlusion
when compared to e.g. blended lines (top row).

The ABP method (third row) places similar emphasis on individual fiber tracts, yet
adds more shading and color coding compared to DDH. The rendered outlines are
particularly suitable for emphasizing the reseeded regions, which is most notable in
Fig 5.1f. By selecting an appropriate value for δ (in this case, δ = 4× 10−4) thicker
bundles, such as the reseeded regions, can be highlighted. Lowering δ results in more
outlines drawn around specific elements (as described in section 4.8), thereby empha-
sizing individual tracts, rather than bundles.

The final row shows the single-pass version of ABP. This approach does not fea-
ture outlines, and is comparable to blended lines (shown in the top row) in terms
of the performed background blending. By varying the blending factor it is possible
to de-emphasize low-density areas, which is beneficial for conveying the bundling
of the tracts. The single-pass ABP improves over line rendering by adding more op-
tions for shading (as discussed in chapter 4) and by enhancing the depiction of solid,
surface-like structures.

5.2 simplification with dti edge profiles

Figure 5.1 shows a side-by-side comparison of simplification results based on DTI
edge profiles, using various rendering methods. The left column shows the original
set of fibers, the middle column shows the simplified fibers with uniform bundling
applied and the right column shows simplification using the FA-constrained edge
profile.

Again each column shows the exact same set of (100K) fibers from precisely the
same point of view. The middle and right column shown bundling using the param-
eters: PR = 13, PN = 15, φ = 0.2 and σ = 1 (without relaxation, endpoints were
bundled). The right column shows the same bundling that was limited using the
FA-constrained edge profile (Eqn. 3.6, with threshold FA ≥ 0.7).
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(a) Lines (original). (b) Lines (simplified). (c) Lines (FA-constrained).

(d) DDH (original). (e) DDH (simplified). (f) DDH (FA-constrained).

(g) ABP (original). (h) ABP (simplified). (i) ABP (FA-constrained).

Figure 5.2: Comparison of various rendering methods, shown for original fibers (left column),
simplified fibers (middle column) and fibers simplified with FA-constrained edge
profile (right column).
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In order to clearly show the difference between ABP and single-pass sorted ABP,
figure 5.3 shows the same simplified fibers as before (Fig. 5.2) using both of these
methods. The main difference between the two rendering approaches is in the ability
to blend background fragments. Whereas ABP emphasizes each fiber and bundle (e.g.
Fig. 5.3b), the single pass (sorted) version is able to deemphasize low-density areas
(shown in Fig. 5.3d).
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(a) Multi-pass blending (original). (b) Multi-pass blending (simplified).

(c) Single pass blending (original). (d) Single pass blending (simplified).

Figure 5.3: Alpha blended pointsprites: multi-pass rendering (top) vs. single pass rendering
(bottom).



6
D I S C U S S I O N

In this chapter we discuss the various results presented so far along the two major
axes of our research, which are: simplification and rendering.

6.1 simplification

We found that choosing a relatively small density-kernel size (radius 5..15 voxels)
produce nice results that really convey the original topology of the brain. A larger
starting kernel size PR results in more “abstract” simplification (e.g. Fig. 3.5c) for
which the relation to the original fiber tracts is less clear.

We also found that PN ∈ [15, 20] bundling iterations and a sampling distance of
approximately 0.5 ≤ σ ≤ 1 voxels is sufficient to achieve sufficient simplification.

Our approach to endpoints bundling is very useful in the context of fiber tract
bundling, in particular for larger sets of tracts created with random seeding within
each voxel. As fan-like clusters of endpoints are prominent in such datasets, occlu-
sion is reduced much further, which leads to a cleaner simplification.

Both the planar reseeding approach and the proposed DTI (restrained) edge pro-
files allow the uncovering of distinct structures, and permit these to be shown in the
context of simplified layout of the entire dataset.

The computational performance of our bundling approach is promising, and shows
running times under 5 seconds for larger sets of fibers (e.g. 500K tracts), as was listed
in table 3.2. Sub-second running times (< 1s) are also feasible depending on the cho-
sen parameters, which predominantly are: volume resolution, PR and the number of
points in the dataset. The measured running times show that we can quickly gener-
ate a simplified model, thereby ensuring that interactive exploration of datasets and
simplification parameter space is possible (which fulfills both S1 and S2).

We found that using the original DTI resolution (e.g. as listed in table 3.1) to ap-
proximate ρ (Eqn. 3.1) does not produce high quality bundling, however scaling this
resolution up by a factor of 2..4 is sufficient. Clipping the DTI volumes based on
the brain mask (as discussed in section 3.1) is useful, as it helps to prevent density
estimation in redundant voxels.

6.2 rendering

The various rendering methods shown in the previous chapter (Ch. 5) are only par-
tially comparable, since these have quite varying characteristics. We therefore discuss
the methods in terms of their properties, rather than on a pixel-precision level, in rela-
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Lin
es

DDH
ABP

ABP*

R1: Show the nature of local brain structures +/- + + +

R2: Convey shape and orientation - + ++ ++

R3: Allow depiction of data attributes + - + +

R4: Allow rendering at interactive framerates - + + -

Complement S1: reduction of occlusion + - - +

Table 6.1: Summary of rendering requirements fulfilment.

tion to the defined rendering requirements as listed in subsection 1.1.3.
* single-pass

sorted rendering From the comparison showed in figures 5.1 and 5.2 we can make various obser-
vations. First we can see that DDH and ABP show the local nature of structures (re-
quirement R1) where the alpha blended lines is less suitable for that purpose, due to
limited shading.

Secondly, both DDH and ABP also convey shape and orientation of the fiber struc-
tures quite well (requirement R2), by applying halos/outlines and additional shading.
ABP slightly improves over DDH in this area, as each surface-like structure is shaded
with additional cues and coloring, whereas DDH mostly groups these structures into
black bundles with white outlines (this is most notable by comparing Fig. 5.1d with
Fig. 5.1f).

Thirdly, a trivial observation can be made that DDH, in contrast to all other meth-
ods, does not allow color coding, and for this reason cannot depict data attributes
very well. As of such, DDH does not fulfill our third rendering requirement R3.

DDH is by far the most performant (high Frames per Second (FPS)) rendering
method of the compared to all others. ABP also allows for interactive framerates,
yet employs a more elaborate shading pipeline and thus is slower. Blended lines, and
single-pass ABP both use explicit sorting, which is workable, yet not scalable. For this
reason, these methods do not allow smooth user interaction and thus do not fulfill
requirement R4.

In addition to the above, we can see that sorted rendering with alpha blending
shows the bundling result very clearly. This is due to the fact that low density areas
are implicitly tuned out, which emphasizes the bundling result (bundling creates high
density areas) and de-emphasizes individual stray fibers. In this regard both single-pass
ordered ABP and blended lines complement the reduction of occlusion (requirement
S1) much more, whereas ABP and DDH leave room for improvement.

A summary of the above analysis is shown in table 6.1, which highlights that out
of all compared methods, the ABP method is the only one that fulfills all rendering
requirements, yet requires sorted rendering to fully complement the simplification
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(requirement S1).

alpha blended pointsprites Out of the various tested splat profiles, the con-
ical splat profile (Eqn. 4.3) is the most useful, as it is most fitted for showing orien-
tation of fiber tracts in comparison to the other profiles (as described in subsection
4.4.2). The profile has one axis of symmetry, which can be aligned specifically which
allows for the creation of more extreme, pronounced shading that shows the ori-
entation of the fibers quite clearly. Unlike the other proposed profiles, equation 4.3
contains a singularity at the center (Fig. 4.5b). This singularity becomes mostly dis-
appears in the final image, due to applied blending, or otherwise provides a suitable
sprite for trac.

An advantage of the ABP method is that it requires less dense line data to produce
solid looking structures, as opposed to e.g. line rendering. It does, on the other hand,
require dense uniform arc-length sampling to achieve dense sprite placement.

Using a single primitive to reconstruct both surfaces and tube-like structures (which
ABP does, as described in section 4.2) has the advantage that no selection or classi-
fication criterion (based on low SNR DTI information) needs to be applied. Mixing
geometric primitives complicates the rendering approach since it would require such
a selection, e.g. by thresholding cp, such as applied by Vilanova, Berenschot, and Pul
[67].

Another obvious choice are surfels or oriented splats[26, 29], which have also been
shown to be highly suitable for surface reconstruction. However, such oriented ele-
ments can be looked past, which makes them less suitable for the depiction of line-
or tube-like elements. A supplementary example of this problem is shown in figure
A.1, which shows tensor-oriented splats. Besides problematic orientation of line-like
elements, this image also shows that inferring splat orientation from (noisy) DTI infor-
mation can be challenging. Billboarding, as employed by ABP, prevents this problem
and allows for a uniform rendering approach.

Due to bundling, any relation to the original DTI information may not be that
clear. An advantage of the ABP method is that it does not rely directly on the DTI
information to orient rendered elements, and as such can be used in any case to
render tracts (applied to bundled- or original fibers, or a mixture of those).





7
C O N C L U S I O N

In this thesis we have addressed our research question that stated: "How can we depict
a large and dense set of 3D paths obtained by tractography in a simplified way, so that key
structures are easy to see?". Based on six simplification- and rendering requirements
(subsections 1.1.2 and 1.1.3), we have proposed several methods that are able to ad-
dress the RQ.

First, we have demonstrated an approach to the simplification of DTI fiber tracts.
Our approach, based on the CUBu method, shows promising computational per-
formance, and allows the generation of a simplified model within a few seconds
using standard consumer hardware. We have also shown various ways to control the
bundling process and in addition have shown approaches to revealing specific bun-
dles and structures of higher planar- or linear anisotropy.

Secondly, we have proposed a new rendering method for fiber tracts and compared
this method to several other pre-existing methods. We found that our pointsprites
rendering method (ABP) is particularly suitable for the rendering of complex organic
shapes that are intrinsic to DTI visualization.

Using our proposed simplification and rendering methods it becomes possible to
convey the main topology of neural pathways within the human brain, and in par-
ticular structures of higher planar- or linear anisotropy within the context of the
simplified fiber tracts layout.

The OIT aspect of our work remains a difficult topic. As we have shown in the
previous chapters, our proposed multi-pass blending is no substitute for blending
with sorted rendering, it does however allow for rendering at interactive framerates
(without explicit render order) and smooth shading with various illustrative effects.
Our pointsprites rendering method emphasizes individual bundles and fibers (par-
ticularly when outlines are shown), which is a visual style that may not be applicable
in every scenario.

Our comparison of rendering methods also shows that (sorted) alpha blended lines
rendering is a method that depicts the 3D bundling of fiber tracts quite well, as low-
density areas are de-emphasized due to blending with background fragments. We
have shown that even though shading options are limited for such lines rendering, it
is a viable rendering method for showing bundled fiber tracts.

Alternatively a single-pass version of our alpha blended pointsprites rendering can
be used, which improves over line rendering by improved shading and shape recon-
struction. The disadvantage of both the single-pass ABP and the alpha blended lines
method, is that all geometry is sorted in eye space, and as such these methods are
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limited in achieving interactive framerates.

We have tested our work using several datasets from both male and female subjects
(listed in appendix A.1) with varying properties such as voxel dimension, resolution
and the number of diffusion directions. We found that visualization results are com-
parable across all tested datasets.

7.1 future work

Running times as demonstrated by our proposed method allow for interactive explo-
ration and simplification of dense fiber tracts. Nevertheless, application of alternate
bundling methods such as FFTEB[33] could further improve these running times, and
as such should be explored.

Furthermore, additional options for bundling shape control could be explored. For
instance, each bundling iteration of our proposed method applies a uniform kernel
size, which results in a uniform bundling coarseness level. An approach for varying
kernel sizes, in which certain structures would be bundled coarsely whereas others
would receive finer bundling, could be an interesting topic of research.

The precise nature of the relation between simplified fiber tracts and their original
counterparts remains a topic for further study. Segmented fiber tracts with anatom-
ical labels could provide more insight in this matter, for instance fiber tracts as ob-
tained from the atlas based method proposed by Guevara et al. [21].

In our research, fairly conventional deterministic fiber tracking was applied, for
which many alternatives have been proposed so far[28]. Another direction for fu-
ture research could therefore be to verify our simplification approach using more
elaborate fiber tracking and tensor reconstruction approaches, since such methods
could further improve the quality of the input data. An example thereof is the UKF-
tractography method proposed by Malcolm, Shenton, and Rathi [35].

Although we have shown the alpha blended pointsprites applied to DTI visualiza-
tion, the scope of this rendering method is not necessarily restricted to DTI. Applica-
tion of the method for the rendering of other types of organic shapes, for instance:
vascular structures[51] or DW-MRI tractography of the heart[58], could prove to be
interesting as well.
More generic surface splatting or point cloud rendering usecases may also be suitable
for our rendering method, which could be further explored.

The visual result of the alpha blended pointsprites is to some extent comparable
to isosurface hull construction around bundles, a visualization approach that occa-
sionally is preferred over conventional fiber tracking in medical practice[40]. Our
rendering method could be explored as an alternative visualization method for such
occasions.

Even though our multi-pass blending approach allows for illustrative rendering
with outlines at interactive framerates, it does involve two geometry passes. In ad-
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dition the OIT aspect of the rendering also remains a partly unsolved problem. An
approach using per-pixel linked lists[65] could result in a single-pass method with
improved background blending capability, which is a direction that was left unex-
plored.





Part I

A P P E N D I X





A
A P P E N D I X

All datasets were
made freely
available to the
scientific
community,
origin URLs are
listed in the
colophon.

a.1 datasets

Dataset #1 Dataset #2 Dataset #3 Dataset #4

Source 3DSlicer [18] OpenfMRI [49] HCP [13] HCP [13]

Subject ID N/A Subject 10159 mgh_1001 mgh_1009

Gender and

age

N/A Female, age 30 Female, age

40-44

Male, age 30-34

Accession

number

N/A ds000030 ConnectomeDB

S01322

ConnectomeDB

S01330

Volume

dimensions

128× 128× 94 96× 96× 50 140× 140× 96 140× 140× 96

Voxel size 1.503mm3

(isotropic)

1.979mm×
1.979mm×
2.000mm

1.503mm3

(isotropic)

1.503mm3

(isotropic)

Number of

diffusion

directions

42 64 512 (256 used) 512 (256 used)

Number of

b0-images

1 1 40 (20 used) 40 (20 used)

Table A.1: Overview of used datasets.

a.2 colormaps

A commonly used [64] RGB directional colormap that shows local fiber orientation
is defined as:

colorRGB(xj) ∈ R3 = τ(xj) (A.1)

Where τ(xj) is the line tangent at xj (eq. 3.4)
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a.3 supplementary images

Figure A.1: Example of tensor oriented splats. Each ellipsoid element, scaled by λ1 and λ2, is
positioned using the minor eigenvector (e3) as surface normal.
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