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A B S T R A C T

Malignant skin lesions are an ever more common health problem in modern so-
ciety. Certain types will even result in almost certain death when left untreated.
The medical science community is therefore searching for better methods for dia-
gnosing these lesions. Computing science can help doctors with this classification
problem.

This work attempts to reveal how we can empower the designer of skin classi-
fication tools to effectively and efficiently explore the design space of skin lesion
classification algorithms such as k Nearest Neighbours (kNN) and Support Vector
Machines (SVM), by focusing on classifying birthmarks and melanoma.

After images have been segmented into healthy skin and skin lesion sections, a
substantial group of descriptors are extracted from every segmented image. These
include among others: common colour based features, statistical moments, Local
Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), border features
and co-occurrence matrix based descriptors. Feature vectors can be explored using
the application Featured. It incorporates dimensionality reduction methods to gen-
erate 2D plots of the feature space. With the help of these plots we can explore the
design space of descriptors and determine the influence of specific features, which
in turn help us select high quality descriptors subsets for use in classifiers.

The highest classification accuracy score we achieved with our automatic classific-
ation system is 0.822, which is comparable to accuracy results attained by derma-
tologists. There are however still many aspects that influence the results negatively
and therefore prevent the use of automatic classification systems in active medical
service as an assistance tool.
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1
I N T R O D U C T I O N

In our modern age of great scientific progress, the assistance of computer based
systems has greatly advanced the capabilities of the medical world. However, the
identification of malignant skin lesions has not been sufficiently advanced by this
progress.

A dangerous class of pigmented skin lesions are the malignant melanoma: small
lesions on the skin that are hard to distinguish from normal birth marks and are
actually occurrences of malignant skin cancer. If such lesions are not identified in
time and removed correctly, the patient’s survival chance is slim. Figure 1 shows
how difficult it can be to distinguish pigmented skin lesions. Since the number of
new melanoma cases has increased significantly compared to other types of cancer
[1], it is more important than ever that malignant skin lesions are detected in time.

(a) (b)

Figure 1: Examples of pigmented skin lesions. Figure (a) shows a benign blue naevus (a
type of birthmark), figure (b) shows a malignant melanoma. At first glance it
seems almost impossible to tell them apart.

Correctly classifying skin lesions seems to be an impossible task for the untrained
eye. And although it is not an insurmountable exercise for medical specialists, it
is still an effort met with difficulty. Certain types of lesions have characteristics
that are easy to differentiate. However, several lesion types such as melanoma are
hard to distinguish from other, sometimes harmless, types. It is often neither col-
our nor shape that can be seen as a unique feature for melanoma. The presence of
specific details within a lesion cannot always result in correct classification of dis-
eases. Multiple clinically and dermatoscopy based methods exist for the diagnosis
of melanoma [2]. These include among others the ABCD and ABCDE rule-set, pat-
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1.1 automatic classification 2

tern analysis and the 7 point system. For example, based on the ABCDE rule-set a
physician checks for the following characteristics [3]:

• Asymmetry;
• Border irregularity or bleeding;
• Colour variation;
• Diameter > 6 mm;
• Elevation.

Since medical specialists are just human, and humans make mistakes, it is likely
that at some point errors are made in diagnoses. Cheng et al. state that: “In a re-
cent study, general practitioners had a sensitivity and specificity for detection of
melanoma of 62% and 63%, while dermatologists had a corresponding sensitivity
and specificity of 80% and 60%." [4]. Therefore dermatologists are either as good or
performing only slightly better as general practitioners and they are still substan-
tially distanced from attaining near perfect classification accuracies. Furthermore,
different medical doctors can give, hopefully only slightly, different diagnoses.

Several techniques and tools [5] can help physicians with the classification process.
Most of these are however too unwieldy, too specific or too expensive for general
practitioners to use. Their usage therefore remains limited to dermatologists. To
help physicians either with the classification of skin lesions or to give patients a
second opinion, big advancements made in computing science can help to create
an automatic classification system for this purpose.

1.1 automatic classification

A substantial amount of research has already been done by other scientists to
create such a system and almost all follow the same procedure. First the lesions
are identified in digital images and separated from the rest of the image by a
process known as segmentation. If needed the segmentations are pre-processed.
This is followed with a feature extraction phase in which data with descriptive
characteristics of the skin lesion morphology in the form of features (also known
as descriptors) are extracted from the segmentation.

The feature data can then be used to determine the relevance of each individual
feature. Features with low relevance can be removed to reduce the computational
load in the following classification phase, which tries to classify the lesion based on
the features. The data corresponding to new images is often compared with data
gained from images of lesions that already have been classified. This procedure
can be made into a general pipeline, such as the one presented in figure 2.
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Segmentation1.

Pre-processing2.

Feature Extraction3.

Feature Space Exploration4.

Feature Reduction5.

Classification6.

Figure 2: Pipeline of the automatic classification system stages.

1.2 designing high quality classifiers

The creation of an automatic classifier is clearly not a simple matter. Each of the
steps of the above specified general classification problem has numerous depend-
encies, factors and parameters that influence its outcome. This contributes to the
many degrees of freedom available for designing a classification system with a
high classification accuracy performance.

There are multiple methods to make segmentations, but which one is the best?
What actually makes a good segmentation? There are many papers using only
a smaller selection of descriptors, but why specifically those? Often there is no
explanation given.

And considering classifiers: there are many methods available, but is there a clas-
sifier that always achieves the highest scores for the type of classification problem
we are facing?

Given that there are so many degrees of freedom, designing a high quality classifier
for a given set of images that capture specific skin morphology details is clearly
not an easy task. The design space itself is high-dimensional and the designer
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cannot easily explore it. Moreover, even if the designer had the time to exhaustively
search this entire space, how would he or she be able to measure that a given
parameter configuration is either better or worse than a different one? Therefore
one of the major problems of designing a good classifier is providing good tools
to the algorithm designer for exploring the design space.

1.3 research question

From all these questions and unknowns, we can now formulate our research ques-
tion:

How can we empower the designer of skin lesion classification tools to
effectively and efficiently explore the design space of skin classification
algorithms in order to design better such tools?

Refining this query, we find two sub-questions:

1. Which are efficient and effective algorithmic building blocks for designing
a skin classification pipeline that is effective in separating healthy skin from
malignant skin tumours?

2. Which are efficient and effective tools for assembling the above pipelines
from their components?

To answer these questions we go through the following chapters. In chapter 2, we
discuss related work done by others on this field. Since the comparison of features
is the most important goal of this thesis we give an extensive overview of the
descriptors in the chapter 3, together with information on the tool used to gener-
ate the descriptors. Chapter 4 follows with information on classification methods
and the corresponding tool used in this work. Chapters 3 and 4 answer our first
research sub-question. The research itself is explained in chapter 5, including de-
tails of the datasets used and information on the exploration tool Featured made
by Paulo Rauber [6]. This chapter also answers the second sub-question. All the
results of the research are shown in chapter 6, followed by the discussion, future
work and conclusion sections in respectively chapters 7, 8 and 9.



2
B A C K G R O U N D I N F O R M AT I O N

In this section we will discuss the work done by other researchers on related
subjects. We will start with the medical background of melanoma, followed by
a section on methods of image segmentation. The features used in this project are
explained in detail in chapter 3, therefore we will only give a short overview on
features in this chapter, together with a list of features that have not been included.
After a general section on classification we will conclude with a description of sev-
eral comparative works by others done before, including a look at the results they
achieved.

2.1 medical background

Figure 3: Anatomy of the human skin. The epidermis and dermis are shown, as well as the
position of the melanocytes. Illustration “Melanoma Anatomy”: For the National
Cancer Institute © 2008 Terese Winslow, U.S. Govt. has certain rights
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2.2 social and technical background 6

As explained by Korotkov [2], the human skin is a large and complex organ with
two main layers: the epidermis and the dermis. In figure 3 we can see that the
epidermis lays on top of the dermis. Keratinocytes are cells that, after their creation
at the bottom basal layer of the epidermis, travel over the course of about 30 days
to the horny layer at the top. Contained within the keratinocytes are packages of
melanin pigment. The melanin pigment packages are made by the melanocytes,
dendritic cells placed in the basal layer of the epidermis. The amount of pigment
present in the skin cells controls the darkness of the human skin.

Like every other organ in the human body, cancer can also develop in skin cells.
When non-pigmented cells develop skin cancer, they develop cancer types such as
basal cell carcinoma and squamous cell carcinoma [7, 8]. Melanomas are created
when cancer occurs in melanocytes.

Even though the number of melanocytes in the skin is substantially less compared
to other cell types, melanoma cause 75% of all skin cancer deaths [2, 8]. In its final
stages, melanomas are incurable and will almost certainly result in the death of
the patient. In all stages before this phase, curing a melanoma is relatively easy: a
large enough incision is often sufficient to remove the skin cancer completely.

Since melanomas are responsible for such a large portion of skin cancer deaths,
many researchers have already invested in finding means to automatically classify
melanoma. Automatic classification is made more difficult by naevi, a class of
benign skin marks that are commonly known as birthmarks, since they share a
strong resemblance to melanomas. 50% of all melanomas even grow out of pre-
existing naevi [3]. Some people have a certain genetic predisposition that increases
their changes for growing melanoma.

2.2 social and technical background

The previous section has shown the importance of in-time and accurate detection
of melanomas. Recognition of melanomas should be done when they are still in
their early stages, either by medical experts or by patients spotting abnormal look-
ing pigmented skin lesions and seeking professional help.

Manousaki et al. in [9] have stated that experienced dermatologists only have a
classification accuracy of 64% to 80% using clinical diagnostic criteria. Even though
these numbers are not low, the scores are still not high enough. Too many melano-
mas remain unnoticed or are noticed too late.

Although we do not believe that detecting melanomas should be done fully auto-
matically and without the input of physicians, having a system that enables the
general population to check their pigmented skin lesions to see if there is a risk of
malignancy could be a possibility in the future. The assessment of the automatic
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system can be a good reason for them to then visit a dermatologist for an actual
test and classification.

Some extra technical details have to be explained before we continue with segment-
ation systems. We have used the term ’classification accuracy’ or ’classification per-
formance’ before, but what accuracy or performance are we talking about? With
accuracy or performance we mean the following: the number of correct classific-
ation predictions made, divided by the total number of classification predictions
made in the form of a score in the range [0, 1], or as a percentage.

There are several other metrics that can be used to express the quality of a clas-
sification system, such as precision, recall and the F-score. Since accuracy is well
known and often used in literature, we will use it for our classification perform-
ance scores.

There are two types of images used in skin lesion classification systems. Besides the
images taken by ordinary consumer or professional digital cameras, there are also
images taken with specialized dermatoscopy devices. Modern dermatoscopes use
polarised light to cancel out skin surface reflections and bring up certain details
in the image that would otherwise remain unnoticed. Older dermatoscopes used
non-polarised light and a special fluid applied on the skin’s surface. These details
coincide with the features included in the ABCDE rules list, shown in chapter 1.

2.3 segmentation systems

Before classification can start, the skin lesion section has to be observed in the
image and partitioned off (step 1 in figure 2). This is done to exclude details that are
irrelevant for the actual lesion data we want to classify, since there is no guarantee
that the features we use in the next step will not be negatively biased by such
details. These details include surrounding healthy skin and hairs. Hairs that are
on top of the lesion can be removed with a number of digital hair removal tools
[10].

Automatic recognition of lesions can be a difficult task, since the difference in
contrast between the lesion and healthy skin can be low. The border between the
two parts might be fuzzy or complex shaped and lesions often consist of several
types of textures.

Segmentation systems have been either proposed or implemented by others. These
include works by Parolin et al. [11], Christensen et al., [12], Celebi et al., [13] and
Korotkov et al. [2]. Throughout the years different methods have been tried and
tested to accomplish automatic segmentation. One can segment using threshold-
ing, level sets, morphological filters [12], normalised cuts, snakes [11], mean shift,
skeletons or with dividing images up in patches and then classifying the patches
using k Nearest Neighbours (kNN), Learning Vector Quantisation (LVQ) [14, 15]
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or Support Vector Machines (SVM) [16]. Another method uses the Imaging Forest-
ing Transform (IFT), also know as the superpixels method [17]. An overview of
several of these segmentation methods is given by Telea in [18].

This project is going to use two of these methods. One is a method based on
snakes called Gradient Vector Flow (GVF), as used by Parolin, Herzer and Jung in
[11]. An optimised version of this method implemented on Graphics Processing
Units (GPUs) in NVidia’s Compute Unified Device Architecture (CUDA) platform
exists and was implemented by Jans and Kiers in [19]. The other method is the
superpixel method using the IFT by Rauber et al. in [17].

We will now give a short summary on their workings. For a detailed explanation
of the GVF and superpixel techniques we have to refer to their original papers. An
example image and mask can been seen in figures 4a and 4b.

(a) (b)

Figure 4: (a) Example image of an unclassified pigmented skin lesion, together with (b) its
mask, which in this case has been created with Parolin’s snakes based segment-
ation system [11].

2.3.1 Gradient Vector Flow

GVF is a variant of Active Contour Model (ACM), also known as snakes. ACM
was introduced by Kass et al. in [20] and used in a medical setting before in [21]
and [22]. ACM works by letting a curve ’shrink’ according to a specific functional
energy from its starting position until it has formed according to a shape present
in a grey-scale version of the image. This is known as ’converging the snake’. The
functional energy consists of internal and external energies. The internal energy
represents the curve itself, the second part controls the external force, which con-
sider the image data, guiding the curve to the boundary of the shape.

Xu et al. in [23] first proposed GVF and it solves a problem that the standard snakes
implementation often had: poor convergence performance for concave boundaries
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when the snake is initialised far from the minimum convergence state. This is done
by exchanging the normal external force part of the energy function by a system
based on a GVF field. Xu explains that GVFs:

“... are dense vector fields derived from images by minimizing an en-
ergy functional in a variational framework. The minimization is achieved
by solving a pair of decoupled linear partial differential equations which
diffuses the gradient vectors of a gray-level or binary edge map com-
puted from the image." [23]

2.3.2 Superpixels

The superpixel, or IFT method as explained by Rauber et al. in [17], is based on
a totally different technique. Since the explanation of the method in the original
paper is so concise and thorough, we will quote it:

“Firstly, the input image is oversegmented. Seed pixels defined by the
user associate a label to some of these oversegmented regions (super-
pixels). A superpixel graph is created to represent the oversegmenta-
tion: each superpixel corresponds to a node and arcs connect super-
pixels that are adjacent in the input image. An image foresting trans-
form is then applied to associate a label to each superpixel, exploring
the connection strength between superpixels and seeds." [17]

The last step can be seen as a competition to label every pixel in the image. When
the user has set the seed points (markers) and applied the algorithm, performance
is near real time on modern computers when working on images of moderate
resolution.

2.3.3 Comparing Gradient Vector Flow and Superpixel segmentation methods

Also note that both the GVF and the superpixel method depend on non-automatic
initialisation. Fully automatic segmentation techniques exist (such as the threshold-
ing or the morphological filtering methods), but their segmentation accuracy is
substantially lower according to their corresponding papers.

We have decided to use these two segmentation methods since they generally res-
ult in higher quality segmentations, are more robust and perform faster than any
of the other methods. If we compare GVF with superpixel, we find that GVF pro-
duces slightly smoother contours and is less sensitive to noise such as hairs, while
the superpixel method produces more accurate or detailed segmentations, which
could have a positive influence on the features that need to be obtained in the next
step.
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2.4 feature extraction

Using the segmented lesion as a base, we now need a system that can determine
the skin lesion’s type. Since it is hard for a computer to objectively ’look’ at the
lesion like a doctor would (if this would be possible we would have solved a dif-
ficult and persistent Artificial Intelligence (AI) problem), we need a system based
on comparison. We can do this by extracting a number of identifying traits in the
form of features (step 3 in figure 2). Features are also known as descriptors and
they describe the the measurable aspects of an segmented image, which supports
the automated quantified analyses of said segmented image.

Detailed overviews of features are given in [2, 13]. These features are divided into
several main categories: colour, colour spaces, texture, boundary and an array of
other descriptor types. Several are explained in detail in [11, 24, 25] among others.

Even though Maglogiannis et al. in [25] use the ABCD rule as a basis for their
feature categories, descriptors used for an automatic system can generally not be
mapped one-on-one to procedures used by humans. For example: the size of a
lesion is often not a usable descriptor for an automatic classifier, since in many
cases there is no scale or position information included with the digital image.

Maglogiannis [25] also talks about the use of dermal features such as skin elasticity,
skin impedance, epidermis volume and epidermis thickness. These features are the
image’s metadata: data that cannot be extracted from an image of the lesion, but
can only be gained from other known facts or measurements. Since most datasets
do not contain such metadata, it is not possible for us to use these types of features.

Selecting appropriate descriptors for a classifier can be a difficult task. It is there-
fore strange that a substantial number comparable publications do not give reas-
ons for selecting specific features. Even papers that do give an overview of features
(such as Korotkov et al. [2]) only show which features are available, without going
into their advantages or drawbacks. Chapter 3 will give a detailed overview on
all descriptors used in this work. Several features that did not make the cut are
explored there too.

2.5 classification

And now the final step in figure 2: classification, which aims to assign a class label
to an observation or element of a test set so that it matches as good as possible the
manually assigned class labels by a professional. This is done by inferring class
labels from measurable quantities, which in our case are the features.

For every disease type a substantial number of example segmentations are needed.
These should be classified by professionals, preferable by multiple specialists who
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agree with each other. The example segmentations are combined into a training
set for use in a classification algorithm.

There are different types of classification algorithms. These include kNN, LVQ, lo-
gistic regression, Artificial Neural Networks (ANNs), decision trees and SVMs. A
comparison of several classifiers is given by Dreiseitl et al. [26]. Their main conclu-
sion is that the decision tree classifier is not adequate for skin lesion classification.
kNN performs well and logistic regression, ANN and SVM exceptionally well.

Parolin et al. [11] use a dimensionality reduction step followed by a Bayesian clas-
sifier. Korotkov and Garcia [2] give an overview of work done by others with
different classifiers. Maglogiannis and Doukas [25] compare classifiers types on
the same dataset and set of features.

These conclusions are in agreement with the ones made by Dreiseitl et al. Korotkov
adds that supervised machine learning algorithms generally perform better than
unsupervised methods. Kusumoputro and Ariyanto [24] only use a Principal Com-
ponent Analysis (PCA) dimensionality reduction step (even though they already
had a small set of features) followed by a neural network classifier.

Since there are many different classifier types and their working can be quite com-
plex, we will give an overview of common used classifiers:

• k Nearest Neighbours: works by calculating Euclidian distances in multi-
dimensional space between the feature vector of an unlabelled observation
and the feature vectors of all observations in the training set. The test obser-
vation is classified by doing a majority vote among the the k elements from
the training set that have the shortest distance (and are therefore nearest) to
the test observation. For more details, see chapter 4.

• Learning Vector Quantisation: This classifier can be seen as a optimisation
step of kNN. This is achieved by reducing the amount of distance measures
that need to be calculated. LVQ is a classification method based on prototypes
of the data and was introduced by Teuvo Kohonen [27].

Prototypes need to be chosen in such a way that each prototype is a good
representation for one of the classes. Using prototypes, only the distances
between the object and the prototypes have to be calculated. In the training
phase the prototypes move closer to the datapoint belonging to the same
class. When it belongs to a different class it is moved further away. After
this procedure, the prototypes should be at optimum positions to represent
their class. After a certain number of epochs the situation is sufficiently stable
and the training phase is complete. Distance measures other than Euclidian
distance can often be used to great effect [28, 29, 30, 15].

• Logistic regression: a simple progression from a threshold classifier. For a
two class problem, logistic regression attempts to soften the threshold clas-
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sifier’s hard nature. Russel and Norvig [31] explain that it achieves this by
interchanging the simple threshold function for a continuous and differenti-
able function: the logistic function. This function is defined as:

Logistic(z) =
1

1+ e−z
. (1)

The resulting value in the range [0, 1] from this function corresponds to the
probability of a sample belonging to either class.

• Artificial Neural Network: statistical learning algorithms based on biological
neural networks like the human brain. The first preliminary mathematical
work on ANNs was done by Warren McCulloch and Walter Pitts [32]. The
first practical version was developed by Donald Hebb in the form of Hebbian
learning [33].

ANNs (see figure 5) are made with a network of interconnected nodes where
one or more nodes are defined as input nodes and one or more defined as
output nodes. All the other nodes are seen as hidden nodes and are ordered
in one or more layers. The nodes represent neurons in biological neural net-
works.

Figure 5: An ANN node diagram with three layers of nodes.

Quoting Russel and Norvig [31] on these nodes: “Roughly speaking, it ’fires’
when a linear combination of its inputs exceeds some (hard or soft) threshold
...”. A learning algorithm is used to train a set of adaptive weights spread
out over the nodes. The adaptive weights correspond to connection strengths
between neurons and can be activated during training and prediction.
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ANNs have several advantages: since the network of nodes is inherently dis-
tributed in nature, it is easy to implement a distributed version. The network
is also capable of approximating non-linear functions of their inputs. This
is an advantage in many cases, since most real life situations behave non-
linearly. ANNs also show graceful degradation when noisy input data is
present. Even if several nodes are removed from the network, an ANN still
functions for the greater part.

Suykens et al. state that ANNs can avoid the curse of dimensionality since:
“... the approximation error becomes independent of the dimension of the
input space.” [34]. And they also state that ANNs: “... will be able to better
handle larger dimensional input spaces than polynomial expansions, which
is an interesting property towards many real-life problems where one has to
model dependencies between several variables.” [34].

According to Tu [35], ANNs also have several disadvantages. One of them
being their ’black box’ nature. Compared to other classifiers it is hard to
determine which nodes and weights in the network have the highest contri-
bution to a particular output. Therefore, a creator of an ANN cannot have a
complete understanding of which parts of the network map to which section
of the modelled relationship.

ANNs are also prone to overfitting, a problem that occurs when models are
too complex and describe random error or noise instead of the underlying
relationships. The training phase of the ANN can also take a substantial
amount of time.

• Bayesian classifier: also known as an naive Bayes model is a classifier based
on probabilities [11, 31]. Given two classes w1 and w2 representing naevus
and melanoma respectively, the classifier will attempt to determine the pos-
terior probability that a feature vector x belongs to a class wi based on the
Bayesian decision rule:

P(wi|x) =
p(x|wi)P(wi)

p(x)
. (2)

Here p(x|wi) is the probability density function for wi and p(x) the probabil-
ity density function for all x. Parolin et al. [11] and Duda et al. [36] use a cost
function to calculate the cost that is attached to wrong selections. According
to Parolin, the fact that the Bayesian classifier works with probabilities: “...
allows a greater flexibility towards the results." [11].

When a naive Bayes model is used as a classifier it has the disadvantage
that it has strong feature independence assumptions. As in: it assumes that
features are independent given the class label, and this is not always the case
in classification problems like ours.

• Decision trees: a tree based structure where each branch of the decision
tree represents a possible decision or occurrence. It consists of a sequences
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of tests for each inner tree node, resulting in a decision which determines
the direction within the tree that needs to be taken [31]. Each interior node
corresponds to one of the input values. Edges from parent to children node
are present for each of the possible values (ranges) of that input variable.
Each leaf represents a value (range) of the target variable.

There are decision tree learners available that can generate a decision tree
from a given problem. A disadvantages of this classifier is that learning an
optimal decision tree is known to be computationally expensive, since it is a
NP-complete problem.

• Support Vector Machine: a binary SVM is a type of linear separator that
attempts to separate two classes of observations with a single straight line.
There are however an infinite number of lines that will accomplish this task.
The SVM tries to find the optimum line for this separation: the ’maximum-
margin’ line, or the line that is ’most in the middle’.

In many datasets however, it is not possible to find a straight line to accom-
plish the separation. Instead of using a curved line to achieve separation,
more advanced SVMs solve this problem by ’lifting’ the features of the ob-
servations to a higher dimension using kernel functions. Therefore creating
a hyperplane instead of a curved line, which can be solved by the default
linear SVM. For more details, see chapter 4.

We will be using kNN and SVM classifiers in our research. kNN is easy to im-
plement and often seen as the ’default’ option. Since only testing with one type of
classifier is insufficient, we are also using the SVM classifier in two variants: Linear
and Radial Basis Function (RBF). kNN and SVM can be seen as opposite sides of
the current field of classifiers. While one is simple, the other is complex. SVM is
known to perform well in many classification situations and is therefore a good
candidate for a complex classifier.

2.6 classifier limitations

Several of the previously summarised literature mention classification scores. Pa-
rolin et al. in [11] achieve an accuracy of 88.41% combined with a false negative
score of 11.47%. Manousaki et al. [9] reach a sensitivity score of 60.9% and a spe-
cificity score of 95.4%, resulting in an accuracy score of 89.4%. In [25] Maglogiannis
and Doukas give an overview of a range of classifiers as their results, ranging in
accuracy score for the classification of naevi and melanoma from 95% to 100%.
These last scores seem exceptionally high.

Kusumoputro and Ariyanto achieve a high accuracy score of almost 92%. However,
they do this on a small dataset of only 63 images and on a small set of features,
therefore the relevance of the results is somewhat questionable. Celebi et al. in
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[13] come to a final score on a 564 image dataset of 92.34% specificity and 93.33%
sensitivity.

Another example can be found in [37] by Elbaum et al. Here they achieve high
sensitivity (95 - 100%) and moderately high specificity (68 - 85%) scores. However,
there are some extra remarks that have to be made regarding their work: they
use a special dataset that has 10 grey-level images for every skin lesion in the
dataset, each taken with a different colour spectrum (including infra-red). Their
dataset is highly asymmetrical: 63 melanomas compared to 183 melanocytic naevi.
Finally it seems that they have had a big influence on the picture taking process
when constructing their classification system. This has a major advantage on the
classification outcome in a positive sense. However, it does give an indication of
the results attainable by an automatic classification system in a highly controlled
environment.

Overall we can conclude that there is substantial spread in classification results in
existing literature. Which suggests that there are just too many existing paramet-
ers that influence the classification outcome. This also makes it impossible to do
a definitive prediction on the outcome of our system. Parameters with major in-
fluence include: the quality of the dataset (in particular the number of images, the
quality of the images, the consistency of the lighting conditions and the asymmetry
of the dataset), the set of features used, the type of classifier used and the method
of result representation (such as accuracy, sensitivity and specificity or f-score).

But when Cheng states that they can achieve an automatic classification: “... with a
successful classification rate of 86% for detecting malignant melanoma. This is com-
parable with the clinical accuracy of dermatologists." [4] we have to conclude that
it is possible to create an automatic classification system which achieves a classific-
ation accuracy consistent with the performance of dermatologists. An automatic
classifier can therefore be a viable tool in the professional medical world. A section
in chapter 7 is dedicated to comparing our accuracy scores with some of the results
from the research mentioned above.



3
F E AT U R E G E N E R AT I O N T O O L

There are multiple phases that a skin lesion image goes through before it is ac-
tually (hopefully correctly) classified. The first phase is the segmentation step as
explained in the previous chapter, followed by the extraction of the descriptors
themselves. The feature extraction we propose is implemented in a standalone com-
mand line tool called Feature Generation Tool (FGT), or featuregen. Its workings
will be explained later in this chapter, after an extensive overview of all the fea-
tures used by the tool, together with certain techniques needed by the descriptors.
We end with a discussion section on the features and the tool itself.

3.1 segmentation masks

The segmentation phase (step 1 in figure 2) discussed in chapter 2 finished with
binary masks for all images in the dataset. Healthy skin in these mask images is
stored as black pixels with corresponding value 0. The segmented skin lesion area
is stored as white pixels, which are values in the range [1, 255]. When the FGT cre-
ates binary mask images, it treats all values > 0 as white pixels and automatically
changes them all to 255. This has the advantage that when a user wants to manu-
ally check mask images, image viewing tools show the lesion as white and not as
an almost completely black colour, which would happen if the values stayed close
to 0.

As we shall later explain, there are several descriptors that use the border of the
skin lesion. This is a one pixel wide line of outermost skin lesion area pixels. How-
ever, datasets can contain images where the lesion border touches or intersects the
image border. When an intersection with the image border occurs, the shape of
the lesion border does not completely represent the shape of the actual lesion any
more. Generation of boundary based descriptors in the tool can be changed by the
user if necessary.

When the tool is used for other classification purposes in which there is no mask
present or needed, a default mask is generated for every input image of corres-
ponding size. Evidently, the border features are not computed in this case.

16
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3.2 pre-processing

Since the images in the datasets are taken with different types of cameras and
under different lighting conditions we cannot guarantee image quality consistency.
Images can be slightly blurred, or have low contrast. All these factors can have a
negative effect on classification accuracy.

Some of the negative aspects of the input images can be counter-acted by pre-
processing effects. These are applied on the original image before the features are
extracted (step 2 in figure 2). Jung and Scharcanski’s method [38] is an example
for a pre-processing stage in a skin lesion classification system. It was also used by
Parolin et al. [11]. To test the influence of these pre-processing steps, two filters are
tested: unsharp mask and contrast stretching.

Unsharp mask is a sharpening technique often used by photographers to sharpen
the often slightly blurred images that come out of standard compact and profes-
sional cameras. As explained in [39], a blurred version of the image is made using
a Gaussian blur operation. This blurred version is subtracted from the original
to form a mask image of edges. This mask is added to the original to form a
sharpened version of the original image. The effect can be controlled by the type
of Gaussian blur used and by a multiplier during the final addition process. An
example of the application of the filter is shown in figure 6.

Contrast stretching is applied to low contrast images. For example: if a colour chan-
nel of an image has the range [0, 255], but all the actual colour values of the image
are in a smaller range, such as [70, 130], we would like to increase the contrast of
the image by using the full range [0, 255]. With contrast stretching, all the values
between the measured minimum and maximum values of an image in a colour
channel (here 70 and 130 respectively) are stretched out over the complete range
of the channel. Contrast stretching can therefore be seen as a scaling normalisation
process applied to the values of each channel of the image [39]. For an example
application of the filter, see figure 7.

3.3 feature extraction

We will now focus on the selection of features that are extracted for our implement-
ation in step 3 of figure 2. Many types of features exist, spread over different classes.
For this thesis we will focus on several features from colour channels using two col-
our spaces. Several features use a co-occurrence matrix of the Red, Green and Blue
(RGB) colour space image. There are also features included that are based on the
boundary shape of the skin lesion and a few texture-based descriptors. Since we
obviously cannot test every existing feature in a single thesis, a selection was made
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(a) (b)

Figure 6: Original input image (a) and output image (b) of an unsharp mask filter, applied
to the red colour channel.

(a) (b)

Figure 7: Original input image (a) and output image (b) of a contrast stretching filter, ap-
plied to the red colour channel. The visual effect of applying this filter is quite
limited, even though the values of most pixels will have changed.

based on usefulness of descriptors as shown in literature, ease of implementation
and avoiding duplication of function.

A feature can be seen as a function from image space to some space Rn, where
n > 1. For example: n = 1 when we calculate a mean for one colour channel, but
n = 16 if we create a histogram with 16 bins (we will explain these features later
in this chapter).

Using our batch processing tool we will calculate each feature for every image.
The output of all descriptors on one image is combined into a single feature vector.
Since we have a substantial number of features (of which some use histograms),
the dimensionality of the feature vector rises into the hundreds. All the feature
vectors are combined with image file names and attribute labels into one single
text file so it can be used by other tools. The feature vector will be used by both
the exploration tool Featured to help examine the usefulness of each feature and by
the classification tool later on to classify the skin lesions.
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Figure 8: Comparison of the Lab horseshoe and the RGB triangle. Image by Wikipedia
user BenRG, public domain license.

3.4 colour spaces

Colour images can be represented using different colour spaces. Each space has
its own advantages and disadvantages. Both of the following spaces have been
developed by the Commision Internationale de l’Eclairage (CIE). All pictures we
use as input for our tool-chain are in the RGB format. This can actually be the Adobe
RGB or the sRGB format, both are absolute colour spaces and implementations of
the RGB colour model, but since they only differ in minute details we will not go
into further detail here.

Besides RGB we will also look at the CIE 1976 colour space. Also known as CIELAB,
or Lightness, a colour component and b colour component (Lab) colour space, this
colour space contains all luminance information in one channel and all the colour
information in two other channels and is therefore very useful for this application.
A comparison of both colour spaces can be seen in figure 8. We use these two
colour spaces because certain details or variations in image patterns may be better
distinguishable in specific spaces.

3.4.1 RGB

The RGB colour space is used in many digital cameras and computer displays. Col-
ours are produced by adding red, green and blue values in different proportions.
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Luminance is included in each channel separately and not as a separate channel.
Using 8 bit values for each primary colour in the range [0, 255] there are a total
of 2563 = 16.7 · 106 possibilities. Using 8 bits per channel is the default option
in contemporary digital photography, but not a requirement. Many professional
cameras use 12, 14 or even 16 bit channels in their own Raw Image Format (RAW)
file formats. However, since many systems, including monitors and TVs cannot
handle anything other than 8 bit, the images are often reduced to 8 bit per channel
images as a post-processing operation. This processing happens either internally
in the camera or on personal computers in image editing tools.

The RGB colour space is a subset of all the colours humans can see. As can be seen
in figure 8, the RGB triangle is smaller than the horseshoe shape of the full human
colour spectrum. On the other hand, RGB is a logical system to measure colour,
since human eyes work with cones that are sensitive for red, green and blue light.
This does not mean that humans do necessarily perceive colours in such a way in
their mental representation of the world.

3.4.2 Lab

The Lab colour space is derived from the non-linearly compressed CIEXYZ colour
space coordinates and it comes in several versions. We use the CIE1976Lab colour
space version. The colour space CIE1931XYZ defines all the colours within reach
of human perception. The intention of Lab is to be a colour space which can be
computed simply from the XYZ space, but at the same time also be more percep-
tually uniform than XYZ. Perceptual uniformity in this case means that a change
in colour value should produce a change of roughly the same visual importance.

3.5 features using colour channels

The descriptors are applied within the masked area on each of the colour channels.
Several features such as the statistical moments, homogeneity, correlation, contrast,
uniformity and entropy were first calculated over the histogram of each colour
channel. This resulted however in a large number of bins staying empty in the
histogram. Therefore these features need to be calculated over all the data. Unless
stated otherwise, all these features are calculated in both RGB and Lab colour
space versions of the images.

3.5.1 Histograms

A histogram is a representation of the distribution of data into frequencies for a
pre-defined number of discrete intervals called bins. It was introduced by Karl
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Pearson in 1895 [40]. Bins are equally distributed over the original data’s range. In
a standard 8 bit grey value image with a range of values of 256, the number of
bins for a histogram of this grey value image must lay between 1 and 256. If there
would be only one bin, the frequency of this bin will account for the total number
of pixels in the image. If there would be 256 bins, we would have a unique bin
for every possible kind of value in the image. mi corresponds to the count of a
histogram bin and is defined as:

mi = {p ∈ D(I) | I(p) ∈ ri}. (3)

Here D denotes the domain of the image I, p denotes the position of a pixel of I,
I(p) denotes the value of a pixel of I and ri denotes the interval corresponding to
the bin i. The histogram Mi is then defined as:

Mi =
|mi|∑n
j |mj|

, (4)

where we take the sum over the n counts of histogram bins. To preserve all the
data, a histogram of 256 bins per colour channel must be used for a 8 bit colour
image. But, since the skin lesion images in general have colour values that fall
within the often occurring specific sub-ranges, a lot of those 256 bins will be 0 in
the histogram. This would result in a large feature vector where most features have
no contribution in describing the image.

There is however another reason why we do not want to use 256 bins. If there
is noise, or if the lighting is slightly different or even if the patient has a different
natural skin colour, the colour values are already different and will therefore result
in a different histogram. We are not going after exact pixel colour values, but
actually looking at small ranges of colours is useful.

To achieve this, we reduce the number of bins to hold for instance 8 (so 32 bins)
or 16 (so 1 bins) possible colour value types. We could reduce the number of bins
to be substantially lower than 16, but this would degrade precision too much. The
number of bins can be specified in the tool and will be used for all the histograms
in the features calculated by application.

Since every bin of the histogram is a count of pixels in an image there is a corres-
pondence between the histogram of an image and the size, or pixel resolution, of
the image. To remove this correspondence, every histogram created is normalised.
Features that do not use a histogram will be included without normalisation to en-
able the option of using different normalisation techniques within the classification
tool. The normalisation for histograms will reduce the range to [0, 1].

The histogram of a colour channel exists as a separate descriptor in our set of
features. Histograms are created according to a specified numbers of bins of all
the colour channels in the RGB and Lab colour spaces. Several other features in
the following sections also make use of a histogram as their descriptor output.
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3.5.2 Mean and standard deviation

Multiple features are derived from the four standardised moments used in stat-
istics. The moments form part of a systematic approach to distinguish probability
distributions. They are powerful in terms of their mathematical and computational
simplicity. The 0th moment is the total probability and its mean is the first moment.
The standard deviation (in our case the population standard deviation) of a vec-
tor details how the elements in a vector is spread out. It is the square root of the
second moment, also known as the variance. For every colour channel we calculate
the mean µ and standard deviation σ of an image I for all the pixels intensities I(p)
in the region of interest R, where R ⊆ I. µ and σ:

µ =
1

|R|

∑
p∈R

(I(p), (5)

σ =

√√√√ 1

|R|

∑
p∈R

(I(p) − µ)2. (6)

The usefulness of the mean descriptor can be quite limited, since it is influenced
greatly by the overall image quality, colour reproduction, gamma and other image
characteristics. If we for instance would take multiple images of the same skin
lesion with different cameras and lighting conditions, it is likely that non will
have the same output mean value. This problem can also arise with the standard
deviation feature, although its effect is less since this feature also helps define
contrast differences within the lesions surface. A high σ value will correspond
to a high contrast detail within the lesion, and therefore be a good descriptor
for lesion classification. The standard range of a mean value of a 8 bit image is
[0, 255]. Which corresponds to a theoretical limit of half that range for the standard
deviation: [0, 127].

3.5.3 Variance

The second moment is the averaged squared difference of the mean as calculated
for all the pixels intensities I(p) of the pixels p in the region of interest R:

σ2 =
1

|R|

∑
p∈R

(I(p) − µ)2. (7)

The paper by Parolin, Herzer and Jung [11] states that malignant skin cancers are
characterised by darker spots of tan, red, brown and black compared to benign skin
cancers. They therefore will have a higher average colour variance in the separate
RGB colour channels. Taking squared values instead of the plain values makes it
easier to use in algebra and removes all the negative signs. This is helpful since
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we are not interested in the direction of the differences. As stated earlier, variance
σ2 is the standard deviation σ squared. The variances range is from 0 to 1272, or
[0, 16129].

3.5.4 Skewness

The third moment, known as the moment coefficient of skewness, defines the asym-
metric nature of the distribution of the data and can be calculated for all the pixels
intensities I(p) of the pixels p in the region of interest R using:

Skew =

1

|R|

∑
p∈R

(I(p) − µ)3

(
1

|R|

∑
p∈R

(I(p) − µ)2)
3
2

. (8)

In an unimodal graph (a graph with one peak) of a distribution, skewness indicates
whether the tail of the graph is longer on one side of the peak or on the other. If
skewness is positive, the data is positively skewed or skewed right, meaning that
the right tail of the distribution is longer than the left. If skewness is negative, the
data is negatively skewed, as in: skewed to the left. In this case the left tail is longer
than the right tail. If the skewness is 0, the data is perfectly symmetrical. This is
true for both unimodal and multimodal distributions.

The practical range for skewness is hard to determine. It is a generally accepted
aspect in statistics that there is a significant skewness if a skewness value lies out-
side the range [−1, 1]. However, from the equation we can deduce that the feature’s
range in theory is [−∞,∞]. Since we cannot use ranges with∞’s for normalisation,
we have to use a more practical range. We have empirically determined that a range
of [−32, 32] is an adequate assumption.

3.5.5 Kurtosis

The fourth moment, or the moment coefficient of kurtosis, defines the height and
sharpness of the peak in the graph of the distribution. If kurtosis is high, the
peak of the distribution graph has a high and sharp shape. A low kurtosis value
indicates that the peak is low and less distinct, making it look similar to rolling
hills. A standard normal distribution has a kurtosis value of 3, while a uniform
(square block shaped) distribution has a kurtosis of 1.8. The range of kurtosis is
in theory [1,∞], but in practical situations there is a lower threshold. We have
empirically observed that our images converge to a maximum of about 16, but
because of safety reasons we will use 255 as an upper limit. The kurtosis can be
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calculated with equation for all the pixels intensities I(p) of the pixels p in the
region of interest R:

Kurt =

1

|R|

∑
p∈R

(I(p) − µ)4

(
1

|R|

∑
p∈R

(I(p) − µ)2)2
. (9)

3.5.6 Relative Chromaticity

This feature is included in a paper by Parolin, et al. [11] and in a paper by Kusumop-
utro and Ariyanto [24]. With relative chromaticity as defined by:

RCc =
µcRGB∈L∑

c∈{R,G,B}

µcRGB∈L
−

νcRGB∈H∑
c∈{R,G,B}

νcRGB∈H
, (10)

an attempt is made to use the difference in overall colour values between a part of
the image I outside the skin lesion H and the area inside the skin lesion L.

L is generated by making two dilated version of the original mask images. The first
version constitutes the original mask image dilated with a structuring element of
31 x 31 pixels in size. The second version is made in a similar fashion, but dilation
is performed twice. By subtracting the first version from the second version a band
shaped mask of 15 pixels wide is created which flows as a ring around the original
mask at a distance of 15 pixels. Because the band would normally flow outside the
original image, OpenCVs dilation implementation automatically removes the parts
outside the original image. It can also handle cases where the original mask area
touches or intersects with the image border.

The average colour value outside the lesion ν is subtracted from the average colour
value inside the lesion µ. This is done for every colour channel c in {R,G,B} of
RGB. It is also stated by both papers about this feature that it will “reduce the
small variation of lighting, printing and digitisation” [11, 24]. Practical values of
the feature are often between −0.20 and 0.20. We will use a range of [−1, 1].

3.5.7 Colour Variance

Besides relative chromaticity, colour variance is another feature presented in both
Parolin’s [11] and Kusumoputro’s [24] papers. It compares colour variances instead
of average colour values, for every colour channel c in {R,G,B} on the image I. The
part of the image outside the skin lesion is seen as healthy skin H and the area
inside the skin lesion is described as L. For H we use the same area as described
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in the relative chromaticity feature above. According to Kusumoputro, the colour
variance of malignant skin is normally higher then the colour variance of healthy
skin.

To calculate the variances, the same average colour value outside the lesion ν and
average colour value inside the lesion µ are used. I(p) denotes the intensity at a
pixel p. As defined by:

CVc =
1

|L|

∑
p∈L

(I(p)c − µcRGB∈L)
2 −

1

|H|

∑
p∈H

(I(p)c − νcRGB∈H)
2, (11)

the variance of healthy skin is subtracted from the variance of malignant skin for
every p of either L or H. Since the practical output values of this feature are very
close to 0, we will again use a range of [−1, 1].

3.5.8 Local Binary Patterns

The Local Binary Patterns (LBP) feature describes both colour and texture details
and was first described by Ojala, Pietikäinen and Harwood in 1994 and later pub-
lished in 1996 [41]. LBP is often used together with Histogram of Oriented Gradi-
ents (HOG) and SVM for recognising humans in images and videos. But it can also
be a good descriptor on its own. The standard implementation of HOG follows the
following steps:

1. The image is divided into cells (often 16 x 16 pixels for each cell).

2. Each pixel in a cell is compared with each of its 8 neighbours. These pixels are
followed along a circle in a fixed direction, consistently clockwise or counter-
clockwise.

3. If the centre pixels value is greater than the neighbours value, we store a 1.
Otherwise, we will store a 0. These stored numbers are combined into a 8
digit binary number.

4. Compute the histogram over each cell of the frequency of each occurring
“number” (the 8 digit binary number we generated in the previous step).

5. Optionally normalise the histogram.

6. Finally the histograms of all cells are concatenated. This results in the feature
vector of the image.

For our purpose we want to use a variant of the standard LBP descriptor. Instead of
using cells, we see the whole masked area of the skin lesion image as one cell. We
do this since it is difficult to divide most of our masked areas into cells, and because
we are not interested in differences between regions within the masked area. LBP
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(a) (b)

Figure 9: Original blue colour channel inly image of a melanoma (a), and its counterpart
(b) with the Sobel filter applied within the masked area.

with cells however would be a useful descriptor for a follow up study on the
differences in regions within lesions and their influence on skin lesion classifiers.
Another difference is that we do not keep the 8 digit binary number, but convert
it to a regular number in the range [0, 255] range. This way we can use existing
implementations, such as the histogram, later on.

3.5.9 Histogram of Sobel Edges

This feature is both a RGB colour based descriptor and a texture descriptor, but it
is not applied to Lab colour space. It describes edges within an image in such a
way that they can inform us on lesions texture properties. The Sobel operator filter
is only applied in RGB colour space and not in Lab colour space, since the two
colour information channels of Lab do not hold details with high enough contrast.
Contrast which the Sobel operator needs to find the edges. The L channel could be
used, but it would lack the differentiating information given by the contrast details
in RGBs three channels.

There is a visual difference in structures and textures between sick and healthy
skin in skin lesion images, but there is also a difference in texture between different
lesion types. Most edge detection algorithms generate an 1 bit image per colour
channel as output, which for our purpose would result in too much information
loss.

We use a special implementation of the Sobel edge detection from Trucco and Verri
in [42] that results in three 8 bit grey value images (one for each colour channel).
This implementation mimics the Matlab version as used by the author of this thesis
[14, 15]. The final output of the feature is 3 histograms: one for each channel. As
a bonus feature, we also add the means of Gx and Gy for every channel. The
Sobel operator for an image I, with a 2D convolution ? and where Gx and Gy
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are two images which at each point contain the horizontal and vertical derivative
approximations:

Gx =

−1 0 1

−2 0 2

−1 0 1

 ? I and Gy =

 −1 −2 −1

0 0 0

1 2 1

 ? I.

At each point in the image, the resulting gradient approximations can be combined
to give the gradient magnitude image G, using:

G =
√
G2x +G

2
y. (12)

3.5.10 RGB co-occurrence matrix based texture descriptors

The following five features are from [39] and can be used as texture descriptors.
They have their origin in a paper by Haralick [43] and they are all numerical
features computed from the co-occurrence matrix of the skin lesion image area.
The use of the co-occurrence matrix for these features comes from another paper
by Haralick [44]. It is used to describe textures by comparing differences in pixel
values in small local neighbourhoods by comparing its direct neighbours. A co-
occurrence matrix C is defined over an M x N image I, parameterised by an offset
(∆x,∆y) as seen in:

C∆x,∆y(i, j) =
M∑
v=1

N∑
w=1

{
1, if I(v,w) = i and I(v+∆x,w+∆y) = j,

0, otherwise.
(13)

The range of the colour channels determines the size of C: an 8 bit image has
28 = 256 possible values per channel, making both the height and width K of
the square co-occurrence matrix 256. It is common for ∆x and ∆y to compare
the current pixel with one pixel to the right (∆x+ 1,∆y) and with one pixel up
(∆x,∆y+ 1).

Comparing with one pixel down or one pixel to the left seems necessary at first,
but since both the up and down directions give the same outcome, and the left and
right directions give the same outcome, it is unnecessary.

This effect occurs because neighbouring pixels are opposites of each other in either
the vertical or horizontal direction. Therefore the sum of all parts will still result
in the same outcome for every metric that uses the co-occurrence matrix.

The lack of differentiating information in contrast details from the three Lab colour
channels gives a reason for the co-occurrence based descriptor to be only applied
to the RGB colour channels.
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3.5.11 Homogeneity

According to Gonzales and Woods: “Homogeneity measures the spatial close-
ness of the distribution ..." [39] for a lesion image area. C denotes the square co-
occurrence matrix of size K x K. pij is the ijth term of C, divided by the sum of
the elements in C. Hom(C) is therefore defined as:

Hom(C) =

K∑
i=1

K∑
j=1

pij

1+ |i− j|
. (14)

A high homogeneity value Hom would mean that the matrix almost represents
a diagonal matrix. A low homogeneity value would mean that the values differ
substantially from a diagonal matrix. As in: no diagonal features would be present
in the texture of the lesion. The range for homogeneity values is [0, 1].

3.5.12 Correlation

The second co-occurrence matrix feature from [39] is correlation, defined as:

Corr(C) =

K∑
i=1

K∑
j=1

pij(i− cmr)(j− cmc)

cσrcσc
. (15)

It measures, for every pixel in the region of interest R, the correlation between a
pixel and its neighbour. Its values have a range of [−1, 1]. Here −1 corresponds to
a perfect negative correlation and 1 corresponds to a perfect positive correlation.
cmr, cmc and cσr, cσc denote the column mean and column standard deviations
of the row and column sums of the current xij in the image:

cmr =

K∑
i=1

i

K∑
j=1

pij, cmc =

K∑
j=1

j

K∑
i=1

pij, (16)

cσr =

√√√√ K∑
i=1

(i− cmr)2
K∑
j=1

pij, cσr =

√√√√ K∑
j=1

(j− cmc)2
K∑
i=1

pij. (17)

The correlation Corr of the co-occurrence matrix C with size K x K is only defined
when cσr 6= 0 and cσc 6= 0. pij is the ijth term of C, divided by the sum of the
elements in C.

The more randomness is occurring in x, the closer the correlation is to 0. Since
generally skin lesion images have fine details, small spread-out structures and
noise, it is likely that there will be some randomness in the co-occurrence matrices
and therefore correlation values close to 0.
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3.5.13 Contrast

The third co-occurrence matrix feature from [39]. As seen in:

Contr(C) =

K∑
i=1

K∑
j=1

pij(i− j)
2, (18)

contrast Contr measures the intensity contrast for each pixel related to its location
in the image. C denotes the co-occurrence matrix with size K x K. pij is the ijth

term of C, divided by the sum of the elements in C. The values of Contr range
from 0 to (K− 1)2.

3.5.14 Uniformity

The uniformity Unif, as defined by:

Unif(C) =

K∑
i=1

K∑
j=1

p2ij, (19)

also called the energy or the 2nd angular momentum, is another co-occurrence
matrix co-occurrence matrixfeature from [39] with a range of [0, 1]. C denotes the
co-occurrence matrix with size K x K. pij is the ijth term of C, divided by the sum
of the elements in C. A value of 1 would indicate a completely uniform image.

3.5.15 Entropy

The last of the co-occurrence matrix features from [39] is entropy, or Entr. It meas-
ures the randomness in the co-occurrence matrix C with size K x K. pij is the ijth

term of C, divided by the sum of the elements in C. If al pij’s are 0, the entropy
is 0. If all pij’s are at their maximum, the entropy will be its maximum value of
2 log2 K. Entr(C) is defined as:

Entr(C) = −

K∑
i=1

K∑
j=1

pij log2 pij. (20)

3.5.16 Absolute Value and Inverse Differences

Materka and Strzelecki add two more features for the co-occurrence matrix C with
size K x K in their review on texture analysis methods [45], they however do not
give much information on these two features. The absolute value feature Absval is
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probably a close match to the contrast feature, as taking the square or the absolute
of i− j has the same effect. It is defined by:

Absval(C) =

K∑
i=1

K∑
j=1

pij|i− j|, (21)

where pij is the ijth term of C, divided by the sum of the elements in C. Since the
range of pij is [0, 1] and the range of abs(255− 0) is 255, the descriptors range is
[0, 255]

The range of the inverse difference feature equation is [0, 1] and it is defined as:

Invdiff(C) =

K∑
i=1

K∑
j=1

pij

1+ (i− j)2
. (22)

3.6 features using boundaries or textures

The following features are not extracted purely from colour channels but use
sources of different types. The corresponding mask of the image generated by
the skin lesion segmentation stage is used to generate the boundary of a skin le-
sion image. Using the morphological dilation operator we generate a version of the
mask that is 1 pixel larger in every direction. After subtracting the original mask
we are left with a 1 pixel wide shape describing the boundary of the lesion.

HOG will always be executed. However, as explained before at the beginning of
this chapter, only when we select the option to include boundary based descriptors
the following features will be used: compactness, centroid difference, boundary
moments, histogram of boundary to centroid distances and asymmetry index.

3.6.1 Histogram of Oriented Gradients

As first described by Navneet Dalad and Bill Triggs in [46], the descriptor HOG
is often combined with a SVM to generate a system capable of detecting humans
in images. The descriptor’s name already implies its function: the creation of a
histogram from the orientation of the gradients of the image area. To reduce com-
putational load, we first convert the colour image to one grey value image. To get
the gradient of each pixel, the same Sobel operator is applied. This is the same
procedure as used in Sobel edge detection. However, instead of calculating the
gradient magnitude, we now use the gradient orientation function Θ:

Θ = arctan
Gy

Gx
∗ 180
π

, (23)

applying it to every pixel of the image, resulting in an image containing the gradi-
ent Θ in degrees with a range of [0, 180] for each pixel. Gx and Gy denote the two
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images which at each point contain the horizontal and vertical derivative approx-
imations respectively.

Overall shapes in images with object detection are recognisable by local differences
in gradients. Each images is therefore divided into cells which are usually 16 x
16 pixels each. The cells overlap each other by 50%. Since each cell only holds
16 ∗ 16 = 256 datapoints in total, we use a relatively low number of 9 bins to
calculate a histogram for each cell. All histograms are concatenated into one large
feature vector.

Because we are interested in overall lesion features and not in differences within
the lesion, the HOG implementation is changed by referencing the whole masked
lesion area as one cell. This results in one histogram in total as output instead
of one per cell. The number of pixels is not much larger compared to individual
cells. Therefore we have increased the number of bins to 16, down from the original
gradient orientation range of 180 degrees. Since the number of pixels in each image
is different, the values in the histogram are normalised to [0, 1]. This also applies
to all other output histograms of descriptors.

3.6.2 Compactness

As used by Shen [47], this descriptor can be seen as a “... simple, dimensionless
measure of shape compactness ..." [47] where the length of the boundary |P| is
squared and divided by the area of the region of interest (lesion) |R| to attain the
compactness Comp, or: the ratio between surface area and boundary length. Both
|P| and |R| are in this case counted in pixels. The range for Comp is substantially
harder to determine. Since neither |P| nor |R| can be negative, Comp can also never
be negative. And by squaring the boundary length, |P| and |R| are within the same
order of magnitude.

Skin lesions shapes come in different types: some are almost circular, some have
a lot of creases, some consist of multiple smaller spots. It is safe to conclude that
there will be no lesions with shapes that have such long boundary lengths com-
pared to surface area that Comp will be larger then 100. Therefore we conform us
to a practical range of [0, 100]. The descriptor is mathematically determined by:

Comp =
|P|2

|R|
. (24)

3.6.3 Centroid Difference

The centroid difference is a simple feature for expressing the boundary shape of a
lesion. There are two general ways of defining the centre of a shape. In this case
we see the masked area as the shape and its boundary as our shape boundary. One
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type of centre is the actual middle: for both the x and y axis we find the minimum
and maximum values, subtract the minimum from the maximum and divide by 2.

The other is the barycentre of the shape, also known as the geometric centre or
centroid. It is defined as the average position of all points located within the shape,
or the average position in the 2D grid of all points within the shape. In physics it
would describe the centre of mass of an object.

The Euclidian distance between the middle and the centroid is a descriptor for
the mask shape. If we for example have a circle or a square, the distance between
the middle and the barycentre of the shape will be 0: they are one and the same
coordinate. If however the shape of the mask is more asymmetric, but still within
the same minimum and maximum values, the centroid will move in the direction
of the shape with the greatest surface area. The middle will stay in exactly the same
position and create a measurable distance. The normalised value of this distance
is the final descriptor.

Although the centroid difference descriptor works well for convex shapes, it does
not work well for concave shapes. Since a subset of the lesions we have in our
datasets is convex, this feature can still be of use. For describing concave shapes,
it would better to use descriptors based on the centre of the shape skeleton, or the
point of maximal skeletal importance [48].

3.6.4 Boundary Moments

This descriptor was used by Kusumoputro in [24] and first described in this form
by Gupta and Srinath in [49] and Shen et al. in [47]. In essence it uses functions
based on the same statistical moment functions as used for the 2nd, 3rd and 4th

moments, known here as M2, M3 and M4 respectively. But this time they are
applied on the boundary of the lesion area instead of the whole skin lesion area.

We start with generating a path P of length N over all the pixels on the bound-
ary. For each of these path elements we calculate, in order, the Euclidian distance
between itself and the centroid of the lesion and store these in Z. If we would lay
out these distances in order we get a graph that can be analysed. The 4 moments
are defined by:

F1 =
(M2)

1/2

m1
=

(
1

N

N∑
i=1

(Z(i) −m1))
1/2

1

N

N∑
i=1

Z(i)

, (25)
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F2 =
(M3)

1/3

m1
=

(
1

N

N∑
i=1

(abs(Z(i) −m1)))
1/3

1

N

N∑
i=1

Z(i)

, (26)

F3 =
(M4)

1/4

m1
=

(
1

N

N∑
i=1

(Z(i) −m1))
1/4

1

N

N∑
i=1

Z(i)

, (27)

F4 = F3− F1. (28)

According to Shen, F4 was added because “... the difference between F3 and F1

can give information about the shape roughness which may not be represented by
F3 or F1 individually." [47]. Kusumoputro adds to this that “The values of these
moments are dimensionless, and invariant to transition, rotation and scaling. In
general, the smoother the shape contour, the larger the value of the moments.”
[24]. The ranges of F1 to F4 are all positive and close to 0, therefore we use the
range [0, 1] for all four moments.

3.6.5 Histogram of Boundary to Centroid Distances

Besides determining the moments on the list of Euclidian distances Z we can also
generate Z ′s histogram. Arques et al. make use of this feature in [50], although our
specific implementation should be explained in more detail. Our version calculates
the distance between the centroid and every pixel included on the boundary path
P and not just on a subset of P. The histogram has the same number of bins as the
other features’ histograms (except HOG). To accomplish a good balance of the bins
over the possible range of values, we spread out all the distances over the range
0− (

|P|
4 ). Since the descriptor output is a histogram each attributes range is [0, 1]

and all histogram attributes together add up to 1.

The histogram’s distribution gives a good description of the general shape of the
lesion mask. If the lesion surface would form a perfect circle, centre-centroid differ-
ence would be 0 and all the distances between points on the border path and the
centroid would be the same, resulting in a histogram where one bin is 1 and all the
other bins are 0. If the border’s shape is highly erratic (as in: there is a wide spread
of distances in substantial amounts), all the bins of the histogram would be filled
in more or less equal amounts. Although it must be said that such extreme cases
are virtually non-existent. With most skin lesion masks we see that the middle five
or six bins are filled.
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3.6.6 Asymmetry Index

As the name of the feature implies, this descriptor represents the asymmetry of a
lesion and was introduced by Parolin et al in [11]. It is implemented as follows:
For every pixel p of pi on the boundary of the lesion they calculate the Euclidian
distance to the centroid c. This distance is compared with the distance between c
and the pixel exactly opposite of pi on the lesion perimeter: p ′

i. This gives a list
of distances di. The asymmetry index AsymI is therefore defined as the smallest
value of di.

Since it is relatively hard to implement the actual search for p ′
i, an alternative

implementation is necessary. With the use of PCA we can determine two vectors,
that together with their length, describe the two most prominent dimensions. As
in: the two most principal components in the dataset containing all the boundary
pixels. The asymmetry index is in this case defined as the difference in length
between the two vectors, rescaled for the number of pixels in the image.

For the compactness descriptor, we have empirically determined that there will be
no lesions with shapes that are very elongated. Therefore it seems correct to use a
practical range of [0, 100]. This means that the measure will result in 0 if the two
vectors of the most prominent dimensions have the same length. If the result is for
instance 4, one of the vectors is 4 times as long as the other vector. However, this
feature has the same disadvantage as the centroid difference descriptor in 3.6.3: it
is only useful for describing convex shapes and not concave shapes.
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3.7 feature overview

The following list gives an overview of all 33 features F included in the FGT,
categorised by their class:

RGB descriptors

• Histogram

• Mean

• Standard deviation

• Variance

• Skewness

• Kurtosis

• Relative Chromaticity

• Colour Variance

• Local Binary Patterns

• Histogram of Sobel Edges

• Gx and Gy mean

RGB Co-occurrence matrix based
texture descriptors.

• Homogeneity

• Correlation

• Contrast

• Uniformity

• Entropy

• Absolute Value

• Inverse Differences

Lab descriptors:

• Histogram

• Mean

• Standard deviation

• Variance

• Skewness

• Kurtosis

• Relative Chromaticity

• Colour Variance

• Local Binary Patterns

General texture based descriptors

• Histogram of Oriented Gradients

Boundary descriptors:

• Compactness

• Centroid Difference

• Boundary Moments

• Histogram of Boundary to Centroid
Distances

• Asymmetry Index
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3.8 excluded descriptors

There are numerous other descriptors possibilities that could have been included
in this project, but we had to draw a line somewhere. Several of these features are
also quite complicated in their implementation and understanding. And since we
were also interested in finding out how far we could come with relatively simple
features (they are often better known and therefore more predictable), we decided
to keep to this selection. We will however discuss several descriptors that have not
been included:

• Irregularity Index: was included at first but later removed when it was dis-
covered that it actually was another variant of compactness. It is defined in
its mathematical form by:

Irreg =
|P|2

4π|R|
, (29)

where |P| denotes the length of the boundary path and |R| denotes the area
of the region of interest. The only difference with the compactness feature is
the application of a 4π multiplier on |R|.

• Fourier Feature: as explained in Kusumoputro et al. [24]. In this descriptor,
the shape of the lesion border can be described in complexity and roughness
with a process involving the Fourier descriptor. It was not included for its
complicated nature of implementation. Also: the tool already includes other
lesion border descriptors (specially the histogram of of boundary to centroid
distances) which describes the same details.

• Granulometry Feature: a more advanced and complex texture based feature.
As explained by [39, 51, 52], this operator is used to calculate the distribution
of particles in images of different sizes or shapes. Urbach et al. state that:

“Intuitively, a size granulometry can be considered as a set of sieves
of different grades, each allowing details of certain size classes to
pass. More formally, a size granulometry consists of an ordered set
of operators, each of which converts an image to a new image in
which features smaller than a particular size are absent.” [52]

Specific details within skin lesions of certain shapes and sizes are an identifi-
able property of said lesion. We decided not to include this feature since we
want to focus on relatively simple features for this project.

• Bag Of Visual Words: a complex descriptor which stores image features
in the form of (visual) words using a codebook generation process. It was
first described in its current form using visual words instead of text words
by Fei et al. in [53] and by Csurka et al. in [54]. For a good operation, the
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image features need to be rotation, scaling and intention independent. Its
large complexity was the main reason for excluding it.

• Deep Features: another complex feature and connected to the currently pop-
ular deep learning, which is a field within Machine Learning first mentioned
by Hinton in [55]. It tries to replace the ’standard’ human created features,
like the ones we use in this thesis, with feature learning [56] and hierarchical
feature extraction [57], using advanced versions of ANNs. The term ’deep’
comes from using neural networks that have a relative high number of layers
of neurons. Since deep learning only works well with datasets that contain a
very large number of images (preferably hundreds of thousands to millions)
and there simply does not exist such a dataset of pigmented skin lesion im-
ages, this group of descriptors was not included.

3.9 discussion

Implementation details on the FGT are given in appendix A.1. Computational per-
formance is an important measure for application quality and usefulness in actual
research and deployment, we have done speed tests with the time application on
the single threaded featuregen tool. All tests were performed on a 2.3 GHz Intel
Haswell Mac laptop with 16 GB RAM and an Solid State Drive (SSD).

Every feature of the list of features F used by FGT is O(cMN) for images of size M
x N and constant c. If we have n images, this would mean that the complexity of
FGT is O(ndMN) with constant d >

∑F
i=1 c. We must however explain that since

we have a substantial number of features, of which most have a c > 1, constant d
will in most cases have a major influence on the running time of FGT. The size of
the images and the number of images that have to be processed have in general
the largest influence on the running time of the application.

When we look at how many images are processed in each dataset and the total
time taken, we can conclude that the average time used per image is about 1.24
seconds, which can be described as sufficient for this amount of features per image.
Note that all images have been reduced in size to fit within a window of 1024 x
1024 whilst maintaining there original aspect ratio.

Together with the .data output file, the tool also generated a .txt file containing a
description in tree form of all the attributes it generates using a simple syntax. An
example of a few lines of this file is shown in listing 1. This file can later be used
to great effect in the FGT, as we will see in chapter 5.

The application is tested with the Valgrind memory debugging and memory leak
detection tool under Linux, which concluded that there are no memory leaks or
other problems. The tool is robust, but only when one does not deviate from a
strict set of rules and images. The algorithm used to generate the path around the



3.9 discussion 38

mask boundaries cannot cope well with outliers or more then one mask on one im-
age. Therefore we can enforce the following rule: every mask file can only contain
a single connected component.

Listing 1: Top part of an attribute tree.

all;rgb;rgb_co_occur;lab;general;metadata

rgb;mean;std;hist;variance;skewness;kurtosis;sobel;rel_chrom;col_var;lbp

rgb_co_occur;vert;hor

lab;lab_mean;lab_std;lab_hist;lab_variance;lab_skewness;lab_kurtosis;lab_rel_

chrom;lab_col_var;lab_lbp

general;centroid_diff;compactness;moments;pca_asymm_scale_index;border_path_

hist;hog

metadata;name;height;width;mask_image_fraction

mean;mean_r;mean_g;mean_b

std;std_r;std_g;std_b

hist;hist_r;hist_g;hist_b

hist_r;hist_r_0;hist_r_1;hist_r_2;hist_r_3;hist_r_4;hist_r_5;hist_r_6;hist_r
_7;hist_r_8;hist_r_9;hist_r_10;hist_r_11;hist_r_12;hist_r_13;hist_r_14;

hist_r_15

... �



4
C L A S S I F I C AT I O N

Feature vectors alone do not result in classified skin lesion images. The classifica-
tion problem still has to be solved (step 6 of figure 2). This classification problem
has unknown datapoints that belong to one of two or more classes. A classification
algorithms tries to determine to which class the unclassified datapoint belongs.

Classification problems can be divided into two groups: those that can be classi-
fied with linear classifiers and those that can only be classified with non-linear
classifiers. A classification problem is linear when observations from two groups
is separable by a hyperplane in a linear projection of the data. Such a hyperplane
is also known as the separable boundary. A non-linear problem defines the exact
opposite situation. In figure 10 we can see the difference between a linear and a
non-linear problem. A non-linear classifier can be used to solve a linear problem,
the opposite is not possible.

(a) (b)

Figure 10: Subfigure (a) shows a linear classification problem. Subfigure (b) shows an ex-
ample of a non-linear classification problem. Adapted versions of an image by
Sebastian Raschka [58].

When we have more than two groups in our dataset we can still use linear clas-
sifiers, although in that case we would need more then one classifier. We could
set up a structure where for every group we have a binary linear classifier with a
corresponding test to check if it belongs to a specific group or not. If we combine

39
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all classifiers with a decision (tree) structure we can use linear classifiers to classify
more then two groups.

In chapter 2 we discussed that we had chosen two classifiers: kNN and SVM. First
we will explain both classifiers in detail, followed by a discussion of the different
normalisation modes of the tool. Thirdly we give an explanation of the tool made
to apply the classifiers on our descriptor output data. We will end with a discussion
section.

4.1 k nearest neighbours

kNN is a simple and popular object non-linear classification algorithm with a his-
tory going back as far as 1951 [59, 60, 61]. It is a high quality classifier since it
uses all available data and looks at multiple connections between the unclassified
sample and other samples. It works by calculating distances between a new data-
point and all other datapoints in the dataset. The object is then assigned to the class
which won the majority vote from a total number of k closest neighbours (see also
figure 11). In general a k value > 1 is used since it prevents a new datapoint being
classified as the class of an outlier. The k value is also often an odd number to get
an automatic majority vote among the classes.

Figure 11: The green circle shaped datapoint needs to be classified. After distances are
calculated between all blue squares and red triangles, a selection is made for
either the k = 3 (inner closed circle) or k = 5 (outer dashed circle) closest
datapoints. Image by Wikipedia user AnAj, public domain license.
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kNN functions best in cases with large amounts of data and low noise levels. The
need for large amounts of data can make kNN a slow classification algorithm.
Performance of a standard kNN implementation takes O(n2D) time, where D is
the number of dimensions of the dataset and n is the number of observations in the
dataset. In numerous cases where kNN is used, there is not enough data available.
Therefore more efficient algorithms are needed.

Different distance measures can be used for determining distances between data-
points. In this project we use Euclidean distance. Although normally applied to
LVQ, a number of alternative distance measures can also be used on kNN. A sim-
pler measure is the Manhattan distance measure, which in some situations per-
forms better (although tests for this project have concluded that performance in
this situation is worse compared to using Euclidian).

A different group of distance measures can be found in asymmetric distance meas-
ures which in certain other cases can result in better classification performance
then using Euclidian distance. For more information see [29, 30, 15] among others.

4.2 support vector machines

SVMs grew out of the Vapnik-Chervonenkis theory, a theory developed between
the 60’s and the early 90’s by Vladimir Vapnik and Alexey Chervonenkis in the
Soviet Union as a major sub-branch of statistical learning theory. SVM in its current
form was introduced by Cortes and Vapnik in [62].

Since SVM is a complex classifier, a solid explanation should be given. The follow-
ing introduction into SVMs is based on that paper and a lecture by Patrick Winston
for MITs OpenCourseWare [63] and by Russell and Norvig [31].

The basic SVM variant is a linear binary classifier. If it is possible to separate two
groups with one separable boundary in a linear classifier, there are infinitely many
options for such a boundary.

When describing methods it is convenient to use only two dimensions, but in
practical situations there are often more dimensions present. For our explanation
we can therefore imagine our hyperplanes as lines.

The basic goal of the SVM is to find the separating hyperplane that gives us the
’widest street’ available between the two classes of data. The dashed line in figure
12 signifies the optimal hyperplane for our simple 2D example case and two closed
lines defining our wide street. Each of the two lines are located on one or more
datapoints from each class. These datapoints are called the support vectors. The
distance between the two lines is defined as the margin. We want to maximize this
distance to find the optimal margin. Therefore in its essence, SVM constitutes to
margin maximisation.
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Figure 12: An example showing a 2D classification problem with two classes, one de-
scribed with circles, the other with crosses. The grey squares show the support
vectors that determine the margin of largest separation between the datapoints
of the two classes. Image from [62].

4.2.1 Definition

To find this optimal hyperplane, we first need to define the decision rule that
determines the hyperplane. With this decision rule we can also establish on which
side of the hyperplane an ’unknown datapoint’ (read: still to be classified) lays.
The class on the right side (the crosses in figure 12) is defined as class + and the
class on the left side is defined as class −.

To accomplish this, a vector ~w is needed that is perpendicular to the median line
of the street but with an at this moment unknown length. This makes ~w a normal
of the separating hyperplane. The unknown datapoint constitutes a vector ~u with
origin (0, 0). To determine whether ~u lies on the left or the right side of the separ-
ating hyperplane, we take the dot product for a constant c: ~w · ~u > c. We now have
the distance proportional to the direction of ~w and using b = −c we can rewrite
our equation to:

~w · ~u+ b = 0. (30)

When the equation above is true, we know ~u to be on the right (as in not left) side
of the separating hyperplane. Therefore, equation 30 is our decision rule. Now say
we have a sample point ~x+ for which we know it belongs to class +. With equation
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31 we want to insist that if a sample point belong to class +, the result should be
equal or greater then 1. The same can be said for class −, hence:

~w ·~x+ + b > 1, (31)

~w ·~x− + b 6 −1. (32)

With a mathematical convenience we can combine both equations 31 and 32 by
introducing an extra variable yi, where yi is +1 for samples from class + and −1

for samples from class −. Hence equation:

yi(~w ·~xi + b) > 1. (33)

For all the samples of ~xi that are on the two hyperplane sides of the street, the
equation can be simplified even further to form:

yi(~w ·~xi + b) − 1 = 0. (34)

Using this, we can now describe the distance between the two sides of the street,
the length of the optimal margin, by taking the difference (~x+ −~x−) between two
samples that lay on opposite sides of the street. The distance can be calculated by
turning ~w into a unit vector and taking the dot product of that with our difference
to form:

(~x+ −~x−) ·
~w

||~w||
. (35)

If we now enforce equation 34 onto equation 35, we come to the much simpler
equation for our street width:

2

||~w||
. (36)

With our SVM we try to maximize equation 36. All this knowledge combined
results in figure 13.

By dropping the constant and the division, we can state that we actually want to
minimize ||~w||. Or, for later mathematical convenience, we want to minimize 12 ||~w||

2.
For this optimisation problem we need to use Lagrange multipliers to form a new
minimalisation function L. αis a multiplier in this equation, which is described by:

L =
1

2
||~w||2 −

∑
i

αi[yi(~w ·~xi + b) − 1]. (37)

By finding the derivatives and setting them to 0, the minimalisation problem be-
comes much easier to solve. To do this, the derivative is changed to ~w:

∂L

∂~w
= ~w−

∑
i

αiyi~xi = 0 => ~w =
∑
i

αiyi~xi. (38)
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Figure 13: Detailing the maximum separating hyperplane and the margin. Image by Wiki-
pedia user Peter Buch, public domain license.

Since b can also vary, its derivative has to be changed too:

∂L

∂b
= −
∑
i

αiyi = 0 =>
∑
i

αiyi = 0. (39)

Now we can fill in equation 38 in equation 37, resulting in:

L =
1

2
(
∑
i

αiyi~xi) · (
∑
j

αjyj~xj)−
∑
i

αiyi~xi · (
∑
j

αjyj~xj)−
∑
i

αiyib+
∑
i

αi. (40)

Since b is a constant, we can transform this long equation into a much simpler
form. This new function needs to be maximised:

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj~xi ·~xj. (41)

Something important can now be concluded from L: our maximalisation problem
is only dependant on the dot product of the samples ~xi ·~xj. If this result is fed back
into our decision rule with our unknown sample ~u, we get:∑

i

αiyi~xi · ~u+ b > 0. (42)

If this equation is equal to ’true’, we can conclude that sample ~u belongs to class +.
Therefore, the decision rule also only depends on one dot product: ~xi · ~u. As Win-
ston points out [63]: it has been proven that the hyperplane optimisation problem
that SVM solves after several iterations, is convex. It can therefore never get stuck
in a local maximum.
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4.2.2 Kernels

The default version of SVM is however only usable for linear problems. Using ker-
nels, SVMs can be used in non-linear classification problems, making it much more
powerful in many real world cases. The kernels enable the classifier to operate in a
dimensionality that is higher than the datasets dimensionality using the mapping
function φ(~x). This higher dimensionality is also an implicit feature space.

We have shown earlier that we only need to maximise our dot products. Therefore
it is now possible to wrap the mapping function around the two vectors of the dot
product, giving us φ(~xi) ·φ(~xj) and φ(~xi) ·φ(~u).

Figure 14: A kernel operation transforms a non-linear classification problem into a linear
classification problem. Image by Wikipedia user Alisneaky, public domain li-
cense.

This results in a kernel function K as can be seen in:

K(~xi,~xj) = (~xi ·~xj)d. (43)

This kernel function has the advantage that the original mapping function φ(~x)
does not have to be solved any more. This step is known as the kernel trick and
was originally proposed by Aizerman et al. in 1964 [64]. The kernel trick provides
the ability to increase the dimensionality without ever computing the coordinates
of the data in that space. A simple visual depiction is given in figure 14. This basic
kernel is known as the Linear kernel and is actually a version of the homogeneous
kernel with a power d of 1. The inhomogeneous variant of this kernel is defined
by:

K(~xi,~xj) = (~xi ·~xj + 1)d. (44)

There are many other kernels available besides the Linear, the most common be-
ing: Polynomials of higher degrees then 1, RBF or Gaussian and the Hyperbolic
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Tangent. For the classification problem we have used two types: the Linear kernel
(as seen in equations 43 and 44) and the RBF kernel as described by Vert et al. in
[65], with σ being a free parameter:

K(~xi,~xj) = e
−
||~xi −~xj||

2σ2 . (45)

We name the Linear kernel version Support Vector Machine Linear (SVML) and the
RBF kernel version Support Vector Machine Radial Basis Function (SVMR) from
now on in this work. Compared to the Linear kernel, the RBF kernel can map the
data to infinite dimensional spaces and can cope with multiple clusters of similarly
classed samples.

4.3 normalisation

Since classifiers compare values of the same descriptor type, a classifiers perform-
ance can be enhanced by applying a normalisation step. Feature vectors for every
image are stored together in one dataset as rows, therefore all the elements of each
descriptor are together in columns. The normalisation step is applied over all data
(both the test set and the training set) in the dataset.

We have included two types of normalisation: scaling and standard score. With
scaling normalisation, we take the minimum and maximum value of every column
and rescale all the values in each column to be between 0 and 1. An alternative
variant is the standard score, were for every value in a column the following is
done: the column’s mean is subtracted, after which the result is divided by the
standard deviation of the column.

4.4 discussion

Implementation details on the Classification Tool are given in appendix A.2. Let us
discuss its finer details and performance. First we will go over the speed of the
classifier application with an example classification case on 753 images, where we
have bin = 16, HOG bin = 16, no preprocessing, border features and a k value of
13 for when we use kNN. The results are shown in table 1.

From these time performance results we can conclude that SVMR is by far the
slowest classifier of the three. The largest contribution to the slowness of the im-
plementation is caused by the auto-train feature of OpenCV and the fact that the
time the auto-train function takes is variable according to the dataset that needs to
be classified.
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Classifier Time needed (s)

kNN 1.907

SVML 9.623

SVMR 116.829

Table 1: Speed performance of the three classifiers on our ’baseline’ classification test of
753 images.

The classifier application is robust. If the input files and all the parameters are cor-
rect, the classifier tool has a predictable and stable outcome. Since the functionality
and behaviour of the classifiers is known and stable, the accuracy performance gen-
erated by the tool is completely dependent on the dataset images, the descriptors
that have been used and the k value for the kNN.

Andrew Ng gives an explanation on when to use SVML and when to use SVMR
in [66]. According to him, it is best to use a linear kernel when the number of
features is larger or equal to the number of observations. And SVMR is best to use
when the number of features is about the same as the number of images up to the
point where you have around 50 000 images. Since our number of features is in
the hundreds and the number of images in most datasets is in the same range, it
would make sense that the difference between accuracy scores between SVML and
SVMR will not be big.



5
F E AT U R E S E L E C T I O N F O R C L A S S I F I E R C O N S T R U C T I O N

Using the tools and systems we described in the previous chapters, we can now
start with exploring datasets to reach our actual goal: a way to visually explore the
feature space to determine a possible feature subspace. This feature space should
have the following characteristics:

a) It should be smaller than the original full feature space.

b) It should lead to a higher quality classifier.

First we will give an overview of the datasets that are available to us. We continue
with a detailed look at a feature exploration tool Featured that will be used to test
the quality and usefulness of the descriptors. We will end with a section on the
research plan.

5.1 datasets

Two datasets are used in this thesis. One is provided to us by the main supervisor,
Dr. A. C. Telea and contains (for us) unclassified images. However, it is known that
a subset of the images are melanoma. All images have been made with dermato-
scopes. We will name this dataset Dataset 1 and it contains 61 images, together with
corresponding mask images. These masks have been made using a GVF based seg-
mentation method made by Parolin et al. [11].

The other dataset comes from the EDRA atlas dataset [67] and has been provided to
us by Dr. M. Emre Celebi of the Department of Computer Science at the Louisiana
State University. We will name this set Dataset 2 and it contains 1040 images made
with dermatoscopes, together with a spreadsheet file containing metadata on all
images. The images are classified into 20 classes, where each class contains at least
a few dozen pictures. The spreadsheet contains a wealth of information about the
categories used by physicians to classify the lesions.

In figures 15a and 15b we can see examples of images from Dataset 2. Here the
original colour image and its mask are combined together, and the mask boundary
has been highlighted in yellow on the original images. This yellow boundary is for
visual observation by users, it is not included in the images used by the feature
generation tool. The black size measurement mesh seen on the left side in figure
15b could have a slight influence on the outcome of the relative chromaticity and

48
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(a) (b)

Figure 15: Two example images from Dataset 2 with their corresponding masks.

colour variance descriptors, since those descriptors use colour values from areas
surrounding the mask.

From Dataset 2 we selected a total of 1021 images. Some of the images in this
dataset do intersect the image border. We will focus on images that depict either
naevi or melanoma, resulting in a selection of 753 images. 268 of these contain
naevi and 485 contain melanoma.

All images and third party masks in the dataset were originally stored as .jpg
or .png files but for our purpose they have been converted to .ppm and .pgm
respectively. These lossless formats make it easier for our tools to work with them.
Binary versions of .ppm and .pgm are used to save storage space.

5.2 featured

The next major step in our pipeline is the exploration of the features we generated
from the sets of images (step 4 in figure 2). To make this exploration possible,
Paulo Rauber has made a Graphical User Interface (GUI) tool in Python called
Featured (see figure 16). The paper “Interactive Selection of Image Features Aided
by Dimensionality Reduction” [6], written by Paulo Rauber and among others
co-authored by the author of this thesis, depicts the application and its general
workflow in more detail.

The major idea behind this tool is to load a dataset of images and corresponding
generated features, to plot a special 2D projection of all those feature and to be
able to explore, both manually and with the help of scoring tools, the contribution
of each of the features to the overall result. This way, a user can determine which
set of features gives a high classification score.

The tool takes as input an .data file full of names of images and their corresponding
feature data, as generated by either the FGT or from external sources. Together
with the .data file it needs a folder with all the original images of the dataset and
a feature tree structure .txt file.

Once the .data file and the images are loaded in, we can start to explore the data-
set. In the top half of the screen we can see all the images of the dataset in the
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Figure 16: The application Featured, showing a subset of features from Dataset 2.

observation view. Images can be selected to see close-ups. The feature view is loc-
ated on the top left side of the tool, showing a list of all the features of the datafile.
These are generated from the feature tree structure file together with all the correct
feature labels as described in chapter 3. The lower left side of the tool contains the
group view, showing the different groups the dataset is divided into, either from
the original data, or from selections made by the user.

The projection view in the lower window shows a 2D scatter plot of the projection
of the featurespace generated using one of several dimensionality reduction meth-
ods. The datapoints in the scatter plot can be coloured according to user-selected
features from the feature view or user-defined groups from the group view.

The most important projection technique is the Least Squares Projection (LSP)
method, as implemented by Paulovich et al. [68]. LSP uses least squares approxim-
ations to find the coordinates of the points in the projection from the coordinates
of a subset of the points of the dataset, the control points. An important ability
of the LSP technique is that it tries to preserve similarity relationships between
neighbouring datapoints as much as possible.

When a projection of a dataset is made, a user can explore its scatter plot using
several selection options. A subset of images in the plot can be selected with the
standard mouse-dragging operation. The corresponding images in the observation
view are then highlighted. Selecting a subset of features in the feature view imme-
diately generates a new projection.
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Figure 17: Featured showing a table of scores generated with a one-way Analysis of Vari-
ance (ANOVA) test in the feature scoring view. Sliding a threshold line from
left to right enables the user to select features.

The tool can generate scoring sheets of all the features based on several relevance
metrics from three groups: univariate, multivariate and recursive feature elimina-
tion. These scores are shown in the form of a bar chart, from least relevant feature
on the left side to most relevant feature on the right side, in the feature scoring
view. An example of this view is shown in figure 17. The user can select a subset
of features, from which a new projection is generated and shown in the projection
view.

When either all or a subset of features is selected (step 5 in figure 2), a .data output
file can be generated for use in classification. More details about the tool can be
found in the aforementioned paper [6].

5.3 feature selection workflow

From our main research question from chapter 1 and all the methods and tools
we just discussed, we can now plan our research. We have shown some effective
algorithmic building blocks and generated tools with them. Since we have already
answered our first sub-question in chapters 3 and 4, and our second sub-question
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in this chapter, we can now focus on the main research question: How can we
empower the designer of skin lesion classification tools to effectively and efficiently
explore the design space of skin classification algorithms?

With the combination of the FGT, Featured and the Classification tool, it is possible
for a classification system designer to explore the descriptor space and determine
which set of features gives the highest classification accuracy. We first need to test
all the other parameters and options of the FGT and the classifiers to determine
how we are going to achieve high accuracy scores, resulting in the following four
main cases:

1. Define our baseline parameter combination and generate classification result
on baseline case.

2. Generate all variations of parameters on baseline and generate classification
results from them.

3. Test different feature subset types.

4. Test unknown images from a different test dataset.

This baseline case is created to compare parameter options against a reasonable
default set of settings. The number of combinations of all parameters and options
is large in such a degree that it is not feasible to generate them all in this project.
Therefore it is best to define a baseline case and then to test all the options com-
pared to it. We can now start testing and comparing different subsets of images
with the baseline case, hopefully resulting in a score that is as high or higher than
our baseline case.

Our baseline case includes the following: 753 naevus and melanoma images from
Dataset 2, 16 histogram bins, 16HOG bins, no boundary features, no pre-processing
and standard score normalisation. 5-fold cross validation is used to generate our
classification results.

With k-fold cross validation, the original set of samples in the dataset is partitioned
into k equal sized subsets. Therefore with 5-fold cross validation, a k value of 5
is used. Of the k subsets, one subset is held back as validation data for testing
the model, and the remaining k− 1 subsets are used as training data. The cross-
validation process is repeated k times, known as the folds, with each of the k
subsets used only once. The k results from the folds can then be averaged to pro-
duce a single score: in our case the classification accuracy. The advantage of this
method is that all samples in the dataset are used for both training and testing and
that each sample is only used once.
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Combining all factors mentioned above results in 10 main test cases:

1. Baseline case test to determine the optimum k value for kNN.

2. Baseline case for the 3 classifiers: kNN, SVML, SVMR.

3. Baseline case normalisation test.

4. Baseline case preprocessing test.

5. Number of histogram bins.

6. Border features.

7. Influence of descriptors classes.

8. Subsets of features.

9. Best of all.

10. Compare Dataset 1 containing non-previously-classified images with the baseline
training set on Dataset 2.

The results for these 10 tests will be given in the 6 chapter and they subsequently
will be discussed in chapter 7.



6
R E S U LT S

This chapter will show and explain the results of the 10 test cases shown at the end
of chapter 5. Tables, plots and images of projections are included to better illustrate
the results. A discussion of the results will follow in chapter 7.

test 1 : baseline k value test

The kNN classifier applied to the baseline case with Dataset 1 gives the results
shown in figure 18. From these results we can conclude that k = 13 corresponds
to the best kNN classification accuracy score of 0.769. From now on we will use
k = 13 for kNN. However, the differences in classification score between k = 5 and
k = 25 seem minor.
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Figure 18: kNN scores of baseline case.
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test 2 : baseline classifiers test

Now that we have chosen our default k value, we can compare the classification
scores of SVML and SVMR with kNN. The accuracies are listed in table 2. Here
we can see that we have a 4% spread in accuracy score between SVML and SVMR,
with kNNs performance right in between them.

Classifier Score

kNN 0.769

SVML 0.748

SVMR 0.788

Table 2: Comparing kNN, SVML and SVMR classification accuracy for baseline case.

test 3 : baseline normalisation test

For our third test we will compare the two normalisation methods for our three
classifiers. On the bottom axis we have our 3 normalisation modes: 0 for no norm-
alisation, 1 for scaling and mode 2 for standard score. If we look at table 3 and the
corresponding figure 19, we can see that not applying normalisation always has a
negative effect on the accuracy of an classifier. We can conclude that scaling nor-
malisation results in the highest classification score for SVML, that kNN favours
standard score normalisation and that SVMR favours both versions of normalisa-
tion over no-normalisation.

Norm

Classifier 0 1 2

kNN 0.689 0.737 0.769

SVML 0.506 0.787 0.748

SVMR 0.700 0.789 0.788

Table 3: Differences in classification score for the different normalisation modes.
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Figure 19: Differences in classification score for the different normalisation modes, based
on table 3.

test 4 : baseline preprocessing test

To test the pre-processing options for our classifiers, the three modes that were
explained in chapter 3 are compared with no pre-processing. Mode 0 is no pre-
processing, mode 1 is unsharp mask filtering, mode 2 constitutes contrast stretch-
ing and in mode 3 contrast stretching is followed by applying the unsharp mask
filter.

When we look at table 4 and figure 20, we can see that applying contrast stretching
has a positive effect on the accuracy score for kNN and SVMR. Mode 3 also gives a
slightly higher score for SVMR compared to mode 0, but the difference is too min-
imal for stating that there is a definite improvement. SVML is however behaving
unexpectedly. Both modes 1 and 2 have a substantial negative effect, but applying
mode 3 has a slight positive effect. This is also unexpected behaviour. Both mode 1
and 2 have a very big negative influence on the classification score and should not
be applied. However, mode 3 does seem to have a slight positive effect on the score.

Pre-processing mode

Classifier 0 1 2 3

kNN 0.769 0.761 0.778 0.762

SVML 0.748 0.691 0.697 0.764

SVMR 0.788 0.784 0.805 0.793

Table 4: Differences in classification score for the different pre-processing modes.
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Figure 20: Differences in classification score for the different pre-processing modes. Cor-
responding to table 4.

test 5 : number of histogram bins

The number of bins for the general histograms and HOG descriptor histogram of
the baseline case are both set to 16. For more information on this, we refer back to
section 3 on histograms in the FGT. This test is an attempt to determine if deviating
from these default values has a positive or negative effect on the classification ac-
curacy. In both cases we have calculated all the baseline features for four example
values for the number of bins: 8, 16, 32 and 64 (all out of a possible 256).

Number of bins

Classifier 8 16 32 64

kNN 0.768 0.769 0.758 0.748

SVML 0.718 0.748 0.728 0.730

SVMR 0.809 0.788 0.789 0.786

Table 5: Differences in classification score for the different histogram bin sizes.

First up is the standard histogram bin size. Table 5 shows that, although the dif-
ferences are not large, there are differences of 1.5% to 3% between the lowest and
the highest accuracy score for each classifier type. kNN achieves higher accuracy
scores when 8 to 16 bins are used. A number of 16 seems to be great for SVML.
SVMR prefers a lower number of bins.

The results in table 6 shows that SVMR operates along an different pattern for the
number of bins used by the HOG descriptor. It prefers a larger number of bins used
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HOG number of bins

Classifier 8 16 32 64

kNN 0.771 0.769 0.773 0.769

SVML 0.732 0.748 0.730 0.716

SVMR 0.787 0.788 0.791 0.793

Table 6: Differences in classification score for the different HOG bin sizes.

by the HOG descriptor. kNN accuracy scores are overall unresponsive to changes
in number of HOG bins. Finally SVML performs best with the default number of
16 bins.

test 6 : border features

To test the influence of the border features we have applied the classifiers on the
baseline set of features on the 753 image dataset from Dataset 2, in combination
with the border features. In table 7 and the corresponding figure 21 we can see the
results for the three classifiers.

Norm

Classifier 0 1 2

kNN 0.690 0.733 0.756

SVML 0.576 0.779 0.701

SVMR 0.694 0.798 0.782

Table 7: Differences in classification score for the different normalisation modes when us-
ing border features.

If we compare these results with the classification results in table 3 from test 3, we
can conclude that the overall pattern and shape of the graphs with and without
border features is not identical. There is not a significant increase in accuracy score
when the border features are used. For example: SVMR combined with scaling nor-
malisation without border features gains a score of 0.789, but with border features
that score slightly increases to 0.798.
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Figure 21: Classifier accuracy scores when border features are enabled for different norm-
alisation modes. Corresponds to the results in table 7.

test 7 : influence of descriptor classes

Before testing subsets of features, it is recommended to have a look at the spread
and effect of the descriptors. Image 22a shows the projection of all the descriptors,
feature vector of length 369, generated by the FGT except from the 4 metadata
features. In images 22b, 22c, 22d, 22e and 22f we can see the projections made for
the 4 different major groups of descriptors and the HOG feature. All the projection
images have been generated by Featured. All the red datapoints in the projections
belong to the naevus class images and all the blue datapoints belong to the melan-
oma class images.

Some of these projections have peculiar shapes, especially the one shown in figure
22e. The more important observation however, is the fact that there is no clear sep-
aration between the two classes in any of these projections. There is always a major
overlap in projection areas of both classes. Even more important: the projection of
all features in figure 22a is not significantly different in overlapping area compared
to the other major projections. From this we can conclude that using just one of the
major descriptor classes does not guarantee an above average classification score.
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(a) Projection of all features. (b) Projection of all RGB features.

(c) Projection of all Lab features. (d) Projection of RGB co-occurance matrix
features.

(e) Projection of all HOG features. (f) Projection of all border features.

Figure 22: (a)-(f): all are LSP projections showing the distribution of datapoints for several
descriptor class combinations.
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test 8 : subsets of features

Using Featured to explore the feature space, we have come up with three subsets.
Firstly, we have subset 1, containing a feature vector of length 16:

Subset 1

• hist_r_3

• hist_r_4

• hist_r_5

• hist_r_7

• hist_g_5

• sobel_hist_g_5

• col_var_r

• col_var_b

• lab_std_b

• lab_hist_l_1

• lab_hist_l_2

• lab_hist_l_5

• lab_hist_b_7

• lab_hist_b_8

• lab_hist_b_9

• lab_variance_b

For example: ’hist_r_3’ stands for the third bin of the histogram of the red colour
channel. A LSP of these descriptors can be seen in figure 23a. Here we can see a
slightly larger group of blue melanoma datapoints that appear to be slightly more
separated from the other mixed datapoints compared to the previous projections
in figures 22a to 22f. This seems to point at a better separation existing between
the two classes. But there are still many blue melanoma datapoints spread out in
between the red naevi datapoints. Therefore we cannot make any definitive con-
clusions yet.

(a) Subset 1. (b) Subset 2.

(c) Subset 3.

Figure 23: LSPs of the three subsets.
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Next up is subset 2, which was created by applying the randomised decision tree
feature scoring method in Featured to the naevus class and manually selecting the
top few features from an empirically chosen threshold. Its projection can be seen
in figure 23b.

Subset 2

• hist_r_2

• hist_r_3

• hist_r_4

• hist_r_5

• hist_r_6

• lab_std_b

• lab_hist_l_2

• lab_hist_l_4

• lab_hist_b_8

• lab_hist_b_9

• lab_variance_b

Finally we have subset 3, created in the same manner, but now applied to the
melanoma class. Its projection can be seen in figure 23c.

Subset 3

• hist_r_3

• hist_r_4

• hist_r_5

• hist_r_6

• lab_std_b

• lab_hist_b_8

• lab_hist_b_9

• lab_variance_b

As we can see, there are many descriptors the subsets have in common. Even more
specifically, subset 3 is a subset of subset 2, which in turn is almost a subset of
subset 1.

Set of features

Classifier Baseline Subset 1 Subset 2 Subset 3

kNN 0.769 0.770 0.773 0.772

SVML 0.748 0.782 0.781 0.777

SVMR 0.788 0.786 0.778 0.765

Table 8: Differences in classification score between the baseline version, subset 1, subset 2
and subset 3.
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We compared the classification results from the three classifiers with our baseline
case in table 8. kNN performs slightly better with any of the descriptor subsets, but
all differences are within 0.5% of each other. SVML performs substantially better
with any of the subsets, attaining its highest score with subset 1. For SVMR we can
conclude that it performs as well with subset 1 as with all the features. However,
subset 2 and especially subset 3 show a significant lower performance. We have
attempted to find other interesting subsets but they all had substantially lower
accuracy score and were therefore deemed not relevant enough to be included in
this thesis.

test 9 : best of all

All the previous tests combined with the parameters for which each option in the
tool attained the highest accuracy scores, should result in an overall ’maximum’
classification score. We have picked two parameter combinations to test this. For
best set 1 we run the FGT and Classifier Tool with the following settings: SVMR
classifier, scaling normalisation, contrast stretching pre-processing, 8 histogram
bins and 64 HOG histogram bins while also using all features including border
features.

For best set 2 we run with the following settings: SVMR classifier, but now with
standard score normalisation, contrast stretching pre-processing, 8 histogram bins
and 64 HOG histogram bins and again using all features including border features.
The total feature vector length for both these versions is 289. The results can be
seen in table 9.

Set of features

Classifier Baseline Best set 1 Best set 2

SVMR 0.788 0.806 0.822

Table 9: Classification score between the baseline version and the two best sets.

Selecting the correct combination of parameters seems to have a significant influ-
ence on the accuracy score. From all tests we have done, the combination best set
2 generates our highest accuracy score of 0.822.

test 10 : test set Dataset 1 combined with training set Dataset 2

For our final test we compare non-classified images from the previously mentioned
Dataset 1 with Dataset 2 as the training set. Baseline parameters are used for all
datasets and SVMR is used as the classifier. The correct classification of these two
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sets, as previously created by medical specialists for one of the supervisors, was
not known to the author of this work at the time of testing.

When we run this setup for the 61 images from Dataset 1, all images are classified as
belonging to the benign naevus group, except for one image, which was classified
as being a melanoma. Two dermatologists have rated this same dataset and stated
that of the 61 images, they would classify two as being ’borderline’ between benign
and malignant, while all the other images would be classified as benign.
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D I S C U S S I O N

Did we actually solve our initial problem? And if so, to what extent? In this chapter
we will go over the observations and conclusions that can be made based on all
previous work for this project. Specific improvement propositions will be explained
in detail in chapter 8 and our final conclusion will follow in chapter 9.

7.1 segmentation and pre-processing

Since this thesis does not attempt to give a qualitative comparison of segmenta-
tion methods applied on skin lesion images, we have no conclusions concerning
this available. However, we can state that both the GVF and superpixel methods
give potentially high quality segmentations of skin lesions. Since both methods
have a manually controlled first phase, their final segmentation quality depends
significantly on human influence. The test results of chapter 6 do show that the
segmentations used in this thesis are good enough for high classification results.

The pre-processing test in test 4 of chapter 6 shows that pre-processing in general
has the potential to improve accuracy scores: contrast stretching helps both kNN
and SVMR achieve better classification results. As stated in chapter 3, the three
modes of pre-processing tested in this work might not be the best ones available.
Therefore any final conclusion cannot be made yet. However, as seen in test 9,
including contrast stretching in the best combination of parameters does suggest
that it has a positive effect in making the accuracy score substantially higher.

7.2 dataset quality

The quality of the dataset has a major influence on the outcome of the classification
process. The images should be taken with the camera being straight above the
lesion. Lighting should be consistent and without shadows. White balance (also
known as the colour temperature) should be neutral. The images should have
been segmented correctly and there should not be too much healthy skin included
within the skin lesion section.

However, the resolution of the image does not have to be exceptionally high since
it would only slow down the feature extraction process significantly. In addition,
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the quality of the extracted features does not advance from when a certain level
has been reached. Images should also not be too small in resolution, since in that
case we cannot extract all required information.

Another factor of training set quality is the aspect of dataset symmetry. It is best
for the performance of an classifier if a dataset with > 2 different classes has an
equal number of elements (in our case images) in each class. If the number of
elements per class is equal, the dataset is balanced or symmetrical. If the number
is not equal, the dataset is unbalanced or asymmetrical.

A training set which has a disproportionately high number of elements of one class
will result in a classifier that is biased towards this majority class. When a classific-
ation algorithm that has been trained on such data is applied to a test dataset that
is also unbalanced, the classifier will give results which are too optimistic.

The training set used in this project is asymmetric: one class contains 268 images,
the other contains 485 images. However, we have seen datasets used in affiliated
literature that are even more unbalanced. This unbalance does not mean that the
accuracy scores achieved in with our research are invalid, but the knowledge that
the dataset is unbalanced does have to be taken into account by the reader.

Certain datasets used in research done by others contain both images made with
standard digital cameras technology and images made with dermatoscopy meth-
ods. As explained before in chapter 2, these two types of images are really differ-
ent from each other. It therefore seems unwise to use both types together in one
dataset. The images in the datasets used in our research have all been made with
dermatoscopes.

The amount of effort needed to create a dataset that is consistent in its image
capturing quality, large enough (> 1000 per skin lesion class for instance) and well
balanced between skin lesion classes and the fact that such datasets are not readily
available yet implies that there is still a major problem present.

This is probably caused by the fact that a substantial amount of time is needed by
medical professionals who are already short on time in general, together with the
strict ethics and privacy rules regarding medical information of patients currently
present. Even though it is good that these rules exist, the fact that all research in
skin lesion classification can be performed on anonymous data suggests that our
problem should not be as substantial as it currently is.

Especially the number of images in the dataset is of great importance. The datasets
many others have used are too small. A low point in this case has been achieved
by the set used by Kusumoputro and Ariyanto in [24], which had only 29 images
with malignant melanoma and 34 images containing benign lesions.
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7.3 other dataset quality considerations

Darker human skin colours have generally been avoided so far in most exist-
ing literature for the fact that it is considerably more difficult to apply a feature
based classification system in such occasions. The contrast and colour differences
between healthy and unhealthy skin are much smaller compared to lighter skin col-
ours. Likewise, there is hardly any dataset available containing images of people
with darker skin colours.

It would be safe to state that research within this field requires datasets with a
higher variety in skin colour. To accomplish this it would be recommended to ad-
just the privacy rules to enable required data to be published and used. Since there
is no way for the skin lesion classification system researcher to link an skin lesion
image to the person it was taken from there should be no privacy issues.

(a) (b)

Figure 24: Differences in general skin colour present in datasets. Image (a) shows an ex-
ample where the human skin seems almost too white. Image (b) shows an ex-
ample where the human skin seems unrealistically red.

But if we compare figures 24a and 24b with each other, it is clear where our prob-
lems lie: there can be a great variety in human skin colours or lighting situations
causing problems for automatic classification systems. In this case we will have a
problem with the reddish colour of the ’healthy skin’ in figure 24b.

But why is the skin red in this case? Does the patient have a rash? Or did he or
she exercise just before the image was taken? Or are the camera settings incorrect,
causing a general red hue, which also affects the colour of the skin lesion in the
image? We can at least conclude that the tone levels of the images in the dataset
must be consistent.

In specific cases such as when a patient has a rash around the skin lesion, we
cannot assess the average skin colour. Maybe a larger skin area of the patient must
be photographed whereby a piece of the patients actual healthy skin becomes
visible.
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7.4 feature extraction and selection

Test 5 showed that the number of bins used in histograms can have a small but
still significant influence on the scores. However, since not all numbers have been
tested, the optimal number of bins cannot be given. But if more tests are done, it
should be possible to finalise which amount of bins give the best result.

Even though border features are of major importance for classifying skin lesion
by humans, the classification scores of test 6 show that in our case we have some
mixed results. On its own, the addition of border features only increases the clas-
sification score in a few cases, most notably with the use of SVMR in combination
with scaling normalisation.

As shown before though in the sources mentioned in chapter 3, more border fea-
tures in general seem to have a substantial contribution in automatic classification
systems. Using border features also does not negatively affect the score of the two
best sets in test 9 compared to the baseline case. Both observations contribute to
our conclusion that the border features are important to an automatic skin lesion
classification system.

As stated in test 7 of the results chapter, there is no clear separation between the
two classes of naevus and melanoma in any of these projections. The subsets of test
8 however show that certain subsets of descriptors can result in accuracy scores that
are as good, or sometimes even better, than the original scores with all descriptors
included.

However, in the end none of the tested subsets performed better then the SVMR
classifiers using all features. Therefore we conclude that if there is a need in some
future version of an automatic skin lesion classification system to enhance the
performance of the system by reducing the number of descriptors, it is possible
to use a subset of descriptors. This option should therefore only be used if the
baseline classification score including all descriptors is already high. Basically: a
score that is significantly higher that our current classification scores.

7.5 classification

We can now derive several conclusions based on the tests in the previous chapter.
The results of the three classifiers kNN, SVML and SVMR are close to each other
if their respective optimal parameters are used. This means there are other factors
that have a larger influence on the classification accuracy than just the choice
of classifier. These factors include: quality of dataset, the descriptors used, pre-
processing steps and the segmentation quality. However, this is only true for proven
high quality classifiers. Any of the other classifiers mentioned in chapter 2 should
be able to achieve comparable results.
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We can conclude from test 3 that applying normalisation has a positive influence
on classification accuracy in general. kNN prefers standard score normalisation,
SVML prefers scaling normalisation and SVMR works well with either. Our best
classification accuracy score of 0.822 in test 9 shows that selecting the correct classi-
fier, pre-processing step, number of bins and normalisation mode have a significant
influence on the accuracy score.

From the results of test 10 we can conclude that for the tested dataset Dataset 1,
which is of a completely different origin than the training dataset, our approach la-
belled images almost completely correctly in comparison to the observations made
by two dermatologists.

7.6 comparison with literature

Several classification scores achieved by others in the field are given in chapter
2, but will be repeated here. Are our accuracy scores comparable with respect to
the compatibility of our scores? Since almost all datasets used in related works
are different, an exact comparison is not possible. Cheng achieved “... an overall
classification success of 79%, with 70% of the benign lesions successfully classified,
and 86% of malignant melanomas successfully classified.” [4] using a multi-layer
perceptron neural network model.

Cheng’s overall accuracy score of 0.79 [4] is slightly lower then our maximum score
of 0.822, but we can conclude that our scores are in the same ballpark. Parolin et
al. in [11] attained overall accuracy scores between 0.8255 and 0.8841, depending
on how low their false negative rate was set. Which means that our score is only
between 0.5% and 6.2% lower than their accuracy score. Their score is therefore
reasonably similar to ours.

Celebi et al. in [13] achieve an accuracy score that is somewhere between 0.92 and
0.93, and therefore substantially higher than our best score. Their dataset contains
about the same number of images as our set, 564 images, but with only 88 of those
are images containing malignant melanoma. Their image set is significantly more
unbalanced in comparison with the set used in this work, which makes comparing
it with our accuracy scores less relevant. We can conclude that our accuracy scores
are consistent with results attained by others in the field.
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F U T U R E W O R K

From the previous discussion chapter 7 we can conclude that there are still ample
opportunities for improvements. We will therefore give a list of these opportunities
and their details in this chapter.

• Segmentation Process: Even though it was determined earlier that the su-
perpixel segmentation method in many cases results in the highest quality
semi-autonomous segmentations currently possible, in some cases the cur-
rent segmentations are not good enough.

However, certain questions still remain. When a segmentation method creates
a boundary based on the lesion, does this boundary follow the actual lesion’s
shape in close enough detail? Certain methods might create either a more
jagged or a smoother boundary than the actual lesion actually has, which
has a major influence on the credibility of the boundary features as actual
useful descriptors.

Since seed points have to be placed manually, what is the exact influence of
the seed placement to the correctness of the resulting mask? Is there actually
a way to automatically place these seeds? Or is this theoretically not desir-
able in the first place? These questions should be answered by doing more
research into ways of achieving even higher and more stable segmentations
the classifiers can use.

• Pre-processing: From the section on pre-processing in chapter 3, the results
in chapter 6 and the discussion in the previous chapter we concluded that the
performance of the pre-processing options tested in this work was not suf-
ficient enough to warrant their use. In literature however, other options for
this phase in the pipeline have been mentioned that could have a larger posit-
ive impact on accuracy performance. A more in-depth test on pre-processing
alternatives should therefore be conducted.

• Descriptors: As explained in the discussion section of chapter 3, there are
many other options for descriptors not yet used in this work. Descriptors
such as: dermal features if metadata is present, granulometry features, Four-
ier based features, LBP with local areas, bag of visual words, features using
pattern spectra based on connected filters in colour or even wavelet based
descriptors. There are also many more methods available to describe textures.
What would their influence be?
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• Classifiers: Since only two main classifier groups were tested in this thesis,
it would be better if several other classifiers could be included too. However,
since SVM is already a classifier with a very high accuracy rate, we do not
expect that there are classifiers available at the moment that would perform
substantially better on their own. It is however possible that higher classifica-
tion scores can be achieved with other normalisation methods than currently
used in this work.

There is a possibility that the auto-train functionality for the SVM parameters
as explained in chapter 4 is not performing well enough and that there are
other combinations of parameters available with which SVM could achieve
higher scores, but we do not expect this to have a significant impact.

• Bin size: Even though the influence of histogram sizes on the classification
accuracy has been tested in chapter 6, it has been made clear that a more
detailed research on the number of histogram bins has to be completed before
any conclusions on the optimal number of bins can be made. Even though
the influence of the bin size seems minor in the overall accuracy score, every
small improvement can help to attain an optimal classification result.

• Performance improvements: Seen the fact that the FGT must calculate all
these features for every images and it still does this in only several seconds
for each image, we can state that the performance of the application is suf-
ficient. However, when the resolution of the images in the dataset increases,
the performance of the tool drops significantly. Since the code for this re-
search was mostly written for workability, research and testing, and not for
ultimate efficiency, a very substantial performance boost could be gained by
improving the codebase of the tool.

One option to improve performance is to make the feature generation tool
multi-threaded. An easy operation, since the set of images in a dataset can
be seen as a batch of individual tasks, making the computational problem
embarrassingly parallel. At the end the results of the different threads have
to be combined into one .data file.

• Featured and subset possibilities: Since Featured is still a work in progress,
some of the tests should be redone when the application is finished, which
might result in finding better subsets of descriptors. This would be even
more important if extra descriptors become available. It is also possible that
a further developed Featured will give new opportunities for exploring the
descriptor space.
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C O N C L U S I O N

All the research in this field is directed towards creating a viable classification-
assistance-tool for medical professionals. We however have to conclude that this
end goal is not yet reached. The long list of future work in the chapter 8 has
shown that more research should be done first.

Whilst the automatic classification systems do reach accuracy results comparable
to dermatologists, we have to emphasize that there are still too many aspects that
have a negative effect on the results and therefore prevent the use of an automatic
classification system in active medical service as an assistance tool.

Datasets, pre-processing, selection and quality of features, normalisation, type of
classifier used: we have concluded in chapter 7 that all have their influences, large
or small, on classification accuracy. Chapter 7 has also emphasized that there are
many non-Computing Science related factors influencing classification outcome,
especially in relation to the datasets.

Consequently we need to ask ourselves: have we actually answered our main re-
search question?:

How can we empower the designer of skin lesion classification tools to
effectively and efficiently explore the design space of skin classification
algorithms in order to design better such tools?

We have shown in this work that this is achievable by creating a platform in which
descriptors of all kinds can be applied to datasets to generate measurements that
available for storage in an intermediate format. With a visual analysis tool such as
Featured, it is possible to explore the design space of descriptors and determine the
influence of specific ones. Using this knowledge, it is possible to either classify all
descriptor data or a subset thereof using any of several classifiers available.

Our highest accuracy score of 0.822 matches results achieved by others in the field.
If any or all of the remarks explained in chapters 7 and 8 are pursued, the potential
of creating an automatic skin lesion classification system that can assist in the
current medical world will increase substantially.
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A
A P P E N D I X

a.1 feature generation tool implementation details

The application of our selection of features F on a dataset of images, and the gen-
eration of the data output file used in further steps, is combined in the featuregen

tool. It is available as a Mac OSX and Linux command line tool, written in C++.
Software requirements are: g++ version 4.8.0 or higher, make, cmake and OpenCV
version 2.4.11 or higher. To run the the program on the dataset found in orig/

with the labels labels/ run:

./featuregen orig/ labels/ 16 16 border_features=yes ms1_16_16.data

Here we apply the tool on a dataset, setting its parameters with the following
command line parameters:

1. The path to the original images, orig/ in our example above.

2. The path to the mask images, labels/ in our example above.

3. How many bins all histograms of the features should have, except the HOG
descriptor.

4. How many bins the histogram of specifically the HOG descriptor should use.

5. Whether or not features using the skin lesion border should be used. Use
either border_features=yes or border_features=no.

6. And finally the name of the output file must be specified, combined with the
extension name.

It then stores all the filenames and paths of all images and mask images (also
known as labels). If the number mask of images is unequal to the number of ori-
ginal images, the tool goes into the earlier explained mask mode and will generate
a mask of the same resolution for each image instead of using the supplied mask
image. This will be the same for the whole batch of images.

In each iteration of the main processing loop, an image and a corresponding mask
image is imported using .ppm and .pgm read functions. P2, P5 ( .pgm) and P5, P6

(.ppm) variants of the Netbpm format are supported. The two images are stored in
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memory and consecutively each feature is extracted and stored in a feature vector.
At the end of the iteration the feature vector is added to a list. When all images
are processed, an output file is generated in the .data text file format from this list
of feature vectors, in accordance with the standard as used by the Data Exploration
Tool by [69]. This file can then be imported together with the original images in the
FGT.

a.2 classification tool implementation details

To be able to apply the classifiers and normalisation methods on our feature data
we have made a Mac OSX and Linux command line tool, written in C++ called
classifier. Software requirements are: textttg++ version 4.8.0 or higher, make,
cmake and OpenCV version 2.4.11 or higher. Two example cases for how to run
the program:

./classifier knn data/features.data 4 7 2

./classifier svm data/features.data 4 1 2

For which the tool has the following arguments:

• Type of classifier used. knn or svm.

• Path and name of the file with all the feature data.

• Number of feature elements on each feature vector that have to skipped be-
cause they are metadata (and should not be included in the classification).

• k value in case kNN is used, or the mode of operation in case SVM is selected.
Mode 1 means Linear SVM, mode 3 results in the use of the RBF kernel.

• Normalisation mode. Mode 0means no normalisation, mode 1means scaling
and mode 2 is for standard score normalisation.

The kNN implementation is made by the author himself, making it possible to fully
control the functionality of the classifier. Since implementing SVM is complex, we
opted to use the version present in OpenCV. SVM and its kernels are dependent
on several parameters that have to be set before the classification process starts.
Finding the optimal parameter settings is however an complicated affair.

The OpenCV implementation includes an auto-train feature for finding the best
parameter settings. In case of the SVML, we can state that the operation is fast.
However, SVMR needs a few seconds to find the optimal parameters. The tool at
this moment prints the classification result as command line output. However, this
can be easily extended to disclosing the results using output files.
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