
●r❛♣❤ ▲❛②♦✉ts ❜②

t✲❞✐str✐❜✉t❡❞ ❙t♦❝❤❛st✐❝

◆❡✐❣❤❜♦✉r ❊♠❜❡❞❞✐♥❣

▼❙❝ t❤❡s✐s ✐♥ ❈♦♠♣✉t✐♥❣ ❙❝✐❡♥❝❡

✸r❞ ❙❡♣t❡♠❜❡r ✷✵✶✻

❙t✉❞❡♥t✿ ❏✳❋✳ ❑r✉✐❣❡r

❋✐rst s✉♣❡r✈✐s♦r✿ Pr♦❢✳ ❞r✳ ❆✳❈✳ ❚❡❧❡❛

❙❡❝♦♥❞ s✉♣❡r✈✐s♦r✿ P✳❊✳ ❘❛✉❜❡r

In this thesis, the use of the t-distributed Stochastic Neighbour Embed-
ding (t-SNE) multidimensional projection technique for producing graph
layouts is evaluated. t-SNE is typically used for visualizing high-dimensional
data as two- or three-dimensional scatter plots. In our work, graphs are rep-
resented as high-dimensional datasets, and are projected to two-dimensional
layouts using a suitably adapted t-SNE method. The novel graph layouts are
visually compared with layouts obtained by current state-of-the-art methods.
The comparison shows positive results that support the suitability claim of
using t-SNE for producing graph layouts.

C O N T E N T S

1 introduction 7

1.1 Motivation 7

1.2 Graphs 7

1.2.1 Toy example: Co-star network 8

1.2.2 Graph layouts 8

1.3 Dimensionality reduction 9

1.4 Research question 10

2 related work 11

2.1 Graph layouts 11

2.2 Dimensionality reduction 13

2.2.1 t-distributed Stochastic Neighbour Embedding 13

2.3 Dimensionality reduction for graph layouts 15

3 method 17

3.1 Distance matrix 17

3.1.1 Modified adjacency matrix 18

3.1.2 Shortest path distance matrix 18

3.1.3 MAM vs. SPDM: A comparison 18

3.1.4 Further modifications to the distance matrix 20

3.2 Cost function 24

3.2.1 Kullback-Leibler 24

3.2.2 Edge contraction 27

3.2.3 Early compression 31

3.2.4 Repulsion 35

3.2.5 Combining terms 39

3.3 Implementation 40

4 results 41

4.1 Benchmark 41

4.2 Results on benchmark 46

4.2.1 dwt_72 46

4.2.2 lesmis 47

4.2.3 can_96 48

4.2.4 rajat11 49

4.2.5 jazz 50

4.2.6 visbrazil 51

4.2.7 grid17 52

4.2.8 mesh3e1 52

4.2.9 netscience 53

4.2.10 dwt_419 54

4.2.11 price_1000 55

4.2.12 dwt_1005 56

4.2.13 cage8 57

4.2.14 bcsstk09 58

4.2.15 block_2000 59

4.2.16 CA-GrQc 60

4.2.17 EVA 61

4.2.18 us_powergrid 62

5

6 Contents

5 discussion 63

5.1 General results 63

5.2 Challenges 63

5.2.1 Layout artifacts 63

5.2.2 Parameter settings 63

5.2.3 Differences in drawing style 64

5.2.4 Computing time and scalability 64

5.2.5 Comparison 64

6 conclusion 67

6.1 Future work 67

7 acknowledgements 69

1I N T R O D U C T I O N

1.1 motivation

During the first few years of the 21st century, the world has seen an enorm-
ous growth in the amount of available data. The methods, tools, and know-
ledge to apprehend and getting insight into this data have seen a growth as
well, but there is still much room for improvement.

There are different types of data. Examples include multivariate data,
time-dependent data, relational data, or combinations of these. This thesis
will focus mostly on relational data visualization, but uses approaches from
multivariate data visualization.

In this thesis, the usage of the t-distributed Stochastic Neighbour Em-
bedding (t-SNE) algorithm for the construction of visual representations of
relational data, also known as graph layouts, is studied. This work has
several motivations. First, as stated earlier, getting insight in various types
of data, such as relational (graph) data, is an interesting and useful goal by
itself. Secondly, and more specific to our work, the use of techniques for pro-
cessing multidimensional data in order to treat relational data can lead to new
ways of exploring data, by building bridges between the different classes of
data processing and data visualization algorithms out there. Last but not
least, our specific focus on t-SNE is motivated by the high prominence of
this algorithm in the machine learning and data visualization communities.
[1]

The rest of this chapter is structured as follows. Section 1.2 gives a quick
overview of the context and scope of graph layouts. Section 1.3 gives an
overview of the aims and scope of dimensionality reduction, the class of
techniques we use to approach the graph layout problem. Section 1.4 makes
the connection between graph layouts and dimensionality reduction, and
poses the central research question.

1.2 graphs

Relational data can be represented mathematically by using the concept of
graphs. A graph is a structure that describes entities and relations between
those entities.

The number of relations and entities in the graph can vary greatly. Espe-
cially for graphs with many entities and relations it can be hard to make a
visualization of the graph in an insightful manner. For a node-link visualiz-
ation of the graph to succeed, it needs an appropriate set of coordinates for
the nodes in the network, which is part of the graph layout.

A graph G can be represented by a set of vertices V and a set of edges E.

G = (V ,E)

Vertices are the entities in the network, and edges describe relations between
entities in the network. The set of vertices is defined as follows:

V =
{

v1, v2, . . . v|V |

}

,

7

8 introduction

where |.| denotes the cardinality or size of a set.
For an undirected unweighted graph, set of edges is defined as follows:

E =
{

e1, e2, . . . e|E|

}

ei =
{

vj, vk
}

.

For a directed graph, the edges ei would have to be defined as tuples to
indicate the direction of the relation. For a weighted graph, a weight is
associated to every edge, which specifies the importance or type of relation
that the edge represents.

In this thesis, only undirected unweighted graphs are considered to keep
the discussion simple. Naturally, the approach can be generalized to direc-
ted or weighted graphs.

1.2.1 Toy example: Co-star network

As an example of a graph, one could consider a graph that describes actors
who co-star in movies. The vertices represent actors. An edge e =

{

vi, vj
}

represents that the two actors corresponding to vi and vj co-star in a movie.
Suppose we have four actors: Daniel, Emma, Rupert and Logan:

V = {vd, ve, vr, vl} . (1)

Daniel co-stars with Emma and Rupert, Emma co-stars with Daniel, Rupert
and Logan. Rupert co-stars with Daniel and Emma, while Logan only co-
stars with Emma. So we have the following set of edges:

E = {{vd, ve} , {vd, vr} , {ve, vr} , {ve, vl}} .

All information from a graph can also be captured in a |V |× |V | matrix
A =

(

aij

)

called the adjacency matrix. For an unweighted graph, aij = 1 iff
vi and vj are connected. For an undirected graph, AT = A. For our co-star
network, we have the following adjacency matrix:

A =

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

,

where the rows and columns correspond to the vertices in the same order
as in Equation (1).

1.2.2 Graph layouts

As explained, a graph can be represented as an adjacency matrix. However,
for the purpose of understanding the structure of the graph, this represent-
ation is not optimal. Instead, graphs are most frequently visually represen-
ted by so-called node-link diagrams. Figure 1 shows the node-link diagram
corresponding to the toy example discussed above. The structure of the
graph, in terms of the connectivity pattern and the nodes it involves, is
interpretable at a glance.

Constructing node-link diagrams, also called graph drawings, requires
(in its simplest form) a way to assign 2D positions to all nodes in the graph,
after which edges can be drawn as straight lines between the corresponding

1.3 dimensionality reduction 9

D E

LR

Figure 1: A drawing of the co-star network.

nodes. This process is referred to as graph embedding or producing a graph
layout.

Many algorithms exist for computing layouts of graphs. These algorithms
range from techniques focused on treating large graphs of hundreds of thou-
sands of edges and nodes, up to very specialized techniques that treat smal-
ler graphs but focus on creating specific drawing styles in terms of the ar-
rangement of nodes in the visual space. Producing graph layouts is in itself
a hard (and still open) problem, for several reasons. First, as the graph size
increases, and assuming that we keep the visual space at a constant size,
the density of information increases, which can easily lead to overlapping
nodes and edges, or other areas of high-density information, referred to
as visual clutter. Secondly, the computational complexity of several graph
layout algorithms is superlinear in the graph size, which leads to methods
which cannot efficiently be used for large graphs. Last but not least, several
so-called aesthetic criteria can be thought of for a ‘good’ graph drawing;
however, it is not evident how to encode these criteria into algorithms, and
often it is also the case that several such criteria compete against each other.

1.3 dimensionality reduction

Multidimensional (or multivariate) data can be explained as a set of observa-
tions, where each observation has several measured quantities (also called
dimensions, features or variables). Often, a multidimensional dataset is in-
tuitively represented by a matrix where every row encodes an observation,
and every column encodes a dimension.

When the number of dimensions is low, say under 5, such data can be
explored fully by using direct visualization algorithms. For example, a 4-
dimensional dataset can be visualized by a coloured 3D scatterplot, where
the first three dimensions of the data are represented by the coordinates of
the points, and the fourth dimension is represented by the colours of the
points. As the dimensionality of the dataset becomes considerably higher,
visualization becomes challenging, since there are insufficient direct visual
channels to represent all data dimensions.

Dimensionality reduction (DR) is a class of data-processing techniques
that, among other goals, aims to address the above problem by reducing the
dimensionality of the data. DR takes as input a high-dimensional dataset,
and gives as output a (typically much) lower-dimensional dataset with the
same observations. The aim is to preserve relevant data patterns; such as
groups, clusters, or correlations; during this process. Aside from address-
ing the visualization problem of high-dimensional data, DR is also useful
for other tasks, such as reducing storage costs, or accelerating further data
processing.

Within the class of DR algorithms, stochastic neighbour embedding (SNE),
and its t-distributed variant (t-SNE), have gained high prominence and ap-

10 introduction

preciation in the data processing, data mining, machine learning, and in-
formation visualization communities. [1] Particularly for visualization pur-
poses, t-SNE is very successful in preserving the local structure of data
within clusters of data, and in isolated observations. As such, and con-
sidering its relative novelty, t-SNE is an interesting technique to consider in
the context of producing graph layouts by means of DR techniques.

Section 2.2 gives an overview of related work currently in the field of DR,
and gives a more complete explanation of t-SNE.

1.4 research question

From the previous sections, we can draw some interesting (and useful) par-
allels between dimensionality reduction and graph layouts, as follows.

First, both techniques can be thought of as an ‘embedding’ process which
takes as input a dataset lying in some high-dimensional, or otherwise sym-
bolic or abstract, space, and deliver a dataset whose observations are points
in a low-dimensional (e.g., 2D) space. For dimensionality reduction, this is
by definition. For graph layouts, we can think of a graph as a set of obser-
vations (nodes) lying in some symbolic data space, where edges are seen
as encoding similarities, or distances, between the respective nodes. Separ-
ately, a 2D graph drawing is, obviously, a dataset having the same number
of observations (nodes), and two dimensions per observation. Finally, in a
graph drawing, connected nodes should be arguably placed close to each
other so as to minimize drawing clutter, which can be seen as a parallel to
DR’s attempt to preserve the data structure.

Secondly, both techniques are subject to quality measures that attempt to
encode desirable features of a visualization, as perceived by the user. For
DR, a good embedding is one in which a user can easily perceive groups of
strongly related entities and, separately, outliers. For graph layouts, a good
layout is one where the user can easily perceive the structure of the graph
in terms of strongly connected components. Separately, both techniques are
based on heuristics which attempt to model what the user finds important
to be delivered in the final drawing.

As such, it is interesting to consider whether such similarities between
DR and graph layouting can be exploited. This can be done in two direc-
tions. First, one could consider using graph layout methods to reduce the
dimensionality of datasets. We leave this direction out of our exploration.
Secondly, one could consider using DR methods to produce good-quality
layouts of graphs. This is the focus of our thesis.

Therefore, our central research question states: Can we use the t-SNE di-
mensionality reduction method to generate layouts of real-world graphs that
have similar (or higher) quality, in terms of well-established graph-drawing
quality aspects?

This question is approached in the remainder of the thesis as follows.
Chapter 2 covers related work both in graph drawing and dimensionality
reduction, and thereby establishes the context in which our research ques-
tion operates. Chapter 3, the core of our work, introduces in detail a new
graph layout method based on the t-SNE algorithm. Chapter 4 presents an
extensive set of results (graph drawings) generated by our method for real-
world graphs, and compares these with graph layouts obtained by other
well-known layout algorithms. Chapter 5 discusses our results. Chapter 6

concludes the thesis and outlines directions for future work.

2R E L AT E D W O R K

This chapter gives an overview of the current state of the fields in which this
thesis operates. Section 2.1 covers the field of graph layouts, and Section 2.2
covers the field of dimensionality reduction. Section 2.3 connects the two
fields, and shows that there is an unexplored gap that is the focus of this
thesis.

2.1 graph layouts

Perhaps the most crucial part of a drawing as in Figure 1 is the set of coordin-
ates associated with the vertices. For straight-line graph layouts, where the
edges are represented simply by lines, this set of coordinates fully determ-
ines the layout. For other types of graph layouts, edges can have control
points which are also part of the layout. However, we will focus the discus-
sion to straight-line graph layouts. In the case of Figure 1 the network was
sufficiently small, so the coordinates have been manually determined.

The survey of the field of graph layouts presented here is quite minimal,
and far from complete. The reason for this is that our approach is quite
novel, and a complete taxonomy of the field does not bring much additional
value to the discussion. For a more complete survey of the field, see [2].

In general, we can define the straight-line layout of a graph G as follows:

Λ(G) =
{

~y1,~y2, . . .~y|V |

}

,

where ~yi ∈ R
m is the m-dimensional coordinate associated with vertex vi.

In this thesis only m = 2 is considered, but one could consider m 6= 2

without loss of generality.

The problem that is addressed in this thesis is how to determine Λ(G).
More specifically, to explore how t-SNE can be used to determine Λ(G).

There has been a great deal of research on obtaining aesthetically pleasing
graph layouts. For example, arc diagrams[3] as in Figure 2 have been around
since the 1960s, and work has been done to find the most optimal ordering
of the vertices that results in the least number of edge crossings. For these
diagrams, the ordering of the vertices can be seen as a one-dimensional
layout.

Figure 2: Arc diagram.

Force-based algorithms[4][5] model attracting and repelling forces between
the vertices, and simulate a model of the system to obtain an equilibrium.
Algorithms of this type can be reformulated as optimization problems, where

11

12 related work

an objective function is minimized. Users can change the parameters or add
additional forces to the model in order to meet their criteria.

Many layout algorithms can benefit from the multilevel paradigm[6], where
groups of vertices are represented by single placeholder vertices. The fore-
most advantages of this paradigm are better scalability[7], and fewer edge
crossings caused by better local optima.

Moreover, there are algorithms that combine more of the previously men-
tioned ideas[8], and tools that enable users to experiment with many differ-
ent algorithms.[9]

A graph can also be seen as an n-dimensional dataset with N observa-
tions, where N = n is the number of vertices in the graph. Every observation
describes the connectivity of a vertex to all other vertices. Dimensionality
reduction can be used for visualizing such datasets. As we will discuss in
Section 3.1, there are different options for the way of encoding connectivity.

2.2 dimensionality reduction 13

2.2 dimensionality reduction

Dimensionality reduction (DR) is an important field in data visualization
and machine learning. Given a set of n-dimensional observations or data
points

X = {~x1,~x2, . . .~xN} , ~xi ∈ R
n

the aim of DR is to find a set Y of m-dimensional data points with m < n

that represents X as well as possible:

Y = {~y1,~y2, . . .~yN} , ~yi ∈ R
m .

Typically, for visualization purposes, m = 2 or m = 3 is considered.

Depending on the input data, and the purpose of the visualization, there
are many strategies to consider.

A straightforward strategy is to simply eliminate certain features, and
only retain a subset of the original features. The wrapper approach [10] is a
forward selection approach used in machine learning for selecting relevant
features in a feature space. Features are selected one-by-one, based on some
objective function.

Arguably more interesting strategies do in general not use the same fea-
tures as the input space, but rather (non-)linear combinations of the fea-
tures. Principal Component Analysis (PCA)[11] is a well-known approach
for DR that uses linear combinations of the original features, namely the
eigenvectors of the covariance matrix.

We are often interested in preserving the pairwise distances between
data points. Multidimensional Scaling (MDS) is a broad category of DR
algorithms that aims to do just this. Torgerson MDS is an algorithm that
minimizes an objective function called the stress to find an m-dimensional
embedding. Minimizing this objective function corresponds to making the
distances in R

n and R
m as similar as possible. In fact, when using Euc-

lidean distances in the input space, Torgerson MDS is equivalent to PCA.1

ISOMAP[12] is a DR algorithm that first determines which data points
are neighbours in the n-dimensional space, then determines the geodesic
distances between the points in n-dimensional space, and finally performs
Torgerson MDS with the pairwise geodesic distances.

Another DR algorithm, LSP[13], works by first projecting a subset of the
n-dimensional data points using MDS, and subsequently using neighbour-
hood information from the n-dimensional space to reconstruct the rest of
the data points in the m-dimensional space.

Moreover, the quality of DR techniques can be assessed by using tech-
niques that visualize how well the neighbourhoods and pairwise distances
in the input space are preserved in the output space.[14][15]

2.2.1 t-distributed Stochastic Neighbour Embedding

t-distributed Stochastic Neighbour Embedding [1], or t-SNE, is a visualiza-
tion technique that is often used for creating scatter plots of high-dimensional
data. This section briefly summarizes the method.

t-SNE is special, since it aims at preserving the local neighbourhoods
in the data, while many other DR methods aim at preserving all pairwise

1 However, technically PCA deals with a different problem, because it has as input the n-
dimensional data points, while MDS has as input only the pairwise distances.

14 related work

distances. This aim at preserving local neighbourhoods is useful, since in
many use-cases the goal is to reason about clusters of data, and not about
the pairwise distances between points that are separated by large distances.
For such use-cases, preserving all pairwise distances is not strictly needed.
What is needed is a weaker constraint, namely to preserve neighbourhoods.

As mentioned above, t-SNE particularly focuses on accurately represent-
ing the local structure of the data; if the high-dimensional data points are
close to each other, t-SNE aims to make sure that the low-dimensional points
are also close to each other. However, if the high-dimensional data points
are far away from each other, t-SNE does not enforce this as strictly in the
low-dimensional embedding as some other methods do.

t-SNE achieves this by defining probabilities pij of picking a pair in the
high-dimensional space and probabilities qij of picking a pair in the low-
dimensional embedding.
pij, the probability of picking the pair

{

~xi,~xj
}

, is the symmetrized version
of the conditional probabilities pi|j and pj|i:

pij = pji =
pi|j + pj|i

2N
, pii = 0,

where the conditional probabilities are given by the normalized Gaussian
distribution:

pj|i =
exp(−

d(~xi,~xj)
2

2σ2
i

)

∑

k 6=i

exp(−
d(~xi,~xk)

2

2σ2
i

)
,

which should be interpreted as the probability that ~xi picks ~xj as its neigh-
bour. d(~xi,~xj) is a distance measure, which is usually the Euclidean dis-
tance, but a pre-defined distance matrix is also possible.
σi, the standard deviations of the Gaussians, can be either hand-picked,

or chosen (commonly with binary search) such that the perplexity κ for every
data point matches some user-defined value. The perplexity is a measure
of the effective number of neighbours a data point has. If ~xi is in a dense
region, the σi generally attains a lower value to match the perplexity. In
sparser regions, σi generally attains a larger value.
qij, the probability of picking the pair

{

~yi,~yj
}

in the low-dimensional
space is given by:

qij = qji =
(1+

∥

∥~yi − ~yj
∥

∥

2
)−1

∑

k6=l

(1+ ‖~yk − ~yl‖
2
)−1

.

This is the normalized Student’s t-distribution, which is known to be a
heavy-tailed distribution.

The positions ~yi in the low-dimensional embedding are determined by
minimizing the Kullback-Leibler divergence between the probabilities of
picking pairs of low- and high-dimensional data points with respect to ~yi:

Ckl =
∑

i,j
j6=i

pij log
pij

qij
.

The minimization is typically done using gradient descent.
Many results of t-SNE are applauded widely, because they often succeed

to capture relevant groups in datasets, while also representing local vari-
ations within the groups.

2.3 dimensionality reduction for graph layouts 15

2.3 dimensionality reduction for graph layouts

As outlined earlier in Chapter 1, there are several similarities between the
problem of computing graph layouts and that of performing dimensionality
reduction. However, to our knowledge, there is a single attempt to use DR
techniques to produce graph layouts: Martins has recently used LSP[13]
and IDMAP[16] to process a similarity matrix that encodes the structure of
a graph in terms of pairwise graph-theoretic distances between the graph
nodes.[17, Chapter 7] The results show promising possibilities, in the sense
that one is able to visually explore the resulting graph layouts to detect
important structures such as node clusters and interconnection patterns in
the graph.

Our method for computing graph layouts using DR techniques is related
in spirit and at high level to the above approach of Martins. However, im-
portant differences exist. First, we use a neighbourhood-preserving DR tech-
nique (t-SNE), whereas Martins used distance-preserving techniques (LSP,
IDMAP). As outlined earlier, these two classes of DR techniques have quite
different properties. Moreover, as we argued, neighbourhood preservation
appears to be a more useful criterion for generating an easy-to-interpret
picture (of a graph or high-dimensional dataset) than distance preservation.
Secondly, we explore different ways to encode the graph structure into a
distance matrix. Thirdly, Martins’ focus has been on using both the graph
structure and data attributes of the nodes to compute the layout, whereas
our focus is purely on computing layouts of unattributed graphs. Last but
not least, we compare the results of our technique with state-of-the-art graph
layout methods on an extensive set of graphs of different types. In contrast,
Martins presented a less extensive evaluation.

3M E T H O D

The approach that is used in this thesis consists of two steps. In the first
step, the pairwise distances between all vertices is computed and stored in
a matrix

(

dij

)

. Subsequently, the matrix
(

dij

)

and the graph G are used to
construct an objective function C, which is finally minimized with respect
to the two-dimensional coordinates of the vertices {~yi}. See Figure 3 for an
illustration.

Figure 3: High-level illustration of the method. The dashed line represents that the

source is minimized with respect to the target, and thus implicitly resulting

in a value for the target.

Section 3.1 elaborates on the distance metrics that are considered in the
input space. The cost function and the optimization process are further
explained in Section 3.2. Finally, Section 3.3 provides information on how
this method was implemented.

3.1 distance matrix

Formally, the input space for t-SNE is a distance matrix, but often the input
space of a DR-problem is some high-dimensional space R

n and in that case
the squared Euclidean distance is commonly used to construct a distance
matrix.

In our case, the input space is the space of all graphs, which is of a more
symbolic nature. Therefore, a convenient graph-theoretical distance metric
must be chosen. The challenge is to find a distance metric that reflects the
criteria of a good graph layout defined in previous chapters. Therefore, the
distance metric should (i) assign a low distance between nodes that we want
to place close to each other, and (ii) assign a larger distance between nodes
that we want to place far away from each other, or nodes where the relative
distance is unimportant. The first observation reflects that we want to make
edges shorter, resulting in an easier interpretation of connected nodes, and
a smaller chance of overlapping edges. The second observation reflects that
we want to prevent overlap of (unrelated) nodes, and that there is some
freedom in choosing embeddings for parts of the graph that have weaker
relations.

Options that we consider for the distance matrix are the modified ad-
jacency matrix, and the shortest path distance matrix, introduced in Sec-
tions 3.1.1 and 3.1.2, respectively. However, depending on the use-case, dif-
ferent, more exotic, distance metrics can be devised.

17

18 method

A comparison of the choice between the two distance matrices that are
introduced here is presented in Section 3.1.3.

3.1.1 Modified adjacency matrix

As the name suggests, the modified adjacency matrix[17, Section 7.2.1] (MAM)
is a modified version of the matrix introduced in Section 1.2.1. It is defined
as A ′ =

(

a ′
ij

)

where a ′
ij = 1

aij
if aij 6= 0 and otherwise a ′

ij = kmaxi,j aij,

with aij the element from the regular adjacency matrix, and k > 1 is a fixed
constant.

For unweighted graphs, the modified adjacency matrix reduces to the

much simpler definition: A ′ =
(

a ′
ij

)

where a ′
ij = 1 if aij 6= 0 and otherwise

a ′
ij = k.
This distance metric makes intuitive sense because two vertices that are

directly connected by an edge have a small distance of 1, while vertices that
are not directly connected have a larger distance k between them. A short-
coming of this distance matrix is that it does not provide much gradation;
only the most local connectivity is encoded in this matrix.

3.1.2 Shortest path distance matrix

A choice that provides more granularity is the shortest path distance matrix
(SPDM), where not only the direct neighbours of vertices are considered,
but the lengths of paths (in the graph-theoretical sense) from vertices to all
other vertices in the graph. The shortest path distance matrix is defined as
S = (sij), where sij is the length of the graph-theoretical shortest path from
vertex i to vertex j.

A drawback of the SPDM is that it can be expensive to compute the
shortest paths for all pairs of vertices. However, there are efficient tech-
niques [18] that can be used to determine it.

3.1.3 MAM vs. SPDM: A comparison

To compare layouts that use the MAM and the SPDM, layouts of multiple
graphs have been produced with both distance matrices, using the same
initial placement of vertices in the optimization. The results are shown in
Figure 4. Note that these layouts only use the Kullback-Leibler divergence
(introduced in Section 3.2.1) and not the other terms that are introduced (in
Sections 3.2.2 to 3.2.4) to prevent unwanted artifacts in the layout.

In the drawings of the layouts, vertices are colour-coded based on the
per-vertex cost function. The colourmap hot from the matplotlib.cm -
module has been used; darker colours indicate low costs, and lighter colours
indicate higher costs. The cost function is fully introduced in Section 3.2, but
what is important here is that a low value (darker colour) indicates a locally
better preservation of the neighbourhood, while a high value (lighter colour)
indicates a locally worse preservation of the neighbourhood, and thus a
worse layout.

Judging by the results in Figure 4, it is clear that the SPDM produces su-
perior results. It seems that having only the most local connectivity encoded
in the distance matrix is not sufficient to successfully untangle the networks;
the SPDM produces better (but not perfect) results. Because of this reason,
only the SPDM is considered from this point forward.

3.1 distance matrix 19

(a) MAM (b) SPDM

(c) MAM (d) SPDM

(e) MAM (f) SPDM

Figure 4: Layouts for different graphs with the MAM (left) and the SPDM (right) as

distance matrix.

20 method

3.1.4 Further modifications to the distance matrix

As Figure 4 shows, using the SPDM distance produces better results, in
terms of preserving the graph structure, than the MDM distance. However,
this figure also shows that the SPDM is, by itself, not sufficient in gener-
ating a good-quality graph layout. For example, for the graph shown in
Figure 4d, we observe a ‘tear’ in what appears to be a fully regular quad
grid structure (which is what the graph encodes). Also, in Figure 4b, we see
that several small-scale structures, formed by closely placed nodes, are hard
to visually explore, as too little visual space is dedicated to them. As such,
additional modifications of the t-SNE method are required to improve the
layout’s quality. These are described in the current section and the next one.

We start here by addressing the latter issue mentioned above – the pres-
ence of groups of nodes which are close to each other in the graph, and
which are drawn too closely to each other to be able to visually explore
their structure. To alleviate this, an easy way is to bias the SPDM distance
function so as to artificially allocate more importance to small distances. To
do this, we propose to use a transfer function, which is discussed in this
section.

Before supplying the pairwise distance matrix to the t-SNE projection
technique, it is normalized such that the maximum value is 1. This is done
such that the transfer function can be applied more elegantly.

After the normalization, it is possible to apply a transfer function to in-
crease the contrast in certain distance domains. Sometimes it may be de-
sirable to have a larger contrast between smaller path lenghts. To take this
into account, we can apply the following transfer function to the normalized
pairwise distances:

f(x) = xk for k 6 1.

Figure 5 illustrates that, indeed, the contrast is increased for smaller values
of x.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

x
k

k=0. 2

k=0. 4

k=0. 6

k=0. 8

k=1

Figure 5: Transfer function for different values of k.

Transfer function on dwt_72

Figure 6 shows layouts of dwt_72 with different values of k for the trans-
fer function. Early compression (see Section 3.2.3) has also been used for

3.1 distance matrix 21

these layouts to prevent overlapping edges. Considering that the vertices
are colour-coded with the per-vertex cost function1, we see that the cost
function changes considerably while the layout only changes slightly. The
two vertices encircled in blue in Figure 6a have an average cost in the first
layout, while they have a lower than average cost in the layouts with higher
k.

In the layout, the most notable thing that changes is that the two vertices
encircled in blue are better distinguishable when k is lower. This is the effect
of the increase in contrast for lower distances. Lowering k decreases the size
of the effective neighbourhood of the vertices; the two encircled vertices in
Figure 6a are not affected much by the vertices below them, while in the
other layouts they seem more attracted to the vertices below them.

(a) k = 0.2 (b) k = 0.4 (c) k = 0.6

(d) k = 0.8 (e) k = 1

Figure 6: Layouts of dwt_72 with increasing k for the transfer function. All layouts

started with the same initial random placement of nodes.

Transfer function on grid17

Figure 7 shows layouts of grid17 for different values of k. Early com-
pression (see Section 3.2.3) has also been used for these layouts to prevent
patching artifacts. The effects of the transfer function are minimal.

1 In these drawings, this is only the Kullback-Leibler divergence, since the early compression
was only present in the first half of the optimization process. See Sections 3.2.1 and 3.2.5.

22 method

(a) k = 0.2 (b) k = 0.4 (c) k = 0.6

(d) k = 0.8 (e) k = 1

Figure 7: Layouts of grid17 with increasing k for the transfer function. All layouts

started with the same initial random placement of nodes.

Transfer function on netscience

Figure 8 shows layouts with different values of k for the netscience dataset.
Because of the increased contrast for smaller distances, there is less overlap
with smaller values of k.

The layouts with smaller k have a more square-like shape, while the lay-
outs with larger k are more rectangular. This is because the smaller dis-
tances get transfered to larger distances in the layouts with smaller k. The in-
crease in contrast for smaller distances comes at a cost; the contrast between
smaller and larger distances becomes less distinct. This makes the general
shape of the layout more square-like.

3.1 distance matrix 23

(a) k = 0.2 (b) k = 0.4 (c) k = 0.6

(d) k = 0.8 (e) k = 1

Figure 8: Layouts of netscience with increasing k for the transfer function. All

layouts started with the same initial random placement of nodes.

24 method

3.2 cost function

The cost function that is used in the final scheme is a summation of various
terms. To determine the 2D positions of the vertices, {~yi}, the cost function
is minimized by using momentum-based gradient descent, with respect to
{~yi}.

The cost function is an objective function that (in the case of pure Kullback-
Leibler divergence) reflects how well the neighbourhoods are preserved. A
low cost means that the neighbourhoods are preserved well, while a high
cost means that the neighbourhoods are preserved poorly, e.g., by placing
nodes close to each other in the layout that are not close in the graph-
theoretical sense. Therefore, a lower cost indicates a better layout, and there-
fore the cost function should be minimized.

During the development of the scheme, we started out with the Kullback-
Leibler divergence, which is explained in Section 3.2.1.

Over the course of the scheme’s development several terms were intro-
duced with the aim of solving problems with the layouts. These are ex-
plained in Sections 3.2.2 to 3.2.4.

Finally, Section 3.2.5 discusses how the terms are combined to the final
cost function.

3.2.1 Kullback-Leibler

The paramount term of the cost function comes from the t-SNE method, and
is the Kullback-Leibler divergence from the probability of picking a pair in
the two-dimensional space to the probability of picking a pair in the input
space:

Ckl = KL(P,Q) =
∑

i,j
j6=i

pij log
pij

qij
.

Recall that pij is the probability of picking the pair of vertices
{

vi, vj
}

, based
on the distance matrix that is supplied to the method, and the perplexity
parameter κ. qij is the probability of picking a pair in the two-dimensional
space, which is the normalized Student’s t-distribution between the two
two-dimenional positions ~yi and ~yj.

The Kullback-Leibler divergence from Q to P, i.e. KL(P,Q) can be inter-
preted as the amount of information lost when Q is used to approximate P. [19, p.
51] Since we want to retain as much information as possible, we evidently
want to minimize this term.

The gradient of Ckl, which is derived in [1], is given by:

∂Ckl

∂~yi
= 4

∑

j

(pij − qij)(~yi − ~yj)(1+
∥

∥~yi − ~yj
∥

∥

2
)−1,

which has the pleasant property that if two nodes are embedded close to-
gether, while the distance in the input space is large, the gradient will repel
the points strongly, while not going to infinity. Moreover, this is a term that
is easily optimizable, since it often results in good local optima as a result
of its long-range forces.

Figure 9 shows three layouts, using only the Kullback-Leibler divergence
term. It can be seen that this produces suboptimal results for Figures 9b
and 9c.

3.2 cost function 25

(a) Layout of jazz (b) Layout of mesh3e1 (c) Layout of bcsstk09

Figure 9: Layouts with only the Kullback-Leibler term in the cost function.

Perplexity

The perplexity, κ2, which is a parameter for the symmetric probabilities pij,
is the only remaining parameter for the Kullback-Leibler term. As men-
tioned before, it is a measure of how large neighbourhoods around nodes
are.

Figure 10 shows layouts of jazz with different values of κ. Notice how
more focus is directed to the local structure when using a lower perplexity;
the nodes in the layouts with higher perplexity are spread more uniformly,
while the nodes in the layouts with lower perplexity are more influenced by
their local neighbourhood.

Figure 11 shows layouts of netscience using different values for κ. It can
be seen that the optimization is quite stable with respect to the perplexity.
The only major difference is that a part of the layout is twisted when using
higher perplexities.

2 Notice how the perplexity (κ) is different from (but similar to) the exponent in the transfer
function (k).

26 method

(a) κ = 120 (b) κ = 140

(c) κ = 160 (d) κ = 180

Figure 10: Comparison of layouts of jazz using different perplexities.

(a) κ = 60 (b) κ = 80 (c) κ = 100

(d) κ = 120 (e) κ = 140

Figure 11: Comparison of layouts of netscience using different perplexities.

3.2 cost function 27

3.2.2 Edge contraction

Figures 9b and 9c show artifacts that seem to tear the layout into multiple
patches, even though the underlying graph has a regular structure. These
artifacts are referred to as patching artifacts. In an attempt to remove such
artifacts, an additional term was added to the cost function:

Ce =
1

2|E|

∑

(vi,vj)∈E

∥

∥~yi − ~yj
∥

∥

2
,

where ~yi and ~yj are the positions of vertices vi and vj in the two-dimensional
layout. It can be seen (by differentiating w.r.t. ~yi) that minimizing this dis-
tance is equivalent to embedding a spring with rest length 0 between the
vertices that are connected with an edge. Because this term decreases the
lenghts of edges, it is referred to as edge contraction. A similar term is used
in existing spring-embedding layout techniques to enforce the spring forces.

This term is only used in the first half of the optimization process, since
its goal is to remove the patching artifacts, which usually originate from
the early phases of the optimization process. In this discussion, the term is
weighted with a factor of 0.1, while the Kullback-Leibler term is weighted
with a factor of 1.

The optimization of the cost function with edge contraction has been com-
pared with optimization of the cost function without edge contraction. The
comparison has been done on three graphs which suffered from patching
artifacts. The high-level results are listed in Table 1.

artifacts in 30 layouts

Graph no contr. contr.

grid17 25 6

mesh3e1 22 12

bcsstk09 29 7

Table 1: Overview of results of edge contraction on 30 optimizations of each graph

The edge contraction resulted in unstable optimizations for graphs with
vertices that have many neighbours. The reason for this is that the edges
that are connected to these vertices all exert forces on these vertices. This
should not be a problem, but it makes the gradient of the cost function vary
wildly with respect to these vertices, and therefore a lower learning rate
must be chosen. Since this has a negative effect on the computation time, it
was decided not to use edge contraction in the final method.

Edge contraction on grid17

The effect of the edge contraction term has been evaluated by comparing
the number layouts with artifacts in 30 layouts. Figure 12 shows some
layouts that had artifacts without the additional term. Two out of those
three exhibited no artifacts with the additional edge contraction term. The
edge contraction term is unable to improve the layout that is twisted in the
middle.

As Table 1 shows, 25 out of 30 layouts exhibited artifacts without the edge
contraction term, while only 6 layouts did so with the edge contraction term.

28 method

Figure 12: Layouts of grid17 without (left) and with (right) edge contraction. All

layouts that are on one row use the same initial configuration of vertices.

Edge contraction on mesh3e1

Figure 13 shows three layouts that had artifacts without the additional term.
Two out of those three exhibited no artifacts with the additional edge con-
traction term. Again here, the additional term is unable to improve the
layout that is twisted in the centre.

As Table 1 shows, 22 out of 30 layouts exhibited artifacts without the edge
contraction term, while only 12 layouts did so with the edge contraction
term.

Edge contraction on bcsstk09

Figure 14 shows three layouts of bcsstk09 without and with edge contrac-
tion. Out of these three layouts, two were improved with edge contraction.

Out of the 30 layouts, 29 exhibited artifacts without the edge contraction
term, while only 7 layouts did so with the edge contraction term.

3.2 cost function 29

Figure 13: Layouts of mesh3e1 without (left) and with (right) edge contraction. All

layouts that are on one row use the same initial configuration of vertices.

30 method

Figure 14: Layouts of bcsstk09 without (left) and with (right) edge contraction. All

layouts that are on one row use the same initial configuration of vertices.

3.2 cost function 31

3.2.3 Early compression

It is known that t-SNE produces better results when the projections are kept
close to the origin in the early phases of the optimization. This is referred
to as early compression in [1].

Early compression can be obtained by adding an additional term to the
cost function, given by:

Cc =
1

2|V |

∑

i

‖~yi‖
2, (2)

where ~yi are the two-dimensional projections of the vertices, and the nota-
tion ‖.‖ indicates the Euclidean norm.

The early compression term is only nonzero in the first half of the optim-
ization process. In this discussion, the compression term is weighted with a
factor of 1.2, while the Kullback-Leibler term has a weight of 1.

Optimization of the cost function with early compression has been com-
pared with that of the cost function without early compression. The results
are summarized in Table 2. The following sections discuss the details of the
comparison.

artifacts in 30 layouts

Graph no compr. compr.

grid17 25 1

mesh3e1 22 9

bcsstk09 29 0

Table 2: Overview of results of early compression

Considering that these results are better than that of the edge contraction
term, and that this term does not result in unstable optimizations, it was
decided to use this term in the final method.

Early compression on grid17

30 random initializations of the grid17 dataset have been used with and
without early compression. Of these 30, 25 suffered from patching artifacts
when not using early compression. All but one of these patching artifacts
are shown to be preventable by using early compression. Figure 15 shows
three layouts without and with early compression.

Early compression on mesh3e1

30 random initializations of the mesh3e1 dataset have been used with and
without early compression. 22 out of these 30 layouts suffered from patch-
ing artifacts when not using early compression. When using early compres-
sion, only 9 layouts suffered from patching artifacts. See Figure 16 for three
layouts with and without early compression.

Early compression on bcsstk09

Early compression has also been evaluated on bcsstk09 , where the best
results were obtained. Of the 30 layouts, 29 suffered from patching arti-
facts when not using early compression. None of the layouts suffered from

32 method

Figure 15: Layouts of grid17 without (left) and with (right) early compression. All

layouts that are on one row use the same initial configuration of vertices.

patching artifacts when using early compression. See Figure 17 for a visual
comparison of some of the layouts.

3.2 cost function 33

Figure 16: Layouts of mesh3e1 without (left) and with (right) early compression. All

layouts that are on one row use the same initial configuration of vertices.

34 method

Figure 17: Layouts of bcsstk09 without (left) and with (right) early compression.

All layouts that are on one row use the same initial configuration of ver-

tices.

3.2 cost function 35

3.2.4 Repulsion

To prevent clutter and overlapping vertices, a cost term was added to penal-
ize vertices that are placed close to each other.

This cost term, referred to as the repulsion term, is given by:

Cr =
1

2|V |2

∑

i,j
j6=i

1

ǫr +
∥

∥~yi − ~yj
∥

∥

. (3)

The repulsion term is also used in existing spring-embedders, also to pre-
vent overlapping vertices.

The additional term, ǫr, has been added to the denominator to avoid the
near-singularities in Cr (and its gradient) when

∥

∥~yi − ~yj
∥

∥ ≈ 0. Without
this additional term, vertices would often be thrown away from the origin
resulting in unstable optimizations. Using a small value for ǫr can still
result in unstable optimizations. Using larger values makes the gradient of
Cr very small, and so this may diminish the effect of the repulsive term. The
value ǫr = 0.2 was found to be a good trade-off, and has been used unless
stated otherwise.

0.0 0.2 0.4 0.6 0.8 1.0
d

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

|V|
2

·C
r
(d
)

ǫr =0. 2

ǫr =0. 4

ǫr =0. 6

ǫr =0. 8

ǫr =1

Figure 18: Cr of two vertices, as a function of the distance between the vertices, for

different values of ǫr.

The repulsion term is only nonzero in the second half of the optimization,
such that it does not interfere with the initial high-level layout of the graph.

For some graphs, the first half of the optimization resulted in vertices that
are co-located. This resulted in the unexpected behaviour where the ver-
tices stay co-located even during the repulsion phase. To prevent this, an
additional epoch was added before the repulsion phase. In this additional
epoch, co-located vertices are moved ever so slightly in random, but oppos-
ite directions. This caused the vertices’ gradients to diverge and repel each
other, as desired.

Repulsion on price_1000

The effect repulsion has been visually evaluated for price_1000 in Fig-
ure 19. In the layout without repulsion (Figure 19a), many vertices are oc-
cluded by other vertices. Most notably the leafs of the graph overlap, since
they only have a relatively small shortest path distance to one another, and
therefore do not repulse substantially in the t-SNE projection.

36 method

The advantage of repulsion is that the user gets a better sense of how
many vertices are in certain positions in the graph. A disadvantage of re-
pulsion is that it is harder for the user to grasp the global structure of the
graph.

(a) λr = 0 (b) λr = 1

(c) λr = 2 (d) λr = 4

Figure 19: Layouts of price_1000 with different weights of the repulsion factor.

Repulsion on dwt_419

On dwt_419 , the effect of repulsion has been visually evaluated in Figure 20.
For this graph, again the layout without repulsion gives a better grasp of the
overall structure of the graph. The layouts with repulsion give a better sense
of the number of vertices. Especially in the upper and lower boundaries in
Figure 20a it seems like there are single nodes, while in Figure 20b it is clear
that there are multiple nodes.

It can be argued that in Figures 20c and 20d the repulsive term is too
dominant, because the overall structure is not interpretable as easily.

Repulsion on visbrazil

The effect repulsion has been visually evaluated for visbrazil in Figure 21.
As for price_1000 and dwt_419 , it is easier to grasp to global structure in
the layout without repulsion. However, the layouts with repulsion gives a
better sense of the sizes of the communities.

3.2 cost function 37

(a) λr = 0 (b) λr = 1

(c) λr = 2 (d) λr = 4

Figure 20: Layouts of dwt_419 with different weights of the repulsion factor.

38 method

(a) λr = 0 (b) λr = 1

(c) λr = 2 (d) λr = 4

Figure 21: Layouts of visbrazil with different weights of the repulsion factor.

3.2 cost function 39

3.2.5 Combining terms

The four cost terms discussed in Sections 3.2.1 to 3.2.4 are combined to the
final cost function by using a normalized weighted sum:

C(t) =
1

∑

i

λi(t)
(λkl(t)Ckl + λe(t)Ce + λc(t)Cc + λr(t)Cr) . (4)

The weights λi(t) are functions of optimization time (in epochs):

λkl(t) = 1

λe(t) = 0

λc(t) =

1.2 if t < ne
2

0 if t > ne
2

λr(t) =

0 if t < ne
2

0.5 if t > ne
2

,

where ne is the total number of epochs in the optimization.
That is, there are two phases:

phase 1 (first 50%): KL divergence and compression

phase 2 (last 50%): KL divergence and repulsion

The decision was made to eliminate the edge contracion term from the
default cost function, because it often resulted in unstable optimizations, as
discussed in Section 3.2.2.

The default weights are simply step functions or constants, but more in-
volved contraptions could be devised. For example, a phase can be added
in the middle where the repulsion weight increases linearly, and the com-
pression weight decreases linearly.

40 method

3.3 implementation

The method was implemented as a command-line utility in Python 3.5.2.
Parameters can be passed as command-line arguments, or default values
can be used.

The utility takes as input a (list of, or directory with) graph(s), and gives
as output images of the layouts produces with our method. Optionally, an
animation can be rendered that shows the layout over the course of the
optimization process. This was useful as an exploratory tool during the de-
velopment of the method. Also optionally, a file with the layout coordinates
can be written.

A few software packages that the implementation has used, or relies on:

• thesne [20]: Originally used for dynamic t-SNE in [20], this imple-
mentation that uses Theano [21] (see below) has been altered to allow
for the most essential module that minimizes the cost function used in
the method.

• Theano [21] A Python symbolic mathematics toolkit for evaluating math-
ematical expressions. This toolkit allows for parallelized operations on
the GPU. Especially the symbolic evaluation of gradients proved very
useful for this project.

• graph-tool [22]: Used for internal graph representation, graph I/O,
computing the shortest path distance matrix in parallel.

• Graphviz [23]: Used through a graph-tool interface for drawing
graph layouts.

• FFmpeg [24]: Used for rendering animations of layouts that show the
minimization of the cost function over time.

The source code of the implementation can be retrieved from [25]. The
implementation was developed and tested on ArchLinux, and has a few de-
pendencies and words of caution listed in the repository’s README .

4R E S U LT S

This chapter describes the results of our method. Section 4.1 introduces
the benchmark, and argues why this benchmark is suitable. Section 4.2
discusses the results of our method on the benchmark one by one.

4.1 benchmark

To provide a solid benchmark for evaluating the new layout approach, a
set of graphs has been selected. During selection, the aim was to provide a
broad range of types and sizes of graphs.

The benchmark, listed in Table 3, contains structural problems from the
Harwell-Boeing collection[26], [27], real-world network data from Mark New-
man’s collection of network data[28], and other miscellaneous graphs. A
reasonably large number of graphs (both real-world and synthetic) were in-
cluded in the benchmark. The graphs have various topologies. Included in
the benchmark are: trees, planar graphs, nonplanar graphs, communities,
meshes, graphs with and without regular connectivity patterns. Altogether,
this set of graphs covers a broad range of types and sizes, and is therefore a
suitable benchmark.

Most of the graphs were acquired through the University of Florida (UF)
sparse matrix collection [29]. Others (marked with ‘gen.’ in the Source

column) were synthesized using the graph-tool library[22]. The graphs
marked with ‘*’ are originally disconnected graphs that have been altered
such that only the largest connected component is retained.

Our layouts are compared to the layouts drawn in Figures 22 to 24. Most
of the layouts were also acquired from the UF sparse matrix collection web-
site. The layouts from the UF sparse matrix collection have been generated
using a multilevel force-based layout algorithm called Scalable Force Direc-
ted Placement (SFDP)[30]. An implementation[31] of the same algorithm has
been used to generate layouts of the synthesized graphs. This implementa-
tion was not used for the other graphs, since the layouts by UF are arguably
better, because finding the right parameter settings is not trivial.

Almost all layouts are compared to the SFDP algorithm, and this is the
only algorithm with which we compare our method (except for the visbrazil

graph, which is compared to Martins’ layout). This has several reasons.
First, layouts that originate from other algorithms were not easily available.
Second, it was out of the scope for this research to do a comparison with a
larger number of layout algorithms, because this would also include finding
the right parameter settings and running the layout algorithms many times
for all the graphs.

41

42 results

Name Type |V | |E| |E|/|V | Source

dwt_72 planar 72 75 1.042 [32]

lesmis communities 77 254 3.298 [33]

can_96 planar 96 336 3.500 [34]

rajat11 misc. 135 377 2.793 [35]

jazz communities 198 2742 13.84 [36]

visbrazil * communities 222 336 1.514 [17]

grid17 planar mesh 289 544 1.882 [37] (gen.)

mesh3e1 planar mesh 289 800 2.768 [38]

netscience * communities 379 914 2.412 [39]

dwt_419 structural 419 1572 3.752 [40]

price_1000 tree 1000 999 0.999 [41] (gen.)

dwt_1005 structural 1005 3808 3.789 [42]

cage8 misc. 1015 4994 4.920 [43]

bcsstk09 structural 1083 8677 8.012 [44]

block_2000 communities 2000 9912 4.956 [45] (gen.)

CA-GrQc * communities 4158 13422 3.228 [46]

EVA * communities 4475 4652 1.039 [47]

us_powergrid structural 4941 6594 1.335 [48]

Table 3: Details of graphs in the benchmark.

4.1 benchmark 43

(a) dwt_72 (UF layout) (b) lesmis (UF layout)

(c) can_96 (UF layout) (d) rajat11 (UF layout)

(e) jazz (UF layout) (f) visbrazil (layout from [17])

Figure 22: Overview of literature layouts of part of the benchmark.

44 results

(a) grid17 (SFDP layout) (b) mesh3e1 (UF layout)

(c) netscience (UF layout) (d) dwt_419 (UF layout)

(e) price_1000 (SFDP layout) (f) dwt_1005 (UF layout)

Figure 23: Overview of literature layouts of part of the benchmark.

4.1 benchmark 45

(a) cage8 (UF layout) (b) bcsstk09 (UF layout)

(c) block_2000 (SFDP layout) (d) CA-GrQc (UF layout)

(e) EVA (UF layout) (f) us_powergrid (UF layout)

Figure 24: Overview of literature layouts of part of the benchmark.

46 results

4.2 results on benchmark

In this section, the t-SNE layouts are compared with the layouts shown in
Figures 22 to 24.

Ideally, the comparisons of the layouts would have been made using the
same drawing styles. However, neither the coordinates of the layouts or the
drawing styles were always available, and so the comparison is made using
our own drawing style. Our drawing style uses a simple green colour for
the vertices, and a gray colour and for the edges. Moreover, alpha blending
is used for the edges to improve visibility in edge-dense areas.

The layout drawings of UF have been manipulated using image editing
software to (i) save ink, and (ii) make the drawings more alike and so the
comparison fairer.

Two structural graphs (can_96 and dwt_1005) produced satisfactory
layouts only occasionally. For these graphs, both the satisfactory layouts
and the unsatisfactory layouts are shown and discussed.

To investigate the optimization process, animations of the layouts over the
course of the optimization have been rendered. These animations are linked
in [25].

4.2.1 dwt_72

Figures 25a and 25b show the layout by UF and a t-SNE layout of dwt_72 ,
respectively.

Some nodes are layed out in a more crooked fashion and not pushed
outwards as much as the UF layout does. Aside from that, the t-SNE layout
is successful in showing the structure of the graph.

(a) UF layout (b) t-SNE layout

Figure 25: UF and t-SNE layouts of dwt_72 .

4.2 results on benchmark 47

4.2.2 lesmis

Figures 26a and 26b show the layout by UF and a t-SNE layout of lesmis ,
respectively.

Both layouts exhibit some tightly connected groups in the network. A
notable difference is that the UF layout has more extended leafs that are
further away from the centre of the layout.

Since the UF layout uses a large part of its layout space for the leafs, there
is not much space left for the interior network. The t-SNE layout has a better
focus on the interiors of the network, and makes it easier to follow paths in
the central groups.

(a) UF layout (b) t-SNE layout

Figure 26: UF and t-SNE layouts of lesmis .

48 results

4.2.3 can_96

Figures 27a to 27c show the layout by UF and two t-SNE layouts of can_96

, respectively.
It can be seen in the animation1 that before the repulsion term becomes

nonzero, the vertices are aligned in a circular fashion. When the vertices are
repelled, the mesh can form in two correct ways: with the ‘inner ring’ on
the inside, or the inner ring on the outside. It seems that if one part of the
mesh happens to form in one way, and another part in the other way, both
parts are not always able to ‘convince each other’ to form uniformly. This
has happened in Figure 27c. In Figure 27b, the parts seem to agree when the
repulsion becomes nonzero, and form a proper layout. Based on a sampling
of 20 layouts, both proper and poor layouts seem to occur about half of the
time.

The layout in Figure 27b is more crooked than the layout in Figure 27a.
This is not desirable, because it suggest an absence of symmetry, despite the
network being very symmetric.

Notice that although the UF layout in Figure 27a seems like a perfect
layout of the graph, there are some irregularities in the lower-left part of the
inner ring.

(a) UF layout (b) Proper t-SNE layout

(c) Poor t-SNE layout

Figure 27: UF layout and t-SNE layouts of can_96 .

1 See the link in [25].

4.2 results on benchmark 49

4.2.4 rajat11

Figures 28a and 28b show the layout by UF and a t-SNE layout of rajat11 ,
respectively.

The graph is accurately represented in both layouts. A noticeable differ-
ence is that the layout by UF has very ‘pointy’ communities on the sides,
while the t-SNE layout shows these communities in a less pointy fashion.

Another difference is that the triangles that the paths form between the
little communities in the layout by UF are much more elongated than the
ones in the t-SNE layout.

(a) UF layout (b) t-SNE layout

Figure 28: UF and t-SNE layouts of rajat11 .

50 results

4.2.5 jazz

Figures 29a and 29b show the layout by UF and a t-SNE layout of jazz ,
respectively.

The layouts seem to suggest that the jazz community is very tightly con-
nected. Both layouts show a similar structure: two large communities, and
some smaller leaf-like communities.

In the UF layout, there seems to be more focus on the leafs, while the
t-SNE layout reserves more space for the inner communities. As a con-
sequence, the structure of the inner communities can be inspected better in
the t-SNE layout. Still though, since the network is so tightly connected,
mentally following individual paths in the two main communities remains
almost impossible.

(a) UF layout (b) t-SNE layout

Figure 29: UF and t-SNE layouts of jazz .

4.2 results on benchmark 51

4.2.6 visbrazil

Figures 30a and 30b show the layout by [17] and a t-SNE layout of visbrazil

, respectively.
Both layouts show that there is one very central vertex. The drawing

in Figure 30a draws even more attention to the central vertex, because the
node-sizes are determined by the betweenness centrality in that drawing.

A feature that is visible in Figure 30b, but not in Figure 30a is the ‘shortcut’
from the central vertex to the upper community in the drawing.

Moreover, since the nodes are placed very close together in the ‘arms’ of
the central vertex in Figure 30a, the local structure is hard to interpret. The
layout in Figure 30b reserves more space for the local structure, and so it is
easier to mentally follow individual paths.

(a) Layout by [17] (b) t-SNE layout

Figure 30: Layout by [17] and t-SNE layout of visbrazil .

52 results

4.2.7 grid17

Figures 31a and 31b show a force-based layout and a t-SNE layout of grid17

, respectively.
The layouts are almost identical, and both show the two-dimensional grid.

The most notable difference is that the t-SNE layout allocates more space for
the central vertices. This may be desirable, since central vertices are often
considered more important. However for such a grid, a uniform layout is
likely to be more desirable.

(a) SFDP layout (b) t-SNE layout

Figure 31: SFDP layout and t-SNE layout of grid17 .

4.2.8 mesh3e1

Figures 32a and 32b show the layout by UF and a t-SNE layout of mesh3e1 ,
respectively.

The layouts are almost identical. Both layouts accurately show the struc-
ture of the grid.

(a) UF layout (b) t-SNE layout

Figure 32: UF and t-SNE layouts of mesh3e1 .

4.2 results on benchmark 53

4.2.9 netscience

Figures 33a and 33b show the layout by UF and a t-SNE layout of netscience

, respectively.
A notable difference between the layouts is that the layout in Figure 33a

is more elongated, while the layout in Figure 33b is more circular. As seen
in other layouts, the layout in Figure 33a has a more pointy appearance.
Moreover, it can be argued that the layout in Figure 33b gives a better sense
of the number of vertices.

Also, as seen before in other graphs, the layout in Figure 33b has a better
focus on the more local structure of the network.

(a) UF layout (b) t-SNE layout

Figure 33: UF and t-SNE layouts of netscience .

54 results

4.2.10 dwt_419

Figures 34a and 34b show the layout by UF and a t-SNE layout of dwt_419 ,
respectively.

The layout in Figure 34a makes it harder to distinguish the vertices in
the upper and lower boundaries. As discussed in Section 3.2.4, Figure 34b
allows for a better distinction between the vertices in those boundaries, be-
cause of the repulsion term.

(a) UF layout (b) t-SNE layout

Figure 34: UF and t-SNE layouts of dwt_419 .

4.2 results on benchmark 55

4.2.11 price_1000

Figures 35a and 35b show force-based layout and a t-SNE layout of price_1000

, respectively.
The t-SNE layout satisfactorily shows the seperation of central hubs, and

does not grow large forests of nodes that may visually suggest various paths
between the central hubs. However, it can be argued that the layout in
Figure 35a gives a better sense of the number of vertices, since (despite the
repulsion term) there are still some vertices that overlap in Figure 35b.

This difference is interesting, because in some other graphs the t-SNE
layout had more focus on the local structure of the network, while here a
result with a more high-level structure focus is obtained.

(a) SFDP layout (b) t-SNE layout

Figure 35: SFDP and t-SNE layouts of price_1000 .

56 results

4.2.12 dwt_1005

Figures 36a and 36b show the layout by UF and a t-SNE layout of dwt_1005

, respectively.
Both layouts capture the same structure, but the t-SNE layout displays less

pointy bulges. The large number of overlapping edges around the bulges
are a consequence of the intrinsic three-dimensional nature of the structural
network.[49]

Figure 36c shows a t-SNE layout that used the same parameters as Fig-
ure 36b, but a different initial configuration of the vertices. This layout
failed to capture the structure of the graph

(a) UF layout (b) Good t-SNE layout

(c) Poor t-SNE layout

Figure 36: UF and t-SNE layouts of dwt_1005 .

4.2 results on benchmark 57

4.2.13 cage8

Figures 37a and 37b show the layout by UF and a t-SNE layout of cage8 ,
respectively.

The layout by UF shows more symmetry than the t-SNE layout. However,
since the central vertices of the t-SNE layout have more space allocated to
them, the local structure is more easily observed in the t-SNE layout.

(a) UF layout (b) t-SNE layout

Figure 37: UF and t-SNE layouts of cage8 .

58 results

4.2.14 bcsstk09

Figures 38a and 38b show the layout by UF and a t-SNE layout of bcsstk09

, respectively.
The t-SNE layout has a convex shape, while the layout by UF exhibits

concavities on the boundaries. Moreover, the internal nodes show less over-
lap in the t-SNE layout, while suggesting more structure in the UF layout.
Apart from that, the layouts are mostly identical.

(a) UF layout (b) t-SNE layout

Figure 38: UF and t-SNE layouts of bcsstk09 .

4.2 results on benchmark 59

4.2.15 block_2000

Figures 39a and 39b show a force-based layout and a t-SNE layout of block_2000

, respectively.
The layouts are similar, but the t-SNE layouts separates the communities

more, while the SFDP layout has more focus on nodes that are outliers in
a community. Effort has been made to tweak the parameters of the SFDP
layout (in particular by increasing the repulsion constant and exponent), but
a separation as in Figure 39b was not achievable.

(a) SFDP layout (b) t-SNE layout

Figure 39: SFDP and t-SNE layouts of block_2000 .

60 results

4.2.16 CA-GrQc

Figures 40a and 40b show the layout by UF and a t-SNE layout of CA-GrQc ,
respectively.

It can be seen that the layout by UF shows almost no structure in the
central community. The UF layout has a very narrow focus on the leafs. As
a result, the central community receives only little space in the layout.

The t-SNE layout show more structure in the inner community. In partic-
ular, there is a large community to be observed in the lower-left part of the
t-SNE layout which is absent in the UF layout. However, it can be argued
that this is due to the increase in resolution, and the differences in drawing
styles.

(a) UF layout (b) t-SNE layout

Figure 40: UF and t-SNE layouts of CA-GrQc .

4.2 results on benchmark 61

4.2.17 EVA

Figures 41a and 41b show the layout by UF and a t-SNE layout of EVA ,
respectively.

The layout by UF is very appealing to look at, while the t-SNE layout is
less aesthetically pleasing. However, considering only the layout, we see
many overlapping edges in both layouts. The t-SNE layouts has some lay-
outs that seem to be preventable, e.g. the two smaller communities above
and below the large community on the right-hand side.

(a) UF layout (b) t-SNE layout

Figure 41: Layouts of EVA .

62 results

4.2.18 us_powergrid

Figures 42a and 42b show the layout by UF and a t-SNE layout of us_powergrid

, respectively.
The layouts show many similarities; the large hubs are on the sides of the

layout, and there is a sparser region in the centre that connects the hubs.
One difference is that the t-SNE layout puts more emphasis on the local
structure of the network. In the UF layout, the tightly connected parts are
placed close together, while the t-SNE layout expands these parts of the
network.

(a) UF layout (b) t-SNE layout

Figure 42: UF and t-SNE layouts of us_powergrid .

5D I S C U S S I O N

This chapter discusses the higher-level, more generalized results of our
method in Section 5.1. Moreover, the challenges that were encountered in
the method and research are discussed in Section 5.2.

5.1 general results

Considering the results presented in the previous chapter, we see that t-
SNE can be useful for making graph layouts. The distinguishing shape of
the t-SNE gradient results in some remarkable layouts.

t-SNE proved particularly useful for making layouts of collaboration net-
works, like lesmis , jazz , visbrazil , netscience and CA-GrQc . Also,
the t-SNE layout of the synthesized block_2000 graph is quite compelling.
t-SNE also worked well for structural problems, especially us_powergrid

in Figure 42a.

Less good results were obtained for EVA , which indicates that the method
works poorly on near-tree networks, or networks with many leafs. Moreover,
the methods that were used for solving most twisting artifacts did not work
reliably on can_96 and dwt_1005 .

A recurring feature of the results is that the t-SNE layouts put more em-
phasis on the local structure of the networks. However, this happens not
to such an extent that the overall structure becomes cluttered. The focus
is a good trade-off between a high-level overview and a locally accurate
representation.

5.2 challenges

Although good results were obtained, there were some challenges during
this project that had to be overcome.

5.2.1 Layout artifacts

In the earlier phases of the development of the method, many layouts suffered
from patching artifacts, where layouts were twisted and seemed to be stuck
in local optima (or in a region with a very small gradient). This problem has
been overcome by using early compression, as discussed in Section 3.2.3.

Another problem that was present until the later phases of the develop-
ment of the method was that co-located vertices were not repelling each
other. This has been solved by separating co-located vertices ever so slightly,
causing the gradients of their repulsion terms to diverge.

5.2.2 Parameter settings

For some graphs, different parameters had to be used. The perplexity and
the learning rate had to be hand-picked for every graph.

Values for the perplexity varied between 40 and 150. In general, the lowest
possible perplexity for a graph had the best results. The perplexity could

63

64 discussion

not be set arbitrarily low, because using a perplexity that is too low results
in a diverging binary search for the standard deviations of the Gaussian
distributions.

After seeing some results, it was sometimes desirable to increase the re-
pulsion weight λr to have a larger separation between the vertices.

As a consequence of t-SNE’s smooth gradient, it was possible to increase
the learning rate significantly to reduce the computation time. For graphs
with more vertices, generally a higher learning rate could be chosen. The
learning rate is a hyperparameter, because it has to do with the optimization
process.

5.2.3 Differences in drawing style

As mentioned earlier, the visual comparison of layouts where different draw-
ing styles are used is not ideal. In particular, the UF layouts draw the ver-
tices as very small (sometimes not even visible) nodes, while our drawings
use small circles. Moreover, there are differences in the resolution of the
images. However, effort has been made to try to compare only the layouts,
e.g. by adjusting the colours of both layouts to be more similar.

5.2.4 Computing time and scalability

Although Theano was used for the optimization computations, GPU paral-
lelization was not exploited, and some other optimizations were not utilised.
(See Section 6.1.) As a result, performing the gradient descent optimization
took several hours for the largest datasets. For the purpose of this thesis, this
was acceptable, but for real-world implementations this requires additional
work to speed up the algorithm.

5.2.5 Comparison

As discussed at several points during this thesis, the problem of computing
a graph layout is not a well-defined one, in the sense that there is no single
‘best layout’ for most graphs. As such, assessing the quality of a graph
layout can be done in practice in two ways. We comment below on the
limitations of our work in both these respects:

• Measuring quality criteria: One way to assess the quality of a layout
is to compute metrics that quantify several desirable properties. These
include distance distributions between nodes; number and angles of
edge crossings; and distributions of edge lengths. Doing this, however,
requires that one has a well-defined set of values that indicate ‘good
quality’ for specific graph types or classes. As we are not aware of
such absolute values, we have not taken this path.

• Visually comparing layouts: The other way to assess the quality of a
layout is a relative one. That is, the quality of a layout method is as-
sessed by visually comparing its results (on the same graphs) with the
results of several well-established layout methods. During the compar-
ison, one effectively visually quantifies the quality criteria mentioned
above. While less precise than formal measurement of quality criteria,
this visual comparison is by far the most used comparison method in
practice, arguably due to its simplicity and low cost. This is the path
we have taken in our work. However, in this respect, our results are

5.2 challenges 65

limited in comparing our method to two other main methods: SFDP
[30] and the method of Martins [17]. Of course, many more layout al-
gorithms exist out there; and an extensive comparison of our method
should include several of these too. Due to time constraints, we how-
ever have decided to leave this comparison work out of the scope of
this thesis.

6C O N C L U S I O N

In this thesis, we have explored the question of whether t-SNE, a well-
known algorithm for dimensionality reduction, can be used to generate
good-quality layouts for a wide set of real-world graphs. As we have shown
in the previous two chapters, the global answer to this question is positive:
For most of our studied graphs, we obtain results which are very similar,
and in many cases of a higher visual clarity and lower visual clutter, than
state-of-the-art methods used on the same graphs.

Besides the Kullback-Leibler divergence term that stems from t-SNE pro-
jection technique, other terms have been added to the cost function to pre-
vent unwanted artifacts.

Especially for the collaboration datasets in the benchmark remarkable res-
ults were obtained. These results have a focus that is well balanced between
the high-level structure and the local structure of the network.

Less positive results were obtained on a near-tree graph with many leafs.
Also, despite the efforts, some structural graphs still occasionally exhibit
unwanted patching artifacts.

6.1 future work

Considering the recent development of dynamic t-SNE [20] for visualizing
time-dependent high-dimensional data, a similar approach can be explored
for visualizing dynamic graphs. In the same way as dynamic t-SNE uses a cost
term to decrease the frame-to-frame incoherence of a data point, dynamic
t-SNE for dynamic graphs can introduce a term to decrease the frame-to-
frame incoherence of a vertex.

As explored in [50] for t-SNE, tree-based optimizations like the Barnes-
Hut algorithm can be used to accelerate the evaluation of gradients. Because
of the similarity of the problem, it is expected that comparable results will
be obtained for graph layouts, but this has not been verified.

Another strategy to accelerate the computation of layouts is to use a multi-
level method. This is also left unexplored, and could yield promising results
for the scalability of the method.

In the current implementation, a simple momentum-based gradient des-
cent optimization is performed. Using different, more adaptive optimiza-
tion techniques like (e.g. AdaGrad[51] or Adam[52]) could provide fruitful
results. Moreover, exploiting parallelization through the GPU has also not
been utilised.

Currently, the shortest path distance matrix is used as the pairwise dis-
tance matrix for the t-SNE technique. More sophisticated distance metrics
can be explored, by incorperating e.g. the betweenness centrality in the
distance metric.

Moreover, for a better evaluation of the method, our method (or deriva-
tions thereof) should be compared against more layout algorithms.

67

7A C K N O W L E D G E M E N T S

Firstly, I would like to thank my first supervisor, Alex Telea, for his advice
and (elaborate!) feedback. Secondly, I want to thank my second supervisor,
Paulo Rauber, for introducing me to his thesne implementation[20] and
Theano , and for his great insights for improving the method. Moreover, I
want to thank Rafael Messias Martins for staying in the loop, and providing
the visbrazil dataset.

69

B I B L I O G R A P H Y

[1] L. v. d. Maaten and G. Hinton, ‘Visualizing data using t-sne’, Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[2] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete and D. W. Fellner, ‘Visual analysis of large graphs:
State-of-the-art and future research challenges’, in Computer graphics
forum, Wiley Online Library, vol. 30, 2011, pp. 1719–1749.

[3] T. L. Saaty, ‘The minimum number of intersections in complete graphs’,
Proceedings of the National Academy of Sciences, vol. 52, no. 3, pp. 688–
690, 1964.

[4] P. Eades, ‘A heuristics for graph drawing’, Congressus numerantium,
vol. 42, pp. 146–160, 1984.

[5] T. M. Fruchterman and E. M. Reingold, ‘Graph drawing by force-
directed placement’, Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[6] C. Walshaw, ‘A multilevel algorithm for force-directed graph draw-
ing’, in International Symposium on Graph Drawing, Springer, 2000, pp. 171–
182.

[7] Y. Frishman and A. Tal, ‘Multi-level graph layout on the gpu’, IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1310–
1319, 2007.

[8] S. Martin, W. M. Brown, R. Klavans and K. W. Boyack, ‘Openord:
An open-source toolbox for large graph layout’, in IS&T/SPIE Elec-
tronic Imaging, International Society for Optics and Photonics, 2011,
pp. 786 806–786 806.

[9] M. Bastian, S. Heymann, M. Jacomy et al., ‘Gephi: An open source
software for exploring and manipulating networks.’, ICWSM, vol. 8,
pp. 361–362, 2009.

[10] R. Kohavi and G. H. John, ‘Wrappers for feature subset selection’,
Artificial intelligence, vol. 97, no. 1, pp. 273–324, 1997.

[11] H. Hotelling, ‘Analysis of a complex of statistical variables into prin-
cipal components.’, Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[12] J. B. Tenenbaum, V. De Silva and J. C. Langford, ‘A global geometric
framework for nonlinear dimensionality reduction’, Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[13] F. V. Paulovich, L. G. Nonato, R. Minghim and H. Levkowitz, ‘Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping’, IEEE Transac-
tions on Visualization and Computer Graphics, vol. 14, no. 3, pp. 564–575,
2008.

[14] R. M. Martins, D. B. Coimbra, R. Minghim and A. Telea, ‘Visual ana-
lysis of dimensionality reduction quality for parameterized projec-
tions’, Computers & Graphics, vol. 41, pp. 26–42, 2014.

71

72 Bibliography

[15] R. M. Martins, R. Minghim, A. C. Telea et al., ‘Explaining neighbor-
hood preservation for multidimensional projections’, EG UK Computer
Graphics and Visual Computing, 2015.

[16] R. Minghim, F. V. Paulovich and A. de Andrade Lopes, ‘Content-based
text mapping using multi-dimensional projections for exploration of
document collections’, in Electronic Imaging 2006, International Society
for Optics and Photonics, 2006, 60600S–60600S.

[17] R. Messias Martins, ‘Explanatory visualization of multidimensional
projections’, PhD thesis, 2016, isbn: 978-90-367-8642-3.

[18] "graph-tool documentation: All_shortest_paths", https://graph-tool.
skewed.de/static/doc/topology.html#graph_tool.topology.all_

shortest_paths, [Online; accessed 03-August-2016].

[19] K. P. Burnham and D. Anderson, ‘Model selection and multi-model
inference’, A Pratical informatio-theoric approch. Sringer, 2003.

[20] P. E. Rauber, A. X. Falcão and A. C. Telea, ‘Visualizing time-dependent
data using dynamic t-sne’, Proceedings EuroVis Short Papers 2016, 2016.

[21] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D.
Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov et al., ‘Theano: A
python framework for fast computation of mathematical expressions’,
ArXiv preprint arXiv:1605.02688, 2016.

[22] T. P. Peixoto, ‘The graph-tool python library’, Figshare, 2014. doi: 10.
6084/m9.figshare.1164194. [Online]. Available: http://figshare.
com/articles/graph_tool/1164194 (visited on 09/03/2016).

[23] J. Ellson, E. Gansner, L. Koutsofios, S. C. North and G. Woodhull,
‘Graphviz - open source graph drawing tools’, in International Sym-
posium on Graph Drawing, Springer, 2001, pp. 483–484.

[24] S. Tomar, ‘Converting video formats with ffmpeg’, Linux Journal, vol.
2006, no. 146, p. 10, 2006.

[25] J. F. Kruiger, Tsnetwork, https://github.com/HanKruiger/tsnetwork,
2016.

[26] I. S. Duff, R. G. Grimes and J. G. Lewis, ‘Sparse matrix test prob-
lems’, ACM Transactions on Mathematical Software (TOMS), vol. 15, no.
1, pp. 1–14, 1989.

[27] I. S. Du, R. G. Grimes and J. G. Lewis, ‘Users’ guide for the harwell-
boeing sparse matrix collection (release i)’, Report RAL-92-086, At-
las Centre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, Tech.
Rep., 1992.

[28] M. E. Newman, Network data, http://www- personal.umich.edu/
~mejn/netdata/, [Online; accessed 27-July-2016].

[29] T. A. Davis and Y. Hu, ‘The university of florida sparse matrix collec-
tion’, ACM Transactions on Mathematical Software (TOMS), vol. 38, no.
1, p. 1, 2011.

[30] Y. Hu, ‘Efficient, high-quality force-directed graph drawing’, Mathem-
atica Journal, vol. 10, no. 1, pp. 37–71, 2005.

[31] "graph-tool documentation: Sfdp_layout", https://graph-tool.skewed.
de/static/doc/draw.html#graph_tool.draw.sfdp_layout, [Online;
accessed 13-August-2016].

https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.all_shortest_paths
https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.all_shortest_paths
https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.all_shortest_paths
http://dx.doi.org/10.6084/m9.figshare.1164194
http://dx.doi.org/10.6084/m9.figshare.1164194
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://github.com/HanKruiger/tsnetwork
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
https://graph-tool.skewed.de/static/doc/draw.html#graph_tool.draw.sfdp_layout
https://graph-tool.skewed.de/static/doc/draw.html#graph_tool.draw.sfdp_layout

Bibliography 73

[32] G. Everstine and D. Taylor, Hb/dwt_72 sparse matrix, http://www.cise.
ufl.edu/research/sparse/matrices/HB/dwt_72, [Online; accessed
09-March-2016].

[33] D. Knuth, Newman/lesmis sparse matrix, https://www.cise.ufl.edu/
research/sparse/matrices/Newman/lesmis.html, [Online; accessed
30-June-2016].

[34] L. Marro, Hb/can_96 sparse matrix, https : / / www . cise . ufl . edu /

research/sparse/matrices/HB/can_96.html, [Online; accessed 30-
June-2016].

[35] Rajat, Rajat/rajat11 sparse matrix, https://www.cise.ufl.edu/research/
sparse/matrices/Rajat/rajat11.html, [Online; accessed 30-June-
2016].

[36] P. Gleiser and L. Danon, Arenas/jazz sparse matrix, https://www.cise.
ufl.edu/research/sparse/matrices/Arenas/jazz.html, [Online;
accessed 30-June-2016].

[37] "graph-tool documentation: Lattice", https://graph- tool.skewed.
de/static/doc/generation.html#graph_tool.generation.lattice,
[Online; accessed 25-July-2016].

[38] NASA, Pothen/mesh3e1 sparse matrix, http : / / www . cise . ufl . edu /

research/sparse/matrices/Pothen/mesh3e1, [Online; accessed 09-
March-2016].

[39] M. E. Newman, ‘Finding community structure in networks using the
eigenvectors of matrices’, Physical review E, vol. 74, no. 3, p. 036 104,
2006.

[40] G. Everstine and D. Taylor, Hb/dwt_419 sparse matrix, http://www.
cise.ufl.edu/research/sparse/matrices/HB/dwt_419, [Online;
accessed 30-June-2016].

[41] "graph-tool documentation: Price_network", https://graph-tool.skewed.
de/static/doc/generation.html#graph_tool.generation.price_

network, [Online; accessed 09-March-2016].

[42] ——, Hb/dwt_1005 sparse matrix, http://www.cise.ufl.edu/research/
sparse/matrices/HB/dwt_1005, [Online; accessed 30-June-2016].

[43] A. van Heukelum, Vanheukelum/cage8 sparse matrix, http://www.cise.
ufl.edu/research/sparse/matrices/vanHeukelum/cage8, [Online;
accessed 09-March-2016].

[44] J. Lewis, Hb/bcsstk09 sparse matrix, http://www.cise.ufl.edu/research/
sparse/matrices/HB/bcsstk09, [Online; accessed 09-March-2016].

[45] "graph-tool documentation: Random_graph", https : / / graph - tool .

skewed.de/static/doc/generation.html#graph_tool.generation.

random_graph, [Online; accessed 30-June-2016].

[46] General relativity and quantum cosmology collaboration network, https:
//snap.stanford.edu/data/ca- GrQc.html, [Online; accessed 09-
March-2016].

[47] K. Norlen, G. Lucas, M. Gebbie and J. Chuang, Pajek/eva sparse matrix,
http://www.cise.ufl.edu/research/sparse/matrices/Pajek/EVA.

html, [Online; accessed 30-June-2016].

[48] D. J. Watts and S. H. Strogatz, ‘Collective dynamics of small-world
networks’, Nature, vol. 393, no. 6684, pp. 440–442, 1998.

http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_72
http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_72
https://www.cise.ufl.edu/research/sparse/matrices/Newman/lesmis.html
https://www.cise.ufl.edu/research/sparse/matrices/Newman/lesmis.html
https://www.cise.ufl.edu/research/sparse/matrices/HB/can_96.html
https://www.cise.ufl.edu/research/sparse/matrices/HB/can_96.html
https://www.cise.ufl.edu/research/sparse/matrices/Rajat/rajat11.html
https://www.cise.ufl.edu/research/sparse/matrices/Rajat/rajat11.html
https://www.cise.ufl.edu/research/sparse/matrices/Arenas/jazz.html
https://www.cise.ufl.edu/research/sparse/matrices/Arenas/jazz.html
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.lattice
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.lattice
http://www.cise.ufl.edu/research/sparse/matrices/Pothen/mesh3e1
http://www.cise.ufl.edu/research/sparse/matrices/Pothen/mesh3e1
http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_419
http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_419
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.price_network
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.price_network
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.price_network
http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_1005
http://www.cise.ufl.edu/research/sparse/matrices/HB/dwt_1005
http://www.cise.ufl.edu/research/sparse/matrices/vanHeukelum/cage8
http://www.cise.ufl.edu/research/sparse/matrices/vanHeukelum/cage8
http://www.cise.ufl.edu/research/sparse/matrices/HB/bcsstk09
http://www.cise.ufl.edu/research/sparse/matrices/HB/bcsstk09
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.random_graph
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.random_graph
https://graph-tool.skewed.de/static/doc/generation.html#graph_tool.generation.random_graph
https://snap.stanford.edu/data/ca-GrQc.html
https://snap.stanford.edu/data/ca-GrQc.html
http://www.cise.ufl.edu/research/sparse/matrices/Pajek/EVA.html
http://www.cise.ufl.edu/research/sparse/matrices/Pajek/EVA.html

74 Bibliography

[49] G. Everstine and D. Taylor, Matrix dwt 1005, http://math.nist.gov/
MatrixMarket/data/Harwell-Boeing/dwt/dwt_1005.html, [Online;
accessed 12-Aug-2016].

[50] L. Van Der Maaten, ‘Accelerating t-sne using tree-based algorithms.’,
Journal of machine learning research, vol. 15, no. 1, pp. 3221–3245, 2014.

[51] J. Duchi, E. Hazan and Y. Singer, ‘Adaptive subgradient methods for
online learning and stochastic optimization’, Journal of Machine Learn-
ing Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[52] D. Kingma and J. Ba, ‘Adam: A method for stochastic optimization’,
ArXiv preprint arXiv:1412.6980, 2014.

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/dwt/dwt_1005.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/dwt/dwt_1005.html

	1 Introduction
	1.1 Motivation
	1.2 Graphs
	1.2.1 Toy example: Co-star network
	1.2.2 Graph layouts

	1.3 Dimensionality reduction
	1.4 Research question

	2 Related work
	2.1 Graph layouts
	2.2 Dimensionality reduction
	2.2.1 t-distributed Stochastic Neighbour Embedding

	2.3 Dimensionality reduction for graph layouts

	3 Method
	3.1 Distance matrix
	3.1.1 Modified adjacency matrix
	3.1.2 Shortest path distance matrix
	3.1.3 MAM vs. SPDM: A comparison
	3.1.4 Further modifications to the distance matrix

	3.2 Cost function
	3.2.1 Kullback-Leibler
	3.2.2 Edge contraction
	3.2.3 Early compression
	3.2.4 Repulsion
	3.2.5 Combining terms

	3.3 Implementation

	4 Results
	4.1 Benchmark
	4.2 Results on benchmark
	4.2.1 dwt_72
	4.2.2 lesmis
	4.2.3 can_96
	4.2.4 rajat11
	4.2.5 jazz
	4.2.6 visbrazil
	4.2.7 grid17
	4.2.8 mesh3e1
	4.2.9 netscience
	4.2.10 dwt_419
	4.2.11 price_1000
	4.2.12 dwt_1005
	4.2.13 cage8
	4.2.14 bcsstk09
	4.2.15 block_2000
	4.2.16 CA-GrQc
	4.2.17 EVA
	4.2.18 us_powergrid

	5 Discussion
	5.1 General results
	5.2 Challenges
	5.2.1 Layout artifacts
	5.2.2 Parameter settings
	5.2.3 Differences in drawing style
	5.2.4 Computing time and scalability
	5.2.5 Comparison

	6 Conclusion
	6.1 Future work

	7 Acknowledgements

