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Abstract

Medial descriptors (surface and curve skeletons) have been used for various oper-
ations such as shape retrieval, shape processing, and shape manipulation. They
offer efficient and effective ways to eliminate small-scale noise details from discrete
datasets, which are robust and in some ways work better than curvature-based meth-
ods. Noise-removal using skeletons works by removing points which correspond to
small-scale boundary details (which are generally caused by noise) by trimming the
skeleton branches, and then reconstructing the shape from the simplified skeleton. A
method has been proposed in 2D which removes skeleton branches that correspond
only to small-scale noise details. It allows eliminating noise details, but keeps sharp
(salient) features of the shape untouched. However, it does not directly generalize
to 3D for complex topologies. In this thesis this method has been adapted and im-
proved for 3D models, and can be successfully applied for a wide range of 3D shapes.
The resulting pipeline allows quick and robust removal of noise, and, compared to
a selection of tested smoothing methods, it removes more noise without distorting
important features.
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1 Introduction
With the proliferation of laser and optical scanners, 3D high resolution models
are widely used in a variety of applications such as prototyping, computer-aided
industrial designs, games and interactive virtual reality systems. Even with high
quality scanners, however, the models inevitably have measurement noises from
various sources [62, 54]. Similarly, shapes extracted from volume data (obtained
by MRI or CT scanners, for instance) often contain significant amounts of noise,
be it topological [63] or geometric [56], that needs to be removed before further
processing.

Removing noise from a model while preserving its salient geometric details, or
features, a process also called regularization, is however a challenging task. In many
cases side-effects will occur during the regularization procedure, such as shape distor-
tion and feature blurring, which greatly impairs the quality of the model and affect
its use in some fine applications that rely on local properties of the model. Addi-
tionally, the situation may deteriorate when the extracted models contain additive
noises from various sources, as some noise may be wrongly considered as features
during optimization. To this end, a robust and effective optimization algorithm
should remove noise, maintain features and avoid side-effects.

Naive denoising methods do not take geometrical features into account, and often
smooth the surface homogeneously. Examples of such methods are low-pass filters,
ball-erosions or least-squares filtering. These methods often succeed in removing
noise, but also distort important edges. As is shown in figure 1.1, although most of
the noise is successfully removed, the resulting feature blending is undesirable.

While a high number of feature preservation denoising approaches have been
proposed [31, 62, 65, 6, 25, 26, 17, 48, 34], the research is far from mature and
remains active due to its complexity. Most proposed methods are curvature based,
and use local iterative approaches to perform denoising. These methods work well to
remove small spurious noise, but also have inherent problems. The key problem of

(a) Original (b) Smoothed

Figure 1.1: Example of naive smoothing using a Gaussian kernel, while the noise is
reduced significantly, important features are blurred as well[61].
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these methods is that they differentiate between noise (to be removed) and features
(to be kept) using a local and frequency-based approach. Local methods can be
used, indeed, to separate noise and features from smooth areas. However, to further
separate noise from features, a scale (size) analysis is typically required. Such an
analysis is not part of most local methods which, by construction, only analyze small
neighborhoods of the shape. Generally, local iterative methods are good at detecting
local geometric details, but they have difficulties differentiating noisy edges from
globally important features.

It has been shown that feature preserving noise removal is also possible using
skeletons [42]. A skeleton or medial axis can be seen as the locus of centers of
n-spheres just touching the boundary of a 2D or 3D shape; it provides a complete
descriptor of the shape. As skeletons contain both global and local information of the
geometrical features, allow filtering and reconstruction, they are a good candidate for
denoising. Noise-removal using skeletons works by removing points which correspond
to small-scale boundary details (which are generally caused by noise) by trimming
branches, and then reconstructing the shape from the simplified skeleton.

In 2D a salient edge preserving model has been shown to work quite well [58].
It is based on a saliency measure that relates feature size to local object size. It
smooths out low-saliency convex features, and fills in low-saliency concave features.
This is done by respectively inflating simplified skeletons of the mesh’s foreground
and background skeleton. Since global shape transitions correspond to high-saliency
skeleton points, it can successfully distinguish noisy cusps and dents from salient
edges. In contrast to other 2D shape smoothing methods, this method inherits sev-
eral important properties from skeletons: the ability to distinguish between locally
similar but globally different shape details, which in turn leads to the possibility to
remove noise and keep salient features; and a simple and robust implementation,
making use of only integral quantities, rather than differential ones, which adds
robustness.

Unfortunately, the approach does not directly generalize to 3D. The problem is
that simply thresholding the low salience skeleton points does not necessarily disjoint
noisy skeleton components in 3D. Trying to remove complex noise with this method
results in a (large) surface skeleton sheet which often partially connects with the
core skeleton.

Hence, we state the key research question of this thesis: Can we adapt the
skeleton-based 2D noise removal method to handle 3D shapes, by using 3D surface
skeletons?

To this end, this thesis explores the problems related to saliency, and multiple
improvements are proposed: i) derivative filtering, which allows improved detection
of small scale noise near edges; ii) global importance filtering based on streamlines,
which allows removing curvilinear noise structures from the surface, and iii) multiple
smoothing methods which improve the quality of the reconstruction.

This thesis is organized as follows. First, a theoretical background of mathemat-
ical morphology and skeletons is given in chapter 2. Second, the core of the thesis
given in chapters 3 to 6, where the full saliency pipeline is shown, the problems
applying it to in 3D is discussed, and the solutions to mitigating these problems are
given. Third, the implementation of this thesis, including the noise models which
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are used to test our results are discussed in chapter 7. Last, qualitative and quanti-
tative results of the method are discussed in chapters 8 and 9, which also concludes
this thesis.
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2 Related work
Here we give a brief introduction to the important concepts of skeletons, as well as
an overview of important related work. The notation of mathematical morphology
is used in this thesis, and is introduced in section 2.1. Important concepts and
definitions related to skeletons are given in section 2.2, and a brief overview of
skeleton extraction methods is given in section 2.3. Related works based on skeleton
regularization of 2D shapes are introduced in section 2.4. Finally, other feature-
preserving denoising methods are discussed in section 2.5.

2.1 Mathematical morphology
The framework and notation used for skeletons have important connections in the
field of mathematical morphology, and therefore, in this section, we recall some
of the notation and terminology used in mathematical morphology. We primarily
restrict ourselves to binary images; later we show the extension to grayscale images
by means of threshold decomposition. For a more comprehensive discussion about
these concepts, the reader may refer to [52]. In mathematical morphology, it is
common to denote E as the universal set, i.e., the image domain, X as the set of
foreground pixels (in the discrete case), and E \X as the background. The power
set of E, the set of all subsets of E, is denoted as P(E). In this thesis A ∈ P(E) and
A ⊆ E is used interchangeably, depending on context.

An operator ψ is said to be a mapping ψ : P(E) → P(E), meaning it operates
on subsets of E. The operator ψ is said to be:

1. increasing: if X ⊆ Y implies that ψ(X) ⊆ ψ(Y ).
2. extensive: if X ⊆ ψ(X).
3. anti-extensive: if ψ(X) ⊆ X.
4. idempotent: if ψ(ψ(X)) = ψ(X)

Examples of operators are dilation, and erosion. When an operator is both increasing
and idempotent it is called a filter. An (algebraic) opening is a filter which is anti-
extensive. Similarly, an (algebraic) closing is a filter which is extensive. An example
of an algebraic opening (resp. closing) is an erosion followed by a dilation (resp. a
dilation followed by an erosion). Formally, an operator is called an erosion iff the
following property holds: ∩ψ(Xi) = ψ(∩(Xi)). Similarly, an operator is a dilation
iff it holds that: ∪ψ(Xi) = ψ(∪(Xi)).

2.1.1 Connectivity
The elementary regions (pixels) of E are connected by means of a connectivity class
C :

10



Definition 1. Let E be an arbitrary space. We call a connected class C a family in
P(E) such that

∅ ∈ C and x ∈ E implies {x} ∈ C (2.1)
for any family {Ai} ⊆ C, ∩Ai 6= ∅ implies ∪ Ai ∈ C (2.2)

Alternatively, we say that C defines a connectivity on E. The empty set, and all the
singletons {x} are connected. Furthermore the union of a family of connected sets
is connected, if they have a non-empty intersection. We can explain the behavior of
C by an example. Let the universal set E be the set of all integers, i.e. E = Z , and
let C define an adjacency relation on E so that every direct neighbor is connected.
Then {1, 2} ∈ C, and {2, 3} ∈ C, and thus rule 2 implies that {1, 2, 3} ∈ C. However
{1, 3} /∈ C, as the numbers 1 and 3 are not direct neighbors in E. When E =
Z2 common examples of connectivity classes are the four- and eight- adjacency
relationships.

Every set X ∈ E can be written as a union of connected sets that are pairwise
disjoint and of maximal extent, so that A ⊆ X, A ∈ C of maximal extent implies
that no set B ⊆ X, B ∈ C exists where A ⊂ B. These sets are called connected
components, or grains, commonly denoted as A b C. Visually they correspond to
the collection of all pixels of a connected region. These connected components can
be retrieved by means of a connectivity opening:

Γx(X) =
⋃
{Ai ∈ C|x ∈ Ai, Ai ⊂ X} (2.3)

It retrieves the connected component corresponding to the pixel x. The operator
Γx is anti-extensive, increasing, and idempotent and thus is an algebraic opening.
In conclusion, the family of connected openings {Γx|x ∈ E} uniquely characterize
the connectivity class C, and proving certain properties of the connectivity opening
[52], proves that the related family is a valid connectivity class.

2.2 Skeletons
In this section we briefly describe the skeleton, or equivalently the Medial Axis, and
its relation to its (Euclidean) distance transform. The definitions are first given for
the continuous case, i.e., E = Rd; later the generalization to the discrete case is
discussed. Although the skeleton can be defined on arbitrary distance metrics, we
only consider Euclidean skeletons. For any vector x ∈ Rd the length is denoted by
||x|| =

√∑
x2
i . Let B = Rd \X be the background. Then the Euclidean distance

transform D of B is the function that assigns to every point x ∈ Rd the distance to
its nearest background point. Formally it is defined as:

D(x, B) = min{||x− y|| | y ∈ B} (2.4)

The feature transform F is defined as the set-valued function that assigns x ∈ Rd

to its closest boundary points. Formally, it is defined as:

F(x, B) = {y ∈ B | ||x− y|| = D(x, B)} (2.5)
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There are two common skeleton definitions, the Real Medial Axis (RMA) and
Center of Maximal Disk (CMD) skeletons [27]. Both are explained in the following
sections.

2.2.1 CMD skeletons
Let the following set-valued function describe a d-sphere: S(x, r) = {y ∈ Rd |
||x− y|| < r}. For every point x ∈ Rd we can form the largest open sphere D(x, r)
that is disjoint to B; this is defined as the inscribed sphere of x (commonly referred
to as inscribed disk). If an inscribed sphere of point p is not contained in any other
inscribed sphere of B, it is called a maximal sphere. The set of centers of these
maximal spheres are the skeleton points. CMD skeletons together with the sphere
radii are complete shape descriptors, meaning they can be used to construct the
shape of the original domain. However, they are not guaranteed to be connected,
and thus they are less useful for processing purposes.

2.2.2 RMA skeletons
The medial axis of an object is the set of all points having more than one closest
point on the object’s boundary. Formally a point x ∈ X is a skeleton point (x ∈
S(X)) iff |F(x, B)| ≥ 2 for an object background B ⊆ E. In the 3D case RMA
skeletons are also called surface skeletons. There is also a special case of points
where |F(x, B)| ≥ 3, these are called curve skeleton points (although definitions
may vary).

2.2.3 Discrete case
Regard Zd as a grid embedded in Rd. The elements of Zd are called grid points. For
the special cases d = 2 or d = 3 the elements are called respectively pixels or voxels.
The Euclidean distance transform can be evaluated in a discrete manner by finding
for each discrete grid point x ∈ R3 its closest background point and computing its
distance to this point.

In the continuous domain CMD and RMA skeletons are equivalent. However,
there are no straight-forward definitions for the RMA skeletons in the discrete case.
The most straight-forward approach to generalize the CMD skeletons to the discrete
case, is to take for x ∈ Zd the inscribed sphere defined by S(x, r) ∩ Zd. Similarly
as in the continuous case, the set of centers of the maximum inscribed spheres are
then the skeleton points.

The RMA skeleton is harder to generalize according to its definition. Assume
that X is discrete so that X ⊆ Zd, then there is no guarantee that S(X) ⊆ Zd.
In fact, the intersection S(X) ∩ Zd can be empty. Thus a fully reconstructible
RMA skeletons of discrete images according the exact definition requires a mapping
S : P(Zd) → P(Rd) [27]. However it is often desirable to have skeletons that map
to the integer domain. Many algorithms exist which approximate RMA skeletons
in the integer domain using various approximation schemes [27, 51, 29]. These
approximate skeletons are often not fully reconstructible, but do contain similar
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features compared to real RMA skeletons. Most of these algorithms can recover
connected surface skeletons, which is why they are intrinsically more useful for
processing purposes than CMD skeletons.

Similarly as extracting RMA skeletons, the feature transform in the discrete
case needs some adaptations, as the extracted skeleton in the integer domain is not
guaranteed to be centered, i.e., the true real medial axis is a subset of P(Rd) and
not P(Zd). This means that the restricted feature transform to Zd may well be
everywhere single-valued, so that the consideration of neighboring points is needed.
There are multiple solutions, but an approach that has worked well is the extended
feature transform [49]:

F̄(x) =
⋃

y∈X∧{x,y}∈C
F(y) (2.6)

It is the union of the features of x and of all the connected neighbors of x. This
extended feature transform is used in this thesis.

2.2.4 Reconstruction
An important concept in skeleton algorithms is reconstruction. Since skeletons to-
gether with the sphere radii are complete shape descriptors, they can be used to
reconstruct the original shape. The reconstruction is given by the union of all
spheres centered on the points comprising the skeleton, each with a radius given by
the distance transform D(x, B). Let S be the skeleton of X then we have that:

X = R(S) =
⋃

x∈S
{y | y ∈ D(x, B)} (2.7)

Note that naively computing the reconstruction according to this definition leads to
an O(n2) algorithm; better approaches exist, as is shown in chapter 7.

2.2.5 Surface skeletons
Skeletons of 2D geometry have a relatively simple structure: they are curve segments
bounded by either an end-point corresponding to a curvature extremum on the
boundary of the shape, or by a junction point where three branches meet [23].
Surface skeletons, also called medial surfaces, have a more complex structure, and
require the notion of contact points to fully describe its shape1.

1The notion of contact points are also a powerful descriptor of 2D skeletons as is shown in [22].

Figure 2.1: Illustration of the notation Ank based on contact of a curve with a circle
[23].
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The classification of surface skeleton points is based on the notion of contact
with spheres, i.e., the loci of sphere osculating sources [22]. Let Ank denote a circle
(in 2D) or a sphere (in 3D) osculating a boundary element at n distinct points and
k + 1-degree of contact. Here, degree of contact is defined as the order of shared
derivatives. An example is shown in figure 2.1: k = 1 denotes regular tangency;
k = 2 denotes a sphere of curvature for a surface patch; k = 3 denotes a sphere of
curvature at a ridge point, and is of maximum contact. When k > 1 the parameter
n is omitted, as there are infinitely many contact points. It is noteworthy that even
degrees of contact do not occur at inscribes spheres of skeleton points, as they cannot
be tangent to maximum inscribed spheres (i.e., they intersect with the boundary).

By classifying each skeletal point by its order of contact, it can be shown that
generically the surface skeleton consists of five types of points which are then orga-
nized into sheets, curves, and points [21]:

1. Sheets (manifolds with boundary) which are the locus of bitangent spheres
with regular tangency A2

1.

2. Curves, which come in two types: i) the intersection curve of three sheets
and the locus of centers of tri-tangent spheres A3

1, and, ii) the boundary of
sheets which are the locus of centers of spheres whose radius equals the larger
principal curvature, i.e., higher order contact A3 points.

3. Points, which come in two types: i) centers of quad-tangent spheres, and,
ii) centers of spheres with at-least one regular tangency and one higher order
tangency (A1+

1 , A3).

Note that A3
1 points are commonly referred to as junction points, as they lie on the

intersection of three or more sheets. An example of a surface skeleton of a elliptical
cylinder is shown in figure 2.2. The skeleton consists of three sheets formed by A2

1
points, as is shown in (b), (c) and (d). For the upper sheet the maximum spheres
are close to the flat top of the cylinder and tangent both to it and to the curved
surface. For the flat sheet in (d) the spheres are tangent to the front and back
curved surfaces of the cylinder.

The curve skeleton (cs) points A3
1 are shown in (d), they lie at the intersection

the central and bottom sheet, and likewise at the intersection of the top and central
sheet. There are also A3 cs points which lie at the sides of the central sheet, they
are tangent to the ellipsoidal surface of the cylinder.

The singular points A1+
1 , A3 lie at the corners of the central sheet. They are A1

tangent to the bottom and top of the cylinder, and A3 tangent to the ellipsoidal
surface of cylinder. An example of a more complicated skeleton shape is shown in
figure 2.3.

2.3 Skeleton computation
In the past decades, various skeleton extraction methods have been proposed. Gen-
erally, they can be coarsely classified into six types: the thinning algorithms [33, 37,
1, 36], the discrete domain algorithms based on the Voronoi diagrams [46, 7, 19, 43],
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Figure 2.2: Illustration of the surface skeleton of an elliptical cylinder [21]: (a) the
cylinder; (b) the cylinder and its surface skeleton; (c) the top and bottom sheets of
the skeleton; (d) the central sheet which connects the bottom and top sheets; (e)
labeled contact points of the central sheet.

(a) Horse model (b) Unsimplified surface skeleton.

Figure 2.3: An example of a surface skeleton of a horse model. The rainbow colored
map shows the simplification metric of [29].
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the algorithms based on distance transforms or related fields [20, 11, 2, 15, 16, 3, 35],
iterative shrinking of the object contour [32, 24, 64], boundary collapse methods
[51, 29], and the algorithms based on mathematical morphology [18, 30, 27]. Only
a small list of the mentioned algorithms are also directly applicable to 3D shapes
[36, 19, 43, 51, 29, 27]. Most algorithms in 3D either output curve skeletons [36, 43]:
a set of connected 1D curves centered with respect to the object boundary, or output
surface skeletons [19, 27]: a set of 2D manifolds or so called sheets. Some algorithms
can output both curve and surface skeletons [51, 29]. These algorithms rely on a
global collapse measure, which after thresholding outputs hierarchical skeletons of
different scale levels. In contrast to 2D and surface skeletons, 3D curve skeletons ad-
mit many definitions, and as such a formal relationship between the surface skeleton
and the curve skeleton is not unanimously accepted. Curve skeletons only capture
the topology of the shape, and not its geometry, and as a consequence cannot be
reconstructed to its original shape, and therefore only surface skeletons are useful
for our work.

For a more comprehensive discussion about skeleton computation, the reader
may refer to the recent state of the art report [55].

2.4 Skeleton regularization
Skeleton pruning is a critical step in skeleton processing and analysis. Although the
skeleton has many desirable characteristics as a shape descriptor, it is very sensitive
to noise on the shape boundary [42]. The goal of skeleton pruning is to remove the
unnecessary skeleton points or branches arising from noise or perturbations on the
boundary [4].

Skeleton pruning methods can be classified in two important categories:

• Importance thresholding: This kind of method is based on assigning signifi-
cance values to skeleton points and removes insignificant points according to
a given threshold. [51, 29, 59, 58, 53]

• Branch pruning: These methods measure the of each branch as a whole and
prunes the skeleton branch-by-branch [5, 42, 41, 57].

2.4.1 Importance thresholding
Importance thresholding approaches rely on a salience measure that is defined for
each skeleton point, by a mapping ρ : S(X) 7→ R+, using local characteristics of the
skeleton point, e.g. speed, radius, lengths, area, thickness, etc. Examples of useful
local characteristics are shown in figure 2.4. These metrics are the angle θ of the
feature points P+ and P−, the chord distance (length of circular arc), the geodesic
distance (distance over the boundary), or the area.

A few important methods based on importance thresholding need to be men-
tioned: Ogniewicz and Kübler [47] introduced several length based significance mea-
sures for a given skeleton point, such as the length of the chord between two feature
points (the points of the maximal sphere centered at the skeleton point, which are
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Figure 2.4: This figure (from [57]) illustrates the various local characteristics of
a point P which can be used as the basis for a pruning metric of the skeleton.
Examples are the angle θ of the feature points P+ and P−, the chord distance
(length of circular arc), the geodesic distance (distance over the boundary), or the
area A.

tangent to the boundary) and the length of the shortest boundary segment between
two feature points.

Shen et al. [53] introduced a measure called bending potential ratio (BPR), in
which the decision regarding whether a skeletal point should be pruned or not is
based on the bending potential of the boundary segment that corresponds to the
branch. Reniers et al. [51] introduce a method for surface skeletons which uses a
global importance measure that assign to each point on the skeleton a part of the
object surface, called the collapse. The size of the collapse is used as a uniform
importance measure for the curve and surface skeleton. Jalba et al. [29] presented
a similar method which uses conservative mass transport process which assigns the
collapsed mass of the boundary to each skeleton point, improving in some ways on
the result of [51]. The discussed importance thresholding methods share a common
disadvantage: while they do prune noisy branches, they also shorten branches of
coarse-scale corners.

As introduced before, the salient edge preserving model by Telea [58] has been
shown to work quite well for 2D models. It is based on a saliency measure that
relates feature size to local object size. Any importance measure can be used for the
feature size, including the methods explained above. Unlike the previously discussed
methods, it does not shorten branches which correspond to salient shape features
and preserves coarse-scale corners.

2.4.2 Branch pruning
The branch pruning methods do not shorten important skeleton branches, they only
remove branches as a whole, and therefore they are better in preserving sharper
features. Tek and Kimia [57] proposed the earliest branch removal method by using
a splice transform (data structure containing the symmetry set, which consists of
both the foreground and background skeleton). They iteratively remove terminal
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branches from the splice transform based on the order their saliency measure, which
is defined as the area difference between the smoothed and original shape divided by
the branch length. Just as in this thesis their end-goal is smoothing the boundary.
Bai et al. [5] proposed an effective pruning method, which can be integrated into a
skeleton extracting process. The main idea is partitioning the object’s contour into
segments by discrete curve evolution (DCE). A large downside of this method is that
it only works with Genus 0 shapes (shapes without holes). Another branch-removal
method, proposed by Liu et al. [41], uses a combination of two metrics: (i) the
reconstruction contribution, which is measured by the residual shape area, the area
that can only be reconstructed by a branch, relative to the whole shape area, and
(ii) its visual contribution (VC), which is measured by the length of residual part of
the skeleton branch, the part that is not contained in the maximal sphere centered
at the adjacent branch point. The same authors later improved this method by
combining other significance measures using information fusion [42].

Although branch methods have shown to be successful in 2D, they do not gen-
eralize, at all, to surface skeletons. They rely on a rooted graph structure of line
segments that only exists for 2D skeletons. The closest structure for surface skeletons
are Medial Axis hypergraphs [21]. Their increased complexity, and its large num-
ber of transitions between skeleton points makes it much harder to work with than
regular branch pruning methods. Therefore our focus is on importance thresholding
methods, as they are easier to generalize to the 3D case.

2.5 Other denoising methods
There is a large variety of feature-preserving smoothing methods which are not based
on skeletons. A few of these are explored here.

A selection of methods use a saliency map of the surface of the mesh that assigns
high importance values to important features such as strong edges. The saliency map
is then used in the weighting of the optimization procedure of the method so that
important features are not distorted. An early feature preserving method that uses
this model is ‘Anisotropic Smoothing of Point Sets’ [34]. For the saliency mapping
they use directional and principal curvatures as well as the Weingarten map that is
also known as the shape operator. They use anisotropic geometric mean curvature
flow for their optimization procedure. There are other methods which also based on a
saliency-based mapping [26, 12]. The large problem of these methods is that they are
based on curvature-based measures based on first-order or second-order derivatives,
which are only local and unstable when a large amount of noise is present.

There are also other methods which use robust statistics or bilateral filtering.
They rely on a similarity measure or empirical influence function that changes the
dependence of the optimization procedure on the value of the points, which makes
them more robust to outliers. This is important, as feature preserving smoothing
can be seen as estimating a surface in the presence of outliers. An important early
work based on this technique is ’Non-iterative, feature-preserving mesh smoothing’
by Jones et al. [31]. They use bilateral filtering, where the tangent planes based on
filtered normals are used as a basis for their similarity measure. Another important
work based on this technique is ‘Preserving point set surfaces based on non-linear
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kernel regression’ by Öztireli et al. [48]. They use robust statistics (M-estimators)
to create a implicit least squares procedure that has good edge-preserving qualities.
The main advantage of their method is that is performs well with a low number of
samples. There are a large variety of methods that are also based on robust statistics
or bilateral filters [17, 62, 39, 28]. The downside of these methods is that they rely on
local neighborhoods of points, so they are unable to differentiate globally important
edges from local (possibly noisy) geometric details. Another disadvantage is that
these methods need a certain finite kernel size of to estimate curvature. If the size
is set too small, then one gets poor curvature estimates, which become useless.
However when the kernel size is set too large, the curvature estimates are stable,
but are not localized in the input shape, but in the filtered version thereof, which
results in poor localization of the features of the shape.
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3 Saliency pipeline
Here the saliency pipeline as introduced in [58] is explained. This important previous
work is detailed, as it is used as the basis of the proposed framework for surface
skeleton filtering. The framework is useful because it offers a way to distinguish
between locally similar but globally different small-scale details, thus, a way to
classify perturbations into features and noise, which is ultimately what is needed
for the denoising process. The saliency pipeline is explained in section 3.1, where
also some new terminology and notation is introduced to unify related work. The
relation of the saliency pipeline to mathematical morphology is given in section 3.1.3.
In section 3.2 some of the problems of implementing this framework for surface
problems are introduced.

3.1 Saliency metric
A framework is proposed by Telea [58] which performs filtering using a pruning
metric on the foreground and background skeleton. It aims to remove shape per-
turbations, generally classified as noise, without smoothing corners. The shape
perturbations can be divided into cusps and dents, and have different properties
than important features such as corners. Here, cusps (resp. dents) are defined as
small scale convex (resp. concave) protuberances of the shape boundary, that are
surrounded by relatively flat or low-curvature areas. In the proposed framework the
cusps are removed in the foreground skeleton, while the dents are removed in the
background skeleton.

At its core it uses the following saliency metric:

σ(x) = ρ(x)
D(x) (3.1)

Where ρ(x) is a local pruning metric proportional to the size of the features (origi-
nally taken as the geodesic distance of the feature points), and D(x) is the Euclidean
distance transform. The pruning metric ρ should be proportional to the size, so that
longer features are more salient than shorter ones. The effect is that it allows dif-
ferentiating between cusps and corners, as is explained below.

Along the cusp branches, ρ increases until the branches leave the cusp and enter
the rump of the shape. After that, ρ stays constant on that branch until the branch
joins the core skeleton (because ρ is proportional to the size of the cusp). These
skeleton segments are called ligature branches. The effect is that further along the
so-called ligature-branch the distance transform increases, while ρ stays constant.
Thus we have that in the limit limD(x)→∞ σ(x) = 0 for ligature branches. On globally
important features such as corners ρ keeps increasing on the connected branch until
it connects with the core skeleton. This allows us to differentiate between corners
and cusps, as ligature branches (related to cusps) contain small σ(x) values, while
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(a) corner (b) cusp

Figure 3.1: An illustration which shows the difference between corners and cusps: in
(a) both the importance ρ and the distance D steadily increases on a branch, while
in (b) D increases, but ρ stays constant.

corner branches have constant σ(x) over the entire range of the branch. An example
is shown in figure 3.1.

Following equation (3.1) we have a constant value of 2/ tan(α) for points along
the skeleton branch of an angular cusp of aperture angle α [58]. It has a theoretical
limit of P (M)/φ. Here, P (M) is the perimeter in 2D or the maximum perimeter
of the surface M in 3D, and φ is defined as the minimum local thickness so that
φ = minx∈S D(x).

3.1.1 Pipeline
The pruning measure σ(x) can be used to regularize the skeleton, and the processed
skeleton can then be used to reconstruct the model where most of the noise is
removed, while retaining the important features. The pipeline is divided into two
stages, where in the first stage convex noise is removed using the foreground skeleton,
and in the second stage concave noise is removed using the background skeleton.
Thus in the first stage of the pipeline the cusps on the surface (or perimeter in 2D)
are removed. This is done by the following steps:

1. Compute the foreground skeleton of the noisy binary image.

2. Prune skeleton based on saliency measure σ(x).

3. Reconstruct the simplified skeleton; which will result in the original image
where small cusps are removed.

In the second step the skeleton is simplified by using the following threshold rule
σ(x) ≥ c where c ∈ R . There is no guarantee that the output is a connected
skeleton. As limD(x)→∞ σ(x) = 0, the tips of the ligature branches have larger
values, which will be retained after thresholding. Thus this threshold rule will
result in images that contain the core skeleton and disconnected tips of the ligature
branches. The full removal of the ligature branches is performed by selecting the
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component with the largest importance value. The reasoning behind this is that
ρ(x) has the largest importance value located in the center of the 2D skeleton, and
is therefore very unlikely to be located at the disconnected fragments (which should
be far away from the center and close to and including the branch tips).

Definition 2. Let y ∈ Rn be the skeleton point with the largest importance value
so that y = argmaxx∈S ρ(x), and let Γ(X) be the connectivity opening as defined in
chapter 2, then the skeleton simplification is given by:

ωσ(S) = Γy({x ∈ S | σ(x) ≥ c}) (3.2)

Since the core skeleton should contain the largest importance value, the operator
ωσ(S) removes ligature branches, but the core skeleton is kept in full. The simplified
skeleton is reconstructed so that the output of the first stage is given by R(ωσ(S)),
which gives a processed image where the cusps are removed.

Definition 3. Let X ∈ P(E) be the set of foreground pixels that make up a single
connected component, and R the reconstruction operator as defined in chapter 2 then
we define the operator δc as:

δc(X) = R(ωσ(S(X))) (3.3)

In the second stage of the pipeline the same steps are repeated, but then for
the background image of the reconstructed result. This way it is possible to detect
ligature branches corresponding to dents, and remove concave noise. Using the dual
structure for the operators the second stage can be defined by the background image:

Definition 4. Let X ∈ P(E) be the set of foreground pixels that make up a single
connected component, and R the reconstruction operator as defined in chapter 2 then
we define the operator δ̄c as:

δ̄c(X) = E \δc(E \X) (3.4)
= E \R(ωσ(S(E \X))) (3.5)

The assumption here is that the domain E is a bounded subset so that there
exists a finite Lebesgue measure, otherwise the skeleton of the background image is
ill-defined.

The two stages of the pipeline are combined by applying them in succession:
δ̄cδc(X). The result is that in the individual stages both the convex and concave
noise are removed. The pipeline is further outlined in figure 3.2. In this example the
cusps and dents of a rectangle are removed. The first stage defined by δc is shown
in the first row, where in the second row δ̄c is shown.

length of the shortest path, over the shape boundary, between

3.1.2 Choice of importance measure
Although there is no strict requirement of ρ in the saliency pipeline, it is proven to
work well with geodesic distances for 2D images, where the geodesic distance of the
two most relevant features are used. In particular:
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Figure 3.2: The saliency pipeline for 2D images [58]. In the first step the cusps
are removed by removing the ligature branches of the foreground skeleton, which
is then reconstructed. Respectively, the dents of reconstructed shape are removed
by trimming ligature branches of the background skeleton. The reconstruction of
the of the background skeleton gives the final result where both cusps and dents are
removed.

Definition 5. let F be the feature transform as defined equation (2.5), and let g
be the function that gives the length of the shortest path, over the shape boundary,
between two feature points, then the relevant feature transform F̂ : S 7→ E × E is
defined by:

F̂(x) = argmax
(a,b)

{g(a,b) | (a,b) ∈ F(x)×F(x)} (3.6)

Then the importance measure ρ can readily be defined by ρ(x) = g(F̂(x)). To
improve computation speed g is often replaced by the Euclidean distance or the
angle between the features for F̂ , where only the actual geodesic distance is used
for ρ.

In 2D the geodesic distance has the special property that it is monotonically
increasing for genus 0 shapes (shapes without holes). This means that the impor-
tance ρ is increasing as one orders skeleton points from the skeleton boundary to its
center. Formally we have that:

Definition 6. Let S be the skeleton of X; let ρ be an arbitrary importance measure
on S, and let q = argmaxy ρ(y) be the root of S, then ρ is said to be a monotonically
increasing so that for all x ∈ S there exists an increasing path P ∈ Sk with k ∈ N+

the path length, where

P1 = x and Pk = q (3.7)
{Pi, Pi+1} ∈ C for all Pi ∈ P, i 6= k (3.8)
a ≤ b implies ρ(Pa) ≤ ρ(Pb) (3.9)
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(a) A ⊆ B (b) δ(A) * δ(B)

Figure 3.3: An example showing why the operator δ is not increasing. The bump
of A is removed as it corresponds to a ligature branch, however the rectangle B
contained in A does not contain ligature branches, and is therefore kept intact.

In the case where there exists multiple roots then a monotonically increasing
path must exist for all qi ∈ argmaxy ρ(y). This is equivalent to saying that for all
thresholds c ∈ R on ρ the skeleton S stays connected. Therefore, thresholding ρ
cannot break S into multiple connected components. This is an important property
for saliency filtering, as otherwise it might also disconnect the core skeleton as well
as the ligature branches at lower thresholds values.

3.1.3 Relation with mathematical morphology
As the saliency metric is a topological operator, it is interesting to see properties
of the operator in a mathematical morphology setting, as it allows us to see its
limitations, but also use this theoretical framework to create a grayscale extension.
In particular, some research has been done whether the saliency operators are mor-
phological filters (such as erosions, openings, or closings).

Lemma 7. Let X ∈ P(E) be the finite set of foreground pixels that make up a single
connected component, then δc(X) is anti-extensive so that δc(X) ⊆ X.

Proof. For any threshold c we have that ωσ(X) ⊆ S(X). Since R is an increasing
operator, it follows that R(ωσ(X)) ⊆ R(S(X)). Thus it holds that δc(X) ⊆ X.

Note that R is only increasing if the distance transform stays constant, which
holds here as at both sides of the equation the distance transform is of the same X.

Lemma 8. Let X ∈ P(E) be the finite set of foreground pixels that make up a single
connected component, then δc(X) is eventually idempotent, so that there exists a
k ∈ N so that δc(X)k = δc(X)k+1

Proof. Since δc(X) is anti-extensive it holds that δc(X)k+1 ⊆ δc(X)k. Either δc(X)k
is strictly anti-extensive so that there exists a k where δc(X)k = ∅ where it follows
that δc(X)k+1 = ∅, or δc(X)k is not strictly anti-extensive, for which it must hold
that there exists a k where δc(X)k = δc(X)k+1.

In practical cases k is almost always one, as when all ligature branches are
removed under a threshold, they are not reintroduced after reconstructing the shape.
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(a) Two bumps (b) One bump (k = 1) (c) No bumps (k = 2)

Figure 3.4: A demonstration of the non-idempotent behavior of the saliency pipeline.
Choosing the right threshold will remove only the cusp (I, J , K), but keep the cusp
of (A, B, C) untouched. Since the circular arc of (A, B, C) is reduced, it will be
removed after applying the pipeline again with the same threshold.

However, there exist pathological cases in the case of hierarchical ligature branches
(a small cusp on another cusp). An example of such a case is shown in figure 3.4.

Although δ is anti-extensive and eventually idempotent, it is not increasing. An
example where δc is not increasing is shown in figure 3.3. It follows directly that δc
does not a constitute a classical filter, and is therefore also not an opening. Even
though it is not increasing, it is still possible create a grayscale extension similar to
attribute thinnings [8], which are also non-increasing.

Grayscale extension

Similar as attribute thinnings [8], the operator δ can be generalized to grayscale.
This can be done through threshold superposition [44], where a gray-scale image
f : x 7→ N is decomposed into binary images, based on thresholding f at all levels
h ∈ [0, N − 1], where N is the number of graylevels of the image. Formally this can
be defined as:

Th(f) = {x ∈ E|f(x) ≥ h} (3.10)

In equation (3.10) all the pixels corresponding to values higher than threshold h
are selected. It is decreasing with respect to h so that when k > h it follows that
Tk(f) ⊆ Th(f). This is also referred to as hierarchical nesting [44]. Non-increasing
filters can be generalized by evaluating the binary filter at every threshold-level h
and combining the resulting connected components.

For an increasing binary filter φ, the grayscale extension is evaluated by:

φf (x) = max{h | x ∈ φ(Th(f))} (3.11)

In attribute filter terminology this corresponds to the direct rule. Evaluating this
for non-increasing filters can result in unwanted side-effects [60]. For example, a
point x might be subject to removal on most threshold levels, but if there is a single
high threshold value where no removal takes place, then the grayscale filter has little
or no effect.
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Another grayscale filtering rule which proved to be more successful with anti-
extensive filters is the subtractive rule [60]. In the discrete case it is defined as:

φf (x) =
N−1∑
h=0

1 if x ∈ φ(Th)
0 otherwise

(3.12)

Effectively, using this rule is equivalent to counting the number of threshold levels
which contains x, which is more robust if a filter is not increasing, but is equivalent
to the direct rule for increasing filters. Thus by substituting φ by δc, the saliency
filtering can also be applied to grayscale images. This has not yet been investigated
in practice.

Although this work is not used in the current pipeline, these relations are useful
for future work. In particular, the grayscale extension might be useful for denoising
CT, MRI or ultrasound scans which generally output grayscale voxel-based volumes.

3.2 3D extension
Although originally defined for 2D skeletons, the saliency metric can also be applied
to surface skeletons. The complete pipeline carries over without any large adjust-
ments, except that X ⊆ Z3 instead of Z2. However, there are a number of problems
which makes shape denoising problematic for most models:
• Low detection range problems: Typically a 3D (voxel) shape is sampled at

lower resolutions, with respect to the level-of-detail of the shape, than typical
2D (binary pixel) shapes. Therefore, noise near edges is harder to distinguish
from features, requiring an improved detection range.

• Multi-axial features: Let axes in this context be mutually perpendicular planes
in a local coordinate system that are feature-aligned. In 3D, important features
in one axis can overlap with noise in a different axis, so that the ligature sheet
is orthogonal to the core skeleton. This causes complete intersection of the
ligature sheets and the core skeleton. The result is that simply thresholding
the low salience skeleton points does not necessarily disjoint noisy skeleton
components in 3D. Trying to remove complex noise by using the connectivity
operator thus results in a (large) surface skeleton sheet which often partially
connects with the core skeleton.

• EDT ripples: After removing all ligature sheets, small noise on the surface still
persist due to noise that persist as perturbations on the core skeleton and the
EDT. In 2D this is barely noticeable, however with 3D models when using any
modern rendering technique the small perturbations are much more visible
due to light reflection.

To overcome these issues, the introduced saliency pipeline is adapted in multiple
ways. In chapter 4 the detection range is improved by substituting the saliency
measure for a derivative-based measure. In chapter 5 the multi-axial features are
removed by replacing the connectivity opening Γy by an importance-driven selec-
tion operator. The EDT ripples are suppressed by filtering the EDT itself using a
minification filter, as is shown in chapter 6.
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4 Derivative method
The saliency pipeline has proven to work well on 2D images, however directly apply-
ing the same technique on volumes has proven to be difficult. One of the problems of
this pipeline is decreased sensitivity of the saliency metric near edges. This problem
is further clarified in section 4.1. A new metric similar to the saliency metric is
proposed in section 4.2 as a solution.

4.1 Corner and edge sensitivity
Although the saliency metric can remove cusps and dents in most situations, there
are problems when these appear near corners of objects. The noise near corners is
not detected as noise, and is subsequently not removed after performing the saliency
pipeline. The branches of cusps near corners have decreased branch lengths, which
in turn means that there is a shorter detection range. The further along the ligature-
branch the distance transform increases, while ρ stays constant, meaning that the
ligature branch requires a certain length before the ratio ρ/D goes below a certain
threshold. This becomes a problem with cusps that have shorter branch lengths, as
is depicted in figure 4.1. A single threshold c can remove most of the cusps, but is
unable to remove noise near corners. Increasing c to accommodate this can have the
unwanted side-effect of removing core branches as well.

In the 3D case, the same problem caries over near edges, where ligature sheets
can be too small to be reliably detected. Additionally, it is possible that curvilinear
2-dimensional noise structures appear on the surface. They correspond to planar
ligature sheets in the skeleton, for which some parts may also be very close to the
core skeleton. It is thus important to even detect small ligature parts, so that it is
possible to disconnect the ligature sheets in full from the core skeleton.

4.2 Derivative metric
Ligature sheets have special properties that can be used to distinguish it from core
skeleton parts. Cusps correspond to curve segments from which a subsegment all
share the same feature points. In the 2D case, if we follow the skeleton from the
cusp to the core the geodesic distance between the feature points keep increasing
until it reaches a skeleton point which contains the outer points of the cusp as the
feature points. The further along the ligature-branch the ρ stays constant; therefore
the directional derivative of the importance metric along the skeleton is zero. This
is an important fact which can be used to detect shorter ligature branches. One
proposal to perform this is:

σ(x) = ∇ρ(x) · v(x) (4.1)
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Figure 4.1: Shows equally-sized cusps on the boundary of a rectangle. Although
these cusps all share the same importance, the shorter branch lengths inhibits the
saliency pipeline to remove the cusps at the corners, as each branch has a maximum
local thickness. Thus a different threshold on σ is required to remove each cusp.

where v(x) is a vector field which is tangent to S. Unfortunately, this straight-
forward proposal is problematic when plateaus of importance exist which are not
ligature branches or sheets. Take for example the center skeleton line of a rectangular
box, although its importance is constant, it is not a ligature branch.

Improved detection can be attained by also including the distance transform in
the equation. Ligature branches correspond to importance plateaus along skeleton
sheets, but where the distance transform D(x) also increases. Therefore a better
proposal is the following equation:

σ(x) = ∇ρ(x) · v(x)
∇D(x) · v(x) (4.2)

Here the derivative of the importance is divided by the derivative of the distance
transform. If both the importance and the distance transform only change slightly
along the skeleton axis, it will not be detected as a ligature sheet, which is the desired
effect. Only if the importance values stay stagnant and the distance transform varies
largely a point will be detected as a ligature skeleton point.

Limit cases

Limit cases exists for which the computation of equation (4.2) requires some care.
The most important case is when ∇D(x) ·v(x) ≈ 0 as a division by zero can occur.
Recall that this does not occur with ligature sheets, as they increase in distance
to the surface along its axes. Therefore, to mitigate this problem the following
threshold rule is used:

∇D(x) · v(x) ≥ l (4.3)

where l is a very small constant near zero to account for floating point imprecision.
Points which do not satisfy this threshold are discarded as candidates for detection.
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Detection

In the original saliency pipeline as explained in chapter 3 the detection is done by
thresholding the saliency measure itself. In particular, the operator ωσ(S) uses a
threshold c ∈ R on σ to detect ligature sheets. Using the scheme on ω is no longer
meaningful, as it is invariant to the scale of the noise. Meaning, that the values
of ligature branches will be near zero regardless of the size of the cusp or dent.
To control for the size of the artifacts we wish to remove the following scheme is
proposed:

Definition 9. Let y ∈ Rn be the skeleton point with the largest importance value
so that y = argmaxx∈S ρ(x), and let Γ(X) be the connectivity opening as defined in
chapter 2, then the derivative skeleton simplification is given by:

ωσ(S) = Γy({x ∈ S | ∇D(x) · v(x) > k ∧ σ(x) > k ∧ ρ(x) ≥ t}) (4.4)

Here, k is a small constant near zero to account for numerical precision and
smooth cusp transitions, and t ∈ R is the threshold used for the original importance
metric ρ. By introducing the importance threshold we can control for the size of
artifacts we wish to remove. For example, in figure 4.1 we can remove all bumps
using a single threshold.

The operators δc(X) and δ̂c(X) will work the same as in the previous pipeline,
except that ωσ(S) is used instead of ωσ(S). A small comparison of the behavior of
the detection between the originally saliency pipeline is shown in figure 4.2. In this
figure we can see that the detection range can be improved considerably by using
the derivative-based measure.
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F1 F2

Detected Range byDetected Range by

Figure 4.2: Shows the detection ranges of the original saliency metric and the deriva-
tive of an importance measure. The shape is a circle with a singular bump on the
surface; the corresponding skeleton is a A2

1 curve segment with two A3 endpoints.
All skeleton points residing in the circle have the feature points F1 and F2. Detec-
tion of the derivative-based measure starts as soon as the importance measure stays
constant, while the original saliency measure requires the ratio of ρ and D to be be-
low c. Although c can be increased, within reason, to improve the detection range,
setting it too high can also have the negative consequence of removing branches
corresponding to features.
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4.2.1 Choice of velocity field
The choice of velocity field v(x) is an important aspect when applying the proposed
method on surface skeletons. For 2D skeletons the choice of velocity field is straight-
forward, there are only two directions which are tangent to the skeleton field, for
which the direction which is increasing in importance is the obvious choice. One
proposal for the 3D case is:

v(x) = ∇ρ(x) (4.5)

Substituting v(x) in equation (4.2) gives us:

σ(x) = |∇ρ(x)|2
∇D(x) · ∇ρ(x) (4.6)

Note that choosing v(x) = ∇ρ(x)/|∇ρ(x)| will give the same result, as the length of
the velocity field is a common factor in σ. For surface skeletons, however, the choice
is less obvious. Let M be the continuously differentiable manifold of the surface
of the skeleton, and TM the tangent bundle of M . For 3D meshes the skeleton is
locally planar, and therefore TxM lie on a plane. This means that we have more
freedom in the direction of v than on 2D skeletons. If we want to add the constraint
to only allow directions increasing in importance, then v(x) is locally constrained
on a half-plane for all x. Therefore, we need additional constraints for v compared
to the 1D case. The most straight-forward approach would be taking the gradient
direction, as is defined in equation (4.5). Unfortunately this does not always give
the desired effect. In ligature sheets corresponding to noisy cusps the importance
is not constant across its axis, and therefore the gradient of these ligature sheets
are not zero as in the 1D case. Although the directional derivative towards the
skeleton root might be zero, the gradient orthogonal to this direction will likely not
be. Therefore the gradient ∇ρ(x) is not a useful velocity field for surface skeletons.

Gradient of the EDT

Another straight-forward approach is to use the gradient of the Euclidean distance
transform as the velocity field. Intuitively this would make sense as the gradient
follows the interior of X, which often traces out (with gradient ascent) to a local
maximum which is often close to the global root of importance. The proposal for V
would be:

v(x) = ∇D(x) (4.7)

However, there is no guarantee that the Euclidean distance transform is constrained
on M (in 3-space). Indeed, the direction can be anywhere in X. As example, the
ligature sheets corresponding to the spherical bumps on the surface have a gradient
in the distance transform pointing partially to the interior of the ligature sheet, and
thus are not constrained on M . Therefore naively evaluating equation (4.2) using
finite differences can result in evaluating neighbors which have zero importance, and
thus this method requires projection of the velocity field to M .
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Unified skeleton model

Jalba et al. [29] introduced a unified multiscale framework for planar, surface, and
curve skeletonization. In this thesis we refer this work as the Unified Skeleton Model
(USM).

The USM method is a framework that detects all types of skeletons using a single
model, and also produces a multiscale representation which allows to progressively
simplify, or regularize, all skeleton types. It is a based on a contraction process
which distributes density at unit length from the surfaceM. The backbone of the
method is described by a system of three PDE’s:

∂ρ

∂t
+∇ · (ρu) = 0 (4.8)
∂φ

∂t
+∇ · φ = 0 (4.9)

u = ∇φ
|∇φ|

(4.10)

Here t is the time parameter, ρ is the density as a function of t, and φ ∈ [−1, 1] is
a field which is 1 inside the contracted shape, and −1 outside, and the field u gives
the contraction direction. The boundary of the contracting shape is implicitly given
by Yt = {x ∈ X | φ(x, t) = 0}. The field u can be used as the velocity field for
our method. And an added value for this, is that the USM takes several measures
to minimize the amount of noise, which should improve the quality of any further
computations that involve u.

Feature-point driven velocity field

The feature points give important information of the inward flow from the boundary
to the skeleton. In Reniers’ work this is used to to find additional feature points
using the normal of the tangent plane of the surface skeleton [49] (or rather he used
a velocity field which is orthogonal to it). In a paper by Giblin and Kimia [21] a
formal analysis of the feature points and the tangent plane of the surface skeleton
is given. The most relevant result is repeated here.

In particular, let X be the continuously differentiable manifold of the surface
of the model. Let Z be a Morge patch of M that is as part of the graph of a
surface z = f(x, y) parameterized by the xy plane at the origin, and tangent to
M . The Euclidean distance transform can then be parametrized on this plane: i.e.,
r(x, y) = D((x, y, f(x, y))T ). Let (x, y, z) denote current coordinates in 3-space of
a feature point (a+ ∈ X or a− ∈ X). Then by construction the following equality
holds:

(x− x)2 + (y − y)2 + (z − z)2 = r(x, y)2 (4.11)

The envelopes defined by the spheres around the origin point defines the surface
boundary and the reconstruction of X (the continuously differentiable manifold of
the surface of the model). The envelope of these spheres, as x and y vary, is given
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by equation (4.11) and its partial derivatives.

−2(x− x)− 2(z − f(x, y))∂f(x, y)
∂x

= 2r(x, y)∂r(x, y)
∂x

(4.12)

−2(y − y)− 2(z − f(x, y))∂f(x, y)
∂y

= 2r(x, y)∂r(x, y)
∂y

(4.13)

Evaluating at the origin (x = y = f(x, y) = 0) and assuming fx = fy = 0 gives the
following simplified result:

a± =
(
−rrx,−ryr,±r

√
1− r2

x − r2
y

)T
(4.14)

In this result we see that the feature points a± can be recovered solely by the local
characteristics of the distance transform. If fx and fy are non-zero then one can
rotate the Morge patch (or rather its coordinate system) so that the plane normal is
parallel to the z-axis, which in case fx and fy are zero. Therefore the general solution
is a rotation of equation (4.14), i.e., â± = Ra±, where R the rotation matrix.

Two important facts can be extracted from this result. First, it shows that the
two features are on different sides of the tangent plane of the skeleton point, and
therefore the tangent plane can indeed be used to find the second feature point by
means of reflection. Second, the feature points can be projected on the tangent
plane by simply taking the average of both feature points. Indeed we have that
1/2a+ + 1/2a− = (−rrx,−rry, 0)T , which is on to the xy plane. This result leads to
the following proposal for the velocity field:

v(x) = R(rrx, rry, 0)T (4.15)

or equivalently
v(x) = x− 1/2a+ − 1/2a− (4.16)

Since x and 1/2a+−1/2a− are on the tangent plane of x, so is v(x). It follows that
the proposed v(x) is always tangent to M . Since R(rrx, rry, 0)T is in the increasing
direction of the distance transform, it follows that it has similar properties as∇D(x).

4.2.2 Inverse mapping
One important property of ligature branches or sheets is that they do not contribute
in the reconstruction of the surface or boundary. For example the A2

1 curve segment
shown in figure 4.2 in the detected range by ρx = 0 is redundant to the recon-
struction. The points shown in this segment all have the same feature points in
common; therefore inflating disks at these points all contribute to the same part
of the boundary. This is an important property which could be useful to detecting
ligature branches. An example is shown in figure 4.3.

4.3 Velocity field experiment
Since the quality of the detection is largely dependent on the choice of velocity
field, the detection error of different fields are compared experimentally. This done
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∇ρ∇ρ∇ρ (4.6) Unified (4.10) Feature (4.16) ∇D∇D∇D (4.7)
υ(Sv, t) ε(Sv, t) υ(Sv, t) ε(Sv, t) υ(Sv, t) ε(Sv, t) υ(Sv, t) ε(Sv, t)

cube 0.2506 0.2655 0.1565 0.1726 0.15230.15230.1523 0.16860.16860.1686 0.1556 0.1718
bunny 0.5094 0.5621 0.1840 0.3893 0.17150.17150.1715 0.38200.38200.3820 0.1689 0.3835
fandisk 0.5708 0.6057 0.2904 0.3741 0.27510.27510.2751 0.3684 0.2768 0.36660.36660.3666

Table 4.1: Estimated error of skeleton regularization of different velocity fields on a
selection of models. These velocity fields are defined in section 4.2.1.

by regularizing the skeletons using the different definitions for the velocity field
v. For a selection of a few models convex noise is added. The models which are
used in this experiment, and throughout this thesis are shown in figure 4.5. The
regularized skeletons of these models using different velocity fields are compared
to ground-truth skeletons. This allows us to qualitatively assess the viability of
different velocity fields. Recall, the core idea of our work is that we want to remove
noise from a shape by reconstructing a suitably regularized (simplified) version of its
skeleton. Thus, the regularized skeleton (of the noisy shape) should be very similar
to the skeleton of the shape without noise. We can hence test the quality of the
regularization if we, avail of a shape without noise, by comparing its (clean) skeleton
with the result of regularization on the skeleton of the same shape when noise was
added.

On a original model X the foreground skeleton S is computed. Then a noisy
version is created X ′ (by adding spherical creases), and its skeleton is regularized
by the velocity field v; define this regularized skeleton at threshold t as Sv(t). The
velocity fields ∇ρ and ∇D are approximated using central finite differences. For
regularization the adjusted pipeline ωσ(S) is used as defined in equation (4.4). The
importance metric is chosen as the geodesic measure ρ(x) = g(F̂(x)).

The errors between the original and the regularized skeleton are computed by

A

B

C

(a) Small bump (b) Medium bump (c) Large bump

Figure 4.3: Shows the inverse mapping behavior of the boundary surface to the
skeleton. Non-salient skeleton points with ∂ρ(x) = 0 do not contribute to the
reconstruction and therefore are absent from the inverse mapping. Small bumps
coincide with long non-salient curve segments while larger bumps do not.
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Figure 4.4: Comparison of the total error of different velocity fields as a function of t
on the fandisk model. The result show that independent of the velocity field the error
monotonically decreases as a function of the threshold, which implies robustness of
the detection in terms of false positives.

(a) Bear (b) Bunny (c) Cube (d) Ham-
mer

(e) Cat (f) Fandisk (g) Pot (h) Chair

(i) Shark

Figure 4.5: Collection of models which are used throughout this thesis.
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the following two error measures:

ε(Sv, t) = 1− |Sv(t) ∩ S|/|Sv(t) ∪ S| (4.17)
υ(Sv, t) = |Sv(t) − S|/|Sv(t)| (4.18)

Respectively these are the negation of accuracy, and the false positive rate (type I
error). Here, υ(Sv, t) gives the error of skeleton points contained in the regularized
skeleton, but not in the original, which gives an indication of detection rate of
ligature branches. The measure ε(Sv, t) gives the total error (type I error and type
II error), i.e., all points in both sets that do not overlap divided by the total number
of points. Both of these measures give a good indication of the performance of
the velocity fields. If desired, a more fine-grained comparison could be done by
computing, e.g., the Haussdorff distance between the two skeletons. However, for
our purposes, the simpler expressions used here are deemed to be sufficient.

In figure 4.4 the total error ε(Sv, t) of the previously discussed velocity fields
are compared as a function of the threshold t on the fandisk model. This figure
shows that in all cases the total error decreases as a function of the threshold,
which implies robustness of the measure in terms of false positives. Of the four
velocity fields chosen the importance gradient stands out as the worst measure,
while the other velocity fields give very similar results. This is not surprising, as
the other fields (unified, feature and EDT) are all directly related to the Euclidean
distance transform, and thus give similar gradient directions. Note that we can only
compare the error relatively, as the assumption that S ⊆ Sv adds its own error to
the measurements.

To give a better indication of the error the velocity fields are compared at the
threshold t = 20 on multiple models (cube model, bunny model and the fandisk
model). The result is shown in table 4.1. For each model, the lowest error for each
of the two types is marked in bold. Here we can see that the feature-based approach
has the lowest errors (by a small margin) on all but one model. On the fandisk
model the gradient of the EDT performs slightly better. Again, we can see that the
error of the gradient importance is significantly larger than other fields.

On the few models that were tested we can see that the feature-based method
gives a slightly better result in terms of accuracy. However, if runtime performance
is important the gradient of the Euclidean distance is a good choice, as it comes at
a close second with no added performance penalty.

4.4 Qualitative comparison
In this section a qualitative comparison is shown of the derivative method compared
to the original saliency metric. This is done by comparing the regularized skeletons,
and by visually inspecting the reconstructions. The setup of the experiment is given
in section 4.4.1, where the quantitative comparison is shown in section 4.4.2.

4.4.1 Setup
The effectiveness of the derivative based method is tested by performing the complete
pipeline as is introduced in chapter 3 compared to the adjusted pipeline with the
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derivative-based metric. For the skeleton extraction the IMA-based method is used
(as is introduced in section 7.1.1). In both cases the geodesic distance is used as
the importance metric as introduced in section 3.1.2. In particular, the importance
metric is chosen as ρ(x) = g(F̂(x)). Other performance metrics were experimented
with, such as the unified model, but due to problems with its sensitivity to noise
it could not be used as the importance metric. The reasoning of choice of the
importance metric is further touched upon in chapter 7.

A small selection of models (cube, anvil, Stanford bunny, fandisk, chair) is used
to make the comparison. In all of the models high amplitude noise is added, so that
the differences in post processing is clearly visible. The noise model itself is clarified
in chapter 7. The skeleton of the noisy model is created with the unified skeleton
model [29]. For the saliency pipeline the threshold c is chosen as high as possible
until side effects appear (when the core skeleton is degraded) for each model. For
the derivative-based metric, the threshold is set to the maximum scale of the noise
(t = 20) for all models. After the skeletons are simplified with both methods they
are reconstructed, which allows us to judge effectiveness of the method by comparing
how much noise is removed.

4.4.2 Comparison
The results are shown in figures 4.6 to 4.9. For each model the raw foreground
surface skeleton is shown and the simplifications of the skeleton for both methods as
well as their reconstructed results. Here we can see that the unprocessed skeletons
are very large, and appear to have little structure that one would expect from a
surface skeleton. This is because of large numbers of cusps created by the noise,
which results in a large volume of ligature sheets which obstruct the core skeleton.
Most of these ligature sheets are easy to remove with both methods. The most
problematic ligature sheets are located near the edges. In these cases the ligature
sheets are very small, which means that there is only a small range where the ligature
sheet can be detected before connecting to the core skeleton.

In all examples the derivative filtering seems to filter more noise which are near
edges. As example in figure 4.6 parts of ligature sheets are still connected to the
core skeleton near strong edges when Saliency filtering is used, but most of them are
removed with derivative-based filtering. This is something that one would expect
because of improved detection range. The strongest difference is visible in figure 4.9.
Large parts of the ligature tips are still connected to the core skeleton when the
original saliency measure is used, but this problem does not exist with derivative-
based filtering.

Yet the derivative filter does not remove all of the ligature sheets near edges.
One example can be seen in figure 4.8, where ligature sheets are retained near the
upper part of the fandisk. Although large parts of the ligature sheets are removed,
the top parts of the cusps are retained. This is because these top parts directly
connect with the core skeleton, so that the operator Γy cannot disconnect these
ligature parts. To solve this other changes to the pipeline are proposed in chapter 5.

Even when the filtered skeleton is almost perfect, perturbations on the surface
persist on the surface after reconstructing the filtered skeleton. This is especially
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visible on flat surfaces. This problem is caused by EDT ripples, for which several
solutions are proposed in chapter 6.

4.5 Conclusion
In this chapter the problem of removing noise near edges with the existing saliency
pipeline has been identified on surface skeletons. As a solution the derivative-based
measure is proposed which has an improved detection range, in the sense that more
noise is removed than the original salience measure proposed by Telea [58].

Variations of the method with different velocity fields were compared. From the
tested velocity fields it was shown that the gradient of the importance performed the
worst in terms of accuracy, while the EDT-gradient, the feature-based velocity field
and the USM method all performed significantly better. From the small selection of
models that were tested the feature-based method gave the best result with a small
margin.

A comparison of the original saliency pipeline and the derivative-based pipeline
has been made by visually comparing the regularized skeletons. Of the tested mod-
els, the proposed measure gives a significant improvement compared to the original
saliency measure.

(a) Skeleton (b) Saliency filtering
(c = 1.5 )

(c) Derivative filtering
(t = 18)

(d) Cube model (e) Saliency Reconstruc-
tion

(f) Derivative Recon-
struction

Figure 4.6: Cube model with convex 0-d noise. Skeletons are rainbow-colored using
the importance metric ρ. With derivative filtering (f) more noise near edges is
removed.
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(a) Skeleton (b) Saliency filtering
(c = 1.4 )

(c) Derivative filtering
(t = 18)

(d) Noisy bunny model (e) Saliency Reconstruc-
tion

(f) Derivative Recon-
struction

Figure 4.7: Bunny model with 1-d spherical creases. Skeletons are rainbow-colored
using the importance metric ρ. When the derivative filtering is used, more noise
is removed while maintaining core skeleton sheets. However some noise near areas
with large amount of curvature remains.
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(a) Skeleton (b) Saliency filtering
(c = 1.4 )

(c) Derivative filtering
(t = 18)

(d) Fandisk model (e) Saliency Reconstruc-
tion

(f) Derivative Recon-
struction

Figure 4.8: Fandisk model with 1-d spherical creases. Skeletons are rainbow-colored
using the importance metric ρ.

40



(a) Skeleton (b) Saliency filtering
(c = 1.4 )

(c) Derivative filtering
(t = 18)

(d) Chair model (e) Saliency Reconstruc-
tion

(f) Derivative Recon-
struction

Figure 4.9: Chair model with 0-d spherical creases. Skeletons are rainbow-colored
using the importance metric ρ.
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5 Saliency post-processing
In chapter 4, we have presented a pipeline which extends the original salience metric
in [58] to remove noise on the surface of 3D shapes. However, as we have discussed
there, and also visible in the examples presented at that point, our extended pipeline
cannot fully remove all types of noise occurring on 3D shapes. In this chapter,
we present several techniques that refine the noise detection and removal pipeline
introduced in chapter 4, with the aim of capturing and removing additional noise
configurations.

Unlike in the 2D case, it is possible to have so-called multi-axial features. These
are multiple features or noises that overlap in different axes. When noise is conjoined
with a feature in another axis it cannot be removed in the existing pipeline. Two
solutions are presented which try to solve this problem. In section 5.1 the problems
of multi-axial features are outlined and further clarified. Two related solutions
are proposed in section 5.2 which are able to separate the multi-axial features.
In in section 5.3, a qualitative and quantitative comparison is made between the
two proposed methods and the derivative-based pipeline by adding long curvilinear
noise stripes. This is done by comparing the regulated skeletons visually, as well
as analyzing the error measurements. At the end of this chapter, a conclusion of is
given in section 5.3.2.

5.1 Multi-axial features
Important features in one axis can overlap with noise in a different axis, so that
the ligature sheet is orthogonal to the core skeleton. In this scenario, the ligature
sheet corresponding to noise, can intersect with the core skeleton. See for example

(a) Cube and bar (b) Simplified skeleton (c) Saliency filtering (c = 1.8)

Figure 5.1: An example of multi-axial features. The skeleton sheet corresponding
to the bar intersects with the core skeleton, and can therefore not be removed with
the original saliency pipeline or the adapted derivative pipeline.
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figure 5.1. An elongated bar is directly placed on a cube. The edges of the elongated
bar are perpendicular to the edges of the sides of the cube. The bar serves as an
exaggerated example of noise which is orthogonal to a feature (the cube’s edge). The
resulting skeleton of the elongated bar has a large rectangular sheet which intersects
with the core skeleton of the cube. Suppose we would like to separate the elongated
bar from the cube, then we would need to separate the rectangular sheet from the
core skeleton. However, since they intersect it is not possible to separate them in full
using any threshold of the classical saliency metric or even the improved derivative
method.

In both cases the pipeline is dependent on the selection operator Γy to separate
the core skeleton from the ligature sheets, however in this case the tips of the ligature
sheets stay connected to the core skeleton. To separate these cases we require a
different removal strategy. Multiple solutions are presented in section 5.2, and a
comparison between the methods are given in section 5.3.

5.2 Solutions
In this chapter two methods are presented which can remove multi-axial features.
The problems of multi-axial noises and features is that they leave a small set of points
that stay connected between the core skeleton and ligature sheets, which prevents
removal of ligature sheets in these cases. In both proposed methods, the solution is
to create a new importance metric ρ+ ∈ R, based on the existing importance metric
ρ and the derivative metric σ. The idea is to create a monotonically increasing metric
that assigns high importance values to the core skeleton (including the points with
low ρ values), but low values to ligature sheets and endpoints connected to ligature
sheets. Ideally, this would mean that thresholding ρ+ results in feature-preserving
hierarchical skeletons, gradually removing entire sheets in order of their size. This
allows use to separate the intersecting ligature sheets, as they are assigned a local
importance which is lower than the core skeleton.

5.2.1 Direct streamline filtering
From each point x ∈ S a streamline or path can be traced out using the velocity
field v(x) to a local root. Using local restrictions (σ and ρ) of this streamline we
can assign an importance value to ρ+(x) that holds to the desired properties laid
out above. The idea is trace the streamline until we reach a local root, or until a
node which has a low derivative measure. Then the importance we assign to ρ+(x)
is the importance of the last reached node.

Formally, the l-tuple A = (a1, a2, ..., al) is called a path of length l if {ak, ak+1} ⊆
C, for all k ∈ [1, l − 1]. This is equivalent to saying that each subsequent pair of
nodes should be connected according to its connectivity class (e.g. 26 connected
in 3D). Given a path A in S, we denote by s(A) the set of its elements, so that
s(a1, a2, . . . , aL) = {a1, a2, . . . , al}. For our streamlines we add more restrictions to
our paths:

Definition 10. Let S be the foreground image and let a1 ∈ S. Let v(x) be the
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Figure 5.2: Example of the importance metric introduced in equation (5.2). As
the importance values are traced out from local roots or low-derivative nodes, the
importance values are constant across branches. The ligature branches are separated
by low-derivative nodes from the core skeleton and therefore have lower importance
values.

velocity field as defined in equation (4.16), then A(a1) is said to be the path of a1
where its equation ai+1 is given as:

ak+1 = argmax
y
{v(ak) · (y− ak) | {ak,y} ⊆ C ∧ ρ(y) ≥ ρ(ak) ∧ σ(x) > k} (5.1)

This means that subsequent nodes should have increasing ρ values, in addition
to the connectivity requirement. From the candidates that are connected to ak the
node with lowest deviation from the velocity field v is chosen. If the set under the
condition is empty, it means that ak is a local root, or the derivative measure is
below k. This means that the path largely follows the trajectory of a streamline of
v, but deviates when it crosses low-derivative nodes or the root. From this we can
give the following definition for the importance field ρ+:

Definition 11. Let x ∈ S, and A(x) the path of x, then the importance of ρ+ is
given as:

ρ+(x) = max{ρ(ak) | ak ∈ s(A(x))} (5.2)
= ρ(al) (5.3)

Thus the new importance measure ρ+(x) gives the highest importance that is in
the path of x. If the path crosses a low-derivative node, the importance assigned will
be the maximum ρ of the noise structure. If the path leads to the global root, the
importance assigned will be of the core skeleton. An example is shown in figure 5.2.
In this example the ligature branches have lower importance values. Therefore we
can use a single threshold on ρ+ to separate the ligature branches from the core
skeleton, without using the selection operator Γy. This is because the measure is
monotonically increasing (definition 6) in this example.

We can also proof that the monotonically increasing property holds in the general
case, independent of the velocity field, if the original importance ρ is also increasing.
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Theorem 12. Let ρ be a monotonically increasing measure (see definition 6), and
let ρ+ be the measure based on ρ as defined in equation (5.2), then it follows that ρ+

is also monotonically increasing.

Proof. Let q = argmaxy ρ
+(y) be the root of S. It must hold that at for all x ∈ S

there exists an increasing path P ∈ Sk with k ∈ N+ the path length, where Pk = q.
In the discrete case the following equality holds for any path A(x):

ak+1 = argmax
y
{v(ak) · (y− ak) | {ak,y} ⊆ C ∧ ρ(y) ≥ ρ(ak) ∧ σ(x) > k} (5.4)

Suppose that the condition σ(x) > k always holds, so that there are no ligature
nodes. Then since ρ is monotonically increasing there must exist an increasing path
to q for all x ∈ S. Since ak+1 is also monotonically increasing by design, we have
that the following equality must hold al = argmaxy{v(al−1) · (y − al−1) | ρ(y) ≥
ρ(al−1)} = q. Indeed, if the path of A(x) does not cross derivative nodes it reaches
q. The elements y ∈ s(A(x)) all have the condition that ρ+(y) = ρ(q). It follows
directly that ρ+ is monotonically increasing in paths with no ligature nodes.

If the condition σ(x) > k does not always hold, a monotonically increasing path is
chosen which does not cross any derivative nodes, if no such path exist the end-node
al does not have to be q. In this case the following equality still holds: ρ+(y) = ρ(al)
for all elements y ∈ s(A(al)), so that A(x) is monotonically increasing.

Since it holds that for all paths A ∈ Sk are monotonically increasing, it follows
that ρ+ is also monotonically increasing.

Note that the condition only holds if the importance measure ρ is also increasing.

5.2.2 Global streamline filtering
Directly evaluating equation (5.2) leads to an inefficient algorithm, as it requires
tracing the velocity field for each x ∈ S separately. This leads to an alternative
formulation, which is very similar to the proposed streamlines, but is much faster to
compute. Let S be a total ordered set on ρ of size l, so that x,y ∈ S, x ≤ y implies
that ρ(x) ≤ ρ(y) and

S1 ≤ S2 ≤ S3 ≤ · · · ≤ Sl (5.5)
Define the new ρ+ on the as the following recursion:

ρ+(Si) =

ρ(Si) if i = l or σ(Si) ≤ k

max({ρ+(Sj) | i < j ∧ {Si,Sj} ⊆ C}) otherwise
(5.6)

where i, j ∈ N+ and i, j ≤ l. In other words the importance is the current ρ value at
the root or low-derivative nodes. Otherwise, it is recursively defined as the largest
assigned ρ+ value of the neighboring nodes. The criterion i < j ensures that we
have a valid recursion, as new importance values can only be assigned in a strictly
decreasing fashion.

The effect is very similar as the streamline filtering approach, where core skeleton
parts are assigned the importance of ρ(q) = ρ(Sl), but ligature sheets are assigned
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(a) Cube and bar (b) Simplified skeleton (c) Derivative measure

(d) Derivative filtering
(t = 18)

(e) ρ+ skeleton (f) ρ+ filtering (t = 18)

Figure 5.3: An example of removal of intersecting sheets using the global streamline
approach.

a local maximum. In fact, for the example in figure 5.2 both methods give the
same output. For surface skeletons there are subtle differences, which are shown in
section 5.3. The main advantage is that this formulation leads to a faster algorithm.
We can compute a valid total ordered set S using radix sort, and then solve the
recursion by assigning the importance values using equation (5.6) in reverse order
starting from Sl. This leads to an O(l) algorithm, which is better than directly
applying the streamline solution. Additionally, we do not need to trace a velocity
field, which simplifies the implementation (although the velocity field is still needed
for computing the derivative measure).

5.3 Comparison
Here we compare the two proposed methods by their ability to remove multi-axial
features. First we can show that the cube and bar solution can be separated by both
methods, as is shown in figure 5.3. Here, we can see that when derivative filtering is
used, parts of rectangular sheets of the elongated bars cannot be removed, as they
are connected to the core skeleton at the edges of the cube. However, when using
the global streamline approach, the sheets belonging to the bar are assigned lower
importance values than the core skeleton, and therefore they can be removed by
thresholding ρ+.
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5.3.1 Line experiment
An experiment has been created to compare the following three methods to remove
multi-axial noise:

1. The modified derivative pipeline introduced in chapter 4, where the operator
Γy is used to separate the core skeleton from the ligature sheets.

2. The direct streamline filtering approach is introduced in section 5.2.1, where
the importance is assigned by the paths that are traced to a local root. A
threshold rule on the importance ρ+ is used to separate the ligature sheets.

3. The global approach: similar as the streamline approach, but a recursive im-
portance definition is used instead of velocity tracing. Just as the streamline
approach the final step is to threshold the produced importance ρ+ for sepa-
ration.

On a selection of models 1D noise is added with long curvilinear stripes (using the
parameters p = 0.001, r = 3.0, h = 2, l = 50). The noise model and its parameters
are given in section 7.2. The long curvilinear stripes often cross the edges of the
models (and thus produce intersecting sheets), and therefore are ideal for testing
multi-axial separation. On all the methods the threshold t = 18 is used, as this is
the maximum importance value of the ligature sheets of the curvilinear elements.
The adapted IMA method (as given in section 7.1.1) is used to produce the skeletons,
and the geodesic measure is used for the importance ρ. The three aforementioned
methods are applied to regularize the skeletons, and their ability to remove the
ligature sheets are compared both visually and by comparing the regularization
errors. For the quantitative results, the same error metrics are used as introduced in
section 4.3. In particular, ε(Sv, t) is the negation of accuracy, and gives an indication
of the total error, and υ(Sv, t) is the type I error, which gives an indication of the
false positive rate.

The qualitative results are shown in figures 5.4 to 5.6, and the regularization
errors are shown in table 5.1. The skeletons are rainbow-colored by the importance
metric of the used methods. Just as in chapter 4, low importance areas are colored
blue, while high-importance areas are colored red. We can see that in case of the
derivative metric the ligature sheets have low importance values, with exception of
the tips of the ligature branches. Streamline-based methods assign low values to
entire ligature sheets, including the tips. This advantage is visible in the result-
ing regularized skeletons, as the streamline methods remove much more ligature
sheets corresponding to noise than the derivative-based pipeline. From the stream-
line methods, the direct method removes more noise than the global method, but
unfortunately can also remove salient parts of the core skeletons. An example is
shown in figure 5.6, the direct streamline method removes most of the noise, but the
bars of the chair are removed as well. Both the global method and the derivative
method keeps the core skeleton intact, where the global method removes more noise
in this case. This is because the direct streamline method is more restrictive with
the paths, and therefore is less likely to assign higher importance values if there are
many low-derivative nodes (including false positives). This allows it to remove more
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Derivative(4.2) Streamlines(5.2) Global(5.6)
υ(Sv, t) ε(Sv, t) υ(Sv, t) ε(Sv, t) υ(Sv, t) ε(Sv, t)

bear 0.0139 0.63620.63620.6362 0.01360.01360.0136 0.6393 0.0137 0.6370
bunny 0.0197 0.62010.62010.6201 0.01920.01920.0192 0.6219 0.0194 0.6203
cat 0.0185 0.62680.62680.6268 0.01750.01750.0175 0.6337 0.0180 0.6291
chair 0.1228 0.1911 0.1181 0.2213 0.11810.11810.1181 0.18590.18590.1859
fandisk 0.0327 0.45380.45380.4538 0.0330 0.4556 0.03190.03190.0319 0.4563
cube 0.1174 0.1264 0.1176 0.1258 0.11520.11520.1152 0.12330.12330.1233
pot 0.0085 0.67910.67910.6791 0.0084 0.6797 0.00840.00840.0084 0.6794

Table 5.1: Estimated error of different skeleton regularization methods on a selection
of models with curvilinear noise. The lowest errors in their respective category and
model are marked in bold.

noise, but also restricts its use. Overall, with the exception of the chair and cube
model, the derivative model still has a lower regularization error, despite keeping
some curvilinear noise intact. It is likely that this is because the derivative method
is more conservative in removing core skeleton parts.

5.3.2 Conclusion
Two new methods have been proposed to remove multi-axial noise: direct streamline
filtering and global streamline filtering. These methods create a new metric ρ+ that
assign high importance values to the core skeleton (including the point with low ρ
values), but low values to ligature sheets and endpoints connected to ligature sheets.
They have the advantage they no longer require the selection operator Γy as a step
in the pipeline.

Both methods are successful in separating the sheets of the bar from the cube
shown in the introduction. Although the direct streamline method removes more
noise, it comes with the cost of affecting the core skeleton. From the tested examples
the global streamline method seems to be more consistent than the direct streamline
method, as well as removing more noise than thresholding the derivative measure.
From the quantitative results we can see that the derivative measure still has a lower
ε-error, despite removing less curvilinear noise. It is likely because the method is
more conservative with removing core skeleton parts. However, we can see that for all
the tested models the υ-error is considerably lower when the global streamline-based
method is used, while the ε-error metric is only slightly worse than the derivative
method. Since the global streamline method gives the best qualitative results and
removes more noise, it is used for the final experiments which are presented further
in chapter 8.
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(a) Noisy cube (b) σ(derivative) (c) ρ+(streamlines) (d) ρ+(global)

(e) S (derivative,
t = 18)

(f) S (streamlines,
t = 18)

(g) S (global,
t = 18)

Figure 5.4: Removal of curvilinear elements on the cube model.

(a) Noisy fandisk (b) σ(derivative) (c) ρ+(streamlines) (d) ρ+(global)

(e) S (derivative,
t = 18)

(f) S (streamlines,
t = 18)

(g) S (global,
t = 18)

Figure 5.5: Removal of curvilinear elements on the fandisk model.
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(a) Noisy chair (b) σ(derivative) (c) ρ+(streamlines) (d) ρ+(global)

(e) S (derivative,
t = 18)

(f) S (streamlines,
t = 18)

(g) S (global,
t = 18)

Figure 5.6: Removal of curvilinear elements on the chair model.
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6 EDT post-processing
Even after removing all ligature sheets, small noise on the reconstructed surface still
persists due to perturbations on the core skeleton and the EDT. Although these
perturbations are of low amplitude, they are very visible on 3D models if any shading
is used. Thus even after filtering the skeleton so that all ligature sheets are removed,
it is not enough to ensure full removal of the noise in the reconstruction. The
solution is to add a new step right before the reconstruction step(s) in the pipeline
where we filter the Euclidean distance transform. The problem is further clarified in
section 6.1. Several methods are proposed to remove the noise in section 6.2, each
with their own advantages and disadvantages. In section 6.3 a comparison of the
different methods is made and evaluated.

6.1 Problem
The problem is detailed in figure 6.1. After removal of the ligature sheets ‘ripples’
of the bumps persist in the reconstruction. This is because of valleys in the EDT
of the core skeleton at parts that are closest to the bumps. In addition there is also
slight bending of the core skeleton towards the bumps. The bending occurs since
the skeleton is centered in the noisy shape. Thus, when the shape’s boundary has
a bump (and there is no bump on the opposite side of the boundary), the skeleton
needs to be slightly bended towards the bump so that it is centered. The result is
that small ripples exist on the surface of the core skeleton as well as in the EDT,
and they leave a mark in the reconstruction.

6.1.1 Skeleton smoothing versus EDT filtering
The immediate question is whether we are required to unbend the skeleton, filter
the EDT values of the skeleton, or both. This question is partially answered in the
following experiment. First we compute the original skeleton and EDT of a model.

(a) Bumpy cube (b) Skeleton (c) Regularized skele-
ton

(d) Reconstruction

Figure 6.1: Demonstration of the small perturbations of the core skeleton and the
EDT that persist in the reconstruction of the regularized skeleton.
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(a) Noisy cube (b) Reconstruction
(S + D̂)

(c) Reconstruction
(Ŝ +D)

Figure 6.2: A comparison of how much filtering the EDT or skeleton affects the
reconstruction. This demonstrates that regularizing the EDT has a far greater
effect than smoothing the skeleton if the skeleton has been regularized.

Then add noise to this model, and compute the noisy skeleton and the noisy EDT
field. We then compare the two following scenarios:

1. Reconstruct the model with the original EDT field D but with the regularized
noisy skeleton Ŝ.

2. Reconstruct the model with the noisy EDT field D̂, but with the original
skeleton S.

The regularized skeleton of the noisy model is used so that is very similar to the
original skeleton, apart from the slight bending of the skeleton due to noise. We can
then test what method produces the least amount of noise: the noisy EDT with the
original skeleton or the original EDT with the regularized noisy skeleton. This tests
how much smoothing the skeleton should matter compared to filtering the EDT
after skeleton post-processing.

This experiment has been performed on the cube model. The original skeleton
S has been produced by using the IMA method, where no thresholds are used
to regularize it. The noise which is applied to the cube model is created using
the parameters p = 0.02, r = 2, h = 3, l = 5 using the method introduced in
section 7.2. The noisy skeleton Ŝ has been produced by using the IMA method on
the noisy cube model, and then the global streamline filtering pipeline is applied
with the threshold t = 18 to regularize the skeleton. Therefore this experiment
simulates the same condition prior to the reconstruction step in the saliency pipeline,
where we have a perturbed regulated skeleton and a noisy EDT field. The result
is shown in figure 6.2. From this example the result is clear, at this noise scale
level it is far more effective to post-process the EDT than smoothing the skeleton.
As replacing the regulated skeleton by the original skeleton simulates the skeleton
smoothing process, and replacing the EDT field by the original EDT field simulates
the EDT post-processing step. Here we can see that using the regularized skeleton,
but with the original EDT gives the better result. Furthermore, smoothing the
skeleton is something far from easy, since it consists by a complex set of intersecting
manifolds. Since only smoothing the EDT already gives quite good results, the
methods introduced in section 6.2 are based on post-processing the EDT.

52



6.2 Methods
Here several methods are proposed that try to remove the EDT ‘ripples’. These
methods are subdivided into three categories:

1. Kernel-based filtering : Methods that apply a kernel on a local neighborhood
of points to smooth the EDT, such as convolution filters, but also rank based
filters.

2. Least squares projection: Use a local neighborhood to project points a on a
local least-squares plane.

3. Flat projection: for each skeleton point, based on a local neighborhood of
ligature sheets, explicitly try to find the removed parts of the surface and
reduce the EDT so that enveloping spheres do not intersect with the removed
parts, and therefore flattening the surface.

These methods are respectively explained in sections 6.2.1 to 6.2.3. The final eval-
uation and comparison of the methods are done in section 6.3.

6.2.1 Kernel-based filtering methods
Multiple kernel-based methods are proposed to filter the EDT. In this context we
define a kernel K(S) as the mapping K : P(D) 7→ R, where, in this context, D is
the multiset of the original distance transform values. The mapping operates on
subsets of the distance transform, and outputs a filtered distance transform. The
kernel K can be a rank-based filter such as the infimum, supremum, or median, but
is can also be the local mean. A distinction is made of two kernel-based methods,
i) implicit: which uses only the distance transform as input, explicit: which makes
only use of the distance values of the regulated skeleton. The idea of the explicit
method is that only the core skeleton points should contribute to the EDT filtering,
as they should be less affected by the noise compared to ligature points.

Definition 13. Let X be the foreground image, and let D be the original distance
transform, and let K be the kernel and r ∈ R the radius, then the implicit kernel
method is given by:

D̄K(x) =

K({D(y) | y ∈ X ∧ ||y− x|| ≤ r}) if x ∈ X
0 otherwise

(6.1)

The condition x ∈ X is required to force anti-extensiveness, so that no new
elements are added after filtering. Similarly the explicit kernel method is given by
substituting the foreground image by the regularized skeleton S, which is defined
as D̂K(x). This enforces that only the distance values of skeleton points are used in
the kernel-based filtering method. Using this framework, the following kernels are
used:

1. Mean: D̄E(x), where E gives the sample mean.
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2. Median: D̄med(x), where med gives the median of the multiset.

3. Constrained opening: the infimum D̄inf(x) followed by the supremum D̄sup(x).

4. Minification: infimum D̄inf(x) followed by inflation correction. The operation
is defined by:

minf(x) =

D̄inf(x) + r if D(x)) ≥ r

D̄inf(x) otherwise

All of the above kernels are implemented in both the implicit and explicit version
(resp. D̄K(x) and D̂K(x)). Using the infimum will remove almost all of the left-over
convex noise, but will also shrink the model. Both the supremum and the inflation
correction are steps which try to reduce the shrinkage. The infimum followed by
the supremum (method 3) makes sense in a morphological setting, as the resulting
operator will be an opening. The inflation correction (method 4) makes use of the
following bound ||∇D(x)|| ≤ 1, thus in the worst case the distance field is reduced
by r||∇D(x)||, which is bounded by r. To correct this the radius r is added if
D(x) ≥ r.

6.2.2 Least squares projection
Least squares projection can be a helpful tool in denoising. The EDT is spatially
related with the surface skeleton; it can be seen as a fourth coordinate. We can
define the mapping P : S 7→ R4 as

P(x) = (x1, x2, x3, D(x))T (6.2)

The idea is to fit for each skeleton point x ∈ S the least-squares 2-dimensional
plane in a local neighborhood of mapped skeleton points P(y), y ∈ S where ||y −
x|| ≤ r for some radius r ∈ R . This is done by finding the eigendecomposition
of the local covariance matrix of these points, and then truncating the two lowest
eigenvalues. The skeleton points and their EDT values are projected on their local
least-squares plane to perform denoising.

In particular let Pij be the i’th neighboring point (i = 1, ..., n) on the j’th
coordinate (j = 1, ..., 4). These points can be arranged into n column vectors, each
with 4 entries, with the 4×1 column vector giving the i’th point of all variables being
denoted Pi. Define µµµ as the column-wise average of P so that µµµ = ∑Pi/n. Let
Y be a 4× n matrix with the same notation as Pi, and define it as mean-centered
version of Pi so that Yi = Pi − µµµ Then the covariance matrix of P is given by
YY>. Since the covariance matrix is symmetric, the matrix is diagonalizable, and
the eigenvectors can be normalized such that they are orthonormal:

YY> = WDW>

where W is the square 4×4 matrix whose j’th column is the eigenvector of Y, and W
is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
i.e., Wjj = λj. Keeping only the first 2 principal components, produced by using
only the largest 2 eigenvectors, gives the truncated transformation

x̂ = xW2 (6.3)
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Figure 6.3: Shows the effect of flat projection of the EDT on the inscribed circle
and its feature points a1 and a2. The red circle shows the original radius, while the
dashed orange circle shows the reduced radius where the circle no longer intersects
with the segment a1a2.

where W2 is the truncated matrix containing the two largest eigenvectors, so that the
projected vector x̂ now has only 2 columns. The least-squares projection filtering
method is then given by transforming the truncated vector back, and taking its
fourth coordinate, which is the projected EDT value. The complete transformation
is given as:

Dls(x) = (W2(x− µµµ)W2 + µµµ)4 (6.4)

6.2.3 Flat Projection
The previously introduced methods try to regularize the EDT by generic smoothing
methods using the local EDT and or the regularized skeleton points. However, we
can also extract information from the ligature sheets of the noise we want to remove.
In particular, the feature points of the ligature sheets give the parts of surface we
wish to be deleted. The idea of the flat projection method is constrain the EDT by
the line segments between the feature point pairs of the ligature sheets, so that the
inscribed spheres do not intersect with these segments.

A demonstration is shown in figure 6.3. The current inscribed circle at point
M intersects with a line segment between the feature points of a ligature branch,
therefore a round bump will still be visible in the reconstruction. The radius of
the dashed orange inscribed circle is reduced so that it no longer intersects with the
segment. Note that in this particular case the reduced orange circle no longer touches
the bottom of the rectangle, so that a dent will be visible in the reconstruction. This
is because the core skeleton is not centered. However, one would find that in the
average case just reducing te EDT is enough, as typical noise will be on both sides
of the surface, so that the core skeleton centered on average.

This method is not explained in full detail, as its results seem to be poor in
comparison with the other methods.
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D̄E(x) minf(x) D̄supD̄inf(x) D̄med(x)
Im. Ex. Im. Ex. Im. Ex. Im. Ex.

bear 0.0325 0.01290.01290.0129 0.07580.07580.0758 0.1151 0.0481 0.01450.01450.0145 0.0359 0.01340.01340.0134
bunny 0.0272 0.01610.01610.0161 0.07020.07020.0702 0.1032 0.0366 0.01540.01540.0154 0.0305 0.01710.01710.0171
cat 0.0479 0.02680.02680.0268 0.08620.08620.0862 0.1162 0.0749 0.02940.02940.0294 0.0509 0.02760.02760.0276
chair 0.0516 0.04890.04890.0489 0.01320.01320.0132 0.1906 0.1015 0.04530.04530.0453 0.0736 0.04990.04990.0499
fandisk 0.0184 0.01830.01830.0183 0.02160.02160.0216 0.0955 0.0305 0.01510.01510.0151 0.0245 0.01900.01900.0190
hammer 0.0734 0.03290.03290.0329 0.05570.05570.0557 0.1835 0.1314 0.02790.02790.0279 0.0856 0.03680.03680.0368
cube 0.00760.00760.0076 0.0171 0.00080.00080.0008 0.0715 0.00020.00020.0002 0.0141 0.0242 0.01700.01700.0170
pot 0.0097 0.00470.00470.0047 0.02770.02770.0277 0.0306 0.0100 0.00430.00430.0043 0.0130 0.00470.00470.0047

Table 6.1: Comparison of the reconstruction errors of implicit D̄K(x) and explicit
D̂K(x) kernel-based filtering methods. With the exception of the minification filter,
explicit filters perform better than implicit methods.

6.3 Evaluation
To evaluate the different methods they are compared both visually and by compar-
ing the reconstruction errors, which are computed by a ‘difference’ function (given
below) of the original models and the reconstructed models.

On a selection of models 0D noise is added using the parameters (p = 0.014, r =
2.1, h = 3, l = 1). The noise parameters are set lower than other experiments
so that we only evaluate the removal of noise ripples; not the removal of ligature
sheets. The adapted IMA method is utilized to compute the surface skeletons. For
all the methods the global streamline method is used for skeleton regularization, as
explained in chapter 5. The threshold t = 18 is used as it removes most ligature
sheets without any side-effects. All of the EDT regularization methods us a local
neighborhood radius r = 3. This threshold was chosen as it gave the cleanest visual
result with the least amount of feature distortion on most methods.

To compare the methods quantitatively the following error metric is used.

Definition 14. Let Sv(t) be the regularized skeleton as a function of t as defined in
section 4.2.1, and let X the original model without noise. Then the reconstruction
error is given as:

ε̂(Sv(t), t) = 1− |R(Sv(t)) ∩ X |/|Sv(t) ∪ X | (6.5)

This is almost identical to the error metric introduced in equation (4.18), but
where the reconstructed models are compared to the original, instead of comparing
the regularized skeletons to the original skeleton.

The rest of this chapter is organized as followed. First, a comparison is made
of the implicit and explicit kernel methods in section 6.3.1. Second, all the relevant
methods are compared both quantitatively and by comparing the models visually
in section 6.3.2. Finally, a conclusion is given in section 6.3.3.
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minf(x) D̂E(x) D̂supD̂inf(x) D̂med(x) Dls(x) Flat

bear 0.0758 0.01290.01290.0129 0.0145 0.0134 0.0364 0.1354
bunny 0.0702 0.0161 0.01540.01540.0154 0.0171 0.0354 0.1092
cat 0.0862 0.02680.02680.0268 0.0294 0.0276 0.0496 0.1776
chair 0.01320.01320.0132 0.0489 0.0453 0.0499 0.0906 0.1107
fandisk 0.0216 0.0183 0.01510.01510.0151 0.0190 0.0456 0.0569
hammer 0.0557 0.0329 0.02790.02790.0279 0.0368 0.0606 0.1809
cube 0.00080.00080.0008 0.0171 0.0141 0.0170 0.0386 0.0095
pot 0.0277 0.0047 0.00430.00430.0043 0.0047 0.0202 0.0433

Table 6.2: Comparison of the reconstruction errors of the most relevant methods.
The implicit mean, median opening, and the explicit min are omitted as they perform
worse than their explicit (resp. implicit) counterparts.

6.3.1 Implicit versus explicit kernel methods
All of the proposed kernel methods can be implemented in a implicit manner, where
all the neighboring distance values are used, or in a explicit manner, where only the
distance values of the filtered skeleton points are utilized. This leads to the question
which is the better approach. To answer this question the reconstruction errors of
the explicit and implicit kernel methods are compared side-by-side in table 6.1. The
kernels which are tested are D̂E(x), minf(x), D̂supD̂inf(x) and D̂med(x). These are
respectively the mean filter, the minification filter, the constrained opening, and
the median filter. In the results we see that almost all kernel-based methods have
lower reconstruction errors in their explicit mode than in their implicit mode. This
is expected, as we only allow the core skeleton points to contribute to the EDT
filtering, as they should be less affected by the noise compared to ligature points.
The exception is the min filter, where the implicit version performs significantly
better. This is because since more neighbors are evaluated, it is much more likely
to find a better global minimum. Therefore the minification filter does not get any
advantage of only using core skeleton points.. This is different in the constrained
opening, as the supremum step is more sensitive to the ligature points, and therefore
has an advantage in the explicit version. In the final comparison the explicit version
is used for all the kernels, with the exception of the minification filter.

6.3.2 Comparison
To judge the effectiveness of the methods a comparison is made of all the relevant
methods. The methods are compared quantitatively by comparing the reconstruc-
tion errors, and visually by comparing the protuberances of the surfaces of the
reconstructed models. The best versions of the kernel-based methods (in terms of
reconstruction error) are used from section 6.3.1, as well as the least-square projec-
tion from section 6.2.2, and the flat-projection method from section 6.2.3.

A table of the reconstruction errors of different models is shown in table 6.2. In
terms of reconstruction error the D̂supD̂inf(x) method has the best performance for
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4 out 8 models. The minification method performs better on the chair and cube
model, while the mean kernel D̂E(x) has a better performance on the bear and the
cat model. Note that the bear and cat models are the smoothest two models, while
the cube and chair have the strongest edges and are relatively flat. This is important
as the ripple noise is much more visible on flat surfaces. The median-based kernel
D̂med(x) has very similar error values to the mean kernel, but performs slightly
worse on all the tested models. The least-squares projection and the flat projection
method have significantly worse errors than the kernel-based methods.

The visual comparisons of the reconstructed models with different filters are
shown in figures 6.4 to 6.7. For each model, the noisy model, and the reconstructed
models with and without EDT post-processing are shown. Here we can see that the
minification gives the best visual result in terms of flatness in figures 6.4, 6.5 and 6.7.
Especially in the chair, where the end-result is flat and has no visible perturbations
on the surface. The fandisk result seems also to be noticeably cleaner, especially
near the edges and at the bottom; the hammer result seems to be smoother as well.
This is surprising as the error of the D̂supD̂inf(x) kernel is much better for this model,
but its end-result is noticeably less clean. In terms of flatness the least-squares also
gives reasonable results on the chair and the fandisk, but is does not seem to remove
the noise near the edges.

For the pot model shown in figure 6.6, it is not immediately clear which has
the best visual result. However, the D̂supD̂inf(x) kernel seems to remove the most
noise under the top handle of the lid of the pot, while still maintaining the edges of
the lid, while the minification filter reduced the edges of the lid in this case. The
flat projection method seems to reduce most of the noise on the pot model and the
fandisk model, but also shrinks the model, as well as destroying important features.

Comparing the visual results and the reconstruction errors the minification filter
seems to give the best overall results. The error is the smallest on flat surfaces, which
is where the ‘EDT ripples’ are the most visible. Additionally, the visual results are
better than the D̂supD̂inf(x) kernel, despite having better reconstruction errors on
four models.

6.3.3 Conclusion
After removing all ligature sheets, small noise structures on the surface still persist
due to perturbations on the core skeleton and the EDT. An experiment on the
fandisk has shown that that regularizing the EDT before reconstruction is the best
option to remove the perturbations.

Several filters were proposed to remove the EDT ripples. The kernel-based filters:
the mean, median, minification and the constrained opening as well as least-squares
projection and flat projection. The kernel-based filter can be used in a implicit
mode, where only the distance transform is used as input, or in explicit mode which
only uses the distance values of the regularized skeleton. In an experiment where
the reconstruction errors are compared of the implicit and explicit mode for each
respective filter, it has been shown that the explicit version have lower errors, with
the exception of the minification filter which proofs to be better in its implicit
version.
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From all the tested methods the EDT minification method gave the best visual
results. Especially on models with flat surfaces, where in the reconstruction the
perturbations no longer visible. Although the minification removes noise, it also
has the side-effect of reducing sharp corners. Creating a filter that preserves these
corners is a question of future work.
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(a) Noisy chair (b) Reconstruction (c) Reconstruction
(D̂E(x))

(d) Reconstruction
(minf(x))

(e) Reconstruction
(D̂infD̂sup(x))

(f) Reconstruction
(D̂med(x))

(g) Reconstruction
(Dls(x))

(h) Reconstruction
(Flat projection)

Figure 6.4: Comparison of reconstruction results of different EDT regularization
methods on the chair model.
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(a) Noisy fandisk (b) Reconstruction (c) Reconstruction
(D̂E(x))

(d) Reconstruction
(minf(x))

(e) Reconstruction
(D̂infD̂sup(x))

(f) Reconstruction
(D̂med(x))

(g) Reconstruction
(Dls(x))

(h) Reconstruction
(Flat projection)

Figure 6.5: Comparison of reconstruction results of different EDT regularization
methods on the fandisk model.

(a) Noisy pot (b) Reconstruction (c) Reconstruction
(D̂E(x))

(d) Reconstruction
(minf(x))

(e) Reconstruction
(D̂infD̂sup(x))

(f) Reconstruction
(D̂med(x))

(g) Reconstruction
(Dls(x))

(h) Reconstruction
(Flat projection)

Figure 6.6: Comparison of reconstruction results of different EDT regularization
methods on the hammer model.
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(a) Noisy hammer (b) Reconstruction (c) Reconstruction
(D̂E(x))

(d) Reconstruction
(minf(x))

(e) Reconstruction
(D̂infD̂sup(x))

(f) Reconstruction
(D̂med(x))

(g) Reconstruction
(Dls(x))

(h) Reconstruction
(Flat projection)

Figure 6.7: Comparison of reconstruction results of different EDT regularization
methods on the hammer model.
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7 Implementation
The theoretical framework presented here can be implemented in several ways. In
this chapter the important implementation details of the pipeline are explained, and
a justification is given of the several implementation choices. The skeleton extrac-
tion method has a large influence on the overall competency of the pipeline, and is
therefore explained in section 7.1. The noise model which is used to generate the
noisy shapes is given in section 7.2. Graph geodesic distances are used as the im-
portance measure of the salience measure, and an estimation algorithm that quickly
computes this is given in section 7.3. In the final step of the pipeline the reconstruc-
tion of the regularized skeleton is created. The approach which was used in this
thesis is shown in section 7.4.

7.1 Skeleton extraction methods
Two skeleton extraction methods were implemented and integrated in the pipeline.
This includes the IMA-based extraction method [27] and the mass-transport method
from [29]. These methods are respectively introduced in section 7.1.2 and sec-
tion 7.1.1. A short evaluation of the methods, and the justification of the choice of
the final method is given in section 7.1.3.

7.1.1 IMA skeleton
The Integer Medial Axis (IMA) skeleton method is a general algorithm that com-
putes 2D and 3D euclidean skeletons in linear time. The algorithm for computing
the IMA skeleton is based on the feature transform, using a modification of a linear
time algorithm for Euclidean distance transforms.

Recall that the feature transform is defined as F(x, B) = {y ∈ B | ||x − y|| =
D(x, B)}. Thus it is the set-valued function that assigns x ∈ Rd to its closest
boundary points y ∈ B. It is possible to compute F in linear time [27], but it is
computationally cheaper and sufficient to compute, for every point x, just a single
feature transform point f(x). So, the function f(x) is incompletely specified by
f(x) ∈ F(x). In the implementation by Hesselink and Roerdink [27] a single feature
point is selected based on lexical ordering. Using this incompletely specified feature
transform the definition of the IMA skeleton is given as follows:

Definition 15. Let E be the set of unit vectors so that E = {e ∈ Zd | ||e|| = 1}.
Let X be the foreground image, and B the background. Then the IMA skeleton is
given by the points x ∈ X where for some e ∈ E it holds that:

||f(x + e)− f(x)|| ≥ 1 (7.1)
||m− f(x + e)|| ≤ ||m− f(x)|| where m = x + 1/2e (7.2)
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The first condition makes sure that the maximum Euclidean distance of the
neighboring feature points is larger than one. This can be seen as a small pruning
threshold on the skeleton based on the euclidean distance metric. The second condi-
tion is introduced to get one point, rather than two, and specifically the point that
is closest to the perpendicular bisector of the line segment from f(x) and f(x + e).
If ||m− f(x + e)|| = ||m− f(x)||, then both points are included.

The method also includes some simple pruning metrics, which are based on local
attributes of a skeleton point and its feature points such as the bisector angle, the
euclidean distance and the distance transform. These metrics are not discussed
further, as they suffer from shortening branches of coarse features. In our pipeline
the IMA method is only used in the skeleton extraction process, where the skeleton
regularization is done by the adapted saliency pipeline.

Implicit Euclidean

Instead of extracting local features and computing the Euclidean distances of these
feature points, the distances themselves can also be estimated numerically. This can
be done using the intrinsic relationship of the feature points and the distance trans-
form, which is shown in section 4.2.1. Recall that on a local coordinate structure,
where the skeleton surface lies on the xy plane at the origin, the feature points of a
skeleton point x ∈ S are given by:

a± =
(
−rrx,−ryr,±r

√
1− r2

x − r2
y

)>
(7.3)

where r is the radius so that r = D(x). The distance between the feature points is
equal to

||a+ − a−|| = r
√

1− r2
x − r2

y (7.4)
The general solution is given by the rotation of the local coordinate system of the
Morge patch, but the Euclidean distance is invariant under rotation. If x does not
lie on the xy plane we have that:

||a+ − a−|| = r
√

1− r2
x − r2

y − r2
z (7.5)

≤ D(x)
√

1− ||∇D(x)||2 (7.6)

Define this upper bound as:

E(x) = D(x)
√

1− ||∇D(x)||2 (7.7)

In the discrete case, i.e., X ⊆ Zd, the gradient ∇D(x) can be estimated using the
central differences. The condition E(x) ≥ 1 implies that ||a+ − a−|| ≥ 1 (but not
the other way around). Thus by applying the threshold rule E(x) ≥ 1, we can
estimate the IMA skeleton without feature extraction. The advantage is that we
no longer need the second condition of equation (7.2), as as we do not use the
neighboring points to estimate the feature points, preventing the duplicate pairs
to appear. Additionally, if we already have computed the distance transform, this
adaption is easier to implement and faster to compute. This method is used in the
final results in chapter 8.
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Comparison

In figure 7.1 a non-exhaustive comparison of IMA skeletons and the Implicit Eu-
clidean (IE) skeletons is shown. In each row the methods are compared on different
models with different simplification thresholds. The regularized skeletons are cre-
ated by directly thresholding the geodesic measure for both methods. Note that
these skeletons are extremely similar. The justification of using IE over the IMA
method is the easier implementation.

7.1.2 Unified Skeleton Method
Jalba et al. [29] introduced an unified multiscale framework for planar, surface, and
curve skeletonization. In this thesis we refer this work as the Unified Skeleton Model
(USM). In this chapter USM method is briefly introduced.

The USM method is a framework that detects all types of skeletons using a
single model, and also produces a multiscale representation which allows to progres-
sively simplify, or regularize, all skeleton types. The backbone of the method is a
contraction process which is described by a system of three PDE’s:

∂ρ

∂t
+∇ · (ρu) = 0 (7.8)
∂φ

∂t
+∇ · φ = 0 (7.9)

u = ∇φ
|∇φ|

(7.10)

Here t is the time parameter, ρ (only in this context) is the density as a function of
t, and φ ∈ [−1, 1] is a field which is 1 inside the contracted shape, and −1 outside,
and the field u gives the contraction direction. The boundary of the contracting
shape is implicitly given by Yt = {x ∈ X | φ(x, t) = 0}. The importance measure of
the method is evaluated by:

λ(x) = max
t>0

ρ(x, t) (7.11)

Thus the skeleton importance λ(x) is given as the maximum density that has reached
a certain location. Intuitively, the model describes a conservative advection process
where mass, uniformly spread on X, flows on shortest paths from X to its surface
skeleton S; then, along S on shortest paths to the curve skeleton; and finally along
the curve skeleton on shortest paths to the global root q.
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(a) IMA ρ > 0 (b) IE ρ > 0 (c) IMA ρ > 10 (d) IE ρ > 10

(e) IMA ρ > 0 (f) IE ρ > 0 (g) IMA ρ > 12 (h) IE ρ > 12

(i) IMA ρ > 0 (j) IE ρ > 0 (k) IMA ρ > 13 (l) IE ρ > 13

(m) IMA ρ > 0 (n) IE ρ > 0 (o) IMA ρ > 12 (p) IE ρ > 12

Figure 7.1: Comparison of IMA- and IE- skeletons, where the geodesic estimate is
used for both methods.
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7.1.3 Evaluation of skeleton methods
Here, the IMA method (IE) is compared to USM, and explained why the IMA
method is used in our pipeline.

Noise problems of USM

Since USM is a field method it requires smoothing prior to the skeleton computation
to achieve good results. This is done by smoothing D(x) using a linear smoothing
kernel, and then thresholding the result to create a smooth input volume. Unfortu-
nately, this causes feature blurring of the edges we want to preserve in our denoising
process. When no smoothing is used, or when the noise is larger than the smooth-
ing kernel size, the method has problems with separating ligature branches from the
core skeleton. This is largely visible in figure 7.2, where increasing the importance
threshold on λ(x) is unable to remove the ligature sheet of the singular bump from
the skeleton. However, using the IMA method (IE) with the geodesic importance
ρ(x) we are able to remove the bump after regularizing the skeleton. Note that the
saliency pipeline is not used for the simplifications, and the comparison is shown by
directly thresholding the respective importance measures.

USM as an extraction method

Instead of using the importance measure of the USM, one could use USM for only
extracting the skeleton. Meaning, we extract the skeleton using the threshold rule
λ(x) > 0, and then use the geodesic importance ρ(x) for further processing in the
pipeline. Although this works for some models, the problem is that the USM method
is not guaranteed to extract centered skeletons, which makes finding corresponding
features more difficult. An example is shown in figure 7.3. In this example, the true
graph geodesic ρ(x) is used. At the noncentered points we are unable to extract two
salient feature points, and therefore the geodesic distances are shorter than expected.
Note that this can be mitigated by improving the extended feature transform [49],
but this may introduce accuracy problems, which in turn makes calculating reliable
derivative estimates harder, which is why it is not considered.

Conclusion

For the use-cases of this thesis, IMA (IE) is more practical, as the skeleton points
are centered, which allows an easier implementation of the geodesic distances. Ad-
ditionally, the importance measure λ(x), when applied to a non-smoothed model,
has trouble differentiating ligature sheets from core skeleton parts. Rather than
adapting the USM method in various ways to accommodate these problems, it was
chosen to use the IMA-based method combination with the geodesic method.
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(a) USM 100% (b) USM 75% (c) USM 50%

(d) IMA 100% (e) IMA 75% (f) IMA 50%

Figure 7.2: Top: simplifications of the skeleton using USM with the maximum
density λ(x). Bottom: simplifications of the skeleton using the adapted IMA method
(IE) with the geodesic importance ρ(x)

(a) λ(x) > 0, ρ(x) > 0 (b) λ(x) > 0, ρ(x) > 20

Figure 7.3: Skeleton extraction using USM with λ(x) > 0 on the fandisk model.
The skeleton importance which is visualized is the geodesic metric ρ(x). This shows
that pruning the skeleton using ρ will cause holes to appear when using the USM
skeleton. The cause is non-centered skeleton points.
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7.2 Noise model
In this section it is explained how the synthetic noise is created, and an explana-
tion of the parameters is given. The noise is generated directly on the voxel-based
model X. This noise model is specifically chosen so that noise protuberances can
be interactively added to the model at specific locations, which allows us to directly
confirm, replicate, and compare different (experimental) methods. A distinction is
made between 0D noise, where the noise protuberances are added independently on
the surface, and 1D noise, where the protuberances are added as groups which are
connected by a path.

The noise is generated by random protrusions on the surface of the model. The
surface M of a binary model is extracted using mathematical morphology:

M = (X ⊕ b)\X (7.12)

Here, b is the 26-connected structuring element. A protrusion is created on a point
x ∈M using a noise kernel defined as the mapping N : M 7→ P(E). The kernel can
be a sphere with a radius r ∈ R, which is given as

Ns(x) = {y | y ∈ E ∧ |y− x| < r} (7.13)

The protrusion also has a constant height parameter h ∈ Z, where the noise kernel is
added in the direction of the normal. Formally it is given by the following operation:

H(x) =
⋃

h∈[0,h]
Ns(x + hn) (7.14)

where n is the normal of x, and is estimated by using least-squares on a local
neighborhood of x ∈M.

The protrusion is duplicated on the surface in a curvilinear fashion, which con-
sists of a succession of random steps which deviates slightly (by angle) from a single
direction. The number of steps in voxels is given by the parameter l. The random
direction d is evaluated by a uniformly distributed unit-length vector field which is
tangent to the surface (and perpendicular to the normal n). Denote this random
path as A ∈ El. Recall that the l-tuple A = (a1, a2, ..., al) is called a path of length
l if {ak, ak+1} ⊆ C, for all k ∈ [1, l − 1].

Definition 16. Let A ∈ El a random path of length l. Let the neighbors of a point
x ∈M be given as as the set-valued function N(x) = {y | y ∈M ∧{x,y} ∈ C}. The
path A can be decomposed into a series of successive steps, denoted as sk = ak+1−ak,
where k ∈ [1, l − 2]. Given the direction d, the probability of a step is given by:

P (sk = e) =

1/|N(x)| if e ∈ N(x) and
0 otherwise

(7.15)

The path A is thus evaluated by a random walk with a constrained direction d
on the discrete surface M . At every site the next step is randomly evaluated using
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(a) p = 0.03, r = 2,
h = 2, l = 1

(b) p = 0.003, r = 7,
h = 1, l = 1

(c) p = 0.01, r = 3,
h = 6, l = 1

(d) p = 0.003, r = 2,
h = 3, l = 20

Figure 7.4: Showcase of different noise parameters on a cube.

the probability distribution given by equation (7.15). Given the path A and that
a1 = x, the complete curvilinear noise protrusion is given by:

L(x) =
⋃

ai∈A
H(ai) (7.16)

Finally, the noise streams are added with a certain probability P (x) = p, where
p ∈ [0, 1] is an incidence parameter. Let T ∈ P(M) a trial drawn from the sample
space M with the probability P (x) = p. Then the noisy model X̂ is given by the
following equation

X̂ =
⋃

y∈T
X ∪ L(y) (7.17)

Which is a simple union of the protuberances generated at incident sites y ∈M .
The synthetic noise has thus the following parameters:

• p : The incidence value, the probability that a on a point x ∈M a protrusion
is generated.

• r : The radius of the kernel of the protrusion. In all cases in this thesis it is
the radius of a sphere.

• h : The height of the protrusion in the direction of the normal of x ∈M .

• l : The 1D noise length of the protrusion in voxels. Setting the parameter
l > 1 will cause curvilinear elements in random directions. If set to l = 1 the
synthetic noise will be 0D.

In figure 7.4 a few examples are shown of the effect of different noise parameters on
a cube.
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7.3 Estimating geodesic distances
Graph geodesic distances are used as the importance measure of the salience mea-
sure. The original graph geodesic is calculated by evaluating the shortest path
between the feature points of the discrete surface M . Although this importance
measure performs better than simple direct measures such as the Euclidean dis-
tance [50], it is prohibitively slow to compute. This would prevent us to use the
saliency measure on models with a quality sample size. To allow higher quality
samplings, an estimation technique is developed to approximate the geodesic length
between two feature points. First, the estimation approach is given in section 7.3.1.
Second, the estimation method is evaluated in section 7.3.2, where also a conclusion
is given.

7.3.1 Estimation
Let a ∈M , and b ∈M two arbitrary points on the surface M . Denote the shortest
Euclidean path by γ(a,b) which is defined as:

γa,b(λ) = a + λ(b− a) (7.18)

where λ ∈ [0, 1].
Let φa,b : λ 7→ M be the continuously differentiable curve which minimizes the

distance on the surface between a and b where φ(0) = a and φ(1) = b. Assume
that φ is constrained in a plane, so that there exists a vector d and a constant D
where d · φ(λ) +D = 0 for all λ ∈ [0, 1]. Under this assumption we can express φa,b
with two coordinates in a local basis (γa,b −D, γa,b × d−D). Note that γa,b must
be contained in this plane, as φa,b contains both a and b.

It follows that there exists a local parametrization r(λ) = |γ(λ) − φ(λ)| which
gives the local height of φ(λ) in respect to γ(λ). Under these conditions the arc
length (which is equivalent to the geodesic length) is given by:

Arclength(φ) = ||b− a||
∫ 1

0

∣∣∣∣∣∂φ(λ)
∂λ

∣∣∣∣∣ dλ (7.19)

= ||b− a||
∫ 1

0

√
1 + ∂r(λ)2

∂λ
dλ (7.20)

An alternative way to see is that we are projecting γ onto M using the plane with
the shortest geodesic distance. The function r(λ) gives the distance between the
projected point and the point of origin. Here the factor ||b− a|| appears because λ
is normalized so that λ ∈ [0, 1].

Instead of computing the plane where φ is minimal, one could try to estimate
r(λ). A good candidate could be the Euclidean distance transform D(γ(λ)), as
it gives the distance to the closest point to the surface. Here the assumption lies
that many points are on the shortest geodesic path are also the closest to their
Euclidean counterpart. Define this estimate as r̂(λ) = D(γ(λ)), and define v =
(b− a)/||(b− a)|| then the derivative of r̂ becomes:

∂r̂(λ)
∂λ

= ∇D(γ(λ)) · v (7.21)
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mean (ε) maximum (m)
shark 0.0786 0.8414
bear 0.0636 0.5432
bunny 0.0781 0.8122
cat 0.0729 0.7314
chair 0.2471 0.7747
fandisk 0.1234 0.8109
hammer 0.1188 0.5818
cube 0.1169 0.2884
pot 0.0484 0.3830

Table 7.1: Error of geodesic estimate when using the graph geodesic as ground truth.

which is the directional derivative of the distance transform when tracing the Eu-
clidean path between a and b. The final estimate is then given by substitution:

φ(λ) ≈ |b− a|
∫ 1

0

√
(∇D(γ(λ)) · v)2 + 1 dλ (7.22)

Here the gradient is estimated using central differences, and the integral using a
finite sum.

Evaluation

Here a qualitative and quantitative evaluation is given of the estimation approach
compared to the graph geodesic metric (which is taken as ground-truth). For the
evaluation of the geodesic distances the following error measures (from [14] ) are
used:

ε = 1
|S|

∑
x∈S

|ρ(x)− ρest(x)|
ρ(x) (7.23)

m = max
x∈S

|ρ(x)− ρest(x)|
ρ(x) (7.24)

From a selection of models the skeletons were extracted using the IMA method
(IE). Then the geodesic estimate is applied to the feature pairs of the skeleton points,
and compared to the graph geodesic. The results are shown in table 7.1. We can
see that at most models there the mean error (ε) is 10% on average, at the worst
case around 24% (chair model), and at the best case around 5% (pot model). The
maximum error (m = 1) is on average around 64%, but at the worst case around
84% (bunny model), and at the best case around 29% (cube model). The maximum
errors are quite significant. The largest errors occur with the models with thin
surfaces, such as the seat of the chair or the fins of the shark. This is expected,
as the geodesic arcs γa,b(λ) are then very elongated, so that the ratio between the
euclidean distance and the geodesic distance is very large. The estimation suffers in
these cases, as our assumption, that many points on the shortest geodesic path are
also the closest to their Euclidean counterpart, is then violated.
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(a) φ(x) (b) ρ(x) (c) E(x)

Figure 7.5: Visual comparison of the geodesic estimate φ(x), the graph geodesic ρ(x)
and the euclidean distance E(x) on the horse model. The importance metrics are
colored using the rainbow colormap, where the minimum and maximum are chosen
independently for maximum contrast.

Although φ can be seen as a rough estimate, it is still more similar to the geodesic
measure than the Euclidean distance. This can be seen in figure 7.5, where the esti-
mate is almost identical in appearance to the geodesic metric, while the Euclidean
distance has a more uniform distribution around the neck and the legs. Threshold-
ing E(x) would disconnect importance sheets from the legs and the neck at lower
thresholds than it does for ρ(x) or φ(x).

7.3.2 Conclusion
Although the geodesic estimate has its uses, it was found that it has problems with
estimating thin parts of the models such as the seat of a chair, or the fins of a shark.
For this reason the geodesic estimate is not used for the final results, but instead
the graph geodesic measure is used. However, it has been a practical instrument for
quickly testing new results.
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7.4 Reconstruction
Recall that reconstruction is given by the union of all spheres centered on the points
comprising the skeleton, each with a radius given by the distance transform D(x, B).
Let S be the skeleton of X then we have that:

X = R(S) =
⋃

x∈S
{y | y ∈ D(x, B)} (7.25)

The direct evaluation of this function leads to a slow algorithm that is superlinearly
dependent on the number of skeleton points. Here, a reconstruction algorithm is
presented that is in O(n), where n = |E| the number of voxels of the input volume.
This is by recovering the EDT from skeleton points together with their sphere radii,
and then thresholding the result.

7.4.1 Reverse Euclidean distance transform
In the same way that the Euclidean distance transform gives the distance to the back-
ground by using the original input shape, the Reverse Euclidean Distance Transform
(REDT) can recover D(x) by only using the Medial Axis Transform as input.

A point x ∈ E belongs to S if it contained in at least one sphere whose center
is a point y of S, with radius D(y). The distance can be recovered by taking the
maximum distance to each point y subtracted by the radius. Hence, the REDT
consists of the following equation

D̄(x,S) = max{D(y)− ||y− x|| | y ∈ S} (7.26)

Note that the following equality holds D̄(x,S) = D(x, R(S)), as is proven in [13].
Therefore, the model X can be recovered by

X = {x | x ∈ E ∧ D̄(x,S) > 0} (7.27)

Computing the reverse euclidean transform is done using a variation of the algorithm
presented by Coeurjolly and Montanvert [13], which is in O(n). Thus, by recovering
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Figure 7.6: Difference of reconstruction speed using the naive evaluation and the
REDT approach.
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the euclidean distance transform by using the skeleton points and their radii, we
can efficiently reconstruct the model. The steps are not given in detail as it is not
important for the outcome of the results; any algorithm that computes the reverse
euclidean distance transform gives the same output.

7.4.2 Comparison
In figure 7.6 a speed-comparison is shown of the implemented algorithm and the
naive method using equation (7.25). The cube model was used for this result; the
plots were created by successively thresholding the importance measure ρ(x) using
equally-spaced thresholds, and then plotting the number of the skeleton points versus
the time it takes to reconstruct the model. The time of the REDT algorithm takes
around 0.5 seconds, while the naive approach takes from 1 second to 500 seconds
depending on the number of skeleton points. It shows that the approach using the
reverse euclidean distance transform is roughly 600 times faster on average (on this
model), independent of the number of skeleton points.

7.5 Conclusion
Skeleton Extraction Two skeleton extraction methods were implemented and

integrated in the pipeline: the IMA-based extraction method [27] and the mass-
transport method (USM) from [29]. The IMA method is explained, and a quick
and simple estimation method (IE) is given by implicitly thresholding the euclidean
distance without extracting the feature points. The USM method is also introduced,
and an evaluation is given, where it was compared to IMA (IE). It was concluded that
for the use-cases of this thesis the use of IMA (IE) is more practical, as the skeleton
points are centered, which allows an easier implementation of the geodesic distances.
Additionally, the importance measure λ(x), when applied to a non-smoothed model,
has trouble differentiating ligature sheets from core skeleton parts.

Noise Model The noise model was introduced. It is generated by directly
adding kernel-based protuberances on the voxel-based model, where the kernel is a
sphere in all cases of this thesis. The noise-generation can be influenced with the
following parameters: the incidence value (p), the radius of the kernel (r), the height
of the kernel (h) and the length of the curvilinear paths of the protuberances. The
effect of different parameters has been shown by generating noise on the cube model.

Geodesic Estimate To allow higher quality samplings, an estimation tech-
nique was developed to approximate the geodesic length between two feature points.
The error of this geodesic estimation approach has been investigated. Although it
works well on average, its use is limited because the error on models with thin
parts is significantly higher. However, it has been a practical instrument for quickly
testing new results.
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Reconstruction In the final step of the pipeline the model is reconstructed.
An approach based on the Reverse Euclidean Distance Transform (REDT) is pre-
sented that performs roughly 600 times faster than naively splatting spheres.
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8 Results
In the previous chapters multiple adaptations and their implementations were shown
and compared. Here we show the final results where the best performing adapta-
tions are integrated into the pipeline. In particular, the derivative-based measure
introduced in chapter 4, the global streamline method shown in chapter 5 and the
minification filter given in chapter 6.

The adapted pipeline is tested on a selection of models with convex noise, where
the intermediate steps are shown as well as the final reconstruction. These results are
shown in section 8.1. The end-results are also compared to various other smoothing
methods. To make the comparison, isosurfaces are extracted from the noisy models
as well as from the final reconstructions. This comparison is given in section 8.2,
and a conclusion of the final results can be found in section 8.3.

8.1 Complete pipeline
The saliency pipeline that was introduced in chapter 3. Throughout this thesis,
several adaptations were proposed that improves the result for 3D models. An
overview of this adapted pipeline is shown in section 8.1.1. The intermediate steps
and the final results on a selection of noisy models are shown in section 8.1.2.

8.1.1 Adapted pipeline
Just as the original pipeline the adapted pipeline is divided into two stages, where in
the first stage convex noise is removed using the foreground skeleton, and optionally,
in the second stage concave noise is removed using the background skeleton. The
first stage and second stage consists of the following steps:

1. Compute the foreground skeleton of the noisy binary image.

2. Compute the derivative measure σ(x), and create saliency measure ρ+ using
the global streamline method with the threshold k.

3. Prune skeleton by thresholding the saliency measure ρ+(x) using the threshold
t.

4. Optionally, perform minification to remove EDT perturbations on models with
flat surfaces.

5. Reconstruct the simplified skeleton and the (regularized) EDT; which will
result in the smooth model where cusps under the threshold are removed.

There are three large differences with the original pipeline. First, instead of the
saliency measure σ(x), the derivative measure σ̄(x) is used. Second, the global
streamline method is computed to create the saliency measure ρ+, which can be
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used to regularize the skeleton by directly thresholding the measure. It is no longer
needed to select the connected component which contains the root. Last, before
the reconstruction phase, the EDT is optionally regularized using minification to
remove the ‘EDT ripples’.

8.1.2 Results
On a selection of models 1D noise is added using the parameters (p = 0.02, r =
2.1, h = 3, l = 6). The resolutions and the total processing time for each model is
shown in table 8.1. The skeletons were extracted using the adapted IMA method (see
section 7.1.1). For the importance measure ρ the (estimated) geodesic measure is
used. For all the models the global streamline method was used with the threshold
k = 0.9 for the derivative measure, and the threshold t = 18 is used for ρ+ to
regularize the skeleton. For the EDT minification the implicit mode is used with
the radius parameter set to r = 3. The final reconstruction step is done using the
vector-based method introduced in section 7.4. All the models and skeletons are
visualized using point-based rendering with splat kernels.

The results of the pipeline on a selection of models are shown in figures 8.1 to 8.9.
On the top row the skeletons in the various stages of the pipeline are visualized,
where on the bottom row the original noisy model and its reconstructions are shown.
Although the raw skeletons contain a large amount of ligature branches, we can see
that using the ρ+ metric the core skeleton can almost fully be extracted. The
regularized skeletons are both visualized using the EDT and the ρ+ metric using
the rainbow color map. Just as in chapter 4, low importance areas are colored blue,
while high-importance areas are colored red. Although the importance measure ρ+

is not without flaws, as it assigns lower importance values in a few cases to important
edges (as can be seen in the fandisk model), the assigned importance values of these
edges are still considerably higher than the ligature sheets.

In the reconstructions of the models most of the important features are kept, with
the exception of the shark model. Here, the threshold t = 18 does remove important
core skeleton parts and as a result truncates the tips of the fins. This is because the
fins are relatively flat and as such do not increase in importance along the skeleton
axis, which in turn causes the derivative measure to go below the threshold k. Note
that by choosing a lower threshold, i.e., t = 10 will keep the fins mostly in tact
while still removing most of the noise. For the other models the threshold t = 18 is
sufficient in removing almost all of the ligature branches without affecting the core
skeleton. For example, the sides of the cubes, the ears of the bunny and the edges
of the fandisk are all kept intact.

The models of the figures 8.2, 8.3, 8.5, 8.8 and 8.9 contain relatively flat surfaces
where ‘EDT ripples’ are visible in the reconstruction. Therefore, the minification
filter improves the final reconstructions for these models. For the pot model shown in
figure 6.6 this is not the case, as was already discussed in chapter 6. The minification
filter reduces the small-scale edges of the lid.

All in all, most of the convex noise can be removed of the tested models, while still
keeping the most important features and edges. In all cases the final reconstructions
are a visible improvements compared to the noisy models.
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Resolution Processing time (seconds)
shark 4203 70.54
bear 2763 86.30
bunny 2163 132.13
cat 4203 145.23
chair 4203 231.64
fandisk 2763 681.30
hammer 5203 52.34
cube 1483 42.34
pot 2763 271.83

Table 8.1: For each model, the resolution and the total processing time of the
adapted pipeline (including IO) is shown.

(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction

Figure 8.1: Bear model with 1-d spherical creases.
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(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.2: Chair model with 1-d spherical creases.
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(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.3: Cube model with 1-d spherical creases.

(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction

Figure 8.4: Shark model with 1-d spherical creases.
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(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.5: Fandisk model with 1-d spherical creases.

(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.6: Pot model with 1-d spherical creases.
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(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction

Figure 8.7: Bunny model with 1-d spherical creases.

(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.8: Cat model with 1-d spherical creases.
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(a) Skeleton (b) Filtered (colored by EDT) (c) Filtered (colored by ρ+)

(d) Model (e) Reconstruction (f) Min filtered

Figure 8.9: Hammer model with 1-d spherical creases.
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8.2 Comparison
The end-results are also compared to various other triangle-based and point-based
smoothing methods. Here is a list of the smoothing methods that were compared
to our method:
• Laplacian smoothing (surface preserve): Simple mean filter of the local neigh-

borhood of vertices applied iteratively.

• Two-step smoothing method [6]: It is based on a normal smoothing step where
similar normals are averaged together, and a step where the vertices are fitted
on the new normals. These two steps are applied iteratively in succession.

• Mean Least Squares (MLS) projection [25]: a feature-preserving point-based
method based on moving least squares fitting of algebraic spheres.

• Robust Improved Mean Least-Squares (RIMLS) projection [48]: a feature-
preserving point-based method that uses robust statistics (M-estimators) to
create a implicit least squares procedure that has good edge-preserving quali-
ties.

Note that this is not an exhaustive list of methods, nor are these the best feature-
preserving approaches. The methods listed here are chosen because they are imple-
mented in Meshlab, an open source solution that allows processing and editing of
unstructured 3D triangular meshes. Thus, the implementations of these methods
are directly available and can be quickly compared.

The last three methods listed here are feature-preserving methods. The two-
step method controls te feature-preserving part by limiting the angle of the normals
of the sampled neighboring vertices. The projection methods controls the feature
preserving part by a scale and sharpness parameter, which respectively influences
the radius of the smoothing kernel and the sharpness of the projection.

8.2.1 Results
For a selection of models (cube, bear, fandisk), synthetic 1D stripes are added using
the parameters (p = 0.014, r = 2.1, h = 3, l = 6). On the cat model noise of higher
amplitude is added using the parameters (p = 0.01, r = 2.1, h = 7, l = 4). For
our method the end-result was extracted using the same steps and parameters as
explained in section 8.1.2. The noisy models and the reconstructions results were
converted to meshes using marching cubes so that it can be compared to the other
methods listed above.

The four methods listed above were applied on the noisy meshes and compared
to our converted reconstructed results. The parameters of the methods mostly left
to the defaults of Meshlab, except for the scale and number of iterations, as leaving
these to their default values will mostly keep the noise intact. This is likely because
these set of parameters are hand-tuned to remove Gaussian noise in most cases,
which is easier to remove, and thus requires lower scales and a smaller number
of iterations. The following parameters for each methods were used to create the
smoothing result:
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Laplacian smoothing For the tested models the parameters which are used
are (max normal deviation (deg): 60, iterations: 50). Both values are different from
the defaults (resp. 0.5, and 3), as these parameters are set too low to remove the
noise.

Two-step method The parameters are (smoothing steps: 40, deg: 60, normal
smoothing steps: 20, vertex fitting steps: 20). The only difference with the defaults
is the number of smoothing steps, which was changed from 3 to 40.

MLS The defaults were used for most of the parameters, except for the scale
(where r = 2 is the default). This was set to r = 15, which is sufficiently larger than
the scale of the noise, so that the method should be able to discern perturbations
from flat surfaces.

RIMLS This method has proven to be unstable on some noisy models, even
with the default parameters. On the fandisk- and cube- model the scale parameter
was set to r = 15, which is the highest value which could be used before the result
became unstable. On the bear- and cat- model the even default parameters were
unstable, and changing these did not seem to improve the result, and therefore the
method is omitted for these models.

The methods are then compared by creating screencaps of the meshes using the
default smooth rendering of Meshlab. The results are shown in figures 8.10 to 8.12.
Here we can see that the Laplacian method is able to sufficiently smooth the model
but also blends features. The results of the two-step method seem to be sharper,
but it also introduces non-manifold edges and generally reduces the quality of the
meshes. MLS projection preserves features better than the Laplacian method, but
it also exaggerates the noise, as it is unable to make the distinction of local features
to globally relevant edges. The RIMLS projection method, when stable, is sharper
than MLS, but also enhances noise in a similar manner. For the cat model the
we can see that higher amplitude noise affects the tested smoothing methods even
more, while in our method the cat can still be cleanly extracted. This is expected,
as our method is largely invariant to the amplitude of the noise, as the geodesic
importance measure does not increase as h is increased.

Of the tested models the skeleton-based method removes most of the noise, while
keeping the important features intact. For example, the ears of the cat, the edges
of the fandisk and the edges of the cube. These feature are blurred in the other
smoothing methods, but are not affected by the adapted saliency pipeline.

8.3 Conclusion
The adapted saliency pipeline has been tested on a selection of voxel models with
synthetic 1D noise. With the global streamline method almost all of the ligature
branches can separated from the core skeleton using the threshold t = 18. In
most test models, with the exception of the shark model, the core skeleton is kept
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largely intact. The EDT minification filter was tested on a selection of models
with flat surfaces. It seems to significantly improve the results compared to the
raw reconstructions of these models. It was found that almost full removal of the
synthetic noise is possible in most cases.

The end-results are also compared to various other triangle-based and point-
based smoothing methods. In particular, Laplacian smoothing, the two-step method,
MLS- and RIMLS- projection. Although these are not the state-of-the-art feature-
preserving smoothing methods, the comparison gives a good indication of the fea-
sibility of the pipeline. Compared to these methods, the adapted saliency pipeline
removes by far the most noise without distorting important features, and shows that
skeleton-based smoothing is feasible for 3D models.
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(a) Model (b) Laplacian (c) Two step

(d) MLS (e) RIMLS (f) Ours

Figure 8.10: Comparison of skeleton-based smoothing to various other methods on
the fandisk model.

(a) Model (b) Laplacian (c) Two step

(d) MLS (e) Ours

Figure 8.11: Comparison of skeleton-based smoothing to various other methods on
the cat model.
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(a) Model (b) Laplacian (c) Two step

(d) MLS (e) Ours

Figure 8.12: Comparison of skeleton-based smoothing to various other methods on
the bear model.

(a) Model (b) Laplacian (c) Two step

(d) MLS (e) RIMLS (f) Ours

Figure 8.13: Comparison of skeleton-based smoothing to various other methods on
the cube model.
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9 Concluding remarks
The feature-preserving skeleton-based saliency pipeline from Telea [58], which has
shown to be successful in denoising 2D shapes, has been adapted in multiple ways
to remove small-scale noise details from 3D models. The resulting pipeline allows
robust removal of noise, and, compared to a selection of tested smoothing methods,
it removes more noise without distorting important features. Referring back to the
research question in the introduction, and the problems in the original pipeline in
section 3.2, we can draw the following concluding remarks.

Low detection range problems Noise near edges are more troublesome due
to lower sampling in 3D, requiring an improved detection range. This problem has
largely been solved by using the derivative-based measure. Different velocity fields
were compared, and the feature-based velocity field has a slight advantage on the
tested models, and where finite differences of the Euclidean distance metric comes
a closed second in terms of accuracy and speed. The proposed measure gives a
significant improvement for 3D models compared to the original saliency measure.

Multi-axial features Important features in one axis can overlap with noise
in a different axis, so that the ligature sheet is orthogonal to the core skeleton. Sev-
eral approaches were tested, where the best result is achieved by using the global
streamline method. The direct streamline approach seems to work well with remov-
ing most of the noise, but is too aggressive and removes important features as well
as noise. The global method does not remove the ligature sheets in all cases, but
does keep most of the core skeleton intact. In the final results we can separate the
core skeleton from the intersecting ligature sheets in most cases.

EDT ripples After removing all ligature sheets, small noise structures on
the surface still persist due to perturbations on the core skeleton and the EDT.
Several filters were proposed to remove the EDT ripples: opening-based filtering,
EDT minification, least squares projection, simple mean and median filters and flat-
projection. From the tested methods the EDT minification method gave the best
visual results. Although these filters remove noise, they all share the side-effect of
reducing sharp corners. Creating a filter that preserves these corners has yet to be
developed.

Skeleton method A selection of skeleton methods were evaluated and some
were integrated in our pipeline, as well as different importance metrics. These
methods include: A variation of the IMA skeleton [27] and the unified method [29].
It was found that an adapted IMA skeleton method with the graph geodesic measure
gave the best overall result. Although the unified method is very fast, it has difficulty
differentiating ligature sheets from core skeleton parts in its importance measure,
and was therefore not used in the final results.
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Results The complete pipeline has been tested on a selection of voxel models
with synthetic noise. It was found that almost full removal of the synthetic noise
is possible with the used noise parameters. The end-results are also compared to
various other triangle-based and point-based smoothing methods. Compared to the
tested methods, the adapted saliency pipeline removes by far the most noise without
distorting important features, and shows that skeleton-based smoothing is feasible
for 3D models.

9.1 Future work
Although the existing pipeline has proven to work well on synthetic noise, there is
still room of improvement before it is useful for practical applications.

Input The potential of the noise removal of this pipeline is severely reduced
by the input format. As the pipeline is only applicable to voxel models; it does not
have a direct way to deal with meshes or point clouds. Yet most models that are
not synthetic come from 3D scanners which only output point clouds. To remove
noise in these cases the models have to be voxelized, which due to its dense format
takes more memory, and ultimately puts a practical upper limit of the resolution.

To overcome this there are multiple solutions: one could use the skeleton methods
that are directly applicable to meshes or point clouds [10]. This requires to embed
a connectivity graph using local neighborhood structures which can introduce new
problems on its own [45]. An alternative approach is to use a hybrid data structure
as introduced by Lindblad and Sladoje [40], where grid-line sampling is used to
create subvoxel precise sampling. Here each coordinate of a point can be assigned
any real value, whereas other coordinates are restricted to discrete sets of values.
Its advantage is a much more accurate boundary representation, and subsequently
accurate EDT approximations and better reconstructions. This can be integrated
with our pipeline without any structural changes, and is therefore a good candidate
to improve our result.

Performance All of the used algorithms in the proposed pipeline can be theo-
retically implemented in O(n), with the exception of computing the graph geodesics,
where n is the number of input voxels. The current implementation of the extended
feature transform, however, uses a k-d tree to find the closest feature points, which
causes the implementation to scale superlinearly with respect to n. This is some-
thing that can be improved, by using the extended feature transform proposed by
Hesselink and Roerdink [27], which is consequently also a step which is used to
compute the IMA skeleton.

EDT processing From the tested methods the EDT minification method gave
the best results, but it is not feature-preserving. To improve on this result some
method that smooths the surface skeleton as well as the EDT must be developed. A
key observation is that EDT ripples are most apparent on flat surfaces, and therefore
methods that try to explicitly detect the perturbations using the regularized skeleton
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should give the best outcome. One possible solution might be to measure the area
affected by the removal of skeleton sheets, and reduce the EDT of core skeleton
parts neighboring the removed sheets by a proportional amount. This can be done
in addition to bending the core skeleton parts in the opposite direction of the ligature
sheets.

Skeleton methods The ideal surface skeleton method for our use-case should
have a monotonically increasing metric, should be fast to compute, should be able
to differentiate ligature sheet from the core skeleton, should handle models with
holes and allow accurate reconstructions. Despite of a large variety of published
methods, a voxel-based method with these requirements does not seem to exist yet,
and should be developed.

Medial scaffold For 2D skeletons branch-based pruning methods are highly
effective at regularizing skeletons [42]. This is because branches can be removed
as a whole instead of partially, and therefore this technique does not suffer from
shortening important branches. Although surface skeletons do not share the same
simple topology as 2D skeletons, they can be organized in a similar manner, namely
the medial axis hypergraph introduced by Giblin and Kimia [21]. This classifica-
tion has been used by Leymarie and Kimia [38] to propose the notion of a medial
scaffold(MS), a hierarchical representation of the surface skeleton points, which can
be seen as the 3D version of the splice transform. The theoretical classification of
the instabilities of this structure, or transitions (sudden topological changes due to
a small perturbation) can be used to mark boundaries of skeleton sheets and curves.
This was used effectively for regularizing the skeleton of meshes [9]. It might be
interesting to integrate the detection part of their method and use it to remove lig-
ature sheets as a whole instead of removing individual voxels. This would allow us
to simplify our method, as we would no longer need a selection operator, or apply
saliency post-processing in our pipeline.
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