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Abstract

Dimensionality reduction techniques are essential for visualising and in-
terpreting high-dimensional data. Traditional methods such as t-SNE are
widely used due to the quality of their projections, but they suffer from lim-
itations such as slow computation, lack of out-of-sample support, and the
need for extensive parameter tuning. Some of these issues were addressed
through the introduction of Neural Network Projection (NNP), which uses a
supervised fully connected feedforward neural network to learn projections.
However, NNP has lower projection quality compared to its ground-truth
projection method. We hypothesize that this is because NNP processes sam-
ples individually, without being able to model inter-sample relationships,
which form the basis of dimensionality reduction techniques such as t-SNE.

This thesis proposes an attention-based approach to projection, leveraging
the multi-head attention mechanism to model interactions between multi-
ple samples. By explicitly capturing inter-sample relationships, this method
aims to improve projection quality while maintaining the scalability and
generalisability of Neural Network Projection (NNP). This attention mech-
anism is implemented through a modified Transformer Encoder. We refer to
this class of DR methods as Projection with ATtention (PAT). In addition,
we provide a set of well-performing default hyperparameters that work well
across a range of datasets, reducing the need for extensive parameter tuning.

We also propose an interpretability method that generalises to all attention-
based projection methods. This method allows the visualisation of attention
patterns at both global and local levels. It provides insight into how atten-
tion is distributed throughout the projection process globally, and which
samples are most influential during the projection of an individual sample.

We propose five architecture variants, the parameters of which are based on
a random, non-exhaustive search of a large parameter space. These five rea-
sonable architectures were then tested on six datasets representing differ-
ent datatypes, number of dimensions, and number of samples. In five out
of six datasets, at least one modified Transformer Encoders beats the base-
line model (NNP) on most metrics, often with fewer training samples. On
the sixth dataset, the modified Transformer encoders beat NNP only on the
True Neighbors metric, but despite this, create visually preferable projec-
tions.

Notably, across the evaluated datasets, our methods typically outperform
t-SNE on the Distance Consistency (Mp¢) metric, among others. NNP gen-
erally exhibits lower Mpc than t-SNE.

This increased projection quality does come at the cost of scalability, as all
the PAT models are slower and scale worse than NNP.



Abstract (Nederlands)

Dimensionaliteitsreductietechnieken zijn essentieel voor het visualiseren en
interpreteren van hoog-dimensionale data. Traditionele methoden zoals t-
SNE leveren projecties van hoge kwaliteit, maar kennen beperkingen zo-

als trage berekening, het ontbreken van out-of-sample ondersteuning en de
noodzaak van uitgebreide afstelling. Enkele van deze beperkingen zijn aange-
pakt met de introductie van Neural Network Projection (NNP), dat gebruik-
maakt van een gesuperviseerd, feedforward neuraal netwerk om projecties

te leren. Desondanks is de projectiekwaliteit van NNP lager dan die van de
onderliggende grondwaarheidsprojectiemethode. Wij veronderstellen dat dit
komt doordat NNP samples afzonderlijk verwerkt en daardoor geen inter-
sample relaties kan modelleren, die juist centraal staan in technieken zoals

t-SNE.

Dit proefschrift introduceert een projectiemethode die het multi-head attention-
mechanisme gebruikt om interacties tussen meerdere samples te modelleren.
Door inter-sample relaties expliciet vast te leggen, verbetert deze methode

de projectiekwaliteit, terwijl de schaalbaarheid en generaliseerbaarheid van
neuraal gebaseerde methoden grotendeels behouden blijven. Het attention-
mechanisme is geimplementeerd via een aangepaste Transformer Encoder.

Deze klasse van DR-methoden wordt aangeduid als Projection with ATten-
tion (PAT). Daarnaast presenteren wij goed presterende standaardhyper-
parameters die toepasbaar zijn op een breed scala aan datasets, waardoor
uitgebreide afstelling minder noodzakelijk is.

Wij introduceren tevens een interpreteerbaarheidsmethode die toepasbaar
is op alle attention-gebaseerde projectiemethoden. Deze methode maakt het
mogelijk om attentionpatronen op globaal en lokaal niveau te visualiseren en
biedt inzicht in welke samples het projectieproces het sterkst beinvloeden.

Vijt architectuurvarianten zijn onderzocht, met parameters verkregen via een
niet-uitputtende zoektocht in een grote parameterruimte. Deze architecturen
zijn geévalueerd op zes datasets met uiteenlopende datatypen, dimensies en
aantallen samples. In vijf van de zes datasets presteert ten minste één aan-
gepaste Transformer Encoder beter dan het basismodel (NNP) op de meeste
metriekwaarden. Op de zesde dataset wordt NNP alleen overtroffen op de
True Neighbors-metriek, terwijl de projecties visueel overtuigender zijn.

Over de geévalueerde datasets heen presteren de voorgestelde methoden
doorgaans beter dan t-SNE op de Distance Consistency-metriek. NNP ver-
toont daarbij meestal een lagere afstandsconsistentie dan t-SNE.

De verbeterde projectiekwaliteit gaat ten koste van schaalbaarheid, aange-
zien alle PAT-modellen trager zijn en slechter schalen dan NNP.
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1. Introduction

High-dimensional data is everywhere, from hundreds of patient measurements
in healthcare to large vector representations of words in language models.
Humans can only perceive a few dimensions at a time, so visualising this data
is essential to understand patterns, clusters, and relationships.

Dimensionality Reduction (DR) methods reduce high-dimensional data to
lower dimensions while preserving its structure. These lower-dimensional rep-
resentations, i.e. projections, can then be visualised with, e.g., scatterplots.
Classic dimensionality reduction methods, like t-SNE [1], produce high-quality
projections but are slow and typically cannot handle new data points.

A Neural network-based DR method, namely NNP [2], was introduced to
address these issues by enabling fast projections and out-of-sample support,
though their projections are of lower quality and can appear more diffuse than
those generated with, e.g. t-SNE.

This thesis explores attention-based neural architectures to improve pro-
jection quality. By considering relationships between multiple samples simul-
taneously, Multi-Head Attention can capture both local and global structures,
producing sharper, more informative projections while remaining scalable and
interpretable.

In section 1.1, we present a more detailed context and rationale for this
study. We discuss the challenges posed by high-dimensional data in various
fields, such as healthcare and natural language processing, and the critical role
of visualisation in making such data interpretable.

Next, in section 1.2, we identify the limitations of current dimensionality
reduction techniques, like t-SNE and UMAP [1], [3], in terms of computational
efficiency, out-of-sample support, and inverse projection capabilities. This dis-
cussion sets the stage for the necessity of a new approach.

Following this, section 1.3 details the specific performance characteristics
(e.g., projection quality, scalability) that the proposed method is intended to
achieve. We also outline the two distinct attention-based architectures to be
explored, each with its own trade-offs.

In section 1.4 we introduce a set of research questions formulated to help us
achieve the aims of this thesis. This is followed up by how we plan to evaluate
in subsection 1.4.1. We present a short disclaimer about privacy and data
ethics in subsection 1.4.2. Finally, in subsection 1.4.3 we introduce a readers
guide.



Introduction

1.1 Context

A common sentiment in data visualisation is that humans struggle with in-
terpreting more than three or four dimensions, typically limited to space and
colour. Visualisation is key to making data and the models interacting with it
understandable. However, data often has far greater dimensionality than just
three or four.

Consider, for example, the hundreds of potential health indicators one can
collect. Examining each indicator individually is not just overwhelming, but
it also obscures the interactions among them.

Alternatively, consider word embeddings from large language models. Each
(sub-) word in a text is represented by a vector. These vectors, known as word
embeddings, typically have a dimensionality of 512 [4] to 1048 [5]. Addition-
ally, unlike e.g., health indicators, the individual variables are not inherently
interpretable.

An answer to this problem is Dimensionality Reduction (DR), also known
as projection. DR is a category of techniques that find lower-dimensional
representations, i.e., projections, of high-dimensional data.

For example, projections are useful to see how difficult a classification task
is by projecting labelled data. The classification task is easier when the classes
are clearly separated in the projection [6]. Projection is also useful to visually
identify outliers in the data, as they should also be outliers in the projection.

Furthermore, projection can be used to aid in data labelling. Clusters in the
projection should indicate similarities, from which follows class membership.
Semi-automated labelling tools have been implemented to this effect, allow-
ing the user to select and confirm labels for clusters of points in projections,
significantly speeding up annotation time [7], [8].

Dimensionality Reduction’s usefulness is not limited to explainability. It
is also the backbone of many deep learning models. For example, autoencoder
type models [9], [10] first project to a small number of dimensions using its
neural encoder, to then inverse their projection back to the original data with
its decoder. The encoder can be used to create powerful compressed repre-

sentations of the input data, while the decoder can be used for generative
Al

1.2 Problem Definition

There are six DR characteristics that are commonly used to compare DR
methods|2].

e Projection Quality (C1) describes both how well a projection captures
the structure of the high-dimensional data, but also how intuitive it is
to understand.



1.2 Problem Definition

e Scalability (C2) describes the speed of both fitting and inference as a
function of the size of the projected dataset.

e Ease of use (C3) describes how much effort is required it is to use the
DR method, e.g. in terms of how long it takes to fine-tune a method’s
hyperparameters.

e Genericity (C4) describes what variety of data the DR method can
handle, while this is typically limited to any kind of high-dimensional
data that can be represented as real valued vectors. A more generic DR
should handle datasets of various levels of, e.g., sparsity, dimensionality,
and complexity.

e Stability and out-of-sample support (C5) describes whether the
model can project previously unseen data, and what effects projecting
previously unseen data have on projection quality. (Stability).

e Inverse Mapping (C6) describes if a model is capable of inverse pro-
jection, and the quality thereof.

The projections generated with the popular Dimensionality Reduction algo-
rithms t-Distributed Stochastic Neighbour Embedding (t-SNE) [1] and Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) [3]
are considered the best at preserving aspects of the high-dimensional data’s
structure as evaluated on a variety of applications (C4) with several quality
metrics (high C1)[11]. However, these methods are relatively slow (Low C2).
Additionally, t-SNE does not support out-of-sample data (Low C5), and nei-
ther supports inverse projection (Low C6). Furthermore, both are sensitive
to data perturbations (low C5), and require parameter tuning to consistently
create high quality projections (Low C3)

Recently, potential solutions were introduced for these issues. The solutions
use fully-connected regression neural networks. In some examples, these solu-
tions learn arbitrary DR methods [2], including t-SNE and UMAP, on a small
subset of the data. These neural networks are then used to project the unseen
data, thus mimicking the behaviour of the DR method. This method, known
as Neural Network Projection (NNP), complies with all the requirements listed
above except one.

NNP inherently supports out-of-sample data (C5). It is also far faster
compared to other DR methods like t-SNE (C2), requires no parameter tuning
(C3), works with all real-valued data (C4), and can also be implemented for

inverse projection (C6) [12]. However, its projection quality is lower than that
of methods like t-SNE and UMAP (low C1).

We believe this is due to the principal difference in how neural networks
and more classical DR methods like t-SNE process data. Neural networks
process samples individually and completely rely on the network weights to
encode their distribution. Meanwhile, methods like t-SNE process the entire
dataset simultaneously, considering not only individual samples but also their
neighbours and the global distribution of data [1].
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1.3 Aim

The initial aims of this thesis are illustrated through the five of the six previ-
ously introduced DR characteristics[2].

e Quality (C1): Better cluster separation than state-of-the-art deep-
learning-based methods for projections like NNP [13] while preserving
the global structure of the underlying DR method;

e Scalability (C2): The proposed method must be faster than the un-
derlying DR method, but may be slower than NNP;

e Ease of use (C3): The proposed method may require more parameter
tuning than NNP, but must remain minimal. The method should be
delivered with sensible parameters from which to start tuning;

e Genericity (C4): The proposed method must handle any kind of high-
dimensional data that can be represented as real valued vectors;

e Stability and out-of-sample support (C5): The proposed method
must have out-of-sample support. When adding previously unseen data-
However, as re-projecting the entire dataset might increase overall pro-
jection quality when adding out-of-sample data. Therefore, stability is
not a necessity if the method is fast enough;

A secondary aim of this thesis surrounds the topic of interpretability. At-
tention has inherently interpretable aspects, as each sample is given a certain,
traceable amount of attention at each layer. As current DR methods are
not inherently interpretable, this gives us the unique chance to investigate in-
terpretability in projection methods. This method should be general to all
attention-based projection methods.

1.4 Research Questions

In this thesis we explore an alternative neural architecture for DR. Specifically,
we propose using Multi-Head Attention [4] in a supervised manner to bridge
the functional gap described in section 1.2. Unlike traditional feedforward
layers that process each sample in isolation, Multi-Head Attention computes
pairwise interactions between all samples in a dataset. Each attention head
learns to focus on different aspects of these relationships, allowing the model
to dynamically assess how strongly each sample relates to every other sample.

This mechanism could capture both local similarities, ensuring that closely
related samples are grouped together, and global structures, which preserve
the overall distribution of the data. By aggregating the output from multiple
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heads, the model forms a thorough understanding of the inter-sample relation-
ships, thereby potentially more closely mimicking the behaviour of methods
like t-SNE that consider local and global structures simultaneously.

Using this architecture, we aim to answer the following research questions:

Can we design an attention-based neural architecture for projection
that matches the projection quality (C1) of traditional projection
methods better than state-of-the-art deep-learning-based methods
for projections without sacrificing their scalability (C2) and ease of
use (C3)7

This primary research question is refined into the following sub-questions:
SQ1: How does projecting via W© within the multi-head attention mechanism
compare to using a modified transformer encoder in terms of projection quality
(C1)?

SQ2: How does the number of layers in the Attention-Only or Modified-
Encoder projection model impact the overall performance (i.e., projection qual-
ity (C1), out-of-sample support (C5), and scalability (C2))?

SQ3: What is the effect of varying the number of attention heads on the pro-
jection quality (C1) and out-of-sample support (C5) of the model?

SQ4: How do the attention-related hyperparameters dy, d,, and the feed-
forward dimension dg affect the projection quality (C1) of attention-based
projection methods?

SQ5: What is the impact of dataset size and dimensionality on the scalability
(C2) of Attention-based models?

And a secondary research question for this thesis is:

Can we design a method for visualising attention patterns in pro-
jection usecases for analysis?

1.4.1 Evaluation

To validate the proposed methods, experiments will be carried out on stan-
dard benchmark datasets such as MNIST [14] and Fashion-MNIST (fMNIST)
[15], with potential extensions to synthetic and non-image datasets to further
demonstrate genericity (C4). The performance will be compared against exist-
ing Dimensionality Reduction techniques using projection quality metrics (C1)
and additional relevant performance measures(C2). This will confirm whether
the proposed method meets the defined characteristics.

The code for the experiments, including architecture, evaluation, and de-
velopment, is shared publicly for reproducibility purposes [16].

1.4.2 Ethics and Privacy Statement

The Ethics and Privacy Quick Scan of the Utrecht University Research Insti-
tute of Information and Computing Sciences was conducted (see Appendix A).
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It classified this research as low-risk with no further ethics review or privacy
assessment required.

1.4.3 Readers Guide

Chapter 2 provides an in-depth background and technical review of related
work. These sections delve into the theory of dimensionality reduction, com-
parisons of current methods for projection and inverse projection methods,
how these methods can be evaluated, and the mechanics of attention and
transformer architectures.

In chapter 3 thereafter, we explore the methodology behind this thesis.
These sections describe the considerations behind architectural choices, how
the proposed models will be evaluated, and how the datasets used to evaluate
them on were chosen. Additionally, this chapter includes a section proposing
a method for visualising attention patterns for projection usecases.

We expand on these choices in chapter 4: Experimental Setup. These
sections go further into the technical details of the proposed models, data
preprocessing and evaluation.

Chapter 5 shows the results of the evaluation steps, including a quantita-
tive and qualitative analysis of projection quality over the chosen datasets, a
more detailed convergence analysis over MNIST, and a scalability analysis on
synthetic data. It also includes an analysis of the projection patterns of one
of the models on MNIST using our proposed attention visualisation method.

Finally, chapter 6 summarises the proposed methods and their evaluations
to answer the research questions posed in section 1.4. It also comments on some
methodological limitations, and includes a section proposing future research.



2. Background and Related Work

Understanding high-dimensional data is a fundamental challenge in many
fields, from machine learning and bioinformatics to natural language process-
ing and data visualisation. Since humans struggle to interpret data beyond
three dimensions, Dimensionality Reduction (DR) techniques are used to cre-
ate meaningful low-dimensional representations of high-dimensional datasets.
These techniques aim to preserve essential structures within the data while
reducing complexity, making it easier to visualise and analyse patterns.

Section 2.1 provides an overview of key dimensionality reduction methods,
with a focus on both traditional non-machine-learning-based approaches and
more recent neural-based techniques. Subsection 2.1.1 explains how Dimen-
sionality Reduction and Machine Learning relate to each other using their re-
spective notations and definitions. Subsection 2.1.2 discusses classic DR meth-
ods such as Principal Component Analysis (PCA), t-SNE, and UMAP, high-
lighting their strengths and limitations. Subsection 2.1.3 explores machine-
learning-based DR techniques, including autoencoders and Neural Network
Projection (NNP), which offer improved scalability and out-of-sample support
but often compromise on projection quality.

Next, section 2.2 describes the projection quality metrics which can be
used to evaluate DR techniques. Continuing from this, section 2.3 discusses
the datasets upon which our methods are evaluated.

Finally, section 2.4 introduces the Transformer and its multi-head attention
mechanism, explaining how attention mechanisms can address challenges in
DR by explicitly modelling inter-sample relationships.

By establishing this foundation, the chapter sets the stage for the proposed
attention-based projection method, situating it within the broader landscape
of dimensionality reduction research.

2.1 Dimensionality Reduction

Dimensionality Reduction (DR), also known as projection, is mapping high-
dimensional data to a lower-dimensional representation. DR allows for visual-
ising high-dimensional data, which is an important tool for explainability and
can aid in machine learning research [17].

2.1.1 Notations and Definitions

Let D = {x;} be a dataset of n-dimensional samples or points z;. A point is

defined as z; = (z},...,2z"), where 1 < i < n. That is, a point z; is defined
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in n dimensions or x; € R", where each dimension represents a feature of the
point. Likewise, the set X/ = (m{, ...,m), 1 < i < n are referred to as the
dimensions or features of the dataset D. With few exceptions, Dimensionality
Reduction (DR) and Machine Learning (ML) algorithms only support real-
valued features!, i.e., x; € R". Ergo, for the purposes of this thesis, we assume
this to always be true.

A DR technique takes a dataset D and finds a representation of it. That
is, the technique, or projection P is a function that maps D to P(D) = {y;},
where y; € RY is the projection of x;, making P : P(R") — P(R?). Typically,
the representation is of a far lower dimensionality than the original, i.e., ¢ < n.
For data visualisation, 2- or 3D projections are the norm. This thesis aims to
mimic existing DR methods for creating scatterplots. Ergo, for the purposes
of this thesis, 2D projections (¢ = 2) is all that is considered.

For the purposes of this thesis, we split DR methods into two groups: Ma-
chine Learning (ML)- and non-ML methods. How ML relates to projection re-
quires some further definitions. Defining Machine Learning (ML) first requires
defining an extension of dataset D as defined in subsection 2.1.1. Namely, that
of the annotated dataset. An annotated dataset D, extends the dataset D by
associating each sample x; € D with an annotation y; € A.

In the context of ML, the goal is to construct models f : R” — A, which,
when applied to a test set Dy C D,, produce predictions f(x;) that are as
close as possible to the true annotations y; for each x; € Dp. This closeness is
quantified by a error function d : Ax A — R™, such that ideally, d ( f(z), yz-) R
0 for all z; € Dp. The model f is trained on a separate training set D; C
D, (with D, N Dy = @) in order to adjust its parameters to minimize this
prediction error.

For the Deep Learning (DL) subset of ML models, the error function is
typically replaced with a loss function, which functions similarly to the distance
function in that the model f is trained to reduce it to zero. However, it must
be differentiable.

Machine learning models can be broadly classified into two types: classifiers
and regressors. Classifiers predict categorical labels. Regressors, on the other
hand, predict real and continuous, values. The latter model best aligns with
DR, as projection to 2D is equivalent to f : R® — A where A € R2.

2.1.2 Non-ML-based Projection Methods

There are numerous DR methods. One relatively recent survey paper lists over
eighty known techniques, of which it evaluates 44[11]. It would be unreasonable
to describe them all. Instead, we choose to highlight three important non-ML-
based DR methods: PCA, t-SNE, and UMAP. The latter two perform the

"'When features are not real-valued, e.g., because they are categorical, they are typi-
cally pre-processed with a method like one-hot encoding to make them real-valued.
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best in preserving important aspects of the high-dimensional data in various
applications according to a wide variety of quality metrics as tested in the
aforementioned survey|[11]. One of these methods, namely t-SNE, is also the
method that is mimicked using our proposed methods.

In this thesis, we focus on mimicking dimensionality reduction techniques
that belong to the class of neighbourhood preservation methods. These ap-
proaches are designed to maintain the local structure of high-dimensional data
in a low-dimensional representation. That is, they ensure that points which
are close together in the original space remain close in the projection, and
similarly, points that are far apart continue to be separated. The precise rela-
tionships between neighbourhoods, i.e., global structure, is less important for
visualisation tasks.

A classic example of a DR method, that should be mentioned for historical
reasons, is Principal Component Analysis (PCA) [18], which identifies
the directions (principal components) that capture the largest variance in the
data. By projecting the data onto these components, PCA provides a linear
projection of the high-dimensional data to a lower-dimensional representation.
Due to its deterministic and simplistic use, it scores high on scalability (C2)
and ease of use (C3). However, due to its linearity and poor ability to capture
local structure, its projections have poor quality (C1).

Another widely used technique is t-Distributed Stochastic Neighbour
Embedding (t-SNE) [1]. t-SNE transforms high-dimensional distances be-
tween all points into probabilities and then seeks a low-dimensional probabil-
ity distribution that minimizes the Kullback-Leibler divergence between these
probability distributions. This approach is particularly effective at preserving
the local structure, making clusters of similar points clearly discernible (high
C1). However, it requires parameter tuning to make these high-quality visuali-
sations (low C3), while also being stochastic and lacking out-of-sample support
(C5). Finally, it is also quite slow (low C2).

More recently, Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP) [3] has emerged as an alternative to t-
SNE, offering improved speed and scalability while preserving high projection
quality. Like t-SNE, UMAP seeks to preserve local neighbourhoods. However,
it assumes the data is distributed on a Riemannian manifold, and explicitly
tries to find a lower-dimensional projection of that data with the closest topo-
logical structure.

Compared to t-SNE, UMAP generally produces similar projection quality
(C1) but is considerably faster (higher C2) due to its more efficient optimiza-
tion process. Additionally, unlike t-SNE, it supports out-of-sample data, allow-
ing new data points to be projected without recomputing the entire embedding
(C5). However, UMAP remains sensitive to small changes in input data (low-
ering C5) and, like t-SNE; requires careful parameter tuning to achieve optimal
results (lower C3).
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2.1.3 ML-based Projection Methods

The non-ML dimensionality reduction methods discussed in subsection 2.1.2
exhibit several limitations. Typically, they require extensive parameter tuning
(C3), can be relatively slow even when optimized (C2), or may yield projections
with suboptimal quality (C1). Furthermore, these classic techniques often lack
support for out-of-sample data and tend to suffer from stability issues (C5),
while they do not inherently provide an inverse projection (C6). As a promis-
ing alternative or complement, Machine Learning-based implementations have
been introduced.

The first prominent approach employed an autoencoder[9], [10], an un-
supervised model that learns a mapping from high-dimensional space to a
low-dimensional representation via its encoder, while its decoder learns to re-
construct (i.e., inverse project) the original input. Autoencoders are advanta-
geous in that they are fast (C2), require no labels (C3), naturally support out-
of-sample data (C5), and provide a built-in mechanism for inverse projection
(C6). However, the low-dimensional representations produced by autoencoders
often lack the projection quality (C1) observed in classic DR methods.

More recently, a supervised approach known as Neural Network Projection
(NNP) has been introduced [2], [13]. In NNP, a fully-connected regression
neural network is trained to learn an arbitrary DR method. A small subset of
the data is first projected using a standard method (e.g., t-SNE or UMAP),
and this projection P(D) serves as the ground truth A for training the network.
Once trained, the network can be applied to unseen data, thus offering a fast,
generic (C4) solution that supports out-of-sample projections (C5). Although
NNP is simpler to use (C3) and faster (C2) than many classic methods, its
projections typically exhibit lower quality (C1) compared to the original DR
techniques it was trained off of.

In the following years, attempts were made to improve on NNP. First was
K-Nearest Neighbours Neural Network Projection (kNNP) [19], which added
limited multi-sample support by considering not just the sample to be pro-
jected but also its k nearest neighbours. This increased overall projection
quality compared to NNP, but was still poorer than ground truth (C1).

Eventually, the research focus shifted from mimicking traditional DR meth-
ods to self-supervised approaches designed specifically for data visualisation
[20], [21]. These methods can be seen as a modification of the autoencoder [9],

[10].

Self-Supervised Network Projection (SSNP) optimises for cluster separa-
tion by adding a clustering learning objective, leading to well-defined group-
ings (C1). This additional learning objective also makes it considerably faster
to converge than an equivalent autoencoder (C2). However, because SSNP’s
training objectives prioritize cluster discovery, and completely disregard tradi-
tional DR outputs, the resulting projections lack some of the organic, intuitive
layouts found through methods like t-SNE (lower C1).

10
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The most recent DR technique in this category of self-supervised models
is Shape-Regularized Multidimensional Projections (SHaRP)[22]. SHaRP is an
extension of SSNP, which adds user-controlled shape regularisation to curb
SSNP’s unnatural looking cluster shapes. While this did result in more pleas-
ant visualisations, it does come at the cost of accurately representing the local
structure of the high-dimensional data. In turn, results in a mixed projection
quality (C1). Overall, it is also slightly slower than SSNP, while still being
faster than autoencoders, t-SNE and UMAP (C2).

Self-supervised projection methods excel at forming well-separated clusters,
yet their outputs often lack the organic, intuitive structure found in classic DR
techniques like t-SNE. On the other hand, supervised approaches such as NNP
generate visually coherent projections that resemble traditional DR methods
but struggle to achieve the same level of cluster separation. This contrast high-
lights a fundamental limitation in current neural projection methods: they
either prioritize local structure or global structure. This trade-off reflects a
deeper issue in how neural projection methods process data, raising the ques-
tion of whether a different approach could better capture both local and global
structures.

2.2 Projection Quality Metrics

Projections should aim to preserve the structure of the high-dimensional data.
Whether a projection properly preserves this structure can be measured using
Projection Quality Metrics. These metrics are a function M (D, P(D)) — RT.
There are at least 17 known projection quality metrics [23], [24]. However,
many of these have been shown to have high correlation or can easily be fooled
without generating high-quality projections [24]. Hence, we chose to use the
eight metrics that Machado et al. [24] identify as being more difficult to fool
and having low inter-metric correlation.

Trustworthiness (M;): This metric, with values in [0, 1] (1 is best), mea-
sures the proportion of points in D that are also close in P(D). This indicates
how many local patterns in the high-dimensional data are preserved in the
projection [25]. Formally, let U;(K) be the set of points that are among the
K nearest neighbours of 7 in the projected space but not in the original space,
and let 7(7, j) be the rank of point j among the nearest neighbours of ¢ in the
projection. We set K = 7 following [11]. M, is defined as:

n

Mtzl—nK(an?)K_l)Z > (rli,g) - K). (2.1)

i=1 jEU;(K)

Continuity (M.): Also in [0,1] (1 is best), M, checks how many points
that are close in the original space remain close in the projection [25]. Let

11
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Vi(K) be the set of points that are among the K nearest neighbours of ¢ in the
original space but not in the projection, and let 7(7, j) be the rank of j among
the nearest neighbours of 7 in the original space. As with M;, K = 7. M, is
defined as:

n

Mc_l_nK(QnE?)K—l)Z S () -K). (22

i=1 jeVi(K)

Scale Normalised Stress (M,): Scale Normalized Stress [0, +o00] (0 is
better) measures how well a projection preserves all pairwise distances with the
use of a global scaling factor. It evaluates how closely the projected distances
AY(P(z;), P(x;)) match the original distances A™(x;,x;) after choosing the
best possible scale &« > 0 [26]. The value of « is selected to minimize the
squared error between the two distance matrices:

M, = min Zivj [An<xi’ ‘Tj) - aAt(P(xi)v P(:L‘]))} .

>0 Z” A (g, xJ')z

(2.3)

The optimal scaling factor, as used by Machado[27], has the closed form

iy A" (i ay) AN (P(w:), Play))
> [AY(P(x:), P(a)))?

7 (2.4)

Neighbourhood Hit (Mypg): This metric, in [0, 1] (1 is best), is defined
for labelled data [28]. Let N;(K) be the set of K neighbours of i in the
projection, and let I; be the label of point i. Myp is the fraction of neighbours
that share the same label as i:

MNHZRLK;‘{jeNi(K);zj:zi}. (2.5)

True Neighbors (Mry): This metric, in [0,1] (1 is best), measures
neighbourhood preservation between the high-dimensional space and the low-
dimensional projection [29]. Let N/’ (K) be the set of the K nearest neighbours
of point i in the high-dimensional space, and NF(K) the corresponding set in
the projection. The True Neighbors rate is the fraction of neighbours in the
projection that are also neighbours in the original space:

12
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M = n%—;\{j e NE(K) : j € NF(K) | (2.

Distance Consistency (Mp¢): Distance Consistency, in [0, 1] (1 is best),
estimates visual separation in a projection. It quantifies the fraction of pro-
jected points that remain closer to the centroid of their own class than to any
other class centroid [30].

Let centr’(c) denote the centroid of class ¢ in the projection and clabel(7)
the class label of point 7. The metric is:

n

Mpec = %Z 1 [ clabel(i) = arg mciani - centr’(c)ﬂ , (2.7)

=1

where 1[-] is the indicator function, which returns 1 when the point is
closest to the centroid of its own class and 0 otherwise.

Procrustes Statistic (Mp): The Procrustes statistic, in [0, 00) (0 is best)
measures how well the projection represents the original data after a number
of transformations [31]. For each point, a neighbourhood in the projection is
rescaled, rotated, and translated so that it best matches the corresponding
neighbourhood in the original space, and the residual reconstruction error is
computed. The final score is the average of these local errors. Let z; € RP
denote the i-th data point in the original space, and y; € R? its corresponding
point in the projection. Let S (z;) be the matrix whose rows are the k-nearest
neighbours of z; in the original space, and let SZ(y;) be the analogous matrix
of the k-nearest neighbours of y; in the projection. Let H = [}, — %11T denote
the k x k centering matrix. For two neighbourhood matrices X,Y € RF*?,
define

G(X,Y) = | HX — HY AT |3, (2.8)

where A = UV T and ULV'" is the singular value decomposition of (HX)" (HY).

The local Procrustes error around point ¢ is
G(Si?(%)a Si(yz)) (2.9)

The global Procrustes statistic is then:

13
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1 (D). Siw)
TSP

=1

Mp =

(2.10)

Pearson Correlation of Distances(),):

The Pearson Correlation of Distances [—1, 1] (£1 best, 0 worst) measures
how well a projection preserves the internal structure of the original data. It
does this by calculating the linear correlation between the intersample dis-
tances in D and P(D) [32]. If the intrinsic structure of the data is unchanged
by scaling, then the correlation between the distance vectors of the original
space and the projection provides an effective global quality measure.

Let DV be the vector of all pairwise distances in the original space and let
DV’ be the corresponding vector in the projection. The correlation coefficient
is

(DVDV’) — (DV)(DV')

Mye = p(DV, DV') = #(DV) o(DV)

(2.11)

2.3 Datasets

In this section, we give a technical overview of a set of datasets commonly
used in dimensionality reduction research. Each dataset is or was a commonly
used as benchmark in their respective field. Five of the six datasets listed in
this section, namely fMNIST, CIFAR-10, HAR, Spambase, and CNAE-9, are
a subset of the more complete list of 18 dimensionality reduction benchmark
datasets described in Espadato et al.’s survey of dimensionality reduction tech-
niques [11]. The sixth dataset, MNIST, is included for historical reasons. For
more on why these datasets were chosen, see section 3.4.

2.3.1 MNIST

The modified National Institute of Standards and Technology Database (MNIST)
dataset [14] is a benchmark for handwritten digit recognition composed of
70,000 grayscale 28 x 28 images. It has been widely used to evaluate and com-
pare classification models and learning algorithms, and it played a central role
in early developments of convolutional networks and gradient-based optimiza-
tion for image tasks. Results on MNIST are often reported to demonstrate
a model’s capacity to learn low-level visual features and to provide a sanity
check before moving to more challenging datasets. An example digit from each
class in the dataset is shown in Figure 2.1.

14
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Figure 2.1: Examples of the handwritten digits found in MNIST. One for
each class.

2.3.2 {fMNIST

The Fashion-MNIST (fMNIST) dataset [15] was introduced as a drop-in re-
placement for MNIST with the same image size and predetermined train-test
split but containing ten classes of fashion items (e.g., shirts, shoes, bags). fM-
NIST preserves MNIST’s simplicity while offering greater visual and semantic
complexity, making it useful for evaluating robustness and generalization of
image classifiers where MNIST may be too easy. An example clothing item
from each class in the dataset is shown in Figure 2.2.

T-shirt/top Trouser Pullover Dress Coat

FNmED

Sandal Shirt Sneaker Bag Ankle boot

Figure 2.2: Examples of the grayscale photographs of fashion items found in
fMNIST. One for each class.

2.3.3 CIFAR-10

The Canadian Institute For Advanced Research datasets (CIFAR-10 and CIFAR-
100) [33] are small natural-image benchmarks composed of 32 x 32 colour im-
ages across multiple object categories. CIFAR has served as a standard testbed
for convolutional and residual architectures, data augmentation strategies, and
regularization techniques in mid-scale image recognition. Its greater intra-class
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variability and colour information make it substantially more challenging than
MNIST-like datasets. An example image for each class is shown in Figure 2.3.

airplane automobile bird cat deer
-

Figure 2.3: Examples of the colour photographs found in CIFAR-10. One for
each class.

2.3.4 HAR

The Human Action Recognition (HAR) dataset [34] contains wearable-sensor
recordings collected from 21 participants performing daily activities. Each
recording consists of synchronized 3-axis accelerometer and gyroscope signals
sampled at 50Hz collected via a smartphone strapped to the subjects’ waist
(see Figure 2.4). The raw signals were lightly filtered to reduce noise, and a set
of descriptive features, which capture basic movement patterns such as average
motion, variability, simple frequency information, and signal magnitude, was
computed from short sliding windows.

Each activity segment is represented as a 561-dimensional feature vector,
with individual sequences containing 281-409 time steps. This benchmark can
be used for evaluating time-series classification models and temporal feature
extraction.

Classification

Figure 2.4: Activity Recognition process pipeline taken from Hutchison et al.
[34], modified with a dotted rectangle to emphasize data extraction pipeline.

2.3.5 Spambase

The Spambase dataset [35] consists of email samples encoded as numerical
feature vectors that capture word-frequency statistics, specific character fre-
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quencies, and additional heuristic features. Each sample is represented as a
57-dimensional real-valued vector, making the dataset a suitable benchmark
for analyzing binary (text) classification, feature selection, and robustness to
noisy features.

2.3.6 CNAE-9

The National Classification of Economic Activities (Classificagdo Nacional de
Atividades Econémicas) (CNAE-9) dataset [36] comprises 1080 text documents
categorized into nine administrative classes. Each document is represented as
an 856-length sparse vector of word frequencies. CNAE-9 is used to study mul-
ticlass text classification, feature extraction, and the behaviour of predictive
models on sparse input representations.

2.4 Transformers and Attention

The principal technology behind the DR method proposed in this thesis is the
Attention mechanism. This mechanism finds its origins in the field of Natural
Language Processing (NLP).

For some time, variable-length sequence processing models relied on Recur-
rent Neural Networks (RNN) for tasks such as text processing [37]. However,
these models struggled with long-range dependencies. Information from earlier
timesteps tended to vanish as later timesteps were processed. Although later
RNN-variants alleviated this issue to some extent, they did not completely
resolve it.

In the field of Natural Language Processing (NLP), the encoder-decoder
architecture emerged as an alternative to pure RNNs [38], [39]. In these models,
an encoder compresses all the information from the input sequence into a
single fixed-length context vector, which the decoder then maps back to a
variable-length output sequence. Although this approach improved upon pure
RNNs, it still relied on recurrence to process variable-length sequences and
thus inherited the problem of long-range dependency loss. To address this
limitation, the Attention mechanism was introduced [40].

The Attention mechanism enables the decoder to access information from
all encoder hidden states, not limiting it to just the final state, i.e., the single
fixed-length context vector. By assigning a learned score to each hidden state
and computing a weighted sum of these states at each decoding step, the
model can effectively “pay attention” to the most relevant parts of the source
sequence. This approach not only improved performance, especially on longer
sentences, but also provided some level of interpretability regarding which
parts of the input were most influential for each output.

Despite these improvements, encoder-decoder models with attention still
relied on recurrence, which limited parallelization, which in turn severely ham-
pered scalability. This limitation motivated Vaswani et al. to propose the
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Transformer architecture [4]. In the Transformer, the overall encoder-decoder
framework is retained, but the recurrence is replaced entirely by attention. Im-
portantly, the attention mechanism is fully parallelizable, which significantly
reduces training time and has contributed to the Transformer’s state-of-the-
art performance. Today, Transformer-based models form the basis not only of
most state-of-the-art NLP systems (including large language models) but also
of advances in computer vision (e.g., Vision Transformers) and audio process-
ing.

While recursion forces an order onto a set of samples, attention allows
neural networks to process a variable-length unordered set while still being
able to model inter-sample relationships. This unique quality may allow a
neural DR method to better mimick classic DR techniques such as t-SNE.

2.4.1 Multi-Head Attention

Vaswani et al. introduced a variant of dot-product (multiplicative) attention,
namely Scaled Dot-Product Attention, see Equation 2.12. The only change
from dot-product attention is that it scales the dot products by ﬁ in order
to avoid disappearing gradients[4]. There are three vectors to account for:
Query: @, Keys: K, Values: V. The queries () and keys K must be of the
same dimension dj, whereas the values Vcan be differently sized, i.e., d,.

T

Attention(Q, K, V) = SOftHl&X(Q

NG W (2.12)

Moreover, the Transformer introduces Multi-Head Attention, where several
attention layers (heads) operate in parallel (Figure 2.5). Each head learns to
capture different inter-token relationships simultaneously, allowing the model
to simultaneously attend to multiple kinds of contextual information. Build-
ing on scaled dot-product attention, the Transformer introduces multi-head
attention, which applies this mechanism in parallel; formally, it is defined in
Equation 2.13.
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Scaled Dot-Product Attention Multi-Head Attention
MatMul
Concat
Scaled Dot-Product J& N
Attention ~
1l 1l |
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Figure 2.5: Scaled Dot-Product Attention compared to Multi-Head Atten-
tion, taken from [4].

MultiHead(Q, I, V) = Concat(heady, . .., head,) W

2.13
where head = Attention(QVViQ, KWE vwY) (2.13)

The (Linear) projections are matrices of learnable parameters. Here dyodel
is the dimensionality of the input sequence, WZ-Q € Rimoderxdi /K ¢ Rdmoderxdi |7V
Rdmodelev, and WO c Rdedmodel‘

The authors suggest that for each of the h heads, d, = d, = dodel/h, as
the reduced dimension of each head ensures that the total computational cost
of multi-head attention is similar to single-head attention® with full dimen-
sionality.

The Transformer employs multi-head attention in three distinct ways:

1. Encoder Self-Attention: Within the encoder, self-attention layers are
employed, where the queries (Q), keys (K), and values (V) are all gen-
erated from the output of the preceding encoder layer. This allows each
position in the encoder to attend to all positions in that layer. For the
first self-attention layer, the input is the input sequence.

2. Decoder Self-Attention: Similarly, the decoder utilizes self-attention
layers. However, in this case, each position in the decoder is permitted
to attend only to positions up to and including itself, in order to preserve
the auto-regressive property required for generation. This restriction is

2Ie, ‘regular’ Attention
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implemented in the scaled dot-product attention by masking out (i.e.,
setting to —oo) any elements corresponding to illegal connections.

3. Encoder-Decoder Attention: In some layers in the decoder, the
queries () are derived from the previous decoder layer, while the keys
K and values V' are obtained from the encoder’s output. This design
enables every position in the decoder to attend to all positions in the in-
put sequence, thereby mimicking the typical encoder-decoder attention
mechanisms found in traditional sequence-to-sequence models [39)].

2.4.2 Complete Transformer Architecture

The Transformer is composed of more than just multi-head attention. As dis-
cussed previously, the Transformer is an encoder-decoder-class architecture.
The encoder maps a variable-length input sequence into a sequence of con-
text vectors of equal length, while the decoder generates an output sequence
autoregressively[4]. This design is effective for language. However, since we
must assume our data, in the context of DR, is an unordered set, and thus
does not exhibit an inherent sequential order, and thus does not benefit from
autoregressive generation, we focus exclusively on the encoder and disregard
the decoder.

RNNs inherently support the sequential nature of language by processing
the sequence sequentially. Transformers do not. Ergo, a positional encoding
is added to the input sequence before it is fed to the encoder. Since our data
is unordered, we should omit the positional encoding.

The encoder consists of a stack of identical layers (‘encoder layers’). Each
encoder layer contains two sub-layers:

1. A multi-head attention layer.

2. A position-wise fully connected feed-forward network, which is applied
individually and identically for each position in the input sequence.

The feed-forward network is defined as
FFN([E) = maX(O, xWi + bl)Wz + boy (2.14)

where W, € RdmederXdit projects from the model dimension dyoqe to an inter-
mediate dimension dg, and Wy € R *dmedel projects back to dmoqel. Note that
the intermediate dimension dg may vary across layers.

Each of the two sub-layers in an encoder layer is wrapped in a residual
connection[41], followed by layer normalization[42]. That is, the output of
each sub-layer is computed as

LayerNorm(x + Sublayer(x)) (2.15)
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where Sublayer(z) denotes the function implemented by the sub-layer itself.
Succinctly, an encoder layer can be expressed as

Layer(z) = LayerNorm <FFN(LayerNorm(MultiHead(:c) + 1)) 2.16)
+ LayerNorm(MultiHead(x) + m)) '

This use of residual connections requires that all sub-layers produce outputs
with the same dimension, namely d,oqer-

2.4.3 Interpretability and Attention Visualisation

Since the introduction of the Transformer architecture, attention mechanisms
have often been presented as an interpretable component of neural sequence
models [43]. Early work following the introduction of the Transformer [4]
highlighted the potential of attention weights to reveal which input tokens a
model focuses on when forming predictions. The Tensor2Tensor library [44]
subsequently provided initial functionality for viewing attention patterns in
sequence-to-sequence tasks.

One of the most widely used developments in this space is BertViz, intro-
duced by Vig [45] and extended in later releases [46]. BertViz, cited in over
900 publications, offers an interactive suite of attention visualisations tailored
to transformer models. It expands upon prior research by supporting encoder-
and decoder-only models, such as BERT [5] and GPT-2 [47] respectively. Addi-
tionally, unlike earlier static plots, it enables multi-level interactive inspection
of attention behaviour, supporting both global analysis across layers and heads
and fine-grained examination of individual computations.

BertViz provides three complementary visualisation modes: the head view,
the model view, and the neuron view.

Head View: The head view displays the attention patterns of one or more
heads within a selected layer. As illustrated in Figure 2.6, it shows how each
head distributes attention from a chosen token to the rest of the sequence,
with colour coding used to differentiate heads. This representation is based on
that found in Tensor2Tensor, and remains a common method for examining
phenomena such as syntactic dependencies or token interactions.

Model View: The model view provides a global overview of attention
behaviour across the entire architecture. In this layout, layers form rows and
attention heads form columns, enabling inspection of attention distributions
at multiple depths (Figure 2.7). By selecting an input token, researchers can
trace how attention patterns evolve across layers, making this view useful for
identifying global structural tendencies within pretrained models.

Neuron View: The neuron view offers the most detailed perspective by
visualising the individual components of the query and key vectors that con-
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[SEP]
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[SEP]

Figure 2.6: 'Head view’ taken from BertViz[45], [46], showing what individ-
ual heads, as indicated by colour, in layer 0 attends to for the word ’the’.

Layers

Figure 2.7: 'Model view’ taken from BertViz[45], [46], showing a global view

of attention weights per individual head and layer, as indicated by colour.
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tribute to attention scores. As shown in Figure 2.8, it highlights neuron-level
activations within a specific head and layer, thereby illustrating how particular
attention weights arise. This mode supports more local mechanistic analyses
of transformer behaviour and complements the higher-level insights provided
by the head and model views.

Layer: Gl Head: KR4 Attention: I}

q x k (elementwise)

Figure 2.8: 'Neuron view’ taken from BertViz[45], [46], showing the activa-
tions of neurons in the query and key of head three of layer four for the word
'the’.

2.4.4 Transformer Dimensionality Reduction

Transformers have previously been applied to DR tasks in computer vision,
leveraging the spatial relationships among adjacent pixels [48]. Ran et al.
employ a standard Vision Transformer (ViT) architecture [49], in which images
are partitioned into patches.

The model they propose, Transformer-DR, is configured as an autoen-
coder. The encoder module performs Dimensionality Reduction, and the de-
coder does inverse projection. Although this approach produces high-fidelity
inverse projections, the intermediary low-dimensional projections tend to be
diffuse and visually uninformative, a behaviour characteristic of unsupervised
autoencoder-based techniques [9]. Consequently, the embeddings exhibit lim-
ited interpretability and are easily outperformed by methods such as t-SNE
and NNP.

As mentioned in subsection 2.1.3, adding a self-supervised objective to
a non-attention-based autoencoder has positively contributed to projection
quality in the past (SSNP [20]), but does not reach the projection quality of
t-SNE and NNP. This method could be adapted to Transformer-DR, but has
yet to be.

Furthermore, Transformer-DR is not easily generalisable beyond image
data. In contrast, our approach must be designed to extend to a broader
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class of high-dimensional, real-valued datasets.
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This chapter describes the design choices and evaluation methodology for the
PAT model for supervised dimensionality reduction. It begins by present-
ing the conceptual reasoning behind replacing traditional feed-forward neural
networks with a transformer-based architecture in section 3.1, followed by a
detailed explanation of the architectural design in section 3.2. The chapter
then addresses interpretability through attention visualisation in section 3.3,
and concludes with an overview of the datasets used in this study in section 3.4.

The PAT model replaces feed-forward neural networks with a transformer-
based design, allowing each sample to attend to others and capture both global
and local structures in the projected space. Attention mechanisms learn multi-
ple types of inter-sample relationships without predefined neighbourhood pa-
rameters, as discussed in section 3.1. Preliminary experiments on MNIST
guided the choice of the three-layer Modified-Encoder configuration as the
most effective design, which is further explained in section 3.2.

A key focus of the methodology is interpretability. Attention weights are
used to understand which samples influence each other, both globally and
locally. Global patterns are analysed using histograms of attention scores
across layers and heads, while local patterns are visualised for selected sam-
ples by scaling and greying points according to attention weight, as described
in section 3.3. This two-step approach provides insight into how the model
distributes attention across the dataset.

Finally, the chapter introduces the six datasets selected to cover a range of
data types, dimensionalities, sparsity levels, and manifold complexities, pro-
viding a representative benchmark for evaluating the model’s performance.
Details on these datasets and their preprocessing are provided in section 3.4.

3.1 Concept

Attention-based methods have the potential to fundamentally improve projec-
tion techniques by explicitly modelling interactions between samples. Tradi-
tional neighbourhood-preserving Dimensionality Reduction methods such as
t-SNE and UMAP capture inter-sample relationships in different ways. t-
SNE converts pairwise distances into probabilities, while UMAP constructs a
graph to preserve local topological structure. Notably, neither method pro-
cesses samples in isolation. Building on this concept, methods like KNNP have
demonstrated that considering multiple samples simultaneously can enhance
projection quality. However, KNNP is limited to a single type of relationship
(i.e., closeness) and depends on a hyperparameter to define the number of
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neighbours. In contrast, attention mechanisms are capable of learning multi-
ple types of relationships concurrently without requiring an explicit k-nearest
neighbours parameter, thereby offering a more flexible and comprehensive ap-
proach to capturing inter-sample interactions. Furthermore, this concept po-
tentially extends to inverse projection.

Therefore, we propose fully replacing the feed-forward neural networks from
NNP with an attention-based architecture. NNP processes each sample inde-
pendently, it does not explicitly model interactions between points. In contrast,
our attention-based approach maintains permutation invariance while allow-
ing each sample to attend to all other samples, ideally focusing more on its
nearest neighbours and capturing inter-sample relationships. This allows the
model to project the dataset collectively, modelling inter-sample relationships,
rather than projecting samples independently like NNP.

3.2 Architectural Design

Similar to NNP, PAT is structured as a single task inference model. Its singular
objective is to learn P : R” — RY where R" is the original high-dimensional

data, and RY is the lower-dimensional representation (i.e. projection) from a
traditional DR method (e.g. t-SNE).

Two architecture variants come to mind when using attention for super-
vised Dimensionality Reduction. We will refer to these as Attention-Only and
Modified-Encoder. The former of these would be the computationally lightest
option, where only Multi-Head attention is used for projection. Here, the W©°
matrix of learnable parameters would be responsible for projection. Multiple
Multi-Head attention layers may be stacked, and these layers may be followed
by layer normalisation [42].

The Modified-Encoder refers to a modified version of the Transformer En-
coder. Here, the position-wise fully connected feed-forward network (FFN)
will be responsible for projection. I.e., FFN(z) = max(0,xW; + by)W5 + by,
where W, € Rmoderxdir and W, € R% >4 This modification would require the
removal of the last residual connection in the last layer, as the dimensions
of the data exiting the FFN would mismatch with d,oqe. This will be more
computationally expensive, but allows for the benefits of the FFN and (one
of) the residual connections per encoder layer. Additionally, the second Layer
Normalisation layer must be removed, as it disables the model’s ability to learn
projections.

As generalised Projection with ATtention (PAT), i.e. not specialised on
computer vision, is a novel concept, we have little idea which configuration of
parameters is reasonable for this application. We address this by conducting
preliminary experiments on MNIST. Herein, we non-exhaustively explored a
very wide search space for the two configurations and their (hyper-) parame-
ters.

The Modified-Encoder group of models consistently outperformed the Attention-
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Only models on all metrics, particularly at a depth of three Modified-Encoder
layers. Therefore, we have chosen to continue exploring the three-layer Modified-
Encoder configuration. See subsection 4.2.1 and subsection 4.2.2 for more
details on Architectural Design.

3.3 Interpretability through Attention Visual-
isation

A secondary research question concerns model interpretability and explainabil-
ity. Attention itself has been used as a form of explainability in NLP since the
conception of Transformers [4], [44], [45]. Extending these techniques to pro-
jection with attention could provide insight into how the PAT models function,
and how to improve them.

Attention weights, as can be seen in Equation 3.1, model how attention is
distributed.

Attention(Q, K, V') = Attention Weight(Q, K)V
KT) (3.1)
Vi

where Attention Weight(Q, K') = softmax(

Existing visualisation tools, such as BertViz [45], [46], show which tokens
each attention head focusses on in NLP tasks. They do this by drawing lines
from the source sample to all the samples in the sequence. The opacity and
thickness of the line are determined by the attention weight. This can be seen
in Figure 3.1.

While these tools provide insight for sequences of manageable length, di-
rectly applying them to projections is not practical due to the large number
of samples and the way attention is typically distributed. Lines connecting all
source and target samples quickly become unintelligible.

For this reason, we focus on a two-step visualisation and analysis of at-
tention patterns. We start by examining global attention patterns. For every
layer and every head, the attention weights are calculated for all samples in the
test set. Their distributions are visualised using log-scaled histograms. This
gives insight into how attention is allocated across the dataset, and how the
attention patterns evolve from layer to layer.

The second analysis examines local attention patterns, i.e. for individual
samples. All samples in the projected space are visualised. The proposed
visualisation technique is inspired by BertViz’s use of varying opacity and
thickness of the lines by attention weight. Instead of varying the opacity
and thickness of the lines, we vary the thickness and saturation of the points
themselves.
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Figure 3.1: 'Head view’ taken from BertViz[45], [46], showing what individ-
ual heads, as indicated by colour, in layer 0 attends to for the word ’the’. This
isn’t directly portable to projections, as the number of samples is far too big.

Samples with negligible attention are greyed out. The remaining points are
scaled according to their attention weight. This highlights which neighbour-
hoods or clusters each head considers important for that particular sample and
allows comparison of attention behaviour between heads and layers.

3.4 Datasets

Espadato et al proposed a set of 18 datasets for benchmarking dimensionality
reduction algorithms [11]. They based their selection to be representative on
five criteria: Type, Size, Dimensionality, Intrinsic Dimensionality, and sparsity.
Due to computational limitations, we must limit this to fewer datasets.

Specifically, we have chosen to restrict it to the following datasets:

1. modified National Institute of Standards and Technology Database (MNIST)

(subsection 2.3.1) [14]
2. Fashion-MNIST (fMNIST) (subsection 2.3.2) [15]

3. Canadian Institute For Advanced Research (CIFAR-10) (subsection 2.3.3)
[33]

4. Human Action Recognition (HAR) (subsection 2.3.4) [34]
5. Spambase (subsection 2.3.5) [35]

6. National Classification of Economic Activities (Classificacao Nacional de
Atividades Economicas) (CNAE-9) (subsection 2.3.6) [36]

This list of six datasets should reasonably cover the minimal expected vari-
ation of datasets one would encounter. The first dataset on this list, MNIST,
was not on the original list of 18 [11]. However, we have chosen to include
it for historical comparisons, as it features heavily in projection research (e.g.
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[13], [19]).

Beyond historical relevance, these six datasets collectively span a broad
spectrum of data characteristics while remaining computationally feasible. In
terms of image data, they provide a controlled progression of visual complexity.
MNIST, although relatively simple, serves as a widely recognised baseline, and
its inclusion enables sanity checking against the extensive body of existing
dimensionality reduction literature.

fMNIST preserves the same input dimensionality as MNIST, but introduces
more challenging class boundaries and richer textures. This ensures that differ-
ences in performance arise from increased data complexity rather than changes
in input shape. CIFAR-10 further increases difficulty by incorporating colour
channels, higher intrinsic variability, and substantial visual noise and texture.
This makes it an effective stress test for the ability of methods to preserve
global structure. For instance, t-SNE is known to struggle on CIFAR-10 and
does not typically produce clearly separable clusters.

The tabular text-representation datasets, CNAE-9 and Spambase, fill in
both sparsity extremes. CNAE-9 is extremely sparse and therefore challenges
algorithms that are sensitive to high-dimensional flat directions or sparsity
patterns. Spambase, in contrast, is dense and more representative of classical
tabular feature sets. Together, these datasets span the range of sparsity con-
ditions commonly encountered in non-image data. They also differ in intrinsic
dimensionality. CNAE-9 contains many near-irrelevant or low-weight dimen-
sions, whereas Spambase exhibits a more uniformly distributed signal across
features.

Finally, HAR introduces a distinct data modality: multivariate time-series
measurements obtained from wearable sensors. Unlike images or text-derived
representations, HAR data encode temporal correlations that reflect human
movement patterns. Such sequences often reside on curved or cyclic mani-
folds, which makes HAR a valuable benchmark for assessing the robustness of
dimensionality reduction methods when the underlying geometry differs sub-
stantially from spatial or textual structure.

Across these six datasets, we therefore cover a representative range of types
(image, tabular, and sequential data), sparsity levels, dimensionalities, intrinsic
dimensionalities, and problem difficulties. This includes a progression from
simple to challenging image datasets, sparse and dense forms of tabular data,
and a non-image, non-text sequential dataset. These datasets also span a range
of sample sizes and feature dimensionalities. While not as exhaustive as the full
set of eighteen proposed by Espadoto et al., this selection covers the essential
variation required for our study. A more detailed discussion of dataset sizes,
the last criterion, is provided in the section 4.1 of the Experimental Setup
chapter.
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This chapter presents the experimental setup used to evaluate the proposed
transformer-based dimensionality reduction approach, PAT, across multiple
datasets. It first describes the preprocessing pipeline in section 4.1, then details
how reasonable model parameters were identified and refined in section 4.2,
followed by the setup for comparative evaluation in section 4.3 and the analysis
of scalability in section 4.4. Finally, the chapter outlines how attention visual-
isation is used to investigate interpretability in section 4.5 and implementation
considerations in section 4.6.

Datasets are preprocessed uniformly as described in section 4.1, where sam-
ples are flattened to remove spatial or temporal structure, min-max scaled, and
projected with t-SNE as a reference. Training and test sets are stratified to
preserve label distributions, and training sets are generally smaller than test
sets to emulate the NNP-style scenario in which models encounter unseen data.

Reasonable model parameters were determined through a wide preliminary
search on MNIST presented in subsection 4.2.1, which explored architectural
and training parameters including layer depth, attention heads, and learning
rate schedules. This search demonstrated that three-layer Modified-Encoder
(MEnc) models consistently outperform Attention-Only variants. The results
of this exploration informed the refinement of four final MEnc variants and one
additional preprocessing modification, as described in subsection 4.2.2, while
optimisation settings and hyperparameters were fixed to reduce evaluation
complexity.

Comparative evaluation is conducted on all six datasets across multiple
training set sizes, as outlined in section 4.3, allowing analysis of projection
quality, generalisability, and sample efficiency. Convergence is examined in
detail on MNIST, as shown in subsection 4.3.2, to determine stability and
appropriate epoch counts for training.

Scalability experiments, detailed in section 4.4, test the effect of varying
sample sizes and input dimensions under both batched and unbatched training,
providing insight into the practical limitations of the models. The chapter
also investigates interpretability through attention visualisation in section 4.5,
showing how PAT distributes focus across data points.

Finally, the chapter documents implementation considerations in section 4.6,
including software choices and memory optimisations, to ensure reproducibil-
ity and practical feasibility. Together, these sections establish a structured
framework for designing, evaluating, and understanding PAT, supporting the
analyses and conclusions presented in later chapters.

30



4.1 Datasets

4.1 Datasets

Each dataset goes through the same data processing pipeline. The only param-
eters for which are the parameters used for t-SNE, and the number of train-
and test samples.

For each dataset:

1.

Each sample is flattened row-major order style [50]. This destroys any
inherent spatial or temporal sequences. For example, an image of size
w X h is reshaped into a vector of length w - h. This is intentional, as
one of the requirements of NNP class methods is that they are generally
applicable. This is potentially not the best way to flatten the HAR
dataset, as this dataset is made from multiple subjects and tasks, causing
projections to have clusters with subclusters. This is intentional, as it
results in a good test for the recreation fidelity of local structure.

. The data is min-max scaled, so it falls in the range [0..1]. This is prac-

tically a requirement for training neural networks, but seemingly has no
impact on t-SNE. Using min-max scaling without standardisation does
leave this pipeline vulnerable to outliers, although this was not an issue
with these datasets.

. The data is projected using t-SNE[51], with the parameters as used by

22], [52].

. The projection is also min-max scaled. This is practically a requirement

for training neural networks.

. The dataset is train-test split, stratified on the labels, ensuring the train

and test sets have similar class distributions. See Table 4.1 for how the
datasets are split.

Dataset # Test Samples # Train samples Size Class

MNIST 7000 2000, 3000, 4000, 5000, 6000 | Medium-Large
fMNIST 6000 2000, 3000, 4000 Medium
CIFAR-10 4000 500, 1000, 2000, 3000 Small-Medium
HAR 4000 500, 1000, 2000, 3300 Small-Large
CNAE-9 540 126, 252, 540 Small
Spambase 2301 350, 700, 1300, 2300 Small-Medium

Table 4.1: Number of samples in test and train sets per dataset. Default
number of training samples in bold.

In NNP-class use cases, the number of samples unseen by the ground truth
model typically exceeds the number of samples it has been trained on. To
emulate this scenario, we therefore ensure that the training set is always smaller
than the test set, except in cases where this is not feasible due to a very
limited dataset size, such as with CNAE-9. Additionally, for some datasets,
the maximum number of usable samples is constrained by hardware limitations
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arising from the cost of computing the evaluation metrics. This restriction
applies in particular to MNIST, fMNIST, and CIFAR-10.

Despite the limitations in terms of maximum number of usable samples,
these datasets portray the full range of dataset sizes as described by Espadoto
et al. [11].

4.2 Model Architecture and Variants

This section outlines how the final set of PAT model architectures was es-
tablished. Instead of attempting an exhaustive hyperparameter search, which
is not feasible given the size of the design space, we performed a broad ex-
ploratory study on MNIST and used the results to identify a small number of
promising architectural directions. Across roughly 900 experimental runs, this
process progressively reduced the search space to a set of configurations that
were consistently stable and performant.

Subsection 4.2.1 describes the preliminary search, which identified the Modified-
Encoder (MEnc) family as the most reliable starting point and established the
general optimisation settings used for all further experiments.

Subsection 4.2.2 then details the refinement of architectural parameters
within the three-layer MEnc design, which led to four final variants and one
additional modification selected for full evaluation across all datasets. These
models represent the most practical balance between performance, stability,
and computational cost that could be achieved within the constraints of this
project.

4.2.1 Preliminary Model Search

The initial search for a reasonable configuration and (hyper-)parameter set,
performed on MNIST, was very wide. It explored the following (hyper-)parameters:

e Number of layers: (1-4),

e Number of attention heads per layer: (1-7),

e d,,dy per layer: (32-512),

o dss per layer: (512-2048),

e Loss function: Mean Squared Error (MSE) and ¢4,
e Learning rate: (0.00001, 0.01),

e Learning rate scheduler: Cosine Annealing Learning Rate Scheduler [53]
or None,

o T4 for Cosine Annealing Learning Rate Scheduler: (3, 100)

It is not feasible to search this space comprehensively as it is far too large.
Instead, we chose to search this space using a random grid search. This method
roughly samples the search space, helping to identify configurations that con-
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sistently produce high-quality projections.

Results from this exploratory phase show that Modified-Encoder models
consistently outperform Attention-Only models on all metrics, leading to the
exclusion of Attention-Only models from further research. Furthermore, three-
layer Modified-Encoder models were found to perform better and more consis-
tently compared to smaller and larger models, making it the focus of further
parameter search.

The preliminary parameter search also revealed that the MEnc-style mod-
els, and by extension the broader family of PAT variants, benefit consistently
from using a cosine-annealed learning rate schedule [53]. Based on these ob-
servations, the optimisation hyperparameters were finalised prior to the main
evaluation phase.

The selected settings were, on average, the most globally stable and per-
formant across datasets, and fixing them allowed subsequent experiments to
focus exclusively on architectural differences (e.g. attention dimensions, num-
ber of heads). All PAT models are therefore trained using an ¢; loss func-
tion, the Adam optimiser [54] with a learning rate of 2.2 x 107*, and the
CosineAnnealingL.R scheduler [53], [55] with Tin.x = 20, following the PyTorch
implementation. Each model is trained for 100 epochs.

Memory constraints of the available hardware made non-batched training
impractical. Although flash attention prevented out-of-memory errors [56],
the resulting training speed was so slow that it failed to meet the scalability
requirements of this thesis. Moreover, transformer architectures are known to
benefit substantially from batched training[4]. For these reasons, we adopted
a batch size of 56, selected through limited preliminary testing. This value
is unlikely to be optimal, and future work should include a more systematic
exploration of batch-size effects. Unless specified otherwise, it is also important
to note that experiments were conducted on aging 2017-era hardware, which
ultimately failed after the quantitative evaluation phase, further constraining
the scope of experimentation.

Additionally, limited experimentation showed that using batches for infer-
ence lowered the projection quality, albeit to a very small degree. Based on
this, we chose to run inference and evaluate on the entire test, rather than in
smaller batches.

4.2.2 Finalising Model Parameters

The final exploratory phase focused on identifying effective architectural set-
tings for the three-layer Modified-Encoder (MEnc). In particular, the search
varied the key and value dimensions (dj and d,), the number of attention
heads, and the feedforward dimension dg within each Transformer block.

To analyse the influence of individual and combined parameters, short de-
cision tree regressors with a depth of two to three were trained on the collected
experimental results. These trees provided interpretable relationships between
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Table 4.2: Final three-layer Modified-Encoder (MEnc) variants and the addi-
tional PreprocessedEHEncoder (Pre-EH) modification. Each model consists of
three ModifiedEncoderLayer blocks; only the key architectural differences are
shown.

Variant Layer dx d, dg Heads (H)

1 256 512 2048 6
EarlyHeavyEncoder (EH) 2 256 384 2048 4

3 256 256 2048 3
PreprocessedEHEncoder (Pre-EH)  Pre-pass -  — -

Enc. As in EH

1 192 256 1024
ModeBalancedEncoder (MB) 2 256 256 2048

3 256 256 1024

256 384 1024
256 384 2048
256 512 2048

LateBoostEncoder (LB)

W N =

1 512 512 2048
512 512 2048
5012 512 2048

HighCapEverywhereEncoder (HCE)

o = = T TG I JUR NGy

w N

parameters and model performance, making it possible to identify which con-
figurations were consistently beneficial. Insights from this analysis informed
the selection and definition of four final three-layer MEnc variants, which were
chosen for comprehensive evaluation across all datasets. These variants are
summarised in Table 4.2.

Finally, for datasets on which these variants failed to achieve satisfactory
performance, a slight modification was introduced to one of the selected mod-
els. This modification adds a single linear layer before the attention layer,
responsible for downsampling the high-dimensional input to a fixed represen-
tation size of d,,,qe = 784. This value corresponds to the dimensionality of
MNIST, for which earlier experiments had demonstrated that PAT models
perform reliably. The modified variant is also included in Table 4.2.

4.3 Comparative Evaluation of PAT Variants
The five MEnc variants introduced in Table 4.2, together with Neural Network
Projection (NNP) as a baseline and t-SNE as a ground truth, are evaluated on

the six datasets described in section 2.3. Evaluating all models across multiple
datasets and across a range of training set sizes provides a comprehensive
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assessment of the projection quality and generalisability of the PAT approach.

Each model is trained twice on every dataset and for each of the training-
set sizes listed in Table 4.1. This setup enables an analysis of sample efficiency,
that is, the number of training samples required for models to achieve adequate
projection quality.

Training progress is monitored continuously, and all models are evaluated
on the test set at every second epoch to capture their convergence behaviour
and to observe when performance stabilises. Although this temporal analysis
is recorded for every dataset, a detailed convergence study is conducted only
for MNIST, see subsection 4.3.2.

4.3.1 NNP Parameters

NNP serves as the baseline model, as it is the earliest and most widely used
supervised neural projection method. Following the (hyper-)parameters rec-
ommended by Modrakowski et al. [19], the network consists of three fully
connected layers of sizes 600, 240, and 600 with ReLLU activations, followed by
a sigmoid layer and a final linear projection layer mapping to the target di-
mensionality. All layers use a small bias value of 0.0001. The model is trained
with the Adam optimiser using a learning rate of 0.001 and mean squared error
(MSE) loss, as suggested by Modrakowski[19].

We do deviate from one parameter, namely the number of epochs NNP is
trained. For the per-dataset analysis, we use 100 epochs rather than following
Modrakowski et al.’s Early Stopping rule, to ensure we get a complete overview
of NNP’s capabilities.

4.3.2 Convergence Analysis on MNIST

In this experiment, we conduct both a quantitative and a qualitative analysis
of model convergence on the MNIST dataset. All models are trained on the
full MNIST training set (6000 samples), while all projection quality metrics
and 2D projections are computed on the test set (7000 samples). All reported
values represent the mean over 10 independent runs.

For NNP, we analyse convergence using three fixed training regimes:

1. Early stopping following the rule proposed by Modrakowski et al., typi-
cally around epoch 46.

2. Fixed-length training for 100 epochs.

3. Extended training for approximately 200 epochs, representing full con-
vergence.

These regimes are shown in the convergence plots as dotted horizontal lines,
each corresponding to the mean performance over 10 runs.

For EH, projection quality metrics are recorded every second epoch through-
out training. These projection quality metrics are then plotted individually,
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the resulting curves showing the mean value at each recorded time step, to-
gether with min-max error bars. These continuous metric traces allow direct
comparison to the three NNP regimes in terms of projection quality metrics.

To complement the quantitative results, we also compare the visual struc-
ture of the generated projections. For NNP, we again use the three training
regimes (50, 100, and 200 epochs). For EarlyHeavyEncoder (EH), as defined in
Table 4.2, we select two representative checkpoints, namely 50 and 100 epochs,
which align with the comparison points used in the quantitative analysis.

This allows us to identify when, if at all, EH is capable of outperforming the
baseline NNP. Which in turn allows us to recommend default hyperparameters
for using PAT in the field.

4.3.3 Projection Quality Metrics

All models are evaluated using the eight projection-quality metrics proposed
by Machado et al. [24], which were selected for their robustness and low inter-
metric correlation. These metrics, described in detail in section 2.2, are:

1. Procrustes Error (Mp)
Trustworthiness (M;)
Continuity (M,)
Scale-Normalized Stress (M, )
Neighbourhood Hit (Myg)
True Neighbors (M7y)

Distance Consistency (Mpc)

® N e o W

Pearson Correlation (M)

4.3.4 Visual Comparison of Projections

In addition to numerical evaluation, each dataset is also examined visually.
The following projections are compared:

1. NNP trained for 100 epochs on the largest available training set,

2. the best and most consistent PAT model (trained for 100 epochs on the
largest training set), and

3. the t-SNE ground truth fitted on the full dataset, with only the test split
shown.

The best and most consistent PAT model for each dataset is selected pri-
marily on the basis of quantitative metrics, with additional consideration for
model reliability. Models that exhibit failures on a dataset outside the con-
trolled data-collection runs of this experiment are excluded from selection,
even if their metric performance is competitive. This ensures that the chosen
models are both strong performers and stable in practice.
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4.4 Evaluating Scalability

Scalability is a main motivation for NNP-class projection algorithms, so we
conducted a scalability evaluation for the four final MEnc variants (including
the preprocessing variant) and compared them to NNP. We tested two factors:
the number of samples and the input dimensionality.

We performed two separate experiments to assess scalability along two
axes. In the first experiment, we varied the number of samples while keeping
the input dimensionality fixed at 784, mimicking MNIST dimensionality with
randomly generated data. In the second experiment, we varied the input di-
mensionality while keeping the number of samples fixed at 3000. All models
were evaluated in inference as well as in both batched and unbatched training,
with a batch size of 56 matching that used in the projection-quality evalua-
tion. Due to hardware limitations on the 2017 Windows laptop used for the
projection-quality experiments, these scalability tests were run on a different
machine with an M5 chip and 24 GB of memory.

The tested sample sizes were 500, 2000, 4000, and 6000, representing small,
medium, and large datasets. The tested input dimensionalities were 8, 299,
590, 882, 1173, 1465, 1756, and 2048. These values stay below the dimension-
ality of CIFAR-10, where the models fail, and are more than twice as large
as the dataset with the next largest dimensionality, CNAE-9. We explored a
wider range of input dimensions because running these tests is computationally
cheaper.

Each configuration was run six times in a row using the same model in-
stance and randomly generated data as input. The first epoch of each run was
discarded because all models show startup delays caused by JIT compilation
or similar effects. The reported results are the mean of the remaining five
epochs. The use of random synthetic data should not affect the performance
measurements.

4.5 Interpretability through Attention Visual-
isation

To investigate how the PAT model distributes attention in practice, the anal-
ysis focuses primarily on the MNIST dataset. This choice is motivated by
practical time constraints and by the fact that MNIST samples are straight-
forward to interpret visually. Equivalent visualisations were generated for all
datasets and are included in Appendix B, although they are considered only
briefly in the main text.

The model which calculates the attention weights is trained on the same
hyperparemeters as described in section 4.3. The model used for all datasets

is EH, as the most consistently well-performing model. The exception being
CNAE-9 and CIFAR-10, which use their best performing PAT model: Pre-EH.
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For each dataset, attention weights were computed for every head in all
layers. To examine the global behaviour of the model, the distributions of these
scores were analysed using log-scaled histograms for each head. This provides
an overview of how attention is allocated across the dataset and how this
allocation changes between layers. To study the local attention patterns, a set
of representative samples was selected from different regions of the projection
space. These include samples located within clusters, samples situated on
identifiable local structures, and samples appearing in areas of uncertainty or
confusion. Only two of these samples are included in the main text, since
presenting the full set would require an excessive amount of space.

For the local visualisations, a threshold was applied to identify samples that
receive negligible attention. The threshold is defined as the reciprocal of the
number of samples, for example 1/7000 for MNIST. The threshold is intended
to separate meaningful attention from negligible contributions. Since attention
weights sum to 1 across all samples, the reciprocal of the number of samples
represents the average attention a sample would receive under uniform alloca-
tion. Samples receiving less than this reciprocal are effectively ignored by the
model, while those above it are receiving disproportionately high attention.
Using this threshold highlights the points that the model focuses on, filter-
ing out background noise and making attention patterns easier to interpret.
Samples with attention below this value were greyed out in the figures.

4.6 Implementation Notes

The neural networks were implemented in PyTorch [55] because it is familiar to
the author and provides access to memory-efficient implementations of Atten-
tion [56] while remaining highly customisable. The previous implementation
of projection quality metrics by Machado [27] was developed in TensorFlow
and encountered memory limitations on older GPU hardware.

To address this, a memory-optimised variant [57] of a subset of eight metrics
was implemented in PyTorch. This approach minimises repeated calculations
and manually clears variables when they are no longer needed, allowing ex-
periments on up to 6000 samples on MNIST rather than the previous limit
of 3000. Furthermore, it accomplishes this with an 8x speed-up! compared to
Machado’s library for the same metrics.

There are two limitations for this implementation. The first limitation of
this approach is that all metrics must use the same value of K for nearest
neighbors. Although choosing different K values for each metric may be more
optimal, K was set to seven based on recommendations for Continuity and
Trustworthiness [11].

The second limitation is that it is not as flexible as Machado’s library[27].

ITested on a 2017 Windows Laptop, our implementation on CPU, Machado’s on
GPU.
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Our implementation is specialised on those eight metrics, and would require
modification to allow for other metrics. Machado’s library supports 17 metrics
and any subset thereof.
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5. Results

This chapter presents the experimental evaluation of the proposed PAT mod-
els across multiple datasets, comparing their performance to the baseline NNP
and ground truth t-SNE projections. The results are organized to highlight
projection quality, convergence behavior, scalability, and model interpretabil-
ity through attention patterns.

We begin by assessing projection quality, as described in section 5.1, across
six datasets: MNIST, fMNIST, Spambase, HAR, CIFAR-10, and CNAE-9.
Performance is evaluated quantitatively using metrics that capture both global
and local embedding properties, and qualitatively through visualisations of the
learned projections. This approach highlights differences in cluster structure,
diffusion, and fidelity to the ground truth. Across most datasets, PAT models
outperform NNP once sufficient training samples are available, although some
datasets reveal limitations in stability or local neighborhood preservation.

Next, section 5.2 analyzes convergence behavior on MNIST, tracking how
projection quality evolves over training epochs for NNP and EH. This com-
parison demonstrates trade-offs between global structure and neighborhood
preservation, showing that PAT models can achieve competitive or superior
performance with fewer epochs.

Section 5.3 examines scalability, evaluating runtime with respect to input
dimensionality and dataset size. These experiments provide practical insight
into training and inference efficiency. While NNP remains substantially faster,
several PAT variants achieve competitive projection quality within reasonable
computational limits.

Finally, section 5.4 explores model interpretability through attention vi-
sualisations, illustrating how PAT models distribute focus across data points.
Early layers capture global structure, intermediate layers refine local details,
and the final layer exhibits highly selective attention patterns. Although these
results do not yield fully interpretable rules, they provide insight into how the
models balance global and local information when generating embeddings.

Together, these analyses establish the capabilities, limitations, and opera-
tional characteristics of the PAT models, providing a foundation for the dis-
cussion in the following chapter.

5.1 Projection Quality
This section presents the projection quality results for all PAT models across

the six evaluation datasets, compared against the NNP baseline and the ground
truth t-SNE embeddings. Overall, the PAT models show consistent but mod-
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erate improvements: on five of the six datasets, they outperform NNP on most
quantitative metrics, and the visual projections suggest slightly clearer struc-
ture than NNP across all datasets. However, the gains are not dramatic, and
in several cases, the differences are subtle or dependent on the chosen metric
or training size.

5.1.1 DMNIST Dataset

Table 5.1 shows that, from the minimum number of samples tested (2000) and
onwards, a PAT model outperforms the baseline NNP on all metrics except
for Procrustes Error (Mp), in which NNP is always marginally better.

Among the PAT models, HCE is the best performer at the minimal number
of samples, but is then supplanted by EH on all metrics except for Pearson
Correlation (M, ), where LB and MB marginally outperform them.

HCE shows stability issues at the maximum number of samples (6000),
where its performance in all metrics plummets.

The PAT models perform similarly compared to their ground truth t-SNE
on most metrics. They marginally outperform it on M., Mpe and M,, and
marginally underperform it on M,. Compared to t-SNE, PAT significantly
underperforms on M;, Mg, and most importantly, Mpy. It does, however,
show a small but significant increase in these metrics compared to NNP.

EH needs only 4000 training samples to gain better or equivalent projection
quality compared to NNP on 6000 samples.

In Figure 5.1, we chose to visualise the overall best and most consistent PAT
model for MNIST: EarlyHeavyEncoder (EH) trained on 6000 training samples
executed on 7000 test samples. We compare it to NNP trained and executed
on the same samples, and its ground truth t-SNE fitted on the combination of
the two, though only the test set is shown.

Visually, the clusters are globally somewhat less diffuse compared to NNP.
The shapes, or outlines, of the clusters are also better retained from t-SNE.
For example, look toward cluster 1 (orange). EH has a much cleaner 'banana’
shape, more closely matching t-SNE. Cluster 0 (dark blue) is far less diffuse
compared to NNP, with far fewer outliers above it and to its left. The difficult
case of class 4 (purple), which overlaps with class 9 (cyan), causing class 4 to be
separated into two subclusters, is also handled marginally better by EH. As the
edges of both the larger subcluster at the bottom and the smaller subcluster
at the top are slightly better preserved.

Overall, there is still a presence of inter-cluster diffusion, but the global
outline, i.e. where clusters do not touch in the ground truth, has little to no
diffusion.
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Table 5.1: Metrics on MNIST at the smallest, median, and largest training-
set sizes. t-SNE is trained on all samples (train + test), metrics are calculated
exclusively on the test set. Values in bold indicate the best score among all
evaluated models, while underscored and bold values indicate that the
ground truth (t-SNE) achieves a better score than every tested model.

Metric | t-SNE  NNP  EH  HCE LB  MB
M;@2000 0.8518 0.8601 0.8694 0.8503 0.8558
M,;@4000 0.8865 0.8980 0.8957 0.8858 0.8877
M;@6000 0.9008 0.9121 0.7385 0.9057 0.9071
M, 0.9822

M,@2000 0.9564 0.9644 0.9662 0.9622 0.9634
M,@4000 0.9658 0.9711 0.9708 0.9695 0.9694
M_@6000 0.9691 0.9728 0.7503 0.9720 0.9725
M, 0.9715

M,@2000 0.1564 0.1562 0.1557 0.1566 0.1559
M,@4000 0.1550 0.1548 0.1546 0.1553 0.1551
M,@6000 0.1554 0.1546 0.3142 0.1543 0.1544
M, 0.1540

My 5 @2000 0.7214 0.7558 0.7632 0.7403 0.7437
My 1 @4000 0.7884 0.8171 0.8083 0.7979 0.7983
My @6000 0.8121 0.8371 0.4998 0.8255 0.8292
Myg 0.9132

M7 @2000 0.0643 0.0796 0.0855 0.0719 0.0746
M7 @4000 0.0953 0.1168 0.1141 0.1058 0.1089
M7 @6000 0.1173 0.1351 0.0686 0.1286 0.1287
Mry 0.3784

Mpc@2000 0.7708 0.7966 0.7948 0.7836 0.7815
Mpc@4000 0.8187 0.8332 0.8285 0.8208 0.8221
Mpc@6000 0.8357 0.8470 0.4789 0.8419 0.8409
Mpe 0.8422

Mp@2000 0.9919 0.9945 0.9944 0.9943 0.9945
Mp@4000 0.9945 0.9949 0.9948 0.9949 0.9948
Mp@6000 0.9947 0.9950 0.9975 0.9949  0.9950
Mp 0.9941

M, @2000 04220 0.4398 0.4399 0.4443 0.4401
M, @4000 0.4383 0.4407 0.4421 0.4425 0.4434
M, @6000 04354 0.4392 0.2181 0.4422 0.4402
M, 0.4424
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mnist

Figure 5.1: EH, NNP, and t-SNE (Ground Truth) on MNIST.

5.1.2 fMNIST Dataset

Table 5.2 shows that PAT and NNP are effectively equivalent for the majority
of the metrics on fMNIST. Across training sizes, the NNP baseline performs
best at the smallest sample size (2000), consistently achieving the strongest
scores in M,, Mp, and M,. However, as soon as more training data be-
comes available (from 3000 samples onward), the PAT models begin to out-
perform NNP on metrics like M;, M., My, and Mry. Although NNP remains
marginally superior in M,, Mp, and M,, these differences are very small and
practically negligible.

Compared to the ground-truth t-SNE, all learned models achieve similar
performance on M,, Mpc, M,, and Mp, while underperming substantially
on Mypy and Mry, where t-SNE performs markedly better. Overall, the PAT
models become competitive or superior to NNP once sufficient training samples
(3000 or more) are available, while still falling short of t-SNE on neighborhood-
based metrics.

At 3000 samples, the PAT models outperform NNP on the maximum num-
ber of training samples (4000) on all but three metrics. Namely M, and M,., in
which NNP is marginally better, and Mp in which the models are equivalent.
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Table 5.2: Metrics on fMNIST at the smallest, median, and largest training-
set sizes. t-SNE is trained on all samples (train + test), metrics are calculated
exclusively on the test set. Values in bold indicate the best score among all
evaluated models, while underscored and bold values indicate that the
ground truth (t-SNE) achieves a better score than every tested model.

Metric | t-SNE NNP  EH HCE LB  MB
M,@2000 0.9537 0.9510 0.9527 0.9487 0.9486
M,@3000 0.9563 0.9576 0.9608 0.9551 0.9567
M,@4000 0.9584 0.9621 0.9627 0.9594 0.9599
M, 0.9890

M_,@2000 0.9838 0.9833 0.9836 0.9824 0.9827
M.@3000 0.0834 0.9852 0.9851 0.9842 0.9844
M,@4000 0.9831 0.9863 0.9862 0.9855 0.9856
M, 0.9871

M,@2000 0.1093 0.1157 0.1156 0.1158 0.1155
M,@3000 0.1100 0.1145 0.1145 0.1149 0.1146
M,@4000 0.1128 0.1141 0.1138 0.1142 0.1143
M, 0.1126

My 1 @2000 0.6286 0.6477 0.6488 0.6458 0.6447
My 7 @3000 0.6416 0.6500 0.6561 0.6513 0.6543
My 1 @4000 0.6451 0.6570 0.6565 0.6590 0.6580
Myy 0.7401

My @2000 0.1073 0.1189 0.1251 0.1153 0.1177
My n@3000 0.1192 0.1363 0.1404 0.1301 0.1335
My @4000 0.1266 0.1487 0.1499 0.1418 0.1443
Mry 0.3730

Mpe@2000 0.6522 0.6657 0.6639 0.6663 0.6637
M pe@3000 0.6564 0.6645 0.6665 0.6672 0.6634
M pe@4000 0.6619 0.6657 0.6647 0.6644 0.6654
Mpe 0.6647

M p@2000 0.9973 0.9976 0.9976 0.9975 0.9975
Mp@3000 0.9975 0.9977 0.9977 0.9977 0.9977
M p@4000 0.9977 0.9978 0.9978 0.9977 0.9978
Mp 0.9979

M,@2000 0.6841 0.6495 0.6490 0.6490 0.6495
M, @3000 0.6766 0.6557 0.6544 0.6539 0.6540
M,@4000 0.6647 0.6575 0.6590 0.6569 0.6566
M, 0.6649

One aspect that was not captured in the sampling used to construct Ta-
ble 5.2 is HighCapEverywhereEncoder (HCE)’s propensity to stability issues
on fMNIST. It was rerun twice for visualisation purposes, and both runs failed.
We did not test this often enough to give a proper indication for a failure rate;
however we choose to err on the side of caution and use EarlyHeavyEncoder
(EH) for Figure 5.2 instead, which has not shown this same propensity while
performing very similarly to HCE’s best case.
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In Figure 5.2, both EH and NNP are trained on the same 4000 training
samples, and executed on 6000 test samples. The ground truth t-SNE is fitted
on the combination of the two, though only the test set is shown.

Visually, PAT much closer emulates the shapes of the clusters in the ground
truth. It is noticeably less diffuse compared to NNP, but still more diffuse
than t-SNE. Cluster 1 (orange) shows particularly marked improvement over
NNP. The outline of the cluster in EH’s projection is more sharply defined
and captures the hole-y structure of the cluster better. Cluster 2 (lime green)
is less diffuse, and its outline more closely follows the ground truth.

In the ground truth, there is a large amount of confusion surrounding classes
0 (dark blue), 2 (green), 3 (red), 4 (purple), and 6 (pink). Both EH and NNP
clearly struggle with this. However, EH is marginally better at separating
these classes, and more accurately recreates the (sub-) clusters.

Overall, EH has reduced inter-cluster diffusion, better recreation of local
and global cluster features, and little to no diffusion of the global outline, i.e.,
where clusters do not touch in the ground truth.

fmnist

Figure 5.2: EH, NNP, and t-SNE (Ground Truth) on fMNIST.

5.1.3 Spambase Dataset

Table 5.3 shows that there is no clear best model at the minimum number of
training samples tested (350). NNP outperforms the PAT models in M,, M,,
and importantly Mry, while most PAT models outperform NNP in M,;, M.,
Myyg, Mpc, and Mp. In general, the PAT models match or outperform NNP
from 1300 samples and onwards. The most notable increase is on Mry, while
losing its advantage on Mp (Table 5.3).

Notably, some metrics show non-monotonic behaviour with additional train-
ing data. Several models exhibit clear declines as sample size increases. For
instance, NNP shows steadily worsening M, and fluctuating Mp, and it also
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displays non-monotonic behaviour in M7y, where performance improves at
1300 samples but then decreases slightly at 2300 samples. Other metrics sim-
ilarly degrade with more samples.

NNP, EH, and LB all show non-monotonic trends in Myy, Mpc, or M,,
with M, in particular worsening for almost all models. The strongest instability
occurs for Pre-EH, which experiences a substantial drop at 2300 samples across
several metrics, including My, M., Myy, Mry, and Mpe. These patterns
indicate that increasing the amount of training data does not necessarily yield
better or more stable embedding quality.

The PAT models perform similarly compared to their ground truth t-SNE
on several metrics. They outperform NNP on most metrics from 1300 training
samples onward and already surpass it on M;, M., Myg, and Mpc at smaller
sample sizes. Compared to t-SNE, the PAT models still significantly underper-
form on M;, Myg, and most notably Mry. Overall, the PAT models provide
a small improvement over NNP, though underperform compared to t-SNE on
neighbourhood-based metrics.

In Figure 5.3, we chose to visualise EH, as it performs better on Mypy and

Mpc, is only slightly worse on Mpy, and is similar on other metrics compared
to HCE.

The ground truth t-SNE projection for Spambase is diffuse in nature, with
the classes spam and not spam overlapping significantly, making this a particu-
larly challenging dataset to project. We compare EH trained on 2300 samples
and executed on 2301 samples to NNP trained on the same data, with the
ground truth t-SNE fitted on all samples, though only the test set is shown.

Visually, EH produces a projection that is closer to the ground truth than
NNP, placing fewer points outside the main body of the projection and ap-
pearing more centered. It does a far better job at retaining the global outline
of the projection, whereas NNP appears more diffuse overall. Both models
struggle with the ’antenna’ shape at the top of the projection; while neither
reproduces the circular dot-like feature at its tip, EH is less diffuse, whereas
NNP correctly positions the rightmost dot while EH places it slightly lower.

Overall, the global distribution of points is better retained by EH, with less
diffusion outside the main clusters, even though the overlap between classes
remains challenging.
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Table 5.3: Metrics on Spambase at the smallest, median, and largest
training-set sizes. t-SNE is trained on all samples (train + test), metrics are
calculated exclusively on the test set. Values in bold indicate the best score
among all evaluated models, while underscored and bold values indicate
that the ground truth (t-SNE) achieves a better score than every tested model.

Metric ‘ t-SNE ~ NNP EH HCE LB MB Pre-EH
M;@350 0.7587 0.7546 0.7636 0.7510 0.7515 0.7548
M,@1300 0.7657 0.7844 0.7881 0.7857 0.7827 0.8049
M;@2300 0.7920 0.8047 0.8027 0.8048 0.8031 0.5783
M 0.9380

M @350 0.9341 0.9347 0.9353 0.9311 0.9316 0.9367
M.@1300 0.9341 0.9409 0.9429 0.9394 0.9408 0.9454
M.@2300 0.9399 0.9448 0.9455 0.9441 0.9434 0.6733
M. 0.9467

M,@350 0.2356 0.2631 0.2595 0.2699 0.2688 0.2412
M,@1300 0.2386 0.2641 0.2643 0.2655 0.2650 0.2535
M,@2300 0.2484 0.2620 0.2653 0.2617 0.2626 0.4380
M, 0.2543

M N @350 0.7658 0.7816 0.7713 0.7780 0.7726 0.7896
My g@1300 0.7844 0.7805 0.7771 0.7757 0.7775 0.7834
M N r@2300 0.7717 0.7853 0.7816 0.7852 0.7816 0.6142
My 0.8380

Mrn@350 0.1689 0.1508 0.1564 0.1542 0.1573 0.1245
Mrn@1300 0.1683 0.1836 0.1837 0.1862 0.1809 0.1863
Mpn@2300 0.1858 0.2024 0.2062 0.2056 0.2012 0.0087
Mrn 0.4694

Mpc@350 0.7990 0.8209 0.8129 0.8038 0.8025 0.8375
Mpc@1300 0.8125 0.8038 0.8003 0.8038 0.8066 0.8094
Mpc@2300 0.7975 0.8073 0.8023 0.8014 0.8025 0.7025
Mpc 0.7944

Mp@350 0.9487 0.9483 0.9486 0.9471 0.9472 0.9500
Mp@1300 0.9391 0.9487 0.9492 0.9489 0.9488 0.9503
Mp@2300 0.9471 0.9495 0.9496 0.9493 0.9494 0.9636
Mp 0.9496

M, @350 0.4460 0.3659 0.3707 0.3453 0.3498 0.4292
M,@1300 0.4301 0.3540 0.3545 0.3516 0.3522 0.3863
M,@2300 0.3981 0.3593 0.3520 0.3603 0.3587 0.3972
M, 0.3751
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Figure 5.3: EH, NNP, and t-SNE (Ground Truth) on Spambase.

5.1.4 HAR

Table 5.4 shows that the PAT models are equivalent or better than NNP. This
pattern holds for all numbers of training samples used. Between the PAT
models, HCE marginally outperforms EH, both of which typically outperform
the others.

At 2000 training samples, Pre-EH outperforms the others on the metrics
M,;, Myg, Mry. However, it does show stability issues at the maximum
number of samples (3300). Here, the metric scores plummet.

Compared to the ground truth t-SNE, both NNP and PAT grossly under-
perform on Mpy and Myp, while performing similarly in all other metrics.

Of the PAT models HCE is the overall best performer. Additionally, it
does not show the stability issues for the HAR dataset as it has for others.
Therefore, we have chosen to visualise this model’s projections in Figure 5.4.

In Figure 5.4, both HCE and NNP are trained on the same 3300 training
samples, and executed on 4000 test samples. The ground truth t-SNE is fitted
on the combination of the two, though only the test set is shown.

The HAR projection offers very fine local features. It offers clear inter-
cluster separation (classes 0, 1, 2, 5) and very clear but small intracluster
separation (subclusters). It simultaneously offers a very diffuse sector, with
the clusters for classes 3 and 4 being interwoven.

Visually, both models struggle and are clearly more diffuse than t-SNE.
However, HCE is visibly less diffuse in class 0 (dark blue). It gets closer to ap-
proximating the subclusters than NNP, but still clearly falls short compared to
t-SNE. HCE better recreates the two class 0 subclusters above class 1 (green).
It also better retains the shape of class 5 (light blue), far better recreates the
outlines of cluster 2 (purple), and 3 and 4 (lime and pink).
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Table 5.4: Metrics on HAR at the smallest, median, and largest training-set
sizes. t-SNE is trained on all samples (train + test), metrics are calculated ex-
clusively on the test set. Values in bold indicate the best score among all eval-
uated models, while underscored and bold values indicate that the ground
truth (t-SNE) achieves a better score than every tested model.

Metric ‘ t-SNE ~ NNP EH HCE LB MB Pre-EH
M,@500 0.9279 0.9315 0.9324 0.9292 0.9288 0.9288
M,@2000 0.9468 0.9527 0.9517 0.9478 0.9490 0.9540
M;@3300 0.9530 0.9593 0.9614 0.9562 0.9555 0.7335
M 0.9896

M_.@500 0.9717 0.9750 0.9757 0.9737 0.9739 0.9741
M_.@2000 0.9782 0.9809 0.9811 0.9797 0.9799 0.9807
M.@3300 0.9797 0.9824 0.9829 0.9819 0.9818 0.7399
M. 0.9833

M,@500 0.1161 0.1121 0.1121 0.1106 0.1132 0.1169
M,@2000 0.1226 0.1196 0.1185 0.1188 0.1192 0.1216
M,@3300 0.1201 0.1212 0.1206 0.1204 0.1201 0.4525
M, 0.1241

M N @500 0.7799 0.7992 0.7876 0.7903 0.7856 0.7943
M N r@2000 0.8258 0.8370 0.8414 0.8265 0.8327 0.8458
M N r@3300 0.8442 0.8568 0.8649 0.8512 0.8480 0.5153
My 0.9211

Mpn@500 0.0842 0.0928 0.0969 0.0881 0.0872 0.0878
Mrn@2000 0.1273 0.1531 0.1542 0.1378 0.1380 0.1591
Mprn@3300 0.1497 0.1854 0.1935 0.1681 0.1688 0.0968
Mrn 0.4669

Mpc@500 0.7831 0.7943 0.7963 0.7950 0.7911 0.7931
Mpc@2000 0.8043 0.8002 0.8044 0.7994 0.8014 0.8075
Mpc@3300 0.8056 0.8078 0.8115 0.8073 0.8056 0.4831
Mpc 0.8125

Mp@500 0.9947 0.9959 0.9961 0.9956 0.9957 0.9957
Mp@2000 0.9962 0.9969 0.9969 0.9968 0.9968 0.9968
Mp@3300 0.9967 0.9973 0.9973 0.9972 0.9972 0.9986
Mp 0.9976

M, @500 0.6469 0.6590 0.6582 0.6621 0.6550 0.6434
M, @2000 0.6222 0.6315 0.6352 0.6346 0.6333 0.6248
M,@3300 0.6319 0.6259 0.6286 0.6291 0.6299 0.3130
M, 0.6151
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Overall, HCE does a better job at retaining the global characteristics of the
projection, and while improving on local features, it still lacks the granularity

of t-SNE.

t-SNE HCE NNP

har
&
)
‘s

v ¢
»

Figure 5.4: HCE, NNP, and t-SNE (Ground Truth) on HAR.

5.1.5 CIFAR-10

All four initially proposed PAT models completely fail in projecting CIFAR-10.
Their projections are effectively random, and are thus left out of Table 5.5.
The Pre-EH variant, where the EH is modified by prepending a downsampling
layer, is able to project CIFAR-10.

CIFAR-10 has very high input dimensionality (32 x 32 x 3 = 3072), which
likely contributes to the failure of the initial PAT models. In the MEnc ar-
chitecture, residual connections require repeated transformations of the input
back to the full model dimension (dyoqer = 3072) through the weight matrices
WO, Wy, and W,. This results in extremely large weight matrices, making
it difficult for the network to learn effective projections. The success of the
Pre-EH variant, which reduces the model dimension from 3072 to a more man-
ageable 784 via a linear layer, supports this explanation.

Table 5.5 shows that Pre-EH is equivalent or better in all metrics except for
M, starting at the minimal number of training samples (500). The performance
gap between Pre-EH and NNP grows thereafter, showing its performance is
superior on CIFAR-10 in almost every way.

Compared to t-SNE, both models perform similarly. Pre-EH shows a small
improvement in Mp¢, indicating better visual separation of classes. There are
negligible differences in other metrics, but it does underperform in Myy and
MTN-

It is worth noting that Pre-EH does occasionally fail at a higher number
of training samples on CIFAR-10. This is not reflected in Table 5.5, as it did
not occur at this point in the data gathering process. Additionally, this is not
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a big issue, as Pre-EH with 1000 training samples already outperforms NNP
at the maximum number of training samples (3000).

Table 5.5: Metrics on CIFAR-10 at the smallest, median, and largest
training-set sizes. t-SNE is trained on all samples (train + test), metrics are
calculated exclusively on the test set. Values in bold indicate the best score
among all evaluated models, while underscored and bold values indicate
that the ground truth (t-SNE) achieves a better score than every tested model.

Metric | -SNE  NNP  Pre-EH
M,;@500 0.8016 0.8031
M;@2000 0.8049 0.8126
M;@3000 0.8067 0.8185
M, 0.8905

M,@500 0.9256 0.9255
M,@2000 0.9270 0.9293
M,@3000 0.9285 0.9294
M, 0.9254

M,@500 0.1155 0.1131
M;@2000 0.1184 0.1115
M,@3000 0.1134 0.1113
M, 0.1116

My @500 0.1441 0.1437
M 1 @2000 0.1496 0.1554
My r@Q3000 0.1486 0.1561
Myp 0.1999

Mrpn@500 0.0285 0.0297
My N@2000 0.0339 0.0355
My N @3000 0.0336 0.0417
Mry 0.1407

Mpc@500 0.2123 0.2073
Mpc@2000 0.2112  0.2207
Mpc@3000 0.2159 0.2227
Mpc 0.2142

Mp@500 0.9856 0.9862
Mp@2000 0.9867 0.9867
Mp@3000 0.9888 0.9858
Mp 0.9837

M, @500 0.7426 0.7173
M,-@2000 0.7200 0.7140
M, @3000 0.7337 0.7008
M, 0.6884

The projections visualised in Figure 5.5 are from Pre-EH and NNP trained
and tested on the same 3000 and 4000 samples, respectively. t-SNE was fitted
on the sum of the two, although only the test set is visualised.

When projected with t-SNE, as can be seen in Figure 5.5, CIFAR-10, has
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little to no cluster separation. The visual quality of the learned projections
(Pre-EH and NNP) can therefore only be judged on the outline of the projec-
tion and the level of diffusion surrounding it.

NNP’s projection notably does not follow the same shape as those generated
with t-SNE. It appears stretched vertically, to the point that points fall outside
of the [0, 1] y-axis range. It is also visibly far more diffuse.

Pre-EH recreates the original shape far better. Interestingly, its edges are
also far less diffuse compared to t-SNE.

t-SNE EH + Preprocessing

cifar

Figure 5.5: Pre-EH, NNP, and t-SNE (Ground Truth) on CIFAR-10.

5.1.6 CNAE-9

All four PAT models are consistently worse than NNP on all metrics except
Mp. Using the Pre-EH variant at the maximum number of training samples
(540) allows PAT to marginally outperform NNP on My, and marginally
underperform on other metrics.

Compared to the ground truth t-SNE, both models underperform similarly.
Only considerably outperforming t-SNE in Mpc.
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5.1 Projection Quality

Table 5.6: Metrics on CNAE-9 at the smallest, median, and largest training-
set sizes. t-SNE is trained on all samples (train + test), metrics are calculated
exclusively on the test set. Values in bold indicate the best score among all
evaluated models, while underscored and bold values indicate that the
ground truth (t-SNE) achieves a better score than every tested model.

Metric ‘ t-SNE ~ NNP EH HCE LB MB Pre-EH
M, @126 0.6913 0.6126 0.6234 0.6198 0.6271 0.6656
M,@252 0.6987 0.6402 0.6348 0.6378 0.6422 0.6722
M;@540 0.7076 0.6739 0.6657 0.6658 0.6660 0.7068
M, 0.7928

M. @126 0.8776 0.7534 0.7509 0.7492 0.7821 0.8561
M.Q252 0.8978 0.8082 0.7854 0.7952 0.8268 0.8623
M. @540 0.9006 0.8467 0.8349 0.8421 0.8533 0.8926
M, 0.9110

M,@126 0.2663 0.2850 0.2887 0.2807 0.2818 0.2936
M,@252 0.2484 0.2811 0.2867 0.2751 0.2852 0.2832
M,@540 0.2451 0.2775 0.2802 0.2793 0.2785 0.2590
M, 0.2158

Myp@126 0.5292 0.3685 0.3896 0.3733 0.4082 0.4892
My @252 0.5573 0.4440 0.4209 0.4275 0.4590 0.5429
My @540 0.5971 0.5292 0.5146 0.5013 0.5266 0.5942
My 0.6963

Mrn@126 0.1713 0.1081 0.1095 0.1049 0.1085 0.1433
M7pn@252 0.1902 0.1319 0.1238 0.1262 0.1291 0.1680
Mpn@540 0.2140 0.1636 0.1548 0.1612 0.1630 0.2189
Mrn 0.3889

Mpc@126 0.5759 0.4269 0.4759 0.4583 0.4843 0.5444
Mpc@252 0.5852 0.5157 0.4935 0.5074 0.5278 0.5769
Mpc@540 0.6167 0.5935 0.5861 0.5611 0.5870 0.6148
Mpc 0.5481

Mp@Q126 0.9824 0.9721 0.9751 0.9718 0.9757 0.9857
Mp@252 0.9812 0.9761 0.9741 0.9757 0.9785 0.9837
Mp@540 0.9808 0.9778 0.9775 0.9775 0.9786 0.9807
Mp 0.9778

M,@126 0.2412 0.0194 0.0172 0.0482 0.0459 0.1340
M, @252 0.2164 0.0432 0.0180 0.0396 0.0543 0.0982
M, @540 0.1858 0.0469 0.0326 0.0408 0.0473 0.1147
M, 0.2066

The PAT model chosen to visualise in Figure 5.6 is Pre-EH, as it is the
only model capable of challenging NNP in terms of metrics. Both models are
trained and tested on 540 and 540 samples, respectively. The ground truth
t-SNE was fitted on the sum of the two, although only the test set is visualised.

As indicated by the poor metrics, this is a difficult dataset to project. The
number of samples is low, and the data is highly sparse. t-SNE’s projection
shows a large amount of diffusion, and few visibly separated clusters.
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NNP is very diffuse, to the point that it places clusters outside of the [0,
1] range dictated for the x-axis. Pre-EH notably seems to better retain the
shapes of the cluster. Class 7 (lime)’s cluster is poorly identifiable in NNP,
whereas Pre-EH places them more tightly together even than t-SNE. The same
can be said of classes 5 (pink) and 1 (orange).

This is somewhat surprising, as NNP’s higher Mp¢ score would imply its
clusters are better visually separated. It is, however, explained by Pre-EH’s
higher Mpy score, as it seems to be better at placing neighbouring points
closer together.

t-SNE EH + Preprocessing NNP

cnae-9

Figure 5.6: Pre-EH, NNP, and t-SNE (Ground Truth) on CNAE-9.

5.2 Convergence Analysis on MNIST

In this section, we compare the convergence behaviour for NNP and EH on the
MNIST dataset. We evaluate both models at epochs 50 and 100, and NNP at a
further 200 epochs. We compare these models to themselves, each other, and
to t-SNE at different time steps. This section contains both a quantitative
analysis of the projection quality metrics from section 2.2 and a qualitative
analysis of the projections generated during these timesteps.
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5.2.1 Projection Quality Metrics Comparison
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Figure 5.7: The PAT model’s performance on eight projection quality met-
rics on MNIST, compared to NNP at three different time steps. This figure
shows that EH still outperforms on most metrics, even when NNP is given
more epochs. Some metrics are harmed by training too many epochs.

Figure 5.7 illustrates that Modrakowski et al.’s Early Stopping Criteria (NNP@Q~46)[19]
yields the best results on global projection quality metrics. Notably, there is

a small but significant advantage in M,, while differences in M, and Mp be-

tween Early Stopping and further training are negligible. Training further

until 100 epochs does provide some improvements in the local neighborhood-
preservation metrics, primarily in M7y (40.032).

Extending training further to ~200, that is, until no metrics improve any
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longer, results in effectively identical performance in global projection qual-
ity. However, there are still small improvements in neighborhood preservation
metrics. Namely small increases in Mpy (+0.016), M; (+0.0244), and Mg
(4+0.018), compared to NNP@100.

EH shows the strongest performance among the PAT models and compared
to these NNP baselines. NNP@~46 however still retains a marginal advantage
in M,. In the 40-60 epoch range, EH is already better or comparable to
NNP@~46 in all metrics, and by the 50-60 epoch range it surpasses or matches
NNP@100 in all metrics. At 100 epochs, it slightly outperforms NNP@200 on
all metrics except for M;.

When training EH, the performance dips at regular intervals because of
the learning rate’s cyclical nature due to the CosineAnnealing Learning Rate
scheduler[53]. Special attention must be paid to selecting the number of
epochs. This behaviour is clearly visible in Figure 5.7.

5.2.2 Visual Comparison

MNIST (6000 samples) — NNP vs EarlyHeavyEncoder vs t-SNE
NNP @50 epochs NNP @100 epochs NNP @200 epochs

8
9

Figure 5.8: Projections from NNP, EH over a range of epochs (50, 100, 200),
compared to t-SNE.

The next step is to see how visually different the projections are at these
time steps. Figure 5.8 compares NNP at 50, 100, and 200 epochs, to Early-
HeavyEncoder (EH) at 50 and 100 epochs, and the test subset of the ground
truth projected by t-SNE.

At 50 epochs, NNP and EH are both clearly more diffuse than the same
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models in later timesteps. NNP is particularly diffuse; there are few sharp
edges, which is particularly noticeable at the 3-5-8 cluster group (red, brown,
lime green respectively) and their neighbouring clusters.

EH@50 is also superior to NNP@50 in shape recreation. Cluster 6 (pink) is
a prime example where it far better recreates the shape, including the "hook’
shape at the bottom. It also has far less noise between clusters 6 and 9 (pink
and light blue, respectively), where NNP struggles in all time steps.

NNP’s projections improve after 100 epochs. Compared to NNP@50, the
projection is slightly less diffuse, and its ability to recreate the shapes of the
clusters improves. This is particularly evident in cluster 6 (pink), 5 (red), and
7 (grey). However, it still struggles with noise in intercluster spaces.

At 100 epochs EH appears to have higher-quality projections in most ways.
Compared to NNP@100 and itself at 50, it’s less diffuse, as can be seen in clus-
ters 7, 6, 2, and 5. It is particularly far less diffuse in spaces between clusters,
like that between clusters 6 and 9. It also better separates the 3-5-8 cluster
group, replicating the shapes of the overlapping clusters more accurately.

Training for a further 100 epochs, i.e., to 200 epochs, yields mixed pro-
jection quality results for NNP compared to itself at 100 epochs. It better
recreates some local features, like the ’hook’ form at the bottom of clusters 6
and 9 (pink and light blue respectively), the latter of which PAT models strug-
gle with. However, it also becomes more diffuse in other areas, like clusters 2
and 7 (green and grey, respectively).

Furthermore, it seems to struggle more in areas with overlapping clusters,
like the 3-5-8 cluster group. Despite the improved local structure for clusters
6 and 9, there is still much noise present between them. These are issues
EH@100 either does not have, or to a lesser degree.

Comparatively, EHQ100 still seems to be the best model. It recreates the
outlines of the clusters similarly or better, and is overall less diffuse than NNP
at any timestep.

Between EHQ50 and NNP@100, EH holds the advantage. Its projections
are less diffuse in some areas, and retain local structure better.

5.3 Scalability

The scalability experiments were executed on different hardware than the pro-
jection quality evaluations, namely a Macbook Pro M5 with 24 GB of Unified
Memory.
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Figure 5.9: Speed scaling over number of input dimensions. Testing all 441
MEnc variants and NNP.

Figure 5.9 shows how inference and training time scale with the input di-
mensionality for all five MEnc variants and the NNP baseline. Across models,
there is a clear fixed overhead associated with running a forward or back-
ward pass, after which the growth in runtime is approximately linear in the
dimensionality. As expected, HCE incurs the highest cost due to its uniformly
high-capacity layers, while MB and Pre-EH are consistently the fastest among
the PAT variants. NNP remains substantially faster than all PAT models:
for inference and unbatched training, it is typically more than two orders of
magnitude faster, although even the slowest PAT encoder still runs well below
one second in this regime.

The behaviour under batched training differs markedly. While both NNP
and PAT slow down when batching is enabled, their relative slowdowns are
not proportional. For moderate dimensionality (=~ 882 input dimensions), EH
remains within a factor of ten of NNP, and both models complete a training
epoch in under one second. At the highest dimensionality tested, NNP is barely
affected, whereas EH becomes nearly twice as slow as at lower dimensionalities.
This stands in contrast to earlier experiments performed on a different machine,
where batching improved speed by nearly an order of magnitude, highlighting
that batching performance is strongly hardware dependent.
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Figure 5.10: Speed scaling over number of samples. Testing all 4+1 MEnc
variants and NNP.

Figure 5.10 presents the complementary analysis: runtime as a function of
the number of samples. For PAT models, unbatched training time grows poly-
nomially with sample count, whereas batched training increases more smoothly
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and approximately linearly. In the tested range, unbatched training is consis-
tently faster than batched training for all variants. Among the PAT models,
MB is again the fastest, followed by LB, EH, and Pre-EH, with HCE being
the slowest in all scenarios. Inference shows the same ordering. NNP remains
faster than every PAT model across all sample sizes; for unbatched training,
it is nearly flat with respect to sample count, while PAT runtimes increase
steadily.

From a practical standpoint, these results suggest that HCE is not com-
petitive in settings where runtime is a constraint. The remaining four PAT
models perform similarly to one another up to roughly 2000 samples, and re-
main usable until approximately 4000 samples, beyond which NNP becomes
increasingly favourable. However, inference time remains negligible for all
models. Even at the largest tested sample counts, all projections complete in
well under one second.

A direct comparison of representative configurations is provided in Ta-
ble 5.7. When trained for 50 epochs on 6000 samples, EH reaches competitive
projection quality but still requires 76.7 s, compared to 20.5 s for NNP trained
for 100 epochs. Extending NNP to 200 epochs still results in a total time of
only 41.0 s, which remains substantially faster than any PAT variant. For con-
text, multicore t-SNE [51] on the full MNIST train—test set (13000 samples)
completes in approximately 40 s on the same MacBook hardware. This indi-
cates that, in terms of raw runtime, neither NNP nor PAT currently surpasses
t-SNE, potentially unless the target dataset scale grows far beyond those eval-
uated here.

Model Epochs Samples Time (s)

EH 20 6000 76.7
EH 100 4000 104.4
EH 100 6000 153.5
NNP 100 6000 20.5
NNP 200 6000 41.0

Table 5.7: Batched training time comparison for EH and NNP.
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5.4 Interpretability through Attention Visual-
isation

A central question in understanding the behaviour of PAT models is whether
individual attention heads specialise in distinguishing between clusters or whether
they operate in a more globally distributed manner. Initial expectations were
that heads might focus selectively on samples belonging to the same class or
cluster as the query point, while other heads point to other clusters. Modelling

a one-versus-rest type relation.

The global and local attention patterns show this is not the case. Instead,
they imply that attention is globally spread in early layers and becomes in-
creasingly selective only toward the end of the network.

5.4.1 Global Attention Patterns

Figure 5.11 shows the distribution of attention weights for all samples to all
samples on all heads across all layers for the MNIST dataset. For all layers, the
vast majority of samples receive close to zero attention. In fact, approximately
76%, 75%, and 99.8% of the samples receive less attention than the threshold,
i.e., the reciprocal of the number of samples, on layers one, two, and three,
respectively.

For the remaining points that do receive attention, the histograms imply
that heads of the first two layers tend to distribute their attention broadly.
However, in the second layer, the heads do have an order of magnitude higher
maximum attention, and therefore become more discriminative. In the third
layer, the heads become extremely discriminative, as their maximum attention
weight increases to the maximum value for attention weights, i.e., 1.

Furthermore, while the first two layers’ global attention weights look similar
to a geometric series, the last layer forms an uneven, parabola-like shape with a
dominant peak near zero, a secondary, smaller peak near one, and a pronounced
low point around 0.5.
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Figure 5.11: Attention weight histograms per head per layer for MNIST, log-
scaled. H1 is head 1, H2 is head?2, etc.

5.4.2 Attention Score Visualisation

Looking at individual samples and which samples they attend to gives insight
into how the attention is distributed in practice. Figure 5.12 shows how at-
tention is distributed over the dataset in the first two layers.

Each head attends to points in all clusters. Visually, however, it seems
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that it attends less to points it (potentially erroneously) places in between
clusters. As expected, the model becomes more discriminative in the second
layer. It attends to fewer points, and the points are overall larger, indicating
higher attention weights for those points. It is important to note that it does
not exclusively attend less to points in between clusters. Some points that are
placed inside the correct cluster are also not attended to.

At first glance, all the heads in the first two layers show similar attention
patterns. However, they rarely attend to the exact same points, and the density
of attention per cluster also differs. For example, compare the grey clusters
in heads three and four in Figure 5.12a. Additionally, only rarely do samples
attend to themselves.
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Attention Across Heads
Head 0 Head 1 Head 2

Head 3 Head 4 Head 5

(a) Layer one.

Attention Across Heads
Head 0 Head 1

(b) Layer two.

Figure 5.12: Attention weights for the first and second layer visualised for
the sample circled in black. Samples are sized according to total weight, and
samples with a weight bellow the threshold are greyed out. Sample number

4917 is placed correctly next to other members of its class 0.

The third layer, as predicted in subsection 5.4.1, is extremely discrimina-
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tive. As can be seen in Figure 5.13, one or two heads attend to a small number
of samples spread throughout the projection, while the remaining heads attend
(almost) entirely to a single sample. Which heads attend to the spread of points
and which attend to the single points varies according to the source sample.

Attention Across Heads

Head 0 Head 1 Head 2

(a) Head 2 has attention spread over multiple points, whereas 0 and 1 focus on just one.
Sample 4917 is placed with digits of its own class (digit 0).

Attention Across Heads

Head 0 Head 1 Head 2

o . o o

(b) Here head 0 has distributed attention, whereas 1 and 2 focus on individual points.
Sample 628 is not placed with other points of its own class (digit 0).

Figure 5.13: Attention weights from the third layer visualised for the sample
circled in black. Samples are sized according to total weight, and samples with
a weight bellow the threshold are greyed out. These figures show that different
heads have different functions depending on the sample.

As MNIST is an image dataset, we can visualise the samples most attended
to. See Figure 5.14. There is no clear pattern in how the last layer selects the
few samples it attends to.
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Figure 5.14: Attention weights and correlating images for top four most at-

tended to samples from sample 4917 in the third layer. Sample 4917 is placed
with digits of its own class (digit 0), but attends remarkably little to members
of its own class.

5.4.3 Other Datasets

The patterns described in the prior subsections also seem present to some
extent in the other datasets, particularly for the first two layers. Though to
a lesser extent in datasets with ground truth projections without clear cluster
separation. Examples of these patterns can be found in Appendix B. Analysing
these are left for future research.

5.4.4 Conclusion

The results from visualising the attention patterns, both globally and locally,
are inconclusive in terms of interpretability. Acknowledging that, we put for-
ward the following theory on how the PAT models function:

The first layer is used to learn and capture the global structure of the data.
It seemingly identifies and separates clusters. Next, it seems to use the second
layer to capture finer, local details by attending to small local features and
increasing the separation between clusters.

Finally, the last layer is most difficult to interpret. Perhaps it only uses one
or two heads to project and ignores the other one. Some members of the VIG
group theorised that the function of this layer is to identify the most dissimilar
samples, and to use that to identify where it should not place the point.
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This chapter synthesises the findings of this thesis, reflecting on the perfor-
mance, scalability, and interpretability of PAT models for dimensionality re-
duction. Drawing on the analysis of the sub-questions presented in section 6.1
and the evaluation of primary research questions in section 6.2, it discusses
how the proposed models compare to traditional methods and Neural Net-
work Projection in terms of projection quality, computational efficiency, and
practical usability.

The chapter further examines limitations outlined in section 6.3, includ-
ing hardware constraints, scalability challenges, and dataset-specific consider-
ations, and concludes with directions for further exploration in section 6.4.

The implementation of this research [16] is shared publicly on the GitHub
platform.

6.1 Sub-Questions

PQ1 was split into five sub-research questions.

SQ1: The first sub-question was answered by non-exhaustively searching
a large parameter space on MNIST, comparing projection via W© within the
multi-head attention mechanism to projection using a modified transformer
encoder. The results show that the modified transformer encoder, denoted as
MEnc, more consistently produces higher projection quality on average than
Attention-Only models.

SQ2: The second sub-question was answered using the same non-exhaustive
parameter search, by analysing the effect of model depth, which revealed that
three layers form the optimal configuration for MEnc-type models when bal-
ancing projection quality, scalability, and out-of-sample support.

Building on these findings, progressively smaller and more focused param-
eter spaces were explored and analysed to identify parameter combinations
that exhibited consistently strong performance. Based on this analysis, four
three-layer MEnc variants were constructed. In addition, an alternative ar-
chitectural variant, Pre-EH, was introduced to address datasets on which the

original variants struggled. These models are: EH and its preprocessing-based
variant Pre-EH, and HCE, LB, and MB.

SQ3: The five models mentioned above were subsequently evaluated by
learning projections that approximate t-SNE embeddings across six datasets.
These experiments allow SQ3 to be answered. A higher number of attention
heads leads to higher maximum projection quality across all evaluated metrics.
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Since all evaluation metrics were computed exclusively on the test set, these
conclusions also apply to out-of-sample support (C5). No consistent benefit
was observed from using more than six attention heads in any layer. The two
highest scoring models overall are HCE and EH, which are also the variants
with the highest number of attention heads. However, HCE exhibits stability
issues and may fail during training or inference, limiting its practical reliability.

Despite these strengths, EH and the other PAT variants fail outright on
CIFAR-10, which is likely attributable to its high input dimensionality, and
they underperform on CNAE-9, which is characterised by a high degree of
sparsity. In these cases, Pre-EH succeeds where the other variants do not.

On CIFAR-10, Pre-EH outperforms NNP both quantitatively and visually.
On CNAE-9, it outperforms NNP on Mpry and produces visually less dif-
fuse projections, despite the other metrics indicating the projection is overall
poorer. Notably, in these scenarios, Pre-EH is capable of generating projec-
tions that appear visually less diffuse than the original t-SNE embeddings.

Overall, PAT models marginally outperform NNP across the evaluated
datasets and metrics. Among the PAT variants, EH emerges as the strongest
and most consistent performer. This suggests that a funnel-shaped architec-
ture, in which the number of attention heads decrease with depth, is particu-
larly well suited for achieving stable and high-quality projections.

SQ4: Based on the same experiments used to address SQ1, SQ2, and
primarily SQ3, we obtained a clear indication of effective configurations for
the Transformer hyperparameters dy, d,, and the feed-forward dimension d;.
A high value of dy; = 2048 for each layer seems to be most effective, as does
keeping the dj consistent, which in the case of EH equals at the middling
value of 256. Consistent with the trend observed for the number of attention
heads per layer, these models also appear to benefit from a funnel-shaped
configuration, in which d, gradually decreases across successive layers.

SQ5: The last sub-question examined the scalability of PAT models in
comparison to NNP. Using randomly generated data, the effects of increasing
the number of samples and the number of input dimensions were analysed.
The results indicate that training PAT models is 2 orders of magnitude slower
than training NNP, to the extent that training can become impractical. In
contrast, inference remains well within usable bounds, typically completing
within one second.

Among the five evaluated PAT variants, HCE is the slowest, the others
are similar to each other. They also scale differently to input dimension size
and number of samples. However, EH is on average slightly slower than the
remaining models.
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6.2 Primary Research Questions

This section synthesises the findings of this thesis in relation to the primary re-
search questions. Drawing on the results established through the sub-research
questions and the subsequent analysis, it evaluates to what extent the proposed
methods meet the stated criteria for projection quality (C1), scalability (C5),
ease of use (C3), and interpretability. Each primary research question is ad-
dressed in turn, with the experimental outcomes and qualitative observations
consolidated into concise conclusions.

6.2.1 Projection Quality, Scalability, and Ease of Use

With respect to projection quality, the two strongest performing PAT variants
are EH and HCE. While HCE can achieve very high scores across projec-
tion quality metrics, it suffers from stability issues that limit its reliability in
practice. In contrast, EH exhibits consistent behaviour across most datasets.
Nevertheless, EH, as well as the other PAT variants, struggle on datasets that
are either extremely sparse or characterised by very high input dimensionality.

Scalability further differentiates these models. HCE is substantially slower
than the other PAT variants and is practically unusable when compared not
only to its architectural peers but also to NNP. This performance gap places
clear practical limits on its applicability, despite its strong projection quality
under favourable conditions.

These findings allow the first primary research question to be answered
affirmatively. It is possible to design an attention-based neural projection
method that marginally outperforms state-of-the-art deep-learning-based pro-
jection methods in matching the projection quality of traditional techniques.
Across a wide range of datasets, PAT models demonstrate a superior ability,
albeit by a small margin, to reconstruct fine-grained local structure when com-
pared to NNP. Specifically, PAT more accurately recovers subcluster structure
in HAR, preserves fine local detail in spambase, produces substantially less
diffuse projections for the already diffuse t-SNE embeddings of CNAE-9, more
faithfully reconstructs the global outline of CIFAR-10, and achieves improved
cluster separation on both MNIST and fMNIST.

While t-SNE still handily outperforms both models on M7y, surprisingly,
PAT often outperforms it on Mpc, which NNP rarely does.

An additional advantage of PAT models is their ability to outperform
NNP’s peak projection quality while requiring fewer training samples. This
makes them particularly attractive in scenarios where training data is limited.

While the relative performance difference between NNP and PAT depends
on the dataset, the overall trend indicates that when projection quality is
the primary objective, EH is the most suitable default choice. Its inference
speed is only marginally slower than that of NNP, while consistently achiev-
ing higher-resolution projections. For datasets that are sparse or have very
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high dimensionality, Pre-EH is the preferred alternative, as it offers improved
robustness and faster execution than EH under these conditions.

Importantly, these gains in projection quality are achieved without a sub-
stantial loss in ease of use. From a practical perspective, PAT models are, at
worst, only marginally less user-friendly than NNP. Both approaches rely on
standard neural network training pipelines and provide reasonable default pa-
rameter settings that perform well across diverse datasets. Although they em-
ploy different loss functions and learning rate schedulers, PAT can be treated
as a near drop-in replacement for NNP. While EH may not be universally
applicable, switching to Pre-EH requires only a minor configuration change.

The primary trade-off introduced by PAT lies in scalability. These mod-
els have a substantially larger number of trainable parameters, and attention
mechanisms inherently scale polynomially with input size. Although modern
hardware mitigates these costs to some extent, training times are still increased
by a factor of approximately two to eight, depending on the training regime.
Resulting training times that exceed one minute may be considered unaccept-
able in many practical settings, particularly when the observed improvements
in projection quality are modest for some datasets.

In conclusion, while the use of PAT models is not discouraged, their scal-
ability characteristics place them in a different practical category than NNP.
They are less suitable for applications that require near-instantaneous re-
sults. When projection quality is the dominant concern, a workflow based
on EH is recommended. For datasets that are highly sparse or extremely high-
dimensional, Pre-EH is a more appropriate choice. If scalability with respect
to the number of training samples is the primary requirement, NNP remains
the most viable option, although Pre-EH may serve as a competitive alter-
native. In cases of uncertainty, EH, Pre-EH, and NNP should be compared
using both visual inspection and projection quality metrics, after which the
best performing model can be selected.

6.2.2 Interpretability through Attention Visualisation

The results obtained from visualising attention patterns, both at a global and
a local level, are inconclusive with respect to interpretability. While clear
and consistent explanatory patterns could not be definitively established, the
observed behaviour nonetheless motivated a working theory regarding the in-
ternal functioning of PAT models.

Despite the ambiguity of the observed attention patterns, the second pri-
mary research question can be answered affirmatively. It is possible to design
a method for visualising attention patterns in projection use cases for anal-
ysis. Global attention behaviour can be identified by constructing per-head,
per-layer histograms aggregated over all samples. Local attention behaviour
can be examined by visualising the learned projections and encoding attention
strength through visual emphasis, while samples receiving attention weights
below a defined threshold, set to the reciprocal of the number of samples, are
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visually deemphasised.

Although the attention patterns produced by PAT models do not yield
conclusive interpretability insights, they may hold the key to understanding
how attention-based models could be made more performant than NNP in
terms of projection quality. The attention pattern visualisation has already
partially inspired one future research idea in subsection 6.4.1.

On the whole, the proposed visualisation approach is itself effective and
broadly applicable. The method is reusable, generalises across all models
within the PAT class, and provides an intuitive means of exploring both global
and local attention behaviour. As such, it constitutes a practical tool for anal-
ysis for continued research on projection with attention.

6.3 Discussion

This section reflects on the practical and methodological considerations of this
thesis. It examines the limitations encountered during model development and
evaluation, including hardware constraints, scalability challenges, and dataset-
specific issues. The discussion also contextualises the observed performance of
PAT models relative to NNP and t-SNE, providing insights into when and why
each approach may be preferred.

6.3.1 Hardware Limitations

A significant portion of this research was conducted on outdated and unreli-
able hardware, which had a substantial influence on both methodological and
practical decisions. These constraints directly informed several design choices,
most notably the selection of batch sizes, dataset sizes, and the overall con-
figuration of the training pipeline. In addition, hardware limitations shaped
the parameter selection strategy, as the available resources prevented a faster
and more exhaustive exploration of the parameter space. With access to more
capable hardware, it would have been feasible to search this space both more
deeply and more efficiently.

Hardware constraints also affected the evaluation procedure. Due to time
limitations, each model was evaluated using only two runs per dataset. As
a result, the statistical robustness of conclusions regarding model stability is
limited. While this evaluation provides indicative trends, it does not allow for
strong claims about variance or reliability across runs. To partially mitigate
this issue, stability problems that occurred outside the formal evaluation phase
were explicitly noted and incorporated into the qualitative assessment where
possible. Nonetheless, these limitations should be taken into account when
interpreting the reported results.
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6.3.2 Scalability Issues

An initial assumption underlying this work was that t-SNE is substantially
slower than NNP. Given that attention mechanisms scale polynomially, it was
never considered realistic for PAT models to match the scalability of NNP.
Consequently, the design objective was to achieve performance that is faster
than t-SNE, while allowing PAT to be slower than NNP within a limited and
acceptable margin.

During the scalability experiments, these assumptions were partially chal-
lenged. While prior work improving NNP reports inference speeds that reach
parity with t-SNE at approximately 5000 samples [13], the results obtained in
this thesis indicate that multi-core implementations of t-SNE can, in fact, be
faster than NNP. That is, at least up to the maximum dataset size evaluated,
which was 13000 samples. Although NNP retains the important advantage of
out-of-sample support, one of its commonly cited motivations, namely superior
speed, appears to be overstated or at least highly dependent on implementa-
tion and hardware configuration. It remains true, however, that NNP scales
approximately linearly with the number of samples, so it must eventually be
faster than the polynomial t-SNE.

Under the scalability criteria defined at the outset of this thesis, PAT mod-
els do not meet the stated requirements. Nevertheless, these findings suggest
that the scalability criteria themselves warrant reconsideration. As a result,
future research should re-evaluate the dataset size categories proposed by Es-
padoto et al. [11], and ensure that any updated categorisation is reflected
in the selection and construction of benchmark datasets used for evaluating
projection methods.

6.3.3 Basing Parameters Exclusively on MNIST

Although MEnc variants perform reasonably well across the evaluated datasets,
basing the estimation of globally optimal hyperparameters exclusively on MNIST
likely resulted in a degree of over-specialisation. This focus may have limited
the achievable performance on other datasets, effectively leaving projection
quality and stability improvements unexploited. In particular, hyperparame-
ters related to the learning rate and its scheduling are likely to admit more
robust, dataset-agnostic values than those identified through tuning on MNIST
alone.

As a consequence, the reported performance of the MEnc models on the re-
maining datasets may underestimate their true potential. With a more diverse
and representative hyperparameter optimisation strategy, it is plausible that
these models could achieve higher projection quality and improved stability
across a broader range of data characteristics.
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6.3.4 Limiting to t-SNE as Ground Truth

Restricting the evaluation to t-SNE projections as ground truth limits the as-
sessment of genericity for PAT models. This choice was primarily motivated by
practical considerations. Focusing on a single projection method significantly
reduced development time and was necessary given the available hardware and
time constraints. While t-SNE provides a widely used and well-understood ref-
erence, this restriction prevents conclusions from being drawn about how well
PAT generalises to approximating projections produced by other traditional
DR techniques, such as UMAP.

As a result, the findings of this thesis primarily characterise performance
relative to t-SNE, rather than projection methods in general. Broadening the
set of reference techniques would enable a more thorough evaluation of the
flexibility and robustness of PAT. This would clarify whether the observed
improvements extend beyond this specific projection technique.

6.3.5 Limitations of Attention Weights in Interpretabil-
ity and Explainability

Visualising attention weights provides insight into which input elements are be-
ing attended to, but it does not convey how these attention patterns influence
the resulting projections. In other words, attention-based visualisations omit
the contribution of the value matrix, leaving a methodological gap that affects
all attention visualisation algorithms. Consequently, such visualisations can
indicate where the model focuses its attention but cannot explain the precise
effect of this focus on the output.

Research exists that addresses this limitation by visualising alternative as-
pects of transformer models. For instance, Visbert [58] visualises the hidden
states from each encoder block to provide a more complete understanding of
model behaviour. While exploring these approaches is beyond the scope of this
thesis due to time constraints, they represent promising directions for future
work aimed at improving the interpretability and explainability of PAT and
related attention-based models.

6.4 Future Research

The following section outlines potential directions for further research on PAT
models. The ideas are presented roughly in order of increasing complexity,
beginning with relatively straightforward modifications such as adjusting batch
sizes, and progressing to more ambitious extensions such as unified encoder-
decoder frameworks and foundational multi-dataset models. Research on self-
and semi-supervised PAT models is not included here, as it is already an active
area of investigation.
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6.4.1 Batch Sizes and Scalability

Batching has a significant impact on the scalability of PAT models. In the
current implementation, the batch size for training is relatively small. Inves-
tigating the use of larger batch sizes could potentially reduce training time
and improve projection quality. Additionally, larger batches might influence
the learned attention patterns, which could reveal new insights into how the
model encodes local and global structures.

For inference, determining the ideal number of samples to project at once
is an open question. Preliminary experiments suggested that projecting all
samples simultaneously outperforms using the training batch size. However,
for very large datasets, alternative strategies could improve efficiency. For ex-
ample, projecting three batches of 2000 samples each is faster than projecting
a single batch of 9000 samples, and could help scale inference more linearly.
Future research should investigate the trade-offs between batch size, projec-
tion quality, and runtime performance to identify optimal strategies for both
training and inference.

6.4.2 Relative Positional Embeddings

Transformers rely on positional embeddings to encode the order of input el-
ements. Classic absolute positional embeddings, as used in Attention is All
You Need[4], are not suitable for projection tasks because they assume a one-
directional sequence. For our PAT models, relative positional embeddings
are required. Recent research has explored various relative positional embed-
ding methods, including Rotary Position Embedding (RoPE) [59], a popular
relative positional embedding method in the domain of natural language pro-
cessing. RoPE builds on earlier foundational works, including Shaw et al.’s
self-attention with relative position representations [60], Transformer-XL [61],
XLNet [62], the text-to-text transformer by Raffel et al. [63], the enhanced
relative position embeddings proposed by Huang et al. [64], and TUPE [65].

In computer vision, relative positional embeddings have been adapted to
image data, for example, in the Swin Transformer [66], iRPE methods [67], and
2D adaptations of RoPE [68], [69], including head-wise adaptive extensions for
fine-grained image generation [70].

For 3D and point cloud data, methods such as Point Transformer V3 [71],
Stratified Transformer [72], and IBT [73] leverage relative positional encod-
ing to capture both local and global spatial structure. Investigating these
techniques may allow us to reduce the size of PAT models while retaining
performance.
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6.4.3 Downsampling data and Minimising Attention Lay-
ers

Our current research shows that Pre-EH, which applies a linear layer to down-
sample high-dimensional data before entering the MEnc, can achieve projec-
tions that are similar to or even better than the other PAT models. It also has
better genericity (C4), as it works on sparse and high-dimensional data.

This observation suggests that incorporating additional linear layers at the
start of the network, or further downsampling the input data, could allow
us to reduce the number of attention layers required. Minimising attention
layers in this manner may substantially improve the runtime and scalability of
PAT models without compromising projection quality. Future research could
explore optimal downsampling strategies and quantify how few attention layers
are needed to maintain both stable and accurate projections across diverse
datasets.

6.4.4 Inverse Projection

A natural extension of PAT models is to explore inverse projection, where the
goal is to reconstruct high-dimensional data from low-dimensional embeddings.
Initial research could focus on implementing standard inverse projection using
PAT to evaluate feasibility and performance.

A more advanced approach would be to train a unified projection and in-
verse projection model in an autoencoder-type framework, not unlike Transformer-
DR[48]. We propose the following modification: a multi-objective loss func-
tion could be used to simultaneously mimic the traditional DR method at the
encoder output while reconstructing the original high-dimensional data at the
decoder output. Including the reconstruction objective may provide additional
supervision, which could improve robustness, stability, and generalisation of
the learned projections. Future research could investigate the benefits of this
dual-objective training for both projection quality and out-of-sample recon-
struction.

6.4.5 Decoders for Dimensionality Reduction

Transformer decoders typically attend to both the input sequence and the
previously decoded or ground truth output sequence. We propose designing
an encoder-decoder transformer model for projection, although a decoder-only
architecture, as used in the GPT family of models, could also be explored.

In this framework, the decoder would be trained using both the low-
dimensional embeddings and the corresponding high-dimensional ground truth
when available. Decoders attend to both the encoder output and previous out-
puts. Instead of reconstructing samples sequentially, the decoder can process
all samples simultaneously while employing a masking mechanism to handle
unknown high-dimensional points.
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Analogous to masked self-attention in language models [4], the model would
attend only to known high-dimensional data while ignoring missing values.
This approach enables the model to leverage available ground truth infor-
mation while still learning to infer missing projections in a structured and
consistent manner. Future research could explore the performance of encoder-
decoder and decoder-only approaches and their impact on projection quality.

6.4.6 Foundational Dimensionality Reduction Model

A particularly interesting direction for future research is to develop a founda-
tional Dimensionality Reduction model through multi-dataset learning. In this
approach, each dataset would be projected using learnable parameters specific
to that dataset, mapping to a shared intermediate dimensionality. These inter-
mediate embeddings would then be input to a shared attention-based model
that projects all datasets to 2D.

This setup would allow for dataset-specific adaptations while maintaining
a shared projection backbone. Such a framework could enable a unified, foun-
dational model for dimensionality reduction across multiple datasets. Previous
work by Espadato et al. [13] demonstrated that transfer learning, i.e., training
on one dataset and then continuing on another, was effective for NNP. Ex-
tending this concept to PAT models could provide a natural continuation and
improve generalisability across diverse datasets.
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Acronyms

M, Continuity. 11, 12, 36, 41-47, 49, 51, 53

M, Trustworthiness. 11, 12, 36, 41-49, 51, 53, 56

Mpc Distance Consistency. 1, 13, 36, 41-47, 49-54, 68

Myy Neighbourhood Hit. 12, 36, 41-51, 53, 56

Mp Procrustes Error. 13, 36, 41-45, 47, 49, 51-53, 55

Mypyn True Neighbors. 1, 12, 36, 41-56, 67, 68

M, Scale-Normalized Stress. 12, 36, 41-45, 47, 49, 51, 53, 55
M, Pearson Correlation. 14, 36, 41-47, 49-51, 53, 55, 56

BERT Bidirectional Encoder Representations from Transformers. 21

CIFAR-10 Canadian Institute For Advanced Research. 3-5, 14-16, 28, 29,
31, 32, 37, 40, 50-52, 67, 68, 99

CNAE-9 National Classification of Economic Activities (Classificacao Na-
cional de Atividades Economicas). 3, 4, 6, 14, 17, 28, 29, 31, 37, 40,
52-54, 67, 68, 101

DL Deep Learning. 8
DR Dimensionality Reduction. 1-5, 7-11, 17, 18, 20, 23, 25, 26, 72, 74, 75

EH EarlyHeavyEncoder. 4, 34-37, 40-50, 53-59, 66—69
fMINIST Fashion-MNIST. 3-5, 14, 15, 28, 29, 31, 32, 40, 43-45, 68, 93
GPT Generative Pre-trained Transformer. 21, 74

HAR Human Action Recognition. 3-5, 14, 16, 28, 29, 31, 40, 48-50, 68, 97
HCE HighCapEverywhereEncoder. 4, 34, 41, 42, 44, 46-50, 53, 58, 59, 66—68

kINNP K-Nearest Neighbours Neural Network Projection. 10, 25
LB LateBoostEncoder. 34, 41, 42, 44, 46, 47, 49, 53, 59, 66

MB ModeBalancedEncoder. 34, 41, 42, 44, 47, 49, 53, 58, 59, 66
MEnc Modified-Encoder. 5, 30, 32-34, 37, 50, 58, 66, 71, 74
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Acronyms

ML Machine Learning. 7, 8, 10

MNIST modified National Institute of Standards and Technology Database.
2, 4-6, 14-16, 25, 26, 28-32, 34, 35, 37, 38, 4043, 54, 55, 59-61, 64, 66,
68, 71

MSE Mean Squared Error. 32

NLP Natural Language Processing. 17, 18, 27

NNP Neural Network Projection. 1, 3-5, 7, 10, 11, 23, 26, 30, 31, 34-37,
40-59, 66-71, 75, 76

PAT Projection with ATtention. 1, 2, 4, 25-27, 30, 32-37, 40, 41, 43, 45, 46,
48, 50, 52, 53, 55-59, 65-75

PCA Principal Component Analysis. 7-9

PQ1 Can we design an attention-based neural architecture for projection that
matches the projection quality (C1) of traditional projection methods
better than state-of-the-art deep-learning-based methods for projections
without sacrificing their scalability (C2) and ease of use (C3)7. 5, 66

PQ2 Can we design a method for visualising attention patterns in projection
usecases for analysis?. 5

Pre-EH PreprocessedEHEncoder. 4, 34, 37, 46-54, 58, 59, 66, 67, 69, 74

RNN Recurrent Neural Network. 17, 20
RoPE Rotary Position Embedding. 73

SHaRP Shape-Regularized Multidimensional Projections. 11

SQ1 How does projecting via W within the multi-head attention mechanism
compare to using a modified transformer encoder in terms of projection

quality (C1)?. 5, 66, 67

SQ2 How does the number of layers in the Attention-Only or Modified-Encoder
projection model impact the overall performance (i.e., projection quality
(C1), out-of-sample support (C5), and scalability (C2))?. 5, 66, 67

SQ3 What is the effect of varying the number of attention heads on the pro-
jection quality (C1) and out-of-sample support (C5) of the model?. 5,
66, 67

SQ4 How do the attention-related hyperparameters dy, d,, and the feed-
forward dimension dg affect the projection quality (C1) of attention-
based projection methods?. 5, 67

SQ5 What is the impact of dataset size and dimensionality on the scalability
(C2) of Attention-based models?. 5, 67

SSNP Self-Supervised Network Projection. 10, 11, 23

7



Acronyms

t-SNE t-Distributed Stochastic Neighbour Embedding. 1, 3-5, 7-11, 18, 23,
25, 26, 29-31, 34, 36, 40-54, 56, 59, 6668, 7072

UMAP Uniform Manifold Approximation and Projection for Dimension Re-
duction. 1, 3, 7-11, 25, 72

VIG Visualisation and Graphics Group. 1, 65
ViT Vision Transformer. 23
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B.1 fMNIST
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Figure B.1: Attention weight histograms per head per layer for fMNIST, log-93
scaled. H1 is head 1, H2 is head?2, etc.



Global and Local Attention Patterns on Other Datasets

Attention Across Heads
Head 0 Head 1 Head 2
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(b) Layer two.
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(c) Layer three.

Figure B.2: Attention weights for the first, second, and third layer visualised
for the sample circled in black. Samples are sized according to total weight, 94
and samples with a weight bellow the threshold are greyed out.



B.2 Spambase
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Figure B.3: Attention weight histograms per head per layer for Spambase,
log-scaled. H1 is head 1, H2 is head2, etc.

95



Global and Local Attention Patterns on Other Datasets
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Figure B.4: Attention weights for the first, second, and third layer visualised

for the sample circled in black. Samples are sized according to total weight,

96

and samples with a weight bellow the threshold are greyed out.




B.3 HAR

B.3 HAR
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Figure B.5: Attention weight histograms per head per layer for HAR, log-
scaled. H1 is head 1, H2 is head?2, etc.
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Global and Local Attention Patterns on Other Datasets
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(a) Layer one.

Attention Across Heads

(b) Layer two.
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(c) Layer three.

Figure B.6: Attention weights for the first, second, and third layer visualised
for the sample circled in black. Samples are sized according to total weight, 98
and samples with a weight bellow the threshold are greyed out.



B.4 CIFAR-10

B.4 CIFAR-10
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Figure B.7: Attention weight histograms per head per layer for CIFAR-10,
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Figure B.8: Attention weights for the first, second, and third layer visualised
for the sample circled in black. Samples are sized according to total weight, 100
and samples with a weight bellow the threshold are greyed out.
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Figure B.9: Attention weight histograms per head per layer for CNAE-9, log-
scaled. H1 is head 1, H2 is head?2, etc.
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Figure B.10: Attention weights for the first, second, and third layer visu-
alised for the sample circled in black. Samples are sized according to total
weight, and samples with a weight bellow the threshold are greyed out.
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