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Abstract
Skeletons are well-known, compact 2D or 3D shape descriptors. Earlier, skeletons have been extended
to dense skeletons to encode grayscale images rather than binary images. To do this an image is
decomposed in threshold sets which are skeletonized individually. So far, storing images using this
approach has not been able to compete with common image compression algorithms such as JPEG.

In this work we attempt to improve the compression quality by exploiting the structure of dense
skeletons in order to reduce redundancy and by using sophisticated encoding schemes. We compare
these images with conventional image compression methods in terms of size and quality. Moreover,
we research the effects of combining well-established image compressors our dense skeleton results.

Previous works have also shown that interesting stylistic effects can occur when an image is pro-
cessed using dense skeletons. We attempt to introduce new image manipulation techniques by per-
forming skeleton bundling. With these operations it can become possible to alter image lighting and
perform further image simplification. We will research how thesemanipulation techniques can influence
image size, image quality and how these can create new, interesting effects.

We show that we can reliably generate images using our pipeline of high fidelity at a file size smaller
than JPEG using our dense skeleton image encoding and can generate images of very high fidelity at a
file size smaller than JPEG by using our method as a JPEG preprocessor. We demonstrate the effects
of inter-layer skeleton path bundling as a local contrast enhancement method which generates inter-
esting effect. We also demonstrate that our pipeline can generate extremely simplified representations
of images, and extend our method to color images.
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1
Introduction

Ever since digital images are created there has been a need to compress images in order to store and
transmit images in an efficient form. Although storage capacity and bandwidth capacity have increased
monumentally even over the past decade – let alone compared to 40 years ago – demand for superior
image compression algorithms have hardly ever been higher. With the popularization of social networks
and smartphones, more images are created, saved and shared than ever before. The current largest
social network, facebook, stated that its users share two billion photos every day [5]. Storing these
images uncompressed would render the service infeasible due to lack of storage stage, which is an
issue already. And while information channels have increased significantly over the decades, many of
the current mobile connections – and also some physical in some countries – are capped to a preset
volume. Efficient communication is then key in order to avoid exhausting the channel.

Since its introduction, JPEG [49] has been the most common format to store images. This is a low-
level effort to compress images by interpreting an image as a matrix where each element symbolizes
an intensity or a color of a pixel. This matrix is then sliced in 8 × 8 macroblocks which are coded using
a Discrete Cosine Transform – or dct – and subsequently efficiently encoded. This format can easily
yield a tenfold compression with little perceptible loss in image quality [20].

In the past twenty years since the introduction of JPEG there were few commercially successful
formats created that could compete with JPEG – with the notable exception of PNG – but there has
been recent developments. In 2010, Google created the WebP image format based on their WebM
video format which boasts an up to 35% smaller file size than a same-quality JPEG by usingmacroblock
prediction algorithms [3]. Another recently introduced format called FLIF claims to outperform PNG,
lossless WebP, and has files up to 50% smaller than same-quality JPEG [40]. However, this format
is virtually unsupported and still a work in progress. There are also efforts to amend JPEG by using
format-specific re-encoding of existing JPEGs without loss. One such effort is lepton, which is led by
Dropbox [21]. It claims an average 22% drop in file size.

All these methods share the approach of considering an image as a matrix. While this facilitates,
until now, unprecedented compression it comes with a few problems. The first one is a technical prob-
lem. One of the biggest downsides of “matrix-based” image compression is that graceful degradation
is difficult to achieve. One of the occurring problems of JPEG are various kinds of artifacts, most no-
tably so called “blocking” and “ringing” which is visible in Figure 1.1. This is what happens when the
quality is too low such that the macroblocks become painfully visible and is direct consequence of the
matrix-based approach to image processing.

The second problem is a more semantic problem. While it makes sense from a computing-science
perspective to approach an image as a matrix, it makes hardly any sense to do this from a human
perspective. Humans reason about images from a more morphological perspective: it has shapes,
edges, colors. Most of the time it even transcends this perspective and we reason about faces, plants,
buildings, and other high-level features present in an image.

Suppose we are able to discern important or salient ‘shapes’ or ‘features’ in an image. Then we
would be able to encode more important shapes in greater detail and less important shapes in lesser

1



2 1. Introduction

(a) The well-known, original “Lena” image (b) Figure 1.1a with extreme JPEG artifacts

Figure 1.1: Severe artifacts in Figure 1.1b due to heavy compression of Figure 1.1a using JPEG

detail. This is the basis for a lossy1 image compression technique. There are several methods available
that attempt to capture such features. Skeletons are among the most important classes for shape
processing, medial axis skeletons in particular. They attempt to be a compact representation of the
topology and geometry of a binary shape.

In a previous work [26] it was attempted to employ medial axis skeletons for grayscale image en-
coding and reconstruction by thresholding an image in upper level sets and transform each set using
the Medial Axis Transform and subsequent filtering to obtain salient skeletons. These are encoded
in a compact manner in order to save space. Moreover, they have also found that when simplifying
and encoding an image using skeletons, interesting effects can occur. For example, it was previously
noted that when images are simplified using skeletons they resemble a painting-like effect which can
be generated with far greater ease than especially crafted algorithms as, for example, described by
Papari et al. [29]. It turned out that these “artifacts” can be favorable and therefore we will generate
new types of image modifications which allow us tomanipulate image structures and will generate new,
interesting artistic effects.

While they demonstrated that multi-scale skeleton for image encoding, simplification, and compres-
sion works, the results are not on par with modern image formats. Same quality images are larger than
their JPEG counterpart but low-quality skeleton images are much more aesthetically pleasing than
low-quality JPEGs as they do not suffer from blocking or ringing artifacts.

In this work we attempt to answer two questions:

1. How we can use skeletons for efficient and effective image compression?

For such a method to succeed we have to describe methods which yield an effective image encoding
and compression which are quality and size-wise comparable or better than state-of-the-art image com-
pression methods. Moreover it must be possible to compute such representation with high efficiency
to enable a reasonable time frame as to compete with current standards. In chapter 2, we describe
skeletons, how one can compute them in a robust, efficient and fast way. It also describes how dense
skeleton image coding has been performed in the past. In chapter 4 we discuss in detail how general
compression techniques work as well as how a state-of-the-art method as JPEG compresses images.
It will also provide a theoretical foundation for assessing image quality and compression quality. In
chapter 5 we study in detail how to compress the structure of dense skeletons and how to store such
structure efficiently.

2. How can we use the structure of an image skeletonization to perform new types of image manip-
ulation?

1A lossy image encoding is an approximation of an original image, as opposed to a lossless image which is an exact encoding.
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Due to the new shape-oriented perspective that dense skeletons provide it also opens up new
possibilities for performing imagemanipulation. These techniques can introduce interesting new effects
and further aid tasks as image simplification or non-photorealistic rendering. One such technique is
inter-layer skeleton path bundling. This is an interesting but straightforward manipulation technique
which can introduce some rather interesting effects. This technique and its effects are further discussed
in subsection 5.4.1.

In the appendix there will be some documentation on how to use the supplementary tool to convert
tools back and forth between skeleton images and raster images.





2
Related Work: Skeletons

Before we describe how to store images using shapes it is necessary how we define shapes and how
they are represented using skeletons.

2.1. Skeletons
A skeleton is a transformation of a shape which provides a compact and simple descriptor of the original
shape. Skeletons find many applications in computer graphics, flow visualization, medical imaging,
metrology, and robotics[41][44]. There aremany different definitions of the skeleton which are all slightly
different but they are all share the properties such that they are

Invertible The original shape can be retrieved from the skeleton,

Compact The skeleton is a subset of the shape – ideally an infinitesimally small shape.

Expressive Skeletons are intuitive descriptors which can capture the ‘essence’ of a shape.

Another desirable, but not required, property of skeletons is that they are connected as this guarantees
homotopy. In our case, we will focus on theMedial Axis Skeleton, which is a type of connected skeleton.
This type of skeleton was originally introduced by Blum [7]. This skeleton is defined of the locus of
centers of maximally inscribed discs in a shape. There are different ways to extract this medial axis,
as detailed here[41]. Or more formally, suppose we have a shape 𝒪 which has a boundary 𝜕𝒪. The
distance transform 𝐷𝑇𝒪 is defined as

𝐷𝑇(𝑥 ∈ 𝒪) =min
፲∈Ꭷ𝒪

‖𝑥 − 𝑦‖

The skeleton of 𝒪 is subsequently defined as

𝑆 = {𝑥 ∈ 𝒪 ∣ ∃𝑦, 𝑧 ∈ 𝜕𝒪, 𝑦 ≠ 𝑧, 𝐷𝑇(𝑥) = ‖𝑥 − 𝑧‖ = ‖𝑥 − 𝑧‖}
In the continuous case the points of the skeleton are infinitesimally small, as they are single points. In
practice, however, this is impossible due to the discrete nature of computers so we have to settle for
1 pixel thick skeletons. The contact points 𝑦 and 𝑧 are the points of the circle at 𝑥 where it touches
the boundary. These points are given by the feature transform 𝐹𝑇 of the shape, i.e. a map which
associates each point in the shape with its closest point on the boundary. More formally,

𝐹𝑇(𝑥 ∈ 𝒪) = argmin
፲∈Ꭷ𝒪

‖𝑥 − 𝑦‖

The set 𝑆 alone, however, cannot reconstruct 𝒪 as the radii of the disks differ for each skeleton point
𝑠 ∈ 𝑆. A full description of 𝒪 is thus given by the Medial Axis Transform 𝑀𝐴𝑇 of 𝒪, i.e.

𝑀𝐴𝑇(𝒪) = {(𝑠, 𝐷𝑇(𝑠)) ∣ 𝑠 ∈ 𝑆}
Suppose 𝐷(𝑠, 𝑟) is a function that places a disc centered at 𝑠 with radius 𝑟. The MAT then recon-

structs 𝒪 as
𝒪 =⋃{𝐷(𝑠, 𝑟) ∣ (𝑠, 𝑟) ∈ 𝑀𝐴𝑇(𝒪)}

5



6 2. Related Work: Skeletons

2.2. Computation
The definition of the skeleton is not constructive; it does not give us an algorithm to compute the MAT.
Therefore there are various ways to compute the MAT based on various definitions of it. Some inter-
pretations and approaches work better on some platforms than others based on the properties on the
platform. There are two successful methods for computing the MAT based on the DT. There is one that
works on regular CPUs and one that works on massively parallel architectures such as GPUs.

2.2.1. CPU-method
The CPU based method can be intuitively explained but is a mathematically hard problem and difficult
to implement efficiently. Suppose we have some shape 𝒪 which we consider as a patch of grass and its
boundary 𝜕𝒪. Suppose we set the boundary on fire. The fire will burn isotropically from the boundary
towards the interior of 𝒪 with uniform speed. At those locations where these fire fronts meet will be the
skeleton of 𝒪.

It turns out that this is can be interpreted as solving the Eikonal Equation |∇𝑇| = 1 with 𝑇 = 0 on 𝜕𝒪.
The Fast Marching Method (FMM) is an algorithm to solve this problem in 𝒪(𝑛 log𝑛) [34]. This finds
the DT of 𝒪 efficiently, by propagating a narrow band from the boundary inwards. Skeleton points as
these are along singularities in the solved field. However, finding these singularities is no trivial task. It
is numerically unstable to find these directly and can lead to false or missed skeleton points, which is
undesirable.

The FMMwas extended to the Augmented Fast MarchingMethod (AFMM) to overcome this problem
[44]. Prior to solving the Eikonal equation, the boundary is numbered. A random point on the boundary
is given the number zero, and is then increased monotonically until all points are numbered. This extra
field 𝑈 is propagated along the narrow band. Afterwards, for each point in 𝒪 it is known which is the
closest boundary point. Skeleton points are then the points whose difference with 𝑢 values is larger
than 2 as it is impossible for these points to originate from neighboring boundary points and thus have
to distinct points FT points. This is illustrated in Figure 2.1. Skeleton points – with a bold border – are
marked as such because their 𝑢 values differ by more than 2.

Figure 2.1: Visualisation of the AFMM algorithm. The boundary is monotonically initialized and propagated along the wavefront.
Image from [44].

This method runs in 𝒪(𝑁 log𝐵) where 𝑁 is the number of pixels of the shape’s foreground and 𝐵 is the
boundary length of the foreground shape. In practice this is roughly 𝒪(𝑁 log√𝑁).

2.2.2. GPU-method
The GPU method is akin to the CPU AFMM method but modified to take advantage of the massively
parallel architecture that GPGPU enables to do. It is based on the Parallel Banding Algorithm by Cao
et al. [8]. This algorithm can compute the exact DT by a “sweep-and-merge” algorithm By dividing an
image in bands, computing voronoi diagrams and merging these results intelligently the EDT can be
obtained with very high performance as each band can be processed concurrently. Telea modified this
algorithm to obtain the one-point FT from which a 1-pixel thick skeleton and the DT can be derived [42].
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Due to its parallel nature, and because the time complexity is reduced to 𝒪(𝑁), it is significantly
faster than the CPU methods. It has been found that this method is in practice 20…80 times faster
than the CPU method – or a few milliseconds for a 1024ኼ image – thus allowing real-time manipulation
of parameters.

2.3. Importance
While skeletons are very powerful descriptors, they have the downside that they are very sensitive
to boundary noise. This is illustrated in Figure 2.2. The skeleton in Figure 2.2a is “simple”. It has

(a) Skeletonization of a shape without boundary
noise. The skeleton is “simple”.

(b) Skeletonization of the same shape as in Fig-
ure 2.2a but with perturbations of the boundary.
This generates a “complex” skeleton.

Figure 2.2: The influence of boundary noise on the complexity of the skeleton. Images from [41].

few branches and the number of skeleton pixels w.r.t. the area of the shape is low. The skeleton
in Figure 2.2b on the other hand is not simple while the boundary is perceptually similar to that in
Figure 2.2a. It contains many branches to encode the boundary noise, which is not desirable. It is
therefore necessary to simplify either the shape such that these branches are not generated, or to
simplify the skeleton and prune these branches.

Telea has presented a method to simplify skeleton paths based on simple metrics [43]. The impor-
tance measure 𝜌𝑥 measures the importance of a skeleton point. This is defined by the length of the
collapsed boundary between the two feature transform points on the boundary. Small perturbations on
the boundary have a very small collapsed boundary length and should be eliminated. Thresholding the
importance thus ought to remove the small noise. However, this also rounds off important corners of
shapes, which is undesirable.

Therefore the salience metric is defined. The salience is based on two properties:

1. Salience is proportional with size. Longer features are more salient than others

2. Salience is inversely proportional with thickness. Features on thick objects are less salient than
features on thin objects.

The salience is defined as 𝜎(𝑥) = (፱)
ፃፓ(፱) . Thresholding this metric will remove small perturbations on

the boundary while removing boundary noise.
In short, this means that we can compute the skeleton, with DT and FT of every shape

Very quickly A skeleton is computed in the order milliseconds.

Robustly It always generate 1-pixel thick skeletons for every 2D shape.

Regularized Noise is eliminated robustly and intuitively, while maintaining important shapes.





3
Related Work: Skeleton Image Coding

Skeleton Image Coding was introduced in the thesis by Meiburg [26]. In this work, he proposed the
idea of encoding shapes based on skeletons. He encoded images by generating an upper-level set
segmentation of a gray scale image to obtain a set binary images representing the original image.

These sets are skeletonized to obtain a set of Medial Axis Transforms, which can be encoded
into a container file. Reconstruction of these sets happens by reconstructing each MAT from a low
thresholds to high thresholds on top of each other. The reconstructed pixels obtain the intensity of the
highest threshold set they appear in. In order to prevent boundary effects, Meiburg’s framework offer
interpolation options.

Meiburg’s framework provided a few parameters:

3.1. Layer removal
Meiburg realized that encoding all upper-level sets will not be fruitful as these contain too much and,
most important, redundant information. Therefore he posed that many layers can be removed without
altering the final image too much. In order to do this, a global threshold is set on the histogram. All
intensities that have a pixel count of ≥ 𝜓 remain unaltered, and all intensities with a pixel count below
this parameter are not skeletonized, thus darkened to the nearest intensity below it.

3.2. Skeleton simplification
Meiburg’s computes salient skeletons as explained in chapter 2 using the CPU AFMMmethod. Meiburg
recognized that this can generate disconnected skeletons for each shape and retaining each skeleton
branch is expensive. Therefore only the largest skeleton is retained. Also, he removes skeleton paths
that are either too short – as these are too expensive to maintain or do not encode a large enough area.
If the area reconstructed by the skeleton path is small, it will be hardly visible and thus space can be
retained by removing that path.

3.3. Skeleton path encoding
Meiburg provides a sparse encoding of skeleton paths using trees. From each upper-level set only MAT
is retained rather than the full layer of skeleton pixel and non-skeleton pixels. This is a space-saving
measure as it stores less redundant information.

3.4. Reconstruction
To overcome boundary effects, interpolation between reconstructed layers is necessary. Meiburg
achieves this by modifying the alpha values near the boundary and has different schemes for this.
If only the alpha within the shape is modified, this alters the size of a shape. Therefore there is another
reconstruction that makes the border have size 𝑏 where interpolation from 100% to 50% alpha happens
within the border from the original border to 

ኼ pixels within the shape, and the interpolation from 50%

9



10 3. Related Work: Skeleton Image Coding

to 0% happens from the border to 
ኼ pixels outside the shape. Therefore, sizes of shapes remain equal

and a smooth transition between boundaries happens.

3.5. Results
The results of Meiburg’s framework were promising but unfortunately not up to par compared to JPEG.
The quality was too low, the files too large and computation time was too high. An example is in
Figure 3.1. As one can see the quality is acceptable, although there some significant errors, but the
file size is thrice that of a better JPEG result, and was computed in 50 seconds or more, rather than
< 1 second to compute a better JPEG image.

(a) A result of Meiburg’s pipeline using the “Lena”
image. The file size is 172kB.

(b) A result of Meiburg’s pipeline using the “Mandril”
image. The file size is 196kB.

Figure 3.1: Some results of Meiburg’s pipeline.

However, their pipeline and method shows great promise and improvement opportunities. So rather
than creating a new pipeline, we will study their methods and parameters and introduce new steps
where necessary.





4
Information Theory & Compression

When discussing compression, it is important to note that there are finite limits to what is possible for
a general compression algorithm. It is a sensitive set of scales with quality of the signal on one end
and size of the signal on the other; as the size of a signal decreases, the other side can only rise so far
before the quality of the signal starts to drop. To explore where these tipping points are, it is necessary
to discuss what compression entails in general before we can apply it to dense skeletons.

4.1. What is information?
It is important that before we try to apply compression what it means to compress something. The
obvious interpretation is that we take an object which occupies 𝑛ኻ bytes and we try to store it as 𝑛ኼ
bytes where hopefully 𝑛ኼ < 𝑛ኻ. However, this is not the full extent of what compression encompasses.
Here we try to fully extend the meaning of compression so we can achieve an optimal result when we
try to compress dense skeletons – aside from learning what optimal means in terms of compression.

The basis from compression comes from the central paper in signal processing and mathematical
communication ”A Mathematical Theory of Communication” by Claude E. Shannon [37]. In this paper,
he provides a mathematical description for communication which he aptly describes as:

The fundamental problem of communication is that of reproducing at one point, either ex-
actly or approximately, a message selected at another point

Claude E. Shannon

This quote already introduces a subtlety to our previous interpretation of compression: It is not about
taking a set of values and store in as few bytes as possible, but about finding a signal which enables
the receiver to reconstruct the original message with as few information as possible. However, this only
seems to introduce more questions: What signal will enable this reconstruction of a message? How
do you communicate information? How do we measure information?

We can approach this problem by introducing a statistical model. Suppose there is some alpha-
bet 𝒜 = {𝛼ኻ, 𝛼ኼ… , 𝛼፧} which describes which symbols can be encountered in a message along with
probabilities 𝒫 = {𝑝ኻ, 𝑝ኼ, … , 𝑝፧} providing the occurrence probabilities of the corresponding of symbols
(∑፩∈𝒫 𝑝 = 1). Now how can we extract information out of this model? One way to define this information
is by predictability. If an information source is very predictable, we hardly ever learn new information.
One such predictable system is a coin with two heads. Since we know that the result will always be
same, obtaining that result does not give us any new information thus the expected value of information
of that message is 0. We can say that these events have 0 bits of information. An unpredictable event,
however, carries the most information. In the case of a fair coin flip – which has both heads and tails –
we will never give a prediction of what the next result is going to be. Then, we will be correct 50% of
the time, on average. Since this event carries most information, it contains maximum entropy, or one
bit of information.

Moreover, information is additive. The information that events𝑚𝑛 are happening, ought to be same

12
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information content that event𝑚 is happening and that event 𝑛 is happening, i.e. 𝐼(𝑚𝑛) = 𝐼(𝑚)+𝐼(𝑛)1.
To recap, we now have:

1. 𝐼(𝑝) ≥ 0. Each event carries at worst no information

2. 𝐼(1) = 0. Events that always or never occur carry no information

3. 𝐼(𝑚𝑛) = 𝐼(𝑚) + 𝐼(𝑛). Information is additive.

Shannon has proven in his paper that the only logical definition for 𝐼(𝑝) is 𝐼(𝑝) = − logኼ(𝑝). Now 𝑁
events happen according to probability density function 𝒫. Then the total information – on average –
received ℐ = −∑። 𝑁𝑝። logኼ(𝑝።). Therefore, the average information each event yields – also called the
entropy – is

ℋ(𝒫) = −∑
፩∈𝒫

𝑝 logኼ(𝑝)

.
So now we have a measurement of information given a probability density function. We can now

determine for every sent signal how much information is transmitted and how much is redundant –
i.e. information sent with ℋ(𝒫) = 0. So how can a signal now be compressed from an information
theoretical perspective? One can either use the knowledge of the distribution of the signal or transform
the alphabet of the signal to find a better suited one such that the information content is smaller. For
example, suppose English text needs to be transmitted. A regular ASCII table comprises of 128 different
characters which all have the same probability of 𝐼(𝑥) = ኻ

ኻኼዂ = 0.0078125 bits. The entropy of the
dataset is thus ℋ(𝒜) = −∑ኻኼዂ።ኻ

ኻ
ኻኼዂ logኼ

ኻ
ኻኼዂ = 7. Therefore, there are 7 bits per character necessary

to encode the dataset. However, the English language uses only a subset of the glyphs in the ASCII
table – i.e. lower- and uppercase letters as well as some punctuation characters. This can significantly
reduce the range of symbols needed to transmit to the receiving party. Moreover, the characters of
the ASCII table are not uniformly used in the English language; the letter ’q’ is hardly used at all and
the letter ’e’ is the most common. Research[19] incorporating this information have tried to compress
classic literary works and found that these works have an entropy of about 1.58 bits per (printable)
symbol (tested on a corpus of 20.3 million characters).

4.2. Limits
The measure of entropy has given us a valuable estimate on how much space we need for a message.
For a message of length 𝑁 Shannon estimates we need 𝑁 ⋅ℋ(𝒜) bits. However, there are some limits
until how far we can compress something.

First off, there are some messages that cannot be compressed using some method. Suppose that
there is some file of 𝑥 bits and some function 𝑐(𝑥) that maps 𝑥 to 𝑏 bits. Surely, there are only 2ዄኻ−1
possible messages if 𝑏 < 𝑥. However, there are 2፱ possible messages and since 2ዄኻ − 1 < 2፱ there
is at least one message for which 𝑏 > 𝑥.

Now suppose there is an encoding 𝒞 which maps an ensemble {𝒜,𝒫} to {0, 1}ዄ. A message is
uniquely decodeable iff ∀𝑥, 𝑦 ∈ 𝒜ዄ, 𝑥 ≠ 𝑦 → 𝒞(𝑥) ≠ 𝒞(𝑦)[24]. If an encoding is uniquely decodeable
then ∀𝑥 ∈ 𝒞, |𝒞(𝑥)| ∈ [ℋ(𝑥),ℋ(𝑥)+1), i.e. the entropy of a message is a lower bound for the expected
message size. Therefore we shall call an encoding optimal if the expected code size is as small as
possible – i.e. the entropy – while it is still possible to decipher it.

However, all these statements only hold for lossless encoding. If we are willing to accept an error
one can below the Shannon entropy as the entropy of the original dataset decreases. If one is not
willing to sacrifice information in order to obtain a better compression one is bounded by the entropy of
the signal.

4.3. Techniques
The work of Shannon has given us a lower bound on the size needed to encode a message, but it has
not given us a way to construct such code. However, there have been several methods constructed
over the past decades that attempt to encode a signal in a (near-)optimal way.
1This assumes that፦ and ፧ are both i.i.d.
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Figure 4.1: The Huffman tree of the sentence “Mississippi river”

Table 4.1: Comparison of ASCII and Huffman codes for the sentence “Mississippi river”

Symbol Huffman Code ASCII code
<sp> 0000 00100000

r 010 01110010
v 0010 01110110
e 0011 01100101
M 0001 01001101
p 011 01110000
s 10 01110011
i 11 01101001

These can crudely be defined by three classes: fixed-length code, variable length codes and uni-
versal codes. In a fixed-length code, each symbol is encoded with a fixed number of bits.

Fixed-length codes are mainly used when either the PDF is uniform, when very large blocks of data
are compressed or when there is a non-zero probability of failure in communication or encoding of the
symbols.

A variable-length code, however, assigns each symbol a variable number of bits. It is proven that
there exists strategies that can compress signals arbitrarily close the its entropy. A particular type of
variable-length encoding are prefix codes. This is an encoding which has the requirement that no code
word of a symbol is the prefix of another code word in the code book. Therefore, the code book {7, 42}
is a prefix code whereas {7, 42, 78} is not because the code 7 is a prefix to 78. These code books can
reach entropy-sized compression on a symbol basis.

The third class are universal codes. These are also prefix codes that can map integers to binary
codes Below are several of such methods.

4.3.1. Huffman Coding
Huffman coding was one of the first optimal prefix codes discovered by David A. Huffman[22]. It can
transform a signal using its histogram to a decodeable, compact representation using a surprisingly
simple and elegant algorithm in linear time. It is based on Shannon-Fano coding which Shannon pro-
posed himself in [37] which constructs a binary tree from the histogram in a “top-down” approach by
recursively splitting it in two subsets of (near-)equal weight. This method, however, does not always
generate optimal codes whereas Huffman Coding does. Rather than approaching the problem in a
top-down method, Huffman proposes a “bottom-up” method. It constructs a frequency-sorted binary
tree in the following way: Suppose we start with𝑁 leaf nodes which contain a symbol and its associated
frequency. Find the two nodes which have the lowest frequencies 𝑓ኻ and 𝑓ኼ and merge these into an in-
ternal node with associated frequency 𝑓ኻ+𝑓ኼ and has the previous two nodes as children. This process
is repeated until only one node remains. Codes for each symbol are then obtained by traversing this
tree, adding a ᖣ0ᖣ to the prefix for each left child and a ᖣ1ᖣ for each right child. In Figure 4.1 example for
the sentence “Mississippi river”. Counting carefully shows that encoding the original sentence using
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Huffman Coding takes 46 bits – or an average of about 2.70588 bits per symbol as opposed to 136
bits using ASCII at 8 bits per symbol. This is slightly above the entropy of the message, which is about
2.69866 bits per symbol. However, this does not encode the code book which is also necessary at the
receiving end to decode the message. This can be circumvented by fixing the dictionary – at the cost of
introducing redundancy – or also transmitting the dictionary – at the cost of sending more bytes. There
are several methods to overcome this, rather than naively transmitting the dictionary. One is to use
the Canonical Huffman Coding variant, which can encode the dictionary in 𝐵2ፁ bits with 𝐵 the number
of bits of a symbol. This is already much better than the naive dictionary transmission approach. An-
other method is to send the tree rather than the code words and let the client deduce the codes. If the
message is large enough, this is the preferred method as it has very little overhead compared to the
message length.

There are a few large downsides to this method. One is that it implies that the alphabet and its
distribution for a message is known before the encoding process. While this seems like a fairly innocu-
ous assumption, there are many situations where this is not the case. Suppose one wants to send
a message which is too large to fit in the sender’s memory. In that case one cannot fully determine
the frequencies of each symbol, and therefore not construct a Huffman tree. There is an amended
version of Huffman coding which does not require the frequency count to be available beforehand and
can determine it during encoding. This variant, called Adaptive Huffman coding, does not necessarily
generate an optimal encoding.

Another is that it is only optimal when considering symbol-by-symbol encoding, which results in an
optimal encoding if the symbols are i.i.d. In many situations this assumption fails to hold, thus resulting
in larger-than-optimal encoding. A method which can handle this situation better is Arithmetic Coding,
discussed in the next section.

Due to the properties of a binary tree, optimality can only be guaranteed if the probability of each
symbol follows the function 2ዅ፥ for some 𝑙. If this is the case, then the Huffman tree will approach a full
binary tree which has height logኼ𝑁 for 𝑁 leafs. Therefore, the maximum symbol length is ⌈logኼ𝑁+1⌉.
For any other tree, and therefore any other distribution, Huffman coding can result in longer code words.
This is especially a problem with short alphabets.

4.3.2. Arithmetic coding
Arithmetic Coding is a method that attempts to alleviate the downsides that can occur with Huffman
coding, but intends to be just as optimal in situations where Huffman Coding shines. However, due
to its late invention in 1987[53], complex implementation, and possible patent coverings, it has not
been as popular or fully replaced Huffman coding while superior. Arithmetic Coding tries to capture
an entire message in a fraction. This works in the following way: Suppose the half-open interval [0, 1)
and symbol distribution 𝒫 such that ∑𝒫 = 1 ∧ ∀𝑝 ∈ 𝒫, 𝑝 > 0. We can divide this interval according to
𝒫. Now when a symbol is encountered we can shorten our interval to the higher and lower bound that
define that symbol. This new range is again subdivided according to 𝒫, until all symbols are encoded.
What is left is a lower and higher bound. This entire region is capable of uniquely and fully encode the
original message.

For example, consider our previous message of “Mississippi river” as in Huffman Coding. This
method is superior to Huffman coding because it not only is symbol-optimal, but is also signal-optimal;
It will compress the whole signal better due to that certain symbols can be represented with non-integer
bits.

However, it shares parts of the same downsides as Huffman coding. It is also required to know the
probability of each symbol beforehand. While there is also an adaptive version – where each interval
starts out as the same length and is rescaled as symbols are presented – this will not always yield
an optimal encoding. Also, implementation-specific details need to be considered. Current computers
now often host 32-bit floating point numbers, which are used to define the interval [0, 1). Whenever an
interval becomes smaller than themachine precision, it can no longer be represented thus disappearing
and rendering an incorrect encoding. Without proper countermeasures, one can encode up to 15
symbols at most on current machines. If one wants to encode longer symbols the interval can be
re-normalized. Moreover, a very good model is now mandatory otherwise it will perform poorly.
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4.3.3. Finite-state Entropy
Entropy coding has been a notoriously slow field regarding new advancements, mostly because it is
very hard to create a new optimal entropy coder. This is why Huffman Coding was invented over
sixty years ago in the early fifties and Arithmetic Coding was the first real improvement on this, which
was invented somewhat 30 years later. However, there has been one recent development with the
discovery of finite-state entropy[12]. It attempts to achieve the same superiority that Arithmetic Coding
enjoys while having the performance of Huffman Coding. This has lead to the Zstandard algorithm
which was published by facebook in the summer of 2016.

4.3.4. Run-length coding
While previous methods were methods to encode a signal with as few entropy as possible it is also
possible to modify the signal while still meaning the same. For example, consider the signal
AAAAAAAAAAABBABAAAAAAAAAABBBBBBBBBBBBBC. There are a lot of repeated elements in this sig-
nal and therefore a lot of redundancy. This signal can be broken down in several “runs” of consecutive
identical characters as follows: AAAAAAAAAAA BB A B AAAAAAAAAA BBBBBBBBBBBBB C. Run-
length encoding defines a signal by a set of such runs and encoding these by first denoting the length
followed by the symbol of that run. For this signal, this would become 11A2B1A1B10A13B1C. This is
significantly shorter than the original signal, and becomes more effective as runs become longer. It is
one of the techniques used in JPEG to reduce signal size as it tries to introduce long runs of consecutive
zeros for its high frequencies. Especially used in conjunction with one of the previous two techniques
this is a profitable way to encode a signal.

4.3.5. Universal methods
Whereas Huffman- and Arithmetic coding requires you to know the exact distribution, there are also
methods which provide good results when only the approximate distribution is known. For example,
when one only knows the ranks of the symbols in order of occurrence, Universal codingmight provide an
outcome. Formally, they are a mapping of integers to prefix-free binary codes. Usually these methods
impose a distribution such as the distribution 2ዅ፧. Universal codes have the desirable property that if
one imposes a monotonic probability distribution 𝒫 on the set of integers, then for all code length 𝑐 it
holds that 𝜖𝐶(𝒫) ≥ 𝑐 for some value of 𝜖 ≥ 1 and some function 𝐶 that gives the optimal encoding
of a probability distribution. Or in other words, the length of each code word is bounded by length
of the corresponding optimal code word up to some constant. This constant can be made arbitrarily
close to 1 by encoding larger blocks of data. As a result, these encoding schemes are often used in
audio encoding methods (such as Apple Lossless, FLAC) and video encoding methods (such as H.264,
H.265, and MPEG-4 AVC) as well as some image formats as FELICS and JPEG-LS. There are several
of such methods such which we will describe shortly.

Unary coding
Unary coding is arguably the simplest method of Universal coding. It is akin to counting with ones
fingers: You write as many ones as fingers are up, and terminate it by a zero. Or more formally, to
encode an integer 𝑛 one writes 𝑛 bits of value one and one extra 0 to terminate the sequence. This
sequence is optimal for the discrete probability function 𝒫(𝑛) = 2ዅ፧. This encoding is used in UTF-8
coding of Unicode symbols and is often used neural network training.

Exp-Golomb coding
Exp-Golomb – or Exponential-Golomb coding – is another universal code which can encode any non-
negative integer. The algorithm to encode integers is the following:

• Represent 𝑛 + 1 in binary – this has length 𝑙(𝑛 + 1)

• Write 𝑙(𝑛 + 1) − 1 zeros as a prefix to the previous number.

This code is obviously a prefix code which makes it desirable. This code is also used in H.264 video
encoding to encode inter-frame motion vectors[31]. The fact that small values can be written compactly
makes it an attractive code. However, as a trade-off, one can shorten the codes for larger integers
at the cost of slightly larger small integers. This can be useful if one already knows the range of
output values and wishes to shorten the codes at the edge of range while maintaining shorter codes
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Table 4.2: Different encodings of natural numbers

Number Binary Unary code Exp-Golomb code
0 00000000 0 1
1 00000001 10 010
2 00000010 110 011
3 00000011 1110 00100
4 00000100 11110 00101
5 00000101 111110 00110
6 00000110 1111110 00111
7 00000111 11111110 0001000
8 00001000 111111110 0001001
9 00001001 1111111110 0001010

for smaller integers. This then becomes the order-𝑘 Exp-Golomb code as opposed to the order-0 code
as described above. The code is then calculated as follows:

• Encode ⌊ ፱ኼᑜ ⌋ using the order-0 Exp-Golomb method

• Append 𝑥 mod 2፤ to the previous number in binary

In Table 4.2 the non-negative numbers smaller than 10 are encoded in binary, unary and order-0 Exp-
Golomb. Note that none of the methods are naturally capable of encoding negative numbers. Luckily,
the set ℕ can be bijected onto ℕዄ by mapping each positive number 𝑛 to 2𝑛 + 1 and each negative
number to −2𝑛. This allows mapping the sequence (0, −1, 1, −2, 2, −3, 3, …) onto (1, 2, 3, 4, 5, …). How-
ever, this comes at the cost that each positive number now costs twice as many bits as before. And
although it is not required to know the distribution beforehand, best results are obtained if the symbol
sequence is drawn from a geometric distribution (i.e. Pr(k) = (1 − 𝑝)፤𝑝)).

4.3.6. Prediction
So far, earlier systems assumed that samples were i.i.d. drawn from some distribution. However, this is
very often not the case and this property can be exploited. Suppose we have some predictor available
at both ends of the communication channel that can based on the history of written symbols predict what
the next one is going to be. If this is a perfect predictor, i.e. one that makes no mistakes in guessing, we
do not have to transmit anything but the first symbol as there is after that no new information generated.
However, suppose that we have a very good predictor that can guess most of the time correctly. In
that case, we are able to significantly ease the encoding of the information. For example, rather than
encoding the new state one can encode the difference between the actual next state and the predicted
next state. If it is a good predictor, this difference will often be zero and when it is wrong the difference
shall be small. Bad predictors are either often wrong, or the difference is very large, or both.

A prediction scheme based in intra-frame macroblocks is successfully used by Google’s VP8 video
format and WebP image format[6].

It is essential that the predictor has an accurate model to ensure proper prediction. If there is no
accurate model there cannot be an accurate prediction. One the more recent methods of acquiring
a model is by the Prediction by Partial Matching – or PPM – algorithm. PPM tries to predict the next
symbol according to a 𝑁-th order statistical model. If it fails to give a good prediction, it reduces itself
to a 𝑁 − 1-th order statistical model all the way down to an order-0 model unless a good fit is found.
This iterative search for the best prediction is attempted at each symbol, which makes this algorithm
rather expensive. In practice, Markov models are used to predict the data. As soon as a prediction is
made, this result is entropy coded with, for example, arithmetic coding.

4.3.7. Compaction
Compaction is another efficient and simple compression algorithm based on byte-pair coding[16]. The
original algorithm intents to replace consecutive bytes with a new, unused byte. This yields a size
improvement if a repetition occurs often enough because it also needs to be encoded which byte rep-
resents which two original bytes. If byte pairs are considered one new byte can thus represent two
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other bytes for a total cost of three bytes. That means there is a profit if one byte pair occurs more
than twice. Consider the following signal: “ABABCABCABD”. If a sliding window of size 2 moves over
this signal the following consecutive byte pairs are found: ‘AB’, ‘BA’, ‘AB’, ‘BC’, ‘CA’, ‘AB’, ‘BC’, ‘CA’,
‘AB’, ‘BD’. We can see that the byte-pair ‘AB’ most often so we replace it a new byte E. This yields the
signal “EECECED”. We could say that we are now done but this algorithm can be applied again on this
signal. We can see that the pair ‘EC’ again occurs twice and can therefore replace it again with a new
byte ‘F’. This yields the new signal “EFFED”. This is the final signal and can be transmitted along with
the code book which stores pointers to the replacement table.

If one replaces the restriction of 2 consecutive bytes to a sliding window of 𝑛 bytes one obtains an
algorithm very similar to Lempel-Ziv compression[54]. History is tracked back to to see if elements are
repeating. If they are, a marker is inserted how many characters need to be read with an offset on how
many characters back in the stream that was. This is very useful if one does not know the alphabet
beforehand. If one does, one can use the Lempel-Ziv-Welch algorithm instead[52]. This starts out with
a basic dictionary and extends it with each run it finds which is not yet in the dictionary.

Now that we have a solid understanding of what compression means, can achieve, and have dis-
cussed several techniques of reaching the (near-)optimal case of compression, we can try to apply it
to dense skeletons. A takeaway from all compression methods is that we need to find and eliminate
redundancy. This has been the point for general compression methods for the past decades. We can
see that in all methods it is attempted to impose a statistical model on the data. If there is redundancy
it should follow from this model which ought to make it possible to remove it or encode it efficiently. We
are in the advantage here since we know beforehand what our messages will look like. As we can re-
call from chapter 2, skeleton paths are connected meaning that differences in locations can be regular.
This could indicate good compression prospects for techniques as run-length encoding or compaction.
These results could be further entropy coded to binary code words using a simple technique as Huffman
coding.

4.4. Assessing compression
After compression is done it is often useful to know how well a compression scheme performed com-
pared to the original signal or other compression schemes. One common metric is the compression
ratio which is defined as

DC = Uncompressed size
Compressed size

While this gives the direct output performance of a compression algorithm it may not be the most useful
because it does not take compression time into account. This might be important because for some
applications the compression time is critical for certain goals or a satisfactory user experience.

The Weissman score is a recently developed which takes both space saving and time into account.
While created as a bogus measure to give a realistic feeling to the comedy show Silicon Valley it turns
out that this can be a useful metric. It is defined as

𝑊 = 𝛼 𝑟𝑟ᖣ
log𝑇ᖣ
log𝑇

where 𝑟 is the compression ratio, 𝑇 is the compression ratio, the primed counterparts are the same
features of a competing algorithm and 𝛼 a scaling constant.

4.5. Image compression & Quality
Image compression is about as old as the creation of digital images itself. Earlier image compression
methods as PackBits, TIFF, and GIF were not very advanced image compression algorithms in terms
of compression quality, flexibility, or image quality. JPEG was an algorithm that was created later and
is still one of the most popular to this date. We will review it in detail so we can determine its strengths
and weaknesses.

4.5.1. JPEG
JPEG was created in 1992 and was one the first sophisticated image compression algorithms specif-
ically designed to compress natural images and take human perception into account. The standard
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Figure 4.2: The zig-zag encoding of JPEG. Notice the long runs of zeros.

published by the Joint Photographic Experts Group describes how to efficiently encode an image into
bytes and how to decode it back into an image. What it does not describe is an image file format, which
is described separately in the JFIF (JPEG File Interchange Format) standard.

JPEG compresses images based on two assumptions on human vision:

1. Humans are not very sensitive to changes in color

2. Humans are bad at distinguishing high frequency details

These two assumptions allow for for two techniques to come in play to allow image compression. One
is that since we cannot distinguish color differences very well we do not need to store color information
in the same fidelity as intensity information. JPEG exploits this by performing chroma sub-sampling;
color information is stored in half or a quarter of the original resolution. Changing merely the colorspace
rather than a combination of the intensity and colorspace as RGB exposes, the image is converted to
the YCbCr colorspace which has a intensity channel (Y) and two chroma channels – the difference in
red (Cr) and the difference in blue (Cb). The latter channels are thus sub-sampled and stored at lower
resolution.

Each channel is subdivided in 8×8 macroblocks. Each of these blocks is processed and stored
independently of the other blocks. Rather than storing the blocks directly they are processed using
the Discrete Cosine Transform (DCT). This decomposes the signal into a sum of cosines of different
amplitudes and frequencies. For each macroblock 𝑀 the DCT transformed block 𝑀ᖣ is defined as

𝑀(𝑢, 𝑣)ᖣ = 1
4𝛼(𝑢)𝛼(𝑣)



∑
፱ኺ



∑
፲ኺ
𝑀(𝑥, 𝑦) cos [(2𝑥 + 1)𝑢𝜋16 ] cos [(2𝑦 + 1)𝑣𝜋16 ]

with 𝑢 and 𝑣 the relative coordinates within the DCT macroblock, and 𝛼(𝑥) normalizing scale factors
such that 𝛼(𝑥) = ኻ

√ኼ
if 𝑥 = 0 and 1 for other values of 𝑥. Since we observed before that humans

cannot distinguish high-frequency intensity changes, the amplitudes of those frequencies are quantized
to zero. Other amplitudes are also rounded and quantized. After the DCT, the DC component and
amplitudes corresponding to lower frequencies will be concentrated in the top-left corner while high-
frequency amplitudes are towards the bottom-right corner. To encode the block it is traversed in a
“zig-zag” fashion to have most information in the beginning of the signal while having long runs of
zeros towards the end of the signal. This is illustrated in Figure 4.2. This is then encoded using a
custom run-length encoding scheme which is subsequently further compressed using an arithmetic
coder – the most common being Huffman coding.

Removal of high-frequency intensity components and an efficient encoding scheme of these inten-
sities are what makes JPEG very successful at image compression with a low psycho-visual error.
However, they are also the source of a very sudden degradation of quality when the compression fac-
tor is too high. Sensitive intensity changes are deleted resulting in an abruptly high psycho-visual error.
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These are points which dense skeleton image coding can attempt to beat while possibly providing more
graceful image quality degradation.

4.5.2. Image Quality
As mentioned before, there is a sensitive trade-off between file size and quality when compression is
concerned. Size, on the one hand, is easily quantifiable and compared across different signals. Quality,
however, is not as easily quantified or compared across signals, especially image quality. In simpler
signals – i.e. a sequence of letters – one can compute the reconstruction error if one knows the original
signal. This reconstruction error is a simple and effective measure for quality.

A naive extension might be to apply the same to images. That is, measure the sum of squared
differences for each pixel. This can be a measure for quality but it is, however, not a very good one. It
fails to take into account the human visual system. Consider Figure 4.3. Figures 4.3b, 4.3c, 4.3d, 4.3e
and 4.3f have about the same reconstruction error as measured by the MSE compared to Figure 4.3a.
It is, however, easily seen that the image quality of Figure 4.3b is higher than that of Figure 4.3f de-
spite their seemingly same perceptual image quality. Therefore, we need a more advanced system to
objectively judge the perceptive image quality which does take into account the human visual system.

It turns out that humans are excellent judges of images quality even when no reference image is
present[48]. When presented an image they can give an opinion score regarding the quality of the
image. The mean opinion score (MOS) of each image can then be considered a ground truth of image
quality. The downside of this approach is, however, that asking humans to judge thousands of images is
very time-consuming and taxing on the psychological well-being of the judges. Therefore, to adequately
judge the image quality compared to some ground truth image, it is required that this score correlates
with the MOS.

The state of the art method of assessing image quality is Multi-Scale Structural Similarity (MS-
SSIM) [50]. This is an extension of the original SSIM metric[51]. This was already an advanced top-
down interpretation of the human visual and compares two images based on degradation of structural
information of some image with respect to a ground truth. It gives a score to an image between 0
and 1 based on a luminance component, contrast component, and a structure component. These are,
respectively defined as

𝑙(𝑥, 𝑦) =
2𝜇፱𝜇፲ + 𝐶ኻ
𝜇ኼ፱ + 𝜇ኼ፲ + 𝐶ኻ

,

𝑐(𝑥, 𝑦) =
2𝜎፱𝜎፲ + 𝐶ኼ
𝜎ኼ፱ + 𝜎ኼ፲ + 𝐶ኻ

,

𝑠(𝑥, 𝑦) =
𝜎፱፲ + 𝐶ኽ
𝜎፱𝜎፲ + 𝐶ኽ

with 𝜇the means of the respective images, 𝜎the standard deviation, 𝜎፱፲ the correlation, 𝐶ኻ = (𝐾ኻ𝐿)ኼ,
𝐶ኼ = (𝐾ኼ𝐿)ኼ, and 𝐶ኽ = 𝐶ኼ/𝐿. In these equations 𝐿 is the dynamic range of the image and 𝐾ኻ and 𝐾ኼ
are small constants. These are approximated by the mean of the images, the standard deviation of the
images, and the correlation between the images, respectively. In total it is computed by

SSIM = [𝑙(𝑥, 𝑦)]ᎎ ⋅ [𝑐(𝑥, 𝑦)]ᎏ ⋅ [𝑠(𝑥, 𝑦)]᎐ =
(2𝜇፱𝜇፲ + 𝐶ኻ)(2𝜎፱፲ + 𝐶ኼ)

(𝜇ኼ፱ + 𝜇ኼ፲ + 𝐶ኻ)(𝜎ኼ፱ + 𝜎ኼ፲ + 𝐶ኼ)

when 𝛼 = 𝛽 = 𝛾 = 1. There are still some limitations to this system, however. As the human visual
system can be considered a non-linear, multi-scale system the current SSIM metric does not hold
well when images are compared at different resolutions or at angles. Moreover, as the human visual
system is highly non-linear, detection of features and important structures is also poorly approximated
by a single linear system. To do this correctly, a multi-scale approach is required.

As mentioned before, the MS-SSIM is a multi-scale extension of the SSIM introduced to alleviate
previously mentioned objections and to provide a metric with higher correlation with the human visual
system. In the case of the MS-SSIM, the image is 𝑀 times sub-sampled and down scaled and the

2Images courtesy of VideoClarity (http://videoclarity.com/videoqualityanalysiscasestudies/
wpadvancingtomulti-scalessim/)

http://videoclarity.com/videoqualityanalysiscasestudies/wpadvancingtomulti-scalessim/
http://videoclarity.com/videoqualityanalysiscasestudies/wpadvancingtomulti-scalessim/
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(a) Original image (b) Figure 4.3a with a contrast enhancement.
MSE = 74. MS-SSIM=0.9956

(c) Figure 4.3a with a Gaussian blur filter.
MSE = 75. MS-SSIM=0.6609

(d) Figure 4.3a with a Gaussian noise.
MSE = 74. MS-SSIM=0.9592

(e) Figure 4.3a with JPEG compression artifacts.
MSE = 78. MS-SSIM=0.6609

(f) Figure 4.3a with salt and pepper noise.
MSE = 75. MS-SSIM=0.4145

Figure 4.3: The downside of using errors as a measure for quality. All modified images have the same error but vary wildly in
image quality. This is because the human visual system is not taken into account with naive quality measures. 2
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contrast and structure component are computed 𝑀. The product of these components, in addition to
the luminance factor are the final quality score given to the image. So all in all it is computed as

MS-SSIM = [𝑙ፌ(𝑥, 𝑦)]ᎎᑄ ⋅
ፌ
Π
፣ኻ

[𝑐፣(𝑥, 𝑦)]
ᎏᑛ ⋅ [𝑠፣(𝑥, 𝑦)]

᎐ᑛ

where each 𝑗th component is sub-sampled and down scaled 𝑗 times. This provides a good correlation
with mean opinion scores on the LIVE image database[38], as visible in Figure 4.4.

Figure 4.4: Logistic fit of MS-SSIM scores with the MOS of all images in the LIVE image database.





5
Skeleton Compression

Now that we have a basis of what skeletons are, how to compute them – as described in chapter 2 – and
what compression entails – described in chapter 4 – we can discuss image coding and compression.
From a very high-level, we need a pipeline that accepts and input image, performs some skeletoniza-
tion steps, and returns a file which can be reconstructed into an image. There are, however, certain
important intermediate steps whose influence on the final result cannot be underestimated. Our full
pipeline is visible in Figure 5.1. It accepts a conventional raster image image which is encoded into
a SIR file (Skeleton Image Representation). This is produced by the method of Meiburg as described
in chapter 3. This SIR file can subsequently be reconstructed into a conventional raster format. Each
step in the pipeline can be influenced by some parameters and have some influence on the final result.
These will be discussed separately.

5.1. Pre-filtering
As Meiburg [26] noticed is that when an image is thresholded in an upper-level set, noisy edges are
introduced. These noisy edges create a lot of small objects surrounding larger objects. This means
that relatively a lot of skeleton points are “spent” on a small surface area, which is problematic for image
compression. Moreover, as these regions are small, they are relatively unimportant as they are hardly
visible.

It is therefore necessary to remove these small structures. This is performed by an area open-
ing filter which removes small “islands”. A connected component labeling of the image is made, such
that connected “islands” smaller than a certain size are inverted. This certain size can either be ex-
pressed as a fixed number of pixels or as a percentage of the image dimensions. A typical value for
this parameter is to invert islands smaller than 10 pixels or ≈1…5% of the image dimensions.

Prefiltering Layer Selection Skeletonization Bundling Overlap pruning

Path filtering Encoding SIR file Reconstruction

Figure 5.1: A high level overview of our encoding scheme and SIR file viewing. A conventional image is the input and a skele-
tonized representation is the output.

24
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(a) Upper level set of Lena at 155. Note the
noisy boundaries.

(b) Island filtering of Figure 5.2a using a size
of 5 pixels – or≈ኻ% of the image dimensions.
Notice that there is less boundary noise.

Figure 5.2: The effect of island filtering on an upper level set. Notice that black is foreground in this image.

5.2. Layer selection
One of the main observations of skeleton image compression is that many layers are not relevant
enough to encode. These layers, for example, contain only non-salient shapes, or other shapes which
are already encoded by other layers. Therefore we do not need to encode every layer that is in the
original image. Since we know that the digital shape of every layer is embedded in the upper-level sets
below it, we can remove it without too much loss in the resulting image. After all, if we remove a layer
then the pixel intensity is reduced to the layer below it. Therefore, we slightly darken the pixel which
can be called an acceptable loss.

It is now key to remove the correct layers because if we remove too many important layers, we
would end up with an image that is too distorted whereas if we select too many layers we end up with
an image containing a lot of redundant information which is too large. There are several approaches
to define importance, of which we give a subset.

Meiburg[26] selects relevant layers by histogram thresholding. Their justification is that layer im-
portance is directly measurable by the number of pixels that have exactly that intensity, which is what
the histogram represents. This histogram, ℍ, is subsequently Lጼ-normalized i.e.

ℍᖣ = ℍ
maxℍ

This means that the layer with most pixels is adding most to the image, so its value is 1. All other layers
have an importance 0 ≤ 𝑖 < 1. Therefore, this new histogramℍᖣ is easily and intuitively thresholded by
some value 𝑡 such that a layer set 𝕃 = {ℎ ∈ ℍᖣ, ℎ ≥ 𝑡} is obtained. While this is a reasonable measure
of importance and allows one to delete numerous layers it is not perfect. This method often rejects
small, but visually important features such as highlights. These are often small regions, thus have very
few pixels but are important visual cues thus resulting in a higher reconstruction error. Besides, to
obtain an aesthetically pleasing result one has in practice to set the threshold such that at least 100
layers are selected, resulting in a large file size.

Another method described by van der Zwan et al. [55] tries a different approach. Suppose an im-
age consists of 𝑛 distinct layers. To determine layer importance they repeatedly remove each layer
one at a time and determines the reconstruction error without that layer. This is then repeated 𝑛 times,
once for each layer. Those layers that when they are removed have the highest reconstruction error
are the most important ones. Thus one could select the ℓ layers that without those layers result in the
highest reconstruction error. While this seemingly gives a good reconstruction result there are a few
downsides to this approach. One is that reconstructing an image 𝑛 times is an expensive operation,
especially when 𝑛 is large. Another one is that layer selection now has become very opaque. While
one can say that he wants the ℓ most relevant layers, there is no intuition which layers these will be.
This is not necessarily a bad thing but it disables the user of having full control over layer selection. Fi-
nally, this is an inherently greedy approach which might have unexpected results. It might be an image
where deleting layers 𝑛 trough 𝑚 individually has a low impact on an image, but removing all layers 𝑛
through𝑚 has a very large impact. This situation is poorly detected by this method but a real possibility.

Contribution: We have found another method to select relevant layers. We select layers that
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are local maxima in the histogram. As these regions “stand out” with respect to similar image inten-
sities so these must be important. We consider the amount by which they stand out with respect to
surrounding layers a measure for importance; if it has much more pixels than surrounding layers it must
be important. The layers which are selected are the 𝑛 most important local maxima.

Using this technique, the number of selected layers can be reduced from 256 intensities to about
15 with acceptable results. However, finding these local maxima in the histogram is no trivial task.
The standard technique of finding the local maxima is by the first-order derivative but histograms are
rarely differentiable anywhere as they are almost never 𝐶ኺ-continuous. One could try to compute the
discrete derivative by central-order differencing but this process is very numerically unstable. This could
somewhat be averted by smoothing the histogram but this shifts the peaks and might therefore yield
unreliable results. Another method is to fit a very high order (i.e. 20) polynomial through the points of
the histogram. These polynomials are often badly conditioned, numerically unstable and yield improper
results.

Currently we select detect peaks by a look-ahead and look-back. If a layer has the highest histogram
value within a certain distance from it, we consider it a local maximum.

Traditionally layers are removed by mapping them towards the nearest layer below the layer that
is about to be removed. This can, however, introduce a very large reconstruction error when very few
layers are selected as the image is darkened a lot and a strong banding effect.. This is illustrated in
Figure 5.3.

It makes more sense to map the removed layers towards the closest selected layers, regardless
of direction. The result is that all pixels with a “peripheral” intensity are only changed slightly as their
closest selected layer is closer than when it is only darkened. Moreover, the number of pixels with a
changed intensity is relatively few as important layers are selected by maxima in the histogram, i.e. the
layers with most pixels. With Meiburg’s method, at least 75 layers are necessary to produce high-quality
results, whereas with this method good results are obtained with as few as 15 layers.

5.3. Skeletonization
At this stage we have selected the relevant upper level sets which have been filtered for optimal skele-
tonization. Now every element of this set can be skeletonized. This means that every upper level
set is modified to a skeleton map – an image in which pixels that represent skeleton point sites are
foreground and non-sites are background – and a distance transform map – an image in which each
foreground pixel in the upper-level set contains a floating-point value with the distance to the boundary,
and background pixels are zero.

Skeletonization can be influenced by a few parameters, the most important being the salience pa-
rameter. As one can recall from chapter 2, this parameter can simplify skeletons such that noise is
removed but important features remain. Skeleton simplification is a very important component as oth-
erwise skeleton points would remain that encode noise which would take up the majority of the space.
Other parameters are with respect to filtering “small” branches. This can either refer to to the length of
the branch – with the rationale that short branches have high cost of bytes per skeleton points and are
probably hardly visible – or the area – if a branch encodes a small area it will not have a high visual
impact and can therefore safely be removed.

After these removal processes we have a set of salient and visible skeleton points and the subse-
quent distance transform map. As we can recall from chapter 2, we know that the skeleton branches
are one-pixel thick, 8-connected “paths”. It makes sense to represent these paths in a tree because
this makes it possible to have a deterministic beginning and end for each path. Regular skeleton paths
do not always have such beginning or end because these paths can be circular. If we were to represent
them as a tree, however, one can pick any point on that path and promote it to root of the tree. From
there, a DFS search along the path while marking which nodes are visited creates a skeleton tree from
a path regardless of the topology, even one with cycles.

This process is repeated until all skeleton points in an upper level set are collected and stored in a
tree. Since an image is a collection of upper-level sets, we now have a structure for representing an
entire image.

In our pipeline we employ the GPU skeletonization method using CUDA – as described in chapter 2
– which computes the skeleton of a single layer within a few milliseconds and the skeleton of an entire
image within 1 second.
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(a) Original Lena image as visible in Fig-
ure 6.4.
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(b) Histogram of Figure 5.3a. Notice the local
maxima are the most relevant layers (marked
in green).

(c) Skeletonization of Figure 5.3a using the 17
most relevant layers.

(d) Skeletonization of Figure 5.3a with periph-
eral intensities projected onto the most rele-
vant layers

Figure 5.3: The effects of using skeleton image coding as a preprocessor for a matrix method. The images on the bottom are
very similar, but much smaller than the original image.

5.4. Signal modification
There are two ways to store a signal in a smaller manner. One can either remove redundant information
or one can represent non-redundant information smarter. Here, we attempt to do both.

5.4.1. Bundling
Suppose that there are several skeleton points sufficiently close together across different upper-level
sets. If one is willing to accept a small reduction in image quality or otherwise small change in the
image, one can much more efficiently encode an image by bundling several skeleton points together
in one skeleton point. This forces fewer unique points at the cost that the boundary of the shapes
move compared to the original image. Image results can be altered on how bundling is applied. This
is akin to graph bundling[13, 47], in which graphs that are often too complex, big or detailed to display
in a useful way from which one can derive sensible information are altered to emphasize important
information and simplified for usefulness, enhanced understanding, and aesthetics. We can apply this
same strategy to skeleton points between thresholds: skeleton points at some higher threshold that
are close to skeleton points at a lower threshold can be bundled into one skeleton point at a shared
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location.
The goal for doing this is twofold. On the one hand it can improve image compression, as fewer

distinct skeleton points ought to be encoded. The other, more interesting goal is that it opens new
ways for image manipulation. Traditional image manipulation techniques operate either on pixel level
(e.g. setting a pixel value, inserting a sprite), fixed local neighborhood (e.g. Gaussian blurring), or a
global level (e.g. contrast stretching). On the other hand there are classical morphological filters such
as the opening or closing of shapes. These filters are however somewhat limited as these feature fixed
structuring elements, which usually requires prior knowledge of your image. Skeleton-based bundling,
however, is an almost fully automatic new image filter which can introduce subtle but interesting effects.

To do this, one must find points that are sufficiently close by some measure and combine these
points into one new point shared by all relevant skeleton path. There are different measures that can be
taken into consideration when determining “closeness” when considering skeleton points. One obvious
measure is the position or distance. This is easily determined by some measure such as the Euclidean
distance. However, relying on the distance alone might give a skewed perception of similarity. If there
is a large discrepancy between the distance transform values for each skeleton point then these might
be too dissimilar to bundle. There are therefore three options when considering points:

• Leave the DT values out of consideration, only looking at position.

• Attenuate the distance by DT values according to an inverse proportional function

• Modify the DT values of each skeleton such that they become closer together when bundled,
sharing the “error” between layers rather than accumulating this on one layer.

There are also several strategies to be considered where to place the bundled points. One can either
place the points at the location of the “darker” skeleton point, moving highlights closer to the boundary
of the shape. The opposite would be to place the bundled points at the locations of the “lighter” points,
placing highlights more centered with respect to the shape. There is also a “middle ground” approach
by advecting skeleton points according the DT field. This is a meet-in-the-middle approach, placing the
bundled skeleton point on neither of the original points yet sharing the “error” introduced, thus staying
most true to the original image.

If the visual error is to be kept at a minimum, the bundling radius to to be kept rather small to prevent
large movements of the shapes which could distort an image and not focus the entire reconstruction er-
ror on one specific layer, but spreading these over all layers thus “middling-out” the total reconstruction
error. However, having a large reconstruction error can also be beneficial.

An important assumption in our image encoding scheme is that upper level sets are nested, i.e.
∀x ∈ 𝑇።ዄኻ → x ∈ 𝑇።. It is important to maintain this principle. This is easiest maintained when only
skeleton points at higher thresholds are moved towards skeleton points at lower thresholds. If we
apply this operation layer by layer it becomes a rather straightforward algorithm. Per skeleton point in
the higher layer, find the closest skeleton point in the lower layer and move it towards it.

Finding the closest skeleton point per skeleton point is no trivial task. A naive linear search over
the skeleton images makes this operation 𝒪(𝑛ኼ) in image size. An easier way to find these skeleton
points is by computing the feature transform of the skeleton at the lower layer. Recall that the FT is
a map to the closest point on the boundary from a foreground point. If we consider the skeleton as
the boundary and non-skeleton points as the foreground this will give for each non-skeleton point the
closest skeleton point. Ergo, the closest skeleton point in 𝑇። for some skeleton point x።ዄኻ in 𝑇።ዄኻ is given
by x። = FTፓᑚ(x።ዄኻ). We can find the bundled skeleton point xᖣ።ዄኻ by moving x።ዄኻ towards x።. We do
this by introducing an attraction parameter 𝛼 ∈ [0, 1]. This defines xᖣ።ዄኻ as a linear combination of x።ዄኻ
and x። by

xᖣ።ዄኻ = (1 − 𝛼)x።ዄኻ + 𝛼x። ,
i.e. as 𝛼 nears 1, it reduces to xᖣ።ዄኻ ≈ x።, the closest point in the skeleton in the lower threshold set.
Likewise, if 𝛼 nears 0 it will stay close to its original location, so xᖣ።ዄኻ ≈ x።ዄኻ. In order to limit the
reconstruction error and not move the boundaries of shapes too much, the total shift should be limited
by |xᖣ።ዄኻ − x።ዄኻ| ≤ 𝜖 where 𝜖 is some value representing the maximum number of pixels a point can
move.

An example of what might happen in Figure 5.4. As one can see in Figure 5.4a, there are two
shapes with their (supposed) skeletons; the skeleton of the darker shape in green and the skeleton of
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(a) Two shapes, with close skeleton paths. (b) A path bundling of Figure 5.4a from light to dark.

Figure 5.4: Bundling leading to interesting image effects.

the lighter shape in red. These paths can be bundled asmost points are sufficiently close together. Note
that this notion of closeness is relative. In Figure 5.4b the lighter shape has moved toward the center
of the darker shape. Note that the shape outlines remain the same although the skeletons moved.
A possible result of this filter is thus a local increase in contrast; the distance between boundaries
between thresholds is increased, which can be perceived as more dark pixels surrounding a brighter
area, which can increase the perception of contrast or highlight enhancement. Moreover, we see in
Figure 5.4b that the number of distinct skeleton point locations has reduced drastically as a result of
this operation. This can aid compression of skeleton points significantly – i.e. storing these two layers
requires about 10% less space – as skeleton points are expressed by distinct locations. The results of
this are presented in section 6.7.

5.4.2. Overlap pruning
Overlap pruning is an attempt to remove redundant skeleton points that do not contribute to the final
image because the disc corresponding to that skeleton point is – or at least partially – occluded by
discs at higher levels. Since the binary images during skeletonization consist of upper-level sets it
will regularly occur that a region does not change does not occur when transitioning from a threshold
level 𝑡ኻ to a higher threshold level 𝑡ኼ as this region has a higher intensity of 𝑡ኽ (where 𝑡ኻ < 𝑡ኼ < 𝑡ኽ).
Therefore, when the full skeletons of these layers are stored this results in encoding redundant skeleton
points. This redundancy is visualized in Figure 5.5. We see a shape in Figure 5.5a which consists of
two distinct grayscale intensities, which we shall refer to as 𝑡ኻ (black) and 𝑡ኼ (gray). Their respective
upper-level sets are visible in Figures 5.5b and 5.5c. If we were to skeletonize these shapes we can
see there is an overlap in discs between the skeletons of 𝑡ኻ and 𝑡ኼ. In Figure 5.5f we have marked
the redundant skeleton points of Figure 5.5d green as a result of the skeleton points in Figure 5.5e, as
their corresponding discs are are fully occluded by discs at the higher layer. Not encoding these green
points results in about 33% fewer skeleton points to be stored for the full image.

This is an effective way to reduce the number of skeleton points, or to “prune” the skeleton trees.
However, it is important to realize when it is possible to prune in a lossless manner. One of the observa-
tions is that the digital shape embedded in the upper-level set at threshold 𝑡ኼ is always fully embedded
in the upper-level set at 𝑡ኻ. This implies that ∀𝑝 ∈ Ω፭Ꮃ , 𝐷𝑇፭Ꮄ(𝑝) ≤ 𝐷𝑇፭Ꮃ(𝑝). That is, for all pixels in the
upper-level at the higher threshold is always smaller or equal to that at the lower threshold. The proof
for this statement is trivial. Clearly, the upper-level set Ω፭Ꮄ is a subset of Ω፭Ꮃ as only pixels are removed
when a grayscale image is thresholded at higher level. Therefore, the digital binary shapes in Ω፭Ꮄ are
smaller then, or equal to, those in Ω፭Ꮃ . Since the binary shapes are smaller, the distance transform is
also smaller except in the case when the digital shape stays the same – pixel for pixel, that is – then the
Distance Transform also stays the same. However, when they are equal then the shape at the lower
threshold will not contribute to the final image. Figure 5.6 tries to illustrate what it means if the digital
shape does not change. What we see is one {𝑥, 𝑦} point – which happens to be a skeleton point – with
all corresponding radii at different threshold levels. We can assume that 𝑡ኻ is the lowest intensity level
and 𝑡 is the highest intensity level. Clearly, at threshold 𝑡ኻ contributes to the final image as there are
some non-occluded pixels. Also at level 𝑡 all pixels contribute to the final image because there is no
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(a) Original image with two inten-
sities ፭Ꮃ (black) and ፭Ꮄ (gray).

(b) upper-level set of Figure 5.5a
at level ፭Ꮃ.

(c) upper-level set of Figure 5.5a
at level ፭Ꮄ.

(d) Skeletonization of the shape in
Figure 5.5b.

(e) Skeletonization of the shape in
Figure 5.5c.

(f) Redundant skeleton points in
Figure 5.5d (green) due to skele-
tonization of Figure 5.5e.

Figure 5.5: Example of overlap pruning. The original shape is visible in Figure 5.5a. When both upper-level sets are skeletonized
parts of the skeleton in Figure 5.5d are made redundant due to the skeleton points created in Figure 5.5e and can safely be
discarded.

layer above it. However, at thresholds 𝑡ኼ through 𝑡ኾ the radii – therefore DT values – are equal. This
means that only the radius at 𝑡ኾ needs to be stored as those at 𝑡ኼ and 𝑡ኽ are entirely occluded and
will be overwritten by that at 𝑡ኾ. This method ought to be lossless because no visible pixels at the end
result will be modified as the restoration of the pruned discs has no influence whatsoever on the final
image.

This can also easily be transformed in a lossy method for skeleton compression. Rather than delet-
ing the lower skeleton points whose radius is equal than at some higher level, one could also delete all
lower radius values where 𝐷ፋ − 𝐷ፇ ≤ 𝜖 for some integer 𝜖 and 𝐷ፋ is the lower skeleton point and 𝐷ፇ
is the higher skeleton point. This difference will always be ≥ 0 as 𝐷ፇ ≤ 𝐷ፋ.

This method can for most images greatly reduce the number of encoded skeleton points, as it
typically removes more than 50%, and up to 90%, of the total number of skeleton points in all layers.
The full results are discussed in section 6.3.

5.4.3. Delta representation
Our original tree per layer is a tree of location tuples {𝑥, 𝑦, 𝐷𝑇(𝑥, 𝑦)} where 𝑥 and 𝑦 represent some
location in the image relative to the origin and theDT value is the distance from that point to the boundary
of the shape. Assuming the image size is less than 2ኻዀ = 65536 pixels wide or high a naive approach
might be to store each point as two 16-bit values and a 32-bit floating point value – or 8 bytes per
skeleton point. This clearly is not going to provide a better compression scheme than traditional raster
image formats as this is very wasteful. If we were to use this encoding scheme the final file size would be
several orders of magnitude higher than the corresponding JPEG. One of the first observations that we
can use is that a skeleton path is 8-connected. This means that the difference of location between each
skeleton point is at most one pixel in either 𝑥 or 𝑦 direction, or both – i.e. Δ𝑥, Δ𝑦 ∈ {−1, 0, 1}. For the radii
this difference is somewhat subtler. However, Meiburg [26] has provided a topological proof that this
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{𝑥, 𝑦}

𝑡ኻ
𝑡ኼ
𝑡ኽ
𝑡ኾ
𝑡

Figure 5.6: Overlap pruning in action. Layers ፭Ꮄ and ፭Ꮅ are not contributing to the final image as they are entirely occluded by
፭Ꮆ.

difference can never be more than √2. Also, since we are implementing a lossy compression scheme,
we are not interested in sub-pixel accuracy with respect to recovering a digital shape. Therefore, with
rounding issues taken into account, the range for Δ𝑟 = {−2,−1, 0, 1, 2}. This means we can encode
each skeleton point in at most one byte per skeleton point with respect to some starting point. This
encoding scheme is thus very efficient as stores only skeleton points rather than a full skeleton image,
and it stores each skeleton point very compactly at 1 byte per skeleton point.

5.5. Skeleton data encoding
We have tried to apply several encoding methods to this delta-representation of each skeleton tree.
One of such methods is a direct encoding. If the skeleton tree is eight-connected, we have already
established that Δ𝑥, Δ𝑦 ∈ {−1, 0, 1} and Δ𝑟 ∈ {−2,−1, 0, 1, 2}. This means that we can represent each
point in 2 logኼ(3) + logኼ(5) ≈ 5.89 bits, optimally. In practice, however, we use a single byte which is
divided as 0xxyyrrr, meaning two bits each for Δ𝑥 and Δ𝑦 and three bits for Δ𝑟.

Another direct encoding approach also yields a slightly lower entropy. Consider all possible com-
binations between the sets that Δ𝑥, Δ𝑦, and Δ𝑟 could consist of. These are 45 distinct points, but one
can eliminate 5 combinations because these involve Δ𝑥 = Δ𝑦 = 0 which is obviously not possible. If
one were to topologically sort this set of points, the points could be encoded by the index in this set.
Therefore, entire trees can be encoded by a series of integers of the range 0, 1, … , 39. This has an
information content of logኼ(40) ≈ 5.32 bits.

There are also different strategies for applying Huffman coding or Arithmetic coding to this dataset.
One can either apply this directly to the latter index encoding or independently to each component of
the delta encoding. There are different aspects to be considered which one could be called “better”. If it
were to apply directly to the components of the delta encoding, it would be more flexible as it allows for
encoding a disconnected skeleton. However, directly encoding the indexed approach yields a slightly
lower entropy and therefore also a slightly smaller file size. Huffman coding was partly implemented
using BCL [17] and Arithmetic coding was implemented using FastAC [33].

There is one final option to encode skeleton points without using a tree structure. At the time of
encoding we have the following information available: the image size and the distinct skeleton points
at all threshold levels. We can use that information to encode all skeleton points at a line-by-line basis
through an image. We assign each skeleton point a vector the size of distinct gray levels (i.e. in an 8-bit
image each point is assigned a vector of 256 elements). If a gray level is not participating at that point
it is assigned the value zero, otherwise it is assigned the difference between that radius and that at the
previous participating gray level. Explicitly storing this vector for each point may prove to be arduous
and redundant so we can use a better encoding. Rather, we can store only each participating gray level.
This can be encoded as a tuple of intensity difference and absolute radius difference1 or as the number
of non-participating intensities – i.e. zero components of the vector – preceding this intensity and the
difference in radius. At the beginning of the stream we encode the full start coordinate, followed by
the vector encoded by one of the two options described as above, followed by an end-of-vector (EOV)
marker. All subsequent lines only need to encode the difference in 𝑥-value since we can deduce from
the image size when we “overflowed” to the next line. The results of various encoding schemes are
discussed in section 6.2.

1We do not have to worry about signedness as we know that ፫ᑚ ጻ ፫ᑚᎼᑟ for some non-zero ፧.
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5.5.1. Transformations
Several transformations of the data were also considered before an attempt was made to encode it.
Applying one or several transformations to a signal may be advantageous to the encoding because
it may allow an entropy reduction or it may enable better compression results when a compression
technique is applied. For example, as we have seen before, JPEG applies a DCT to pixel data in order
to create long runs of zeros to allow for an efficient run-length encoding compression.

We have considered applying different transformations, specifically the (Fast) Fourier Transform[14][10],
Discrete Cosine Transform[1], Walsh-Hadamard Transform[36] and the Move-To-Front transform[32].
We deemed the Fourier Transform unfit as efficiently encoding both real and complex components
turned out to be nigh impossible. As the other transforms have real and symmetric output, these are
more interesting.

There are three different ways to apply each transformation. One could apply the transformation to
each point individually, to each block of points or to every component of each block of points. However,
since we have a difference encoding, all values are already centered around 0 and are reasonably
small the transformation will be reasonably close to the original value. Subsequent quantization of
these values (by rounding directly or rounding after division with a quantization table, for example) will
therefore result in large absolute error. This will result in too large error in the decoded points and too
large errors in image reconstruction.

One transform that we have implemented is the Move-to-Front transform. Recall our earlier lexi-
cographically sorted list of all possible points. Normal encoding returns the index of where the point
occurs in the list. the Move-to-Front transform makes an extra step by moving that point to the front of
the list after it has been returned. This means that when there is a repetition of the same point, a run
of zeros will be emitted and when there is a sequence of multiple points, these will emit low integers
rather than their original indexes. Note that this transformation does not alter the entropy of a signal but
it does alter the distribution of the symbols of the signal, favoring low numbers over higher numbers.
This makes techniques such as run-length encoding and Huffman coding more likely to compress a
signal than without this transform. This is discussed in section 6.2.

5.5.2. Other techniques
Besides the techniques described above, a plethora of other techniques was also tried but decidedly
was dropped in favor of developing other encodings because the results are lacking. One of these is
signal compaction, or dictionary compression such as LZ77. We have used an “off-the-shelf” method
before applying the external compression but this resulted in significantly larger files.

A predictive scheme was attempted by either predicting entire next points or predicting each com-
ponent of the point individually. For predicting entire points we have considered a first-order prediction
as well as PPM schemes. While for most2 points we have found that the next point is the same as
the previous, but this does not directly result in compression as this significantly increases the number
of possible symbols (instead of 40 distinct symbols there can now be an offset of either +40 or -40,
increasing the number of symbols to 80).

In the same vein as DCT/FFT transforms, wavelets also turned out to be a poor representation for
skeleton points. As skeleton points can be better considered as a singularity on the 2D plane rather
than a continuous signal spanning the entire 2D plane, more information is introduced in a wavelet
representation than removed.

5.6. External methods
After all points have been encoded, there is still likely a lot of redundancy left in the signal. These are
often introduced by having redundant layers – i.e. layers that are largely the same as other layers –
and redundant inter-frame encoding. Therefore, it can be fruitful to apply an external compressor to
the image format.

The question which rests then is to select which external compressor to apply. Meiburg[26] used
the LZMA algorithm[30] to compress the data streams. This is a variant of the LZ77 algorithm which
uses dictionaries to compress strings. It uses a variant on how dictionaries are used and the resulting
bits are encoded using a range coder which employs a Markov Chain to predict bit patterns. Due to the
nature of the data, it is uncertain whether this is the best option. This problem is solved rather easily
2In this case, most means higher probability than a uniform distribution
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with a greedy approach: compress the same data stream with an ensemble of different algorithms and
pick whichever obtains the lowest byte size. For this, we use the Squash compression library[28] which
implements a plethora of different compression algorithms.

Since we optimize for smallest file size we have currently only implemented a selection of the algo-
rithms which Squash provides, removing the algorithms optimizing for speed rather than compression
ratio. Often these algorithms are slow, but since our file sizes are relatively modest this is a justi-
fied choice. Currently, we expose the following algorithms: LZMA(2)[30], ZLib[11], LZHAM, Brotli[2],
ZPAQ[25], BSC[18], CSC[15], Zstandard[9], and BZip2[35]. We compare these compressors in sec-
tion 6.4.

5.7. Reconstruction
Reconstruction of a SIR file is a rather simple operation. The first step is decoding a file so it once again
becomes a representation of layers and skeleton points. Now restoring an image is simply a matter
drawing each circle with the corresponding radius centered at each skeleton point. If one has encoded
the image in a lossless manner – i.e. no layers removed, no DT thresholding etc. – this would exactly
restore the original image, albeit for a few individual pixels which may stay unrestored due to digitization
of circles. However, if one has removed many different layers it could result in many “banding” artifacts.
In that case there is a steep jump from pixels at a lower intensity to the next intensity, rather than a
smooth transition as happens in nature. We can circumvent this by interpolating only those pixels that
were drawn in the previous layer but are not replaced when the next layer is drawn. van der Zwan et
al. [55] provide this interpolation scheme by the following formula for those pixels as

𝑣new =
1
2 [min(

𝐷𝑇ፓᑚ
𝐷𝑇ፓᑚᎼᎳ

, 1) 𝑣prev +max(1 −
𝐷𝑇ፓᑚᎼᎳ
𝐷𝑇ፓᑚ

, 0) 𝑣]

where 𝑣 is the current intensity, 𝑣prev was the previous intensity 𝐷𝑇ፓᑚ was the distance transform
value at that point at the previous threshold, and 𝐷𝑇ፓᑚᎼᎳ is the distance transform value at that point
at the current threshold. Note that since we are interested in the distances between boundaries of the
threshold sets, 𝐷𝑇ፓᑚ ought to be of the foreground of 𝑇። and 𝐷𝑇ፓᑚᎼᎳ ought to be of the background of 𝑇።ዄኻ.
This achieves a smooth interpolation and therefore lower psycho-visual error, as visible in Figure 5.7.

(a) Skeletonization of Lena using 12 layers, without
interpolation. (MS-SSIM 0.8949)

(b) Skeletonization of Lena using 12 layers, with inter-
polation. (MS-SSIM 0.9061)

Figure 5.7: Same skeletonization with and without interpolation, clearly Figure 5.7b has a lower psycho-visual error.
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Results & Discussion

6.1. Image results
To correctly identify the strengths and weaknesses of our skeleton image representation it is important
to apply our pipeline to many different images and determine statistics as file size and image quality.

subsection 6.1.1 will test different parameters of our pipeline. First we provide a corpus of uncom-
pressed images for reference. Next we will test the effects of different encoding schemes of the same
image data in section 6.2. Subsequently we will determine the effect of overlap pruning, bundling, and
a combination thereof on the file size and image quality in section 6.3 and section 6.7. We identify
which “types” of images work best using our dense skeleton image representation in subsection 6.5.1.
Also, we compare how images are holding up against extreme simplification compared to JPEG in
section 6.5. Moreover, we can use our method as a preprocessor to JPEG to combine the “best of
both worlds”. Finally, we extend the method to color images in section 6.8.

6.1.1. Corpus
Our corpus was hand-picked with care to carefully represent many kinds of digital images and provide
an objective basis. Parts of the images are obtained from the well-known USC-SIPI database [39],
whereas some other images are drawn directly from a digital camera. Some other images are computer
generated, and some other images again are pieces of art rather than real scenes. We have gathered
our results from around 50 distinct images in total.

This provides a varied base of real images, generated images, “soft” images, high- and low-contrast
images, and high- and low-frequency images. The images are here below, note that the file sizes are
those of the uncompressed images.

35
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Figure 6.1: Cameraman original (512x512, 257kB)

Figure 6.2: Commercial for Delft salad oil from 1894 (401x611,
240kB)

Figure 6.3: Elaine (512x512, 257kB)

Figure 6.4: Forest (1024x768, 769kB)
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Figure 6.5: Map of Groningen of 1575 (701x601, 417kB)
Figure 6.6: House (512x512, 257kB)

Figure 6.7: Lena (128x128, 17kB) Figure 6.8: Lena (256x256, 65kB)

Figure 6.9: Lena (512x512, 257kB)

Figure 6.10: Smiling people (641x965, 605kB)
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Figure 6.11: Mandril (512x512, 257kB)

Figure 6.12: Iconic picture of Marilyn Monroe (874x1079, 747kB)

Figure 6.13: Peppers (512x512, 257kB)

Figure 6.14: “Starry Night” painting by Van Gogh (750x565,
414kB)

Figure 6.15: Woman Blonde (512x512, 257kB)

Figure 6.16: Companion Cube from the game Portal (600x375,
220kB)

To objectively compare all compression options, we have generated many different configurations
per image, varying only the encoding schemes, whether or not an image can be pruned, and which
external compression algorithm is used while keeping all the skeleton parameters constant.
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6.2. Encoding schemes
We have implemented the encoding schemes presented in section 5.5 for comparison. In Figure 6.17
we compare different encoding schemes for the skeleton images, after external compression. On the
vertical axis is the compression ratio as defined in section 4.4. The uncompressed size is that of the
original PGM files. In all subsequent box plots in this work, the red line represents the median of
the quantity. The blue box is the 25-75% quantile and the “whiskers” of the box the data points not
considered outliers of the quantity. The data within the whiskers is within 2.7𝜎. The crosses above
or below the boxes of the quantity are the outliers. As we can see, the Unitary and Exp-Goulomb
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Figure 6.17: Comparison of encodings per image on the net file size.

encodings are most often the least efficient encoding for the average file size. In general, as expected,
Canonical Huffman coding performs slightly better than traditional Huffman coding as the codewords
aremore regular, thusmore easily externally compressed. However, in general they performworse than
the traditional delta encoding method. Although these results can be slightly improved by the Move-to-
Front transform as discussed in subsection 5.5.1, the results are very marginal and still cannot compete
with the delta encoding method. This is because the pattern matching of the external compressor is
rendered ineffective because the signal encoding is already approaching the entropy, thus inflating the
file size. This is even worse when Arithmetic Coding is applied, which was omitted from the graph
because it does not yet work on pruned images which would lead to an unfair testing result.

This image is, however, turned around if the file sizes are considered before the external compres-
sor, as visible in Figure 6.18. Here we compare the file sizes of all images in the corpus, with all other
variables considered “free”, using the specified encoding scheme. This file size is projected on the
vertical axis. As we can see here, clearly Arithmetic Coding gives the best results, as expected. This is
closely followed by the Huffman coding variants, as expected. However, it is also consistently the case
that image file size before an external are always larger than after. If this compression is subsequently
rendered ineffective, that means the entire image compression becomes ineffective. Therefore we can
say for now that the “traditional” encoding is currently the best encoding.
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Figure 6.18: Comparison of encodings per image on the file size before external compression.

6.3. Overlap pruning effects
In subsection 5.4.2 we presented a technique to delete redundant skeleton points. The image quality
can be visually inspected. Take for example the “Delft” image as here below in Figure 6.19. It can
be verified that there are very few differences between both images, while Figure 6.19b is significantly
smaller than Figure 6.19a.

The file sizes can be compared manually and while we noticed a trend that pruned images are
smaller in file size, we decided to subject them to statistical tests. As we cannot assume that the file
sizes are drawn from a normal distribution we have used non-parametric tests as the Mann-Whitney U-
Test and the Kruskal-Wallis test. We have found that for nearly all images there is a significant reduction
in file size (𝑝 ≪ 10ዅኽ) with an average reduction in file size of 100kB and up to 500kB.

We have for convenience included a boxplot in Figure 6.20. In this plot we compare between
each image the file size after external compression, where each parameter is kept constant except for
whether an image is pruned. A zero-reference comparison of all images in the same figure can found
in Figure 6.21.

Using the same statistical tests we have found that while there is a significant reduction in file size
there is in general no significant reduction in image quality when reconstructed, using any of the quality
measures discussed in subsection 4.5.2 (𝑝 > 0.05) – i.e. it cannot be posteriori determined from which
group an image comes. Combining these results we can say that, in general, overlap pruning is an
effective way to reduce file size while maintaining image quality.
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(a) Skeletonized, non-pruned image of Fig-
ure 6.2 (270kB)

(b) Skeletonized, pruned image of Figure 6.2
(220kB)

Figure 6.19: Visual comparison of different skeletonizations of Figure 6.2. This image uses 39 most significant layers.
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Figure 6.20: Comparison of file sizes after external compression per image. All parameters are kept constant except for the
overlap pruning parameter.
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Figure 6.21: Comparison of the file size after external compression over all images. All parameters are kept constant except for
the overlap pruning parameter.

6.4. External compression methods
External compression methods can help reach the entropy of the signal. That is, if the right one is
chosen. To verify which compression method is the best – i.e. which one obtains the lowest final file
size – we have compressed the same signals of our entire corpus multiple times to see which one
obtains the lowest file size per image. This result is visible in Figure 6.22. We can clearly see that, in
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Figure 6.22: Comparison of external compression methods per image.

general, ZPAQ is the best candidate for SIR compression. On the one hand, this was expected because
the algorithm was renowned for its excellent compression ratios. However, it was very possible that
due to the structure of the data other algorithms outperforms it. On the one hand, this provides a good
intuition which external compressor to use. On the other hand, this is a decision that can be greedily
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solved without downsides and should therefore not be of much relevance.

6.5. Transcending JPEG
It turns out that even with our best encoding and external compressor, nearing JPEG in image size
without sacrificing a lot in image quality is not easy. However, if one is willing to accept a loss, creat-
ing images smaller than JPEG with an acceptable quality is in the realm of possibility. However, using
overlap pruning, it is possible to retain more layers than before which allows for the creation of passable
images. Consider the image in Figure 6.23. This image is 31kB rather than the 64kB of a high-quality
JPEG. However, one can clearly see that the image quality is lower than that of the original image in
Figure 6.9, but the most salient shapes remain intact whereas small details are lost. This also happens
in Figure 6.24. All the most salient shapes remain intact, including shadows but small details disappear
and there are sometimes artifacts near boundaries of shapes due to short path removal. Even in Fig-
ure 6.25 dense skeleton image compression excels. “Barbara” is a notoriously hard image to compress
due to the finely detailed patterns that occur in the image but even with our image compression method
these remain mainly intact in Figure 6.25b. If one is willing to accept an ever bigger quality loss, as in
Figure 6.25c, the final file size is even more impressive.

(a) JPEG compressed version of Figure 6.9
(64kB).

(b) Skeletonized image of Figure 6.9 using 15
layers (31kB, MS-SSIM 0.9232).

Figure 6.23: Visual comparison of JPEG versus skeletonizations of Figure 6.9.

The key to small images is to only select the relevant layers. This way, psycho-visual error remains
as low as possible while the file size also remains within bounds. This is the most effective way to
compress images. With a novel encoding and compression as described above, we have shown that it
is possible to create images of acceptable quality that are significantly smaller than the corresponding
JPEG image.

6.5.1. Types of images
In order to match JPEG images in file size consistently, it is important to identify the types of images
that are especially suited for dense skeleton image coding. For example, JPEG is best suited for “nat-
ural” photographs and less suited for text images or other monochrome images with clearly defined
boundaries. These images have, in general, few high-frequency intensity changes and are thus ap-
proximated well by JPEG encoding. In the same way are PNG images best suited for line art, icons
and pictures text and less suited for photographs. In these types of images, pixels are often very similar
to their neighbors which makes prediction of pixel values, which is the main compression feat of PNG,
very successful.

In the same way, we can identify features that would create small, high-quality SIR files. Taken from
the characteristics of the skeleton format, we can identify the following features:
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(a) JPEG compressed version of Figure 6.13
(77kB).

(b) Skeletonized image of Figure 6.13 using
25 layers (44kB, MS-SSIM 0.8922).

Figure 6.24: Visual comparison of JPEG versus skeletonizations of Figure 6.13.

(a) JPEG compressed version of “Barbara”
(78kB).

(b) Skeletonized image of “Barbara” using 15
layers (63kB, MS-SSIM 0.8757).

(c) Skeletonized image of “Barbara” using 15
layers with fewer details (39kB, 0.8708).

Figure 6.25: Visual comparison of JPEG versus skeletonizations of “Barbara”.
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Few present intensities

One of the main factors contributing to significant skeleton
image compression is the removal of grayscale intensities. By
doing this, fewer skeletons sets need to be encoded resulting in
small file with a low reconstruction error. However, this can
partially averted by implementing intelligent binning as
discussed in chapter 5.

Salient shapes If all shapes in the upper-level sets are salient there are few
skeleton points necessary to describe the shape.

Large shapes

Many small skeletons are more spacious to encode than few
large skeleton shapes. Since the size of the shape is somewhat
related to the size of the skeleton it is more advantageous to
have few relatively larger shapes than many relatively smaller
shapes.

High overlap

If shapes change relatively little then many skeleton points can
be pruned due to a high number of overlapping discs. This is
advantageous to the file size since fewer skeleton points means
a smaller file size.

Images that come close to these “virtues” will be images that compress very well. However, when
these ideals are present in an image are not always obvious. Surely, when an image has few distinct
intensities this will be visible but it is hard to judge when an image contains salient shapes due to the
fact that the shapes that we observe does not always correspond to the shape that is skeletonized in
some threshold set.

To make dense skeleton image coding successful large shapes are preferred. This is due to ratio
of the number of skeleton points to describe a shape over the surface area of a shape grows smaller
as the shape area increases. Moreover, large shapes have longer paths. With our delta encoding,
anything but the start of the skeleton path requires merely one byte whereas the starting point of the
path requires six bytes. One such extreme example is visible in Figure 6.26. Here, we have the original
image in Figure 6.26a. It is a relatively large image and clearly has few distinct gray levels and large,
salient shapes. The skeletonized version is in Figure 6.26. It is still a very high quality image, with few
distortions and a contrast reduction, but is more than 11 times smaller than the original image using
our dense skeleton encoding. Another such, perhaps less contrived, is visible in Figure 6.27. This

(a) Original image as JPEG (50kB, 800 ×
800).

(b) Skeletonized representation of Fig-
ure 6.26a (4.4kB, MS-SSIM 0.9445).

Figure 6.26: An example of extreme compression results using dense skeletons with fair quality.
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is a promotional still from the animated TV show Bob’s Burgers. The original image is visible in Fig-
ure 6.27a. Notice that this image is quite large, contains not too many distinct grayscale intensities and
contains large shapes. A high-quality skeletonization is visible in Figure 6.27b. This is a skeletonization
performed using only grayscale binning as described in section 5.2, and overlap pruning. Using these
techniques alone achieves a compression ratio of 2.6 compared to the JPEG variant and almost 7 to
the uncompressed image.

The same happens in Figure 6.28. These are non-photographically rendered scenes which can be
successfully compressed using dense skeletons.

In short, we can say based on these results that dense skeleton image coding is very successful
compared to the de-facto standards when the images are simple. That is, there are large, salient shapes
in each upper level set. These are often in non-photorealistic settings such as comics, animations, non-
realistic 3D scenes or “minimal photography”.
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(a) Original image as JPEG (482kB, 1280 × 1014).

(b) High quality skeletonization of Figure 6.27a (184kB, MS-SSIM 0.9260).

Figure 6.27: Skeletonization of a comical image.
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(a) Original image as JPEG (172kB, 1200 × 793).

(b) Skeletonized representation of Figure 6.28a (43kB, MS-SSIM 0.9128).

Figure 6.28: A skeletonization of a non-photographically rendered scene.
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6.5.2. Extreme simplification
In many applications it is advantageous to simplify an image to its barest essentials. This is for example
done in areas as object detection or shape-based feature detection. In some fields further analysis
needs to be done on huge images – e.g. on a large giga- or even terapixel scale[23]. Notable cases
where simplified images are used are fields as machine learning[45], multi-spectral imaging[4], and
image segmentation[27]. Besides using image simplification as a tool to improve a result of another
tool, it is also a goal in itself. JPEG tries to compress images with image simplification by removing high-
frequency components of each macroblock in the frequency domain. A downside of this simplification
is that it, while it achieves high compression, does not take into account the shapes that are visible on
the image thus these images are are much less suited for the aforementioned tasks.

We have performed various simplifications as visible in Figure 6.29. As one can see the images are
in the sense as described above very simple and the file sizes are to match this. The most principal
shape are still visible in the images but there are also significant artifacts. For example, to the left of
the house in Figure 6.29a there are bright discs that were not present in the original image. The dark
spots in Figure 6.29b are a lot larger than in the original image, leading to almost removal of an entire
pepper in the left of the image.

The Mandril image in Figure 6.29c is a good examples of a simplified image. Here the fine details
of the fur are removed while the most salient shapes remain The file size is also significantly reduced
while compression artifacts are not introduced and the image remains “continuous”.

A notable simplification usage is that of color images. These often remain in very high quality while
having the ability to simplified significantly. An example is in Figure 6.29d. Clearly, the color space
and shapes are simplified whereas the most salient shapes and some of the details remain. This
also happens without introducing heavy compression artifacts. Rather, the image looks more like it is
overexposed than compressed.

While these images are severely compressed and simplified it should be noted that JPEG is still
capable of generating higher-quality images at this file size. It will not be able to generate “simple”
images like we present in Figure 6.29, it will generate better looking images at this size. If, on the other
hand, the only goal is to remove small details or high-frequency components, our method will generate
far better results than JPEG could by DCT thresholding.
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(a) Simplification of Figure 6.6. 20 kB. (b) Simplification of Figure 6.13. 14 kB.

(c) Simplification of Figure 6.11 image. 30 kB. (d) Simplification of Figure 6.9 color image. 61 kB.

Figure 6.29: Extreme simplifications of various images.
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6.6. JPEG preprocessor
Since we have found that reliably generating SIR files smaller than the corresponding JPEG file is
not always simple, there might be another way. What we can do using the skeleton representation is
simplify an image such that perceptual loss is minimized and important features remain. Moreover,
this simplification can have an enhancing effect, because the image will be easier to encode because
the intensities have been “regularized” and because of this, the strength of the artifacts will also be
smaller because there will be fewer high frequency areas in the blocks so it is therefore possible to
increase the compression strength of these encoders, for even better compression. This simplified
output can be used as a preprocessor for existing image encoders to use their ability to optimize for
the human visual system. Using a complex image processing pipeline as a preprocessor for a “simple”
or traditional image processing algorithm is not new. This was also attempted by Tushabe et al.[46]
who preprocessed an image by using max-tree filtering in order to obtain a higher JPEG compression.

Because the image has become very “regularized” – that is, the intra-macroblock variance is de-
creased due to layer thresholding and the removal of unimportant shapes – we have found that an
image can be compressed further than a regular JPEG image. This is tested by encoding a skele-
tonized image as a low-quality – but passable – JPEG, which we then try to match from the original
input image in either file size or quality as measured by the MS-SSIM. For example, in Figure 6.30d we
have generated an image at 15% quality of Figure 6.30b. To obtain the same file size from the original
image, the quality needs to be set at 7%.

An compression ratio of between 7 and 12 is reached with little quality loss of the original skele-
tonized image. Compared to a “vanilla” JPEG encoding of an image, it is possible to create images
with a better quality at the same file size using our encoder as preprocessor. This is especially visible
in Figure 6.31. In Figure 6.31c there are serious artifacts introduced, especially along the dent in the
“front” pepper and along the border of the “top” pepper which are not as prominent in Figure 6.31d which
is the same JPEG but preprocessed using our method. The difference in MS-SSIM score is mainly due
to layer removal – thus resulting in a lower contrast which is heavily punished by the MS-SSIM score
– and removal of small skeleton branches as visible in the stem of the “elongated” pepper, But overall
it is fair to say that the quality of our preprocessed image is higher.

The strengths of our preprocessing encoding is especially visible in Figure 6.32 and Figure 6.33.
In these images there is a very clear transition between intensity boundaries such as in the dress of
Marilyn and the transition to the shadow from the floor. This introduces heavy ringing and blocking
artifacts near the edges and highly detailed areas, as visible in Figure 6.32c. The same happens As
there are fewer distinct intensities and details in Figure 6.32d, the quality parameter can be set higher to
obtain an image at the same file size and there are therefor far fewer artifacts. However, highly detailed
areas as on the camera in the background are still lost due to the skeletonization process. That is one
trade-off that has to be made when using dense skeletons for preprocessing: when the quality of the
skeletonization is low, the JPEG compressed result will almost certainly be worse than standard low-
quality JPEG encoding while obtaining the same file size. However, when the skeletonization is of
sufficiently high quality, the encoded JPEG is of higher quality at the same file size than a standard
JPEG.

Concluding, we can generate JPEGs of dense skeletons at a quality that is at least 5 percentage
point higher than directly encoding a JPEG image at a same file size, when computed using ImageMag-
ick’s quality tuning parameter. When generating JPEGs of dense skeletons of same apparant quality
as “vanilla” JPEGs, the compression ratio of the former is usually 1 to 2.5 points higher.
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(a) Original forest image as visible in Fig-
ure 6.4 (395kB).

(b) Skeletonized representation of Fig-
ure 6.30a (729kB, MS-SSIM 0.695).

(c) JPEG at 7% quality of Figure 6.30a (33kB,
MS-SSIM 0.86).

(d) JPEG at 15% quality of Figure 6.30b
(34kB, MS-SSIM 0.68). The MS-SSIM com-
pared to Figure 6.30b is 0.85.

Figure 6.30: The effects of using skeleton image coding as a preprocessor for a matrix method. The images on the bottom are
very similar, but much smaller than the original image.



6.6. JPEG preprocessor 53

(a) Original peppers image as visible in Fig-
ure 6.13 (75kB).

(b) Skeletonized representation of Fig-
ure 6.31a (237kB, MS-SSIM 0.9636).

(c) JPEG at 20% quality of Figure 6.31a
(11kB, MS-SSIM 0.9718).

(d) JPEG at 25% quality of Figure 6.31b
(11kB, MS-SSIM 0.9528). The MS-SSIM
compared to Figure 6.31b is 0.9862.

Figure 6.31: While the MS-SSIM of Figure 6.31c is higher than that of Figure 6.31d, the JPEG artifacts in the former are much
more pronounced and one could say that the quality is lower.
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(a) Original marilyn image as visible in Figure 6.12
(75kB).

(b) Skeletonized representation of Figure 6.32a (534kB,
MS-SSIM 0.9477).

(c) JPEG at 13% quality of Figure 6.32a (25kB, MS-SSIM
0.9634).

(d) JPEG at 20% quality of Figure 6.32b (25kB, MS-SSIM
0.9335). The MS-SSIM compared to Figure 6.32b is
0.9841.

Figure 6.32: Comparison of using skeletonization as preprocessor on the “Marilyn” image (Figure 6.12)
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(a) Original Lena (512) image as visible in
Figure 6.9 (64kB).

(b) Skeletonized representation of Fig-
ure 6.33a stored as JPEG (20kB, MS-
SSIM 0.9461).

(c) JPEG at 20% quality of Figure 6.33a
(6.5kB, MS-SSIM 0.9461).

(d) Figure 6.33b experiencing the same
quality drop compared to Figure 6.33c
(4.5kB, MS-SSIM 0.8930).

(e) Figure 6.33b encoded as a JPEG to
have the same file size as Figure 6.33c
(6.6kB, MS-SSIM 0.9194).

Figure 6.33: Comparison of using skeletonization as preprocessor on the “Lena” image (Figure 6.9)
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6.7. Skeleton path bundling
The technique of inter-layer skeleton path bundling was introduced in subsection 5.4.1. We have im-
plemented this light-to-dark bundling scheme in our application and have collected our results here.
The first effects of this bundling is presented in Figure 6.34. In Figure 6.34a is a skeletonized image
of Figure 6.9 that has no bundling applied. In Figures 6.34b, 6.34c and 6.34d are bundlings of the
same skeletonization using the attraction factor 𝛼 = 0.1, 𝛼 = 0.9, and 𝛼 = 1, respectively. All of these
bundlings have the maximal point shift limited by 𝜖 = 4 pixels.

As we can see there is no large difference between Figure 6.34a and Figure 6.34b. We can ob-
serve a small artifact in the upper right corner but overall the image looks quite similar to the original
skeletonization. As 𝛼 nears 1, the interesting image effects start to occur. Dark areas look darker and
bright areas look brighter. Therefore this could be considered a local contrast enhancement. When
𝛼 = 1 the artifacts that bundling introduces can be considered too extreme, while when 𝛼 = 0.9 the
artifacts are just barely prominent while there is an impression of local contrast enhancement.

(a) Unbundled Lena (512) image as visible
in Figure 6.9 (95kB).

(b) Bundling of Figure 6.34a, ᎎ  ኺ.ኻ, Ꭸ 
ኾ (95kB).

(c) Bundling of Figure 6.34a, ᎎ  ኺ.ዃ, Ꭸ 
ኾ (82kB).

(d) Bundling of Figure 6.34a, ᎎ  ኻ, Ꭸ  ኾ
(67kB).

Figure 6.34: Comparison of using bundling on the “Lena” image (Figure 6.9)

The same effects can be observed in Figure 6.35. Here the same values for 𝛼 are used in the
same order, but the bundling effect is made stronger by setting the maximum shift to 𝜖 = 15. Again,
when 𝛼 = 0.1 the effects are barely present and the file size is even increased. This is most likely due
to the introduction of irregular skeleton paths. Rather than having “straight” or continuous paths, the
paths are now jagged due to rounding of the final location of the bundled skeleton points. Again, when
𝛼 nears 1 a local contrast enhancement can be observed. The concavity on the front pepper looks
deeper due to enlarged shadows and the bottom of the dark pepper on top looks darkened giving a
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seemingly enhanced depth perception.

(a) Unbundled Peppers image as visible in
Figure 6.13 (44kB).

(b) Bundling of Figure 6.35a, ᎎ  ኺ.ኻ, Ꭸ 
ኻ (46kB).

(c) Bundling of Figure 6.35a, ᎎ  ኺ.ዃ, Ꭸ 
ኻ (38kB).

(d) Bundling of Figure 6.35a, ᎎ  ኻ, Ꭸ 
ኻ (33kB).

Figure 6.35: Comparison of using bundling on the “Peppers” image (Figure 6.13)
.

From these experiments we can conclude that this form of bundling has an interesting effects on
images. The enhanced shadow and local contrast enhancement gives interesting results. Moreover, it
can be seen that when 𝛼 is made large it has a very positive result on the image compression results.
This is due the fact that fewer different distinct skeleton points need to be encoded, yielding a better
compression result of about 30% as compared to an unbundled result.

6.8. Color images
The extension to encoding color images using dense skeletons from grayscale images is rather trivial.
One can decompose a color image into a three-component image using some colorspace. Popular
colorspaces for decomposition are RGB, YCbCr, and HSV. These are popular because of their con-
nection to computer interpretation, separation of intensity and color, and connection to human color
perception, respectively.

With dense skeletons, a color image is encoded applying our pipeline as visible in Figure 5.1 to each
component of the colorspace. Reconstruction is then also simple. Each component can be recovered
in the same way a grayscale image is recovered, converted appropriately into the RGB colorspace and
inserted in the right color channel.

In Figure 6.36 we see the Lena color image skeletonized using the RGB colorspace (Figure 6.36b),
HSV colorspace (Figure 6.36d), and the YCbCr colorspace (Figure 6.36c). The HSV colorspace seems
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to have the truest colors compared to the original, whereas the RGB is slightly darker red. The YCbCr
colorspace has the smallest file size but also contains severe color artifacts due to too few chroma
layers. All in all, the quality of all these images is fairly high and in the same range as the JPEG file
size. Also interesting is Figure 6.36f where paths have been bundled within each layer. Also here the
contrast seems enhanced.

These results are largely the same in the peppers image set (Figure 6.37). Only here, YCbCr
contains fewer artifacts and gives the impression of over-saturation whereas the HSV decomposition
does show some artifacts.

In the Mandril image set (Figure 6.38) the YCbCr seems to give the truest result.
It should be noted that all channels of the color images are processed in their full form. That means

that there is no chroma subsampling, resolution enhancements or different treatment of channels during
skeletonization or filtering. This means there is still fairly much potential to be gained compared to JPEG
which does perform these “tricks” in order to reduce file size, even though our method is already quite
close to the JPEG result.
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(a) Original color image of Lena. (512 x 512,
769kB)

(b) Skeletonization of Figure 6.36a using 30
layers per channel in the RGB color space.
(180kB, SSIM 0.8966).

(c) Skeletonization of Figure 6.36a using 10
layers per channel in the YUV color space.
(63 kB, SSIM 0.8270).

(d) Skeletonization of Figure 6.36a using 30
layers per channel in the HSV color space.
(156 kB, SSIM 0.8779).

(e) JPEG compressed version of Fig-
ure 6.36a. (104kB, SSIM 0.9938).

(f) Skeletonization of Figure 6.36a using
30 layers per channel in the RGB color
space, with skeleton bundling. (150kB, SSIM
0.8846).

Figure 6.36: Different color images of Lena.
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(a) Original color image of peppers. (512 x
512, 769kB)

(b) Skeletonization of Figure 6.37a using 20
layers per channel in the RGB color space.
(125kB, SSIM 0.9049).

(c) Skeletonization of Figure 6.37a using 20
layers per channel in the HSV color space.
(135 kB, SSIM 0.8837).

(d) Skeletonization of Figure 6.37a using 20
layers per channel in the YCbCr color space.
(81 kB, SSIM 0.8088).

(e) JPEG compressed version of Fig-
ure 6.37a. (128kB, SSIM 0.9912).

Figure 6.37: Different color images of the Peppers image.
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(a) Original color image of mandril. (512 x
512, 769kB)

(b) Skeletonization of Figure 6.38a using 20
layers per channel in the RGB color space.
(288kB, SSIM 0.6338).

(c) Skeletonization of Figure 6.38a using 20
layers per channel in the HSV color space.
(250 kB, SSIM 0.5545).

(d) Skeletonization of Figure 6.38a using 20
layers per channel in the YCbCr color space.
(189 kB, SSIM 0.5981).

(e) JPEG compressed version of Fig-
ure 6.38a. (224kB, SSIM 0.9768).

Figure 6.38: Different color images of the Mandril image.
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Conclusion & Future work

We have presented a further exploration of using skeletons for shape representation and simplification.
With this research we have described a general image compression and manipulation framework which
can handle any type of image – be it a natural photograph, simple or complex image, images with text,
computer generated, etc. It works on binary, grayscale and color images of arbitrary bit depth. It has
a simple set of parameters and can encode images in general within one second, even though we
assume there is still enough room for optimization. This makes it applicable in a very wide context.

We have studied and extended the original pipeline of Meiburg and extended it with various new
options. These new options include an improved layer selection algorithm – described in section 5.2, ex-
ploited inter-level skeleton coherence by introducing overlap pruning, as described in subsection 5.4.2
and skeleton path bundling – described in subsection 5.4.1, and improved interpolation for image re-
construction as described in section 5.7.

Whereas the original pipeline was too time consuming – taking around two minutes of computation
time on most images – and generated too large images – often double the size of a higher-quality
JPEG file – we have improved it to the point where processing an image now typically takes 1 or 2
seconds and produces images of fair quality – i.e. MS-SSIM > 0.9 – at file sizes two to twelve times
smaller than high-quality JPEG. However, high-quality skeleton images are still larger than high-quality
JPEG images but we have shown that these high-quality skeleton images can successfully be used as
a preprocessor for a JPEG encoding which allows for 10% fewer JPEG quantization at the same file
size compared to “vanilla” JPEG.

The introduction of skeleton-path based bundling introduces new possibilities for image manipula-
tion. We have shown that this can be implemented efficiently and presented its interesting new effects
in subsection 5.4.1. It offers local contrast enhancement/“specular” highlighting which can introduce
desirable effects in some cases. Moreover, the skeleton path bundling in different color spaces also
shows interesting “artifacts”, albeit in color space or in shapes. Besides of the effects, it also aids com-
pression by increasing the inter-layer coherency, resulting in 30% smaller file sizes.

From here, several steps can be taken for future research. Compression of images can be further
improved in the following ways. One possible option is implementing a custom run-length encoding.
It often happens that several consecutive skeleton points share the same difference either in terms of
location displacement or radius difference. This could be exploited for a more compact skeleton path
encoding.

Moreover, we have identified a better algorithm for layer selection, but all layer selection algorithms
considered so far are global. It might be be useful to select a number layers per shape rather than per
image.

Another possible way of improving compression is not by storing the full skeleton paths but approx-
imations of paths by splines in 3D {𝑥, 𝑦, 𝐷𝑇} space. By storing only the control points of the splines
rather than the full points additional space might be saved.

The entropy coders currently used for Huffman- and Arithmetic coding are very rudimentary and not
very sophisticated. Throughout the past years several more advanced entropy coders have been de-
veloped for several video and image formats such as CABAC for H.264/H.265, VP8 for WebM/WebP,
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or MANIAC for the FLIF image format. These could be incorporated in our pipeline for a better com-
pression result.

It might also be possible to extend our method to a video format now that the performance is sig-
nificantly higher. This allows for another source of information for skeleton data encoding; rather than
intra- and inter-layer encoding, also information between frames can be taken into account.

Our dense skeleton image representation allows for image simplification while maintaining aesthet-
ics. One motivation for image simplification is to remove unwanted features and maintain only wanted
features. It is worthwhile to verify that these features indeed remain for some of the intended applica-
tions such facial recognition, object recognition or preservation of regions of interest.
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A
How-to

This section describes how the software can be used and how results can be reproduced. The project
is divided in two folders, imConvert and imShow. Each directory contains a Makefile, running make
in the directory should be sufficient when all dependencies as listed below are satisified. Possibly
the paths to CUDA libraries need to be modified to match your system. This produces two executa-
bles: skeletonify and show_skeleton, respectively. skeletonify accepts a configuration file
– example below – and produces a SIR file. show_skeleton accepts a SIR file, which it then shows.

A.1. Dependencies
Dependencies that are required are a C++ compiler (Tested with gcc 6.3.1 and clang 3.9.1), CUDA
(version 8), make (version 4.2.1), cmake (version 3.7.2), boost (version 1.63), ragel (version 6.9), and
vala (version 0.34). Moreover it requires an OpenGL implementation, for which we used GLUT (freeglut
version 3) and GLEW (version 2). Here is an example configuration file with which skeletonify can
be called:

# input image. Must be PGM or PPM
filename = ../examples/lena_gray_512.pgm
# Verbose output
outputLevel=v
# number of layers
num_layers = 20
# layer selection method, other allowed value is thresholding
layer_selection = peaks
# skeleton connected size threshold
sThreshold = 5
# Saliency treshold
ssThreshold = 2
# Island size threshold
siThreshold = 3
# Output file name
outputFile = ./lena512-bundled.sir
# external compression algorithm
compression_method = zpaq
# perform overlap pruning?
overlap_pruning = false
# allowed radius difference before pruning
overlap_pruning_epsilon = .05
# encoding method
encoding = traditional
# perform bundling?
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bundle = false
alpha = 1
epsilon = 5



B
File Format

For reliable reconstruction and comparison, it is necessary to have a standard container format rep-
resenting our image file. Therefore, we a container format for Skeleton Image Representation (SIR)
files. The container has a header describing the data and the data itself. The header has the following
layout:

Version The version of the SIR file with which this file is encoded (16 bits).

Width Image width (16 bits).

Height Image height (16 bits).

Colorspace The color space of the image, starting from one it can be respectively Grayscale, RGB,
HSV or YCbCr.

Clear color The lowest intensity present in the original image. Necessary for maintaining contrast in
the final image.

After this, follow the image planes. If the colorspace is gray, only one plane follows otherwise three
planes follow. The meaning of each plane is determined by the colorspace. A plane consist of a byte
giving the number of intensities 𝑖, followed by so many bytes where each byte is an intensity. After this,
the dense skeleton data begins, which consists of 𝑖 layers. Each layer consists of two bytes denoting
how many paths occur in that layer, followed by that many paths. Each path consists of a starting point
– which has two bytes for each component of the skeleton point. Each starting point is followed by a
chain of tree-encoding points according to the previously determined encoding scheme. Each chain
point is either a difference point (1 byte), a fork tag (1 byte, 0x38) followed by two bytes whose value
is how far one has to go back in the tree to move to the next branch, or an end tag (1 byte, 0x39)
denoting the end of a path. A layer contains thus as many end tags as there are paths in the tree.
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