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A B S T R A C T

Dimensionality reduction techniques can transform datasets with a large
number of variables to simpler two or three-dimensional datasets, while
preserving distances and structure in the original data as much as possible.
This makes these techniques very useful when dealing with large datasets.
Unfortunately, the results they produce can be abstract, making it hard to
fully understand how these results relate to the original data. As a result,
many researchers treat these techniques as simple black boxes, which means
they severely underutilise their potential. Most of them also are only capable
of either analysing numerical or categorical data, which makes analysing
mixed datasets a difficult challenge. This thesis presents DimRedPlot, a tool
which, when combined with more general visualisation techniques, allows
users to easily see the relation between the results of linear dimensionality
reduction techniques and their original data. The focus on linear techniques,
such as Principal Component Analysis, is due to the fact that they have
been widely used for decades in a wide range of applications. Because of
the support of both Principal Component Analysis, capable of analysing
numerical data, (Multiple) Correspondence Analysis, capable of analysing
categorical data, and the ability to combine these analyses on one screen,
DimRedPlot greatly simplifies working with mixed datasets. DimRedPlot
has been designed and evaluated at the Luxembourg Institute of Science and
Technology, or LIST, and it has been integrated into the larger RParcoords
environment developed there. The evaluation was performed using two
datasets generated and used at the institute, and DimRedPlot continues to
be used by researchers at the LIST.
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1I N T R O D U C T I O N

High-dimensional data is nowadays a common occurence in both research
and industry. This data is characterised by having a high number of features
or variables per observation in a dataset. The number of variables can easily
run into the thousands or higher in some of these datasets. The availability
of such datasets has been facilitated by several factors. The increase in
available computing power has enabled their creation as a results of, e.g.,
large simulations. An example would be global climate simulations, which
can easily result in datasets containing thousands of locations as observations
and thousands of variables such as temperatures at many different time
points. Similarly, the development of cheaper and better sensors have also
made it easier than ever to create large datasets containing the output of
potentially hundreds of sensors at different time points. Finally, databases
in all kinds of areas, ranging from social media to insurance companies, are
continuously increasing in size.

Having access to large datasets can be crucial for research. Many areas of
research, such as the climate, are complex and have many aspects to them.
Generating large datasets that encompass as much of this complexity as
possible allows researchers to gain more insight about the topic at hand and
to gain more sound conclusions about it. The same can be said for business,
where insight gained from large datasets can be instrumental in determining
company policy.

Unfortunately, analysing a high-dimensional dataset can be quite hard.
Due to the sizes these datasets have, it is hard to determine where to look
in the data to find the insight and conclusions researchers are looking for.
Especially the presence of high numbers of variables is what makes it difficult
to gain information from them. Some variables may not be important and
can be ignored, while others are very important for the overall structure in
the data. It is, however, not trivial at all to find out which variable is which.
Furthermore, complex relations can be hidden in groups of variables, which
are not easily found when just looking at one or two variables at a time.

To attack this problem, dimensionality reduction techniques are widely
used. These techniques project the observations in high-dimensional datasets
onto a manageable two or three axes. This means that large datasets can
suddenly be much easier to explore and analyse. There are many different
dimensionality reduction techniques and the amount in which each are used
varies. One of the oldest and well known techniques, Principal Component
Analysis, or PCA, is used in almost every scientific discipline and has been
used at least as early as 1933 [1]. Techniques such as PCA can be used for
many different goals, but simplifying datasets for analysis is one of the more
common usages.

Although the number of different dimensionality reduction techniques is
large, in this thesis we focus only on Principal Component Analysis, Corre-
spondence Analysis (CA), and Multiple Correspondence Analysis (MCA).
These techniques are all linear, meaning that the transformations they apply
to observations to project them onto new axes are linear. Non-linear tech-
niques also exist, such as Multi Dimensional Scaling and t-SNE, but due to
the transformations they perform being more mathematically complex, they
are harder to understand and interpret. The linear techniques, and especially
PCA, are also widely accepted by many researchers and they have been in
use for decades in a large number of fields. Due to this, the primary focus of
this thesis is on these three linear techniques.
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8 introduction

Even though dimensionality reduction is widely used, several such tech-
niques are insufficiently well understood by many researchers. The results
produced by them are abstract. It is not clear why the generated projected
points are close together or how the projections relate to the original data.
This makes it hard to interpret them. As a result, dimensionality reduction
techniques are often used as black boxes where datasets are given as input
and a 2 or 3-dimensional scatterplot is created as output. Treating them as
simple black boxes can still yield some new insight into the original data;
however, a better understanding of how these techniques work and how their
results link to the original data can vastly increase the amount of insight into
that can be gathered. This lack of understanding can have the effect that even
though dimensionality reduction techniques can potentially give the user the
insight or answer he or she is looking for, the user is unable to actually find
these insights and answers.

Beyond the treatment of black boxes that is given to these techniques, there
is also the problem that many datasets can not be analysed with just one of
these methods. Whereas PCA can analyse only purely numerical data, CA
and MCA are designed to be used purely with categorical data. However,
many datasets are more complex than merely numerical or categorical and
contain a mix of both types of variables. These datasets can not be analysed
using just one method, which makes it hard for researchers to use dimen-
sionality reduction to see how these two parts of a dataset relate to each
other. There are of course general visualisation techniques that allow both
types of variables to be shown, such as parallel coordinates; however, these
are usually severely limited in the number of variables they can display.

In this thesis we present DimRedPlot, a visual analytics tool designed
to visualise the results of Principal Component Analysis, Correspondence
Analysis, and Multiple Correspondence Analysis. DimRedPlot visualises the
results of dimensionality reduction in a scatterplot, as users will be familiar
with and used to, but it combines these scatterplots with a set of features
that help users understand the technique they are using and how what they
see can be explained in terms of their original data.

Although DimRedPlot can be used as a stand alone tool, it has been
designed to be used in combination with more general visualisation tech-
niques, such as parallel coordinates, that show the original data. In particular,
DimRedPlot has been integrated into RParcoords, a parallel coordinates
visualisation tool developed and used at the Luxembourg Institute of Science
and Technology1, or LIST, as a exploratory environment for multivariate
data. However, DimRedPlot can, due to its general and modular design,
theoretically be used with any visualisation tool. The interactions designed
between DimRedPlot and RParcoords allow a user of these tools to quickly
obtain insight about how the projected dimensionality reduced structure
seen in DimRedPlot relates to the original data. It also makes iterative di-
mensionality reduction very easy, which means that even if the first attempt
at dimensionality reduction bears no fruit, the parameters used can quickly
be refined in order to obtain clearer or more useful results.

RParcoords also allows multiple DimRedPlot instances to be shown at
once. This means that a user can use one DimRedPlot instance to display
the results of PCA for the numerical variables in the data, while at the same
time another DimRedPlot instance can show the results of MCA for the
categorical variables in the data. The different DimRedPlot instances are
interactive, meaning that through user interaction users can explore how the
numerical part of their data relates to the categorical part.

1 http://www.list.lu
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RParcoords and DimRedPlot have been slightly modified to serve as a
bioinformatics tool for contig binning. The tool is known as ICoVeR [2], and
it is available online through http://www.github.com/bbroeksema/ICoVeR.

In general we can say that, using DimRedPlot and RParcoords, this thesis
tries to answer the following question:

How can we, through linked visual metaphors, support the explo-
ration and interpretation of dimensionality reduction on complex
high-dimensional datasets?

The structure of the rest of this thesis is as follows. In Chapter 2 we
discuss related work by looking at general visualisation techniques, analytical
tools, such as PCA, and existing visual analytics tool that visualise the
results of dimensionality reduction. For full understanding of the design
of DimRedPlot, some background in PCA, CA, and MCA is needed. These
techniques are more deeply explored in Chapter 3.

Chapter 4 discusses the design of DimRedPlot and the user interactions
it offers. DimRedPlot itself has been integrated into RParcoords and both
RParcoords and the user interaction that comes with this integration are the
topic of Chapter 5.

The combination of RParcoords and DimRedPlot has been evaluated using
datasets that are being used by researchers at the Luxembourg Institute of
Science and Technology. The results of these evaluations are discussed in
Chapter 6.

Finally, in Chapter 7 we end the thesis with the conclusion, along with a
discussion of several features that were thought out but were not added to
DimRedPlot and RParcoords due to time constraints.

http://www.github.com/bbroeksema/ICoVeR




2R E L AT E D W O R K

In many fields of study, researchers have to explore and analyse complex
high-dimensional datasets. Where simpler datasets can be explored and
analysed using simpler techniques such as scatterplots and t-tests, high-
dimensional datasets are too complex to be dealt with this way. More complex
visualisation and analysis techniques are necessary to gain insight into these
datasets.

One way to gain insight into high-dimensional datasets is by trying to
visualise all or most of the variables in the data at the same time. Many
visualisation techniques exist that try to achieve this, but often there are
simply to many variables to fit on a screen. And even if all the variables can
be visualised at once, exploring them may still not be an easy task.

Another approach is to apply analytical techniques that can analyse the
dataset and reduce its dimensionality. After applying such a dimensional-
ity reduction technique on the dataset, visual analytics tools can be used
to explore these reduced datasets using visualisation techniques and user
interaction. This allows for complex high-dimensional datasets to be strongly
simplified and makes it easier for researchers to analyse their datasets.

In the next sections, we begin with discussing several existing visualisation
techniques that try to visualise as many variables in the dataset as possible
in one go. After this we take a look at both some dimensionality reduction
techniques that can simplify large datasets and at some of the existing visual
analytics tools that visualise the results of these techniques.

2.1 high-dimensional visualisation techniques

As mentioned, several visualisation techniques exist that try to visualise an
entire dataset or a large portion of a dataset at once. This has the benefit that
users do not necessarily have to make a selection of variables or observations
before visualising them, which is useful because users often do not know
in advance what variables or observations are interesting or important. In
the following sections we explore some of the existing high-dimensional
visualisation methods and we discuss why these techniques on their own
are not sufficient solutions for the problem we are trying to solve.

2.1.1 Permutation matrix

A permutation matrix [3] is essentially a data-table, only instead of showing
numbers in every cell, a bar is used. The height of each bar indicates what
numerical value each cell has. Compared to a regular data-table, a permuta-
tion matrix is also transposed, as the rows represent the variables, while the
columns represent the observations. An example of a permutation matrix
can be seen in Figure 1.

The usage of bars instead of numbers makes it easier to detect patterns
in the data, since bars are easier to visually compare than numbers. The
permutation matrix as a visualisation technique is, however, very flexible and
there are many different ways each value can be encoded instead of rectangle
height. Examples of encodings are by making the rectangles equally sized
and colouring them or by making the rectangles the same shape and varying
their sizes. To detect actual patterns in the data, the rows and columns in the
permutation matrix are moved around, or permutated, until patterns appear.

11



12 related work

Figure 1: Permutation matrix showing a data set about hotel occupation
throughout the year.

Although permutation matrices are very flexible in the data they can
visualise and how the visualisation takes place, they are quite limited in
how much data can be visualised at once. The rectangles are limited in how
small they can be, which means that screen space will quickly run out. Also,
to find patterns in the data, the user needs to keep permutating the rows
and columns in the hopes of finding some. Depending on the size of the
data-set this can be very time-consuming, without guarantees of success even
if patterns in the data exist.

2.1.2 Table lens

Similarly to permutation matrices, table lenses [4, 5] visualise a dataset as a
data-table. Table lenses show the observations on the vertical axis and the
variables on the horizontal axis. Numerical variables are represented using
vertical bar plots where every bar represents the associated value of the
observation at that vertical height. This way several variables can be placed
next to each other. Categorical variables are represented using dots for every
observation, whose horizontal distance from the start of the variable indicates
the category that observation is in. Figure 2 shows an example of a table
lens with both numerical variables and a categorical variable. By default,
every observation will occupy one pixel of vertical space, unless more space
is available, making the bar plots’ bars one pixel high. This means that a
table lens can easily display a large number of observations at the same
time. Every variable is given just enough horizontal space to display the
pattern of the observation bars. To obtain more detailed information about an
observation or a variable, a user can zoom in onto a selection of observations
and variables, as has happened in Figure 2. Zooming in makes the titles of
the observations easily readable and the data values easily discernible.

Although table lenses offer both the possibility of visualising a large
number of observations and showing detailed information about them, the
number of variables that can be shown on the screen at once is limited,
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Figure 2: Table lens showing both numerical and categorical variables.

due to screen-size limitations. Furthermore, to find patterns in the data,
the observations need to be sorted based on their associated values for a
variable, as otherwise a variable will just display a set of bars with seemingly
random lengths. Although sorting on a variable is possible, and subsequent
sorting of other variables, grouped first by the earlier sorted variables is also
a possibility [6], this does require the user to know which variables to sort
and to focus on, which is not always something a user knows in advance.

2.1.3 Scatterplot matrix

The scatterplot matrix technique plots every variable against every other
variable in scatter-plots. This means that if we have N variables, we obtain
N · N − N scatterplots. These scatterplots are then displayed in a matrix
layout, where every row and column represents a variable and every position
in the matrix shows the scatterplot between the variables of its row and
column. An example of a scatterplot matrix can be seen in Figure 3. The
technique is useful to quickly spot the relationships between individual
variables. Unfortunately, with a high number of variables, screen space can
easily run out. This means that scatterplot matrices can not display datasets
with large numbers of variables at once. Furthermore, although scatterplots
can show the relationships between two different variables, more complicated
relationships involving many variables are harder to find.

2.1.4 Mosaic display

Mosaic displays [7] are visualisations designed to visualise datasets with
categorical variables. The displays consists of a rectangle for each possible
combination of categories. This means that if there are 3 variables with 2

categories each, the total number of rectangles is 8. The size of the rectan-
gles corresponds to the frequency at which the respective combination of
categories occurs in the dataset. The rectangles are created by iteratively
splitting them into a different group for each category. We can see how this
works by looking at figure 4. The figure shows a mosaic display visualising
data regarding extra-marital and pre-marital sex and the marital status of
both men and women, e.g., for every participant it is recorded whether he or
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Figure 3: Scatterplot matrix showing a data set from the 1974 Motor Trend
US magazine.

Figure 4: Mosaic display showing data regarding extra-marital and pre-
marital sex and the marital status of both men and women.
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she is divorced or married, whether he or she has had pre-marital sex, and
whether he or she has had extra-marital sex. We can see that the rectangles
are first split horizontally over gender, then vertically over pre-marital sex,
then each quadrant is split horizontally over extra-marital sex, and finally
each quadrant is split over marital status.

As we can see by looking at Figure 4, mosaic displays make detecting
correlations in the data easy. For example, when we look at the figure we
can quickly see that more women than men participated because the women
column is wider. It is also clear that people having had pre-marital or extra-
marital sex are more often divorced, and pre-marital sex is more common in
men.

Unfortunately, the number of categories that can feasibly be shown at
the same time is lacking. The shown dataset contains 8 different categories.
In a more complex dataset it is possible to have tens or even hundreds
of categories which would make the rectangles very fragmented and hard
to interpret. Also, the order in which the categories were used to split
the display influences the easiness with which the display can be studied;
however, a logical order is not necessarily obvious to a user when exploring a
dataset. Finally, mosaic displays only support the visualisation of categorical
variables, while we are interested in visualising complex datasets that contain
both numerical and categorical variables.

2.1.5 Parallel coordinates

Parallel coordinates [8] displays every variable as a vertical line, where every
vertical line represent the domain of that variable. Every observation is ren-
dered as a poly-line through the vertical lines. The location of the intersection
between the vertical lines and the poly-line indicate what value an obser-
vation has for the associated variables. An example of this can be seen in
Figure 5. Unlike techniques such as scatterplot matrices, parallel coordinates
allows for seeing more complicated relationships through multiple variables.
However, some inherent data-structure that can easily be seen in scatterplots,
such as clusters, may be hard to see in parallel coordinates.

Parallel coordinates can display a large number of both categorical and nu-
merical variables. Unfortunately however, there is still a limit to the number
of visualised variables when it comes to screen space, and displaying more
then 10 to 20 variables can easily lead to a cluttered visualisation.

Figure 5: Parallel coordinates showing a datasets from the 1974 Motor Trend
US magazine.

2.1.6 Parallel sets

Bendix et al. [9] introduced an adaptation to parallel coordinates called
parallel sets. Parallel sets is designed for use with categorical datasets. Here,
the categorical variables are no longer drawn using axes with tick marks,
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as is the case in Figure 5. Instead, every category of a variable is rendered
as a rectangle along the axis of the variable, with every rectangle’s size
corresponding to the frequency of that category. The polylines used in the
parallel coordinates visualisation are replaced by bands whose thickness
represents the number of observations in the band. An example of this can
be seen in Figure 6.

Figure 6: A parallel sets visualisation showing the relationship between the
income of a family (Market), the employment of the (Family Type),
and their income.

Unfortunately, similarly to parallel coordinates, a parallel sets visualisation
is limited in the number of variables that can fit on screen. In fact, due to
bands of observations potentially splitting up at every variable, as can be
seen happening in Figure 6 between Family Type and Income, parallel sets
is more readable when as few variables as possible are used. Too many
variables will make the visualisation chaotic and hard to read. Furthermore,
parallel sets only support categorical data, while we are also interested in
visualising numerical data.

2.2 dimensionality reduction techniques

Discussing the many different visualisation techniques in the previous section
made it clear that all visualisation techniques are limited in the amount of
data that can be visualised by them. All techniques are limited in the number
of variables that can be shown at the same time and most techniques are
also limited in the number of observations. When a visualisation has too
many observations to show, they can relatively easily be subsampled or
aggregated in order to reduce their numbers. Unfortunately, when dealing
with too many variables, reducing the variables the same way is hard if not
impossible.

One way to deal with the issue of too many variables is to reduce the
number of variables that have to be examined. This is called dimensionality
reduction and there are two main ways in which it can be achieved. The
first way is called feature selection, and it reduces the number of variables
by removing variables that are, for example, not interesting enough for the
particular use case. The second way is called feature extraction, and it creates
new variables based on the original variables and projects the observations
onto those new variables. In general, the number of new variables is lower
than the number of old variables, which makes it easier to explore the dataset.
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The new variables are created such that certain metrics are maximised for
the first few new variables. An example of such a metric is how well the
distances on the first new variables match the distances between the points
in the original dataset. Another metric is the amount of variance in the data
described by the new variables. By maximising these metrics, most of the
structure in a dataset can often be plotted on just two or three variables, mak-
ing it possible to use many of the above-mentioned visualisation techniques,
and even simple scatterplots, to visualise the data.

Although feature selection can be useful and there are many algorithms
for it [10], the focus of this thesis is to make it easier to explore and interpret
the results of feature extraction techniques. As such, any further mentions
of dimensionality reduction in this thesis will refer to feature extraction.
However, as we show in Section 5.2.4 and Section 5.2.5, overlap in feature
selection and feature extraction is not uncommon as the results of feature
extraction can be used to perform feature selection.

Several variants of feature extraction exist. In this thesis we focus on three
of these method, Principal Component Analysis, Correspondence Analysis,
and Multiple Correspondence Analysis, which are discussed in the following
sections. These three techniques have in common that they are all linear.
This means that the transformations they apply to a dataset to obtain new
variables and projections on those variables are all linear in nature. Besides
linear techniques there are also more complex techniques that are non-
linear, such as t-Distributed Stochastic Neighbour Embedding [11] and Multi
Dimensional Scaling. In the book Nonlinear Dimensionality Reduction [12],
Lee et al. offer a general overview of variants of multi dimensional scaling
and other non-linear techniques.

2.2.1 Principal Component Analysis

Principal Component Analysis, or PCA, is one of the most used and most
famous techniques for feature extraction. The term “principal components”
in this context was first coined by Hotelling [1] as early as 1933. PCA takes a
data table and creates a new set of variables, called principal components
or eigenvectors, to project the observations from this data table onto. The
generated eigenvectors are orthogonal to each other and they are aligned
in such a way that the first eigenvector is aligned with as much of the
data-variance as possible.

Figure 7 shows an example of what PCA can do. The top plot in the
figure shows the observations from a dataset with two variables plotted
in a scatterplot. The bottom plot shows the same observations projected
onto newly generated eigenvectors. We can see that the eigenvectors are
aligned with the variance present in the data. Although this example uses
a dataset with only two variables, PCA does not have a limit, other than a
computational one, to the number of variables that can be analysed.

2.2.2 Correspondence Analysis

Correspondence Analysis, or CA, is a generalisation of PCA developed by
Benzécri in 1973 [13]. Where PCA can be applied to any numeric data table,
CA is designed to be applied to contingency tables. Contingency tables show
the frequency distributions of two categorical variables. Table 1 shows a
contingency table. In the table the frequencies of two categorical variables,
farms and farm animals, are shown against each other.

Just like PCA, CA will generate a new set of eigenvectors aligned with the
variance in the data. However, unlike PCA, CA projects the categories of both
categorical variables, the rows and the columns of the table, onto the new
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eigenvectors, instead of just the observations. As a result of using contingency
tables, the results of CA focus on the difference between observations and
columns in terms of their frequency distributions in the data table, whereas
the results of PCA focus on the difference between observations with regards
to their actual values in the data tables.

multiple correspondence analysis CA only supports the analysis
of two categorical variables at the same time. To analyse more than two
variables Multiple Correspondence Analysis [14], or MCA, can be used.
MCA is an extension to CA that theoretically allows an unlimited number of
categorical variables to be analysed. MCA works with categorical data tables,
where every column is a categorical variable. MCA transforms the data table

Figure 7: Example of PCA. Top: observations projected onto two variables.
Bottom: same observations projected onto principal components
generated by PCA.
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Farm Cows Horses Pigs
Olterterp 125 40 54

Gorredijk 10 5 7

Nij beets 0 30 10

Wijnjewoude 0 45 0

Table 1: A contingency table showing four farms with differing numbers of
livestock.

by turning every category into a binary variable, after which the binary data
table can be analysed using regular CA.

2.3 visual analytics approaches

When visualising the results of dimensionality reduction techniques, re-
searchers often use simple scatterplots where the first two newly generated
eigenvectors are plotted against each other. Work by Sedlmair et al. [15]
and Brehmer et al. [16] has, however, indicated that researchers do not al-
ways get the expected results from these techniques, and they often have
trouble understanding the projections that they are looking at. In order for
researchers to get more out of dimensionality reduction techniques, there
has been some work that focuses on visualising their results in more detail
than mere scatterplots.

2.3.1 iPCA

iPCA [17] is an interactive tool designed to combine the visualisation of
the original data with the visualisation of the results of PCA. As shown in
Figure 8, it combines two parallel coordinates visualisations, one showing the
original data and one showing the data projected onto eigenvectors, with a
scatterplot of two eigenvectors and a correlation matrix. The user can change
the eigenvectors used for the scatterplot to any of the seven most important
eigenvectors. Unfortunately, iPCA only supports PCA, meaning that it can
not analyse datasets consisting of both numerical and categorical variables.

The tool is designed to give users a better idea of how PCA works and
how the results generated by PCA relate to their original data. It does this by
allowing the user to change the data in one of the visualisations manually.
When a user makes manual changes, the other visualisations are updated
in real-time to reflect this change. An example of this would be the user
dragging a point in the scatterplot, which would result in both parallel
coordinates visualisations updating as well.

Although the interactive element present in iPCA can give the user a good
idea of how PCA relates to their data, it is a rather indirect approach. If a user,
for example, would like to find out which variables are most responsible for
the structure in the scatterplot, the user could move a point in the scatterplot
and see along which variables in the parallel coordinates this point changes
the most. In contrast, using contribution bar plots, discussed in Section 3.1.3
and Section 4.2, a user can answer this question immediately without the
need for extensive interaction.

2.3.2 Dimstiller

In contrast with the specific visualisation target of iPCA, dimstiller [18] is
a much more general tool which allows the visualisation of both PCA and
MDS.
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Figure 8: iPCA overview. (A) PCA projection view. (B) PCA eigenvectors as
dimensions in a parallel coordinates visualisation. (C) Original data
in parallel coordinates. (D) Correlation matrix of original data. (F)
Controls.

The tool supports a range of different actions, which can be chained to
get the eventual desired result. Some of these different actions are: culling
variables with low variance, performing PCA or MDS, rendering a scatterplot
matrix, and several more. The action chains, or workflows, that are created
this way can be saved and easily replayed later on.

Although this tool allows for a lot of flexibility in how the dimensional-
ity reduction is executed, the eventual visualisation of the PCA and MDS
results consists of simple scatterplots. As such, the visualisation is not neces-
sarily that much more helpful in understanding dimensionality reduction
techniques and relating their results to the original data.

2.3.3 Decision Exploration Lab

Broeksema et al. [19, 20] present a visual analytics tool designed to visualise
the results of MCA. Their solution is designed to be used by analysts and
business users.

Although the developed visualisation is geared towards a specific user
base, the techniques used in the visualisation of the MCA results are very
interesting. First off, the focus of the visualisation is not just the projection
of observations onto the eigenvectors generated by MCA, but the projection
of variables onto these eigenvectors. By looking at the distance between
different projected variables and how they are clustered, conclusions are
drawn about relationships between the variables. Similarly to biplots [21],
the proposed tool allows both variables and observations to be projected
onto the same eigenvectors

Shown in the corners of the projections view in Figure 9, the tool also uses
bar plots, partially based on the work by Oeltze et al. [22], to display which
of the variables are important to the eigenvectors. These bar plots can be
used to explain the meaning of the eigenvectors, and a similar technique has
been used in this thesis as described in Section 4.2.1.

A downside to the tool is the fact that it only supports MCA, which means
it can only analyse categorical data. Even though it is still possible to analyse



2.3 visual analytics approaches 21

Examine specific
attribute or value

Legend for
attributes and values

Level of detail

Projections view Dimensions view

Figure 9: Decision Exploration Lab. The projected variables can be seen in
the left view, while the variables are listed by name in the right
view.

datasets that also contain numerical data by binning the numerical variables
in multiple categorical bins, this approach effectually reduces the precision of
numerical datasets which is often not desirable. It is also not clear how large
the percentage of data-variance is that the eigenvectors used as scatterplot
axes describe, which means that conclusions drawn from the visualisation
may be less solid than one might suspect purely from the plot.

2.3.4 Explaining three-dimensional dimensionality reduction plots

Coimbra et al. [23] extend upon the work by Broeksema et al. with techniques
to visualise the results of any dimensionality reduction technique using a
3D scatterplot. The original variables are also shown in this scatterplot,
although not as points but as potentially non-linear axes. The bar plots
shown by Broeksema et al. are used here as well to indicate how the original
variable relate to the current x-axis and y-axis. Using these bar plots users
can interactively rotate the 3D projection to align one of the axes with a
variable displayed in the bar plot. Beyond these features, many other features
such as colouring and a sphere which shows all the potential viewpoints
that are available. An example of the proposed visualisation can be seen in
Figure 10.

2.3.5 Attribute-based Visual Explanation of Multidimensional Projections

Recently, da Silva et al. [24] proposed a visualisation where the projected
observations generated by dimensionality reduction are coloured based on
which variable, or set of variables, best explains the placement of those
observations. Figure 11 shows an example of this, where 6497 wine samples
have been coloured based on 12 variables. The colouring that is added to
the 2D projection makes it very easy and straight-forward to explain the
placement of a group of variables.

Although the proposed system is more a visualisation technique than a
full blown visual analytics tool, it is a very interesting approach to explaining
projections, and it could be integrated into other tools.
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Figure 10: An example of the work presented by Coimbra et al. Some of the
rendered axes are clearly curved because of the non-linearity of
the dimensionality reduction method used.
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Figure 11: 6497 wine samples coloured by the variables that explain the
placement of the samples best.

2.4 discussion

As we have seen, there exist many techniques aimed at visualising and
analysing high-dimensional data. One big group of techniques tries to visu-
alise an entire dataset at once. Unfortunately, these techniques are all severely
limited in the number of variables they can display at once. A solution to
this problem is to use dimensionality reduction to reduce the number of
variables to just 2 or 3 variables. This is commonly done using dimensionality
reduction methods such as PCA. However, here the problem arises that the
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results produced by these methods are highly abstract, making interpretation
of these result hard even for users familiar with the inner workings of these
techniques. New tools are needed that can make the results of dimensionality
reduction easier to interpret and explore. Chapter 4 and Chapter 5 present
new tools to address these issues.





3D I M E N S I O N A L I T Y R E D U C T I O N T E C H N I Q U E S

In Section 2.2 we looked into several linear dimensionality reduction tech-
niques. DimRedPlot, discussed in Chapter 4, is designed to visualise the
analyses produced by these techniques. To support this visualisation several
features of PCA, CA, and MCA have been used in DimRedPlot, such as
loadings and contributions. Because understanding these features is crucial
in understanding how DimRedPlot works, this chapter looks at how PCA,
CA, and MCA work and what results they produce.

3.1 pca

Before PCA is applied to a data-table, the columns of the data-table, the
variables, are centred in such a way that their means are equal to 0. Further-
more, the columns are often standardised, e.g., the values in the columns are
divided by the standard deviation of the column. This is only needed when
the different columns are not in the same space, such as mg or pH, and can
not be compared in a sensible way.

As explained in Section 2.2, PCA produces so called principal components
or eigenvectors upon which the rows of the data-table are projected. The val-
ues the rows obtain for every principal component are called factor scores. To
obtain these factor scores we need to solve the singular value decomposition,
or SVD, as described in Equation 1, where X is the data-table.

X = P∆QT (1)

For an explanation of how the SVD can be solved, the paper on SVD by
Abdi et al. [25] can be used. After solving the SVD, we can obtain the factor
scores as shown in Equation 2, where F is the matrix containing the factor
scores, with every column being a principal component.

F = P∆ (2)

The factor scores could now be plotted by taking two columns from F and
using these as x, y coordinates. However, there is more information that can
be obtained from PCA than just the factor scores. The following sections
will describe some of the different results that PCA can give. For a more
thorough and deeper explanation of how PCA works, the paper on PCA by
Abdi et al. [26] is a good source.

3.1.1 Principal components

As explained in the previous section, after solving the SVD, we are left with
a matrix F, where every column is a principal component. The principal
components are obtained in such a way that the first principal component
explains as much of the variability or variance in the data as possible. Every
next principal component explains as much of the variance in the data with
the constraint that it is orthogonal to the previous principal components.
This means that just like our original variables, all the principal components
are orthogonal to each other. In fact, the principal components are linear
combinations of our original variables, and they can be seen as a rotation of
the original variables.

Principal components are also called eigenvectors. The reason for this is
that the principal components are the eigenvectors of the eigendecomposition

25
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of XTX, where X is again the original data-table. The data-variance that every
principal component or eigenvector explains is called their inertia and it is
equal to their corresponding eigenvalue. We can take the sum of all these
inertias and divide each inertia by this sum to obtain percentages. Using these
percentages we can say for every eigenvector how much of the data-variance
it describes in percentages. This is useful, as we can use these percentages to
tell a user how much of the data-variance is actually being looked at when
showing a scatterplot with factor scores.

Unfortunately, only PCA uses the terms principal components when refer-
ring to the axes it generates. To avoid any confusion in the rest of this thesis,
we will be talking about eigenvectors instead of principal components, as
this means the same in PCA, CA, and MCA.

3.1.2 Loadings

After performing PCA on a data-table, we are left with a set of eigenvectors
and factor scores. However, what we do not know at this point is what these
eigenvectors mean in terms of our original variables. Loadings can help us
understand these relations.

A loading, in the context of PCA, is the correlation between an eigenvector
and a variable. This correlation tells us something about the amount of infor-
mation that is shared between an eigenvector and a variable. The loadings
have values lying in the [−1, 1] interval. Since every variable has a loading to
every eigenvector, it is possible to plot every variable based on their loadings
to the eigenvectors used as plot axes. An example of such a plot can be seen
in Figure 12, which shows 7 variables plotted onto two eigenvectors.
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Figure 12: Loadings of variables projected onto eigenvectors generated by
PCA.

The loading plot can be interpreted as follows: the closer a loading is to
one, or minus one, the more information the variable and eigenvector of
that loading share. To take the plot as an example, variable V7’s arrow is
strongly aligned with the eigenvector of the vertical axis and V7’s distance to
the centre is almost 1, which means that V7 has a strong negative correlation
with the vertical axis’ eigenvector and thus shares a lot of information with
the eigenvector. Variable V2 is in between the two eigenvectors in orientation
and closer to the centre of the plot. This means that the correlation of V2 to
both eigenvectors is similar. The short distance of V2 to the centre, means
that V2 is also sharing information with eigenvectors beyond the first two.
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This information can be very useful to find out what the meaning is of
an eigenvector in terms of the variables in the original data, and through
this, which variables are important for the structure in the observations as
projected onto the eigenvectors.

Looking at the plot, we can see that every plotted variable lies within a unit
circle around (0, 0). The reason for this is that the loadings are normalised
in such a way that the sum of the squared loadings for a variable are equal
to one. When the sum of the squared elements of a vector is equal to one,
the length of that vector must be one as well. As such when looking at the
loadings of a variable as a vector, the end of that vector must lie on the edge
of a L-dimensional sphere, where L is the number of eigenvectors.

We only discuss loadings in the context of PCA. This is mostly because
CA and MCA have alternative ways to project variables onto generated
eigenvectors. However, loadings can be calculated for other dimensionality
reduction techniques as well, even more complex non-linear techniques. A
generalisation of loadings that will work independently of dimensionality
reduction technique is discussed by Coimbra et al. [23].

3.1.3 Contributions

The way the eigenvectors are calculated depends on how the original data is
shaped. This means that for a certain eigenvector there are some observations
which might be very important for the calculation of the eigenvector, while
there are others that might not be important at all. The importance an
observation has for the calculation of a certain eigenvector is called the
contribution, as it is essentially the contribution of an observation to a
eigenvector.

To calculate the contributions of an observation to the eigenvectors we
need the factor scores of that observation and the eigenvalues or inertias
of the eigenvectors. We will call these factor scores fi,l , with l being the
eigenvector and i being the observation, and we will call the eigenvalues λl .
The contributions of observation i are then equal to:

contributionl,i =
f 2
i,l

λi
(3)

The inertia, or eigenvalue, of an eigenvalue can also be calculated through
the following formula:

λl = ∑
i

f 2
i,l (4)

Because of this, the contribution always lies in the 〈0, 1] interval. Fur-
thermore, the sum of all contributions to an eigenvector is always equal
to 1. Thanks to these properties we can translate contribution to a percent-
age. Using this percentage we can then make statements such as: a certain
observation is 45% responsible for a certain eigenvector.

When looking at observations, contributions may not be an inherently
useful statistic. Observations with a high contribution are those with the
most extreme values, and we can easily spot them by merely looking at a
scatterplot of the observations. However, since we can project variables onto
the eigenvectors using loadings, we can also calculate a contribution for
them by using their loadings as fi,l . When doing this, contribution tells us
approximately the same as the squared loadings. The higher the contribution
of a variable to an eigenvector, the more information is shared between the
eigenvector and the variable. Since, we already have the loading statistic one
might think that contributions are not that interesting. However, CA and
MCA do not have loadings and as such contribution is a useful statistic there.
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3.2 ca

CA, or correspondence analysis, is a generalised form of PCA. As mentioned
before, CA is designed to be operated on contingency tables, although it has
been used for many other purposes since its inception.

The benefit of using CA on contingency tables, instead of simply using
PCA, can be shown with an example. Table 1 shows a count of cows, horses,
and pigs for four farms. If PCA is applied to this table, the result would
be that Olterterp would be an outlier from the rest. The reason for this is
that Olterterp has a larger number of livestock than the rest of the farms.
However, if we were to apply CA to this table, Olterterp and Gorredijk would
actually be relatively close together. This is because even though the number
of livestock differ quite significantly between the first two farms, the ratio of
livestock on both farms is quite similar.

As mentioned, CA will transform a contingency table and project its
observations onto a set of new axes. Unlike PCA, these axes are called factors
or eigenvectors, instead of principal components. Furthermore, CA can not
only project the rows of a contingency table onto new axes, it can also project
the columns onto these axes. This has to do with the fact that the variables in
a contingency table all have the same type and domain. Because of this, if we
transpose the contingency table, it is still a sensible table, and we can project
our new rows, which were previously columns, onto new axes as well. Since
we have only transposed our contingency table, the resulting eigenvalues
and eigenvectors do not change, which means that our new axes are the
same for both the original contingency table and the transposed contingency
table.

Similarly to PCA, CA can also be performed by solving an SVD, only in
this case it is a generalised singular value decomposition [25]. In the next
sections a short explanation of the GSVD will be given. GSVD makes use of
properties of the columns and the rows called mass, which will be talked
about first. After this the actual explanation of the GSVD is presented.

3.2.1 Mass

When performing CA, every column and row in the original data-table has
a mass. This mass indicates the proportion of a row or column in the total
table.

In order to find the masses of the rows of data-table X, we first need to
know the sum of all elements in X, which we shall call s. For Table 1, s = 326.
Second, we need the sums of the elements in each row. In the case of Table 1,
the matrix of row sums, S, is as follows:

S = [219, 22, 40, 45]T

Using the row sums, sum of X, and Equation 5, we can find the matrix of
row masses, R:

R =
1
s

S (5)

Applying this formula to Table 1 results in the following row masses:

R = [0.672, 0.067, 0.123, 0.138]T

As we can see from this matrix, the masses add up to 1. This means that
the masses essentially tell us what fraction of the total livestock count each
farm has.
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Fruit Colour Colour:red Colour:yellow Colour:orange
apple red 1 0 0

banana yellow 0 1 0

tomato red 1 0 0

orange orange 0 0 1

Table 2: The colour of different fruits, using both a categorical variable and
binary variables.

The masses of the columns are calculated the same, except that 1
s is

multiplied with the sums of the elements in each column. The resulting
column masses look like this:

C = [0.414, 0.368, 0.218]T

3.2.2 Solving the GSVD

Before we solve the GSVD, we first normalise and centre the data-table. The
normalisation is done by dividing each row by its sum. The centring is done
by subtracting the average of the rows from every row.

After obtaining the normalised data-table we can solve the GSVD. What
makes the GSVD different is that there are some extra constraints regarding
the masses of the rows and columns, as can be seen in Equation 6.

X = P∆QT | PT RP = QTC−1Q = I (6)

After solving the GSVD we can retrieve the factor scores through Equa-
tion 2. The factor scores for the variables can be calculated using the exact
same progress, except for the fact that our data-table first needs to be trans-
posed. For a more thorough explanation of CA, the paper on CA by Abdi et
al. [27] is a good source.

3.3 mca

MCA works by taking a data-table with categorical variables and converting
it into a data-table with binary variables. This conversion is done by creating
a new binary variable for every category of the original categorical variables.
The new binary variables will be 1 for every row that has that specific
category, and 0 for the other rows. An example of this can be seen in
Table 2, which contains both the original variable, Colour, and the new
binary variables, Colour:red, Colour:yellow, and Colour:orange.

After the original categorical data-table has been converted to a binary
data-table, regular CA can be applied to the binary data-table. Because of
this, we get the same results when we apply MCA as when we apply CA.
The only difference is that the mass of every observation is the same. We
can see this in Table 2. The total sum of every observation is equal to one,
because every observation can only have one colour at the same time. This
will be true for every categorical variable, which means that the total sum of
every observation is the number of categorical variables. Since observation
mass is directly correlated to the observation sums, the mass will be the
same. This makes observation mass in MCA quite meaningless.

3.4 discussion

In the introduction we discussed that many researchers that use linear
dimensionality reduction techniques only interpret them by looking at the
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resulting projected observations in a scatterplot. However, as we have shown
in this chapter, there is a lot more information, such as loadings, variance,
and contributions, that these methods can provide. When used correctly, this
information can be used to make the results of linear techniques much easier
to interpret.



4D I M R E D P L O T

DimRedPlot is a visual analytics tool designed to visualise the results of
three particular dimensionality reduction techniques, PCA, CA, and MCA.
DimRedPlot can be used as a stand-alone tool, but it is designed to be used in
combination with other visualisation techniques such as parallel coordinates,
as is done in Chapter 5. An example of DimRedPlot can be seen in Figure 13.
Looking at the figure, we can see that the visualisation consists of several
parts, highlighted in the image with red rectangles. The function of each
highlighted part of the image is as follows:

• eigen-bar This part of the image consists of a long bar with blue
rectangles in it. The bar represents the eigenvectors generated by the
used dimensionality reduction technique, as described in Section 3.1.1.
The eigen-bar can be used by a user to change the eigenvectors used
as scatterplot axes in the scatterplots below. Beyond this, the bar also
gives the user a quick intuition of how much of the original data is
being looked at in the scatterplots and thus how strong any conclusions
drawn here are.

• observation scatterplot This scatterplot displays the observations of
the used dataset projected onto eigenvectors using their factor scores.
The observation scatterplot will be what most users of dimensionality
reduction techniques are used to. Using the observation scatterplot,
users can find out what structure is present in their data and what the
general shape of their data looks like.

• variable scatterplot This scatterplot displays the variables onto the
eigenvectors using either the loadings of the variables, as described in
Section 3.1.2, or using the factor scores of the variables. The structure
of the variables in the data can be explored using this scatterplot.
The proximity between variables tells us about the similarity between
variables, which means that the plot can be used to quickly find both
variables that are very dissimilar from the rest and groups of variables
that are very similar to each other.

• contribution bar plots The bar plots in this part of the image depict
different values for the variables shown in the right-most scatterplot.
The four bar plots show the contributions that the variables have
to the generated eigenvectors, as explained in Section 3.1.3. The bar
plots allow a user to find out in a direct manner what variables are
responsible for the eigenvectors used as scatterplot axes. This means
that they tell the user which variables are responsible for the structure
seen in the observation scatterplot.

When a selection of observations is made, as described in Section 4.3.4,
a fifth barplot appears in this part of the image, which shows the
amount in which a variable discriminates a selection of observations
from the rest of the observations. An example of this fifth barplot is
shown later on in Figure 23.

In the following sections, we look at the implementation details of DimRed-
Plot and we describe how the individual parts of the visualisation work in
more detail. We also have a look at the interactions that are possible between
the individual elements.
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4.1 eigen-bar

As described, the thin long bar on top of the visualisation in Figure 13

represents the eigenvectors generated by the used dimensionality reduction
technique. This bar can be used to select the two eigenvectors that are
consequently used as scatterplot axes. The bar tells the user how much data-
variance each eigenvector describes, allowing users to select their eigenvectors
such that a desired amount of data-variance is shown in the scatterplot.

Every eigenvector generated by PCA, MCA, or CA describes a certain
percentage of the variance in the original data. The total variance of all the
eigenvectors adds up to 100%. Every rectangle in the eigen-bar represents
one of the eigenvectors generated by the used dimensionality reduction
technique. The total length of the eigen-bar represents 100% of the variance,
while the length of the blue rectangles represents the variance percentage of
each eigenvector. For example, if the length of one of the rectangles is half the
total length of the bar, the eigenvector represented by that rectangle describes
50% of the total variance in the data. To make the variance described by every
eigenvector extra clear, the specific percentages are also displayed within
the rectangles. The percentages can also be obtained by hovering the mouse
cursor over the rectangles and reading them from the resulting tooltip.

At any time, only two eigenvectors are used as axes for the scatterplots. To
distinguish the rectangles that represent these eigenvectors, they are coloured
a lighter blue than the rest of the rectangles.

Often, when the results of PCA are visualised using a scatterplot, only the
first two eigenvectors are used as scatterplot axes. Instead, we chose to give
the user access to all generated eigenvectors. This is helpful when the first
two eigenvectors only describe a small amount of data-variance, or when
the first few eigenvectors describe a very similar amount of data-variance. In
both cases structure in the data may be found on eigenvectors beyond the
first two, making it worth it to explore other eigenvectors.

Even though it can be interesting to look at eigenvectors beyond the
first two, there are generally also a large number of them that are not
interesting. This is due to them describing only a low percentage of the data-
variance. Nonetheless, these eigenvectors are still shown. Their presence in
the bar helps the intuition of how much data-variance the first ones describe
compared to the total.

4.1.1 Alternative visualisation

In another potential design the eigenvectors are shown using a vertical bar
plot. How this looks can be seen in Figure 14, which shows both the eigen-
bar as Part A and the vertical bar plot annotated as Part B. Unfortunately,
a bar plot does not give an immediate intuitive feeling of how much of the
total variance is described by one or two bars. As such, the eigen-bar is
used instead of the vertical bar plot design. An additional benefit is reduced
screen-space usage due to removal of unused white space. Unless all bars in
a bar plot are the same length, it can waste a considerable amount of space.

In the design of the vertical bar plot, it is also possible for users to filter
out a set of eigenvectors. This is helpful as a large number of eigenvectors
can result in bars with a very low height, making it hard to distinguish
the bars. It also makes showing percentages on the bar as text impossible.
However, the current visualisation does not have these problems and as such
the reasons for filtering do not apply anymore.
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A
B

Figure 14: A comparison of different visualisations of described data-variance
by eigenvectors. (A) The eigen-bar. (B) The alternative vertical bar
plot.

4.1.2 User interaction

To change the eigenvectors that are currently used as axes in the scatterplots
there are several interactions in place. The first and most obvious interaction
is the possibility to simply select an eigenvector not used as axis using the
mouse cursor. On doing this the selected eigenvector is used as axis in the
scatterplots. To determine which of the axis to change, the axis is picked that
was changed least recently.

The second interaction is the possibility to select an eigenvector that is
used as axis and drag it over the bar. Whenever the user stops dragging, the
dragged axis is changed to the eigenvector the user currently hovers over
with the mouse cursor.

Finally, it is also possible to simply hover the mouse cursor over the eigen-
bar and scroll the mouse wheel. This results in both axes changing their
eigenvectors. When scrolling, the eigenvectors used by both axis will shift
one to the right or the left depending on the scroll direction.

Whenever the user changes the eigenvectors used as scatterplot axis, the
observations in the scatterplots move smoothly from their old location to
their new location. This is very useful, as it allows users to see how structure
in the scatterplot changes between different eigenvectors. This functionality
is, in fact, very similar to the work by Elmqvist et al. [28], albeit without
the explicitly rotating cube. An example of this can be seen in Figure 15.
Scatterplot A shows the structure before changing the axes’ eigenvectors.
In the scatterplot, three distinct clusters can be seen. When changing the
eigenvectors the projected observations move, and scatterplot B shows the
state of the scatterplot halfway through this movement. Already we can
see that a new cluster appears on the right and moves upward. The final
situation can be seen in scatterplot C. We can now see four clear clusters,
with the new cluster encircled with a red ellipse. The smooth animation
makes it immediately clear which cluster moved where and that one cluster
splits up into two different ones.

In general, we can say that the eigen-bar is designed to be used as follows.
When a user starts an instance of DimRedPlot he or she may be faced with
the following two situations:

1. The first two eigenvectors describe a, for that user, significant amount
of data-variance, with both eigenvectors describing significantly more
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data-variance than the third one. If interesting structure, such as clus-
ters, occurs on the first two eigenvectors, the user can select parts of
the structure using the scatterplots and use any of the described inter-
actions to change the used eigenvectors. This way it is possible to find
out whether that same structure can be seen on other eigenvectors. If
so, the user can draw more sound conclusions about the structure than
if it occurs only on two low variance eigenvectors.

2. The first two eigenvectors are very similar in the data-variance they
describe as the next couple of eigenvectors. In this case, if the user does
not see any structure in the data interesting to that user’s use case, it is
possible to change the eigenvectors to explore combinations of the first
N similar eigenvectors in search of interesting structure.

Change eigenvectors

A

B

C

Figure 15: A scatterplot transition showing the change of the y-axis’ eigenvec-
tor. A: The scatterplot before the transition. Three main clusters can
be seen. B: Halfway through the change of the y-axis’ eigenvector.
The arrows indicate in which direction the groups of observations
are moving. The right-most group we see moving was not its own
group in part A. C: The scatterplot after the transition. We can
now see four main clusters. Notice how the red encircled cluster
was not separate in part A.
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4.2 variable bar plots

The bar plots on the right of DimRedPlot, as shown in Figure 13, depict either
contribution per variable or the discrimination of a selection that a variable
can supply. All the bar plots work the same and only the data they visualise
is different. Figure 16 shows the five bar plots that can be shown annotated
with red rectangles. Bar plots A to D show contribution per variable, and
bar plot F, which is optional, shows discrimination per variable. In the next
sections we discuss each bar plot in more detail.

A

B

C

D

F

Figure 16: Bar plots depicting several metrics for each variable. (A-D) The
contribution each variable has to different sets of the generated
eigenvectors. (F) The amount in which each variable can discrimi-
nate between selected and non-selected observations.

4.2.1 Contribution bar plots

As mentioned in Section 3.1.3, contribution is a property that every obser-
vation and variable has for every eigenvector. Contribution is expressed
in percentages and tells how much a variable or observation influenced
the forming of a specific eigenvector. Contribution is not necessarily an
interesting metric for the observations; however, the contributions of the
variables are very interesting. When variables have a high contribution to
a certain eigenvector, it essentially means that we can explain the meaning
of that eigenvector using those variables. If that eigenvector is used as scat-
terplot axis, we can use the variables that describe its meaning to explain
the structure we see in the observation scatterplot. For example, if there is
interesting structure in the data along a certain eigenvector, such as a set of
clusters, the variables with strong contributions to that eigenvector are good
at distinguishing the different clusters from each other.

In total there are four contribution bar plots present in DimRedPlot, each
serving a different purpose, and they are discussed in the next paragraphs.

single eigenvector contributions The two top-most bar plots, bar
plot A and bar plot B in Figure 16, show the contributions of the variables
to the eigenvectors that are currently used as scatterplot axes. The user
has the option to sort any of the bar plots. When sorting, the visualisation
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makes sure that the ordering of variables is the same for all bar plots. This
is useful to compare the contributions of the same variable. An example
of sorting can be seen in Figure 16 where the x+y contribution bar plot is
sorted, which is the default behaviour. Sorting one of the top two bar plots,
makes it very easy for a user to see which variables are important to those
eigenvectors. Unfortunately, the bars in the bar plots are too small to contain
the variable names. To solve this the mouse cursor can be hovered over the
bars to retrieve the contribution percentage and the name of the variable.
Section 7.1.3 discusses a possible solution to this problem.

To help the user visually link the axes of the variable scatterplot to these
two bar plots, a label above each bar plot indicates the axis represented by
the bar plot. Next to the axis name, the percentage of data-variance along the
axis is displayed. The other two contribution bar plots, discussed in the next
two paragraphs, also have a label detailing the axes the bar plots represent
and the total data-variance those axes’ eigenvectors describe.

combined eigenvector contributions The first two bar plots are
useful to find out which variables are important for the structure along the
eigenvectors used as axes. However, to find out which variables are important
to the structure along both eigenvectors, a user would have to look for bars
that are high in both bar plots, which is very time consuming or even near to
impossible when the number of variables is large. To solve this issue, the third
bar plot from above, bar plot C in Figure 16, displays the contributions of the
variables to both used eigenvectors. To calculate this cumulative contribution
we have to be careful not to just add the contribution percentages to the two
eigenvectors together. This is because the two shown eigenvectors may not
describe the same data-variance. An extreme example of this case can be
seen in Figure 17. A variable low on the y-axis may contribute just as much
to that axis as another variable to the x-axis, but that does not mean they are
just as important. To add the contributions together we can first scale them
by the data-variance described by their eigenvectors. After doing this, we
have to make sure that the contributions are scaled again to add up to 100%.

Figure 17: Scatterplot using both an eigenvector describing high data-
variance and one describing low data-variance as axes.

other eigenvector contributions The fourth bar plot from the top,
bar plot D in Figure 16, shows the contribution that each variable has to the
eigenvectors not currently shown. This can be interesting, as a variable that
has a low value in this bar plot has most of its variance described by the
eigenvectors currently used as scatterplot axis. The variance of variables that
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have a high value in the bar plot must instead be found on other eigenvectors.
It must however be noted that when using PCA, the contributions of each
variable to all eigenvectors add up to 100%, meaning that this contribution
bar plot is simply the inverse of the combined contribution bar plot.

4.2.2 Discrimination bar plot

The fifth bar plot, bar plot F in Figure 16, does not necessarily show anything
related to contribution. As mentioned, it shows a metric depicting the ability
of the original variables to distinguish a selection of observations. This means
that if a user were to make a selection of observations through whatever
means, this metric shows which variables are good at discriminating those
observations from the observations that are not selected. This can be useful to
find out what the meanings of certain structures in the data are, e.g., which
variables cause them to be separated from the rest.

The metric used to determine this discrimination differs slightly per dimen-
sionality reduction method. For PCA and CA, the metric uses the normalised
data on which the techniques are performed and calculates for every variable
the average value and the standard deviation of both the selected and the non-
selected observations. As explored by Turkay et al. [29], when the average
and standard deviation of both the selected and non-selected observations
over the same variable are similar, it means that that variable would be bad at
discriminating between the two sets of observations. If instead the averages
and standard deviations are different, that variable is good at separating the
two sets of observations. The metric calculates the difference in averages and
standard deviations and adds these values together. The result is that each
variable will be assigned a value indicating the difference in average and
standard deviation, which is then used to create the discrimination bar plot.

When working with categorical data and MCA, it is impossible to calculate
averages or standard deviations. Instead the metric looks at how well the
different categories of a variable separate the selected observations from the
non-selected observations. In the case that, for example, non of the categories
are assigned both to selected and non-selected observations, the variable is
perfect at discriminating between the two sets of observations. If categories
are assigned to observations in both sets, the variable is bad at discriminating
between the observations.

Using one of the methods described above, every variable is assigned a
value determining its quality at discriminating between the selected and non-
selected observations. These values are then shown as a bar plot below the
contribution bar plots. After this, the bar plot can be used to determine which
variables are responsible for certain structures in the data, such as clusters. To
do this, a user has to select a set of observations in the observation scatterplot,
and the bar plot will be updated based on the used discrimination metric.

It is also possible to use other discrimination metrics instead of the ones
described here, although currently only the described metrics have been
implemented into DimRedPlot. For some other metrics that could be used
here, the paper by Rauber et al. [30] is a good source, in which various
discrimination metrics are used.

4.2.3 User interaction

All of the bar plots offer the possibility to select variables. The user can use
the mouse cursor to click and drag over the bar plot, which results in the
selection of the variables represented by the dragged over bars. A different
selection can be made on each bar plot, and the variables selected this way
are the union of all the bar plot selections. When a selection is made on a
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bar plot, the percentages of the selected bars are added up and displayed
after the data-variance percentage in the label. This percentage is the data-
variance described by the selected variables over the axes represented by the
respective bar plot.

In Figure 18 a selection has been made in the x + y contribution bar plot,
which can be seen by the black outline around the selected bars.

Figure 18: Comparison of bar plots without selection (left image) and with
selection (right image).

As mentioned, the user can choose to sort any of the bar plots through a
drop-down menu. In combination with selecting variables, sorting makes
it easy to select the set of N variables with the highest values in the sorted
bar plots. When doing this for the top-three bar plots, it means selecting the
variables responsible for the structure over the x-axis, the structure over the
y-axis, or the structure over both axes.

Both the contribution and discrimation metrics can help to find the vari-
ables that are responsible for the structure seen in the observation scatterplot.
Because of this, selecting these variables can be useful to simplify or focus
further analyses when DimRedPlot is used in combination with other tools.
For example, the selection of variables could be used to refine the selec-
tion of variables on which dimensionality reduction is applied, to highlight
the variables in another visualisation, or to reduce the number of variables
shown or used in another visualisation. Some of these possibilities have
been implemented in combination with RParcoords and are discussed in
Section 5.2.4 and Section 5.2.5.

Apart from making variable selections using the bar plots it is also possible
to make selections using the variable scatterplot. When this is done, the
selected bars are coloured red in the bar plots. Chances are that the red bars
are not all concentrated on one part of the bar plots, but are instead spread
out, as shown in the left image of Figure 19. This spread makes it hard to do
anything else with these selections using the bar plot, such as refining the
selection. To remedy this problem, a checkbox is present below the bar plots
that allows a user to first order the bars on selection and then sort the bars
based on the bar plot sorting chosen in the drop-down menu, as shown in
the right image of Figure 19.

4.3 observation scatterplot

The main part of DimRedPlot consists of two scatterplots, one for the obser-
vations and one for the variables. The observation scatterplot displays the
observations projected onto eigenvectors using their factor scores. The eigen-
vectors that the observations are projected on are the ones selected using the
eigen-bar. This is the part of DimRedPlot that most users of techniques such
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Figure 19: Variable bar plots with some variables selected through the scat-
terplot. (Left) The bar plots before grouping on selection. (Right)
The bar plots after grouping on selection.

as PCA will be familiar with, since the results of PCA are usually shown
with a scatterplot.

Although there are other methods for displaying the values of observations
on several axes, such as parallel coordinates, using scatterplots allows a
user to directly see the structure in the explored data, whereas parallel
coordinates makes this step potentially harder. An example of this would
be the situation where the observations form a circular structure on the
selected axes. A scatterplot will immediately show this structure, whereas
parallel coordinates will show the observations as crisscrossing lines with
little immediately visible structure. Furthermore, since the observations in
parallel coordinates are spread out over a line, the different observations can
easily occlude each other through being close together or through their lines
crisscrossing each other. Scatterplots spread the observations over a two-
dimensional area, which means that less occlusion will occur in scatterplots.
Finally, the familiarity that users have with data being plotted on scatterplots
means that users can quickly start working with the visualisation.

Due to restrictions in the way the observations are rendered, there is a
limit on the number of observations rendered in this scatterplot. If more
observations are available than the limit, the observation scatterplot will
simply not be rendered. Currently, the limit is set at 2500 observations, as
rendering more will cause the HTML page to run sluggishly in all popular
browsers. However, in the future this limit could be removed by, for example,
using WebGL or HTML canvas rendering.

Although a simple scatterplot can be helpful in exploring the projection of
the observations onto the eigenvectors, it is rather limited in the information
it provides. The scatterplot in DimRedPlot offers several additional features,
such as excentric labelling and colouring to assist the user further in exploring
the projections. These features are discussed in the following sections.

4.3.1 Axes scaling

Initially, tick marks were rendered on each of the axes in both scatterplots
to indicate what values the observations had on the eigenvectors. Each
scatterplot had a standard size and the projected observations were scaled
in such a way that they filled the scatterplot. An example of how this looks
can be seen in Figure 20. Unfortunately, this can have the effect that vertical
and horizontal distance in the scatterplot have different meanings, making
the scatterplot hard to interpret. Furthermore, when looking at different
combinations of eigenvectors as plot axes, the fact that the entire plot is
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always filled makes it hard to get an intuition for the difference in data-
variance each eigenvector describes. Finally, the tick mark values do not
have a straightforward interpretation, making the displayed numbers quite
meaningless to users.

Figure 20: DimRedPlot with axes rendered.

To address these issues, the scaling of the observations is done in such
a way that all eigenvectors are using the same domain when used as axes.
To achieve this scaling we locate the observations with the minimal and
maximal factor scores on all eigenvectors, and their values are used as axis
domain. This has the effect that when plotting an eigenvector describing a
high data-variance against an eigenvector describing a low data-variance, the
observations along the second eigenvector will lie in a narrow part of the
plot. An example of this can be seen in Figure 17.

Due to this axes scaling approach, no matter what eigenvectors are chosen
as plot axes, the ratio between pixel distance and observation distance in
the projection is constant. Consequently, there is no longer a reason to still
show the axes, and as such the axes are not rendered anymore. Instead, two
small arrows are rendered to represent the eigenvectors used as plot-axes.
Both arrows also display the data-variance described by their eigenvectors.
This makes it easy to see which one is used where as axis, as this would
otherwise not have been entirely clear. To make it clear where the point (0, 0)
resides, which is where observations with average data values lie, a small
plus sign is rendered there.

There is unfortunately a downside to having the same axis scale for all
eigenvectors. When the two eigenvectors used as axes both describe low
variance, the observations are usually rendered in a small cluster in the
center of the plot. The reason for this is that the factor scores of observations
along those eigenvectors are generally small, while the axes scaling is based
on the minimal and maximal factor scores of all observations along all
eigenvectors. This makes it very hard to discern any detail in the structure
projected onto these eigenvectors. To remedy this, an option has been added
to DimRedPlot to temporarily use the full scatterplot area to render the
observations. When this mode is enabled, the axes arrows are coloured red to
indicate the change to the user. Whenever the used eigenvectors are changed,
this mode is disabled again to make sure that users do not accidentally get
stuck in this mode. An example of this mode disabled and enabled can be
seen in Figure 21. Looking at the images we notice that the zoomed image is
actually smaller than the non-zoomed image. The reason for this is that in
this mode, DimRedPlot will only use as much space as necessary, which in
the zoomed case is less than normal.
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Figure 21: The difference between using unified axes, the left image, and
using the full space, the right image.

4.3.2 Colouring

The observations in the observation scatterplot can be coloured. By default,
and as shown in Figure 23, the observations are coloured using the combined
contribution on the two used eigenvectors. However, the colouring can also
be set from outside DimRedPlot, as discussed in Section 5.2.2, which can be
used to colour the points based on an original variable.

A colourmap is shown next to the scatterplot, on which it is written
what is used for colouring the points, e.g., contribution or a variable name.
Interaction with the colourmap is also possible. Dragging the mouse cursor
over the colourmap will result in selecting the observations that have the
colours that are dragged over.

4.3.3 Rotated ellipses

In Section 4.2.1 we discussed the fact that the contribution of the observations
to the eigenvectors is often not that interesting. This is mostly because a
lot of datasets consist of a select set of different variables that describe the
data, while there are countless observations that are individually not that
interesting. However, this is not necessarily always the case; observations
can very well be individually interesting, especially when dealing with
contingency tables. In this case it can be useful to know which observations
are responsible for the formation of specific eigenvectors.

We already saw in the previous section that observations can be coloured
based on their combined contribution to both eigenvectors used as scatterplot
axes. However, this can not tell a user how much of that contribution is to
the x-axis’ eigenvector and how much is to the y-axis’ eigenvector. To solve
this, the observations are rendered as fixed size ellipses with aspect ratios of
1 to 4 that can be rotated. This rotation is based on the ratio dictating how
much of the combined contribution can be attributed to the two eigenvectors
individually. The way this works is that every ellipse that only contributes
to the x-axis’ eigenvector is aligned with the x-axis in orientation. While
every ellipse that only contributes to the y-axis is aligned to the y-axis’
eigenvector. If an ellipse contributes to both eigenvectors, its orientation will
be in between the two axes.
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4.3.4 User interaction

There are several user interactions possible within the scatterplot. When
hovering the mouse cursor over the scatterplot area a circle is rendered
centred on the mouse cursor, as shown in Figure 22. Using the scroll wheel
the radius of the circle can be adjusted. Using the circle it is possible to both
show labels for the plotted observations and to select them. We explore both
possibilities in the following paragraphs.

labelling Looking at the observations, it is not clear what they mean.
Initially, labels were shown for the selected observations, or for the observa-
tions with a sufficiently high contribution value. These labels were simply
rendered at the coordinates at which they were projected, which easily re-
sulted in overlapping labels, making them unreadable. As such, we needed a
better way to place the labels.

Label placement is a difficult problem that is often worked on in the context
of geographical maps. The biggest reason this is such a difficult problem
is the fact that it is an NP-hard problem. Although a lot of work has been
spent in finding fast labelling algorithms, as is shown by J. Christensen et
al. [31], most of the work is focused on solving the problem for geographical
maps. Here, it is generally areas that are labelled, not points. Geographical
maps often have some restrictions on how small the areas can get, making it
easier to find a labelling for these maps. In our case, we are trying to label
individual points without there being any restriction on how densely the
points may be clustered together. In fact, close clustering of points is to be
expected when we are dealing with a high number of them. As such, most
of the proposed algorithms are not applicable to our problem.

In order to label the observations, we have instead chosen to use excentric
labelling [32]. Any observations that fall within the earlier described circle
will have their labels drawn on either the left or right side of the circle.
Lines are rendered from the observations to their labels. To avoid this from
becoming an entangled unreadable mess of lines and labels, the labels are
vertically centred around the circle. This means that if the circle is moved,
the labels are moved as well. The motion of the lines makes it intuitively
clear which label belongs to which observation. An example of the excentric
labels can be seen in Figure 22.

Figure 22: Excentric labels, shown around the mouse cursor.
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When the number of observations rendered is high, there are too many
labels to show using excentric labels. To combat this, the excentric labels are
sorted on the combined contribution to both axes. This has the effect that
if too many labels have to be rendered, the observations with the highest
contribution are still labelled. These are generally the most interesting since
they contribute the most to the data-variance shown in the scatterplot. To
still make it possible to see the label of any observation desired, the user can
scroll the mouse wheel when the circle around the mouse cursor is shown.
This scrolling will result in the circle changing size. The changing in size
allows a user to show the labels of a smaller subset of observations.

Beyond the excentric labelling, it is also possible for a user to obtain
more detailed information about a single observation. This can be done by
making sure that the circle around the mouse cursor only encompasses one
observation. When this happens, a tooltip is used to show the factor scores of
the observation, its contributions, and in case of using CA or MCA, its mass.

selection The circle around the mouse cursor can also be used as a brush
to select observations with. By moving the circular brush while pressing the
left mouse button, all observations in the circle all selected. Unless CTRL or
SHIFT is pressed, any previous selection is removed. Earlier versions used a
rectangle that could be drawn with the mouse cursor; however, sometimes a
wanted selection does not fit a simple rectangle. The circular brush allows
for much more complex selections.

Selecting observations will result in them being given the colour black
or white, depending on whether the background is respectively light or
dark. Black and white have been chosen because they are never part of the
colourmap that is being used, as these colours might not be visible depending
on the background. The size of their ellipses is also slightly increased when
selected. This makes the selection extra clear as it is can be hard to see the
difference between, for example, black and dark blue.The result can be seen
in Figure 23.

When the user makes a selection, the selected observations are also ren-
dered on the colourmap as small lines. This allows the user to see more
exactly what the contributions, or variable values, of the selected observations
are. The colour of the lines are, again, black or white.

4.4 variable scatterplot

The scatterplot showing the projected variables is placed on the right side of
the observation scatterplot. The placement of the two scatterplots has been
chosen to make sure that the bar plots, described in Section 4.2, are close to
the scatterplot showing the variables. This is because both the bar plots and
the variable scatterplot describe variables. Since the bar plots are on the right
side, the variable scatterplot is as well.

There are several elements in the variable scatterplot which are the same as
in the observation scatterplot. The axes scaling and ellipse rotation work the
same for both scatterplots. User interaction involving selection and labelling
using the circle around the mouse cursor can also be used in the variable
scatterplot. The variable scatterplot differs in the fact that the variables can
not be colour mapped, but are instead “sizemapped”. The colour used for
selected variables is also different.
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Unique elements in both scatterplots, such as the colouring, were intro-
duced to make the two scatterplots sufficiently different. Originally, the two
scatterplots were very similar. Early tests with users showed that users were
confused by this and had trouble understanding that the variable scatterplot
showed variables and not observations. With the introduced difference in
both scatterplots the concept of a variable scatterplot has been much easier
to grasp for users. Besides this reason for difference, there is also the reason
that both scatterplots have slightly different use cases.

4.4.1 Size mapping

As described in Section 4.2.1, the contribution variables have to eigenvec-
tors can help explain those eigenvectors and the structure of observations
projected onto those eigenvectors. Although the bar plots in DimRedPlot
can be used to find how much each variable contributes to the eigenvectors,
it is hard to visually link the information displayed in the bar plots to the
variables displayed in the scatterplot. It would be possible to use a com-
bination of colouring and rotated ellipses to solve this problem, but using
colouring in both this scatterplot and the observation scatterplot turned out
to be confusing to users.

Instead of using colouring, the combined contribution to both the x and
y-axis’ eigenvectors is encoded in the size of its ellipse. Here, the contribution
is linear in the area of the ellipses. Originally, the contribution was linear
in the length of the ellipses. However, this had the disadvantage that the
ellipses close to the centre were all very similar in size, while most generally
reside there. Furthermore, when the area of a glyph is not linear in the metric
it encodes, users can have difficulty interpreting the glyph size, as shown in
Chapter 2 of The Visual Display of Quantitative Information [33].

To help the user translate a certain ellipse size to a certain contribution, a
“sizemap” is shown to the right of the scatterplot. This sizemap works the
same way as a colourmap in that it shows for every size what contribution
belongs to it. Above and below the sizemap grey ellipses are shown that
represent the largest and smallest possible ellipses. This helps the user
intuitively understand what the sizemap is meant to represent. Similarly to
the colourmap in the observation scatterplot, interaction with the sizemap is
possible. Dragging the mouse cursor over the sizemap will result in selection
of the variables that have the colours that are dragged. The sizemap also
shows the text “x+y contribution” below it, to make it clear to the user what
the sizemap is representing.

4.4.2 Alternative visualisation

The current way of visualising the variables in the scatterplot is not the only
way that has been experimented with. Other visualisations were developed
but ultimately rejected in favour of the current method of rendering variables.

The first way that the variables were visualised was by using rectangles.
The rectangles were centred around the projected variable. The height of the
rectangles was linear in the contribution of the variable to the y-axis, while
the width was linear in the contribution to the x-axis. Figure 24A shows an
example of variables rendered as rectangles.

The idea of the visualisation was to encode for every variable what the
contributions to the x-axis and y-axis were. However, it can be hard to
visually compare the width to height ratio of two rectangles that are far away
to each other.

A second method visualised the variables as ellipses, just like the current
method. The difference here was that the ellipses were not all the same shape.
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A B

C

Figure 24: Comparison of different variable render methods. (A) Points ren-
dered using rectangles, with width and height corresponding
to respectively x and y contribution. (B) Points rendered using
ellipses, with width and length corresponding to x and y con-
tribution. (C) The current variable rendering. This uses ellipses
with a predetermined shape. Ellipse area corresponds to x + y-
contribution.

The ellipses were all rotated the same way as they currently are, but their
length was linear in the maximum of the x-axis and y-axis contribution, while
their width was linear in the minimum of the x-axis and y-axis contribution.
The result can be seen in Figure 24B. The downside to this method is that
due to the way that variables are naturally distributed, e.g., many near the
average and few extremes, many variables near the average are rendered as
small circles, while the extreme ones are rendered as very long and narrow
ellipses or slightly bigger circles. This makes it hard to easily differentiate
between the different variables.

4.4.3 User Interaction

Selecting variables will result in them being given the colour red, instead of
black or white. Red was chosen since it is a strong contrast with the regular
blue of the ellipses. While choosing selection colours it was also made sure
that the selection colour of the variable scatterplot and the observation
scatterplot were sufficiently different. This was done since a selection of
variables means something different as an observation selection.

A selection made in this scatterplot is also reflected in the sizemap and
the bar plots, as can clearly be seen in Figure 23. The sizemap will display



48 dimredplot

the selected ellipses on their appropriate size. The bar plots will render any
variable selected as a red bar instead of the regular bar. Care was taken to
assure that the colouring in both the scatterplot, bar plots, and sizemap is
the same, e.g., blue for non-selected and red for selected. This helps make
it intuitive that all these items represent the same thing. Figure 23 shows
both observations and variables selected, to illustrate the difference between
observation and variable selections.

4.5 implementation

DimRedPlot is written using JavaScript and D3 [34]. D3 is a library to
easily create visualisations from data. A prevalent pattern in D3 is to design
visualisations as reusable charts. One of the benefits of reusable charts is
that they are easy to deploy and integrate in different systems. DimRedPlot
is also written as a reusable chart. This means that besides being used in
RParcoords, it could very easily be used in other environments.

4.6 discussion

Using elements such as the eigen-bar, contribution bar plots, and excentric
labelling allows DimRedPlot to both study a larger part of the dimensionality
reduced space than other methods generally do, and it makes finding the
relation between the dimensionality reduced data and the original data
easier. DimRedPlot could be used as a stand-alone tool. However, some of
the interactions build into DimRedPlot, such as selection of variables, are only
useful when DimRedPlot is used in combination with other visualisation
techniques such as parallel coordinates. Other features, such as colouring
and observation selection can be useful on their own, but can be greatly
expanded in usefulness when combined with other tools. This is discussed
in the next chapter, where we look at the integration of DimRedPlot into the
larger RParcoords environment.

Currently, the visualisation has been used with PCA, CA, and MCA. Dim-
RedPlot does not contain any code specific to PCA, CA, or MCA. Instead, it
expects its input to be in a certain format. All three dimensionality reduction
techniques can have their results outputted in this format and can thus be
used in DimRedPlot. There are other dimensionality reduction techniques,
such as Multiple Factor Analysis, of which the output can also be given in the
expected format. As such, these techniques are theoretically also supported
by DimRedPlot. The downside to this approach is that certain features of
techniques are not given a lot of attention because they are unique to one
method. An example of this is row and column mass in the case of CA,
which are not encoded into the visualisation even though this may be useful.
Other techniques, such as non-linear dimensionality reduction have output
that does not fit the expected input format to begin with, and changes would
have to be made to DimRedPlot and the expected input format in order to
support techniques like these. Section 7.1.2 discusses with some more detail
what changes would have to be made in this case.
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In Chapter 4 we discussed the design of DimRedPlot. DimRedPlot is meant
to be used in combination with more general visualisation techniques, such
as parallel coordinates or scatterplot matrices. Combining DimRedPlot with
such visualisations means we can link views in such a way that the rela-
tionship between the dimensionality reduced data and original data be-
comes clear. In our case, DimRedPlot has been integrated into a larger
high-dimensional data exploration tool called RParcoords, which is centered
around parallel coordinates, described in Section 2.1.5. This chapter focuses
on how RParcoords works and how DimRedPlot has been integrated with it.

We start this chapter with a discussing of the functionality and design
on RParcoords alone. After this, we look into the many design decisions of
DimRedPlot that were made in the context of the larger visualisation, and
how the interaction between the two visualisations works. At the end, we
have a look at the implementation details of RParcoords.

5.1 design and features

Figure 25 shows an example of RParcoords. In the image, RParcoords is
visualising the biogas dataset described in Section 6.2. The biogas dataset
contains abundance levels off about 30000 DNA fragments in several biogas
reactors. The abundance levels have been measured at 7 different time-points.
The dataset is used to find out what bacteria are present in the biogas reactors.
Looking at the figure we can see that the visualisation is divided into several
parts. On top is a bar with some colouring options, some information on how
much data we are looking at, and an option to switch between a light and a
dark theme. Below the top bar is the actual parallel coordinates visualisation,
spanning the width of the page. Finally, below the parallel coordinates is an
collapsible options menu, from which the visualisation can be controlled.

Through the options menu and the parallel coordinates, users of RParco-
ords have access to a large number of features, such as colouring, selections,
and clustering. The following sections describe which different features
RParcoords offers and why they have been added to RParcoords.

5.1.1 Parallel coordinates

RParcoords is, as the name suggests, centred around a parallel coordinates
visualisation. Using parallel coordinates allows RParcoords to support a
variety of scientific domains and problems in the exploring and analysing of
high-dimensional datasets.

When RParcoords is started the parallel coordinates visualisation displays
a set of variables which is based on the used dataset. Every variable is
represented as a vertical line with the variable name as label and an axis
depicting the variable values. Lines, representing the observations, are drawn
from left to right going through the variable lines. The places along the
variable axes where the observation lines intersect indicate the associated
values of the variables.

49
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The variable labels are rotated at a slight angle to avoid overlap when a
large number of variables are shown at the same time. A user can change the
orientation of the labels by scrolling while hovering over the labels. The user
can also reorder variables by dragging the vertical variable lines around. This
is useful when the default ordering is not the most natural for the particular
dataset.

5.1.2 Selection and filtering

Often, the dataset is too big to be studied all at once, or it might simply be
interesting for the use case to focus on a smaller part of the dataset. In order
to focus on a subset of the dataset, it is possible both to select observations
to highlight them and to remove observations from the dataset.

Selecting can be done by dragging the mouse cursor along one of the
variable lines in the parallel coordinates. The area of selection made by the
user will be indicated with a grey rectangle over the variable line. Since the
selection rectangle does not disappear until the user makes a single click
on the variable line with the rectangle on it, it is possible to make multiple
selections at the same time on different variables. In fact, it is even possible
to make multiple selections on the same variable. When multiple selections
are made the final selection is a logical intersection between all of the smaller
selections. This can be changed by the user to be a logical union.

To make it clear to the user which observations are currently selected,
selected observations are rendered black or white, depending on whether
the theme is light or dark respectively. The selection colours used are, not
coincidentally, the same as those used in DimRedPlot’s observation scat-
terplot, as described in Section 4.3.2. Both the parallel coordinates and the
scatterplot represent the same observations. Turning the visualisations into
linked views, through amongst other things using the same colours, helps
the user to understand this. This idea of linked views is further explored in
Section 5.2.

Filtering allows a user to actually remove observations from the parallel
coordinates altogether. When data is selected, two options appear in the
options menu: “keep selected” and “remove selected”. Selecting these options
will either remove the non-selected observations or remove the selected
observations. The advantage of using filtering is that any further analyses are
performed as if the removed observations do not exists. The most obvious
example of this is that the parallel coordinates are redrawn and it will make
full use of the vertical space. If, for example, outliers have been removed
from the data, the remaining observations are spread out over a larger area
making it easier to study the data. It also means that when clustering or
dimensionality reduction is applied, it is applied only on the remaining data.

5.1.3 Tags

Sometimes, it is useful to come back to a previously made selection later
on in the same session or even in another session. To accommodate this,
RParcoords contains a tagging system. Before this system was in place,
researchers had to write down precisely how they got to a selection in order
to retrieve that selection later on. With the tagging system, researchers can
tag a selection, which is then stored on by the R backend.

The tagging interface, seen in Figure 26, only shows up when tags are
available or when a selection is made. When a selection of observations is
made through whatever means, the user is presented with the option to enter
a new name to create a tag or to enter an existing name to add the selected
observations to a tag or to overwrite a tag. The name of a tag can be given
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in a text-input field which supports autocompletion. This makes it easy for
a user to find and select an existing tag without the risk of misspelling its
name.

Figure 26: User interface for creating tags.

When a tag is created, it is added to a list containing all available tags. The
list of tags is shown below the tag creation interface. Users can select multiple
tags in the list and select the observations represented by those tags in the
parallel coordinates and DimRedPlot. It is also possible to keep the tagged
selections or remove the tagged selections from the dataset entirely. Finally, a
user can also remove existing tags if those are no longer required. To keep
things clear, when a subset of the dataset is being shown because filtering
was applied, only those tags are shown in the list which contain observations
that are in the subset. This means that any tags of which observations are
not shown can not be used to select those observations.

5.1.4 Transparency

By default, transparency is applied to the lines rendered in the parallel
coordinates. The level of transparency can be modified through the options
menu. There are different situations in which transparency is a useful feature.
When the dataset being visualised is quite big, any structure in the dataset can
be hard to see as it might be buried under lines rendered later. Also, because
it is hard to both draw a large number of lines and make lines distinguishable
from each other, the eventual visualisation may simply look like a big blue
blob. Using transparency, areas where only a few number of lines reside have
a more empty look, while areas with more lines look fuller, making it easier
to distinguish different structures in the data. Figure 27 shows the parallel
coordinates with transparency in the top image and without transparency in
the bottom image. In the top image some of the clearly visible structure has
been highlighted. When comparing the top image to the bottom one, we can
see that almost none of the structure visible in the top image is visible in the
bottom image.
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Figure 27: Comparison between rendering parallel coordinates using trans-
parency and without using transparency. (Top) Parallel coordi-
nates with transparency, some of the clearly distinguishable data
features have been highlighted with red lines. (Bottom) Parallel co-
ordinates without transparency. Almost non of the earlier marked
structure can be distinguished here.
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Another benefit of using transparency occurs when visualising a low
number of observations. When only a small number of observations are
rendered most lines can be distinguished in the parallel coordinates. However,
when two or more lines overlap because their observations partially have the
same variable values, it can be hard to see that overlapping is happening.
Using transparency the lines that overlap seem thicker, which allows a user
to spot the overlapping lines. An example of this is described in Section 6.1.3.

The amount of transparency used can be configured in the options. This
is needed as more transparency is needed when more observations are
rendered.

5.1.5 Highlighting

Sometimes it is needed to find the line representing a specific observation
in the parallel coordinates. Especially when a lot of observations are being
rendered at the same time, individual lines can be hard to find.

To support the task of finding a specific observation, a text field resides
in the top bar. When the name of an observation is entered in the top bar,
the line representing the observation lights up, while the rest of the lines are
faded out.

5.1.6 Colouring

Beyond using transparency, selections, and highlighting to discern different
patterns in the data, it is also possible to apply colouring to the lines in
the parallel coordinates. There are several colour schemes and methods that
can be used to obtain different colouring effects. Besides being useful for
discerning patterns in the data, colouring is also useful in combination with
the dimensionality reduction visualisation as described in Section 5.2.2.

To apply colouring, a user can go to the options menu and select “manual
selection”, a variable in the data, or a generated variable such as a clustering
or contribution. When a categorical variable is chosen, including clustering
variables, the user can select a colour set from several sets to apply to the
different categories. The colour sets have been chosen using ColorBrewer [35].
Except for one, the colour schemes are chosen to use many easily discernible
different colours. The exception is a colour map designed to gradually go
from one colour to another. This is useful when the data contains categorical
variables where the categories have a natural order.

Choosing a numerical variable allows the user to choose between 3 con-
tinuous colourmaps and 5 decile colourmaps. The decile colourmaps have
been chosen using ColorBrewer, whereas the continuous colourmaps have
no particular source.

Manual selection allows the user to make selections in the data and then
choose a colour for that selection. The same colour sets available when doing
categorical variable colouring can be chosen to select colours from. When a
selection is made, the colour button in the top bar can be selected to show
a drop-down menu with the colours from the chosen colour set, as seen in
Figure 28. Selecting one of the colours will colour all the observations in the
selection with that colour.

The control this colouring mode gives is useful in combination with Dim-
RedPlot in distinguishing interesting data features such as clusters, as de-
scribed in Section 5.2.2. Beyond this, manual selection is sometimes useful to
use instead of categorical variable colouring. When using categorical variable
colouring there is no control over which categories get which colours. Using
manual selection gives a user more control over this which is useful when
a user suffers from colourblindness and can only discern specific colours,
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or when the standard colour schemes are not discerning enough in them-
selves. In this case, a user has to make sure the categorical variable is shown
in the parallel coordinates, select a category of the variable in the parallel
coordinates, and apply a colour from the drop-down menu.

Figure 28: Colouring a selection in the parallel coordinates using the “manual
selection” mode.

5.1.7 Variable ordering

One of the problems when dealing with parallel coordinates is that the order
of the variables is by default arbitrary, which can make it hard to detect
patterns within the data. To combat this, an option is present that allows a
user to order the variables based on some criterium. Currently, the variables
can only be ordered on one criterium. This criterium is the screen-space
height in pixels to which the average value of the variable would be mapped.
The effect of ordering the variables is that the variables with low valued
outliers are shown to the left, while variables with high valued outliers are
shown to the right. In theory there should not necessarily be a correlation
between two variables with the same type of outliers; however, neighbouring
variables will now share the part of their domain where most observations
reside, which makes it easier to visually compare them. By default, variables
may be ordered in a highly chaotic way, having the interesting parts of their
domain constantly jump up and down visually.

Even though variable ordering can make parallel coordinates less chaotic,
when a selection is made in the parallel coordinates, the selection can still
move very chaotically through the parallel coordinates. Because of this, when
a user makes a selection with variable ordering turned on, the variables are
ordered on the selection instead of on the entire dataset. This allows a user to
quickly see where the values of the selection is highest or lowest on average
and in variance. Figure 29 shows an example of variable ordering based on
a selection. Here we can clearly see that the selection on the left-most and
right-most variables is lower in variance but has higher and lower average
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Figure 29: Variable ordering applied to parallel coordinates based on the
pixel height of the average selected value.

values, while the selection has a higher variance on the variables in the
centre.

5.1.8 Clustering

Due to certain use cases requiring it, there is clustering support within
RParcoords. Although the support for clustering is not really relevant in
the context of DimRedPlot, clustering is used in the evaluation so a short
explanation of the option will be given here.

From the options menu both k-means clustering and hierarchical clustering
can be performed. The k-means clustering is performed on standardised
data using an Euclidean distance metric. The hierarchical clustering uses the
Pearson correlation coefficient as metric. Several parameters can be chosen for
the clustering methods, such as the number of clusters for k-means clustering.
The actual clustering is performed on the observations in the dataset that are
currently visible, e.g., the filtered out observations are ignored. The clustering
is performed by the R backend, and the resulting clusterings are stored as
categorical variables in the dataset. Every observation in the dataset is given
a number for this variable indicating the cluster that observation is in. Storing
the clusterings in the backend means that the clusterings can be used in the
visualisation even after closing it and later starting it again.

5.2 dimredplot interaction

RParcoords contains support for displaying DimRedPlot instances in its
visualisation. One of the pages in the options menu is devoted to perform-
ing dimensionality reduction on the dataset currently being visualised. To
perform dimensionality reduction, a user will first have to select the desired
method, PCA, CA, or MCA, after which variables can be selected from a
list of appropriate variables for the selected techniques. The resulting Dim-
RedPlot instance is rendered below the parallel coordinates aligned with the
right screen border.

Several interactions between the features in RParcoords, such as parallel
coordinates and colouring, and DimRedPlot have been development to allow
DimRedPlot to be used effectively in combinating with RParcoords. Figure 30
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displays an example of RParcoords with multiple DimRedPlot instances.
Some of the core interactions between RParcoords and DimRedPlot have
been outlined in the image and are discussed in the following sections.
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5.2.1 Multiple DimRedPlot instances

A user can do multiple dimensionality reductions and the resulting Dim-
RedPlot instances will be placed next to each other. This is the main reason
that the options menu is collapsible as there would otherwise not be enough
horizontal space. There is no practical limit to the number of DimRedPlot
instances being shown to each other; however, when a user performs di-
mensionality reduction using PCA, CA, or MCA, any existing DimRedPlot
instance showing the results from the same technique will be overwritten.
For example, if there is already a DimRedPlot instance displaying PCA re-
sults and PCA is performed again, the existing DimRedPlot instance will be
filled with the new PCA results. As a result, it is only possible to show three
DimRedPlot instances next to each other.

Even though three DimRedPlot instances can be shown next to each other,
it would be unwise. Unless a extremely wide screen is used, the DimRedPlot
instances would only have a small horizontal area and would thus be greatly
compressed. This would make it hard to distinguish the different features of
the visualisation.

Having multiple DimRedPlot instances next to each other can be very use-
ful. Any selection of observations made in one of the DimRedPlot instances
is synced with the other instances, which allows for easy interaction between
the different visualisations. An example of when this is useful is when a
user wants to study both categorical and numerical variables at the same
time. None of the supported dimensionality reduction techniques allow both
numerical and categorical data to be processed at the same time. However,
by showing the results of MCA and PCA next to each other, it is possible to
see the relationship between the two analyses.

To support users’ understanding of the relationships between observa-
tions in different dimensionality reduction analyses, the visualisation of the
DimRedPlot instances is slightly modified. Whenever a second DimRedPlot
instance is added, the left-most instance will be horizontally reversed. This
means that the bar plots will be drawn on the left, the variable scatterplot
will be drawn in the centre, and the observation scatterplot will be drawn
on th right. The effect of this is that the observation scatterplots of both
DimRedPlot instances are next to each other. Because the observations in
both scatterplots are the same, it makes sense to have them closer together.
The variables in both instances will always be disjunct to each other, which
makes it logical to render them far from each other. Not only is this setup
more intuitive, it also lessens the screenspace that the eyes have to traverse
to compare a selection of observations in one DimRedPlot instance with
a selection in the other instance. An example of this setup can be seen in
Figure 35 and Figure 36 in the evaluation.

5.2.2 Colouring

In Section 4.3.2 it is mentioned that DimRedPlot supports colourmapping of
the plotted observations. Using this colouring support, any colouring that
is applied to the parallel coordinates, as described in Section 5.1.6, is also
applied to DimRedPlot. This way, the observations in both DimRedPlot and
the parallel coordinates are always coloured the same way. This helps not
only to make things clear for the user as one colour will always mean the
same thing, but also to better see the relationship between the observations
in both visualisations.
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Colouring observations in DimRedPlot can serve several purposes. Colour-
ing the observations based on some variable is useful to help the user
understand the relationship between the original data shown by the parallel
coordinates and the dimensionality reduction results. An example would be
if the dataset contains a variable that should be or is important for the partic-
ular use case. To find out what the relationship is between the observations
in the scatterplot and this variable, a user can look at the contribution bar
plots described in Section 4.2. However, this can still be a bit abstract whereas
colouring the observations based on the variable can feel much more natural
to the user as the relationship between the dimensionality reduction and the
original data is directly visible.

Another use case of colouring is to link structure in DimRedPlot to struc-
ture in the Parallel Coordinates. An example of this would be the use case
where clusters can be seen in the dimensionality reduction visualisation. A
user can in this case use “manual selection” colouring and choose a colour
set. After this, the user can select a cluster in DimRedPlot using the circular
brush, select a colour from the drop-down menu, and repeat until all clusters
are coloured. The lines in the parallel coordinates will be coloured the same
as in DimRedPlot. By giving each cluster a different colour, the clusters can
easily be discerned and studied in the parallel coordinates. Figure 31 shows
an example where clusters in DimRedPlot have been coloured. The colouring
makes it clear how the clusters shown in DimRedPlot relate to clusters in the
parallel coordinates.

When dealing with two DimRedPlot instances, the structure in both Dim-
RedPlot instances can be compared the same way as with structure in the
parallel coordinates. Simply colouring observations in one of the DimRedPlot
instances will apply the colouring in the other DimRedPlot as well. This
makes it very easy to compare how structure in one DimRedPlot instance
is related to structure in the other instance. An example of usage would be
the case where both numerical variables and categorical variables have been
dimensionality reduced, and the user wants to find out whether clusters in
one of the DimRedPlot instances match clusters in the other instance.

Finally, where colouring can also help is when the observations in a
DimRedPlot instance are coloured by variables that were not used to perform
the dimensionality reduction. For example, say that clusters can be seen in
the scatterplot after DimRedPlot has been initialised with numerical data.
An interesting question might be how these clusters correspond to certain
categorical variables, as it could be the case that every cluster aligns with a
category in a categorical variable. Colouring based on the categorical variable
can very easily and quickly show whether such a relationship exists, as the
colours of the different categories will also be applied to the observations
projected in DimRedPlot.

5.2.3 Selections

Similarly to colouring, any selection of observations in either DimRedPlot
or the parallel coordinates is also synchronised. Selected observations are
in both cases coloured the same, either black or white depending on the
background colour. Synchronising the selections is most useful in getting
a quick overview of the relationship between DimRedPlot and the parallel
coordinates. It is for example simple to find out how a cluster in DimRedPlot
appears in the parallel coordinates. Although this can also be done using
colouring, if only a quick overview is needed, making a simple selection is
much faster.

When the dataset that is being visualised is quite big, it is infeasible to show
names for every line in the parallel coordinates, which otherwise could be
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done as a categorical variable. However, by selecting the observations in the
parallel coordinates, the same observations will be selected in DimRedPlot,
and the excentric labelling can be used to figure out what the names are of
the selected observations.

Selections are also useful to find out more detailed information about indi-
vidual observations or small groups of observations shown in DimRedPlot.
Since selections in DimRedPlot show up in the parallel coordinates, small
groups of observations can be selected in DimRedPlot, after which a user can
quickly see what the actual values are of those observations on the shown
variables. For example, if DimRedPlot contains outliers, they can be selected,
which will make it clear which values those outliers have on the parallel
coordinates. This information can then be used by the user to explain why
the outliers are outliers.

All in all, selections are useful to quickly see the relationship between the
dimensionality reduction and the actual data. Furthermore, selections can be
used to gain insight on observations in both the parallel coordinates and in
DimRedPlot which could otherwise only be gained through just one of the
visualisations.

5.2.4 Variable selection

In Chapter 2 we discussed the fact that many general visualisation techniques,
such as parallel coordinates are severely limited in the number of variables
they can display. In order to have such visualisations be useful, it is important
that users have a good way of selecting which variables are shown based on
criteria important to them. In DimRedPlot, this task can be achieved through
the selection of variables.

Selecting variables in DimRedPlot can be done through the variable scat-
terplot, the sizemap, or the bar plots. When variables are selected they are
added to the current set of variables shown in the parallel coordinates. This is
not permanent, as any new selection of variables will remove the previously
added variables and add the newly selected variables. Adding variables dy-
namically may not always be desirable so it can be turned off in the options
menu.

To determine which variables are interesting to add to the parallel co-
ordinates, a user can, for example, look at the variable bar plots within
DimRedPlot. As described in Section 4.2, DimRedPlot contains bar plots
showing the contributions of variables to the eigenvectors used as axis. Es-
sentially, these bar plots tell us which variables are responsible for the data
structure projected onto the eigenvectors.

Which bar plot to use for selecting variables depends on which eigenvectors
define the structure that is interesting to the user. If most of the structure
is aligned with the x-axis’ eigenvector, the x-bar plot should be used. For
structure aligned with the y-axis, the y-bar plot should be used, and when
the structure is not aligned with any of the two eigenvectors individually,
the x + y-bar plot should be used. Once the user knows which bar plot is
needed, he or she can drag the mouse cursor over the bar plot to select
the highest bars. This workflow is visualised in Figure 32. The width can
depend on several reasons. It could be that the user has a number of variables
in mind, in which case it is possible to just select a set-size matching that
number. Another reason is that the user wants to select a number of variables
cumulatively describing a high enough data-variance. This can be determined
by the percentage that appears above the bar plot on selection.
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Another use case is to use this technique to confirm conclusions drawn
from DimRedPlot. For example, say that DimRedPlot displays three clusters,
which are mostly split by the second eigenvector, as is the case in Figure 32.
To find out which variables are responsible for these cluster we can examine
the contribution bar plot of the second eigenvector. By selecting the variables
with the highest contributions to this eigenvector, the variables will be shown
on the parallel coordinates. Now a user can easily confirm that the selected
variables are in fact responsible for the clusters by selecting the clusters and
looking at the added variables in the parallel coordinates. The clusters should
be easily distinguishable from each other across the selected variables. This
distinction can also clearly be seen in the final step in Figure 32.

5.2.5 Iterative dimensionality reduction

Sometimes, when a user performs dimensionality reduction, the resulting
DimRedPlot instance gives the user all the information he or she wants
and nothing more has to be done. However, often this is not the case and
dimensionality reduction needs to be performed iteratively until the desired
results are obtained. There are two ways in which RParcoords supports this.

selecting variables : Whenever a selection of variables is made using
DimRedPlot, the variable selection list in the option menu, used for deter-
mining the variables to be analysed using PCA, CA, or MCA, is updated
to reflect this selection. All the previous selections in this list are removed
and the current selection is added. This allows the user to make a selection
of variables, press the reduce button, and dimensionality reduction will be
performed on the selection of variables that is made.

Redoing dimensionality reduction on a user selection is useful for several
reasons. One reason is that a user may simply be interesting in a smaller set
of variables based on domain knowledge. In this case the first dimensionality
reduction acts to give more of a global overview, after which the user can
zoom in on a subset of the data. There is no clear flow to be described for
this use case, as it is highly depended on the dataset being used and the use
case associated with the dataset.

Another reason for redoing dimensionality reduction is to simplify the
analysis. For example, say that two separate clusters can be distinguished on
the first two eigenvectors. The user can in this case select the variables with
a high value in the x + y contribution bar plot, which will be responsible
for the clustering, and redo dimensionality reduction. This will simplify the
analysis as there will be less generated eigenvectors, and it also means that
the clusters might be a bit more refined since noise from other variables
is removed. Decreasing the number of variables to study will also simplify
any further analyses. For example, a smaller set of variables may fit on the
parallel coordinates, whereas the larger set did not. The use case here is
very similar in nature compared to the one Rauber et al. [30] focus on. They
use several potential metrics, instead of just contribution, to score variables
and based on these scores select a smaller set of variables. This process is
done iteratively until a sufficiently small but accurate selection of variables
is obtained. The reduced number of variables makes it easier to do further
analysis or classification using the data.

filtering observations : Using the filtering described in Section 5.1.2
dimensionality reduction can easily be redone on the observations remaining
after the filter operation. After filtering, the user can press the reduce button,
resulting in dimensionality reduction to be redone on the filtered data.
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A potential problem of techniques such as PCA is that if there are extreme
outliers in the data, the variance in the rest of the data does not always show
on the first few eigenvectors. In this case, the results are dominated by the
outliers. Although it is possible for a user to change the eigenvectors to find
the variance in the rest of the data, this can be a lot of work and there is no
guarantee that the variance in the data the user is looking for is aligned with
just one or two eigenvectors. Instead, a user can brush the outliers using the
circular brush in the observation scatterplot and press “remove selected” in
the options to filter the outliers out of the data. After removing the outliers
the user can redo dimensionality reduction and study the structure in the
rest of the data.

More generally we can say that to find out how a subset of observations
projected onto the first eigenvectors is structured, there are two things a user
can do. A user can either look through the other eigenvectors or select the
subset of observations he or she is interested in, press keep selected, and
redo dimensionality reduction.

Finally, the user may have a good reason to redo dimensionality reduction
because of the use case and dataset. For example, say that ten different plants
have each been measured ten times for specific chemicals, resulting in 100

observations. A user might be interested in seeing PCA being done on all the
observations, but also on the observations belonging to a certain plant or to
a certain time-point. In this case, the same procedure can be used regarding
filtering and redoing dimensionality reduction.

5.3 implementation

As the name RParcoords suggests, the backend of the visualisation is written
using the R programming language [36]. The frontend is written using
JavaScript and AngularJS. The parallel coordinates visualisation uses an
existing D3 parallel coordinates implementation [37]. To have the JavaScript
communicate with the R backend, OpenCPU [38] has been used. OpenCPU
offers a RESTful API that allows any application to call R functions and
retrieve the result as a JSON structure.

The R backend is responsible for several tasks. It stores and retrieves
the used datasets, which is done using SQLite. Dimensionality reduction is
performed using FactoMineR [39] for PCA and CA, and the ca package [40] is
used to perform MCA. Finally, clustering is also performed in the R backend.

The fact that RParcoords has been written using JavaScript makes deploy-
ment to the end-users easy, since all the end-users need is a webbrowser and
an address to the webserver serving RParcoords through OpenCPU.

5.4 discussion

By combining DimRedPlot with the larger visualisation tool RParcoords,
many user interaction that were not that useful in DimRedPlot as stand-
alone tool have become very useful. Interactions such as observation selection
and colouring in both the parallel coordinates and DimRedPlot can offer
extra insight into the projections generated by dimensionality reduction and
also into the original data itself. Using multiple DimRedPlot instances and
allowing interaction between them allows users to quickly and easily see
the relationship between categorical and numerical dimensionality reduced
data. Furthermore, selecting variables in DimRedPlot makes it possible for
users to utilise the parallel coordinates much more effectively because of the
greater control on the displayed variables. Finally, the easiness of iteratively
performing dimensionality reduction should make analyses flexible, as no
new complicated setup is needed to obtain new results.
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Of course, the question remains how useful actual users will experience
the many features discussed in this chapter and the previous chapter on
DimRedPlot. As such, the next chapter discusses evaluations performed with
users in order to discuss the actual usefulness of the features shown.
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To evaluate the developed visualisation and interactions, several researchers
at the Luxembourg institute of Science and Technology, or LIST, have used
the visualisation with data of their own. This gave us the chance to evaluate
RParcoords and DimRedPlot using actual use cases and datasets in a setting
for which they are designed to be used.

Two datasets have been studied using RParcoords and DimRedPlot, result-
ing in two evaluations. Between the two evaluations there is a big difference
in scope, use cases, and results. The first evaluation concerns vineyards in
Luxembourg, and the second evaluation concerns biogas production and
contig binning. The evaluations are structured as workflows that start at the
start-up of the visualisation and end with the users obtaining some result or
coming to some conclusion.

6.1 vineyards in luxembourg

At the LIST, researchers are studying the properties of several vineyards and
of the wine produced there. In total 23 vineyards have been studied. 21 of
the vineyards are located in Luxembourg along the Moselle river and 2 are
located in Germany and have been added as a control group. The vineyards
are located in different regions, called terroirs in the context of vineyards.
These terroirs are distinguishable by different environmental properties,
such as the soil and the climate. Measurements have been taken at the 21

Luxembourgish vineyards and the 2 German vineyards. The measurements
include properties of the soil, properties of the wine, and other properties
such as which plant the plants are cloned from or how much space each
plant has.

The goal of the research is to find out whether wines originating from
different terroirs can be distinguished based on their chemical properties and
taste. At the time of the evaluation, the dataset was not complete, as some
chemical data regarding the wine was still missing and the wines had not
been tasted yet. However, the dataset was complete enough to perform an
exploratory analysis, verify assumptions underlying the research, and to test
some initial hypotheses.

As we are trying to find out if one group of variables influences another,
we can group the variables into independent and dependent variables. The
dependent variables are those describing properties of the wine, while the
independent variables describe properties that might influence the wine. The
independent variables are the variables describing the soil, but also other
variables such as the ones describing what clones the plants are and how
much space the plants have. These other variables are also called covariates.

A problem that this dataset faces is the fact that not all variables are
of the same type, some are numerical while others are categorical. The
dependent variables are all numerical, while the independent variables are
both numerical and categorical. Since PCA can only analyse numerical data
and MCA can only analyse categorical data, the two techniques have to be
combined in order to study the dataset.

The strategy the researchers normally use to study the dataset is divided
up into the following four steps:

1. Determine whether the different terroirs can be distinguished.

2. Determine whether there are different distinguishable wines.
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3. Find a link between different terroirs and different wines.

4. Find out if covariates are influencing the different wines.

It is known that the vineyards are located on different terroirs. If the first
step fails, this means that even though different terroirs do exist, the data
is apparently not sufficient enough to show the distinction between these
terroirs. If, according to the data, no different terroirs exist, they can not
possibly be linked to different wines.

Since the question is whether the terroirs influence the wine, there needs
to be a difference in the wines. If the second step fails and the wines are
indistinguishable, then it is impossible to determine whether something is
influencing the wines.

If there are both different terroirs and at the same time there is a difference
in the wines, the next question would be if the different terroirs are influenc-
ing this difference in wines. This is what the third step tries to figure out,
and it would answer the main question of the study.

Finally, it is also interesting, especially if the previous steps have weak
results, to see if the covariates are influencing the different wines. It could
be that things like who grows the wine, which clone the plants are, or how
much space a plant has influences the chemical properties of the wine more
than the soil the plants are grown on.

6.1.1 Evaluation setup

Four people were present during the evaluation. Two of the attendees were
researchers working on the vineyard research, while we were the other two
attendees as developers of RParcoords and DimRedPlot. Fitting four people
behind one monitor is a bit hard, so a beamer setup was used instead. RPar-
coords was shown on a beamer screen with the two researchers standing
next to it. We controlled the visualisation through a connected computer and
made notes of the evaluation. During the evaluation, the researchers asked
for certain actions to be performed in the visualisation, while we every now
and then gave suggestions of useful actions that could be performed using
RParcoords. It would have been possible to also have let the researchers
control the visualisation, but the researchers had limited to no previous
exposure to RParcoords. Controlling the visualisation ourself based on in-
structions from the researchers allowed us to slowly show how RParcoords
works and what actions are possible, without spending a large amount of
time explaining every aspect of RParcoords and DimRedPlot.

The evaluation itself consisted of performing the previously mentioned
four steps on the provided dataset. A detailed explanation of the four steps
and the findings that were made by the researchers are detailed in the
following sections.

6.1.2 Distinguishing the terroirs

In the region that the vineyards are located, two major geological soil types
or terroirs exist, muschelkalk and keuper. Figure 33 shows a map with the
studied Luxembourgish vineyards and the terroirs that they are in. It should
be the case that the variables describing the soil form a structure in which
the two geological types can be distinguished. Should this not be the case, it
will be impossible to find a link between the wines and the terroirs they are
growing in.

To answer the question whether the terroirs can be distinguished, MCA
was performed on the soil variables. Not all categorical variables are soil
variables, so a selection had to be made before MCA could be performed.
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Figure 33: Location and geology of the studied vineyards in Luxembourg.
Source: Schumacher [41].

The initial results showed a cluster of points with three distinct outliers,
seen in Figure 34A. Using the circular mouse brush, it was found that two
of the outliers were in fact the two vineyards from Germany put in as a
control group. These vineyards have been marked with a red “Germany”
in the image. As the soil type of these vineyards is quite different they
are shown as outliers. As described in Section 5.2.5, outliers can mess up
dimensionality reduction by hiding other structure in the data. As such, the
German outliers were selected and filtered out, and the MCA was redone,
resulting in Figure 34B.

The second MCA showed two large clusters and three outliers. The re-
searchers wanted to know how the clusters matched up with the different
terroirs. According to the researchers the information about the terroir a
vineyard is in was stored in the geology variable, which is a categorical
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Figure 34: Four stages of analysis. (A) Initial MCA on all observations. The
outliers marked with the red 1 and 2 are positionally between
the two main terroirs. The outlier marked with the red 3 has
imported soil. (B) Outliers from Germany, tagged in A with a red
“Germany”, have been removed. (C) Observations are coloured on
geology. (D) The eigenvectors used as projection axis have been
changed.

variable with the different terroirs as categories. As such, we suggested
to use colouring based on the geology variable. To colour the points, the
geology variable was added to the parallel coordinates and the different
categories were selected and coloured from there using the manual colouring
option. Figure 34C shows this colouring, and it can clearly be seen that
the two clusters separate the muschelkalk vineyards, blue, from the keuper
vineyards, red. The three outliers, marked throughout the images with a 1, 2,
and 3, could also be explained by the researchers in the same terms. The two
outliers marked 1 and 2 are actually positionally between the muschelkalk
and the keuper regions in, and the outlier marked 3 uses soil that has been
imported from different regions over the years.
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Figure 35: MCA on the categorical terroir variables next to PCA on the
numerical terroir variables. The Luxembourgish outliers have
again been marked with a red 1, 2, and 3.

At this point it was noted that the geology variable was actually part of
the MCA, which could influence the analysis. However, after removing it
and redoing MCA the resulting scatterplot looked the same. The amount of
data-variance described by the first two eigenvectors was a little less than
20%, which is not a lot. To see if the divide between the terroirs was also
present on other eigenvectors, the eigenvectors were rotated through, as
described in Section 4.1.2, and it was found that the third eigenvector shows
the same structural divide. Projecting the points onto the other eigenvectors
showed a mixing of the two geological groups. In total the structure was
visible in a little less than 30% of the data-variance.

Finally, although the categorical soil variable showed that it was possible
to distinguish between the different terroirs, there were also some numerical
soil variables. Because it would be interesting to see if the same could be said
here, PCA was performed on the numerical soil variables. As RParcoords
supports multiple DimRedPlot instances next to each other it was easy to link
the numerical soil variables with the categorical soil variables. The result can
be seen in Figure 35. In the PCA plot, the same separation of terroirs could
be seen, albeit with some minor miss-classifications. This helped solidify the
researchers’ hypothesis that the different terroirs are distinguishable using
the measured soil variables.

6.1.3 Distinguishing wines and linking to terroirs

After having found that the terroirs can be distinguished using the measured
soil properties, we had a look at the variables describing the wines. All
the wine variables are numerical so PCA was performed on them and the
results replaced the current PCA results. Unlike the MCA results for soil
variables, no clear structure could be seen in the wine variables, which made
the researchers wonder whether the addition of the then missing variables
would change this.

The PCA results did show a divide between the two geological soil types;
however, the separation was not perfect. The top-right part of the plot only
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Figure 36: MCA on the terroir variables next to PCA on the wine variables.
The Luxembourgish outliers have again been marked with a red
1, 2, and 3.

showed blue points, while the bottom-left part of the plot showed more of a
mix between red and blue points, as seen in Figure 36.

In order to get a better idea of the structure in this part of the data, we
suggested that the variables in the PCA plot be selected to show them on
the parallel coordinates. Next, the variables were ordered on average value,
as described in Section 5.1.7. The resulting parallel coordinates can be seen
in Figure 37. The figure quite noticeably shows that one line through the
parallel coordinates is thicker than the rest. This is the result of the fact that
that line consists of three vineyards with the same values. Had transparency
not been used in the parallel coordinates, this would have been overlooked.
By selecting the lines in the parallel coordinates we could see their names in
the PCA DimRedPlot instance. Based on these names, we knew that these
vineyards were given averages as values, as the grapes in these vineyards
had been harvested before measurements could be taken on them. These
vineyards were filtered out and PCA and MCA were redone. However, the
results were not changed significantly because of this.

6.1.4 Influence of covariates

Seeing the slightly disappointing results of the previous step, the researchers
wanted to know what the influence on the wines was of the covariate vari-
ables. Unfortunately, the covariates are part categorical and part numerical.
As such, there is little point in performing MCA, and performing PCA would
overwrite the current PCA DimRedPlot instance. Instead, the covariates were
selected in the options menu to be shown on the parallel coordinates.

The two red outliers at the bottom of the PCA plot in Figure 36 were
selected to see which values they have on‘ the covariates. The selection could
be seen as black lines on the parallel coordinates, and it showed that both
points were similar in the amount of distance between the plants and the
yield of the plants. This may suggest that sun-exposure has an influence
on the chemicals, which leads to similar properties of wines in different
geologies.
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Figure 37: Dependent variables as parallel coordinates. The variables have
been ordered on average value. The thick red line are three obser-
vations with the same average data values

6.1.5 Final results and remarks

The total session took about 2 hours and the results of the analysis were
useful to the researcher to get an idea of how their data is structured and
what needs to be done to advance with their research. The notes taken during
the evaluation will be used to form a report on the progress of the research.

The reaction of the researchers to RParcoords and DimRedPlot was very
positive. The tools made investigating the vineyards data easy and fast. It was
especially noted that the tools made the exploring of relationships between
numerical variables and categorical variables easy, as this can otherwise be a
hard thing to do.

The following is a quote from one of the researchers regarding RParcoords
and DimRedPlot: “The tool helped us by allowing a quick screen, which
data are worth a closer look and which ones are not. I really appreciated
that no re-arrangement of the data was needed to check multiple hypothesis
in sequence. Furthermore, methods that are separated in other tools were
combined, and objects and variables were traceable in different plots /
across different analyses. Compared to other tools it is more interactive,
flexible, and visually driven. My feeling was that persons who are at least
superficially familiar with PCA and MCA should not have much difficulties
understanding the visualisation.

There were some possible improvements I could think of. From time to
time I wondered if the parallel coordinates are really superior over a multiple
scatter plot approach. I could imagine that replacing the parallel coordinates
with multiple scatter plots could enhance the intuitive comprehension of the
information in complex data sets, but I fear that conventional monitors are
too small to have all information on the same screen. So far, I have no idea
how difficult it is to upload data, because you did it. Allowing easy upload
of data by users is crucial for wide use. Finally, Some kind of statistical
test that gives the user an idea if a specific sub-group of data is over- or
under-represented in another sub-group would be useful and valuable for
cases where the distinction / grouping of objects or variables is not perfect
and overlaps are found. Maybe Chi-square?”
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6.2 dna contig binning

The research in the second evaluation concerns biogas production. Biogas
is gas produced by feeding bacteria organic matter, such as food waste and
manure. Anaerobic digestion within the bacteria turns the organic matter
into a mixture of different gases such as methane and CO2. For this research
several biogas reactors have been set-up containing an estimated 10000 to
30000 different bacteria, many of which are low-abundant. The researchers
want to find out what the most prominent bacteria are and what there
function is in the process of producing methane.

At different times during the experiment samples of bacteria were taken
from the reactors and their genomes were analysed using shotgun sequenc-
ing, resulting in many strands of smaller DNA sequences. By looking at
overlap in the different sequences, existing software tries to combine these
small DNA sequences into larger sequences or contigs. Unfortunately, com-
bining the sequences is a combinatorial problem and it can not be solved
reasonably to obtain full DNA strands. In order to still find out what bacte-
ria were present in the reactors, the individual contigs have to be grouped
together some other way in order to form a complete genome, which is also
known as contig binning. To perform the contig binning, RParcoords is used.

The dataset resulting from the shotgun sequencing contains approximately
30000 contigs as observations. The dataset has a variable dictating the length
of each contig and a variable with counts of the number of occurrences of
CG’s in the contigs. Beyond this there are 7 variables describing relative contig
abundance levels. These abundance levels indicate the number of contigs that
were present in the containers with every variable being at a different time-
point. Finally, the dataset contains 128 variables that contain the normalised
frequency of four-letter DNA combinations, or tetranucleotides, such as
ATCG and AAAT, in the contigs. These variables combine structural and
behavioural information about the genomes of bacteria in the reactors.

The dataset generated by this research had already been studied for quite
some time before this evaluation took place. One way this was done is by
looking at the abundance levels. If contigs belong to the same bacterium their
growth or decline in abundance over time should be similar. To study this
growth and decline, the parallel coordinates in RParcoords are used. Parallel
coordinates allow for showing the different abundance variables next to each
other, making the different abundance flows very apparent. An example of
this can be seen in Figure 38, which shows some easily spotted abundance
flows in RParcoords.

Unfortunately, parallel coordinates alone are not enough to find the dif-
ferent bacterial genomes. To further support this task, k-means clustering
and correlation clustering has been used on the abundance variables. When
clustering is used on the abundance variables, every cluster is likely to con-
tain a selection of contigs with a similar abundance flow, but with a distinct
abundance flow when compared to other clusters.

Just like abundance variables, the tetranucleotides frequency variables can
also be used to distinguish different genomes from each other. The contigs
of one genome generally have similar tetranucleotide frequencies. This dis-
tinction is however not as clear as with the abundance variables. Before the
addition of DimRedPlot to RParcoords, the tetranucleotides variables had
only been used a little bit in order to distinguish different genomes from
each other.

Finally, selections of contigs are also tested for the presence of essential
copy genes. Essential copy genes are a set of 107 genes that are the bare
minimum a bacterium needs to be viable. Most bacteria only have one of
each of these genes in their genome. This knowledge can be used to find
out if a selection of contigs belongs to the genome of one bacterium. The
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Figure 38: Parallel coordinates showing contigs following different flows
through the abundance variables.

selections should have a sufficient number of essential copy genes and it
should not contain many or any duplicates of those genes.

6.2.1 Evaluation setup

For this evaluation, two persons were present. The first attendee was a re-
searcher working on the described project, while the second attendee was
one of the developers of DimRedPlot and RParcoords. As mentioned, the
researchers working on the described research had already been working
with RParcoords before the evaluation. As a result, RParcoords and Dim-
RedPlot were controlled by the researcher, while the developer took notes
and every now and then gave the researcher some directions on the usage
of DimRedPlot, as DimRedPlot had not been used before by the researcher.
However, little explanation was needed for the researcher to get a good grasp
of how DimRedPlot worked.

Because the dataset was already extensively studied, the evaluation mostly
involved using the tetranucleotides frequencies to solidify previously made
conclusions. For example, if a selection of contigs is thought to belong to one
genome but it has two distinct distributions of tetranucleotides frequencies,
the selection is probably made out of two genomes instead of one. During
the evaluation multiple existing conclusions or open questions have been
addressed using the addition of DimRedPlot to RParcoords. Because the
tetranucleotides variables are frequencies, CA was used as dimensionality
reduction technique on them.

6.2.2 One selection might be two genomes

The first case looked at in the evaluation concerned a selection of contigs
that formed one cluster in the correlation clustering, but two in the k-means
clustering. The selected contigs looked very similar in the parallel coordinates,
but the k-means clusters had some overlap in essential copy genes, which
created the suspicion that there must be more than one genome in the
selection.
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The first thing to do was to find the selection of contigs again, which was
done through showing the clusterings as variables in the parallel coordinates
and selecting the clusters in question. After making the selection and filtering
the rest of the contigs out of the visualised dataset, CA was performed, which
resulted in the contigs being projected as one big cluster without any distinct
structure. At first glance, this suggested that the selection was in fact just
one genome. There were two outlier contigs present in the projection, which
were removed to make sure they were not hiding any structure, as described
in Section 5.2.5. However, redoing CA yielded the same results as before.

To further investigate the relation between the projected structure of the
contigs’ tetranucleotide frequencies and the contigs in the k-means clusters,
the individual k-means clusters were selected and manually given different
colours. As a result the contigs in DimRedPlot were also coloured, which can
be seen in Figure 39. As the image shows, both k-means clusters show up
as different clusters in the projection. Although both clusters are occupying
the same area, one of the clusters is much denser and limited to one area,
while the other cluster is much wider. This showed that the two groups
of contigs were in fact different when it comes to their tetranucleotides
frequency distributions, supporting the original suspicion that there were
in fact two genomes. As a result of this additional analysis, the researcher
could conclude that the contigs form two genomes of new bacteria from the
phylum Firmicutes.

Figure 39: Contigs shown in DimRedPlot. Uncoloured the contigs look like
one big cluster. But when colouring is applied, it is clear that
there are two different clusters with different means and standard
deviations.

6.2.3 A selection should be one genome

In the second case, the domain expert had a selection that contained 105

essential copy genes out of a potentially total of 107. This, and the fact
that the contigs behaved similarly in the parallel coordinates, made the
selection highly likely to be a new genome. However, the clustering divided
the selection into three parts for which the researcher wanted to find an
explanation.

After filtering out the irrelevant contigs and performing CA, some structure
could definitely be found, as seen in Figure 40. In the image, the different
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contigs are not clustered together but seem to be spread out over two or three
different clusters lying close together. The domain expert used the k-means
clusters to refine the selection. Upon redoing CA, it shows one outlier which
had been marked as outlier in the parallel coordinates as well.

The researchers selected some of the clusters in DimRedPlot and found
one cluster of contigs that made a narrow selection in the parallel coordinates.
This selection was also quite complete based on the number of essential copy
genes it had. The selection can be seen selected in Figure 40 in black. The
genome it forms is of a new bacterium from a candidate division WWE1.

6.2.4 Many low abundant contigs

A large part of the contigs in the dataset are low abundant and belong to a
large set of bacteria. This means that there are only a couple of contigs for
each bacterium. The domain expert was wondering whether CA could be
used to distinguish the different bacteria is this large set of contigs.

Upon filtering out the rest of the contigs and performing CA no contigs
were projected. There were too many contigs to be visualised due to limita-
tions in the HTML, as described is Section 4.3. Making a smaller selection of
contigs resulted in a CA that simply shows one big cluster with all contigs
in it. Perhaps there were many different clusters of contigs hidden inside
this big cluster; however, there were too many different bacteria to see any
structure in the projection.

6.2.5 Study a selection with duplicated essential genes

A previously made selection had a pretty complete set of essential copy
genes, 98 of 107. However, 3 genes were duplicated, meaning that out of
those 98 genes, only 95 were unique. Duplicate genes are not impossible to
occur, but it might be that studying the tetranucleotides will show that they
are outliers. The selection consisted of contigs that were both in a certain
correlation cluster and a certain k-means cluster.

For completeness, the domain expert kept all the contigs in the correlation
cluster and performed CA on it. The projected contigs were structured as
a big cluster with many outliers. The outliers were removed and CA was
redone. The result is shown in Figure 41. In the image, the contigs from the
mentioned k-means cluster have been selected and are coloured black. As we
can see, the big cluster did not only contain contigs from the k-means cluster,
but also from other k-means clusters. Also, some of the outliers were part of
the original k-means cluster. This suggests that some of the contigs believed
to be part of the selection are not part of it, while others might be part of it.

To find out where the three duplicated essential copy genes resided in the
projection, the highlight function was used to highlight them in the parallel
coordinates. Brushing them in the parallel coordinates showed that they were
in fact in the big cluster in DimRedPlot, indicating that they have similar
tetranucleotides frequencies compared to the rest of the selection. Based on
this evidence, the domain expert concluded that this particular bacterium
happens to be one with several duplicate essential copy genes.

6.2.6 A selection may have to be extended

Finally, we looked at a rough selection of contigs that was not finished. The
domain expert suspected that there were more contigs that needed to be
added to the selection. The selection in its then current form was made out
of contigs that were in a certain correlation cluster and in one of a total of
two k-means clusters.
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Figure 41: Contigs shown in the DimRedPlot. The big cluster on the left does
not correspond to the contigs in the k-means cluster, which have
been coloured black.

The domain expert started by selecting all contigs in the two k-means
clusters using the parallel coordinates. Next some outliers were removed in
the parallel coordinates and CA was performed. The resulting CA showed
a single cluster. To study the k-means clusters, both clusters were coloured
manually and both clusters turned out to have approximately the same mean
and variance in the projection. However, when the two k-means clusters were
individually selected in the parallel coordinates they showed slightly differ-
ing patterns, especially in the first few measuring points. This can be seen in
the parallel coordinates in Figure 42 by looking at the variables M4 to M48.
Purely looking at the parallel coordinates, the difference in the abundance at
the first few measuring points initially caused some uncertainty about the
selection being just one bacterium. However, the addition of DimRedPlot
solidified the hypothesis that the selection was in fact one genome.

To make this similarity in the tetranucleotides frequencies more visible, the
domain expert used the contribution bar plots to select the tetranucleotides
with the highest contribution to the first two eigenvectors, as shown in
the DimRedPlot instance in Figure 42. This displayed the selected tetranu-
cleotides as variables on the parallel coordinates, as can also be seen in the
figure, which showed both k-means clusters to have a similar pattern along
these variables.

To further study the contigs in both k-means clusters the domain expert
used a separate tool to check the contigs of the two clusters for essential copy
genes. The first cluster contained 86 non duplicated essential copy genes,
which is a strong indicator that the contigs belong to a single bacterium. The
second cluster contained 9 non duplicated essential copy genes which were
not present in the earlier 86 essential copy genes of the first cluster. This is a
strong indication that the, in total, 95 essential copy genes belong to a single
bacterium. Using this information, the researcher concluded the genome to
be a new bacteroidetes.



80 evaluation

Figure
4

2:The
contigs

in
tw

o
k-m

eans
clusters

are
show

n
in

R
Parcoords.The

contigs
in

the
tw

o
clusters

are
coloured

respectively
green

and
purple.The

abundance
levels

show
that

at
fi

rst
the

tw
o

clu
sters

are
d

ifferent
(M

4
to

M
2
8)

bu
t

after
that

the
tw

o
clu

sters
are

sim
ilar

(M
3
6

to
M

4
8).T

he
D

im
R

ed
P

lot
instance

show
s

sim
ilar

tetranucleotide
frequencies

for
both

clusters,as
is

verified
by

show
ing

the
highly

contributing
tetranucleotides

on
the

parallelcoordinates.



6.3 discussion 81

6.2.7 Final results and remarks

Although the research talked about was already in full swing and was already
using RParcoords, the addition of DimRedPlot proofed to be a great help
in identifying and discovering bacteria. The interaction between the parallel
coordinates and the results from CA allowed the researcher to easily connect
the CA results to the actual data in the parallel coordinates.

This evaluation was the first time the domain expert worked with Dim-
RedPlot, but working with the visualisation turned out to be easy after some
instruction. The evaluation in total took about 2 hours to complete. The do-
main expert at some point during the evaluation mentioned that DimRedPlot
would have saved a lot of time had it been accessible earlier.

The researcher we worked with provided us with the following feedback:
“I think that concerning the prototype application in metagenomics, with all
the added parameters it is now quite easy and fast to get quite complete
and clean microbial genomes from the metagenomic soup. For the moment
we are still evaluating the software in comparison to others in the domain,
and it looks quite advanced, although this is a very fast moving field, and at
the time when we started developing it, no software was available and now
there are several.

What I really like in the tools is the visual aspect, and that I can select the
data the way I want (although there are still some interesting parameters
missing, that could be added afterwards).

To understand the visualisation and interactions was relatively easy for
me, since initially the software was developed according to our needs and
ideas. It was exactly what we asked for, and of course thanks to all the work
of you guys involved in the project, it developed very nicely.”

6.3 discussion

Chapter 4 and Chapter 5 introduced a large number of features and inter-
actions to be used by users to gain insight into their data. Some of these
features have been added to accommodate the use cases that were envi-
sioned RParcoords and DimRedPlot would target, while others were added
on request of people that used the tools to perform research with or that
performed initial testing of the tools. During this evaluation we have seen
that some of the features added indeed proved to be very useful, while others
were slightly ignored or not used all that much. In this section we discuss
what and why features proved useful and what the reasons could have been
that other features were used less.

selection and colouring One of the most clearly useful features
turned out to be the fact that the parallel coordinates and DimRedPlot in-
stances are all linked together. E.g., a selection or colouring in one view can
also be seen in other views. In both evaluations the researchers made quite
some use of these features, both as interaction between the parallel coor-
dinates and DimRedPlot and as interaction between different DimRedPlot
instances.

In both evaluations the linked selections were mostly used to quickly see
the relationship between observations in multiple views, or to gain some
information about an observation that could not be gained through just one
view, such as an observation’s name. The colouring was mostly used when
the relationships between several different groups of observations in different
views had to be compared. Because, unlike selections, colouring is permanent
until turned off, colouring allowed users to colour certain structures and
then continue with other interactions while the colouring remained.
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The fact that the same colouring in different views meant the same thing,
such as selected observations always being black, meant that this functionality
was easy to grasp for users.

iterative dimensionality reduction Iterative dimensionality re-
duction was used quite a lot in the evaluations, although to keep the evalua-
tion succinct some of the occurrences were left out of the second evaluation.
In the first evaluation iterative analysis was mostly used for small changes,
e.g., some variables should not be used in DimRedPlot or some observations
should be removed because they are outliers.

The second evaluation went further in this regard. Often, although not
always stated, the researcher started by performing dimensionality reduction
on a larger selection than the researcher was interested in. This was done to
get a more complete view of the situation. After this, the researcher would
filter out the irrelevant contigs and redo dimensionality reduction. The final
selection was then often updated again to remove outliers or to include
contigs not considered earlier. Beyond changing the selection of contigs to
perform dimensionality reduction on, the researcher also reduced the number
of variables used for dimensionality reduction once by selecting a smaller set
through the contribution bar plots. The resulting DimRedPlot instance was
then used as an extra confirmation that the remaining variables were indeed
responsible for the observation structure seen in DimRedPlot.

Due to the fact that dimensionality reduction can easily be redone by
first either changing the selection of observations or making a selection
of variables and second pressing the button to perform dimensionality
reduction, the feature was easy for users to understand and use.

scatterplots The observation scatterplot in DimRedPlot was used by
the users as the core of the dimensionality reduction visualisation. The scat-
terplot was easy for users to work with, mostly because it is a visualisation
the users were familiar with. Features such as colouring and selecting obser-
vations were used quite a lot, especially in the context of linked views. The
excentric labelling was also seen by users as a useful and easy to use tool to
get a good idea of what the ellipses that they were looking at represented.

The variable scatterplot was unfortunately mostly ignored. A variable plot
can most certainly provide valuable information, such as what groups of
variables are similar and which variables are extreme in their differences, but
during the two evaluations done in this thesis these questions never really
came up. This left the variable scatterplot mostly ignored. There is also the
problem that a plot of variables is, to many people, still quite an abstract
concept, making it harder to understand the potential such a scatterplot can
offer.

eigen-bar Although the eigen-bar was used occasionally to actually
change the eigenvectors used as scatterplot axes, it was not a feature that
was really used a lot without our suggestion. When asking about this, users
often said to be satisfied with the data-variance described by the first two
eigenvectors, and it was often the case that other eigenvectors besides the
first two described very small data-variance. It might, however, also very
well be that users did not want to go through the difficulty of interpreting
yet another eigenvector. If this really is a problem, a 3D projection instead of
the current 2D projection might make this a smaller step for users.

The eigen-bar was used a lot to determine how much data-variance users
were looking at. Although not specifically mentioned in the evaluation,
especially in the second evaluation, the amount of data-variance described
by the first two eigenvector was almost always looked at by the researcher.
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The found data-variance influenced how serious the researchers took the
conclusions drawn from the dimensionality reduction plot.

contribution bar plots The contribution bar plots were only used
a couple of times, mostly in the second evaluation. Here it was both used
to redo dimensionality reduction on a smaller set of variables, a use case
described in Section 5.2.5, and to add variables to the parallel coordinates. The
reason it was not used more probably had to do with that the evaluations
just did not ask for it much. In the first evaluation the researchers were
focused mainly on how the structure in the data was aligned with the
geology variable. Although, looking back, using the bar plots more would
have probably been useful in explaining the structure in the data when it was
not well aligned with this variable. In the second evaluation the focus was
mostly on what the structure in the tetranucleotides was and not so much
on which specific variables were responsible for that.

In the cases where the bar plots were used, the interactions necessary were
not seen as complicated by users.

tagging The tagging interface, discussed with quite some detail in Sec-
tion 5.1.3, has not been used in the evaluation at all. The feature has actually
been asked for by researchers and as we saw in the second evaluation, before
the addition of the tagging system, the researchers kept selections by writing
down which clusters were part of the selections. Tagging would make keep-
ing these selections much easier, but for the evaluation it made little sense to
copy all the different selections to the new tagging system. The usefulness of
the tagging interface is not really doubted by us because of this. It would,
however, have been nice to evaluate this interface as well.





7C O N C L U S I O N

As we have discussed in Chapter 1, dimensionality reduction is widely used
in scientific research in order to analyse high-dimensional data. However,
due to their abstractness the methods used are often not well understood by
researchers and as a result they are treated as black boxes. This undermines
the ability of researchers to fully grasp the extra information and insight
that dimensionality reduction can offer. Furthermore, the fact that these
techniques focus on either numerical or categorical variables makes analysing
more complex datasets that contain both of these variables hard. This thesis
has tried to solve these issues, condensed in the introduction as the following
question:

How can we, through linked visual metaphors, support the explo-
ration and interpretation of dimensionality reduction on complex
high-dimensional datasets?

In this thesis we have developed a solution to this problem with the
creation of DimRedPlot, a new visual analytics tool that helps users get
the most out of dimensionality reduction. Through elements such as the
eigen-bar we created support for further exploration and understanding of
the space generated by dimensionality reduction techniques.

By using linked visual metaphors such as selections and colouring to
combine DimRedPlot with parallel coordinates, the results of dimensionality
reduction have been made much easier to interpret. Users can with little
effort understand how results shown in DimRedPlot are related to their
original data shown in the parallel coordinates, which in turns helps users to
get more insight into their data.

Using the same linked visual metaphors when multiple DimRedPlot in-
stances are shown, we have also given users the possibility to combine dimen-
sionality reduction on categorical and numerical data, so that the relationship
between these two parts of complex datasets can easily be understood.

To validate our solution, RParcoords and DimRedPlot have been used to
analyse and explore actual datasets produced and studied by researchers at
the Luxembourg Institute of Science and Technology. The evaluation showed
that using these tools researchers could indeed obtain new insight into
their high-dimensional datasets quickly, even when dealing with complex
datasets consisting of both numerical and categorical data. DimRedPlot and
RParcoords continue to be used to support researchers at the LIST.

7.1 future work

Several features and ideas have not been implemented due to a lack of time
or a lack of importance. This chapter lists the features that did not make
it to the version of DimRedPlot outlined in this thesis but that could be
implemented in the future to improve DimRedPlot.

7.1.1 Distance preservation

Some dimensionality reduction techniques try to reduce dimensionality by
projecting observations onto new axes such that the distances between the
observations are as close as possible as they were in the original dataset. Multi
Dimensional Scaling methods are examples of techniques that do this. In
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fact, although not its primary goal, PCA also has the effect that distances are
preserved as much as possible within the constraint that the original data is
linearly transformed. This means that when looking at observations projected
onto new axes, as is done in DimRedPlot, when points are close together
they are probably also close together in the original dataset. However, this
can not be guaranteed, which can make scatterplots as used in DimRedPlot
misleading to users. Points may seem to be close together, but in reality they
can be quite far apart.

Martins et al. [42] propose several techniques to indicate what the differ-
ence is between projected distance between points and real distance between
points. Integrating one of these techniques into DimRedPlot would greatly
improve the certainty with which users can draw conclusions from the
projected points.

7.1.2 Supporting other dimensionality reduction techniques

Although DimRedPlot is designed to visualise the results of PCA, MCA,
and CA, DimRedPlot does not have any specific code for these methods and
simply accepts a structured file with the results in them. Any dimensionality
reduction technique whose results can be translated to this format can be
visualised using DimRedPlot. Because of this, with only small changes to
DimRedPlot it is possible for other techniques to be supported as well.

For a method to be supported it needs to output a couple of things. First
off, the new axes that it creates need to be given a score in order for them
to be displayed in the eigen-bar. This can be done for most methods by
determining how well each axis confirms to the metric that the technique
tries to optimise. In the case of multi dimensional scaling this could be done
by looking at how the distances between points along each axis correspond
to the real distances between points.

Second off, although not strictly necessary, DimRedPlot assumes both
projected observations projected variables to be on the same axes. This
essentially means that it should be possible to create a biplot with the results
of the used dimensionality reduction technique. In Biplots in Practice [43]
Greenacre explores the potential of many analysis technique, including multi
dimensional scaling, to be visualised using biplots.

Finally, the method needs to have some metrics that determine the rela-
tionship between the generated axes and the variables in the dataset. These
metrics are then shown in the current contribution bar plots. This is the
most difficult point for adopting support for other dimensionality reduc-
tion techniques. The contribution metric is a specific metric for PCA-like
techniques. This means that for different techniques similar metrics would
have to be found. This can be done either with metrics specific to the used
technique or with generic metrics that can be used in combination with any
dimensionality reduction techniques, such as those discussed by Coimbra et
al. [23]. In any case, when such metrics are used, care must be taken that the
interpretation of the metrics does not change. The information alternative
metrics show may be similar, but the difference in how they are calculated
can have subtle difference in what they mean and how they are interpreted.

When no similar metrics exist, it would be possible to change DimRedPlot
to make the contribution bar plots optional. Another option is to add more
metrics that are not technique specific. The discrimination metric described
in Section 4.2.2, for example, is not PCA specific and can be used with any
dataset.
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7.1.3 Contribution table lens

Right now, the contributions of the variables are displayed using several
bar plots. The downside to using bar plots is that it is not immediately
apparent what variable a certain bar is referring to. Writing the names on the
variables is usually impossible since the bars are too low and thin for text to
be displayed on it and still be readable. A solution to this problem would be
to use a table lens instead. This table lens could either show the five metrics
shown in the bar plots or show one metric at a time.

Using a table lens would allow the user to see the metrics for all variables
on the screen at the same time. It would, however, also be possible to zoom
in, and actually see the names of the variables displayed on the bars. If only
one metric is shown in the table lens at a time, the metrics could be switched
between using the same dropdown menu that can now be used to sort a
specific bar plot. The downside to replacing the bar plots with a table lenses
is that a table lens with all metrics in it would probably not have enough
horizontal space, making it harder to show all metrics on the screen at the
same time without horizontal scrolling.
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