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Figure 1: GaussFluids (a) reconstructs Lagrangian particle-based fluid flow from videos for (b) downstream tasks, such as novel view
synthesis, style transfer, frame interpolation, fluid prediction, fluid editing, etc.

Abstract

Fluid simulation typically depends on manual modeling and visual assessment to achieve desired outcomes, which lacks objec-
tivity and efficiency. To address this limitation, we propose GaussFluids, a novel approach for directly reconstructing temporally
and spatially continuous Lagrangian fluid particles from videos. We employ a Lagrangian particle-based method instead of an
Eulerian grid as it provides a direct spatial mass representation and is more suitable for capturing fine fluid details. First, to
make discrete fluid particles differentiable over time and space, we extend Lagrangian particles with Gaussian probability den-
sities, termed Gaussian Particles, constructing a differentiable fluid particle renderer that enables direct optimization of particle
positions from visual data. Second, we introduce a fixed-length transform feature for each Gaussian Particle to encode pose
changes over continuous time. Next, to preserve fundamental fluid physics—particularly incompressibility—we incorporate a
density-based soft constraint to guide particle distribution within the fluid. Furthermore, we propose a hybrid loss function that
focuses on maintaining visual, physical, and geometric consistency, along with an improved density optimization module to ef-
ficiently reconstruct spatiotemporally continuous fluids. We demonstrate the effectiveness of GaussFluids on multiple synthetic
and real-world datasets, showing its capability to accurately reconstruct temporally and spatially continuous, physically plausi-
ble Lagrangian fluid particles from videos. Additionally, we introduce several downstream tasks, including novel view synthesis,
style transfer, frame interpolation, fluid prediction, and fluid editing, which illustrate the practical value of GaussFluids.

CCS Concepts
» Computing methodologies — Computer graphics; Machine learning; Modeling and simulation;

1. Introduction

Fluid simulation is a significant research area with numerous ap-
plications in computer animation, medicine, and industrial engi-
neering. Computer fluid simulation can be primarily categorized

T Corresponding author: zhangyl @ustb.edu.cn into Eulerian grid methods, Lagrangian particle methods, and hy-
1 Corresponding author: banxj@ustb.edu.cn brid methods, based on the underlying data structure of the fluid
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[KBST22]. Eulerian grid methods discretize the fluid domain into a
grid, assigning physical properties such as velocity and pressure to
each grid point. By solving the Navier-Stokes equations over time,
these methods capture fluid behavior and are particularly suitable
for large-scale simulations, such as oceans [KBST22]. In contrast,
Lagrangian particle methods represent the fluid as a set of particles
with a defined mass. By updating particle positions, these methods
track changes in physical properties, making them well suited for
simulating fluids with rich motion details, such as small-scale water
splashes [KBST22].

However, achieving the desired fluid effects usually requires ex-
tensive manual modeling and visual comparison to fine-tune pa-
rameters, which demands considerable expertise and lacks objec-
tivity and efficiency.

To address these issues, we introduce GaussFluids, a novel
approach for directly extracting Lagrangian fluid particles from
video data, as illustrated in Figure 1. We adopt the Lagrangian
particle-based formulation because it offers a more precise spa-
tial representation of fluid motion compared to the Eulerian grid
approach. Since Lagrangian particles form a discrete point-cloud
structure (i.e., discrete spheres), they do not by themselves de-
fine a spatially continuous differential field, which hinders back-
propagation, and are therefore non-differentiable with respect to
visual data [WQF19]. We therefore extend them with spatial
Gaussian probability densities: adding Gaussians centered at the
sphere centers creates the required differentiable field (see Sec. 2.3
of [KKLD23]); we refer to the resulting entities as Gaussian Parti-
cles. This extension provides each particle with a gradient receptive
field in its neighborhood, thus enabling direct optimization of fluid
particle positions (which often include transparency) from visual
data.

Specifically, by integrating 3D Gaussian probability densities
with Lagrangian fluid particles, we construct a differentiable ren-
derer capable of mapping these Gaussian Particles to images, al-
lowing direct optimization of particle positions from visual data.
Furthermore, we introduce a fixed-length transform feature for
each Gaussian Particle. Using this feature, we employ a unified
temporal-spatial decoding network to determine particle pose vari-
ations at any given time. To maintain the fundamental incompress-
ibility of fluids, we incorporate a density-based soft constraint that
ensures a more uniform Gaussian Particle distribution, particularly
within the fluid region. During training, we design a set of multi-
dimensional loss functions, including visual-based, physics-based,
and geometric-based losses, alongside an improved density opti-
mization module. This combined strategy ensures alignment be-
tween macroscopic fluid flow and microscopic details. Extensive
experiments on both synthetic and real-world datasets validate the
effectiveness of GaussFluids in reconstructing Lagrangian fluid
particles, facilitating subsequent tasks such as novel view synthe-
sis, style transfer, frame interpolation, fluid prediction, fluid edit-
ing, and more.

The main contributions of this paper are as follows:

e We extend Lagrangian particles with 3D Gaussian probability
densities and construct a differentiable renderer from particles to
images based on splatting. This enables the direct optimization
of Lagrangian particle positions from images or videos.

e We introduce a fixed-length transform feature for each Gaussian
Particle and develop a unified decoder to determine particle pose
variations at any given time, enabling spatiotemporally continu-
ous fluid motion in the reconstructed simulation.

e We incorporate a density-based soft constraint to guide uniform
distribution, specifically within fluid regions, in order to main-
tain fundamental incompressibility during reconstruction.

2. Related Work
2.1. Lagrangian-based Fluid Simulation

Fluid simulation is a significant research area in computer vi-
sion and graphics. The Lagrangian method is favored due to
its ability to directly track fluid particles, making it more suit-
able for simulating fluids with complex motion details. A promi-
nent method in this domain is Smoothed Particle Hydrodynam-
ics (SPH), which represents fluid dynamics through integral par-
ticle approximation [Mon92]. To enforce fluid incompressibil-
ity, Weakly Compressible SPH [BT07] employs the state equa-
tion method, calculating pressure based on compression. Sev-
eral methods have been developed to improve stability, including
Predictive-Corrective Incompressible SPH [SP09] and Divergence-
Free SPH [BK15]. Beyond the state equation approach, Implicit
Incompressible SPH [ICS*14] implements projection methods by
solving the Poisson equation for particle pressures to achieve ac-
curate fluid simulation. The Position-Based Fluid (PBF) [MM13]
combines SPH with Position-Based Dynamics to directly correct
particle positions without explicitly computing pressure.

Fundamentally, fluid simulation involves solving complex par-
tial differential equations, and machine learning approaches have
been extensively applied to address these problems more ef-
ficiently [LKA*21, XR21]. For Lagrangian fluids, given their
particle-based representation, specialized feature processing ar-
chitectures and learning-based fluid simulators have been devel-
oped, including convolutional neural networks [UPTK20, WT24]
and graph neural networks [SGGP*20, MZW*18]. However, both
physics-based and machine learning-based fluid simulation meth-
ods typically lack direct connections to real-world fluids. Undoubt-
edly, the trend toward leveraging real fluid videos is an inevitable
development.

2.2. 3D Reconstruction from Visual Data

Reconstructing 3D scenes from 2D images remains a cornerstone
of computer vision. Early techniques, such as stereo vision and
structure from motion, leveraged geometric principles to deduce
depth information [SSS06,HZ03]. Multi-View Stereo (MVS) tech-
niques facilitate the creation of detailed 3D models from multiple
images [GSC*07, HPP*18]. Neural networks have been progres-
sively integrated into the task of 3D reconstruction, including novel
viewpoint synthesis [FNPS16,ZTS*16] and blend weight estima-
tion [HPP* 18], predominantly following the MVS approach. The
introduction of Neural Radiance Fields (NeRF) marked a signifi-
cant milestone, providing a novel framework for synthesizing real-
istic views of complex scenes [MST*22, BMV*22]. To accelerate
reconstruction, various discretization strategies have been devel-
oped to mitigate the computational inefficiency of multi-layer per-
ceptron (MLP) queries [FKYT*22, WXZ*22, YLT*21, MESK22].
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The 3D Gaussian Splatting (3DGS) method further enhances inter-
pretability and computational efficiency by representing renderable
primitives in explicit 3D Gaussian forms [KKLD23, YCH*24], en-
abling real-time, high-quality novel view synthesis at reduced com-
putational cost.

In dynamic 3D reconstruction, researchers have incorporated
a temporal dimension into NeRF, either by introducing addi-
tional temporal encoding to handle object motion [PCPMMNZ21,
LCM*24, DZY*21], or by directly extending the original NeRF
framework [PSB*21, TTG*21, WCS*22,L.SZ*22]. Owing to their
explicit representation, 3D Gaussians serve as effective primitives
for dynamic modeling [YGZ*24, WYF*24, YYPZ24, LDZY?24,
LCLX24]. Nevertheless, these methods typically encounter chal-
lenges when applied to scenes with ill-defined boundaries, partic-
ularly for fluids. In this paper, we propose a method that leverages
not only a modified Gaussian splatting approach for reconstruction
but also Lagrangian fluid particles for simulation.

2.3. Radiance Field and Physics

Gaussian Splashing [FFS*25] leverages 3DGS to generate novel
physics-based animations involving fluid—solid coupling. However,
it can only reconstruct solid boundaries using 3DGS, while the
fluid component remains synthetically defined in virtual scenes.
PhysGaussian [XZQ™24] employs a custom Material Point Method
(MPM) to enhance 3D Gaussian kernels with physically mean-
ingful attributes for kinematic deformation and mechanical stress,
following the principles of continuum mechanics. However, these
methods cannot reconstruct fluids from videos. For smoke, a par-
ticularly challenging fluid type, FluidNexus [GYZW25] integrates
3DGS with PBF and exploits pre-trained image generation and
video refinement models to reconstruct photorealistic smoke. Nev-
ertheless, its requirement for scene-specific parameter pre-training
severely limits the scalability and applicability of FluidNexus.

Current physics-based radiance field methods predominantly fo-
cus on solids or elastic bodies, with limited attention to fluid dy-
namics. To recover fluid density and velocity from sparse multiview
videos, HyFluid [YZG™*23] introduces physics-based losses to infer
a physically plausible velocity field. PAC-NeRF [LQYC*23] uses
a hybrid Eulerian-Lagrangian representation of the neural radiance
field to estimate both unknown geometry and physical parameters
for highly dynamic objects from multiview videos.

The reconstruction of fluids is often challenging, particularly
due to their inherent high refractivity and reflectivity. MirrorGaus-
sian [LTC*25] is a pioneering method for mirror scene recon-
struction with real-time rendering based on 3D Gaussian Splat-
ting. GlossyGS [LHG*25] employs microfacet geometry segmen-
tation priors and integrates material priors to accurately reconstruct
the geometry and material properties of glossy objects. Transpar-
entGS [HYD*25] introduces transparent Gaussian primitives, en-
abling specular refraction via a deferred refraction strategy.

For fluid systems, NeuroFluid [GDWY22] infers state transi-
tions and interactions within fluid particle systems from visual ob-
servations of the fluid surface, but it requires initial fluid parti-
cle positions and cannot directly reconstruct dynamic fluids from
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videos. 3D-IntPhys [XTT*23] adopts a conditional NeRF-style vi-
sual frontend and a 3D point-based dynamics prediction backend
to learn 3D-grounded intuitive physics from videos of complex
scenes, though its effectiveness has yet to be fully evaluated. Re-
cently, DEL [JJZ*24] integrated learnable graph kernels into Dis-
crete Element Analysis to learn material dynamics from partial
2D observations in a unified manner, but its practical performance
remains unexplored. GaussFluids aims to reconstruct Lagrangian
fluid particles directly from videos, enabling multiple downstream
tasks.

3. Method

As illustrated in Figure 1, GaussFluids aims to reconstruct a set of
moving particles over time from multiview video data. The over-
all process is depicted in Figure 2. GaussFluids takes particles with
randomly initialized positions as input and optimizes them using
multiview fluid videos. First, (a) the fluid particles are extended
into Gaussian Fluid Particles, which incorporate position p and
additional Gaussian differentiable rendering primitives for splat-
ting. These primitives comprise spherical harmonics(SH) lighting
coefficients ¢ and opacity o for color control, as well as scal-
ing s and rotation r for shape control. (b) Each particle is asso-
ciated with a transform feature 8 € R, where Npg is the dimen-
sion of the transform feature vector, which is used to decode the
changes in the Gaussian pose over time—specifically Ap, As, and
Ar—contributing to the construction of the covariance matrix X. (c)
Through splatting differentiable rendering from the camera view d,
hybrid constraints are incorporated into the loss function, optimiz-
ing both the rendering primitives and the transform features of the
Gaussian Particles. (d) Finally, an improved density optimization
module is applied to guide Lagrangian fluid motion reconstruction
from the perspectives of visual, physical, and geometric consis-
tency.

3.1. Gaussian Fluid Particles

GaussFluids is a novel attempt to reconstruct spatio-temporal conti-
nuity of Lagrangian fluid particles directly from videos. To achieve
this, we use Gaussian particles to represent fluid particles instead of
traditional point clouds. This is because point clouds are spatially
discrete structures, and according to the principles of calculus, if
the domain of a function is discrete, derivatives cannot be defined
at those points, making them non-differentiable. Gaussian particles,
on the other hand, introduce continuity and maintain differentiabil-
ity, thereby enabling the optimization of particles from visual data.

Under the Lagrangian description, fluid is discretized into a set
of particles, simulating interactions with relevant constraints to de-
rive fluid motion from one frame to the next. The positions at any
time 7, denoted as P; € RV>*3 (where N denotes the total number
of particles), can be obtained from the initial particle positions Py
using a Lagrangian fluid simulator £, such that P; = £(Py,). Note
that Py = L(Py,0). Lagrangian fluid dynamics are governed by two
critical constraints:

Navier-Stokes Equations describe the conservation of momen-
tum:

D
pﬁl; = —Vp+uViu+f, (n
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Figure 2: The pipeline of GaussFluids. The optimization process begins with randomly initialized Lagrangian fluid particles. GaussFluids
optimizes these particles using multiview fluid videos. (a) The Lagrangian particles are extended to Gaussian Particles with 3D Gaussian
probability density [KKLD23], carrying extra rendering information that makes fluid particles differentiable for visual data. (b) We introduce
a transform feature 0 for each Gaussian Particle. Through the unified neural network @, it estimates changes in the Gaussian pose over time
T (represented in the frequency domain from t). (c) By employing splatting differentiable rendering from camera d, the carefully designed
constraint loss L is backpropagated to each Gaussian Particle, enabling efficient optimization. (d) Improved density optimization uses gradient

information to strategically densify and prune the particles.

where p is the fluid density, u € R3 is the velocity field, p is the
pressure field, u is the viscosity, and f € R? represents external
forces acting on the fluid.

Incompressibility Condition arises from the continuity equa-
tion in fluid dynamics, stating that the fluid density remains con-
stant if the divergence of the velocity field at any position is zero:

dp
F u=0.
P pv u=

)
This condition is fundamental for fluid simulation, as it ensures
that the internal fluid pressure maintains consistency throughout
the fluid body. Lagrangian fluid particles only carry kinematic in-
formation, including positions P; and velocities Uy, both € RV*3,
To render these particles, additional parameters such as particle ra-
dius R, opacity o, and color ¢ € R? must be introduced.

Because fluid particles, like other point clouds, are not differen-
tiable with respect to visual data [WQF19], we incorporate Gaus-
sian probability density into each fluid particle, creating Gaussian
Particles. Specifically, each Gaussian Particle is characterized by
its position p € R, as well as scaling s € R3 and rotation r € R* to
construct the covariance matrix X following [KKLD23]. This for-
mulation defines the particle pose A = {p,s,r}. During rendering,
opacity o controls transparency, and a first-order SH coefficients
¢ determines the particle’s color. Higher-frequency lighting effects
are omitted for simplicity.

We implement splatting as our differentiable rendering mecha-
nism, projecting each Gaussian Particle onto the image plane. At

pixel x, the color Cy is computed by

k—1

Cxr =Y Gr(x)ouS(c) [T (1= Gjx) aj), 3)
%

Jj=1

where k indexes the Gaussian Particles in ascending order of their
depth from the camera. Gy (x) is the 2D Gaussian weight at pixel x,
derived from p and X as in [ZPvBGO1], and S denotes SH.

Rather than applying uniform values across the entire scene, we
assign each particle independent parameters for pose, opacity, and
color. This approach acknowledges that particles in different re-
gions may require distinct appearance characteristics. However, we
incorporate a consistency soft constraint and employ density opti-
mization (Section 3.3) for efficient training.

By computing the difference between the splatted and ground-
truth images, gradients are backpropagated to each Gaussian Par-
ticle’s attributes, including pose and rendering parameters. This
mechanism enables GaussFluids to directly optimize Gaussian Par-
ticles from multiview video data.

3.2. Spatio-Temporal Encoding

To model the temporal and spatial evolution of fluid particles, we
propose a novel spatio-temporal encoding strategy. Traditional fluid
simulation methods typically employ time-stepping techniques for
temporal discretization to track the motion trajectory of each fluid
particle [Mon92, BT07, BK15]. These methods generally assume
that forces and accelerations remain constant within timesteps.
However, finding an efficient yet effective timestep size is chal-
lenging.

© 2025 The Author(s).
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To represent the complex dynamics of fluid particle motion, in-
stead of discrete representations, GaussFluids encodes each parti-
cle with a transform feature 6—a fixed-length vector—and stores
trajectory features at the particle level. A globally shared multi-
layer perceptron (MLP) network & decodes 0 together with time
T, represented in the frequency domain from ¢ using the method
described in [RBA*19], to obtain the transformation AA’ at time
t. This formulation enables continuous representation of particles
in both temporal and spatial domains, thereby avoiding temporal
discretization. Based on the notation introduced in Section 3.1, this
process is formulated as follows:

AAT = ®(0,7), A" = A"+ AA". )

With this encoding method, the spatial position of each parti-
cle at any given time can be accurately determined. This approach
not only enhances the temporal and spatial continuity of the fluid
representation but also enables downstream tasks such as time in-
terpolation, as demonstrated in Section 4.3.2.

3.3. Density Optimization and Constraint Conditions

Using MLPs to model the motion of particles ensures visual consis-
tency but neglects the fundamental physical properties of the fluid,
such as incompressibility. According to Equation (2), density con-
straints ensure that the mass per unit volume remains constant re-
gardless of how the fluid moves or deforms, which is key to achiev-
ing mass conservation.

We implement a density soft constraint while preserving vi-
sual fidelity. Specifically, the mass of fluid particles is defined as
unit mass, and a smoothing kernel function W is used to com-
pute the density estimate D; at the location of fluid particle i.
This smoothing kernel approach is widely adopted in particle-based
fluid simulations to distribute attributes across neighboring parti-
cles [Mon92, MCGO3]. We define the density loss as:

Jj=1

1 N /. 2 N;
L=y X (B 1) D= LW (bi-pllah). ©)
i=1

where N; represents the number of neighboring particles of parti-
clei,and D = % Zflzl D; is the average density across all particles.
Here, p; and p; denote the positions of particles i and j, respec-
tively. The smoothing kernel function chosen here is Poly6:

2 2\3 .
- fF0<r<
Wi = 313 {(h )3, if0<r<h,

= 6
64mh? |0, otherwise, ©

where r denotes the distance between two particles and / denotes
the smoothing length.

To enable Gaussian Particles to approximate Lagrangian parti-
cles, all particles should maintain volume consistency via:

1Y /v 2
Lyol = N,-:Zl (V’ - 1> . Vi =SuSiySiz, (7

where V = %Zﬁvzl V; is the average volume across all particles, and

© 2025 The Author(s).
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geometric isotropy via:

Lo —Lsls g, 8
anlso—ﬁz 71_(77) . ()

Here, s; represents the scaling of the i-th particle, and s;y, Sjy, Sz
represent its components in the x, y, and z directions, respectively.
Additionally, for uniform fluid particles, different particles should
maintain consistent opacity and color. Thus, we define:

Lop = Lmse (@), Liight = Lmsg(¢), ©)

2
e 1 ¥ 0
L - = - [ .
MSE (¥) N; Vi N[:Z]yl (10)
Here, o; and c¢; represent the opacity and SH lighting coefficients
of the i-th particle, respectively.

The final loss function combines visual consistency terms (Lgp
and Ly gim from [KKLD23]), physical constraints, and geometric
regularization, with each term weighted by a corresponding A pa-
rameter:

L= )"rLrgb + kSLd—ssim + )\'deens + xaLaniso
+MvLyor +AoLop + Ay Lijght- 1)

4. Experiments

To validate the efficacy of GaussFluids, we conducted experiments
on both synthetic and real-world datasets. We focus on two main
aspects: (1) the effectiveness of reconstructing fluid particles’ mo-
tion from videos, and (2) the applications of these reconstructed
particles in subsequent tasks.

4.1. Experiments Setup
4.1.1. Environment

All experiments were performed on a machine equipped with an
NVIDIA RTX 3090, an Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz, and 64 GB DDR4 main memory. The software environ-
ment includes Python 3.7, PyTorch 1.12.1, and CUDA 11.8.

4.1.2. Implementation Details

The iteration process consists of three phases: the first phase fo-
cuses on training canonical frame particles, the second phase con-
centrates on learning the dynamic scene, and the third phase em-
phasizes particle refinement. Each phase commences after the pre-
vious phase has converged. We found this to be an effective strategy
for reconstructing temporally and spatially continuous fluid parti-
cles from videos.

Table 1: The weights assigned to each loss term

Weight A A A A A A N
Setting 0.2 0.1 01 0.1 0.1 001 1

The canonical frame phase follows the official 3DGS [KKLD23]
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procedure and setup. In the Spatio-Temporal Encoding module, the
transform feature dimension Ny is set to 64. The decoder network
® has 4 hidden layers, each containing 256 neurons, with ReLU
activation in every layer. Both are initialized to zero. The learn-
ing rates for the feature space and the MLP network are set to 1072
and 1074, respectively. The ablation studies related to this setup are
discussed in Section 4.2.3. The weights assigned to each loss term,
as shown in Table 1, are chosen primarily to ensure that the mag-
nitudes of the different loss terms remain within a similar range.
Additionally, we employ a dynamic weighting schedule during the
three phases described above. In Phase 1, A4 is set to O (density
ignored), while A, and A, are set to 10% of their final values to pri-
oritize visual consistency. In Phase 2, A; increases linearly to 10%
of its final value to encourage a more uniform particle distribution.
In Phase 3, Ag4, Ay, and A, are gradually raised to their final values.
GaussFluids is not highly sensitive to the final absolute weights, but
gradual scheduling is crucial to avoid early over-regularization and
structural distortion. Ablation results on WaterSphere, shown in Ta-
ble 2, confirm the effectiveness of the dynamic weighting schedule.

We employ the K-Nearest Neighbors algorithm (K = 64) for op-
erations involving neighboring particles. Additionally, the smooth-
ing kernel radius 4 in Equation (5) is set to 0.3 to balance accu-
racy and computational efficiency. Empirically, 0.3 performed best
among tested values and is consistent with prior recommendations
in the literature [JYJY22, KBST19].

4.1.3. Dataset information

The synthetic dataset NeuroFluid [GDWY?22] was generated using
the DFSPH algorithm [BK15] and rendered in Blender. This dataset
features three scenarios: WaterCube, WaterSphere, and Honey-
Cone, each captured from five frontal-view cameras without pos-
terior angles. The scenarios simulate fluid dynamics over a one-
second interval, with WaterCube and HoneyCone at 99 fps and
WaterSphere at 60 fps. All images were rendered at a resolution
of 400 x 400 pixels. Material properties for ‘Water’ include a Glass
BSDF shader with a viscosity of 0.08 and a density of 1000 kg/m3.
‘Honey’ is modeled with a Principled BSDF shader, a viscosity of
0.8, and a density of 1420 kg/m?.

The ScalarFlow dataset [EUT19] consists of real, five-view
smoke recordings containing 104 different smoke flows, each with
150 frames of 2D grayscale images at a resolution of 1080 x 1920
pixels. We performed XOR operations between each frame and the
first frame to remove the background, and we use one channel for
the SH lighting since the images are grayscale.

4.2. Reconstructed Lagrangian Fluid Particles
4.2.1. Particle Reconstruction

The Lagrangian method uses particles to represent objects. Figure 3
illustrates the reconstruction of the HoneyCone and WaterSphere
scenes from the NeuroFluid dataset, representing two distinct ma-
terial properties. GaussFluids effectively reproduces the fluid mor-
phologies, with detailed reconstructions evident at both macro and
micro scales. HoneyCone exhibits denser particle formations due to
its higher viscosity, as shown in Table 3, with 62,927 particles and

smaller radii (0.007 m). WaterSphere demonstrates more extensive
movement patterns, resulting in fewer and larger particles.

The ScalarFlow reconstruction results are presented in Figure 6.
The particle radius after reconstruction with GaussFluids is approx-
imately 0.006 m. The second row depicts the rendering with 80%
Gaussian scaling, demonstrating GaussFluids’ effective interpreta-
tion of the scene. The third row shows the reconstruction results
in the particle state; the particles can be observed gradually diffus-
ing upwards from the bottom while maintaining the same smoke
morphology as in the original video.

4.2.2. Fluid Dynamics

In Lagrangian fluid simulation, maintaining incompressibil-
ity—where each fluid particle’s density remains constant—is a
fundamental soft constraint, as described by Equation (2). Us-
ing the WaterSphere scene as an example, we compute the stan-
dard deviation of D; for each frame, as shown in Figure 4. Com-
pared with D3G [YGZ*24] and SGFS [LCLX24], which are purely
vision-based 4D reconstruction methods lacking physical guidance,
GaussFluids achieves the lowest and most consistent standard devi-
ation values, indicating superior preservation of incompressibility.
These results demonstrate that GaussFluids not only reconstructs
surface particles but effectively captures interior fluid physics.

Mechanical energy (the sum of gravitational potential energy
and kinetic energy) is another crucial physical metric. As shown in
Figure 5, we also use the WaterSphere scene to visualize changes
in mechanical energy. The kinetic energy initially increases due
to gravitational acceleration, while gravitational potential energy
gradually decreases in the absence of collisions. Upon the fluid’s
contact with the container’s bottom, gravitational potential energy
stabilizes, causing kinetic energy to diminish until the total me-
chanical energy reaches a steady state. Compared to D3G and
SGFS, GaussFluids demonstrates more physically consistent en-
ergy dissipation, suggesting that the reconstructed Lagrangian flu-
ids better conform to established physical principles.

4.2.3. Ablation Study

To investigate how the parameter selection of the network & affects
reconstruction efficiency and accuracy, we performed an ablation
study using the 20th frame of the WaterCube scene. This frame
was chosen because it contains an intense collision state, placing
significant demands on temporal feature encoding and decoding.
As shown in Table 4, a feature-vector dimension of 64 with 256
neurons provides an optimal trade-off between performance and ef-
ficiency. When the feature dimension is 32, the visual results show
particles exiting the boundaries directly, leading to reconstruction
failure. Parameter settings beyond these values offer only marginal
performance improvements while incurring substantial computa-
tional costs.

For the synthetic dataset, the current setup employs five camera
views. We examine the effect of reducing the synthetic dataset’s
camera views to four, three, and two, respectively. As shown in Ta-
ble 5, with only two views, reconstruction fails which is consistent
with established principles in computer vision where two views are
insufficient for reliable 3D reconstruction. Increasing from three to

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Table 2: Ablation of dynamic loss weight scheduling on WaterSphere. “Dynamic” denotes the proposed dynamic weighting schedule.

Condition PSNRT  SSIMt Comment

Current coefficients (dynamic)  32.45 0.912  Three-phase dynamic weighting schedule
Current coefficients (fixed) 23.85 0.764 Early strong constraints cause distortion
50% coefficients (dynamic) 32.37 0.913 Minimal difference from original
200% coefficients (dynamic) 32.03 0.909 Slight reduction, not significant

Table 3: Reconstruction results on the NeuroFluid dataset.

Dataset Particles  Radius Opacit Averaged  Time
(Count) (m) pacity Density (min)
HoneyCone 62927 0.007 0.6% 3407.51 16
WaterCube 33650 0.0150 1.4% 1962.27 14
WaterSphere 41280 0.0120 1.1% 2738.42 16

Table 4: Effects of different feature dimensions and neuron quanti-
ties on reconstruction efficiency and quality, using the 20th frame
of the WaterCube scene as an example. The "Total" column repre-
sents the sum of the time for both "Splatting" and "®" operations.
Note that a feature dimension of 64 and 256 neurons achieves a fa-
vorable balance between performance and efficiency.

Reconstruction quality Time (s)

Feature Neurons

dim. perlayer Max. Max. .

per density  speed (m/s) Splatting - & Total
32 128 1462.07 341.96 0.021 0.007 0.028
32 256 1626.70 298.05 0.027 0.019 0.046
64 256 2583.63 89.43 0.045 0.032 0.077
64 512 2635.25 87.59 0.048 1.035 1.083
128 512 2597.80 85.24 0.047 1.8351.882

four views significantly improves performance, while the transition
from four to five views offers diminishing returns, due to the lim-
ited angular diversity in the NeuroFluid dataset’s camera positions.

Table 5: Ablation study results on the HoneyCone scene. S1: Co-
variance matrix is hardcoded to a scaled identity matrix. S2: All
particles share identical opacity and color. S3: Allows SH to vary
over time. "FAILED" indicates that the method did not converge or
produce meaningful results.

Setup Particles Particles Opacity Averaged
Number Radius (m) Density
5 views 62927 0.007 0.6% 3407.51
4 views 61215 0.007 1.2% 3150.77
3 views 11475 0.037 13.6% 1075.84
2 views FAILED FAILED FAILED  FAILED

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

4.3. Downstream Applications
4.3.1. Novel Viewpoint Synthesis

Novel viewpoint synthesis is a fundamental task in 3D recon-
struction. Conventional methods predominantly reconstruct sur-
face color fields without capturing the underlying physical struc-
ture. In contrast, GaussFluids reconstructs fluid particles with con-
tinuous temporal coherence while maintaining high-fidelity vi-
sual reconstruction. To evaluate novel viewpoint synthesis per-
formance, we selected the HoneyCone scene as an experimental
case, reconstructing it from four viewpoints and reserving an ad-
ditional one for testing. We compare our approach with the NeRF-
based D-NeRF [PCPMMN21] method, as well as the 4DGS-based
D3G [YGZ*24] and SGFS [LCLX24] approaches.

As illustrated in Figure 7, D-NeRF [PCPMMN21], which builds
upon NeRF, exhibits limitations with restricted views, resulting in
poor generalization and suboptimal visual quality from novel view-
points. Similarly, the D3G method [ YGZ*24] exhibits visual incon-
sistencies due to insufficient input views and its surface-based re-
construction approach, as highlighted by the red boxes. In contrast,
the SGFS method [LCLX24] achieves more effective reconstruc-
tion from sparse viewpoints owing to its explicit spatial feature stor-
age mechanism. GaussFluids, by utilizing inter-frame information
(Equation (4)), consistently produces robust reconstruction results
with sparse viewpoints and accurately captures fluid details. Al-
though GaussFluids primarily employs first-order SH lighting, we
have enhanced its performance by incorporating third-order high-
frequency components to improve lighting representation fidelity.

We provide a quantitative evaluation on the WaterCube scene
at frame 60, as presented in Table 6. PSNR (Peak Signal-to-Noise
Ratio) measures overall reconstruction fidelity, with higher values
indicating closer correspondence to ground truth. SSIM (Structural
Similarity Index) quantifies structural preservation, where higher
scores reflect enhanced visual consistency. GaussFluids achieves
superior performance across these metrics compared to alternative
methods, partially attributable to its capacity to reconstruct not only
the fluid surface but also the interior fluid physics.

Table 6: Quantitative evaluation of novel viewpoint synthesis on
the WaterCube scene (frame 60). Higher PSNR and SSIM values
indicate better visual quality.

Method GaussFluids D3G SGFS D-NeRF

PSNRT  29.65  25.65 27.34 8.14
SSIM? 0.874  0.801 0.834 0.6402
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4.3.2. Temporal Resampling

Table 7: Temporal Resampling Results (HoneyCone scene from
60 fps to 120 fps). Higher PSNR/SSIM values indicate better visual
quality, and lower Jitter values represent smoother temporal con-
sistency. Jitter is measured by calculating the standard deviation of
per-pixel temporal differences between adjacent frames.

Method PSNRT  SSIMT  Jitter]
GaussFluids  30.08 0.905  0.046
D3G 28.92 0.871 0.096
SGFS 29.31 0.883  0.078

Our approach, which represents fluid particle motion via contin-
uous temporal encoding rather than discrete time steps, enables pre-
cise temporal resampling of fluid animations and facilitates high-
fidelity frame interpolation. We evaluate this capability using the
HoneyCone scene by upsampling the frame rate from 60 fps to
120 fps. As demonstrated in Table 7, GaussFluids attains superior
performance with the highest PSNR/SSIM values and the lowest
Jitter measure, owing to its physics-aware reconstruction method-
ology. Visual demonstrations of these results are provided in the
supplementary video materials.

4.3.3. Style Transfer

GaussFluids can reconstruct fluid motion in a Lagrangian parti-
cle state, enabling style transfer. As shown in Figure 8, we assign
new materials to the reconstructed particles and subsequently ren-
der them, achieving different visual appearances. In Figure 6 from
the ScalarFlow dataset, the fourth row is generated by re-rendering
particles with a pink color to demonstrate additional style transfer
results.

4.3.4. Fluid Prediction

Table 8: Fluid prediction on WaterSphere. Higher PSNR/SSIM val-
ues indicate better quality.

Method PSNRT  SSIM?
GaussFluids 32.45 0.912
3DGS+NeuroFluid 15.32 0.412

GaussFluids (w/o density constraint) 13.55 0.328

Because GaussFluids reconstructs the fluid in a Lagrangian par-
ticle state, it can be employed for fluid motion prediction. We use
the WaterSphere dataset and reconstruct the initial 20 frames as a
particle representation. As shown in Figure 9, GaussFluids learns
both fluid particle rendering properties (e.g., color and opacity) for
future rendering, and fluid particle motion properties (e.g., veloc-
ity and rest density) for subsequent simulation. We then use these
properties with PBF [MM13] to simulate the next 40 frames. For
comparison, we first rely on 3DGS [KKLD23] to reconstruct the
initial frame’s particles, followed by NeuroFluid [GDWY22] to
predict future frames. While GaussFluids’ prediction remains con-
sistent with the ground truth, 3DGS+NeuroFluid fails to produce

meaningful results because 3DGS only reconstructs surface par-
ticles, leaving NeuroFluid unable to refine them. Furthermore, to
underscore the importance of the density constraint (Section 3.3)
for capturing volumetric fluid properties essential for prediction,
we compare against an ablated version of our method, GaussFluids
(w/o density constraint). Without this constraint, the reconstruction
tends to focus on surface particles, similar to 3DGS. Consequently,
the subsequent PBF simulation, which relies on volumetric particle
interactions, fails to produce physically plausible predictions. The
numerical indicators in Table 8 confirm that GaussFluids excels
across multiple metrics, and the ablated version performs poorly,
underscoring the effectiveness of its fluid prediction capabilities
when volumetric consistency is maintained.

4.3.5. Fluid Editing

The Lagrangian particle representation of GaussFluids allows di-
rect fluid editing. In Figure 10, 50% of WaterSphere particles are
removed, and the simulation continues, maintaining physical co-
herence.

4.4. Discussion

To verify the effectiveness of GaussFluids in extracting continuous
spatiotemporal Lagrangian particles of flowing fluids from multi-
view videos, this section presents a comprehensive analysis based
on both synthetic and real-world datasets. First, we conduct visual
and physical evaluations to demonstrate the physical plausibility
of the reconstructed particles. Then, we introduce several down-
stream tasks to illustrate the practical value of GaussFluids, includ-
ing novel viewpoint synthesis, temporal interpolation, style trans-
fer, and fluid prediction.

Nonetheless, due to imaging limitations, scenarios involving oc-
clusion or low-contrast regions are inevitable, occasionally leading
to suboptimal reconstruction outcomes. Mitigating this issue may
require further consideration of fluid-specific properties to enhance
reconstruction accuracy.

5. Conclusion

To address the issues of reliance on manual modeling and parame-
ter tuning in fluid simulation, which often lack objectivity and effi-
ciency, this paper proposes GaussFluids, a method that directly re-
constructs flowing Lagrangian fluid particles from video data. The
Lagrangian-based representation captures more detailed fluid mo-
tion but is inherently non-differentiable with respect to visual data.
GaussFluids extends Lagrangian fluid particles with 3D Gaussian
probability densities, enabling the direct optimization of fluid par-
ticle positions from visual data. GaussFluids achieves both tempo-
ral and spatial continuity of fluid particles during reconstruction
while maintaining fundamental fluid incompressibility, especially
within the fluid region. Experiments on both synthetic and real-
world datasets demonstrate its effectiveness and broad applicability
in novel view synthesis, temporal resampling, style transfer, fluid
prediction, and fluid editing. Unlike traditional forward modeling
approaches in fluid simulation, GaussFluids provides a novel com-
putational framework for fluid research, especially when leveraging
real-world fluid data.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Video Reconstructed Video

Reconstructed

Figure 3: Reconstructed particles for the HoneyCone and Water-
Sphere scenes of the NeuroFluid dataset. GaussFluids uses only
video input to reconstruct complete, temporally and spatially con-
tinuous Lagrangian fluid particles. As highlighted in the red boxes,
fluid details are also preserved.
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Figure 4: Standard deviation of D; in the WaterSphere scene, where
the horizontal axis represents time frames. GaussFluids maintains
the lowest standard deviation, underscoring its strong adherence to
incompressibility.
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Figure 5: Temporal variations of average mechanical energy for the
reconstructed particles, using WaterSphere. GaussFluids exhibits
gradually dissipating mechanical energy, with the most significant
drop occurring as the fluid collides with the container bottom. By
contrast, D3G shows fluctuations in mechanical energy, occasion-
ally even increasing, whereas SGFS experiences an excessively
rapid initial energy drop. These results collectively indicate that
GaussFluids more closely aligns with physical laws. Subplots of
kinetic and gravitational potential energy are also provided.
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Gaussian Particle Rendering Input Video Frames
(80% Scaling)
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Representation

Figure 6: Visual results of GaussFluids on the ScalarFlow dataset. The first row shows the input video frames. The second row presents
Gaussian Particles extracted by GaussFluids, rendered with an 80% scaling factor. The third row visualizes the reconstructed particle rep-
resentations, while the fourth row demonstrates the application of a novel style to the extracted Gaussian Particles. These results highlight
GaussFluids’ capability to effectively handle smoke-like fluid phenomena and enable subsequent fluid style transfer tasks.
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Figure 7: Visual reconstruction effects. Renderings from novel
viewpoints of NeRF-type methods are often unsatisfactory. The
D3G and SGFS methods, although able to generate alternatives
for new viewpoints, face occlusion issues caused by surface recon-
struction, highlighted by the red boxes. In contrast, GaussFluids ef-
fectively handles such challenges and delivers high-quality results.
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Figure 8: Style Transfer Demonstration. Using the WaterSphere
scene as an example, we assign new materials to the reconstructed
particles to achieve various stylized rendering effects.
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Figure 9: Fluid Prediction. The first row shows the original video
frames, while the second row presents the reconstructed particles.
The third row displays the simulated results using PBF, demonstrat-
ing its ability to predict fluid motion.

Figure 10: Fluid editing demonstration. Half of the WaterSphere
particles are removed, and their motion is predicted.



