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a b s t r a c t 

Data annotation using visual inspection (supervision) of each training sample can be laborious. Interactive 

solutions alleviate this by helping experts propagate labels from a few supervised samples to unlabeled 

ones based solely on the visual analysis of their feature space projection (with no further sample supervi- 

sion). We present a semi-automatic data annotation approach based on suitable feature space projection 

and semi-supervised label estimation. We validate our method on the popular MNIST dataset and on 

images of human intestinal parasites with and without fecal impurities, a large and diverse dataset that 

makes classification very hard. We evaluate two approaches for semi-supervised learning from the latent 

and projection spaces, to choose the one that best reduces user annotation effort and also increases clas- 

sification accuracy on unseen data. Our results demonstrate the added-value of visual analytics tools that 

combine complementary abilities of humans and machines for more effective machine learning. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Machine Learning (ML) models have been extensively inves-

igated and used for regression and classification problems [1–

] . More recently, Convolutional Neural Networks (CNNs) have

hown great success in many applications, such as image/text

lassification [4] and speech recognition [5] , since they require

onsiderably less effort to optimize parameters than the com-

on feature extraction pipeline [4] . However, CNNs may require

 high number of labeled samples (annotated objects) for training

6] . 

While small labeled training sets can impair the ability of an

L model to correctly classify new samples (a problem known

s over-fitting [7] ), large unlabeled sets make visual inspection

nd annotation very expensive for the expert. Human costs be-

ome even so more prohibitive in domains that require special-

zed knowledge about the objects, like Medicine and Biology. Solu-

ions for small labeled sets include data augmentation [8] and reg-

larization methods [9] . For large unlabeled sets, semi-supervised

lassifiers have been used to propagate labels from a small super-

ised set to the many unsupervised samples by exploring the sam-

le distribution in some feature space [10–12] . Yet, none of these

pproaches has combined the cognitive ability of humans in data
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bstraction with the ability of machines in data processing to in-

rease the number of labeled objects. 

Recent studies have investigated the use of feature space pro-

ections and visual analytics to understand and engineer ML mod-

ls [13–17] . Such work addresses both aforementioned labeling

ases with approaches for interactive data augmentation [15] and

nteractive data annotation [16,17] guided by feature space pro-

ections, respectively. Bernard et al. [16] have compared interac-

ive data annotation in a feature space projection with an active

earning technique, in which experts supervise and annotate sam-

les selected by a classifier and the classifier is retrained to anno-

ate and select more samples in the original feature space. They

iscovered that interactive data annotation in the feature space

rojection is superior to active learning. Benato et. al. [17] have

howed that when the user propagates labels to a large unsuper-

ised sample-set guided by the true-label knowledge of a few sam-

les and by the visual information of the sample distribution in a

eature space projection, the resulting labeled training-set is more

orrect than the one created by semi-supervised classifiers in the

riginal feature space. Hence, classifiers trained from such interac-

ively labeled sets can better predict labels of unseen test samples

han those trained from automatically labeled sets. Yet, Bernard

t al. [16] and Benato et al. [17] have not combined automatic and

nteractive approaches for label propagation — i.e, they have not

een concerned with the user effort in visual data inspection and

nnotation. 

In this work, we fill the above gap by proposing a semi-

utomatic approach that reduces user labeling effort while achiev-

ng better classification accuracy on unseen test sets. For this, we

https://doi.org/10.1016/j.patcog.2020.107612
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exploit the concept of sample informativeness from Active Learning

(AL). Such approaches select samples for expert supervision based

on their informativeness — i.e., potential to improve the design of

a classifier from the knowledge of their true label [18] , measured

by the confidence of a classifier about the label assigned to a sam-

ple [19–22] . In our case, we propagate labels to samples with high-

confidence values; and enable the expert focus on low-confidence

values for manual label propagation. For this, the user visually an-

alyzes the sample distribution in a 2D scatterplot created by the

t-Distributed Stochastic Neighbor Embedding ( t -SNE) technique [23] ,

constructed similarly to [16,17] , and the true-label knowledge of

only a few samples per class. Although our method can explore

further classifier improvement of the classifier by multiple itera-

tions of AL with additional supervised samples, we solve data an-

notation from a single user interaction for label propagation with

no sample supervision. For automatic label propagation, we evalu-

ate two semi-supervised classifiers trained in both latent and pro-

jection spaces for automatic label estimation and choose the best

one for our goal. We show that our semi-automatic label propa-

gation (SALP) method achieves end-to-end better classification re-

sults as compared to both fully automatic label propagation and

fully manual label propagation. 

This work is organized as follows. Section 2 presents our semi-

supervised data annotation approach. Section 3 presents the exper-

imental setup, compared baselines, used datasets, and experimen-

tal results. Section 4 discusses our results. Section 5 concludes the

paper. 

2. Semi-automatic projection-based data annotation 

Given a training set with a low number of supervised samples

and a considerably larger number of unsupervised samples, our

semi-automatic data annotation approach ( Fig. 1 ) has four steps: 

• unsupervised feature learning: We start by extracting features

from the input dataset. To minimize the number of supervised

samples needed, we adopt an unsupervised feature-learning

procedure ( Section 2.1 ); 
• feature space projection: We create a feature space 2D projection

that captures well the sample distribution in the latent feature

space for further visual analysis; 
• semi-supervised label estimation: We propagate labels automat-

ically to high-confidence unlabeled samples, thereby increas-

ing with training-set size with little effort and high quality

( Section 2.3 ); 
Fig. 1. Semi-automatic data annotation pipeline. We extract features by unsupervised lear

We next enrich the training set by propagating labels from supervised to unsupervised sa

user-controlled methods. We finally compare the quality of the classifiers trained on s

dditions to earlier related work [17] . 
• visual analysis: The expert creates additional labeled samples to

the above ones, by interactively propagating labels to the less-

confident samples using the 2D projection ( Section 2.4 ). 

.1. Unsupervised feature learning 

We use an Autoencoder Neural Network (AuNN) [24,25] for un-

upervised feature learning. AuNNs consist of two parts, encoder

nd decoder. The encoder maps the input samples to points in

 reduced (latent) feature space; the decoder reconstructs these

amples. The two parts are coupled and trained together by back-

ropagation. As cost function, we use the mean squared error be-

ween the original and reconstructed samples. For small errors,

he obtained latent feature space is a reasonable representation of

he original sample distribution. Hence, we train the AuNN with

ll labeled and unlabeled samples by ignoring labels. After eval-

ating several models, we decided for a Stacked Convolutional

uNN [24] — a neural network that presents convolutional lay-

rs and can usually obtain relevant latent features. For our experi-

ents, we use image datasets. However, this latent feature learning

an be used for any other kind of data that can be suitably mapped

o the input layer of the encoder. Section 3 presents implementa-

ion details. 

.2. Feature space projection 

Previous works indicate that 2D projections, created by the t -

NE algorithm [26,27] , achieve this goal well [13,16,17] , so we fol-

ow these ( Section 2.2 ). 

The dimension of the latent feature space can still be consid-

red very high (with usually hundreds to thousands of features)

nd so unfeasible for visual inspection of the sample distribution.

s previously mentioned, we wish to reduce the latent space to

wo dimensions by preserving as much as possible the relevant

tructure of the data. The most suitable techniques for this task

eem to preserve local distances between samples and the t -SNE

lgorithm satisfies this criterion [23] . It is a non-linear projec-

ion that depends on the choice of two parameters: perplexity and

umber of iterations. Our choice for these parameters is discussed

n Section 3 . 

.3. Semi-Supervised label estimation 

For semi-supervised label estimation, we consider two tech-

iques that explore the sample distribution in a given feature
ning from the training set and next use these to project this set to a 2D scatterplot. 

mples by automatic methods (in both latent and projection spaces) and by manual 

uch training sets to decide on the best label propagation method. Red indicates 
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Fig. 2. Feature projection showing unsupervised samples from red (low confidence) 

to green (high confidence). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

s  

v  

(  

P  

l  

S  

S  

n  

w  

i  

v

 

c  

t  

o  

p  

L  

h  

b  

c  

l  

m  

c  

b  

s  

b  

p  

c  

l  

l  

m  

l  

t  

S

2

 

p  

t  

e  

t  

Fig. 3. Semi-automatic label propagation is done from the supervised samples 

(points colored by class, saturated colors, red border) first automatically to the 

unsupervised and high-confidence ones (light colors, no border). Remaining low- 

confident samples (black) are candidates for manual propagation. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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pace to propagate labels with confidence values from super-

ised to unsupervised ones: Laplacian Support Vector Machines

LapSVM) [28,29] and Semi-Supervised Classification by Optimum-

ath Forest (OPF-Semi) [30] . We evaluate both methods on both

atent and projection spaces. Given that the performance of OPF-

emi in label propagation is much higher than that of LapSVM (see

ection 3 ), we select OPF-Semi to output confidence values, used

ext for our manual label propagation ( Section 2.4 ). Additionally,

e found that OPF-Semi in the projection space outperforms itself

n the latent feature space (see Section 3 ). Hence, we use the 2D

ersion of OPF-Semi for semi-automatic data annotation. 

OPF-Semi maps (un)labeled samples to nodes of a graph and

omputes an optimum-path forest rooted at labeled samples. In

his forest, each node s is conquered (labeled) by the root R that

ffers a path of minimum cost k ( R, s ) to s . We use costs to com-

ute label confidence values c ( s ) as described in [20–22] . In brief:

et A and B be two roots for sample s so that A is the one that

as conquered s ( k ( R, s ) is minimal) and B , having a different la-

el than A , offers the second-best cost k ( B, s ) to s . We assign the

onfidence c(s ) = 1 − k (A , s ) / (k (A , s ) + k (B, s )) , c ( s ) ∈ [0, 1], to the

abel of s given by A . That is, if the second-best cost k ( B, s ) is

uch larger than the minimal cost k ( A, s ), the label A has a high

onfidence. We use the confidence as follows: All labels assigned

y OPF-Semi having a confidence above a threshold τ are used as

uch in the training process. The threshold τ is chosen by the user

ased on the visual analysis of the feature projection with unsu-

ervised samples colored by their confidence values from red (low

 ) to green (high c ) ( Fig. 2 ). Changing τ interactively by a slider

ets the user (a) say that high-confidence samples can keep their

ikely good labels assigned by OPF-Semi and (b) focus on the re-

aining low-confidence samples to assign them labels by manual

abel propagation, described next in Section 2.4 . Users can choose

he exact threshold τ balancing how much they wish to trust OPF-

emi vs how many samples they are willing to label manually. 

.4. Manual label propagation 

The added value of user-driven label propagation in a t -SNE

rojection was demonstrated by the interactive label propagation

echnique in [17] which we refer to next as ILP for brevity. How-

ver, ILP propagation is fundamentally affected by the quality of

he latent features extracted by the AuNN ( Section 2.1 ) and the
uality of the t -SNE projection itself: If both these operations faith-

ully preserve the similarity of original samples, then the user can

ikely propagate labels well, by simply selecting points close in the

rojection to the supervised samples. If either the latent space or

he projection create errors, which they inherently do [31] , this

ill likely create wrong labels. We assist the user in this pro-

ess as follows. We color the supervised points in the projection

y their labels, and color all low-confidence unsupervised points s

aving c ( s ) < τ in black ( Fig. 3 ). The black points are projected be-

ore the colored points, in order to minimize undesired occlusions.

hen moving the mouse pointer over a projected point, we show

ts sample image in a tooltip. The user next employs these three

ources of information – proximity of unsupervised (black) points

n the 2D projection to supervised (colored) ones, low-confidence

alue of the unsupervised points, and similarity of unsupervised-

o-supervised tooltip images – to decide which unsupervised sam-

les get which supervised label. Label propagation is next done

imply by selecting desired points in the projection and clicking

o assign them a supervised-point label. 

. Experiments and results 

We next present the experimental setup, baselines, datasets,

mplementation details, and experimental results used for validat-

ng our semi-automatic data annotation method. 

.1. Experimental setup 

We divide each available dataset D into three subsets for vali-

ation: a very small training set S with a few supervised samples

er class (3%| D |); a considerably larger training set U with unsu-

ervised samples for label propagation (67%| D |); and a set T with

nseen test samples (30%| D |). Next, based on the user-chosen con-

dence threshold τ , we split U into high-confidence samples L c ,

hich get their label from OPF-Semi, and low-confidence ones L i ,

hich can be interactively labeled by the user. Note that L c ∩ L i = ∅
nd L c ∪ L i � = U , since the user can choose not to label L i entirely,

o minimize manual labeling effort. We randomly split D into S, U ,

nd T this way three times and repeat the evaluation — i.e., label
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Fig. 4. Examples of each species of H. Eggs (left) and similar images of impurities 

(right). 

Table 1 

Number of samples in S, U and T for each dataset: MNIST, Parasites, and Parasites 

with impurity (I). 

Dataset | S | | U | | S ∪ U | | T | 

MNIST 175 3325 3500 1500 

H. Eggs 61 1176 1237 531 

P. cysts 134 2562 2696 1156 

H. Larvae (I) 122 2337 2459 1055 

H. Eggs (I) 178 3400 3578 1534 

P. cysts (I) 334 6363 6697 2871 
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propagation from S to U followed by supervised training on S ∪ U

and testing on T — for statistical purposes. 

After labels are propagated from S to U , we train a supervised

classifier on S ∪ U using the latent feature space. For this task, we

used the Optimum-Path Forest (OPF) [32] and Support Vector Ma-

chines (SVM) [33] . OPF has no hyperparameters to set, so it is

simple to use. For SVM, we find optimal values for its hyperpa-

rameters σ (influence radius), C (regularization) and kernel type

by grid search over the ranges [0.1, 0.0 0 0 0 01], [1, 10 0 0 0] and the

kernel functions Gaussian radial basis and linear respectively, using

3 splits and stratified random sampling with 70% and 30% of the

samples from S ∪ U used for training and validation, respectively.
Table 2 

Average κ and its standard deviation for SVM and OPF classifiers on the T set for MNIST, P

dataset are in bold. 

Dataset Propagation Technique | S | | U | 

Ave

Prop

tion

Acc

MNIST No label prop. 175 - - 

LapSVM ( n D) 175 3325 0.09

OPF-Semi ( n D) 175 3325 0.76

LapSVM (2D) 175 3325 0.57

OPF-Semi (2D) 175 3325 0.79

H. Eggs No label prop. 61 - - 

LapSVM ( n D) 61 1176 0.88

OPF-Semi ( n D) 61 1176 0.94

LapSVM (2D) 61 1176 0.76

OPF-Semi (2D) 61 1176 0.98

P. cysts No label prop. 134 - - 

LapSVM ( n D) 134 2562 0.52

OPF-Semi ( n D) 134 2562 0.80

LapSVM (2D) 134 2562 0.78

OPF-Semi (2D) 134 2562 0.83

H. Larvae (I) No label prop. 122 - - 

LapSVM ( n D) 122 2337 0.88

OPF-Semi ( n D) 122 2337 0.91

LapSVM (2D) 122 2337 0.12

OPF-Semi (2D) 122 2337 0.92

H. Eggs (I) No label prop. 178 - - 

LapSVM ( n D) 178 3400 0.65

OPF-Semi ( n D) 178 3400 0.50

LapSVM (2D) 178 3400 0.14

OPF-Semi (2D) 178 3400 0.72

P. cysts (I) No label prop. 334 - - 

LapSVM ( n D) 334 6363 0.62

OPF-Semi ( n D) 334 6363 0.46

LapSVM (2D) 334 6363 0.12

OPF-Semi (2D) 334 6363 0.60
e test the classifiers on T and measure their effectiveness by Co-

en’s κ coefficient [34] . The κ coefficient is within [ −1 , 1] , where

≤ 0 means no agreement and κ = 1 means complete agreement

etween two annotators. Additionally, we also compute the ac-

uracy of label propagation on U for each approach, that is the

umber of labeled samples correctly assigned divided by the num-

er of unsupervised samples (| U |). Therefore, the best approach

or label propagation is the one that produces the best supervised

lassifiers. Since we consider the κ as effectiveness measure, the

est supervised classifier is then the one that provides the best κ
esult. 

.2. Baselines 

As described in Section 2 , we propose a semi-automatic label

ropagation (SALP) that uses OPF-Semi in the 2D t -SNE projec-

ion space to propagate labels to high-confidence samples and the

ser to propagate labels to low-confidence samples, respectively.

e next compare SALP with the following three baselines: 

1. No label propagation (NLP): SVM and OPF, are trained from only

S , ignoring set U . 

2. Automatic label propagation (ALP): set U is fully labeled by one

of the four ALP methods below and SVM and OPF are trained

from S ∪ U . 

(a) LapSVM using the n D latent feature space. 

(b) LapSVM using the 2D t -SNE projection space. 

(c) OPF-Semi using the n D latent feature space. 

(d) OPF-Semi using the 2D t -SNE projection space. 

3. Interactive label propagation (ILP): set U is fully labeled by the

user and SVM and OPF are trained from S ∪ U , as in [17] . 

n all above cases, we test SVM and OPF on T . 
arasites without impurity, and Parasites with impurity (I). The best results for each 

rage 

aga- 

 

uracy | S ∪ U | Average κ (SVM) Average κ (OPF) 

175 0.813415 ± 0.001 0.709450 ± 0.021 

5639 3500 0.000000 ± 0.000 0.051110 ± 0.006 

3308 3500 0.736685 ± 0.053 0.716913 ± 0.048 

4236 3500 0.521970 ± 0.065 0.580445 ± 0.047 

6592 3500 0.780197 ± 0.008 0.751794 ± 0.010 

61 0.961366 ± 0.023 0.941358 ± 0.026 

6338 1236 0.873472 ± 0.035 0.877344 ± 0.037 

7563 1236 0.938317 ± 0.049 0.938323 ± 0.051 

8141 1236 0.722691 ± 0.041 0.727673 ± 0.043 

2993 1236 0.983621 ± 0.011 0.982146 ± 0.008 

134 0.823106 ± 0.016 0.762682 ± 0.008 

1598 2696 0.346761 ± 0.001 0.371770 ± 0.005 

2238 2696 0.740287 ± 0.036 0.724182 ± 0.053 

7666 2696 0.597541 ± 0.212 0.592956 ± 0.187 

8017 2696 0.801953 ± 0.021 0.786383 ± 0.022 

122 0.375378 ± 0.333 0.531080 ± 0.035 

2613 2459 0.121253 ± 0.086 0.173416 ± 0.088 

9075 2459 0.601003 ± 0.073 0.602001 ± 0.066 

7086 2459 0.000000 ± 0.000 0.008665 ± 0.005 

4405 2459 0.569164 ± 0.070 0.556642 ± 0.059 

178 0.705972 ± 0.037 0.568304 ± 0.034 

4118 3578 0.000000 ± 0.000 0.076043 ± 0.016 

4510 3578 0.373763 ± 0.029 0.391894 ± 0.021 

6274 3578 0.086608 ± 0.031 0.109734 ± 0.035 

9608 3578 0.611144 ± 0.071 0.544552 ± 0.047 

334 0.628584 ± 0.024 0.476051 ± 0.010 

2662 6697 0.232800 ± 0.104 0.202826 ± 0.030 

8804 6697 0.343356 ± 0.034 0.337168 ± 0.032 

8818 6697 0.045538 ± 0.038 0.079854 ± 0.024 

5427 6697 0.429731 ± 0.013 0.396645 ± 0.009 
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Fig. 5. AuNN architecture for MNIST dataset (top) and for Parasites datasets (bottom). The yellow layers are the convolutional layers, the red layers at the beginning of each 

network are the Max Pooling layers and the blue layers are the Up-Sampling layers. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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.3. Datasets 

Our first dataset contains 50 0 0 images (28 × 28 pixels each) of

andwritten digits from 0 to 9, randomly selected from the popu-

ar public dataset MNIST [35] . Our next three datasets use images

20 0 × 20 0 pixels each) from an automatic processing pipeline

hat separates microscopy images of human intestinal parasites

nto three groups: (i) Helminth larvae and fecal impurities (3514

mages); (ii) Helminth eggs and fecal impurities (5112 images); and

iii) Protozoan cysts and fecal impurities (9568 images).Fecal im-

urity is a diverse class that has very similar samples to parasites

see Fig. 4 ). We consider these three datasets with and without im-

ges of fecal impurities, yielding five datasets for testing our pro-

osal, apart from MNIST. The number of classes in each dataset is

s follows: (i) H. Larvae has two categories; (ii) H. Eggs has nine

ategories ( H. nana, H. diminuta, Ancilostomideo, E. vermicularis, A.

umbricoides, T. trichiura, S. mansoni, Taenia , and impurities); and

iii) P. cysts has seven categories ( E. coli, E. histolytica, E. nana, Gia-

dia, I. butschlii, B. hominis , and impurities), respectively. Those are

he most common species of human intestinal parasites in Brazil,
 c  
hich are responsible for public health problems in most tropical

ountries [36] . All three datasets are unbalanced with considerably

ore impurity samples. The images of parasites have been anno-

ated by biomedical specialists. Table 1 gives the number of im-

ges in each set S, U , and T after the random split described in

ection 3.1 . 

.4. Implementation details 

Feature extraction: Fig. 5 shows the AuNN architectures for the

NIST and parasites datasets. We implemented these networks in

eras [37] with 6 convolutional layers of 3 × 3 filters, 3 for the en-

oder and 3 for the decoder, respectively. After each convolutional

ayer, we use ReLU activation and apply max-pooling in the en-

oder and upsampling in the decoder. We normalize the input im-

ges within [0,1], since the output requires sigmoid activation. We

hoose the number of filters based on the dataset: For MNIST, the 6

onvolutional layers use 16, 8, 8, 8, 8, and 16 filters. For the 5 para-

ites datasets, we use 32, 16, 8, 8, 16, and 32 filters respectively. As

ost function, we use mean squared error as it provides more suit-
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Fig. 6. Projections colored by label confidence (red = low confident, green = high 

confident). Rows are datasets (easiest at top, hardest at bottom). Columns show 

the entire set of supervised-and-unsupervised samples S ∪ U , the high-confidence 

samples L c labeled by ALP, and the low-confidence samples U �L c that go to man- 

ual labeling. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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able results in reconstruction task with fewer training epochs. We

use 50 epochs for the easier datasets (MNIST and H. Eggs with-

out impurities) and 100 for the others. For MNIST, we use a la-

tent feature space of n = 128 dimensions. For the parasites, which

have higher-resolution and more complex images, we use n = 50 0 0

dimensions. Projection: Different choices of t -SNE parameters can

lead to different 2D projections [38] . We found empirically that for

a range of 10 0 0 to 70 0 0 samples in S ∪ U , setting t -SNE’s perplex-

ity to 40 and maximum iteration count to 10 0 0 respectively yields

good projections for label propagation. 

3.5. Experimental results 

We discuss the performance of our pipeline, measured by the

performance of the classifiers trained from S ∪ U in the latent fea-

ture space and tested on T , by answering the following questions: 
• Which space ( n D latent, 2D projection) is better for ALP?

( Section 3.5.1 ) 
• How to set the confidence threshold τ? ( Section 3.5.2 ) 
• Which approach (manual, semi-automatic, automatic) best

propagates labels from S to U ? ( Section 3.5.3 ) 
• What is the end-to-end value of SALP? ( Section 3.5.4 ) 
• How do results depend on the projection quality?

( Section 3.5.5 ) 

Note that we use the 2D projection space only for manual label

ropagation, i.e. not for testing, since we cannot assume that set T

s known during training. 

.5.1. Influence of reducing the feature space from n D to 2D 

Table 2 presents mean and standard deviation values of Co-

en’s κ for classifiers on set T for each dataset, as well as the sizes

f S, U , and S ∪ U , and the mean accuracy values in automatic la-

el propagation for LapSVM and OPF-Semi, used in the n D feature

pace and also in the 2D projection space, as well as the option of

ot propagating labels. We get several insights. First, we see that

apSVM performs sometimes better and sometimes worse in n D as

ompared to 2D, depending on the dataset. In contrast, OPF-Semi

onsistently shows a positive impact of reducing the feature space

ndependently of the dataset. This happens even when its label-

ropagation performance is not the best one. 

.5.2. The choice of the confidence threshold 

As stated in Section 2.3 , users need to choose the threshold τ to

pecify which automatically-propagated labels they want to keep

nd which they wish to ‘override’ manually. Fig. 6 show the pro-

ections of all, respectively the most-confident samples selected by

he user, for the six studied datasets. We see that the threshold

varies relatively little (being either 0.5 or 0.6) across datasets.

his indicates that a good default value to start with is τ = 0 . 5 , af-

er which users can tune τ upwards or downwards depending on

he actual distribution of confidences in the projection. Overall, we

an see that the more challenging is the dataset, the higher is the

hreshold τ . 

.5.3. Best label propagation approach 

Table 2 showed that OPF-Semi 2D is the winner for auto-

atic label propagation (ALP). Hence, the next question is how

ell this method would compare against interactive label propa-

ation (ILP) [17] , which uses manual label propagation to all un-

upervised labels, and our new semi-automatic label propagation

SALP), which uses manual label propagation to samples with low-

onfidence unsupervised labels only. Fig. 7 illustrates the ILP and

ALP projections for the studied datasets. A key advantage of SALP

ver ILP is that it shows only the least confident samples (accord-

ng to OPF-Semi 2D) to the user, hence reducing the effort needed

o understand the picture (and also reducing clutter and overlap

n the projection), thus making the interactive labeling task easier.

e discuss next several observations relating ILP to SALP in Fig. 7 ,

s well as observations we made during the actual interactive la-

eling process. 

For the MNIST dataset, the user propagated labels to 1864 un-

upervised samples on average (over the three considered runs)

hen using ILP. When using SALP, this number dropped to 1182

amples. This pattern of less effort for SALP is consistent over all

ther datasets, as discussed next. 

For the H. Eggs dataset, we see that the ILP projection shows

ell-separated sample groups from distinct classes (colors). This

ndicates that separating classes in feature space is relatively easy.

his is confirmed in turn by the fact that we only have very few

ow-confidence samples after running OPF-Semi 2D (black dots in

he SALP projection). Hence, while labeling in ILP can proceed very
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Fig. 7. Comparison of different label propagation methods (columns) for different datasets (rows). From left to right: ILP, SALP, labels automatically propagated by OPF-Semi, 

and final labeling result of SALP together with OPF-Semi. Colors indicate labels given by either supervised samples (ILP, SALP) or both unsupervised and propagated labels 

(OPF-Semi, OPF-semi+user)). Black shows samples to be considered by manual propagation (three left columns), and samples skipped by manual propagation (right column). 

Sample set sizes are shown to the right. 
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asily, given the good cluster separation, labeling in SALP is even

asier , since we have both good cluster separation and a low num-

er of samples to label. In this case, the user propagated labels to

171 samples in ILP and to only 154 samples in SALP. 

For P. cysts , the projections a less clear visual separation of

ame-class (same color) points in groups. This makes interactive la-

el propagation more challenging for both ILP and SALP. The user

ropagated labels to 1999 samples in ILP and to 919 samples in

ALP. For SALP, we see that OPF-Semi 2D propagated labels in more

entral regions of the visible groups where, hence, confidence is

igh. The remaining confusion regions (black points) are solved by

he user. 
For. H. Larvae , we notice that supervised impurity samples

green) are all over the projection, whereas the supervised H. Lar-

ae samples (red) are more concentrated in the top-right of the

rojection. Given this quite good visual separation, propagating the

mpurity label using ILP is relatively easy for most parts of the pro-

ection. However, this still takes manual effort. Using SALP, such

easy’ areas are solved automatically, and the user is left with only

he more difficult region at the top-right, where green meets red,

o solve. In ILP, the user propagated labels for 2080 samples on

verage while in SALP this number was 524 samples. 

For H. Eggs dataset with impurity, the supervised impurity sam-

les (gray) fall between groups of colored points (actual H. Eggs
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classes) in the projection. In contrast to the earlier datasets, we

see many more black points in SALP, meaning that OPF-Semi 2D

has difficulties in automatically propagating labels. This matches

the fact that datasets with impurities are considerably harder. For

this dataset, the user propagated labels to more points in SALP

(2076) than ILP (1787). This seems to support the evidence that the

simplification of the SALP projection by removing high-confidence

points, even though minor in this case, was enough to help the

user see more structure in the projection along which she could

propagate labels. Also, as for P. cysts , we see that OPF-Semi 2D

propagates labels in more central regions of the visible groups,

leaving the rest to the user. 

Finally, for P. cysts with impurities, the supervised impurity

samples (brown) are spread out over the entire projection. The

supervised P. cysts samples (other colors than brown) are mixed

quite strongly, and the projection shows little structure – roughly,

one large and one small crescent-shaped group. This is the most

challenging dataset for manual label propagation and classification

among the evaluated datasets. This difficulty can be noted by com-

paring P. cysts and H. Eggs both without impurities. For P. cysts ,

even without impurities, the classes are mixed in the projection.

However, the classes are well separated in the projection for the

H. Eggs dataset without impurities. When adding the impurities to

those datasets, the difficulty increases for the classifiers, as shown

in Section 3.5.4 . 

As for H. Eggs , OPF-Semi 2D finds only few confident samples,

so the manual labeling effort is quite similar for both ILP and SALP.

This is matched by the actual number of points to which the user

actually propagated labels (1787 with ILP vs 1733 with SALP). Even

though these figures are almost identical, the main benefit for SALP

here is that OPF-Semi 2D already filtered the easy cases (high con-

fidence) points, thereby focusing the user’s effort to the more dif-

ficult cases. 

3.5.4. End-to-end value of SALP 

We have seen that SALP decreases the user’s effort in label

propagation. A final question we answer is: How much added-

value does SALP bring, in terms of classification quality, as op-

posed to the earlier similar method, ILP, or to the best fully-

automatic counterpart we found, OPF-Semi 2D? Table 3 answers

this by showing the average and stardard deviation of κ on the

test set T for each considered dataset. The table further shows the

sizes of S, U , and S ∪ U , and the mean accuracy values in label prop-

agation for OPF-Semi 2D, ILP, and SALP. It is important to highlight

that the propagation accuracy for SALP considers not only the low-
Table 3 

Average κ and its standard deviation for the SVM and OPF classification results on unseen

Dataset Propagation Technique | S | Average | L i ∪ L c | Average Propagati

MNIST OPF-Semi (2D) 175 3325 0.796592 

ILP 175 1864 0.974718 

SALP 175 2872 0.947192 

H. Eggs OPF-Semi (2D) 61 1175 0.982993 

ILP 61 1171 0.996014 

SALP 61 1175 0.992347 

P. cysts OPF-Semi (2D) 134 2562 0.838017 

ILP 134 1999 0.947177 

SALP 134 2309 0.951119 

H. Larvae (I) OPF-Semi (2D) 122 2337 0.924405 

ILP 122 2080 0.981273 

SALP 122 2337 0.986730 

H. Eggs (I) OPF-Semi (2D) 178 3400 0.729608 

ILP 178 1547 0.914358 

SALP 178 3059 0.959611 

P. cysts (I) OPF-Semi (2D) 334 6363 0.605427 

ILP 334 1787 0.826867 

SALP 334 3948 0.864390 
onfident samples labeled by the user, but the high-confident ones

utomatically treated by OPF-Semi 2D. We see that SALP consis-

ently obtained the best classification results on unseen T for all

atasets. This proves that SALP is, indeed, of added value with re-

pect to earlier existing methods – using it yields better classifiers

n the end. Separately, we see that, for all but the simplest datasets

MNIST and H. Eggs ), SALP also yields the best label propagation

ccuracy. 

.5.5. How do results depend on projection quality 

We did the same experiments discussed in the sections so far

sing UMAP [39] instead of t -SNE as a projection technique. Over-

ll, we noticed worse results, in terms of label propagation accu-

acy and classifier quality ( κ) than when using t -SNE. This indi-

ates that the neighborhood preservation quality of a projection

which is higher for t -SNE than for UMAP) is am important fac-

or for out method. Note also that the trends observed so far link-

ng obtained SALP and ILP quality with the dataset size and diffi-

ulty cannot be ascribed to us having used ‘optimal’ projections by

 lucky setting of the projection-method parameters: Indeed, both

MAP and t -SNE are non-deterministic methods. 

. Discussion 

We next discuss several aspects of our method 

.1. Using the n D vs 2D feature space 

An interesting question is how the fully automatic label prop-

gation (ALP) performs when using the latent n D feature space vs

he 2D projection space. Fig. 8 shows the average κ classification

alues for LapSVM and OPF-Semi using these two spaces for the

PF and SVM classifiers respectively. Datasets are sorted along the

 axis by decreasing order of the κ value for OPF-Semi 2D. We see

hat LapSVM leads to better results in 2D than in n D for half of

he datasets, while OPF-Semi does that for all datasets. This essen-

ially tells that the 2D projection space, created by t -SNE, is able

o retain all needed information to enable the desired label prop-

gation and, next, good-quality classifier construction. This is an

mportant result, as it justifies next presenting the 2D projection

pace to the user as the sole information based on which she will

erform the manual label propagation. We also see that the trend

f the κ values along the x axis, for both the 2D and n D variants,

atches the perceived difficulty of the datasets: High κ values cor-

espond to easier datasets (left), while lower κ values correspond

o the harder datasets with impurities (to the right). Finally, we
 test data T for the studied datasets. Best results per dataset are in bold. 

on Accuracy Average | S ∪ L i ∪ L c | Average κ (SVM) Average κ (OPF) 

3500 0.780197 ± 0.008 0.751794 ± 0.010 

2039 0.844264 ± 0.027 0.776241 ± 0.036 

3047 0.885855 ± 0.030 0.839161 ± 0.018 

1236 0.983621 ± 0.011 0.982146 ± 0.008 

1232 0.986624 ± 0.009 0.987364 ± 0.003 

1236 0.989582 ± 0.005 0.983639 ± 0.007 

2696 0.801953 ± 0.021 0.786383 ± 0.022 

2133 0.851948 ± 0.006 0.841023 ± 0.002 

2443 0.877566 ± 0.011 0.850232 ± 0.015 

2459 0.569164 ± 0.070 0.556642 ± 0.059 

2202 0.727843 ± 0.013 0.723049 ± 0.016 

2459 0.805388 ± 0.014 0.748340 ± 0.036 

3578 0.611144 ± 0.071 0.544552 ± 0.047 

1725 0.683544 ± 0.033 0.593104 ± 0.034 

3237 0.866121 ± 0.043 0.725803 ± 0.025 

6697 0.429731 ± 0.013 0.396645 ± 0.009 

2121 0.589643 ± 0.036 0.472148 ± 0.008 

4282 0.648831 ± 0.043 0.543963 ± 0.016 
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Fig. 8. κ values for studied datasets, for OPF and SVM classifiers (columns) and LapSVM and OPF-Semi automatic label propagation methods (rows). Curves show κ values 

for ILP and SALP for comparison purposes. Datasets are sorted from easiest to hardest to classify (left to right) based on SALP results. 
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Fig. 9. (a) the percentage of labeled samples in U vs ILP and SALP label propagation 

methods and (b) the number of samples for the six studied datasets. 

s  

o  

m  

c

lot here also the κ values for ILP and SALP (curves in the figures).

n all cases, these curves are above the automatic methods, show-

ng that adding manual effort pays off. The SALP curve is above the

LP one, showing that the optimal design is reached by combining

utomatic and manual label propagation (both executed in the 2D

pace). 

.2. User effort reduction 

Besides achieving the best classification results, as compared

o both fully-automatic and fully-manual (ILP) label propagation,

ALP also reduces the manual effort as compared to ILP. Fig. 9

hows this by depicting the percentage of samples labeled by the

ser over total number of samples to label (| U |) per dataset and

or ILP and SALP. For SALP, this measurement excludes, indeed,

he automatically-labeled samples by OPF-Semi 2D. Datasets are

orted along x by increasing | U |, i.e, from the smallest to the largest

ataset. Fig. 9 reveals several insights. First, assuming that the la-

eling effort is proportional with the number of labeled samples

nd the effort per sample is the same for ILP and SALP (which

hould be the case given that the two methods share the same

isualization and interaction), we see that the ILP effort is always

arger than the SALP effort, except for H. Eggs with impurities. Sec-

ndly, the percentage of propagated samples for ILP decreases with

he dataset size. This can be explained by the difficulty of prop-

gating labels in projections showing many points, where over-

ap and clutter become issues. We note an opposite for trend

ALP: The percentage of propagated samples increases with dataset

ize. The trend breaks for the largest dataset (Prot.c.(I), 6363 sam-

les), about twice larger than the second-largest dataset ( H. Eggs (I),

400 samples). Here, the projection is likely quite dense and clut-

ered, so manual propagation becomes similarly hard for ILP and

ALP. 

In parallel, we observe that the number of samples U �L c , those

bove the threshold τ and low-confidence labels to OPF-Semi, also

ncreases with the dataset size. Thus, the amount of samples U �L c 
resented to the user to propagate labels with SALP increases

ith dataset size. One case in point is the H. Eggs with impuri-

ies dataset. This dataset has the largest percentage of annotated
amples by SALP, exceeding also ILP. This is explained by the size

f the dataset (second largest one) and the fact that its projection

akes it reasonably easy to propagate labels for the large impurity

lass ( Fig. 6 ). 
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Fig. 10. Normalized gain, i.e., κ divided by the percentage of manually labeled sam- 

ples with ILP and SALP for SVM and OPF classifiers for the six studied datasets 

(sorted left to right on size). 
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4.3. Effectiveness 

As shown in Fig. 8 , SALP consistently yields best classification

results, for both SVM and OPF classifiers, overpassing fully man-

ual propagation methods (ILP) and the best fully automatic one

(OPF-Semi 2D). The gains of SALP are higher for the more challeng-

ing datasets, where fully automatic methods encounter challenges.

Conversely, where such methods work well, they reduce user effort

as compared to fully manual propagation (ILP). In brief, this shows

that the combination of automatic methods with human insights

is indeed of added value both in increasing classifier quality and

decreasing the effort needed to achieve it. 

It is next interesting to compare the normalized gain of ILP vs

SALP. We define this as the obtained κ value (what we get) di-

vided by the percentage of manually labeled samples (what we

need to pay). Fig. 10 shows this normalized gain for ILP and SALP

for both SVM and OPF classifiers. We see that SALP has far larger

normalized gains than SALP for smaller datasets, while differences

become quite small for the two largest datasets. 

4.4. Manual sample selection justification 

In classical pipelines, expert users would label samples in an

empirical order. In pipelines that consider active learning methods,

the sample informativeness can be used to suggest samples in each

iteration for user supervision. However, those approaches do not

usually explore the ability of humans in abstracting information

from data visualization. Given that their labeling effort is limited

(and their cost is high), the aim is to maximize the ‘added value’

of creating extra labels manually. Our hypothesis (which we show,

by our experiments, to hold) is that, when expert users are of-

fered hints in terms of sample similarity (via the 2D projection and
ts tooltips) and by the confidence of an automatic labeler (color-

oded in the projection), they can manually create extra labels that

ave a higher added-value (for classification accuracy) than fully

utomatic methods can achieve. 

The core point of manual labeling is to enable users with ex-

ert knowledge select the samples they think are most relevant for

onstructing a good training set. Answering the question of why

xpert users would select a certain sample subset rather than an-

ther one is not something we can argue theoretically, as it de-

ends on a multitude of factors – first and foremost, the training

f the expert and how this training determines the expert to con-

ider a given image more (or less) relevant for being labeled in a

ertain way. 

.5. Limitations 

Several limitations exist to our approach, as follows. First, vali-

ation is limited to six datasets, two classifier techniques, and one

ser performing manual labeling. Measuring the added-value of

ALP for more (dataset, classifier, user) combinations would bring

ore insights into the effectiveness of the method. Secondly, while

he added-value of the 2D t -SNE projection space in capturing in-

ormation needed for good label propagation has been demon-

trated both for automatic methods and manual ones, the actual

ffect of t -SNE’s distortions has not been quantitatively gauged.

sing projection accuracy metrics such as stress, trustworthiness,

ontinuity, or neighborhood hit [31] can be used to find such cor-

elations. On the other hand, using visual tools [31] that highlight

uch errors in specific projection areas can help the user to achieve

ore accurate and/or faster manual label propagation. 

. Conclusion 

We proposed a combined automatic-and-user-driven approach

or creating labeled samples for sparsely-annotated datasets for the

urpose of training classifier models. For this, we extract dataset

eatures using Autoencoder Neural Networks and next reduce these

o a 2D space using t -SNE. We next automatically propagate la-

els from the (few) supervised to unsupervised samples in this

D space, while monitoring the propagation confidence. For low

onfidence labeled samples, we allow the user to manually anno-

ate them by using the visual insights encoded in the 2D projec-

ion annotated with the supervised sample labels. Several quan-

itative results follow: First, we showed that the 2D projection

pace leads to higher-accuracy automatic label propagation than

he high-dimensional latent space extracted by the autoencoder.

o our knowledge, this insight is new, and suggests new ways

or dimensionality reduction. Secondly, we show that our semi-

upervised method, combining the OPF-Semi automatic label prop-

gation with user-driven manual label propagation, both done in

he 2D space, achieves higher classification quality than both fully-

utomatic and fully-manual label propagation. This opens the way

o different methods for combining automatic and human-centered

ethods for the engineering of high-quality machine learning sys-

ems. 

Future work will consider the use of the proposed semi-

utomatic label propagation method in Active Learning (AL) sce-

arios. We expect that AL looping can improve classification re-

ults as long as the propagation accuracy increases. Also, we intend

o consider metric learning approaches that might improve the 2D

rojection of the feature space. We are interested in methods that

llow the comparison between training and testing data. Specif-

cally, we intend to investigate methods such as the exemplar-

entered High Order Parametric Embedding [40] . Separately, we

lan to perform more extensive validation studies measuring the
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dded-value of our approach for more types of datasets, classifica-

ion methods, and using additional visual analytics techniques to

elp users to propagate labels better and faster. 
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