

P S E U D O L A B E L I N G A N D C L A S S I F I C AT I O N O F
H I G H - D I M E N S I O N A L D ATA U S I N G V I S U A L

A N A LY T I C S

bárbara caroline benato

Cover: A colored 2D projection of high-dimensional data.

Pseudo labeling and classification of high-dimensional data
using visual analytics

Bárbara Caroline Benato
PhD Thesis

This thesis is the result of a joint PhD between the University of
Campinas and the Utrecht University.

Pseudo Labeling and
Classification of High

Dimensional-Data using
Visual Analytics

Pseudoetikettering en Classificatie van
Hoogdimensionale Gegevens met Visuele Analyse

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht

op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

dinsdag 9 juli 2024 des middags te 4.15 uur.

door

Bárbara Caroline Benato

geboren op 10 januari 1994

te Botucatu, Brazil

Promotors:
Prof. dr. A. C. Telea
Prof. dr. A. X. Falcão

Beoordelingscommissie:
Prof. dr. G. C. S. de Araújo
Prof. dr. H. L. Hardman
Prof. dr. A. R. Rocha
Prof. dr. A. A. Salah
Prof. dr. I. Velegrakis

This degree is awarded as part of a Joint Doctorate with Univer-

sity of Campinas, Brazil.

This thesis was (partly) accomplished with financial support
from FAPESP (São Paulo Research Foundation, grant
agreement numbers 2019/10705-8 and 2022/12668-5) and
CAPES (Coordination for the Improvement of Higher
Education Personnel, Financial code 001).

Dit proefschrift werd mede mogelijk gemaakt met financiële
steun van FAPESP (São Paulo Research Foundation) onder
subsidieovereenkomst nr. 2019/10705-8 en nr. 2022/12668-5) en
CAPES (Coordination for the Improvement of Higher
Education Personnel) onder subsidieovereenkomst nr. 001.

To my grandmother, Bela, who saw more courage in
me than I could. And to all other COVID victims.

i

A B S T R A C T

Machine learning (ML) works with data consisting of tens up
to tens of thousands of measurements (dimensions) per sample.
As the number of dimensions and/or samples grow, so does the
difficulty of understanding such data and, related to that, un-
derstanding how to design ML pipelines that effectively process
such data for tasks such as classification. Visualization, and in
particular Visual Analytics (VA) has emerged as one of the key
approaches that helps practitioners with the understanding of
high-dimensional data and with ML engineering tasks. This the-
sis studies several novel approaches by which VA can help ML
(and conversely), as follows.

Our work focuses on a visualization technique called dimen-
sionality reduction, or projection, which handles efficiently and ef-
fectively large amounts of high-dimensional data. One the ML
side, we consider the task of training a typical classifier for the
challenging context when only a small amount of ground-truth
labels is available.

We first propose a pseudo-labeling approach that explores the
ability of projections to generate a reduced feature space with
enough information to improve feature learning and classifier
performance over iterations. We show that the 2D space gen-
erated by projections can capture very well the data structure
present in high dimensions so as to support the design of high-
performance feature and classifier learning models.

Secondly, we link data separation (DS), visual separation (VS),
and classifier performance (CP) by pseudo-labeling and projec-
tions. We use feature spaces with high DS as input to compute
high-VS projections. We use these projections to perform pseudo
labeling with high propagation accuracies. Finally, we use such
labels to train classifiers with a high CP. We show that the high-
DS, high-VS, high-CP implication holds for several types of pro-
jection techniques. Hence, such projection techniques are suitable
for the task of classifier engineering.

Thirdly, we exploit the aforementioned observation that high-
VS and high-CP are correlated to propose a metric to assess the
VS of labeled 2D scatterplots produced by projection techniques.
Our metric computes the accuracy of label propagation in the
projection space, which is simple and fast to execute. We show

iii

abstract

that high propagation accuracies match a high VS as assessed by
human subjects.

Finally, we join all our contributions to incorporate the user
in the ML engineering process. We propose an interactive VA
tool that assists users in manual labeling samples by providing
additional information in terms of classifier decision boundary
maps, projection errors, and inverse projection errors. Our results
show that this approach enables users to quickly generate labeled
samples that lead to higher classification performance after a few
labeling iterations. This contribution shows that both algorithms
and humans can exploit projections to build better classifiers.

iv

S A M E N VAT T I N G

Machineleer (ML) werkt met gegevens bestaande uit tientallen tot
tienduizenden metingen (dimensies) per datapunt. Naarmate het
aantal dimensies en/of datapunten groeit, neemt ook de moei-
lijkheid toe om dergelijke gegevens te begrijpen en, daarmee sa-
menhangend, om te begrijpen hoe ML-pijplijnen die dergelijke
gegevens effectief verwerken voor taken als classificatie, ontwor-
pen moeten worden. Visualisatie, en in het bijzonder Visual Ana-
lytics (VA), is naar voren gekomen als belangrijke methode die
helpt bij het begrijpen van hoogdimensionale gegevens en bij
ML-engineeringstaken. Dit proefschrift bestudeert verschillende
nieuwe methoden waarmee VA ML kan helpen (en omgekeerd),
als volgt.

Ons werk richt zich op een visualisatietechniek genaamd di-
mensionality reduction, of projectie, die grote hoeveelheden hoogd-
imensionale gegevens efficiënt en effectief verwerkt. Aan de ML-
kant beschouwen we de taak van het trainen van een typische
classificator voor het uitdagende geval waarin slechts een klein
aantal ground-truth etiketten beschikbaar is.

We stellen eerst een pseudo-labelingsmethode voor die het ver-
mogen van projecties onderzoekt om een kleinere feature ruimte
te genereren met voldoende informatie om het leren van featu-
res en de classificatieprestaties over iteraties te verbeteren. We
laten zien dat de door projecties gegenereerde 2D-ruimte de data-
structuur in hoge dimensies zeer goed kan vastleggen om zo het
ontwerp van hoogwaardige leermodellen voor features en classi-
ficaties te ondersteunen.

Ten tweede koppelen we datascheiding (DS), visuele scheiding
(VS) en classificatieprestaties (CP) door pseudo-labeling en pro-
jecties. We gebruiken feature ruimten met hoge DS als invoer om
hoge VS-projecties te berekenen. We gebruiken vervolgens deze
projecties om pseudo-labeling uit te voeren met hoge propagatie-
nauwkeurigheid. Ten slotte gebruiken we dergelijke etiketten om
classificatoren met een hoge CP te trainen. We laten zien dat de
implicaties van hoge DS, hoge VS en hoge CP gelden voor ver-
schillende soorten projectietechnieken. Dergelijke projectietech-
nieken zijn daarom geschikt voor de taak van classificatie.

Ten derde maken we gebruik van de bovengenoemde observa-
tie dat hoge VS en hoge CP gecorreleerd zijn om een metriek voor
te stellen om de VS van gelabelde 2D-spreidingsdiagrammen die

v

samenvatting

zijn geproduceerd door projectietechnieken, te meten. Onze me-
triek berekent de nauwkeurigheid van de etiketpropagatie in de
projectieruimte op een eenvoudige en snelle manier. We laten
zien dat hoge propagatienauwkeurigheden overeenkomen met
een hoge VS zoals beoordeeld door gebruikers.

Ten slotte bundelen we al onze bijdragen om de gebruiker te
betrekken bij het ML-engineeringsproces. We stellen een interac-
tieve VA-tool voor die gebruikers helpt bij het handmatig etiket-
teren van datapunten door aanvullende informatie te bieden in
termen van classificatie-beslissingsgrenskaarten, projectiefouten
en inverse projectiefouten. Onze resultaten laten zien dat deze
aanpak gebruikers in staat stelt snel gelabelde datapunten te ge-
nereren die leiden tot hogere classificatieprestaties na een paar
etiketteringsiteraties. Dit resultaat laat zien dat zowel algoritmen
als mensen projecties kunnen gebruiken om betere classificatoren
te bouwen.

vi

R E S U M O

Aprendizado de máquina (do inglês, Machine Learning (ML)) ex-
plora dados contendo de dezenas até dezenas de milhares de
medições (dimensões) por amostra/exemplo. À medida que o
número de dimensões e/ou amostras cresce, também cresce a di-
ficuldade de compreensão do dado em questão e, relacionado a
isso, a compreensão de como projetar modelos de ML que proces-
sam tais dados de forma eficaz para tarefas como classificação de
dados. Visualização, e em particular analítica visual (Visual Analy-
tics (VA)), tem emergido como uma das abordagens chave para
ajudar profissionais no entendimento de dados de alta dimensio-
nalidade e de tarefas de engenharia de ML. Tal tese ocupa-se em
estudar diversas abordagens nas quais VA pode auxiliar ML (e
vice-versa), como a seguir.

O presente trabalho foca em uma técnica de visualização deno-
minada redução de dimensionalidade (dimensionality reduction),
ou projeção, a qual lida eficientemente e efetivamente com gran-
des quantidades de dados de alta dimensionalidade. Conside-
rando ML, considera-se a tarefa de treinar um classificador tí-
pico para o contexto desafiador onde apenas uma pequena quan-
tidade de rótulos (label) verdadeiros está disponível.

Primeiramente, é proposta uma abordagem de pseudo rotula-
ção que explora a habilidade de projeções em gerar um espaço
de características reduzido com informação suficiente para me-
lhorar a performance do aprendizado de características e do clas-
sificador ao longo das iterações. Como resultado, mostra-se que
o espaço 2D gerado a partir de projeções pode capturar de forma
satisfatória a estrutura do dado presente em altas dimensões de
forma a auxiliar no projeto de modelos de aprendizado de carac-
terísticas e classificação de alta performance.

Além disso, propõe-se relacionar os conceitos de separação de
dados DS, separação visual (VS) e performance do classificador
(CP) através da pseudo rotulação e projeções de dados. Um es-
paço de características com alta DS é usado como entrada para
computar projeções com alta VS. Tais projeções são, então, em-
pregadas para realizar a pseudo rotulação com altas acurácias de
propagação de rótulos. Por fim, esses rótulos são utilizados para
treinar um classificador com uma alta CP. A implicação entre alta
DS, alta VS e alta CP é mostrada para diferentes tipos de técnicas

vii

resump

de projeção, as quais indicaram ser adequadas para a tarefa de
engenharia de classificadores.

Adicionalmente, a constatação anteriormente mencionada de
que alta VS e alta CP estão correlacionadas é explorada para
propôr uma métrica para acessar a VS de gráficos de dispersão
2D resultantes de técnicas de projeções. A métrica proposta com-
puta a acurácia da propagação de rótulos no espaço projetado, o
que torna a métrica mais simples e de mais rápida de executar.
As altas acurácias de propagação mostram uma correlação com
uma alta VS encontrada por seres humanos.

Finalmente, as contribuições encontradas são agregadas a fim
de incorporar o usuário no processo de engenharia de modelos
de ML. É proposta uma ferramenta interativa de VA que auxilia o
usuário na rotulação manual de amostras ao fornecer informação
adicional referente a mapas de bordas de decisão de classificado-
res, erros de projeção, e erros de projeção inversa. Os resultados
mostram que essa abordagem permite que o usuário possa rapi-
damente gerar novos rótulos para as amostras. Tais amostras ro-
tuladas conduzem a maiores performances de classificação após
algumas iterações apenas. Esta contribuição mostra que ambos,
algoritmos e seres humanos, podem explorar projeções para a
construção de melhores classificadores.

viii

P U B L I C AT I O N S

This thesis is based on the following publications:

• B. C. Benato, J. F. Gomes, A. C. Telea, and A. X. Falcão. Semi-
supervised deep learning based on label propagation in a
2D embedded space. In Proc. 25th Iberoamerican Congress:
Progress in Pattern Recognition, Image Analysis, Computer Vi-
sion, and Applications. CIARP, 2021.

• B. C. Benato, A. C. Telea, and A. X. Falcão. Iterative pseudo-
labeling with deep feature annotation and confidence-
based sampling. In Proc. 34th Conference on Graphics, Patterns
and Images. SIBGRAPI, 2021.

• B. C. Benato, A. X. Falcão, and A. C. Telea. Linking Data
Separation, Visual Separation, and Classifier Performance
Using Pseudo-labeling by Contrastive Learning. In Proc.
18th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications. VISAPP,
2023.

• B. C. Benato, A. C. Telea, and A. X. Falcão. Deep feature
annotation by iterative meta-pseudo-labeling on 2D projec-
tions. Pattern Recognition, 2023.

• B. C. Benato, A. X. Falcão, and A. C. Telea. Measuring
the quality of projections of high-dimensional labeled data.
Computers & Graphics, 2023.

• B. C. Benato, A. X. Falcão, and A. C. Telea. Linking data sep-
aration, visual separation, and classifier performance using
dimensionality reduction techniques. Book title, pp. 00-00.
Springer, 2023. (to appear)

• B. C. Benato, C. Grosu, A. X. Falcão, and A. C. Telea.
Human-in-the-loop: Using Classifier Decision Boundary
Maps to Improve Pseudo Labels (submitted, 2024)

During the development of this thesis, other contributions were
also achieved:

• M. Roder, L. A. Passos, L. C. F. Ribeiro, B. C. Benato, A.
X. Falcão, J. P. Papa. Intestinal parasites classification using
deep belief networks. In International Conference on Artificial
Intelligence and Soft Computing. Springer. 2020, pp. 242–251

ix

publications

• B. C. Benato, I. E. de Souza, F. L. Galvão, F. L., and A. X.
Falcão. Convolutional neural networks from image mark-
ers. In Beyond backpropagation: novel ideas for training neural
architectures, Workshop at NeurIPS, 2020.

• I. E. de Souza, B. C. Benato, A. X. Falcão. Feature learn-
ing from image markers for object delineation. In Proc. 33rd
Conference on Graphics, Patterns and Images. SIBGRAPI, 2020.

• L. M. João, M. C. Abrantes, B. C. Benato, A. X. Falcão.
Understanding marker-based normalization for FLIM Net-
works. In Proc. 19th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Ap-
plications. VISAPP, 2024. (to appear)

x

C O N T E N T S

1 introduction 1

1.1 Machine learning 1

1.2 Visualization 2

1.3 Interaction of machine learning with visualiza-
tion 3

1.4 Research questions 9

1.5 Contributions 10

2 related work 13

2.1 Introduction 13

2.1.1 Machine learning preliminaries 13

2.1.2 The need for large datasets in machine
learning 16

2.2 Pseudo labeling 18

2.3 Visualizing high-dimensional data 24

2.3.1 Dimension mapping techniques 24

2.3.2 Dimension synthesis techniques 28

2.3.3 Multidimensional projections 29

2.3.4 Quality of projections 31

2.3.4.1 Classical quality metrics 31

2.3.4.2 Visual perception metrics 33

2.3.5 Inverse projections 35

2.3.6 Discussion 37

2.4 Visualizing ML models 40

3 feature and classifier learning 45

3.1 Introduction 45

3.2 Iterative deep feature pseudolabeling on 2D pro-
jections 47

3.2.1 Deep feature learning 47

3.2.2 Layer selection 49

3.2.3 Dimensionality reduction 49

3.2.4 Label estimation 50

3.2.5 Sample selection 51

3.2.6 Model and iteration selection 51

3.3 Experimental evaluation 52

3.3.1 Datasets 52

3.3.2 Experimental setup 53

3.3.3 Implementation details 54

xi

contents

3.4 Experimental results 55

3.4.1 Q1: Adding iterations: self pseudo label-
ing 55

3.4.1.1 Results and discussion 55

3.4.2 Q2: Pseudolabeling comparison: OPFSemi
vs others 56

3.4.2.1 Results 57

3.4.2.2 Discussion 57

3.4.3 Q3: Sample selection: adding OPFSemi’s
confidence 59

3.4.3.1 Results 60

3.4.3.2 Discussion 60

3.4.4 Q4: Choosing the deep architecture 63

3.4.4.1 Results 64

3.4.4.2 Discussion 65

3.4.5 Q5: Choosing the layer in the deep architec-
ture 66

3.4.5.1 Results and discussion 67

3.4.6 Q6: Choosing the best DeepFA model and
iteration 67

3.4.6.1 Results 69

3.4.6.2 Discussion 69

3.5 Answers to the studied questions 71

3.6 Limitations 73

3.7 Conclusion 73

4 linking data separation, visual separation,
and classifier performance 75

4.1 Introduction 75

4.2 Related work 77

4.2.1 Relationship between data separation, vi-
sual separation, and classifier perfor-
mance 77

4.2.2 Self-supervised learning 78

4.3 Linking data separation, visual separation, and
classifier performance 78

4.3.1 Contrastive learning 79

4.3.2 Pseudolabeling by EPL 79

4.3.3 Classifier training with pseudo-
labels 80

4.4 Experimental evaluation 80

4.4.1 Projection methods 80

4.4.2 Datasets 80

4.4.3 Data layout for validation 80

xii

contents

4.4.4 Implementation details 81

4.5 Exploring a projection with a good visual separa-
tion 82

4.5.1 Proposed experiments 82

4.5.1.1 Experiment for testing C1 83

4.5.1.2 Experiment for testing C2 84

4.5.1.3 Experiment for testing C3 85

4.5.2 Results 85

4.5.2.1 Contrastive learning yields high
DS 85

4.5.2.2 t-SNE projections of contrastive
latent spaces yield high VS 87

4.5.2.3 Classifiers trained from high-VS
projections have a high CP 87

4.5.3 Discussion 88

4.5.3.1 Visual separation vs classifier per-
formance 89

4.5.3.2 Contrastive learning from few su-
pervised samples 89

4.5.4 Summary of findings: C1-C3 90

4.6 Exploring multiple projections: C4-C5 91

4.6.1 Proposed experiments 92

4.6.1.1 Experiment for testing C4 92

4.6.1.2 Experiment for testing C5 94

4.6.2 Results 94

4.6.2.1 Correlation between different pro-
jections and VS 94

4.6.2.2 Classifiers trained from high-VS
projections have a high CP 97

4.6.3 Discussion 97

4.6.3.1 Data separation vs visual sepa-
ration depends on the projection
technique 97

4.6.3.2 Assessing the quality of visual
separation 99

4.6.3.3 Data separation vs visual sep-
aration vs classifier perfor-
mance 100

4.7 Conclusion 104

5 measuring visual separation in projec-
tions 107

5.1 Introduction 107

xiii

contents

5.2 Measuring visual separation by pseudo label-
ing 110

5.2.1 Sample selection 110

5.2.2 Using OPFSemi for pseudo labeling 111

5.2.3 Pseudo labeling effectiveness measure-
ment 111

5.3 Experimental evaluation 112

5.3.1 Datasets 112

5.3.2 Projection algorithms 112

5.3.3 Metrics 113

5.3.4 Experimental design 113

5.4 Results 116

5.4.1 Quantitative analysis 116

5.4.1.1 Correlation plots 116

5.4.1.2 Statistical analysis 117

5.4.2 Qualitative analysis 118

5.4.2.1 Random analysis 119

5.4.2.2 Ranked analysis 121

5.4.2.3 Correlation plot and ranked anal-
ysis 121

5.4.3 User evaluation 123

5.4.3.1 Data preprocessing 124

5.4.3.2 Study setup 126

5.4.3.3 Participants 127

5.4.3.4 Study results 129

5.5 Discussion 130

5.5.1 Assessing VS by existing metrics 130

5.5.2 Our approach to assess VS 131

5.5.3 Computational cost to assess VS 132

5.5.4 Limitations 132

5.6 Conclusion 133

5.7 Appendix 134

6 active learning using decision boundary

maps 137

6.1 Introduction 137

6.2 Related work 138

6.2.1 Active learning 138

6.3 Visual analytics for active learning and pseudo la-
beling 140

6.3.1 Direct projection errors 141

6.3.2 Inverse projection errors 144

6.3.3 VA tool for active learning 145

6.3.4 Implementation details 150

xiv

contents

6.4 Evaluation 151

6.4.1 Classifier 152

6.4.2 Datasets 152

6.4.2.1 Toy dataset: MNIST 152

6.4.2.2 Real-world dataset: P.cysts 153

6.4.2.3 Training, testing, and perfor-
mance evaluation 153

6.4.3 Participants 154

6.5 Experimental results 154

6.5.1 Toy dataset: MNIST 154

6.5.1.1 Defining the baseline 154

6.5.1.2 Comparison among different
techniques and users 155

6.5.1.3 Added value of manual label-
ing 156

6.5.2 Evaluation in real-world problem:
P.cysts 161

6.5.2.1 Defining the baseline 162

6.5.2.2 Added value of manual label-
ing 162

6.6 Discussion 163

6.7 Conclusion 165

7 conclusions 167

7.1 Directions for future work 170

bibliography 173

acknowledgments 191

xv

1I N T R O D U C T I O N

1.1 machine learning

Artificial intelligence (AI) is the broader field known for aiming
to imitate human intelligence through a combination of software
and hardware. AI plays an essential role in human lives in many
ways, ranging from the usage of social media, e-commerce sup-
port, recommender systems for streaming media, and decision
support systems. Nowadays, a machine learning (ML) algorithm is
nearly always involved in most of these processes. As a subfield
of AI, ML aims to enable machines to imitate how humans learn
from their experience via controlled examples (samples). Giving
many examples to a machine, the learner (algorithm) assembles
knowledge from the same and/or distinct examples. After some
time of learning (training), the learner is able to assume (predict)
new and unseen examples of the real world.

Algorithms for ML can be divided mainly into supervised and
unsupervised ones, based on their goal. In the supervised learning
paradigm, the goal is to learn from data to make new predictions.
The class, or label, information of an example is used to train
the algorithm, in what is also known as a ‘task-driven’ approach.
Tasks may be classification or regression. Classification problems
aim to learn a function that outputs a discrete value, i.e., a class
label for each given example, such as deciding which animal is
present in an image. For regression problems, the algorithm ap-
proximates a function that outputs a continuous value for each in-
stance, such as predicting house prices. In the unsupervised learn-
ing strategy, the goal is to determine structures and patterns in
data. No class information is considered in usupervised training,
which is why this approach is also known as ‘data-driven.’

ML models have grown alongside computational processing
capability. In particular, artificial neural networks (ANNs) have
shown excellent performance and computational scalability after
breakthroughs that optimized the process of training their mod-
els. At a high level, an ANN is thought to mimic the neural struc-
ture of the brain by a mathematical formulation, thereby succeed-
ing in learning complex functions involving millions of inputs
(variables). Today, we see that ANNs can be exploited to solve
tasks ranging from relatively simple ones, such as classification,

1

introduction

to more complex ones, such as recognizing patterns and textures,
reducing feature representation, and generating new (synthetic)
data. In this process, the architecture of ANNs has evolved by
increasing the size and number of layers, leading to deep neural
networks (DNNs), also known as deep learning.

1.2 visualization

For the last several decades, data visualization (VIS) has grown
aside and along machine learning (ML). In its early phases, visu-
alization has been introduced to science and engineering fields
by the need of understanding increasingly large (and complex)
datasets generated either by measurements or by numerical sim-
ulations produced by scientific computing applications. Follow-
ing this development, visualization research (and applications)
have further specialized in two main sub-fields. Scientific visual-
ization (scivis) has kept the focus on the original target of visu-
alization, namely the visual exploration of spatial datasets con-
sisting of samples of continuous quantities, such as temperature,
flow, and pressure fields defined on 2D or 3D computational do-
mains (Hansen and Johnson, 2005; Telea, 2014).

Alongside scivis, information visualization (infovis) has emerged
as an increasingly large and important subfield. In contrast to
scivis, infovis focuses on the visual exploration of data which is
not defined on spatial domains and/or does not consist of (the
sampling of) continuous quantities. Examples of such datasets
include data tables (where rows are typically samples but po-
sition information may be missing; and/or the values of at-
tributes, or columns, can be of categorical or text type, aside from
quantitative values); networks or graphs; text data; and artifacts
from software engineering such as source code and design dia-
grams,(Tufte, 2001; Munzner, 2014).

The differentiation between scivis and infovis applications is,
however, not a hard one. Applications can generate datasets hav-
ing mixed properties – consider, for instance, the field of graph vi-
sualization where the input data, the structure of a graph, is non-
spatial, but the result, a graph drawing, is by definition a dataset
embedded into 2D or 3D space and consisting of continuous coor-
dinate values. Techniques used in the construction of both scivis
and infovis applications share many commonalities – for exam-
ple, the interaction with large datasets that supports the selec-
tion of subsets of interest and the display of additional details on
demand (Shneiderman, 1996). However, even more importantly,
all data visualization applications, whether scivis, infovis, or hy-

2

1.3 interaction of machine learning with visualization

brids, share the same ultimate goal – to enable their users to gain
so-called actionable insights into the phenomena which have gener-
ated the explored data, and, next, to use such insights to improve
other aspects of the processes involved with the respective data.
Recognizing this commonality between all visualization applica-
tions, a new field called visual analytics (VA) has emerged. VA
studies the design, deployment, and use of visualization tools and
workflows that empower users to gain the aforementioned action-
able insights (Andrienko et al., 2020; Cook and Thomas, 2005).

1.3 interaction of machine learning with visual-
ization

Machine learning works, in most cases, with high dimensional data.
By this, we mean datasets consisting of samples (also called data
points or observations) which have, each, tens up to thousands
of different measurements (also called dimensions, features, vari-
ables, or attributes). Indeed, consider a ML classification model
which takes as input an image. In this case, the image has to be
‘fed’ to the model, either by considering each of its pixels as an
independent variable or by extracting an (usually high) number
of features from these pixels to be further fed to the model. Sim-
plifying for the sake of exposition, an ML pipeline can be seen as
a pipeline that processes data tables (of different sizes and types)
whose rows consist of data samples and whose columns consist
of the data attributes, respectively.

As the size – either in number of rows (samples) or columns
(dimensions) – of these data tables grows, so does the difficulty
of understanding them and, even more importantly, understand-
ing how ML pipelines process them. As such, it is not surpris-
ing that visualization (VIS) and visual analytics (VA), with their
stated aims of helping users extract actionable insights from large
and complex datasets, has emerged as a key tool in assisting ML
engineering. This thesis will study precisely this subset at the
crossroads of ML and VA, namely how the two fields can benefit
from each other.

As mentioned above, datasets in ML pipelines are, by their very
nature, high dimensional. As such, visualization techniques that
aim to assist ML engineering have to be able to efficiently and
effectively handle such high-dimensional data. Among the fam-
ily of visualizations techniques that address such goals, dimen-
sionality reduction (DR) techniques, also called projections, have
emerged as one of the most successful and most frequently used
to assist ML engineering. Simply put, DR techniques receive as

3

introduction

input a high-dimensional data table or dataset having N sam-
ples, each with n dimensions, where N can typically be in the
hundreds of thousands or even millions and n can be tens up to
thousands, respectively. From such datasets, DR techniques cre-
ate typically 2D, and more rarely 3D, scatterplots, one plot point
per data sample. In this process, DR techniques aim to preserve
the so-called data structure. That is, characteristics of the input
dataset which are deemed important for the problem at hand,
such the presence of specific data clusters and/or outliers, the
distribution of samples over specific data ranges, and the rela-
tive similarities of data samples, should be encoded by similar
characteristics measured by the corresponding scatterplot points.
When this is achieved, one can use the scatterplots generated by
DR to reason about the input data. The key added value of this
proposal is that direct visual exploration of the high-dimensional
data is, in general, impossible for large N and/or n values. In
contrast, DR techniques have an excellent scalability in both re-
spects – in the limit, they require a single pixel to encode a data
point having any number of dimensions n.

pseudolabeling classif. difficulty assessment feature understanding training assessment

classifier

regressorinput data

output labels

output signal

model assessment

supervised DR self-supervised DR inverse projectionssensitivity analysis quality analysis

Machine
learning

Dimensionality
reduction

ML
pipeline us

ed
 to

 c
on

st
ru

ct

used to construct

explained by

Explanatory visualizations

Figure 1.1: Interaction between machine learning (ML) and dimension-
ality reduction (DR) workflows. ML algorithms can be used
to construct DR techniques. In turn, these can be used to con-
struct explanatory visualizations for ML. Figure reproduced
from Telea et al. (2024).

4

1.3 interaction of machine learning with visualization

There are multiple ways in which high-dimensional data vi-
sualization can help ML engineering (and conversely). Figure 1.1,
taken from a recent paper that addresses this topic, outlines these
interactions. Here and next, we focus specifically on visualiza-
tions created using DR projections, given the aforementioned
advantages of this type of visualization technique. As object of
study, we consider a typical ML pipeline (blue box in the mid-
dle). This consists of a classifier or regressor which, after suitable
training, is used to predict values for new data samples. In this
thesis, we will mainly focus on ML classifiers. The green arrows
at the top of this figure show how visualizations can be used to
assist the ML engineering process at multiple phases. In the ex-
amples below, we mark in bold the topics which we also address
in this thesis:

• Projections can be used to depict the distribution of given
labeled samples over a dataset. When insufficient labeled
samples exist for training, pseudolabeling can be used to
create additional labels based on the structure of the projec-
tion (with or without direct human input);

• Projections can also be used to gauge the difficulty of a
classification problem Rauber et al. (2017b). The degree of
visual separation on a projection can serve as a simple-
to-interpret proxy for the difficulty that a ML model will
encounter when separating the data samples into different
classes;

• Projections can be used to explore a data space – and in
particular understand which features (or feature ranges)
are key to separating different groups of samples in a
dataset (Broeksema et al., 2013; Coimbra et al., 2015);

• Projections are helpful in understanding how a model
evolves during typical training procedures. This way, users
can get more insights on the success (or challenges) of a
training sequence than when using simple aggregate per-
formance metrics Rauber et al. (2017a);

• Finally, projections can be used to construct dense represen-
tations of the behavior of a trained ML classification model
that show how the model partitions its input space into de-
cision zones separated by decision boundaries.

Apart from the above-mentioned added value of high-
dimensional visualizations (in particular, projections) for ML en-
gineering, the opposite interaction exists too. That is, ML can be

5

introduction

used to create better visualizations for high-dimensional data. In
a nutshell, consider a visualization as a function that transforms
(high-dimensional) data to a low-dimensional image. Projections
are an excellent example hereof, as they transform n-dimensional
sample sets to 2-dimensional scatterplots. We can then use ML to
learn such a function based on suitably chosen training sets and
cost functions which model the types of data we want to visual-
ize, respectively the quality criteria that the resulting visualiza-
tions should have. The yellow arrows at the bottom of Fig. 1.1
show how ML can assist the creation of projection-based visu-
alizations. As earlier, we mark in bold the use-cases which we
further address in this thesis:

• Supervised ML can be used to generate projections that
mimic the appearance of those created by expensive
(and/or complex) DR algorithms at a fraction of the cost
of such algorithms (Espadoto et al., 2020);

• Metrics used for ML sensitivity analysis can be used to as-
sess the robustness and stability of DR algorithms (Bredius
et al., 2022);

• Self-supervised ML can simplify (and generalize) the train-
ing of regressors that mimic the behavior of given DR
algorithms for cases where supervised data is not avail-
able (Espadoto. et al., 2021);

• Quality metrics used to assess the performance of ML mod-
els can be adapted to gauge the quality of DR projections;

• ML can help creating inverse projections which map from
the 2D (visual) space back to the data space (Espadoto
et al., 2023; Rodrigues et al., 2019). This allows creating vi-
sual interfaces that assist users in manipulating the high-
dimensional data.

As Fig. 1.1 and the above explanations outline, there are numer-
ous types of synergies between ML and DR. Our thesis will only
explore a specific subset of these. To further clarify this, we show
next in Fig. 1.2 the workflow for designing, implementing, and
evaluating a typical ML classification model which we will next
consider in our work. The red-outlined images in this workflow
show the utilization of DR visualizations. The blue arrows in the
figure represent the typical flow of data throughout an ML engi-
neering pipeline. The green arrows detail the way that DR helps
ML engineering – that is, they detail the interactions summarized

6

1.3 interaction of machine learning with visualization

by the green arrows in the overview Fig. 1.1. In other words, the
process described in Fig. 1.2 is the so-called visual analytics (VA)
workflow that uses DR visualizations to assist the task of creating
high-quality ML models for a given application domain. Below
we describe the steps of the ML workflow depicted in Fig. 1.2.

need different features

data

findings

Legend

training data

validation data

projection studyfeature extraction

projected
data

dimensionality
reduction

processed
data

ML operations

system is ready

too low testing performance (misclassifications)

model evaluation

DBM study

model design training assessment
input data

too few
labeled
samples

pseudolabeling

enough labeled samples

need more/different training data

poor training
performance

poor features

trained
model

input data

extra
labeled
data

good
training
performance

model inspection

poor model
design

1 2

3

4 5 7

6

8

9

10

11

12

13

14

15

16 good testing
performance

VA operations

Figure 1.2: Detailed workflow of using DR techniques to assist ML
which details the green arrows in the general workflow in
Fig. 1.1. Visual analytics (VA) operations enabled by DR are
marked by red-outlined boxes. Figure reproduced from Telea
et al. (2024).

1. The ML engineering process starts – as usual – with the ac-
quisition of a suitable input dataset with labels. If sufficient
labels are available for the envisaged training, the process
continues with step (3).

2. If insufficient labels are available for training, pseudolabel-
ing can be used – optionally assisted by DR projections – to
generate additional labels based on the existing ones.

3. The total set of labels (present from the input data and gen-
erated by pseudolabeling) are used to create the training
and test sets for ML engineering.

4. If the data is too high-dimensional to directly train the ML
model on it and/or to next visually explore the data, fea-
tures can be extracted to reduce the complexity of the prob-
lem.

5. The data processed by feature extraction is next used to
create a 2D projection. This projection, central to our VA
workflow, will serve multiple purposes in our pipeline –

7

introduction

visual exploration of the overall distribution of training and
test samples; visual exploration of the results of the trained
model; and additional generation of pseudolabels.

6. In line with the above, a very first assessment considers how
well are same-label point groups separated in the projection.
When this visual separation is poor, the data is likely unsuit-
able to train a high-quality classifier; as such, the workflow
can consider extracting different features to enhance this
separation.

7. Conversely, if the visual separation is deemed good enough,
the workflow continues with the usual architecting and
training of the desired ML model.

8. The training of the ML model is next assessed. This can in-
volve typical study of the (convergence of the) training loss
over training epochs, for example. However, DR projections
can also be used to gain more insight on specific problems
encountered during the training.

9. If the training is deemed to be of insufficient quality, DR
projections can next be used to investigate the trained
model and highlight problems.

10. During the above step, problems related to the design of the
model can be identified. In this case, the workflow loops
with a model re-design step.

11. Alternatively, problems identified at step (9) can point to
a poor quality of the features used by the model. In this
case, the workflow loops with a new iteration of the feature
extraction step.

12. When training has converged with sufficient performance,
the ML model is evaluated using the typical procedure in-
volving (unseen) testing data.

13. The model evaluation generates good-enough performance
for the tasks it was designed for. In this case, the entire
process ends with a ML model that is ready to be deployed
in practical applications.

14. Contrary to the above, the testing step (12) shows that the
model exhibits poor performance (poor generalization). In
this case, DR projections – and in particular decision bound-
ary maps – can be used to study where, in the data space,
generalization problems occur.

8

1.4 research questions

15. The above study can yield the conclusion that the general-
ization problems are not related to a specific area of the data
space. In this case, the problem is likely generated due to
the feature space itself. As such, the feature extraction step
(4) needs revisiting to create a better feature space.

16. In contrast, the study in step (14) can point that generaliza-
tion problems relate to specific locations in the feature space.
These can be corrected by e.g. adding more labeled samples
to the training set – a process where pseudolabeling (3) can
help.

1.4 research questions

Following the above considerations, our general research ques-
tion can be stated quite succinctly as follows:

How can we exploit the synergy between ML and DR techniques to
improve each other?

It is, however, evident that the scope and generality of the
above-stated research question are too high for a (single) thesis to
be able to fully answer it. As such, we further refine this general
research question into two separate sub-questions, as follows:

RQ1: How to use multidimensional projections to build better models
for machine learning?
RQ2: How does projection quality relate to data separation and classifi-
cation performance?

Our first research question (RQ1) relates to the observation,
already mentioned in Sec. 1.3, that DR projections of high qual-
ity capture well many aspects of the so-called data structure, i.e.,
the relative organization of data samples in a high-dimensional
dataset. If and when this is the case, it means that the informa-
tion that a projection captures can be used as a ‘proxy’, or substi-
tute, to the original information that the high-dimensional sam-
ples themselves captures. In turn, this means that one can use
the projection instead of, and in places where, one would use the
high-dimensional information, and obtain, ideally, very similar –
if not better – results. The added value of this approach would be
twofold. First, a projection performs, by construction, data reduc-
tion – it has, typically, only two dimensions instead of the hun-
dreds (if not more) dimensions of a dataset. As such, it is far more
compact, thus faster to process from a computational perspective

9

introduction

than the dataset it comes from. Secondly, and even more impor-
tantly, this data reduction process can remove much of the com-
plexity and redundancy present in the high-dimensional space. If
done with care, this can lead to not just a smaller dataset, but a
dataset which is easier to process to arrive at the desired results,
as compared to the original high-dimensional dataset.

Our second research question (RQ2) relates to the same obser-
vation from Sec. 1.3. Let us assume that a projection captures
well the so-called data structure by means of the visual separa-
tion (VS) it exhibits in its scatterplot. Separately, it is well known
from machine learning theory and practice that the performance
of a trained ML classification model (classifier performance, or
CP) relates to the data separation (DS) present in the dataset it
works on. Simply put, it is easier to classify a dataset with high
DS to reach a high CP than a dataset with a low DS. This means
that all three above-mentioned factors – DS, VS, and CP – are
inter-related. If such a relation is true in the sense that high val-
ues of one or two of these factors determine a high value of the
third one, we can exploit such observations to measure and/or
optimize one of these factors as function of the other two.

1.5 contributions

We next present the structure of our thesis and, in the same time,
also explain how the various contributions presented in this the-
sis succeed in answering parts of the research questions RQ1 and
RQ2 mentioned in the previous section.

In Chapter 2, we introduce the required background in terms
of notations and related work, in both the ML and DR fields,
which are required for the reader to follow our contributions pre-
sented in the following chapters.

Chapter 3 presents our first contribution which addresses RQ1,
namely the utilization of DR techniques to extract useful features
from a high-dimensional dataset for creating an end-to-end ML
pipeline for a challenging classification problem. In more detail,
we show how the (2D) embedded space created by existing DR
techniques allows the efficient and effective construction of la-
beled datasets, starting from a small number of ground-truth la-
bels, which are in turn needed for training the desired ML classi-
fication models. Additionally, we show that using this embedded
space for pseudolabeling can lead to higher quality results – both
in terms of the quality of the assigned labels and the end perfor-
mance of the trained ML classification models – than using the
original high-dimensional data space. We relate our contribution

10

1.5 contributions

with Fig. 1.2, in which steps 1, 2, 3, 4, and 5 are performed. We
assume that we have a projection with a good visual separation
and go straightforward to step 7 and 8, also assuming a good
training performance in 12, and evaluate our model in the test
set.

Chapter 4 focuses our interest on RQ2, namely the relation be-
tween data separation (DS), visual separation (VS), and classifier
performance (CP). We present a number of experiments which
extend earlier observed relations between DS and VS, respec-
tively between DS and CP, and show how one can preprocess
high-dimensional data, using contrastive learning, to achieve a
high DS, which in turn leads to a high VS in projections of that
data; finally, we use such projections to generate pseudolabels to
train classification models which achieve a high CP. Our findings
and proposed workflow thus generalize and connect the earlier-
known evidence from DR and ML literature concerning the cor-
relation of DS, VS, and CP and show how such correlations can
be practically used in DR-assisted ML engineering. From Fig. 1.2,
our goal is correlating the above-mentioned terms by evaluating
the final result of steps 1, 2, 3, 4, 5, 7, 8, 12 and 13.

Chapter 5 exploits the results presented in Ch. 4 to further an-
swer RQ2. Specifically, if, as observed in our work in Ch. 4, high-
VS projections can be used to propagate labels to construct high-
CP classification models, we now hypothesize that we can use
existing ML quality metrics to measure the visual separation (VS)
present in a given projection. We conduct extensive experiments
that show how such a ML metric, measured on a wide range of
projections and datasets, yields results which correlate well with
VS values independently assessed by users on the respective pro-
jections. Our work thus enriches the palette of metrics available
in DR literature to assess the quality of projections by a new mea-
sure which is simple and fast to compute and can be generically
applied to any projection technique. Our contribution are shown
in Fig. 1.2 by steps 1, 2, 3, and 5, while we use the new measure
to support steps 6 and 7.

Chapter 6 revisits RQ1 by studying an additional aspect of the
hypothesized added-value of projections for helping the construc-
tion of high-performance ML models. Specifically, we now con-
sider the user-in-the-loop scenario by asking subjects to use an
interactive projection-based tool to create pseudolabels, based on
an existing small set of ground-truth labels and a larger given
unlabeled dataset, so as to train a classification model. In this
process, we also introduce extensions of the basic DR projections
used so far, namely the visual exploration of projection error met-

11

introduction

rics and also the exploration of so-called decision boundary maps
which visualize the behavior of a trained model over larger parts
of its input data space than a given training or testing set. Our
experiments show that projections, when complemented by the
mentioned error and decision boundary map visualizations, are
efficient and effective instruments that aid users in performing
pseudolabeling to create training sets that increase classification
performance even for difficult problems. To our knowledge, our
work is the first in the literature where such error maps and deci-
sion boundary maps have been formally evaluated with respect
to their effectiveness in aiding ML engineering tasks. This chap-
ter relates with Fig. 1.2, by means of steps 1, 2, 3, 4, 5, 7, 8, 12, 14,
and 16. Steps 9, 10, 11, and 15 are not in the scope of this thesis.

Finally, Chapter 7 concludes our thesis by revisiting our contri-
butions to solving RQ1 and RQ2 and also outlining open avenues
for future research based on the insights obtained during our re-
search.

12

2R E L AT E D W O R K

2.1 introduction

As outlined in Chapter 1, the central research question of this
thesis revolves around the synergies that exist between machine
learning (ML) and dimensionality reduction (DR) techniques, or
how these two classes of techniques can help to support and/or
improve each other. To help the discussion of these synergies in
the remainder of the thesis, this chapter introduces the required
background and related work in MR and DL. Section 2.1 intro-
duces the preliminaries related to ML, in particular in the context
of using large datasets. Section 2.2 describes the task of pseudola-
beling in the context of training ML models starting with only
few ground-truth samples. Section 2.3 describes dimensionality
reduction (DR). Section 2.4 discusses techniques for the visual ex-
ploration and analysis of ML models, with a focus on decision
boundary maps, the particular class of such techniques on which
we will focus further in our work.

2.1.1 Machine learning preliminaries

Notations: Let D = {xi}, 1 ≤ i ≤ N be a dataset of N samples, in
which x = (x1, x2, ..., xn), xi ∈ Rn and 1 ≤ i ≤ n, a n-dimensional
(nD) real sample. We call the values xi, 1 ≤ i ≤ n, the dimensions
(attributes, variables, or features) of sample x. We can thus view
D as a table with N rows (samples) and n columns (dimensions).

We call D supervised if there is a pair (xi, ci) ∈ D × C for all
xi in D. The value ci is called the label of sample xi. Here, C
is the domain of definition of labels, which we discuss further
below. In a supervised D, labels ci are known as true labels and
are manually assigned by a human or, alternatively, come from
other trusted data sources. In an unsupervised dataset D, ci is
unknown. A label ci ∈ C can be attributed to a sample xi by a
so-called labeling process.

Classifiers and regressors: For classification problems, C is a
categorical domain. Each label c ∈ C is also known as a class
label – or, more briefly, a class. A classifier for D is a function

13

related work

f : D → C that maps data samples to class labels in a supervised
fashion. In contrast to the above, regressors f : D → C have a
continuous co-domain, that is, C ⊂ Rm. In our work, we will
mainly focus on the use of classifiers. For brevity of notation, we
will also next use the term labeled dataset D to refer to a dataset
D along with the labels (in C) of its data points.

Classifier training: Training a classifier f is usually an approx-
imation or optimization problem. In more detail: Consider a
given labeled dataset D. A well-trained f should, ideally, de-
liver the so-called ground truth labels ci for the correspond-
ing samples xi ∈ D. However, strictly enforcing the condition
f (xi = ci)|∀xi ∈ D poses several issues. First, computing a
function f that strictly obeys this condition can be computation-
ally expensive for datasets D that are large, high-dimensional,
and/or have a complex distribution of samples over the embed-
ding space Rn. Secondly, even if this computation were possible,
this may not be desirable. Indeed, the function f obtained by the
strict enforcement of this condition may have undesirable behav-
ior for additional points xj /∈ D, leading to so-called generalization
problems.

To tackle both above issues, training is usually done by impos-
ing a weaker constraint of the form

err =
1
|D| ∑

xi∈D
d(f (xi), ci) = min, (2.1)

where d : C × C → R+ is a so-called cost function (or loss func-
tion) defined over the classifier’s co-domain C; and |D| denotes
the size of the set D. Using |D| in Eqn. 2.1 has the effect of normal-
izing the actual cost by the size of the dataset used for evaluating
the error, thereby making the former independent on the latter.

The cost function quantifies the difference between obtained
(predicted) and real (expected) output – known as error – dur-
ing the training. This allows (a) the construction of f to utilize
various computationally effective optimization (minimization) al-
gorithms; (b) the designer of f to choose the form (expression)
of this function to e.g. balance computational complexity vs op-
timization accuracy; and (c) the training process to stop flexibly
once a given maximal error rate err has been reached. Optimiz-
ing err in Eqn. 2.1 is typically done using iterative numerical pro-
cedures such as gradient descent or simulated annealing. These
require in practice tens up to thousands of iterations, depending
on the problem’s complexity (difficulty), which in turn is given

14

2.1 introduction

by the number of samples in the dataset D; their dimensionality
n; their distribution in Rn; and the complexity of f .

The choice of d further allows modeling different scenarios.
For classifiers, where C is a categorical dataset, d(a, b) simply
measures whether two labels a and b are identical (d = 0) or
not (d = 1). For regressors, d can actually measure the distance
between two samples in Rm using e.g. L1 or L2 metrics, leading
respectively to the well-known mean absolute error (MAE) and
mean square error (MSE) cost functions.

Training and testing sets: The main goal of training a classifier
f is being able to classify a new set of samples than the ones on
which f was trained. To explain this, we need to introduce the
notions of training and test sets. A training set Dt has the same
structure as the (labeled) dataset D described above. Dt yields
the set of points used to minimize err in Eqn. 2.1 which leads to
the computation of f . A test set DT has, also, the same structure
as D described above. However, DT ∩ Dt = ∅, meaning the test
and training points are disjoint from each other. The test set DT
is used to evaluate the generalization performance of a trained
f . That is, one evaluates err (Eqn. 2.1) on DT , by using the fixed
f obtained from training. The obtained error rate indicates how
well f generalizes from Dt to DT .

The values errt and errT , obtained respectively from Eqn. 2.1
on the training, respectively test sets Dt and DT allow assessing
several scenarios. When errt is high, the classifier has not learned
sufficiently well during training – a process also known as
underfitting. In such cases, one typically does not proceed to
testing, but reiterates the training with different parameters.
When errt is low, one next studies the test error errT . If errT is
low, the classifier is said to have successfully generalized for new
data. If, however, errT is high, then generalization does not occur.
In such cases, f is said to have overfit its training data.

Performance measuring: After constructing f by the above-
mentioned training, several metrics can be used to refine the eval-
uation of how well the training process succeeded – that is, apart
from directly evaluating Eqn. 2.1.

A commonly used metric is accuracy, which counts the number
of correct obtained labels (predictions) over the total number of
labels (samples). Its computation is given by Eqn. 2.1 with d(ci, cj)
set to the Kronecker delta function δcicj . Accuracy values close
to 1 mean good classification performance. However, accuracy
may not be a good choice in cases in which the dataset D used

15

related work

for evaluating Eqn. 2.1 is unbalanced. An unbalanced dataset D
is a dataset in which labels ci ∈ C do not present a uniform
distribution over the class labels. If, for instance, the number of
samples Ci in D of some given class ci dominates all others, then a
naive classifier which simply outputs label ci with the probability
Ci/|D| (and any of the other labels with probabilities which sum
up to 1 − Ci/|D|) will yield good accuracy values.

Cohen’s kappa coefficient (κ) (Fleiss and Cohen, 1973) is a met-
ric that can be used to alleviate the classification assessment prob-
lem for unbalanced datasets. κ is defined as

κ =
po − pe

1 − pe
, (2.2)

where po is the simple accuracy, i.e., the number of correctly clas-
sified samples (true positives) over |D| samples, and

pe =
1

|D|2 ∑
1≤g≤|C|

nα
gnβ

g , (2.3)

where |C| is the number of classes, |D| is the number of sam-
ples, and nα

g and nβ
g are the predicted class g given by the true

label α and given label β, respectively. The κ coefficient is in a
[−1, 1] range, where κ ≤ 0 means no agreement and κ = 1 means
complete agreement between two classifiers α and β. Instead of
comparing classifiers, we can use κ to measure the agreement
between two different labels (true and predicted) considering a
classifier. Thus, we can measure the probability of agreement be-
tween a predicted label and the true label.

In our work in Chapters 3-6, we will use both accuracy and κ
for evaluating our various classification models, and comment
on the suitability of each of these metrics on a case-by-case basis.

2.1.2 The need for large datasets in machine learning

Supervised deep neural networks (DNNs) require large anno-
tated sets for both training and testing models in order to de-
liver high performance (Lin et al., 2014; Sun et al., 2017). This is
inherent to the fact that the function f that a DNN aims to com-
pute has millions (or more) of internal parameters that have to
be set by the training optimization. This is not a problem if one
avails of extensive collections of ground-truth labels or, alterna-
tively, producing such labels is relatively cheap. However, there
are situations when none of these conditions hold. A recurring

16

2.1 introduction

example of this situation which we will extensively discuss in
our work in Chapters 3-6 involves the classification of biologi-
cal microscopy images. While the acquisition of such images is
a reasonably straightforward process, their annotation – that is,
assigning ground-truth labels to the imaged information – is a
very expensive process which requires specialist users (microbi-
ologists) to carefully study each image. This quickly becomes a
blocker to the scalability of using supervised ML approaches to
handle such datasets.

Given its importance and frequency, several strategies aim at
tackling this problem of not having sufficient labeled data. In the
following, we concern ourselves only with cases where we know
all classes C to infer in advance. The problem of discovering new
classes in the data – while a valid and important one – is out of
our scope.

Few-shot learning: Recently, few-shot learning techniques have
shown the ability to deal with the absence of large supervised
datasets in classification tasks using DNNs. Using very few
supervised samples (roughly speaking, a few tens), few-shot
learning guarantees generalization in test sets when training
from one to few (one/few-shot learning) or even zero (zero-shot
learning) examples per class (Wang et al., 2020). Additional
unsupervised samples are not part of standard few-shot learning
methods.

Semi-supervised learning: In addition to the (few) available
supervised samples, semi-supervised learning considers many
unsupervised samples to capture additional information during
its learning process (Wang et al., 2020). Recent works have
explored combining few-shot learning and semi-supervised
learning (Yu et al., 2020; Li and Chao, 2021; Zhmoginov et al.,
2022) by considering a fixed amount of unsupervised samples
along with the few supervised ones. Aside from that, we are
interested in using very few supervised samples and many
unsupervised ones, in a semi-supervised setup. When some
supervised samples and many unsupervised samples are
available, semi-supervised learning can increase the number of
labeled training samples and, consequently, improve the perfor-
mance of a DNN (Lee, 2013). Given its importance to our work,
we discuss variants of semi-supervised learning below in Sec. 2.2.

17

related work

2.2 pseudo labeling

In semi-supervised learning, deep learning (Lee, 2013; Iscen et al.,
2019; Miyato et al., 2018; Jing and Tian, 2020; Pham et al., 2021)
approaches have been used to propagate labels from a small
set of supervised samples to a large set of unsupervised ones
exploiting their feature space distribution. At a high level, the
overall idea is simple: The learning algorithm extracts training
information both from the (few) supervised samples available
and also from the (usually many more) unsupervised samples
present in the training set Dt. The scarce label information is
effectively ‘propagated’ over the training set in suitable ways,
leading to pseudolabels – that is, labels which have not been
assigned by users, but are used exactly as the true labels by a
training process. If we assume that the training set accurately
captures the distribution of data for the problem at hand, then
such information can be sufficient to train high-performance
classifier models. We discuss variations of this approach below.

Pseudo labeling – a particular case of self-training – was
first proposed for more effectively fine-tuning of a pre-trained
model (Lee, 2013). Nevertheless, label propagation errors can
negatively affect the classification performance of models trained
with pseudo labels (Benato et al., 2018; Arazo et al., 2020).
The confidence of the apprentice model was included in the
loss function to mitigate such problems (Iscen et al., 2019; Shi
et al., 2018). Recently, pseudo labeling approaches (Lee, 2013;
Jing and Tian, 2020; Pham et al., 2021) essentially adopt the
semi-supervised strategy with the apprentice model assigning
uncertain (pseudo) labels to unsupervised samples. Those
approaches has been also combined with different strategies, e.g.,
self-supervised methods (Zhai et al., 2019; Cascante-Bonilla et al.,
2020). With the same purpose, meta-pseudo-labeling (Pham
et al., 2021) uses an auxiliary model (teacher) to generate pseudo
labels to train the primary model (student). Still, to guarantee
reasonable label propagation accuracy, such deep-learning-based
methods require a training set with hundreds of supervised
samples per class and a validation set with additional supervised
samples for parameter optimization (Lee, 2013; Miyato et al.,
2018; Jing and Tian, 2020; Pham et al., 2021). When only a few
supervised samples (e.g., dozens per class) are available, this re-
quirement is a clear obstacle for the deployment of such methods.

18

2.2 pseudo labeling

Pseudo labeling from extra few supervised data: Among the
studies that focus on labeling unsupervised data from a few
supervised samples are those based on cluster-then-label meth-
ods for classification (Das et al., 2020) and few-shot learning (Wu
et al., 2022). Such methods do not use extra (data) supervision
for parameter optimization and searching (Das et al., 2020; Wu
et al., 2022). They deal with consistency bias by combining (i)
a similarity loss and (ii) an ensemble from different Gaussian
Mixture Models. However, exploring challenging datasets can be
an issue when using unsupervised learning (Benato et al., 2021c)
or similarity-based loss functions (Benato et al., 2023b). For
such situations, strategies such as co-training, graph-consistency,
and uncertainty information combined with limited supervised
information can leverage pseudo-labeling approaches to avoid
consistency biases (Arazo et al., 2020).

Graph-based pseudo labeling: Pseudo labels stemming from
graph-based semi-supervised methods are typically faster to
compute than deep learning methods. By modeling training sam-
ples as nodes of a graph whose arcs connect adjacent samples in
a given feature space, one can propagate labels from supervised
samples to their most strongly connected unsupervised ones.
Such methods combine the connectivity aspect of graph-based
methods with the learning ability of DNNs in a co-training
strategy (Iscen et al., 2019; Arazo et al., 2020; Amorim et al.,
2019). However, most graph-based label propagation methods
need separate parameter tuning for distinct datasets. They also
need a validation set with extra supervised samples. Again, the
requirement of extra supervised samples is an obstacle for the
deployment of such methods when only very few supervised
samples are available.

Optimum path forest pseudo labeling: A particular graph-based
algorithm that does not require any parameters to optimize and,
also, no extra supervised set to validation is the semi-supervised
Optimum Path Forest (OPFSemi) (Amorim et al., 2016) classifier.
This algorithm maps both labeled and unlabeled samples to
nodes of a complete graph, with edges weighted by the Euclidean
distance between samples in a given feature space. The labeled
samples are taken as prototypes that compete among themselves
for the unlabeled ones. Each prototype ‘conquers’ its most
closely connected unlabeled samples by offering minimum-cost
paths and assigning its label to them. As a path-cost function,
OPFSemi uses the maximal edge-weight along the path. By that,

19

related work

OPFSemi computes a minimum-cost path forest rooted at the
prototype set. The time complexity of this algorithm is O(m2) for
m nodes, since the graph is complete. However, it is possible to
precompute a minimum-spanning tree in O(m2) time and next
perform label propagation (optimum-path forest computation)
on this tree in O(m log m) time, respectively, for any randomly
chosen set of prototypes. As the process is calculated over a
complete graph with all samples in D, we argue that OPFSemi
can capture local and global information of data distribution,
instead of local information only. The ability of OPFSemi for
pseudo labeling was investigated in (Benato et al., 2018; Amorim
et al., 2019), showing that it can surpasses many other compared
methods. We further analyze the performance of OPFSemi in
our work in Chapters 3 and 4.

Embedded pseudo labeling: As explained in Chapter 1, mul-
tidimensional projections can capture well the structure of a
high-dimensional dataset. This suggests the potential of ex-
ecuting a pseudolabeling algorithm over the embedded (2D)
space of a projection obtained from a high-dimensional dataset
rather than over the dataset itself. If, as DR literature claims, the
projection captures well the data structure, then pseudolabeling
applied to the 2D space may be better (in terms of speed but,
hopefully, also in terms of quality) than pseudolabeling applied
to the high-dimensional space. Benato et al. (2018) explored this
hypothesis for the first time, to our knowledge. The authors
showed that manual label propagation, performed on 2D pro-
jected (embedded) spaces computed by t-SNE, leads to better
results than automatic label propagation, performed in a latent
space with hundreds to one thousand dimensions generated by
an autoencoder from the raw input data (images, in this case).
Figure 2.1 illustrates this manual labeling process.

Semi-automatic pseudo labeling: As discussed above, there
seem to be two distinct approaches to pseudo labeling. That is,
one can use fully automatic methods for performing this task,
such as described in (Amorim et al., 2016); or one can put the user
in charge of the process to manually execute the labeling Benato
et al. (2018). As shown by the respective works, the two ap-
proaches appear to have complementary advantages (and limi-
tations). Automatic pseudo labeling is, of course, cheaper and
simpler to execute than involving the user. However, as shown
by Benato et al. (2018), manual labeling, done in the 2D projection
space, can result in higher performance than automatic labeling,

20

2.2 pseudo labeling

(a) visual
exploration

(b) manual
annotation

(b1) delineate (b2) assign labels

Figure 2.1: Interactive label propagation procedure for user-assisted
pseudolabeling. The left image shows a given high-
dimensional dataset projected to 2D using t-SNE. Colors rep-
resent ground-truth labels (black: unlabeled points). The user
studies this projection to find a well-separated sample group
containing a few same-label points, optionally using tooltips
to view individual samples (a). Next, the user decides to se-
lect a sample group to manually label (b). For this, the de-
sired group is encircled by manual delineation (b1). Next,
the ground-truth label present in this group – the red one,
in our case – is assigned to all delineated points (b2). Figure
adapted from Benato et al. (2018).

even if the latter has access to the entire high-dimensional data
space.

Based on these observations, Benato et al. (2021c) proposed
next to combine the two approaches, namely automatic and user-
driven labeling. In more detail, they first compared automatic
labeling done in the latent feature space with the one done in the
2D projected space. In this context, the combination of t-SNE (for
projection) and OPFSemi (for labeling) was considered for the
first time. They found that automatic labeling performed over
the 2D projected space yields better performance than the one
performed in the higher dimensional spaces. This partly explains
why users obtained a high performance when performing man-
ual labeling in the same projection space (Benato et al., 2018). If
both automatic and user-driven labeling work well in such a 2D
projection space, this strongly suggests that the respective space
preserves all the data structure needed to propagate labels effec-
tively.

Benato et al. (2021c) next took an additional step, by actually
combining automatic and manual labeling, both in the 2D projec-
tion space, as follows. Given a training set with few supervised
samples and many unsupervised ones, an unsupervised autoen-
coder extracts features from the input dataset. Then, encoded fea-

21

related work

Figure 2.2: Projection of MNIST dataset, created using t-SNE, colored
by classifier’s confidence values. Left: All samples colored by
classifier’s confidence, from low (red) to high (green) confi-
dence values. Middle: Only higher confidence samples. Right:
Only low confidence samples. Samples are split in low vs
high confidence based on a user-provided threshold. Image
adapted from Benato et al. (2021c).

tures are projected to a 2D space by t-SNE. During this process,
one also computes the so-called confidence of labeling, which is
the probability of a classifier assigning a label to a given sample.
The OPFSemi algorithm is used pseudo label the high-confidence
unsupervised samples to increase the labeled set size with little
effort and high quality. The low-confidence samples, in contrast,
are skipped in this automatic process, and are offered to the user,
who can examine them in detail, and manually label a desired
subset of them, as in (Benato et al., 2018).

Figure 2.2 shows an example of a 2D projection scatterplot col-
ored by the classifier’s confidence. Based on a user-given thresh-
old, one can separate high-confidence samples from the rest (mid-
dle image). These samples are next automatically labeled by OPF-
Semi. The remaining low-confidence samples (right image) are of-
fered to the user for manual labeling. Figure 2.3 shows the labels
that result from this combined approach. Starting from the super-
vised samples (colored points with a red border), automatic label-
ing is done towards the high-confidence points. This generates
the light-colored points (drawn without a border). The remain-
ing low-confidence points (black) are next offered to the user for
manual labeling.

This combined pipeline showed better results than the fully-
automatic and fully-manual labeling pipelines. Indeed, for the
‘evident’ labeling cases (high confidence), an automatic method
is more efficient than asking users to manually label them; con-
versely, for the ‘tricky’ cases (low confidence), it is better to in-
volve the user in the labeling decision than assuming an auto-
matic algorithm can handle them. However, several questions re-

22

2.2 pseudo labeling

main open. First, it is unclear which type of 2D projection (apart
from t-SNE) would be suitable for performing the proposed label
propagation. We address this question in our work in Chapter 4.
Secondly, it is unclear how the manual labeling can be further as-
sisted (to make it faster and/or yielding better quality labels) be-
sides showing a 2D scatterplot colored by confidence. We address
this question in Chapter 6. Thirdly, the semi-automatic pseudo-
labeling performance directly depends on the first learned fea-
ture space – the one provided by the autoencoder in an unsu-
pervised way. We address this in Chapter 3 by including the few
supervised information in the training and improving the feature
learning over the iterations. Fourthly, the user-based labeling is
performed by a single user interaction with the 2D scatterplot.
In other words, there is no user in the looping of the classifier
learning as in an active learning procedure. We address this In
Chapter 6 by including the user in the looping of the classifier by
exploring 2D projections to improve the pseudo labels assigned
by the automatic pseudo labeling technique.

Figure 2.3: Example of semi-automatic labeled samples. Automatic la-
beling is performed from the supervised samples (points col-
ored by class, saturated colors, red border) to the unsuper-
vised and high-confidence ones (light colors, no border). In-
teractive labeling is realized on remaining low-confident sam-
ples (black). Image reproduced from Benato et al. (2021c).

Apart from the above, we also present additional contributions
in our work, as follows. In Chapter 3, we further explore these
findings from Benato et al. (2018) by using a variety of architec-
tures to extract latent features from raw image data; pre-trained
architectures for the same task; and various refinements to the
basic OPFSemi label propagation presented in the initial paper.

23

related work

Separately, we also study the factors which influence the success
of applying OPFSemi to such embedded spaces as a function of
the data separation in the feature space and the obtained visual
separation in the projection space (Chapter 4).

2.3 visualizing high-dimensional data

Multidimensional data occurs in many fields as science, engineer-
ing, medicine, and ML. As introduced in Chapter 1, such data is
the object of study for both machine learning (ML) and data visu-
alization (VIS) methods. In the last decades, many visualization
methods have been proposed to depict multidimensional data –
the most notable being table lenses, scatterplot matrices, paral-
lel coordinate plots, and dimensionality reduction (DR) methods.
We briefly overview these next and advocate our choice, in the
rest of this thesis, for using DR techniques for the visual explo-
ration of multidimensional data. We split this evaluation into di-
mension mapping techniques (Sec. 2.3.1), respectively dimension
synthesis techniques (Sec. 2.3.2).

2.3.1 Dimension mapping techniques

Dimension mapping techniques – as their name suggests – es-
sentially map (a subset of) the existing n dimensions of a given
dataset D to so-called visual variables (Bertin, 1977, 1983). Simply
put, this means that for each of the selected dimensions n′ < n to
be displayed, a dimension of the visualization space is assigned.
Next, the respective values of the data dimension (of the n′ ones
to map) are mapped to the respective values of the assigned vi-
sual variable. For the choice of visual variables to use in this
process, one typically prefers to use first the available spatial vari-
ables – that is, the x and y axes of a 2D display and, if 3D vi-
sualizations are to be used, the z (depth) dimension. Additional
visual variables that are used are – in order of preference – color,
point size, and labels. During this process, so-called dimension
overload can be used. That is, several data dimensions can be as-
signed to the same visual variable, with suitable shifting to avoid
perfect overlap. Examples of this process discussed below are ta-
ble lenses, parallel coordinates, and SPLOMs.

Given this one-to-one mapping, dimension mapping tech-
niques can – as we shall next see – only handle a relatively lim-
ited number of data dimensions. As such, they are often used
together with dimension selection techniques, which pre-select a

24

2.3 visualizing high-dimensional data

(small) number of data dimensions n′ ≤ n to be visualized. Di-
mension synthesis techniques, discussed next in Sec. 2.3.2 avoid
this selection phase.

We identify and discuss the following key dimension mapping
techniques.

Table lenses use the inherent spatial layout implied by a ta-
ble with N rows each having a sample (observation) with n
columns (Rao and Card, 1994; Telea, 2006). They literally display
the said table using a Cartesian layout. To increase visual scalabil-
ity, the table is ‘zoomed out’ until, in a first instance, every table
row becomes a pixel row where colors or bar lengths are used
to depict the cell values. This process can continue further by ag-
gregating multiple (up to hundreds) of consecutive table rows in
a single pixel row. The obtained visualization can be further ex-
plored from different angles by sorting and/or clustering (ranges
of) values along one or several columns and adding details-on-
demand in the form of tooltips or zoom-in ‘lenses’ that depict
selected row ranges. The key advantage of table lenses is its sim-
ple layout – most if not all targeted users are familiar with tabu-
lar data views. Table lenses are also quite scalable in the sample
(row) count N.

However, such techniques do not scale well in the dimension
(column) count n. Equally importantly, they only support explo-
ration tasks which assume that samples can be ordered in some
way. For instance, the arguably simple task of finding how many
groups of similar samples exist in a dataset cannot be (easily)
addressed by these techniques. Last but not least, table lenses
work best for so-called tabular data. In information visualization,
this term refers to data whose individual dimensions carry
well-understood meaning by its users – such as, for instance,
name, ID, age, and salary for a personnel record. In ML, one
often has to work with data which does not comply with such
assumptions – think, for instance, of features extracted by
some latent space generation algorithm such an autoencoder;
or features that correspond to the colors of individual pixels
in an image. While, technically speaking, such data can be
manipulated as a table, its columns have no intuitive meaning
and are too many for individual manual exploration.

Parallel coordinate plots (PCPs) use a visual metaphor similar
in many senses to table lenses (Inselberg and Dimsdale, 1990).
Every dimension n of the input data gets allocated a (vertical)
axis ai to depict its values. All these axes a1, . . . , an are depicted

25

related work

as parallel equidistant lines. Every data point xi ∈ Rn is next de-
picted as a polyline that connects its specific values depicted as
dots along the n axes ai. Additionally, one extra dimension can
be depicted by color coding the resulting polylines. PCPs are a
quite effective instrument to depict the distribution of values in
a dataset along each of its n dimensions – these become visible
in terms of one-dimensional point spreads along the vertical axes
ai. Outlier values along any axis ai appear also quite saliently in
this type of visualization as polylines having outlier points along
the respective axes. Large amounts of similar points are easy to
identify as they create densely-packed polylines. More interest-
ingly, direct and inverse correlations of dimensions whose axes
are neighbor create visually salient patterns formed by roughly
parallel line segments, respectively line segments intersecting in
an X-like pattern.

Yet, PCPs suffer from the same scalability limitation as ta-
ble lenses in the dimension count n as they need to allocate
separate space for drawing each of their axes. Like scatterplot
matrices (discussed below), individual samples are depicted
as relatively complex visual objects – in this case, polylines.
Finding correlations (or the lack thereof) requires one to have the
dimensions to be tested neighbor to each other in the PCP. While
this can be achieved by interactive re-arrangement of the axes,
this requires a certain manual effort. Moreover, users need to
explicitly perform such rearrangements before they can test for
(the lack of) correlations. Note that such effort is not required for
table lenses. Last but not least, PCPs are quite prone to generate
a significant amount of visual clutter – much more than any of
the other visualization techniques we analyze in this section. As
such, they also have limited scalability in the number of samples
N.

Scatterplots are, likely, one of the most frequently used tech-
nique for studying (quantitative) multidimensional data. In their
standard use, one considers a by-variate dataset D = {xi} with
xi ∈ R2. Each point xi is then plotted in a Cartesian framework
according to its two data values to yield a scatterplot for the
entire dataset D. Additional dimensions can be encoded, for
each plotted point, in its color, size, and (up to some extents)
label. This way, scatterplots can depict n = 5 data dimensions.
If a third spatial coordinate is used, scatterplots can depict a
total of n = 6 data dimensions. However, 3D scatterplots create
additional interpretation problems such as choosing a good
viewpoint to examine them from (Sedlmair et al., 2013). Visual

26

2.3 visualizing high-dimensional data

cues that assist interactive viewpoint selection can help such
navigation (Coimbra et al., 2015; Zhai et al., 2022). However, even
with such tools, exploring 3D scatterplots remains a challenging
proposal. As such, we do not consider 3D scatterplots further in
our work.

Scatterplot matrices (SPLOMS) are one of the extensions of ba-
sic 2D scatterplots that aim to alleviate their limited ability to
show many data dimensions n. Simply put, a SPLOM uses a
small-multiple visualization metaphor (Becker et al., 1996; Tufte,
2001) to show a 2D scatterplot for all the combinations of dimen-
sions di and dj, where 1 ≤ di ≤ n, 1 ≤ dj ≤ n, and di ̸= dj.
These plots are arranged in a matrix with plots on the same row
or column sharing one common data dimension. SPLOMs have
been extensively used in different fields of science under differ-
ent names – for example, in astronomy, they are known as Tins-
ley diagrams (Tinsley, 1980). The key advantage of SPLOMs is
allowing one to easily spot (direct and/or inverse) correlations
between pairs of variables; and, up to a lesser extent, the pres-
ence of clusters of similar samples due to the values of a few
dimensions.

However, SPLOMs have some important limitations. First and
foremost, SPLOMs cannot depict more than roughly n = 10
dimensions as the matrix of 2D scatterplots they use grows
quadratically with the data dimensionality n. Secondly, they only
allow direct exploration of patterns formed by pairs of dimen-
sions. If one aims to find how three or more dimensions interact,
one needs to mentally compare several scatterplot cells in the
SPLOM to detect possible patterns. For this reason, SPLOMs
have been called ‘multiple bivariate visualizations’ (Hand et al.,
2001). Finally, the fact that every data sample is essentially
encoded as n2 different points – one in each 2D scatterplot in the
SPLOM – can be confusing, even with aiding mechanisms such
as linking selection and highlighting between the scatterplots
or, when considering more advanced techniques, morphing and
animation between selected scatterplots (Elmqvist et al., 2008).

Scagnostics are a family of techniques that aims to alleviate the
quadratic increase of SPLOMS with the dimension count n (Tukey
and Tukey, 1988; Wilkinson et al., 2005b; Lehmann et al., 2012;
Flores et al., 2017). The key idea is to generate all these n2 scat-
terplots; then use (typically unsupervised) ML techniques to ana-
lyze all these scatterplots for the presence of patterns deemed to
be interesting for a given application domain, e.g., compact point

27

related work

clusters, direct or inverse correlations, outliers, or clusters having
specific shapes. Next, a few scatterplots that score highest along
such measures of interestingness are selected and displayed for
the user’s perusal.

From a ML perspective, scagnostics can be seen as a feature se-
lection technique type. Indeed, given the n2 feature (dimension)
combinations available for exploration, only a small set of such
pairs is selected (by ML analysis) for further visual exploration.
However, it is well known from ML literature that feature selec-
tion cannot, in general, yield optimal feature sets for the charac-
terization of a complex dataset. Indeed, for such tasks, one actu-
ally needs not only to eliminate some features, but combine ranges
of multiple ones. DR techniques, discussed below, achieve essen-
tially this goal.

2.3.2 Dimension synthesis techniques

In contrast to the dimension mapping techniques discussed
above, dimension synthesis techniques avoid the one-to-one map-
ping process between data dimensions and visual variables.
Rather, they proceed by generating, or synthesizing, the values
of visual variables based on the available data dimensions. The
key advantage of this approach is that many data dimensions can
be combined to determine the values of the few available visual
variables. This alleviates the key limitation of dimension map-
ping techniques discussed above.

Formally speaking, dimension synthesis methods can be de-
scribed as functions

f : Rn → Rv, (2.4)

where n gives the data dimensionality and v is the number of vi-
sual variables used for visualization. As explained earlier for di-
mension mapping methods (Sec. 2.3.2), v usually takes a value of
2 to 6, depending on whether we use two or three spatial dimen-
sions in the visualization; and color, point size, and optionally
text labels for depicting additional data.

Denote now f = (f1, . . . , fv) the expression of the v-
dimensional function f in Eqn. 2.4. That is, fi : Rn → R tells
how the n data dimensions are used to synthesize the ith visual
variable. Note that, when fi(x) = xj, 1 ≤ j ≤ n, the above yields
a dimension mapping method that maps data dimension j to vi-
sual variable i.

28

2.3 visualizing high-dimensional data

We next discuss the main types of dimension synthesis meth-
ods known in the literature.

Projection pursuit methods generalize the concept of scagnostics
discussed earlier in Sec. 2.3.1). Consider for simplicity v = 2 (our
target visualization is a 2D scatterplot). Let n ∈ Rn be an unit
vector indicating a direction in the data space. Let o ∈ Rn be the
centroid of the points in a given dataset D. We can then define
the 2D scatterplot

S(D, n) = {(x − o)− ((x − o) · n)n|x ∈ D}, (2.5)

that is, the projections of all points in a dataset D to the plane
passing through o and having the normal vector n. In this case,
the two dimensions of the resulting scatterplot are a combination
of all n data dimensions, given the dot product (x − o) · n.

One can next rotate n in the data space, construct S(D, n) for
various such values, and select the one(s) to be shown to the
user based on an interestingness factor, much like when using
scagnostics (Sec. 2.3.1). The difference with scagnostics is that,
for projection pursuit, the space of possibilities to examine is not
much larger – all orientations of n as opposed to all combinations
of two dimensions from the n data ones.

Several implementations exist for projection pursuit depending
on the definition of what an ‘interesting’ scatterplot P is, as well
as on how to search the direction space n to find these (Friedman
and Tukey, 1974; Jones and Sibson, 1987). In general, such meth-
ods are quite computationally expensive. Moreover, they have a
linear and global nature – that is, they project all data points on
a single plane. As we shall next see, DR methods generalize such
techniques and also offer additional advantages.

2.3.3 Multidimensional projections

As outlined so far, visually depicting data having a large number
of dimensions n is very challenging. In this respect, dimension
synthesis methods have, it seems, an advantage on dimension
mapping methods.

Dimensionality reduction (DR) algorithms, also called projec-
tions, are to date the methods of choice for this task. Projections
take a dataset D and produce a scatterplot, or embedding of D,
P(D) = {yi = P(xi)|yi ∈ Rv}, where typically v ∈ {2, 3}. With-
out loss of generality, we next consider v = 2; that is, we project
data to 2D scatterplots. We exclude 3D scatterplots from our re-
search due to the aforementioned limitations entailing finding

29

related work

good viewpoints (see Sec. 2.3.1). However, we will use additional
visual variables – most notably color – to encode additional data
dimensions which are not subject to the DR process.

DR algorithms fully follow the dimension synthesis model out-
lined by Eqn. 2.4. In technical terms, they differ in choices made
for this synthesis process. For example, linear methods use lin-
ear functions fi for the synthesis – and conversely for non-linear
methods. Separately, global methods propose a single definition
for each fi that applies to all the points x ∈ D. In contrast, local
methods propose different definitions for fi that apply to point
subsets of D. Global and linear methods include Principal Com-
ponent Analysis (PCA); local and non-linear methods include t-
Stochastic Neighbor Embedding (t-SNE). Both methods are dis-
cussed further below.

Many projection methods have been proposed for P, using dif-
ferent underlying techniques as graphs, linear algebra, stochastic
optimization, and deep learning, to mention just a few. We re-
fer the interesting reader to recent surveys that describe these
both qualitatively and quantitatively (Nonato and Aupetit, 2018;
Espadoto et al., 2019a; Xie et al., 2017; Sorzano et al., 2014; Cun-
ningham and Ghahramani, 2015; Burges, 2010; Engel et al., 2012;
van der Maaten et al., 2009). From these surveys, several key
points emerge, as follows:

• Multiple criteria: A ‘good’ DR method has to comply, ide-
ally, with a large number of competing criteria. Without
being exhaustive, these include computational speed (be-
ing scalable in both the sample count N and dimension
count n), robustness to small changes in the input data, out
of sample ability (being able to project additional samples
atop of those used to generate a given projection), high qual-
ity (a criterion we examine separately below given its im-
portance), and ease of implementation and use (especially
with respect to hyperparameter settings);

• No absolute winner: There is no single DR method which
optimally complies with all above-mentioned criteria. For
example, Principal Component analysis (PCA) scores very
high on all criteria except quality Jolliffe (1986); in contrast,
t-Stochastic Neighbor Embedding (t-SNE) scores highest of
all analyzed methods on quality, but quite poorly on scala-
bility, stability, out of sample ability, and ease of implemen-
tation and use van der Maaten and Hinton (2008); Espadoto
et al. (2019a).

30

2.3 visualizing high-dimensional data

• Conflicting requirements: Depending on the actual applica-
tion, certain requirements (of the ones mentioned above)
may range anywhere from critical to potentially nice-to-
have. For instance, for visual exploration, speed, ease of use,
and stability are essential; for use in ML pipelines, quality is
paramount. We discuss such aspects in further detail below.

2.3.4 Quality of projections

Quality of projections was already named as a key criterion for
a good DR technique. However, what makes such a technique of
good quality? Surprisingly enough, there is no formal and univer-
sally accepted definition hereof. Virtually all DR literature sur-
veys (mentioned above) globally state that a projection should
preserve the so-called data structure. Informally put, this means
that the scatterplot P(D) should share properties – defined in
terms of its 2D points – that can be computed as well on the
corresponding data points from D. Further analyzing this topic,
we find that this ‘data structure’ is captured in terms of various
metrics. In detail, a projection-quality metric

M(D, P(D)) ∈ R+ (2.6)

evaluates how well a 2D scatterplot P(D) preserves certain as-
pects that are measurable in the dataset D that the scatterplot
was created from.

Several such metrics have been proposed in the DR literature
to capture specific measurable aspects of D and P(D). We discuss
the most frequently used such metrics in the following.

2.3.4.1 Classical quality metrics

Classical quality metrics include scalar metrics, point-pair
metrics, and local metrics (Espadoto et al., 2019a). Four scalar
metrics frequently used in DR literature (Nonato and Aupetit,
2018) are described below. All these metrics range between 0

(worst case) and 1 (best case).

Trustworthiness (T) (Venna and Kaski, 2006): measures the frac-
tion of points in D that are also close in P(D) or how local vi-
sual patterns in a projection truly represent actual data patterns.
This is related to the so-called false neighbors of a projected
point (Martins et al., 2014). In the definition of T (Eqn. 2.7), U(K)

i
is the set of points that are among the K nearest neighbors of

31

related work

point i in 2D but not among the K nearest neighbors of point i in
D; and r(i, j) is the rank of the 2D point j in the ordered-set of
nearest neighbors of i in 2D.

T(x, y) = 1 − 2
NK(2n − 3K − 1)

N

∑
i=1

∑
j∈U(K)i

(r(i, j),−K) (2.7)

Continuity (C) (Venna and Kaski, 2006): measures the fraction
of points in P(D) that are also close in D. This is related to the
missing neighbors of a projected point (Martins et al., 2014). In
the definition of C (Eqn. 2.8), V(K)

i is the set of points that are
among the K nearest neighbors of point i in D but not among the
K nearest neighbors in 2D; and r̂(i, j) is the rank of the Rn point
j in the ordered-set of nearest neighbors of i in D.

C(x, y) = 1 − 2
NK(2n − 3K − 1)

N

∑
i=1

∑
j∈V(K)i

(r̂(i, j),−K) (2.8)

Trustworthiness (T) and continuity (C) are typically used
together. Indeed, when considered together, they essentially
tell how close the sets of k nearest neighbors of a point in D,
respectively P(D), are to each other. An ideal projection should
perfectly preserve such neighbors, i.e., have maximal T and C
values. When this happens, one can fully reason about the closest
points x′ to a data point x by examining the closest projections
y′ to P(x).

Normalized stress (S) (Joia et al., 2011): measures the preserva-
tion of point-pairwise distances from D to P(D) (see Eqn. 2.9).
Euclidean distance is commonly the most used.

S(x, y) =
∑ij(∆n(xi, xj)− ∆q(P(xi), P(xj)))

2

∑ij ∆n(xi, xj)2 (2.9)

Ideally, a projection should have S = 0. To ease comparison
with the other metrics, 1 − S is typically used – so that large
values indicate a good projection and low values a poor one,
respectively. As normalized stress (S) measures how well inter-
point distances in P(D) are proportional to the corresponding
distances in D, a low-stress projection means that one can reason
about the distances in data space by simply considering the
visible distances in projection space.

32

2.3 visualizing high-dimensional data

Neighborhood hit (N) (Paulovich et al., 2008): measures the frac-
tion of the K neighbors N(

i K) of a point i in P(D) that have the
same label l as point i, averaged over all points in P(D) (see
Eqn. 2.10). This is related to the labeled separation in a projection
P(D).

N(y) =
N

∑
i=1

|j ∈ N(K)
i : lj = li|
NK

(2.10)

Neighborhood hit (N), by definition, is only applicable to labeled
data. The intuition behind this metric requires further explana-
tion. Let us assume that, in a labeled dataset D, close points
typically share the same label. While this is not guaranteed in
general, this is a common assumption in many datasets used in
ML, where data (including labels) comes from some continuous
phenomenon. In this case, we assume that labels do not abruptly
change as data slowly changes. When this is the case, a good
projection is expected to show the same behavior. That is, close
points in the projection (which map close points in the data
space) should typically have the same labels. This is precisely
the property that N aims to measure.

Scalar metrics characterize the quality of an entire projection
P(D) by a single value, so they are simple to interpret. How-
ever, this inherently averages quality over different parts of P(D)
and/or D. Point-pair metrics, e.g. the Shepard diagram of pair-
wise point distances (Joia et al., 2011), and local metrics, e.g. miss-
ing and false neighbor plots (Martins et al., 2014) offer finer-
grained quality characterizations. These metrics are typically
used to create visualizations of the quality distribution over a pro-
jection. Their main added value is to allow users to separate parts
of a projection which they can trust (since they have relatively
high quality values) from other parts which are less trustworthy
(since they have relatively low quality values). We will further
explore such local quality metrics in Chapter 6.

2.3.4.2 Visual perception metrics

Visual perception metrics have been used to assess the visual per-
ception of different patterns present in projections.

Among them, approaches based on clustering, such as the
Silhouette score, explore centroids and labels to assess group
separation. Other clustering-based approaches combine informa-
tion from nD and 2D spaces with labels to gauge visual percep-
tion (Marghescu, 2006). Class consistency (Sips et al., 2009) and

33

related work

distance consistency (Tatu et al., 2010a) measures assess class sep-
aration via distances from defined centroids. Both combine den-
sity functions and local neighborhoods to identify class overlap.
Although pseudo labels can be used as a strategy with such met-
rics, they still rely on suitably chosen and parameterized cluster-
ing techniques and probability density models and can have diffi-
culties detecting (and characterizing) clusters of complex shapes
— the Swiss roll dataset is a famous example. Separately, Abbas
et al. (2019) explored Gaussian mixture models to measure clus-
tering in monochrome scatterplots, but without taking into ac-
count labels. Sedlmair et al. (2012) compared cluster separability
measures and human observations and concluded that grouping
measures might fail to capture multiple sub-groups and groups
of different sizes, shapes, and densities. Sedlmair and Aupetit
(2015) used fifteen metrics and user judgment to analyze visual
separability in 2D scatterplots. The authors found that the dis-
tance consistency metric (Tatu et al., 2010a) led to the best agree-
ment with human judgement, but can vary across synthetic and
real-world data scenarios. They evaluated their results using only
the AUC metric, which can be affected by class unbalances. To
circumvent problems related to clustering-based approaches, so-
lutions based on graphs and minimum-spanning trees have been
proposed. Wilkinson et al. (2005a); Wilkinson and Wills (2008)
proposed methods to find patterns in large scatter plot matrices.
Separately, Motta et al. (2015) evaluated original and projected
spaces for the same purpose. The benefits of such methods in-
clude covering global and non-trivial shapes, being parameter-
free, and fast to compute. However, these studies did not explore
graph-based approaches in a pseudo labeling task to evaluate
projections – which is our proposal. Also, they did not compare
their methods in a wide experimental setup with well-known pro-
jections and datasets as we will be doing.

Human judgment has also been explored in user studies to
evaluate the relation between the above-mentioned metrics and
visual perception. An important contribution of these studies is
designing a method to conduct the experiments and avoid hun-
dreds of scatterplots that have to be inspected by users (Tatu
et al., 2009; Sedlmair and Aupetit, 2015; Albuquerque et al., 2011).
For this, scatterplots are ranked from the best to the worst, and
only the top three to five are offered for user inspection (Tatu
et al., 2009, 2010b). We also use this ranking in our experiments
(Sec. 5.4.2). The above-mentioned studies do not use many com-
binations of datasets and projections. Rather, many (dozens) of
metrics are compared (or a new one is proposed) for a sin-

34

2.3 visualizing high-dimensional data

gle (Albuquerque et al., 2011; Sedlmair and Aupetit, 2015) or a
couple of datasets (Tatu et al., 2009, 2010b). Additionally, the an-
alyzed metrics still have the main issues that we outlined before
(see also (Tatu et al., 2010b)). In contrast to the above, in Chap-
ter 5 we evaluate many (hundreds of) dataset-projection tech-
nique combinations, both quantitatively and by a user study.

2.3.5 Inverse projections

As explained above, projections P map points from a high-
dimensional data space Rn to a (much) lower dimensional space
Rv, where typically v ∈ {2, 3}. Given their operation, one can
quite naturally wonder whether an inverse mapping – from Rv

to Rn is useful and, if so, how such a mapping can be constructed.
We detail both above questions in the following.

An inverse projection P−1 : Rv → Rn is implicitly defined as a
function that aims to ‘revert’ the effect of a given direct projection
mapping P. In the ideal case, given a dataset D that was projected
to P(D) using some user-selected projection function P, a good
inverse projection obeys the condition P−1(P(xi)) = xi, for every
xi ∈ D. Key to the added value of inverse projections is that P−1

can be applied also to points outside P(D). That is, in practice,
one can select any point y in the 2D space where P(D) lives and
compute a corresponding data point P−1(y). Ideally, if P were
applied to this data point, one would obtain the 2D point y, that
is, P(P−1(y)) = y, for all y in the considered Rv space.

While the concept of inverse projection is quite simple, it comes
with several theoretical and practical challenges, as follows.

First and foremost, in most cases, it is not possible to compute
a mathematical inverse of a given projection function P. Indeed,
many projection functions are not injective, i.e., they yield the
same value P(x) for different data values x. As such, the condi-
tion P−1(P(x)) = x has to be relaxed in practice, typically by
aiming that P−1(P(x)) is close to x. This is similar to how ML
models are trained to optimize, but not overfit, a given cost func-
tion (Sec. 2.1.1).

Secondly, we have to note that many projection techniques are
non-parametric – t-SNE being a famous example hereof. That is,
rather than providing a mapping from any point in Rn to a corre-
sponding point in Rv, they only map a finite set of points x ∈ D in
some given dataset D to the corresponding points in P(D). This
means that we do not know what the projection P(x′) would be
for a point x′ ∈ Rn \ D. As a consequence, we cannot design
P−1 by directly optimizing for P(P−1(y)) = y for all y ∈ Rv.

35

related work

However, while P can only be known at the discrete set of points
P(D), we want to be able to evaluate P−1 everywhere over Rv, in
particular outside the set P(D).

Considering the above, a practical definition of an inverse pro-
jection P−1, given a direct projection P(D) obtained from some
dataset D and a projection algorithm D, is a function P−1 : Rv →
Rn that

1. Minimizes the cost ∑xi∈D d(P−1(P(xi))− xi), for some suit-
ably chosen distance metric d;

2. Smoothly varies as its input y changes over Rv.

Several techniques have been proposed to construct inverse
projections based on the above model. Early on, autoencoders
(AEs) have been used to this end based on the minimization of
the reconstruction error (Hinton and Salakhutdinov, 2006). That
is, the encoder part of the AE computes the direct projection
P, whereas the decoder part computes P−1. More recently, iL-
AMP (dos Santos Amorim et al., 2012) explored local affine trans-
formations to compute P−1 for a given direction projection P,
specifically LAMP (Joia et al., 2011). A different direction was
proposed by NNinv (Espadoto et al., 2023) as follows. Earlier
on, Espadoto et al. (2020) have shown that one can use deep
learning to imitate any given projection technique. This method,
called Neural Network Projection (NNP) trains a regressor to pro-
duce P(D) for any given D and any user-selected projection tech-
nique P. NNInv uses the same approach, but swaps the roles of
D and P(D) – that is, given a 2D scatterplot P(D), it aims to
regress it to the corresponding dataset D. Several improvements
of NNInv followed next, including Self-Supervised Neural Pro-
jection (SSNP, Espadoto. et al. (2021)), which learns both a direct
and inverse projection with stronger cluster separation based on
data (pseudo)labeling; and Shape-Regularized Multidimensional
Projection (ShaRP, Machado et al. (2023)), which does the same
by using a variational autoencoder architecture that also allows
one to regularize the shapes of the obtained point clusters in the
projection. Compared to iLAMP, the deep-learning-based inverse
projections (AEs, SSNP, NNInv, ShaRP) are significantly faster
and require no parameter setting.

Evaluating the quality of inverse projections is a significantly
more complicated task than evaluating direct projection quality,
for the abovementioned reason that we aim to extrapolate a func-
tion outside the area where we have ground-truth information.
As such, apart from the cost minimization (1) mentioned above,

36

2.3 visualizing high-dimensional data

other means have been proposed to assess quality. Most notably,
the smoothness condition (2) mentioned above has been visually
evaluated using gradient maps (Espadoto et al., 2023). We will
use similar techniques when deploying inverse projections to as-
sist users in pseudolabeling tasks in Chapter 6.

Inverse projections are a key instrument in the construction of
decision boundary maps (DBMs), a VA tool used in evaluating
(and improving) the quality of ML models. We discuss DBMs in
detail in Sec. 2.4.

2.3.6 Discussion

As already outlined above, many projection quality metrics exist
– for an overview, we refer the reader to recent surveys (Nonato
and Aupetit, 2018; Espadoto et al., 2019a). However, to actually
determine which (if any) of these metrics are good in gauging a
projection’s quality, we need to first define what the projection
will be used for, and how. Indeed: If a given projection fulfils all
the tasks it was selected for, then, by definition, it should be of
high quality for those tasks – and conversely (Nonato and Aupetit,
2018). The key problem with this approach is that the range of
tasks that one can imagine to address using a projection is very
wide. As such, choices are to be made in how we are going to
precisely use projections next in our work – as this will tell us
how we are going to evaluate their quality.

To this end, let us revisit the two research questions (RQ’s) pro-
posed in Sec. 1.4. RQ1 states that we would like to use projections
to build better ML models. Let us examine, one by one, the steps
implied by RQ1:

• A ML (classification) model essentially aims to capture how
points, in a dataset D, are separated into different groups
(distributions) and assign a different class label to each of
these.

• Let us denote by DS the data separation between same-class
points in D. Clearly, the higher DS is, the easier is to con-
struct a good-performance classifier for D.

• Let us denote by CP the classifier performance of a trained ML
model for a given problem (assessed using the procedures
outlined in Sec. 2.1.1).

• Let us denote by VS the visual separation between same-class
points in P(D). If we aim to use a projection P(D) to help

37

related work

this classification process, this means that the VS of points
in P(D) should capture as well as possible the DS of points
in D. Then, indeed, P(D) can be seen as a ‘proxy’ for D.

Jointly put, the quantities DS, VS, and CP seem to be corre-
lated. More specifically, a high DS usually involves a high CP – a
well-known fact from ML literature. If we want to use projections
for ML engineering (see RQ1), then DS should correlate with VS.
Rauber et al. (2017b) examined this aspect already a while ago.
More precisely, they showed that a high VS in a projection – mea-
sured by the neighborhood hit N metric – does correlate with
a high CP; that is, one can easily construct a high-performance
classifier for a dataset that can be projected to a projection having
a high N value.

Figure 2.4 shows this. The top row shows a t-SNE projection
of N = 688 test samples, n = 500 dimensions, from the |C| = 2
class Madelon dataset – a well-known example for ML bench-
marking (Guyon et al., 2004). The two top-row images show the
projection colored by classification results from a trained KNN,
respectively RFC, model. The visual separation (VS) of the projec-
tion is quite poor, as indicated by the relatively low NH = 50.97%
value. We see how this poor VS is reflected in the relatively low
classification performance (CP), as measured by accuracy, which
is 54.94% for KNN and 66.17% for RFC, respectively. The bottom
row of Fig. 2.4 shows a t-SNE projection of the same samples.
However, now these were reduced to only n = 20 dimension
by a feature selection process that used extremely randomized
trees (Geurts et al., 2006) to select a small set of features which
are most successful into the two classes of the dataset. We easily
see that this feature-selection process increased the VS in the pro-
jection (NH = 74.15%). Also, the CP of both classifiers increased
now to yield accuracies of 88.62% for KNN, respectively 88.92%
for RFC. Additional experiments in Rauber et al. (2017b) support
the claim that VS (of projections) and CP values (of the projected
data being classified by trained ML models) correlate very well.

However, Rauber et al. (2017b) also mentioned that little can
be said about the converse situation. That is, a projection with
a poor N value does not necessarily mean that it is hard to con-
struct a high-performance (high CP) classifier for that dataset.
Moreover, they did not further evaluate VS beyond the computa-
tion of the N metric. As for all the other metrics typically used in
projection quality assessment (e.g., C, T, S), N has a very ‘local’
view on a projection – that is, it only considers patterns at a given

38

2.3 visualizing high-dimensional data

ACC: 54.94% ACC: 66.17%

ACC: 88.62% ACC: 88.92%

NH: 50.97% NH: 50.97%

NH: 74.15% NH: 74.15%

Figure 2.4: Correlation of visual separation (VS), measured by the
neighborhood hit (NH) metric, and classifier performance
(CP), measured as accuracy (ACC), for two different pro-
jections and two classification models. Figure reproduced
from Rauber et al. (2017b).

39

related work

scale, imposed by the user via the k hyperparameter (number of
neighbors).

Our second research question (RQ2) aims to generalize the ob-
servations that underlie RQ1. In Chapter 4, we show how DS, VS,
and CP are tightly related, by means of experiments which go
beyond the relatively limited evaluation of Rauber et al. (2017b).
In Chapter 5, we go one step further – we propose an actual
way of measuring VS, which goes beyond the local approach of
all current projection-quality metrics (using k neighborhoods) to
consider the global distribution of samples. We also show that
our novel approach agrees well with how users gauge VS in a
projection.

2.4 visualizing ml models

The usage of information visualization (infovis) to understand
high-dimensional data and, more specifically, the results of ML
techniques is not new (Packer et al., 2013). Yet, evidence that
infovis and, more specifically, its interactive hypothesis-forming-
and-validation sense making loop known as VA is effective in
understanding and improving ML is more recent (Rauber et al.,
2017b,a; Zeiler and Fergus, 2014). The literature concerning
visualizing ML models is extremely extensive. As such, in the
following we will limit ourselves to discussing specific VIS and
VA techniques which are closely related to our work.

Understanding ML training: Recent work shows that VA can
be used to understand the training process of DL (Rauber
et al., 2017a) and to infer actions that improve the network de-
sign (Zeiler and Fergus, 2014; Rauber et al., 2017b). Rauber et al.
(2017b) showed that high separation of categories (labeled sam-
ples) in 2D t-SNE projections of n-D data is a strong indication of
high separation of the same categories in the nD data. A strong
separation also correlates well with the ease of building a high-
accuracy classifier for the respective categories (van der Maaten,
2014; Rauber et al., 2017b). A recent survey of VA techniques for
deep-learning engineering was proposed by Garcia et al. (2018).
Interacting with feature spaces: Other studies have investigated
the use of feature space projection and user interaction to
understand and design ML models (Rauber et al., 2015, 2017b,
2016; Bernard et al., 2018; Peixinho et al., 2018; Benato et al.,
2018). Some of these works have addressed over-fitting and large
unlabeled datasets — common issues in ML — by exploring,
respectively, interactive data augmentation (Peixinho et al., 2018)

40

2.4 visualizing ml models

and interactive data annotation (Benato et al., 2018, 2021c) guided
by feature space projections. Yet, (Benato et al., 2018, 2021c) have
not considered an active learning (AL) looping, i.e., using the
labeled samples to re-train the classifier and use the classifier
information to guide the user labeling in the next iteration. In
other words, these studies use only one iteration of the user
interaction. Our work in Chapter 6 extends this approach to
multiple user iterations.

Decision boundary maps: A typical way to visualize the behav-
ior of a classifier f over a test set D is to construct the projection
P(D) and next plot it by color-coding its points P(xi) by the val-
ues f (xi). Figure 2.5 shows this for a simple logistic regression
classifier for a 7-class problem. This image shows quite clearly
that certain classes, e.g. 1 (orange) and 6 (cyan) are better sepa-
rated from the others. However, the image does not tell us what
would happen for a data point that would project in the white
space in the image. We can assume, for example, that points pro-
jecting somewhere inside the orange cluster will quite likely also
get the label 1 (since that cluster is well separated from the rest
of the projection), but we do not know this for sure.

Decision boundary maps (DBMs) aim to solve this problem by
constructing a dense visual representation of the behavior of a
trained ML model f , as follows. Given a dataset D (which can
be the training set, test set, or a combination of both, used for
f), a projection P(D) is constructed. Next, an inverse projection
P−1 is computed from D and P(D), using any of the methods
described earlier in Sec. 2.3.5. The 2D space in which P(D) lives is
then discretized in a pixel grid G at a user-given resolution. Next,
for every pixel y ∈ G, its inverse projection P−1(y) is computed.
Finally, the pixel y is colored to depict the value of the inferred
label f (P−1(y)).

Figure 2.5 (right) shows the DBM for the classifier depicted in
the 2D scatterplot in the left image. Same-color regions in the
DBM show the decision zones of the classifiers, i.e., sets of points
in Rn for which f infers the same label. Neighbor pixels hav-
ing different colors in the DBM show the decision boundaries, i.e.,
points where f changes value. Simply put, a DBM is a graphi-
cal representation that shows how the machine learning model
separates data points into different classes based on the original
feature space. For instance, in the DBM image in Fig. 2.5, we see
that the orange decision zone is quite compact, except for a few
small ‘islands’. This confirms our earlier hypothesis that data val-

41

related work

ues close to the ones which were classified as class 1 (orange) will
yield the same class.

Figure 2.5: Left: Projection scatterplot colored by labels inferred by a clas-
sifier. Right: Decision map showing how the classifier oper-
ates on additional points. Same-color areas indicate the clas-
sifier’s decision zones. Neighbor pixels having different col-
ors show the classifier’s decision boundaries. Image adapted
from Rodrigues et al. (2018).

Several algorithms have been proposed to compute DBMs. The
original method (Rodrigues et al., 2018) uses t-SNE and LAMP
for P and iLAMP for P−1. The method was refined by removing
(from the computation of P−1) projected points in P(D) which
have large projection errors and thus create some of the afore-
mentioned spurious islands in the DBM, and also by encoding
the confidence of the classifier f in the brightness of the DBM
pixels (Rodrigues et al., 2019). A further refinement, called Su-
pervised Decision Boundary Map (SDBM, Oliveira. et al. (2022)),
leveraged the SSNP projection (see Sec. 2.3.5) to construct DBMs
which exhibit far smoother decision boundaries and are thus eas-
ier to visually explore. A recent study compared several such
DBM methods from the perspective of their ability to display the
behavior of a given classifier with as few errors as possible (Wang
et al., 2023).

Aside from the ability of DBMs to allow a good explanation
of classifiers, the provided information is still not used to im-
prove the classifier. The only exception to the latter that we know,
Rodrigues (2020), explored user interaction with DBMs in an ac-
tive learning looping to label samples. However, some limitations
exist to this work, as follows. Classification performance is com-
puted over validation and test sets – i.e., more supervised samples
are required. Also, this work does not consider combining man-

42

2.4 visualizing ml models

ual and automatic labeling. Our work in Chapter 6 shows how
DBMs can be leveraged to account for such limitations.

43

3F E AT U R E A N D C L A S S I F I E R L E A R N I N G

3.1 introduction

The success of deep neural networks (DNNs) is evident in many
applications. However, as already mentioned in Chapter 2, the
need for large annotated training sets for engineering DNNs is a
well-known problem (Lin et al., 2014; Sun et al., 2017). Common
approaches to alleviate the problem include data augmentation
(creating synthetic samples) and transfer learning common (us-
ing pre-trained weights).

To train DNNs, the set with supervised samples is usually
split to generate a validation set for hyperparameter search and
model evaluation. When the validation set is representative, it
provides a good insight of the model’s performance on unseen
test sets (Bergstra and Bengio, 2012). A critical problem appears
when the training set is too small (Sun et al., 2017) – e.g. only
dozens of supervised samples per class. Assuming a set with
many unsupervised samples is available, semi-supervised learn-
ing techniques can propagate pseudo labels from the supervised
samples to the unsupervised ones, considerably increasing the
number of labeled training samples. Yet, semi-supervised learn-
ing techniques still require hundreds to thousands of supervised
samples for training and validation (Lee, 2013; Miyato et al., 2018;
Jing and Tian, 2020; Pham et al., 2021).

In this chapter, we propose a meta-pseudo-labeling methodol-
ogy, called Deep Feature Annotation (DeepFA), to train DNNs from
very few supervised samples (e.g., 1% of a dataset) without a
validation set. In DeepFA, the teacher (a connectivity-based semi-
supervised classifier) exploits modifications of a given latent fea-
ture space of the student (a DNN) along with iterations of non-
linear 2D projection for pseudo-labeling. At each iteration, the
most confidently labeled samples are used to retrain the DNN,
modifying its latent feature space. The semi-supervised classifier
does not require parameter optimization, dismissing a validation
set. The number of labeled samples is next increased to improve
the DNN with pseudo-labeled training and validation sets1.

1 This chapter is a result of the following publications: "Semi-supervised deep
learning based on label propagation in a 2D embedded space" (Benato et al.,
2021a); "Iterative pseudo-labeling with deep feature annotation and confidence-

45

feature and classifier learning

For pseudo-labeling in 2D, we use a semi-supervised Optimum
Path Forest (OPFSemi) classifier (Amorim et al., 2016), which has
outperformed several techniques in different works (Benato et al.,
2018; Amorim et al., 2019; Benato et al., 2021c,a). In (Benato et al.,
2018), for instance, OPFSemi outperformed LapSVM (Sindhwani
et al., 2005), achieving the highest performance when label propa-
gation was done in the 2D embedded space created by t-SNE (van
der Maaten, 2014) from the intermediary feature space of an au-
toencoder, in contrast to (Amorim et al., 2019) where label propa-
gation was performed in the latent feature space.

Isolated aspects of DeepFA using OPFSemi on a 2D embed-
ded space have been evaluated in conference papers. In (Benato
et al., 2021a), a few iterations of the training loop with truly-and-
artificially-labeled samples was enough to improve the general-
ization performance of a supervised DNN. The study used only
1%–5% of supervised samples. We call this version as orig-DeepFA,
while we use DeepFA to refer to the entire methodology. OPF-
Semi’s confidence was also considered when selecting unsuper-
vised samples to train the supervised DNN (Benato et al., 2021b),
reducing label propagation errors. Let us call this last version
conf-DeepFA.

However, conf-DeepFA’s performance on test sets can oscillate
along with the pseudo-labeling iterations such that the model ob-
tained at the last iteration is not guaranteed to be the best model.
To circumvent this problem, we propose ext-DeepFA, which ex-
tends conf-DeepFA by computing a clustering-based metric from
the pseudo-labeled samples to select the optimal model for gen-
eralization among the ones generated along with the pseudo-
labeling iterations. While earlier orig-DeepFA and conf-DeepFA
variants have shown promising results, the methods may differ in
the deep architecture used for feature learning and classification,
the semi-supervised classifier for label propagation, the projec-
tion technique, and the criterion to select the model for gener-
alization. Thoroughly exploring this ‘design space’ is needed to
gain confidence in the results’ robustness and, where possible,
to find hyperparameters that lead to higher performance. The
present work is then a comprehensive study on DeepFA.

We next outline six question whose answers support the explo-
ration of DeepFA’s design space.

• (Q1) Can a deep neural network with pre-trained weights
improve performance by self-pseudo-labeling?

based sampling" (Benato et al., 2021b); and "Deep feature annotation by iterative
meta-pseudo-labeling on 2D projections" (Benato et al., 2023e).

46

3.2 iterative deep feature pseudolabeling on 2d projections

• (Q2) Can performance be improved by using other label
propagation methods than OPFSemi?

• (Q3) Can OPFSemi’s confidence improve DeepFA’s pseudo-
labeling?

• (Q4) Does DeepFA work for other deep architectures
than the currently used VGG-16 (Simonyan and Zisserman,
2014)?

• (Q5) Can we improve DeepFA by choosing other layers from
the network to extract a feature space?

• (Q6) How can we identify the optimal model among those
computed during the DeepFA iteration sequence?

Table 1 summarizes our contributions, described next, as fol-
lows. Section 3.2 details ext-DeepFA, our extension of the exist-
ing orig-DeepFA and conf-DeepFA methods, as well as the experi-
ments that we propose to address questions Q1..Q6. Section 3.3
details the experimental procedure. Section 3.4 shows the exper-
imental results. Section 3.5 summarizes our answers to Q1..Q6.
Section 3.6 discusses limitations of our work. Finally, Section 3.7
concludes the paper.

3.2 iterative deep feature pseudolabeling on 2d

projections

We next detail our extension ext-DeepFA of the original (orig-
DeepFA, Benato et al. (2021a)) and confidence-based (conf-DeepFA,
Benato et al. (2021b)) methods with the contributions listed in
Tab. 1. Figure 3.1 shows our extended method called ext-DeepFA.
We next discuss each method step and outline how the questions
Q1..Q6 relate to design decisions about these steps.

3.2.1 Deep feature learning

We start our pipeline by training a deep feature learning algo-
rithm by using the few available supervised samples (Fig 3.1,
step 1). Obviously, since supervised samples are few, one can-
not expect good results using a too deep network trained from
scratch. As such, an interesting question is whether a deep neu-
ral network with pre-trained weights can improve performance
by self-pseudo-labeling (Q1). A negative answer implies the need
of a separate machine learning method for pseudo labeling, such

47

feature and classifier learning

Figure 3.1: Proposed ext-DeepFA pipeline. Using a few supervised im-
ages, a deep feature learning algorithm is trained (1) and
features are extracted from unsupervised images from a se-
lected layer (2). The features are projected to a 2D space (3)
and a semi-supervised technique propagates labels from su-
pervised to unsupervised samples in that space (4) – the orig-
DeepFA pipeline (inner blue box).. The most informative sam-
ples are selected (5) and their labels are used to retrain the
network along with the supervised samples. Steps (1-5) are
iteratively repeated – the conf-DeepFA pipeline (green dashed
box). In each iteration, the labeled projected feature space
is evaluated (6) using a quality measure to select the best
model (7). The process outputs at end the optimal model
and labeled samples – the ext-DeepFA pipeline (outer maroon
dashed box).

48

3.2 iterative deep feature pseudolabeling on 2d projections

Table 1: Comparison of how earlier vs our work address questions
Q1..Q6 for DeepFA.

Question Earlier work Our contribution (ext-DeepFA)

Q1 used an autoencoder to generate the
initial feature space for interactive
data annotation (Benato et al., 2018,
2021c);

use a supervised, pretrained, deep ar-
chitecture with few available super-
vised samples (Benato et al., 2021a);

Q2 compared OPFSemi label prop-
agation only with Laplacian
SVM (Benato et al., 2018, 2021c). Sim-
ilar comparisons exist in (Amorim
et al., 2019) but were not applied to
DeepFA;

compare OPFSemi to two additional
semi-supervised learning methods
(L.Prop, L.Spread) in DeepFA;

Q3 OPFSemi’s confidence was used to
select samples for label propagation
(Benato et al., 2021c), but not in
DeepFA;

use OPFSemi’s confidence to se-
lect samples to propagate labels in
DeepFA (Benato et al., 2021b);

Q4 only VGG-16 was explored to learn
the feature space (Benato et al.,
2021a);

compare VGG-16 with an additional
architecture (MobileNet (Sandler
et al., 2018));

Q5 only the output of the last convolu-
tional layer was used to propagate la-
bels (Benato et al., 2021a)

use different layers of the deep net-
work for the same purpose;

Q6 such methods either used no itera-
tions (Benato et al., 2018, 2021c) or
an upfront fixed number of itera-
tions (Benato et al., 2021a);

propose a clustering metric to find
the iteration delivering the optimal
trained model.

as OPFSemi proposed by DeepFA and its extensions. A separate
question (Q4) related to this step is which are pre-trained mod-
els that one can use to obtain high performance in the context
of our application, besides the VGG-16 one proposed in earlier
work (Benato et al., 2021a).

3.2.2 Layer selection

The feature spaces learned in the different deep layers of the net-
work capture the structure of the data space the network is ex-
posed to. Hence, we can use such a feature space as input for
the label propagation (see Sec. 3.2.4 next). In earlier works, the
last convolutional layer was used for this purpose (Benato et al.,
2021a,b). An open question (Q5) is whether using deeper layers
would improve performance.

3.2.3 Dimensionality reduction

The feature space from the selected network layer (Sec. 3.2.2) can
be reduced before being used for label propagation. Earlier work

49

feature and classifier learning

has shown that using a 2D t-SNE projection for this often yields
labels of higher accuracy than when propagation is done directly
in the feature space (Benato et al., 2018). A potential question
is whether one could use for this step other existing projection
methods than t-SNE. We believe there is evidence to the contrary:
An extensive study (Espadoto et al., 2019a) showed that t-SNE
has one of the highest quality, measured in terms of combined
trustworthiness, neighborhood hit, continuity, Shepard correla-
tion, and normalized stress metrics (all common quality metrics
in projection literature, see also Sec. 2.3.4.1), among 45 studied
projection algorithms. As such, from an application-agnostic per-
spective, one can say that t-SNE preserves the high-dimensional
data structure better than its competitors, so it is the candidate of
choice to be used.

Separately, the chosen label estimation algorithm (see
Sec. 3.2.4) uses Euclidean distances in the 2D projection space. As
such, having a compact projection where similar data points are
close to each other (i.e., with high neighborhood preservation),
like t-SNE, favors our label propagation as opposed to projec-
tions which spread the data points more in 2D, e.g., MDS vari-
ants. However, to fully prove our above point, i.e., the suitability
of 2D t-SNE projections, more studies are needed, e.g., replacing
t-SNE in our pipeline by other top-ranking projections in terms
of quality from (Espadoto et al., 2019a) such as UMAP, IDMAP,
or PBC.

We also argue that using t-SNE to project features in spaces
higher than 2D, e.g., using a 3D projection, is overall not an at-
tractive option since (a) 3D projections score only slightly quality
metrics than their 2D counterparts (Tian et al., 2021); (b) OPF-
Semi’s use of Euclidean distances can be affected by the higher
space dimensionality (and by higher Euclidean distance values as
well); (c) users experience significantly higher difficulty when vi-
sualizing 3D as opposed to 2D projections, which only gets worse
if one wants to use the projection to also interact with the data,
e.g., for manually fine-tuning the labeling.

3.2.4 Label estimation

The few available labels are propagated in the 2D projection
to create a rich set of labeled points which is next used to re-
fine the network training. As stated earlier, DeepFA uses OPF-
Semi for this step. OPFSemi first was proposed in (Amorim et al.,
2016) and we use the same algorithm for propagating pseudo la-
bels from the supervised samples to the unsupervised ones in a

50

3.2 iterative deep feature pseudolabeling on 2d projections

semi-supervised way. However, OPFSemi can make mistakes and
its effectiveness depends on filtering out the most likely misla-
beled samples by thresholding its confidence value (Benato et al.,
2021c). An open question here (Q2) is whether performance can
be improved by using counterparts pseudo-labeling techniques
rather than OPFSemi.

3.2.5 Sample selection

Earlier work (Benato et al., 2018) used all pseudo labels con-
structed by OPFSemi which, as noted earlier, can lead to training
based on wrongly propagated labels. Separately, the confidence
of OPFSemi was used to select a subset of most confident pseu-
dolabels to use next (Benato et al., 2021c). However, this strategy
has not been used in DeepFA. This raises the question (Q3) on how
can confidence-based pseudo-label selection improve the DeepFA
end-to-end pipeline.

3.2.6 Model and iteration selection

Earlier methods either applied the DeepFA idea for a single iter-
ation (Benato et al., 2018, 2021c) or used a predefined number of
iterations (Benato et al., 2021a,b). Both approaches are suboptimal
if one is after finding the best way to train a deep model. Rather,
we need to (a) execute the DeepFA iterations and (b) select, from
the trained models computed after each iteration, the one with
the highest performance.

For our scenario of few labeled samples, an inherent problem
is how to gauge performance of such models. One approach is to
use as a proxy the quality of the pseudo-labeled samples. Impor-
tantly, we cannot use true label information of the unsupervised
samples for this purpose as this would defeat the very purpose
of training with a very small supervised set (tens of samples in
some cases). Rather, we need a quality metric that considers not
only labels but also the separation (distance) between samples in
the 2D projection space. A joint question (Q6) is which metric to
use for this purpose and how to use it to determine the optimal
model over all executed iterations.

51

feature and classifier learning

3.3 experimental evaluation

We next outline how we organized our study of the questions
Q1..Q6 in Sec. 3.1 in terms of used datasets (Sec. 3.3.1, experi-
mental setup (Sec. 3.3.2), and implementation (Sec. 3.3.3).

3.3.1 Datasets

We choose eight diverse datasets to perform our investigations,
as follows.

MNIST: We first chose the public MNIST (LeCun and Cortes,
2010) dataset, to explore a known and easy classification task.
MNIST has 0 to 9 handwritten digits grayscale images (28 × 28
pixels). We use 5000 random samples from the original training
dataset.

Parasites: The next five datasets come from a Parasite medical
image collection (Suzuki et al., 2013). This collection has three
main dataset types: (i) Helminth larvae, (ii) Helminth eggs, and (iii)
Protozoan cysts. The datasets contain color microscopy images
(200 × 200 pixels) of the most common species of human intesti-
nal parasites in Brazil, responsible for public health problems
in most tropical countries (Suzuki et al., 2013). The datasets are
challenging since they are unbalanced and contain a majority
impurity class, with samples very similar to parasites, making
classification hard (see Fig. 3.2). Table 2 shows the number, type,
and sample count per class for the datasets (i-iii) listed above. To
these datasets, we add the (iv) Helminth eggs and (v) Protozoan
cysts without the impurity class datasets, yielding a total of 5

datasets.

Figure 3.2: Examples of H.Eggs species (left) and similar images of im-
purities (right).

Coconut: We use a random subset of the Coconut trees
dataset (Vargas-Muñoz et al., 2019) with 7, 827 regions (90 × 90

52

3.3 experimental evaluation

pixels) of aerial colored images from the Kingdom of Tonga,
acquired by satellite imagery in October 2017, labeled by Hu-
manitarian OpenStreetMap. The dataset has two classes: images
with (6, 139) or without coconut trees (1, 688).

COVID: A team of researchers from the Universities of Qatar
and Dhaka have created a database (Chowdhury et al., 2020; Rah-
man et al., 2021) of chest X-ray images (299 × 299 pixels). We
obtained the second update of the dataset with 21165 images
split in four classes: COVID-19 positive (3616), lung opacity (non-
COVID lung infections, 6012), viral pneumonia (1345), and nor-
mal (10192) cases. We use a randomly subset of this dataset with
10583 images.

Table 2: MNIST, Coconut, COVID19 (left) and three Parasites datasets
(right). For each dataset, we list its number of classes, class
names, and sample count per class.

Dataset Classes # samples

MNIST

(10 classes)

zero 479

one 563

two 488

tree 493

four 535

five 434

six 501

seven 550

eight 462

nine 495

total 5,000

Coconut

(2 classes)

coconut tree 6,139

none 1,688

total 7,827

COVID19

(4 classes)

COVID19 1,808

lung opacity 3,002

pneumonia 672

normal 5,096

total 10,583

Dataset Classes # samples

(i) H. larvae

(2 classes)

S.stercoralis 446

impurities 3068

total 3,514

(ii) H. eggs

(9 classes)

H.nana 348

H.diminuta 80

Ancilostomideo 148

E.vermicularis 122

A.lumbricoides 337

T.trichiura 375

S.mansoni 122

Taenia 236

impurities 3,444

total 5,112

(iii) P. cysts

(7 classes)

E.coli 719

E.histolytica 78

E.nana 724

Giardia 641

I.butschlii 1,501

B.hominis 189

impurities 5,716

total 9,568

3.3.2 Experimental setup

To reproduce the scenario of few supervised samples, we define
a supervised training set S with only 1% of supervised samples

53

feature and classifier learning

from a given dataset D. The unsupervised U and test T sets have
69% and 30% of samples, respectively (D = S∪U ∪ T). The small
S simulates the real-world scenario when one has a large D but
manual effort is needed to label samples to create S. We randomly
divide each dataset D into S, U, and T in a stratified manner and
also generate three distinct splits for each experiment for statisti-
cal analysis. Table 3 shows the number of supervised samples in
S for each of the eight datasets in Sec. 3.3.1.

Table 3: Number of supervised (S) and unsupervised (U) samples for
each dataset.

MNIST
H.eggs

(w/o imp)

P. cysts

(w/o imp)
H. larvae H. eggs P. cysts Coconut COVID19

S 50 17 38 35 51 95 78 105

U 3450 1220 2658 2424 3527 6602 5400 7302

We evaluate our method by the probability of the chosen deep
architecture’s last fully-connected layer, i.e., just before the classi-
fication layer. From this, we compute accuracy and κ, which are
described in Chapter 2. We evaluate label propagation accuracy
by computing the number of correctly assigned labels in U.

3.3.3 Implementation details

As stated, we want to use DeepFA without a validation set whose
creation would require extra user supervision (data annotation
effort). For this, we fix all pipeline’s parameters without any opti-
mization step. For t-SNE, we use the default parameters in scikit-
learn. Note that OPFSemi has no parameters.

All our neural networks were implemented in Python using
Keras (Chollet et al., 2015), replacing the original fully-connected
layers by two fully-connected layers with 4096 neurons and recti-
fied linear activation followed by a decision layer with c neurons,
where c is the number of classes of each dataset, and softmax
activation. Models are trained by error backpropagation for a
categorical cross-entropy function, using stochastic gradient de-
scent with a linearly decaying learning rate initialized at 0.1 and
momentum of 0.9, respectively. We loaded ImageNet pretrained
weights and used a linear decay of 1 × 10−6 over 15 epochs. The
pretrained weights for convolutional layers were fixed for the fea-
ture extraction experiments and unfrozen for fine-tuning, respec-
tively.

54

3.4 experimental results

3.4 experimental results

We next address questions Q1..Q6 listed in Sec. 3.1 by presenting
experiments, results, and discussion for each of them.

3.4.1 Q1: Adding iterations: self pseudo labeling

We evaluate VGG-16 pre-trained on ImageNet, with and with-
out fine-tuning its convolutional layers (Sec. 3.3.3). We also evalu-
ate VGG-16 performing self pseudo-labeling. We did four exper-
iments (below, ft stands for fine-tuning and fe stands for feature
extraction, respectively):

• VGG-16 f t: VGG-16 with fine-tuning, trained on S and tested
on T;

• self-VGG-16 f t: VGG-16 f t trained on S ∪ U, being the sam-
ples in U pseudo-labeled by VGG-16 f t, and tested on T.
The self training loop uses five iterations;

• VGG-16 f e: VGG-16 with only the last four convolutional lay-
ers used as unfrozen for feature extraction, trained on S and
tested on T;

• self-VGG-16 f e: VGG-16 f e trained on S ∪ U, being the sam-
ples in U pseudo-labeled by VGG-16 f e, and tested on T.
The self training loop uses five iterations.

3.4.1.1 Results and discussion

Table 4 shows the mean values of accuracy in label propagation
and classification, κ, and their standard deviations over three
splits, using each VGG-16-based model. We can see that fea-
ture extraction and fine-tuning do not show relevant gains in
self pseudo-labeling along with the iterations. The results of the
models based on feature extraction only are usually better than
those of the fine-tuned models. We notice considerable gains in
accuracy and κ when using VGG-16 f e and self-VGG-16 f e, indicat-
ing that the work in Benato et al. (2021a) could have presented
better results with feature extraction than using fine-tuning. As
self-VGG-16 f e achieved the best results, we use this pipeline in all
subsequent experiments.

55

feature and classifier learning

Table 4: (Q1) Results for four VGG-16 models considering feature extrac-
tion and fine-tuning. Best values per metric and dataset in bold.

VGG-16 variants
dataset metric VGG-16 f t self-VGG-16 f t VGG-16 f e self-VGG-16 f e

MNIST
prop. acc - 0.447238 ± 0.146 - 0.586000 ± 0.007
acc 0.629555 ± 0.037 0.441334 ± 0.149 0.614444 ± 0.015 0.592222 ± 0.020

kappa 0.588195 ± 0.041 0.378648 ± 0.166 0.571176 ± 0.017 0.546162 ± 0.023

H.eggs
(w/o imp)

prop. acc - 0.758825 ± 0.088 - 0.744004 ± 0.114

acc 0.790961 ± 0.050 0.779033 ± 0.095 0.738858 ± 0.054 0.774011 ± 0.131

kappa 0.752807 ± 0.060 0.735591 ± 0.113 0.693278 ± 0.060 0.734030 ± 0.153

P.cysts
(w/o imp)

prop. acc - 0.399481 ± 0.010 - 0.648739 ± 0.111
acc 0.561130 ± 0.093 0.400519 ± 0.011 0.736159 ± 0.027 0.650230 ± 0.101

kappa 0.324051 ± 0.175 0.020734 ± 0.021 0.626632 ± 0.039 0.483706 ± 0.170

H.larvae
prop. acc - 0.897384 ± 0.031 - 0.912837 ± 0.038
acc 0.874566 ± 0.001 0.886572 ± 0.017 0.893523 ± 0.017 0.908689 ± 0.040
kappa 0.021406 ± 0.019 0.174158 ± 0.208 0.256836 ± 0.203 0.385892 ± 0.402

H.eggs
prop. acc - 0.773803 ± 0.034 - 0.847308 ± 0.018
acc 0.858323 ± 0.013 0.775750 ± 0.034 0.848327 ± 0.017 0.850934 ± 0.014
kappa 0.734333 ± 0.019 0.519971 ± 0.114 0.713649 ± 0.030 0.714227 ± 0.038

P.cysts
prop. acc - 0.730327 ± 0.022 - 0.817978 ± 0.004
acc 0.758853 ± 0.077 0.734239 ± 0.028 0.818182 ± 0.004 0.824800 ± 0.011
kappa 0.542967 ± 0.218 0.492070 ± 0.107 0.697633 ± 0.009 0.705397 ± 0.022

Coconut
prop. acc - 0.826153 ± 0.026 - 0.817147 ± 0.016

acc 0.821200 ± 0.027 0.828721 ± 0.026 0.835249 ± 0.027 0.813822 ± 0.031

kappa 0.304424 ± 0.182 0.324694 ± 0.153 0.385120 ± 0.147 0.228646 ± 0.224

COVID19

prop. acc - 0.659174 ± 0.022 - 0.660816 ± 0.016
acc 0.627612 ± 0.034 0.677008 ± 0.039 0.589186 ± 0.094 0.675066 ± 0.028

kappa 0.389689 ± 0.074 0.480240 ± 0.068 0.274597 ± 0.239 0.476834 ± 0.049

3.4.2 Q2: Pseudolabeling comparison: OPFSemi vs others

As related work (Benato et al., 2021a,b) only tested orig-DeepFA
looping with OPFSemi, we evaluate other semi-supervised learn-
ing methods for label propagation over the learned (and next re-
duced) feature space over a few iterations. Specifically, we use the
LabelPropagation (L.Prop) and LabelSpreading (L.Spread) meth-
ods, available in scikit-learn, with k-nearest neighbors (knn) and
radial basis functions (rbf) kernels. As L.Prop and L.Spread have
parameters and we want to avoid parameter searching (due the
few supervised samples available), we set parameters to their de-
fault values in scikit-learn. The experiments done are listed below:

• OPFSemi: VGG-16 is trained on S. Deep features for S ∪ U
from the last convolutional layer are projected in 2D with
t-SNE and used for OPFSemi to propagate labels from S to
all samples in U. VGG-16 is then retrained with S ∪ U and
tested on T (at the last iteration of orig-DeepFA looping);

• L.Propknn: As above but replaces OPFSemi by L.prop (knn
kernel);

56

3.4 experimental results

• L.Proprb f : As above but replaces OPFSemi by L.prop (rbf ker-
nel);

• L.Spreadknn: As above but replaces OPFSemi by L.spread
(knn kernel);

• L.Spreadrb f : As above but replaces OPFSemi by L.spread (rbf
kernel).

3.4.2.1 Results

Table 5 and Figure 3.7 show the results of the experiments that
compare OPFSemi against L.Proprb f , L.Propknn, L.Spreadrb f , and
L.Spreadknn for label propagation in the orig-DeepFA looping. We
show mean values of label propagation accuracy, classification ac-
curacy, κ, and their standard deviation over three different splits.
From the compared methods, OPFSemi yielded the best perfor-
mance for all tested datasets. This is an important result since
we want to reproduce a real scenario with a few supervised sam-
ples (Sec. 3.3.2) and OPFSemi shows that it is possible to handle
diverse datasets with no parameter optimization. Interestingly,
L.Spreadrb f showed the highest mean label propagation accuracy
in the Coconut dataset, but having the highest standard devia-
tion. While L.Prop shows very low results for its default param-
eters, L.Spreadrb f and L.Spreadknn show better results depending
of the dataset. For datasets with significant confusion between
distinct classes in the 2D projection (P.cysts, Coconut, COVID19),
L.Spreadrb f surpasses L.Spreadknn.

3.4.2.2 Discussion

Using different pseudo-labeling methods within the orig-DeepFA
looping means that the label propagation and the learned feature
space can be mutually affected. To evaluate how, Fig. 3.3 shows
the resulting feature space and label estimation of the two best
methods found in Sec. 3.4.2, i.e., OPFSemi and L.Spreadrb f . In this
figure, we use datasets with similar classification values (Coconut
tree, κ = 0.53) and distinct classification values (H.larvae, κ ∈
{0.80, 0.06}).

For the Coconut dataset, we see that L.Spreadrb f was more con-
servative in propagating labels (green points concentrated in the
bottom part of the projection), while OPFSemi was more sensi-
tive to outliers (green points in other projection regions). This is
confirmed by the f1-score metric for classes 1 (red) and 2 (green),
where OPFSemi got higher f1 values for class 2 (0.64) compared

57

feature and classifier learning

dataset method 2D projections metric class 1 class 2 total
C

oc
on

ut

LSpreadrb f

precision 0.87 0.79

recall 0.96 0.49

f1-score 0.92 0.60

accuracy 0.86

kappa 0.53

OPFSemi

precision 0.91 0.60

recall 0.88 0.67

f1-score 0.89 0.64

accuracy 0.83

kappa 0.53

H
.la

rv
ae

LSpreadrb f

precision 0.15 0.99

recall 0.99 0.21

f1-score 0.27 0.35

accuracy 0.31

kappa 0.06

OPFSemi

precision 0.82 0.97

recall 0.83 0.97

f1-score 0.82 0.97

accuracy 0.95

kappa 0.80

Figure 3.3: (Q2) Comparison of DeepFA using LSpreadrb f and OPFSemi
pseudo labeling for Coconut and H.Larvae datasets, with 1%
supervised samples and last iteration out of five. 2D feature-
space projections of training samples (S ∪ U) in columns per
dataset (from left to right): supervised samples colored by
true labels (red=1, green=2), unsupervised ones are black;
samples colored by assigned pseudo labels; and samples col-
ored by their true labels. Classification results (per class and
total) are shown on the right.

58

3.4 experimental results

Table 5: (Q2) Results from the last iteration for experiments using five
label propagation methods over five iterations. Best values per
dataset in bold.

semi-supervised learning methods
dataset metric L.Proprb f L.Propknn L.Spreadrb f L.Spreadknn OPFSemi

MNIST
prop. acc 0.095714 ± 0.000 0.095714 ± 0.000 0.416857 ± 0.005 0.460953 ± 0.016 0.790000 ± 0.047
acc 0.096000 ± 0.000 0.096000 ± 0.000 0.402889 ± 0.013 0.451555 ± 0.015 0.797778 ± 0.049
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.337752 ± 0.015 0.391369 ± 0.017 0.775103 ± 0.054

H.eggs
(w/o imp)

prop. acc 0.146591 ± 0.088 0.197251 ± 0.000 0.872811 ± 0.036 0.602263 ± 0.108 0.983293 ± 0.004
acc 0.145637 ± 0.087 0.195857 ± 0.000 0.898933 ± 0.028 0.622097 ± 0.111 0.970496 ± 0.003
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.879848 ± 0.033 0.547943 ± 0.132 0.965085 ± 0.003

P.cysts
(w/o imp)

prop. acc 0.186573 ± 0.000 0.186573 ± 0.000 0.264960 ± 0.008 0.472676 ± 0.051 0.800569 ± 0.035
acc 0.186851 ± 0.000 0.186851 ± 0.000 0.256055 ± 0.023 0.472030 ± 0.039 0.819493 ± 0.041
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.078200 ± 0.015 0.319221 ± 0.041 0.756949 ± 0.054

H.larvae
prop. acc 0.127288 ± 0.001 0.126881 ± 0.000 0.306222 ± 0.044 0.609597 ± 0.047 0.954182 ± 0.008
acc 0.127014 ± 0.000 0.127014 ± 0.000 0.272986 ± 0.041 0.634123 ± 0.062 0.955450 ± 0.002
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.032267 ± 0.027 0.187448 ± 0.043 0.789743 ± 0.010

H.eggs
prop. acc 0.069499 ± 0.002 0.052357 ± 0.030 0.482299 ± 0.049 0.621297 ± 0.062 0.936743 ± 0.011
acc 0.067797 ± 0.000 0.050413 ± 0.030 0.454803 ± 0.051 0.636679 ± 0.084 0.942634 ± 0.016
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.303932 ± 0.073 0.468250 ± 0.094 0.899307 ± 0.027

P.cysts
prop. acc 0.079389 ± 0.007 0.075307 ± 0.000 0.464935 ± 0.059 0.421283 ± 0.034 0.732716 ± 0.056
acc 0.075235 ± 0.000 0.075235 ± 0.000 0.471381 ± 0.052 0.425404 ± 0.052 0.740973 ± 0.056
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.302018 ± 0.061 0.264922 ± 0.050 0.580626 ± 0.092

Coconut
prop. acc 0.785262 ± 0.001 0.788061 ± 0.006 0.821468 ± 0.011 0.783741 ± 0.022 0.815930 ± 0.036

acc 0.784163 ± 0.000 0.790691 ± 0.011 0.835107 ± 0.016 0.804030 ± 0.026 0.839364 ± 0.017
kappa 0.000000 ± 0.000 0.068275 ± 0.118 0.402744 ± 0.096 0.275569 ± 0.228 0.489274 ± 0.092

COVID19

prop. acc 0.170919 ± 0.000 0.171729 ± 0.001 0.540390 ± 0.041 0.512263 ± 0.066 0.589487 ± 0.039
acc 0.170709 ± 0.000 0.170709 ± 0.000 0.569869 ± 0.051 0.532283 ± 0.051 0.614173 ± 0.040
kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.363335 ± 0.057 0.328030 ± 0.054 0.407068 ± 0.066

to L.Spreadrb f (0.60). Also, the two methods influenced the 2D
projection space, which is more circular for L.Spreadrb f and more
more elongated for OPFSemi. Still, neither method could separate
the feature space into distinct per-class clusters.

For H.larvae, OPFSemi was able to propagate labels only for
regions with supervised samples of class 1 (red) and also pro-
vide a feature space (2D projection) in which class 1 is separated
from other samples in the projection. The f1-score confirmed that
as both classes have f1 values up to 0.8. In contrast, L.Spreadrb f
was more conservative in propagating labels for class 2 (green)
vs class 1 (red) so that only the closest samples of class 2 were
labeled with that class. The f1-scores for both classes were lower
than 0.35, and the learned feature space presented more (and
more spread) groups. At a higher level, Fig. 3.3 illustrates how
distinct ways of propagating labels intervene in the learned fea-
ture space produced by the proposed orig-DeepFA looping.

3.4.3 Q3: Sample selection: adding OPFSemi’s confidence

To analyze the impact of OPFSemi’s confidence in the orig-DeepFA
looping, we compared VGG-16 using different settings of OPF-
Semi’s label propagation, with and without confidence, after five
iterations, by the following experiments:

59

feature and classifier learning

• orig-DeepFA: VGG-16 is trained on S. Deep features for S ∪
U from the last convolutional layer are projected in 2D with
t-SNE and used by OPFSemi to propagate labels from S to
all samples in U. VGG-16 is retrained from S∪U and tested
on T;

• conf-DeepFAτ=x: As above but selecting pseudo-labeled sam-
ples Ux ⊂ U with confidence τ ≥ x to retrain VGG-16 from
S ∪ Ux, with x ∈ {0.7, 0.8, 0.9}.

• conf-DeepFAτ=α: As above but starting with α = 0.8 and
increasing it by 0.04 at each iteration until a final value α =
0.96.

3.4.3.1 Results

Table 6 shows the mean label propagation accuracy, classifica-
tion accuracy, κ, and their standard deviation over three splits
of our experiments. For all datasets, we see that selecting the
most confident samples by OPFSemi during the orig-DeepFA loop-
ing improves the results. For H.eggs with and without impurities,
the best results were obtained for τ = 0.7. For MNIST, H.larvae,
P.cysts and COVID19, the best results occurred for τ = 0.8. For
P.cysts without impurities, τ = 0.9 and τ = α led to the best
(similar) results. Finally, τ = 0.9 was the best choice for Coconut.

We conclude that confidence-based sampling shows clear
added value in nearly all situations, as it increased κ up to 0.6 for
all datasets (except COVID19). Setting τ is a dataset-dependent
task. The adaptive (τ = α) confidence strategy does not seem to
improve results on the test set compared to orig-DeepFA with no
confidence sampling. One explanation can be our use of more
samples in early iterations (τ = 0.8) than in the later ones
(τ = 0.96). Testing whether the opposite strategy improves re-
sults is left for future study.

3.4.3.2 Discussion

Confidence-based sampling in the orig-DeepFA looping: Fig-
ure 3.4 shows the average κ and propagation accuracy for DeepFA
looping with full pseudolabeling of all samples (orig-DeepFA),
our proposed conf-DeepFA using OPFSemi’s confidence sampling
for pseudolabeling with different ways to select the confidence
threshold τ, and the best result for the VGG-16 experiments (self-
VGG f e, see Sec. 3.4.1), for all six studied datasets. For datasets

60

3.4 experimental results

Table 6: (Q3) Results from the last iteration for proposed experi-
ments with full label propagation (orig-DeepFA), and confidence-
based label propagation (conf-DeepFA) with confidence τ ∈
{0.7, 0.8, 0.9} and adaptive confidence (alpha ∈ [0.80, 0.96] over
5 iterations). Best values per dataset in bold.

DeepFA variants
dataset metric orig-DeepFA conf-DeepFAτ=0.7 conf-DeepFA τ=0.8 conf-DeepFA τ=0.9 conf-DeepFA τ=α

MNIST
prop. acc 0.790000 ± 0.047 0.782286 ± 0.029 0.821714 ± 0.018 0.750000 ± 0.028 0.795429 ± 0.007

acc 0.797778 ± 0.049 0.788000 ± 0.030 0.822666 ± 0.022 0.740222 ± 0.032 0.651778 ± 0.062

kappa 0.775103 ± 0.054 0.764348 ± 0.034 0.802863 ± 0.024 0.710961 ± 0.036 0.612766 ± 0.069

H.eggs
(w/o imp)

prop. acc 0.983293 ± 0.004 0.983832 ± 0.002 0.974401 ± 0.020 0.981945 ± 0.003 0.983832 ± 0.004

acc 0.790961 ± 0.050 0.973007 ± 0.006 0.971123 ± 0.013 0.938481 ± 0.056 0.806654 ± 0.126

kappa 0.752807 ± 0.060 0.968042 ± 0.007 0.965848 ± 0.015 0.927708 ± 0.066 0.771216 ± 0.148

P.cysts
(w/o imp)

prop. acc 0.800569 ± 0.035 0.805143 ± 0.049 0.793274 ± 0.069 0.824060 ± 0.019 0.828141 ± 0.012
acc 0.819493 ± 0.041 0.826413 ± 0.039 0.814590 ± 0.060 0.842561 ± 0.004 0.824394 ± 0.033

kappa 0.756949 ± 0.054 0.764035 ± 0.052 0.747127 ± 0.086 0.785441 ± 0.006 0.762919 ± 0.041

H.larvae
prop. acc 0.954182 ± 0.008 0.964213 ± 0.017 0.964349 ± 0.012 0.941846 ± 0.039 0.951471 ± 0.014

acc 0.955450 ± 0.002 0.959558 ± 0.015 0.965561 ± 0.004 0.958926 ± 0.014 0.943128 ± 0.010

kappa 0.789743 ± 0.010 0.800052 ± 0.099 0.837948 ± 0.029 0.804689 ± 0.082 0.705475 ± 0.069

H.eggs
prop. acc 0.936743 ± 0.011 0.936091 ± 0.005 0.937209 ± 0.008 0.931806 ± 0.007 0.930967 ± 0.006

acc 0.942634 ± 0.016 0.943938 ± 0.003 0.942634 ± 0.009 0.908518 ± 0.022 0.853107 ± 0.025

kappa 0.899307 ± 0.027 0.901604 ± 0.006 0.898922 ± 0.015 0.831488 ± 0.043 0.719695 ± 0.054

P.cysts
prop. acc 0.732716 ± 0.056 0.769748 ± 0.026 0.780300 ± 0.018 0.748843 ± 0.048 0.744811 ± 0.068

acc 0.740973 ± 0.056 0.792755 ± 0.027 0.816905 ± 0.027 0.818066 ± 0.022 0.731104 ± 0.082

kappa 0.580626 ± 0.092 0.652254 ± 0.051 0.699603 ± 0.054 0.689325 ± 0.039 0.450283 ± 0.243

Coconut
prop. acc 0.815930 ± 0.036 0.834003 ± 0.038 0.837349 ± 0.022 0.856760 ± 0.035 0.791165 ± 0.034

acc 0.839364 ± 0.017 0.853696 ± 0.019 0.876827 ± 0.012 0.880232 ± 0.006 0.820633 ± 0.012

kappa 0.489274 ± 0.092 0.481834 ± 0.075 0.603094 ± 0.076 0.621104 ± 0.026 0.346671 ± 0.058

COVID19

prop. acc 0.589487 ± 0.039 0.579767 ± 0.048 0.613249 ± 0.018 0.586112 ± 0.049 0.624770 ± 0.114
acc 0.614173 ± 0.040 0.609869 ± 0.059 0.662257 ± 0.002 0.647454 ± 0.020 0.647874 ± 0.090

kappa 0.407068 ± 0.066 0.416806 ± 0.076 0.478667 ± 0.013 0.420928 ± 0.026 0.433786 ± 0.087

yielding higher κ values, we see that orig-DeepFA obtained simi-
lar results to our proposed conf-DeepFA method. Yet, we see κ and
propagation accuracy gains of almost 5% for the most challeng-
ing datasets. For P.cysts with impurities, κ gains actually over 10%
and propagation accuracy gains over 17% – for which orig-DeepFA
obtained worse results than VGG-16. In short, combining DeepFA
with OPFSemi’s confidence sampling (conf-DeepFA in Fig. 3.4) got
the best results for most tested datasets.
Confidence-based sampling in orig-DeepFA along iterations:
Figure 3.5 shows κ and propagation accuracy for one split of
MNIST along five iterations of our experiments. We see that all
compared approaches yielded an increase from the first to the sec-
ond iteration, except self-VGG-16 f e. Also, we see that both κ and
propagation accuracy slightly decrease after the third iteration.
This may suggest that the proposed method saturates, mainly
by the higher decrease in κ despite of propagation accuracy. The
learned pseudolabels and the original images can be used as in-
put for a better (known) deep architecture. Figure 3.6 shows the
plot for train and validation loss and accuracy considering 20%
(from S) as validation set during one split of MNIST training. The
initial learning curve and the learning curves for each iteration
are also shown. The learning curves show that the labeled sam-

61

feature and classifier learning

0.4

0.5

0.6

0.7

0.8

0.9

1

κ

Q3: Quality measures per dataset

H.eg
gs(w

/o)

H.eg
gs

H.la
rvae

MNIST

Prot.c
.(w

/o)

Prot.c
.

Coco
nut

COVID

0.6

0.7

0.8

0.9

1

pr
op

ag
at

io
n

ac
cu

ra
cy

orig-DeepFA
conf-DeepFAτ=0.7

conf-DeepFAτ=0.8

conf-DeepFAτ=0.9

conf-DeepFAτ=α

self-VGG f e (best)

Figure 3.4: (Q3) Results of κ (top) and propagation accuracy (bottom) for
the studied datasets, considering self-VGG-16 f e (best result),
orig-DeepFA, and conf-DeepFAτ experiments. The datasets are
ordered by higher κ values in x axis (from left to right).

ples can improve the network convergence along iterations. As
future work, a different deep network can be tested at the final
stage. Also, an unsupervised quality measure can be proposed
to define the best feature space found at certain iterations and,
hence, the best iteration of the method.
Choosing OPFSemi’s confidence threshold: Adaptively select-
ing the confidence threshold (conf-DeepFAτ=α) looks promising
only for one of the tested datasets. It shows a higher decreas-
ing in κ when compared with the experiments without changing
the confidence threshold τ along the iterations. As Sec. 3.4.2 out-
lined, choosing OPFSemi’s confidence value may depend on the
dataset, its difficulty, number of samples, number of classes, and
class imbalance. Figure 3.4 also shows this: It is not possible to
define a single threshold τ for all chosen datasets. While this fact
has been already noted in (Benato et al., 2021c), it was not stud-
ied within a looping of data annotation as we did here. Rather,
in (Benato et al., 2021c), user interaction was employed to define
the best confidence value based on the 2D projection guided by
the data distribution and OPFSemi’s confidence values (mapped
to colors). We next intend to follow the same strategy to find the
best confidence value for conf-DeepFA looping.

62

3.4 experimental results

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

κ

Q3: Quality measures for 5 iterations on MNIST dataset

1 2 3 4 5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

pr
op

ag
at

io
n

ac
cu

ra
cy

orig-DeepFA

conf-DeepFAτ=0.7

conf-DeepFAτ=0.8

conf-DeepFAτ:0.9

conf-DeepFAτ=α

self-VGG f e (best)

Figure 3.5: (Q3) Results of κ (top) and propagation accuracies (bottom)
for the MNIST dataset in one split over 5 iterations, consider-
ing self-VGG-16 f e (best result), orig-DeepFA, and conf-DeepFA
experiments.

Figure 3.6: Q3) Plots of loss and accuracy for one split of MNIST. The
(a) initial learning curves and per-iteration curves (b-f) are
shown.

3.4.4 Q4: Choosing the deep architecture

As COVID19 dataset’s results showed the lower κ values in the
realized experiments (Sec. 3.4.1, 3.4.2, and 3.4.3), we also aim to

63

feature and classifier learning

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

κ

Q2: Quality measures per dataset

H.eg
gs(w

/o)

H.eg
gs

H.la
rvae

MNIST

Prot.c
.(w

/o)

Prot.c
.

Coco
nut

COVID

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
op

ag
at

io
n

ac
cu

ra
cy LProprb f

LPropknn

LSpreadrb f

LSpreadknn

OPFSemi

Figure 3.7: (Q2) Results of κ (top) and propagation accuracies (bottom)
for the studied datasets with orig-DeepFA using L.Proprb f ,
L.Propknn, L.Spreadrb f , L.Spreadknn, and OPFSemi. Datasets are
ordered by higher κ values on the x axis.

investigate the impact of VGG-16 architecture as feature learn-
ing strategy using labeled samples in the DeepFA looping. For
this, we replace VGG-16 (Simonyan and Zisserman, 2014) by Mo-
bileNetV2 (Sandler et al., 2018) (which has a reduced training
time and good performance) and use ImageNet’s pre-trained
weights. We compared the two architectures by the following
experiments, each of them executed on both architectures A ∈
{VGG-16, MobileNetV2}:

• orig-DeepFA: The architecture A is trained on S. Deep fea-
tures for S ∪ U from the last convolutional layer are pro-
jected in 2D with t-SNE and used by OPFSemi to pseudo
label from S to all U samples. VGG-16 is retrained on
these pseudo labels and tested on T (this is one iteration
of DeepFA looping out of five);

• conf-DeepFAτ=0.8: As above, but OPFSemi pseudo labels
from S to Uτ , for samples with confidence above τ = 0.8.

3.4.4.1 Results

Table 7 shows the means of label propagation accuracy, classifica-
tion accuracy, κ, and their standard deviation over three splits af-

64

3.4 experimental results

ter five iterations. For COVID19, the pattern so far observed using
VGG-16 was not reproduced by MobileNetV2 – i.e., a higher label
propagation accuracy does not lead to the highest accuracy and
κ values on the test set. Also, conf-DeepFA with τ = 0.8 could not
outperform orig-DeepFA using MobileNetV2. Different values of τ
can be tested to validate that pattern. As such, for this dataset, we
may conclude that MobileNetV2 was not able to learn a feature
space in which OPFSemi propagates better labels than VGG-16.

Table 7: (Q4) Results from the last iteration for proposed experiments
using VGG-16 and MobileNetV2 architectures with five learning
iterations. Best values per dataset in bold.

distinct architectures

dataset metric VGG-16 MobileNetV2
orig-DeepFA conf-DeepFAτ=0.8 orig-DeepFA conf-DeepFAτ=0.8

COVID19

prop. acc 0.589487 ± 0.039 0.613249 ± 0.048 0.643580 ± 0.0385 0.669839 ± 0.0100
acc 0.614173 ± 0.040 0.662257 ± 0.002 0.541732 ± 0.0528 0.539685 ± 0.0096

kappa 0.407068 ± 0.066 0.478667 ± 0.013 0.212528 ± 0.0628 0.147655 ± 0.0369

3.4.4.2 Discussion

We investigate the MobileNetV2’s feature space for the COVID19

dataset by showing its 2D projection and labeled samples
(Fig. 3.8). We first notice that the projection presents a mixture be-
tween different classes. The supervised samples (colored points)
are not clearly separated from the unsupervised ones (black),
showing that this is a challenging dataset. For VGG-16, conf-
DeepFA shows more groups having the same color, e.g., the small
groups around the larger one and red points grouped at the cen-
ter. In contrast, orig-DeepFA shows a projection with more colors
mixed in small groups and also red points are spread all over
the larger group. For MobileNetV2, there are no clear differences
in the produced feature space; for the orig-DeepFA experiment,
the red points seem to be more grouped at the projection center.
MobileNetV2 shows fewer small groups having the same color
around the larger group than VGG-16. This correlates with the
accuracy and κ results for both architectures. It is possible that
MobileNetV2 could achieve better results if considering more su-
pervised samples. Too few supervised samples (from 10 to 100)
for training this deep architecture is still a problem for its conver-
gence in comparison to VGG-16.

65

feature and classifier learning

dataset method DeepFA conf-DeepFA

C
O

V
ID

1
9

VGG-16

MobileNetV2

Figure 3.8: Q4) Comparison of the feature spaces generated by DeepFA
using VGG-16 and MobileNetV2 in pseudolabeling estima-
tion for COVID19, 1% supervised samples and last iteration.
2D feature-space projections of training samples from left to
right column per dataset: supervised samples colored by true
labels, unsupervised ones are black; and samples colored by
assigned pseudolabels.

3.4.5 Q5: Choosing the layer in the deep architecture

In the earlier experiments, we only investigate our proposed deep
feature learning looping using the last convolutional layer’s out-
put. However, Rauber et al. (Rauber et al., 2017b) showed that
the multilayer perceptron (mlp) layers, located after the convolu-
tional layers, can create a 2D projected space with better separa-
tion among different classes for shallow architectures and with-
out loading pre-trained weights. To test this for our DeepFA loop-
ing, we compare the result of deep features provided by the out-
put of (i) the last convolutional layer and (ii) the last mlp layer. To
facilitate our analysis, we use a fixed value of τ for conf-DeepFA
and five iterations for all datasets. Instead of showing the prop-
agation accuracy (which does not consider the class unbalance)
we compute the propagation κ for the labeled samples in training
set. Our experiments are described below:

• Lconv: VGG-16 is trained on S. Features from the last convo-
lutional layer for samples in S ∪ U are projected in 2D with
t-SNE and used by OPFSemi to pseudo labels from S to Uτ ,
for τ = 0.8. VGG-16 is retrained on these pseudo labels and

66

3.4 experimental results

tested on T (this is one iteration of conf-DeepFA looping out
of five);

• Lmlp: As above, but using features from the last hidden
fully-connected layer in the DNN.

3.4.5.1 Results and discussion

Table 8 shows the mean label propagation accuracy, classifica-
tion accuracy, κ, and their standard deviation over three splits
after five iterations. For MNIST, H.eggs, and Coconut, using the
last convolutional layer obtained the best results. In contrast, for
H.eggs without impurities, P.cysts without impurities, H.larvae,
and COVID, the last mlp layer obtained the best results. For
P.cysts, the results of using either Lconv or Lmlp were similar when
considering the standard deviation. The choice of the layer to be
used in our conf-DeepFA looping also affect the κ results on the
test set. All in all, the choice of which layer to use seems to de-
pend on the dataset.

3.4.6 Q6: Choosing the best DeepFA model and iteration

As in earlier work, all our experiments so far used only a fixed
number of (five) iterations. However, as Sec. 3.4.3 and Fig. 3.5
show, there is no guarantee that the last iteration delivers the
best model. Following Sec. 3.2.6, we propose to evaluate the pro-
duced feature space in each iteration by using an unsupervised
clustering metric. For this, we select the Calinski-Harabasz Index
(CHI) (Caliński and Harabasz, 1974) which calculates the ratio of
the sum of between-cluster and sum of within-cluster dispersion
for all clusters, where cluster dispersion is defined as the sum of
squared distances over the cluster points. Formally put

CHI =
∑K

k=1 nk ||ck−c||2
K−1

∑K
k=1 ∑

nk
i=1||xi−ck ||2
N−K

, (3.1)

where xi a sample in a dataset with N samples; K the number
of clusters; nk is the number of samples in cluster k; ck is the
centroid of cluster k; and c is the global centroid of all samples.
As CHI is high when the obtained clusters are dense and well
separated from each other, we propose to choose the best label
estimation in the produced feature space by selecting that one
which achieves the best CHI value after several iterations of our
method.

67

feature and classifier learning

Table 8: Q5) Results from the last iteration for experiments comparing
the label propagation in the t-SNE projected space of distinct
layers Lconv (the last convolutional layer’s output) and Lmlp (the
last MLP layer’s output) during five iterations of conf-DeepFA
looping with τ = 0.8. Best values per dataset in bold.

distinct output layers
dataset metrics Lconv Lmlp

prop. kappa 0.560920 ± 0.317 0.523341 ± 0.058

acc 0.605778 ± 0.282 0.584000 ± 0.057MNIST

kappa 0.561751 ± 0.314 0.537411 ± 0.063

prop. kappa 0.980513 ± 0.001 0.977636 ± 0.003

acc 0.976146 ± 0.008 0.977401 ± 0.000
H.eggs
(w/o imp)

kappa 0.971776 ± 0.009 0.973232 ± 0.000
prop. kappa 0.773862 ± 0.015 0.807765 ± 0.043
acc 0.851211 ± 0.011 0.861592 ± 0.033

P.cysts
(w/o imp)

kappa 0.797588 ± 0.018 0.810277 ± 0.048
prop. kappa 0.819094 ± 0.043 0.824582 ± 0.029
acc 0.958610 ± 0.002 0.961137 ± 0.005H.larvae

kappa 0.807432 ± 0.017 0.823241 ± 0.040
prop. kappa 0.904969 ± 0.003 0.861352 ± 0.033

acc 0.945024 ± 0.006 0.930465 ± 0.015H.eggs

kappa 0.902488 ± 0.010 0.875675 ± 0.025

prop. kappa 0.631756 ± 0.057 0.652409 ± 0.060
acc 0.808545 ± 0.036 0.812609 ± 0.026P.cysts

kappa 0.682719 ± 0.070 0.681252 ± 0.051

prop. kappa 0.623280 ± 0.057 0.514769 ± 0.114

acc 0.887186 ± 0.018 0.872996 ± 0.024Coconut

kappa 0.652869 ± 0.060 0.577084 ± 0.116

prop. kappa 0.430679 ± 0.036 0.516374 ± 0.034
acc 0.672126 ± 0.041 0.699108 ± 0.033COVID19

kappa 0.490593 ± 0.059 0.546634 ± 0.043

68

3.4 experimental results

To ease our analysis, we use a fixed τ = 0.8 and ten total iter-
ations for all datasets. Also, we compare the result of deep fea-
tures provided by distinct layers (L) from the output of (i) the last
convolutional layer (Lconv) and (ii) the last multilayer-perceptron
layer (Lmlp). We compute the propagation κ instead of propaga-
tion accuracy for the labeled samples in the training set. The ex-
periments are described below:

• conf-DeepFAiter=5: VGG-16 is trained on S. Deep features for
S ∪ U from L are projected in 2D with t-SNE, and used
for OPFSemi’s pseudo-labeling from S to Uτ , for samples
with confidence above τ = 0.8. OPFSemi’s pseudo labels
are used to retrain VGG-16, and the network is tested on T
(this is one iteration of conf-DeepFA looping out of five);

• conf-DeepFAiter=best: As above, but we compute CHI on the
2D projections (over ten iterations) and select the model ob-
tained from the iteration with the highest CHI value;

• conf-DeepFAiter=worst: As above, but we select the iteration
with the lowest CHI value.

3.4.6.1 Results

Table 9 shows the mean label propagation accuracy, classification
accuracy, κ, and their standard deviation over three splits after
five iterations, for the best among ten iterations, and for the worst
among ten iterations. First, we consistently see that the highest
CHI values lead to the best classification results (accuracy and κ)
on the test set, except for P.cysts with and without impurities (for
Lconv) and MNIST (for Lmlp). Also, the lowest CHI values lead to
the worst classification results on the test set. The iteration with
the best CHI value yields better results than those that we have
found so far in our earlier experiments (last of five iterations).
For MNIST, H.eggs with and without impurities, Coconut, and
COVID19, the best iteration using Lconv obtains better classifica-
tion results than when using Lmlp. For this dataset, using Lconv
with the highest-CHI iteration selection strategy increases κ by
0.15 as compared to using the last iteration.

3.4.6.2 Discussion

Using CHI to select the labeled feature space: Figure 3.9 shows
CHI and κ for the last five, best, and worst iterations for Lconv and
Lmlp. The worst values (red) are always lower than the last-five
iterations (orange) and also lower than the best values (green) for

69

feature and classifier learning

Table 9: Q5) Results for experiments comparing the label propagation in
the t-SNE projected space of distinct layers (a) Lconv (last convo-
lutional layer’s output), and (b) Lmlp (last MLP layer’s output)
during ten iterations of conf-DeepFA looping with τ = 0.8. The
result for five iterations, and both the best and worst iterations
chosen by the CHI value are presented. Best values per dataset
and per layer L in bold.

Lconv Lmlpdataset metric
iter= 5 iter=worst iter=best iter= 5 iter=worst iter=best

CHI 3805.08 ± 2544.0 1582.67 ± 1173.2 5430.51 ± 2356.6 2807.49 ± 1172.5 1104.40 ± 198.9 4055.42 ± 83.5
prop. kappa 0.560920 ± 0.317 0.423657 ± 0.310 0.704985 ± 0.112 0.523341 ± 0.058 0.379667 ± 0.056 0.599035 ± 0.023
acc 0.605778 ± 0.282 0.533556 ± 0.282 0.743556 ± 0.078 0.584000 ± 0.057 0.462000 ± 0.069 0.548000 ± 0.163

MNIST

kappa 0.561751 ± 0.314 0.479521 ± 0.316 0.714611 ± 0.087 0.537411 ± 0.063 0.401889 ± 0.076 0.496539 ± 0.183

CHI 6161.35 ± 766.6 4200.59 ± 646.2 6729.25 ± 413.4 7599.88 ± 308.6 3434.74 ± 740.5 7599.88 ± 308.6
prop. kappa 0.980513 ± 0.001 0.978596 ± 0.006 0.981472 ± 0.002 0.977636 ± 0.003 0.961359 ± 0.008 0.977636 ± 0.003
acc 0.976146 ± 0.008 0.975518 ± 0.007 0.979284 ± 0.005 0.977401 ± 0.000 0.972379 ± 0.007 0.977401 ± 0.000

H.eggs
(w/o imp)

kappa 0.971776 ± 0.009 0.971012 ± 0.008 0.975469 ± 0.006 0.973232 ± 0.000 0.967319 ± 0.008 0.973232 ± 0.000
CHI 2447.19 ± 209.7 1453.61 ± 511.9 3098.45 ± 219.9 2786.55 ± 198.5 1854.04 ± 253.9 3534.84 ± 260.9
prop. kappa 0.773862 ± 0.015 0.672889 ± 0.062 0.684681 ± 0.032 0.807765 ± 0.043 0.680152 ± 0.076 0.791739 ± 0.065

acc 0.851211 ± 0.011 0.793829 ± 0.036 0.791811 ± 0.025 0.861592 ± 0.033 0.816609 ± 0.041 0.863898 ± 0.031

P.cysts
(w/o imp)

kappa 0.797588 ± 0.018 0.712134 ± 0.059 0.729677 ± 0.026 0.810277 ± 0.048 0.750887 ± 0.055 0.817631 ± 0.039
CHI 774.15 ± 214.7 499.97 ± 47.4 920.94 ± 340.6 5546.44 ± 8201.1 570.23 ± 313.8 8664.83 ± 12964.6
prop. kappa 0.819094 ± 0.043 0.775107 ± 0.050 0.824502 ± 0.038 0.824582 ± 0.029 0.796519 ± 0.009 0.830402 ± 0.042
acc 0.958610 ± 0.002 0.952607 ± 0.009 0.959242 ± 0.006 0.961137 ± 0.005 0.955134 ± 0.006 0.964613 ± 0.005

H.larvae

kappa 0.807432 ± 0.017 0.755035 ± 0.068 0.806115 ± 0.031 0.823241 ± 0.040 0.785666 ± 0.054 0.840656 ± 0.035
CHI 1041.17 ± 8.9 724.86 ± 54.2 1108.63 ± 37.9 1187.05 ± 47.2 846.19 ± 31.8 1319.95 ± 72.3
prop. kappa 0.904969 ± 0.003 0.837934 ± 0.031 0.885585 ± 0.014 0.861352 ± 0.033 0.810120 ± 0.012 0.870839 ± 0.019
acc 0.945024 ± 0.006 0.917427 ± 0.022 0.945676 ± 0.005 0.930465 ± 0.015 0.915906 ± 0.014 0.931986 ± 0.014

H.eggs

kappa 0.902488 ± 0.010 0.851161 ± 0.040 0.904525 ± 0.009 0.875675 ± 0.025 0.847946 ± 0.027 0.878822 ± 0.024
CHI 842.15 ± 212.7 737.011 ± 256.6 1329.19 ± 115.3 1590.07 ± 128.3 1155.53 ± 289.7 1861.46 ± 197.0
prop. kappa 0.631756 ± 0.057 0.626103 ± 0.075 0.631550 ± 0.063 0.652409 ± 0.060 0.632259 ± 0.017 0.668595 ± 0.040
acc 0.808545 ± 0.036 0.811796 ± 0.021 0.792523 ± 0.039 0.812609 ± 0.026 0.800882 ± 0.032 0.813886 ± 0.020

P.cysts

kappa 0.682719 ± 0.070 0.682633 ± 0.055 0.665641 ± 0.056 0.681252 ± 0.051 0.668188 ± 0.052 0.696163 ± 0.029
CHI 4043.65 ± 1101.3 1338.66 ± 707.1 5028.79 ± 1068.9 2811.05 ± 1232.2 930.54 ± 762.9 4469.81 ± 1436.5
prop. kappa 0.623280 ± 0.057 0.448743 ± 0.125 0.623487 ± 0.105 0.514769 ± 0.114 0.370199 ± 0.228 0.571377 ± 0.092
acc 0.887186 ± 0.018 0.863914 ± 0.016 0.886760 ± 0.015 0.872996 ± 0.024 0.834823 ± 0.041 0.879239 ± 0.013

Coconut

kappa 0.652869 ± 0.060 0.537551 ± 0.071 0.669792 ± 0.040 0.577084 ± 0.116 0.379283 ± 0.274 0.634328 ± 0.043
CHI 1112.59 ± 512.8 511.67 ± 110.9 1516.63 ± 270.7 3712.00 ± 951.4 1827.87 ± 677.0 4830.30 ± 882.7
prop. kappa 0.430679 ± 0.036 0.410851 ± 0.046 0.494343 ± 0.025 0.516374 ± 0.034 0.360516 ± 0.014 0.538565 ± 0.034
acc 0.672126 ± 0.041 0.646614 ± 0.046 0.713491 ± 0.012 0.699108 ± 0.033 0.634016 ± 0.032 0.699318 ± 0.033

COVID19

kappa 0.490593 ± 0.059 0.459456 ± 0.056 0.555074 ± 0.019 0.546634 ± 0.043 0.436049 ± 0.044 0.548049 ± 0.044

70

3.5 answers to the studied questions

both CHI and κ. We conclude that using CHI values computed
from the produced 2D feature space in training set and using
pseudo-labels (even prone to errors) to select the best and worst
iterations yields good classification results on the test set. This
supports the choice of the best iteration of conf-DeepFA looping
even for different datasets. Also, we notice that higher CHI val-
ues lead to higher κ values. For example, for MNIST, both CHI
and κ are higher for the Lconv setup than for the Lmlp setup. We
also see that Lmlp yields to higher CHI (and κ) values than Lconv
for all datasets, except for MNIST.

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

C
H

I

Q6) Distinct iterations per dataset for Lconv Distinct iterations per dataset for Lmlp

H.eg
gs(w

/o)

H.eg
gs

H.la
rvae

MNIST

Prot.c
.(w

/o)

Prot.c
.

Coco
nut

COVID

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

κ

H.eg
gs(w

/o)

H.eg
gs

H.la
rvae

MNIST

Prot.c
.(w

/o)

Prot.c
.

Coco
nut

COVID

worst
iter 5
best

Figure 3.9: Q6) Results of CHI (top) and κ (bottom) for the studied
datasets, considering the last convolutional layer (left) and
the last mlp layer (right) for conf-DeepFA with fixed certainty
value (τ = 0.8). The worst (red) and the best (green) itera-
tions out of ten iterations were chosen based in the worst and
best CHI values on the training set respectively. The results
after five iterations (orange) are also shown. The datasets are
ordered by higher κ values in x axis (from left to right).

Added-value of CHI evaluation in conf-DeepFA: Figure 3.10

plots, for each dataset, the best κ chosen by the best CHI value di-
vided by the highest κ obtained on the test set for both Lconv and
Lmlp. We see that the CHI-based selection approach achieves at
least 95% of the best possible result in the test set for all datasets.
This confirms the added-value of using CHI for choosing the best
iteration of conf-DeepFA.

3.5 answers to the studied questions

Figure 3.11 summarizes our targeted questions, performed exper-
iments, and best obtained results per question. We evaluate (Q1)
the feature space generated by VGG-16 by feature extraction and
fine-tuning strategies and compare (Q2) OPFSemi label propaga-

71

feature and classifier learning

H.eg
gs(w

/o)

H.eg
gs

H.la
rvae

MNIST

Prot.c
.(w

/o)

Prot.c
.

Coco
nut

COVID

0.7
0.75

0.8
0.85

0.9
0.95

1

Pe
rc

en
t

%

Q6) Effectiveness of CHI for choosing the best ext-DeepFA iteration

Lconv

Lmlp

Figure 3.10: Q6) Effectiveness of using CHI for choosing the best itera-
tion in ext-DeepFA given by the best κ chosen by the best
CHI in each iteration over the best possible κ in the test set.

ɡ�țɢ

9**����ZLWK�
IHDWXUH�H[WUDFWLRQ

9**����ZLWK�
ILQH�WXQLQJ

VHOI�9**����ZLWK�
IHDWXUH�H[WUDFWLRQ

VHOI�9**����ZLWK�
ILQH�WXQLQJ

/DEHO�SURSDJDWLRQ�
ZLWK�NQQ�NHUQHO

/DEHO�SURSDJDWLRQ�
ZLWK�UEI�NHUQHO

/DEHO�VSUHDGLQJ�
ZLWK�NQQ�NHUQHO

/DEHO�VSUHDGLQJ�
ZLWK�UEI�NHUQHO

23)6HPL

ɡ�Ȝɢ

'HHS)$

FRQI�'HHS)$��
ZLWK�Ĳ� �^����������

���`

FRQI�'HHS)$��ZLWK�
DGDSWDWLYH�Ĳ�

ɡ�ȝɢ

9**�����'HHS)$

ɡ�Ȟɢ

0RELOH1HW9���
'HHS)$

0RELOH1HW9���
FRQI�'HHS)$

9**�����
FRQI�'HHS)$

FRQI�'HHS)$��
9**
V�ODVW�FRQY��

OD\HU

ɡ�ȟɢ

FRQI�'HHS)$�9**
V�
ODVW�POS�OD\HU

FRQI�'HHS)$��9**
V�
ODVW�FRQY��OD\HU��ILYH�

LWHUDWLRQV

ɡ�Ƞɢ

FRQI�'HHS)$��
9**
V�ODVW�FRQY��OD\HU��

ZRUVW�LWHUDWLRQ

FRQI�'HHS)$��9**
V�
ODVW�FRQY��OD\HU��EHVW�

LWHUDWLRQ

FRQI�'HHS)$��9**
V�
ODVW�POS�OD\HU��ILYH�

LWHUDWLRQV

FRQI�'HHS)$��
9**
V�ODVW�POS�OD\HU��

ZRUVW�LWHUDWLRQ

FRQI�'HHS)$��9**
V�
ODVW�POS�OD\HU��EHVW�

LWHUDWLRQ

H[W�'HHS)$

Figure 3.11: Brief summary of the raised questions. For each addressed
question, the compared experiments (orange, dashed) and
the best result (blue, solid) are presented. Each resulting an-
swer leads and composes the final ext-DeepFA.

tion with other semi-supervised methods within the annotation
looping. Next, we include (Q3) a confidence sampling strategy to
OPFSemi’s pseudo-labeling to define the most confident samples
for training VGG-16 and evaluate (Q4) a feature space produced
by MobileNetV2, a recent deep architecture with much fewer pa-
rameters to optimize. We also compare (Q5) two feature spaces
provided by distinct layers of the deep network and investigate
(Q6) the usage of a clustering metric to choose the best iteration
in the proposed looping.

Considering the proposed experimental setup for orig-DeepFA,
conf-DeepFA, and ext-DeepFA evaluation, we show that (Q1) self-
trained VGG-16 models based on feature extraction only are usu-
ally better than fine-tuned models. (Q2) OPFSemi label propaga-

72

3.6 limitations

tion yielded the best performance on the 2D projected space for
all tested datasets. (Q3) Confidence-based sampling showed clear
added value, with different confidence values for each dataset
though. (Q4) MobileNetV2 was not able to learn a feature space
in which OPFSemi propagated better labels than VGG-16. (Q5)
Propagating labels in different layers of the deep architecture
led to different label propagation and classification accuracies de-
pending on the dataset. (Q6) High values of the chosen clustering
metric consistently led to the best propagation accuracy and clas-
sification results.

3.6 limitations

We can split our limitations into those related to the experimental
validation and the proposed technique. In validating our work,
we explored eight datasets (from toy to real scenarios), two deep-
learning approaches (VGG-16 and MobileNetV2), five iterations
of the deep annotation loop, and one projection method (t-SNE).
Exploring more combinations of such techniques is definitely of
extra added value. Using more than five looping iterations could
help to understand how much the learned feature space can be
improved.

Related to the limitations of the proposed technique, we
see that the selection of the confidence threshold τ and layer
depth may vary on the dataset. To solve that observed dataset
dependency, we plan to include user knowledge to select
those values and layers. Although we have shown that the 2D
projection provided by the t-SNE algorithm is suitable to offer
relevant information to OPFSemi’s label propagation, the t-SNE
projection errors were not considered to improve the performed
label propagation and feature learning. Additionally, using the
t-SNE algorithm can be an issue due to its scalability: projecting
more than dozens of thousands of samples can cost minutes.
We intend to analyze further the impact of the t-SNE projection
errors and other projection techniques in our proposed pipeline.

3.7 conclusion

In this chapter, we have proposed a methodology, called DeepFA,
for labeling unsupervised samples for creating high-quality clas-
sifiers for image data. For this, we designed and evaluated sev-
eral variants of the DeepFA approach, as follows. Our first ver-

73

feature and classifier learning

sion, called orig-DeepFA, labels unsupervised samples to increase
the quality of image classification and extracted feature spaces
by using very few supervised samples and many unsupervised
ones for training. To cover some of the limitations orig-DeepFA,
we designed two subsequent variants, called conf-DeepFA and ext-
DeepFA. We drove our design by evaluating six questions that aim
to explore the space of possible improvements.

Our investigation led to several findings. First, we showed
that OPFSemi’s label propagation by minimum graph paths con-
ducted over t-SNE projections is better than other label prop-
agation methods, even those using graphs, neighborhood dis-
tances, or kernel tricks. Using a confidence sampling strategy in
conf-DeepFA, we selected the best-labeled samples to retrain the
model and minimized the effect of wrongly assigned labels in
the learned feature space. Next, in ext-DeepFA, we used – to our
knowledge – for the first time the Calinski-Harabasz Index (CHI)
to evaluate the learned feature space and pseudo-labels of t-SNE
projected features in a 2D space. CHI reveals a correlation among
the best 2D feature space, best pseudo-labels, and best classifica-
tion results, even if these are pseudo-labels prone to errors. When
using CHI values to choose the best iteration, we achieve at least
95% of the best κ value achievable in the test set. This insight
opens new ways for using CHI as an evaluation strategy in the
learned and projected feature space and its pseudo labels.

To solve the observed dataset dependency in the selection of
the confidence threshold τ and layer depth, one can next include
user knowledge to provide a semi-automatic pseudo-labeling
along the lines in (Benato et al., 2021c), but now considering the
proposed looping of the deep feature annotation method. Also,
considering that CHI can provide relevant information about the
deep annotated features, this can be used to support the user in
labeling in a semi-automatic fashion. In this respect, a direction
for future work is to consider self-supervised learning strategies
in deep feature learning to improve the learned feature space.
Additionally, an interesting idea is to evaluate other projection
methods (beyond t-SNE) with high neighborhood preservation
qualities for potential label propagation improvement. Ultimately,
we expect that our automatic-and-interactive deep feature-based
pseudo-labeling combination will lead to higher quality and
more explainable deep learning methods.

74

4L I N K I N G D ATA S E PA R AT I O N , V I S U A L
S E PA R AT I O N , A N D C L A S S I F I E R
P E R F O R M A N C E

4.1 introduction

While supervised learning has achieved great success, using
datasets with either (i) few data points or (ii) few supervised,
i.e. labeled, points, is fundamentally hard, and especially critical
in e.g. medical contexts where obtaining (labeled) points is expen-
sive. For (i), methods such as few-shot learning (Sung et al., 2018;
Sun et al., 2017), transfer-learning (Russakovsky et al., 2015), and
data augmentation have been used to increase the sample count.
For (ii), solutions include semi-supervised learning (Iscen et al.,
2019; Wu and Prasad, 2018), pseudo-labeling (Lee, 2013; Jing and
Tian, 2020), and meta-learning (Pham et al., 2021)1.

As introduced in Sec. 2.2, pseudo-labeling, also called self-
training, takes a training set with few supervised and many un-
supervised samples and assigns pseudo-labels to the latter sam-
ples – a process known as data annotation – and re-trains the
model with all (pseudo)labeled samples. Yet, as the name sug-
gests, pseudo-labels are not perfect, as they are extrapolated from
actual labels, which can affect training performance (Benato et al.,
2018; Arazo et al., 2020). Also, pseudo-labeling methods still re-
quire training and validation sets with thousands of supervised
samples per class to yield reasonable results (Miyato et al., 2018;
Jing and Tian, 2020; Pham et al., 2021).

Both pseudo-labeling, and broader, the success of training a
classifier, depend on a key aspect – how easy is the data separable
into different groups of similar points. Projections, or dimension-
ality reduction methods, are well known techniques that aim to
achieve precisely this (Nonato and Aupetit, 2018; Espadoto et al.,
2019a). Two key observations were made in this respect (as intro-
duced in Sec. 2.3.6 and further discussed in detail in Sec. 4.2):

1 This chapter is a result of the following publications: "Linking data separation, vi-
sual separation, and classifier performance using pseudo-labeling by contrastive
learning" (Benato et al., 2023c); and "Linking data separation, visual separation,
and classifier performance using dimensionality reduction techniques" (Benato
et al., 2023b).

75

linking data separation, visual separation, and classifier performance

O1 Visual separability (VS) in a projection mimics the data sep-
arability (DS) in the high dimensional space;

O2 Data separability (DS) is key to achieving high classifier per-
formance (CP);

These observations have been used in several directions, e.g.,
using projections to assess DS (VS→DS, van der Maaten et al.
(2009)); using projections to find which samples get misclassi-
fied (VS→CP, Nonato and Aupetit (2018)); increasing DS to get
easier-to-interpret projections (DS→VS, Kim et al. (2022b)); us-
ing projections to assess classification difficulty (VS→CP, Rauber
et al. (2017b,a)); and using projections to build better classifiers
(VS→CP, Benato et al. (2018, 2021a)). However, to our knowledge,
no work so far has explored the relationship between DS, VS, and
CP in the context of using pseudo-labeling for machine learning
(ML).

We address the above by studying how to generate a high DS
using contrastive learning approaches which have shown state-of-
the-art results (Chen et al., 2020; Grill et al., 2020; He et al., 2020;
Khosla et al., 2020) and have surpassed results of (self-and-semi-)
supervised methods and even known supervised loss functions
such as cross-entropy (Chen et al., 2020). We compare two con-
trastive learning models, SimCLR (Chen et al., 2020) and Sup-
Con (Khosla et al., 2020), and propose a hybrid approach that
combines both. We evaluate DS by measuring CP for a classifier
trained with only 1% supervised samples. Then, we evaluate VS
fed with the encoder’s output of our trained contrastive models.
Lastly, we investigate CP by using our above pseudo-labeling to
train a deep neural network. We perform all our experiments in
the context of a challenging medical application (classifying hu-
man intestinal parasites in microscopy images).

Our main contributions are as follows:

C1: We use contrastive learning to reach high DS;

C2: We show that projections constructed from contrastive
learning methods (with good DS) lead to a good VS be-
tween different classes;

C3: We train classifiers with pseudo-labels generated via good-
VS projections to achieve a high CP;

C4 We identify projection techniques for which DS strongly cor-
relates with VS and also techniques for which this does not
happen;

76

4.2 related work

C5 We show that good-VS projections are essential for training
classifiers that reach a high CP.

Jointly taken, our work brings more evidence that links the ob-
servations O1 and O2 mentioned above, i.e., that VS, DS, and CP
are strongly correlated and that this correlation, and 2D projec-
tions of high-dimensional data, can be effectively used to build
higher-CP classifiers for the challenging case of training-sets hav-
ing very few supervised (labeled) points.

4.2 related work

4.2.1 Relationship between data separation, visual separation, and
classifier performance

Relations between VS, DS, and CP have been partially explored.
Rauber et al. (2017b) used the VS of a t-SNE (van der Maaten,

2014) projection to gauge the difficulty of a classification task
(CP). As described in more detail in Sec. 2.3.6, they found that VS
and CS are positively correlated when VS is medium to high but
could not infer actionable insights for low-VS projections. Also,
they did not address the task of building higher-CP classifiers us-
ing t-SNE.

In a related vein, Rodrigues et al. (2019) used the VS in projec-
tions to construct so-called decision boundary maps (DBMs, see
Sec. 2.4). While they did not mention the VS created by projec-
tions, the implication is clearly there. Indeed, a good projection of
a dataset that exhibits reasonable data separation (DS) should cre-
ate clusters of 2D points which have reasonably well separated la-
bels, just as in the data. This is also the intuition behind the neigh-
borhood hit projection-quality metric (see Sec. 2.3.4.1). When this
happens, i.e., when we have a good-VS projection, then we can
construct a DBM which shows (reasonably) well separated deci-
sion zones, one per class label. Next, one can use this DBM for
interpreting classification performance (CP) for different sample
groups. However, just as Rauber et al. (2017b), it is not clear what
a low-VS projection does imply, i.e., if this indicates that the vi-
sualized classifier (by the DBM) has a poor CP, or simply that
the underlying projection and/or inverse projection used to con-
struct the DBM have poor quality.

Kim et al. (2022b,a) showed that one can improve VS by increas-
ing DS, the latter being done by mean shift (Comaniciu and Meer,
2002). However, their aim was to generate easier-to-interpret pro-
jections and not use these to build higher-CP classifiers. More-

77

linking data separation, visual separation, and classifier performance

over, their approach actually changed the input data in ways not
easy to control, which raises question as to the interpretability of
the resulting projections.

Finally, Benato et al. (2018, 2021c) used the VS of t-SNE projec-
tions to create pseudo-labels and train higher-CP classifiers from
them (as discussed in Chapter 3). They showed that label propa-
gation in the 2D projection space can lead to higher-CP classifiers
than when propagating labels in the data space. Yet, they did not
study how correlations between DS and VS can affect CP.

4.2.2 Self-supervised learning

Self-supervised contrastive methods in representation learning
have been the choice for learning representations without using
any labels (Chen et al., 2020; Grill et al., 2020; He et al., 2020;
Khosla et al., 2020). Such methods work by using a so-called con-
trastive loss to pull similar pairs of samples closer while pushing
apart dissimilar pairs. To select (dis)similar samples without us-
ing label information, one can generate multiple views of the data
via transformations. For image data, SimCLR (Chen et al., 2020)
used transformations such as cropping, Gaussian blur, color jitter-
ing, and grayscale bias. MoCo (He et al., 2020) explored a momen-
tum contrast approach to learn a representation from a progress-
ing encoder while increasing the number of dissimilar samples.
BYOL (Grill et al., 2020) used only augmentations from similar
examples. SimCLR has shown significant advances in (self-and-
semi-) supervised alearning and achieved a new record for image
classification with few labeled data. Supervised contrastive learn-
ing (SupCon) (Khosla et al., 2020) generalized both SimCLR and
N-pair losses and was proven to be closely related to triplet loss.
SupCon surpasses cross-entropy, margin classifiers, and other
self-supervised contrastive learning techniques.

4.3 linking data separation, visual separation, and

classifier performance

Following the above, we propose to improve DS in the feature
space that EPL takes as input by using two contrastive learning
models (SimCLR (Chen et al., 2020) and SupCon (Khosla et al.,
2020), used both separately and combined) and without using
ground-truth labels. The feature space to input in EPL comes
from the encoder’s output from these contrastive models. During
the process, outlined in Fig. 4.1, we test our three claims (Sec. 4.1),

78

4.3 linking data separation, visual separation, and classifier performance

i.e., that DS has improved (C1); that this has led to an improved
VS in the 2D projections used by EPL (C2); and finally that the
generated pseudo-labels by EPL can be used to train a classifier
with high CP (C3). Our method is detailed next.

image
transformations

parasite
images

encoder

linear
layers

dimensionality
reduction

label
estimation

pseudo-
labels

contrastive learning

pseudo-labeling by EPL

encoded features

classifier design

train
classifier

test
classifier

C3

C1

C2

2D projection

classifier
quality

good DS

good VS

good CP

flip, crop, jitter, ...

VGG-16

t-SNE OPFSemi

ResNet-18

contrastive loss
minimization

Figure 4.1: We train a model from image transformations of the original
data with a contrastive learning loss. Next, we project the
latent features from the encoder’s output to 2D and pseudo-
label the resulting points. Finally, we use these pseudo-labels
to train a classifier.

4.3.1 Contrastive learning

We generate the latent space to be used by EPL (Fig. 4.1, top box)
in three different ways: (a) from the many unsupervised samples
available by using SimCLR (Chen et al., 2020); (b) using our 1%
supervised samples with SupCon (Khosla et al., 2020); and (c) by
combining the SimCLR and SupCon methods.

4.3.2 Pseudolabeling by EPL

We use ResNet-18 (He et al., 2016) as bottleneck for both SimCLR
and SupCon strategies. The encoder’s output of ResNet-18 (hun-
dreds of dimensions) is projected in a lower dimensional space
(2D) using different projection techniques (Fig. 4.1, middle gray
box). Propagating pseudo-labels in a 2D space was first observed
to lead to high-CP classifiers particularly using t-SNE by EPL in
(Benato et al., 2021a,b). Here, we explore the same EPL’s function

79

linking data separation, visual separation, and classifier performance

of exploring 2D points to propagate the (few) true labels to all
unsupervised points for chosen projection techniques. A detailed
description of EPL is given in Chapter 3. Finally, we measure the
VS of the 2D scatterplots created by the tested projection tech-
niques by measuring the success of pseudolabeling.

4.3.3 Classifier training with pseudo-labels

To finally test the quality of our generated pseudo-labels, we
train a deep neural network, namely VGG-16 with ImageNet pre-
trained weights, and test it on our parasite datasets (Fig. 4.1, bot-
tom box). This architecture was shown to have the best results for
our datasets (Osaku et al., 2020).

4.4 experimental evaluation

4.4.1 Projection methods

As outlined in Sec. 4.6, we want to evaluate the impact of dif-
ferent projection techniques on the measured DS-VS-CP corre-
lations. For this, we chose the 10 most accessible and easy-
to-implement projection techniques from the projection-quality
benchmark proposed in (Espadoto et al., 2019a). Table 10 shows
our selection, with all techniques available in scikit-learn, except
UMAP which has a separate Python implementation. Our selec-
tion covers linear vs nonlinear, and global vs local, projections;
and also projections taking samples vs sample-distances as input.
For all techniques, we fixed their parameters to the default values
proposed by each author in scikit-learn.

4.4.2 Datasets

As outlined in Sec. 4.1, we apply our proposed approach in the
medical context. We explored (i) Helminth larvae (H.larvae); (ii)
Helminth eggs (H.eggs); and (iii) Protozoan cysts (P.cysts). To evalu-
ate different difficulty levels, we also explore (ii) and (iii) without
the impurity class, which form our last two datasets. A detailed
description of this dataset is provided in Chapter 3.

4.4.3 Data layout for validation

As outlined in Sec. 4.1, our main goal it to build a classifier for
the chosen datasets exploring only a small set of supervised sam-

80

4.4 experimental evaluation

Table 10: Projection techniques chosen for our evaluation. For each one,
we list the linearity, type of input, and whether the technique
is local or global.

projection linearity input local or global

FA Jolliffe (1986) linear samples global

FICA Hyvarinen (1999) linear distances global

ISO Tenenbaum et al. (2000) nonlinear distances local

KPCA Schölkopf et al. (1997) nonlinear samples global

LLE Roweis and Saul (2000) nonlinear samples local

MDS Torgerson (1958) nonlinear samples global

MLLE Zhang and Wang (2006) nonlinear samples local

PCA Jolliffe (1986) linear samples global

t-SNE van der Maaten and Hinton (2008) nonlinear samples local

UMAP McInnes et al. (2018) nonlinear distances local

ples. For this, we split each of the five considered datasets D
(Sec. 4.4.2) into a supervised training-set S containing 1% super-
vised samples from D, an unsupervised training-set U with 69%
of the samples in D, and a test set T with 30% of the samples in D
(hence, D = S ∪ U ∪ T). We repeat the above division randomly
and in a stratified manner to create three distinct splits of D in
order to gain statistical relevance when evaluating results next.
Table 11 shows the sizes |S| and |U| for each dataset.

Table 11: Number of samples in S and U for each dataset.

H.eggs

(w/o imp)

P. cysts

(w/o imp)
H. larvae H. eggs P. cysts

S 17 38 35 51 95

U 1220 2658 2424 3527 6602

To measure quality, we compute accuracy and κ (since our
datasets are unbalanced). Both metrics are detailed in Chapter 2.

4.4.4 Implementation details

We next outline our end-to-end implementation.

Contrastive learning: We implemented SimCLR and SupCon
in Python using Pytorch. We generate two augmented images
(views) for each original image by random horizontal flip,
resized crop (96 × 96), color jitter (brightness= 0.5, contrast= 0.5,
saturation= 0.5, hue= 0.1) with probability of 0.8, gray-scale

81

linking data separation, visual separation, and classifier performance

with probability of 0.2, Gaussian blur (9 × 9), and a normaliza-
tion of 0.5.

Latent space generation: We replace ResNet-18’s decision layer
by a linear layer with 4, 096 neurons, a ReLU activation layer,
and a linear layer with 1, 024 neurons respectively. We train the
model by backpropagating errors of NT-Xent and SupCon losses
for SimCLR and SupCon, respectively, with a fixed temperature
of 0.07. We use the AdamW optimizer with a learning rate of
0.0005, weight decay of 0.0001, and a learning rate scheduler
using cosine annealing, with a maximum temperature equal to
the epochs and minimum learning rate of 0.0005/50. We use 50
epochs and select the best model through a checkpoint obtained
from the lowest validation loss during training. Finally, we use
the 512 features of the ResNet-18’s encoder to obtain our latent
space.

Classifier using pseudo-labels: We replace the original VGG-16

classifier with two linear layers with 4, 096 neurons followed
by ReLU activations and a softmax decision layer. We train the
model with the last four layers unfixed by backpropagating
errors using categorical cross-entropy. We use stochastic gradient
descent with a linear decay learning rate initialized at 0.1 and
momentum of 0.9 over 15 epochs.

Parameter setting: OPFSup and OPFSemi, used for pseudo-
labeling (Sec. 4.3.2), have no parameters. For Linear SVM and
t-SNE (Sec. 4.5.1.1), we use the default parameters provided by
scikit-learn.

For replication purposes, all our code and results are made
openly available (Benato, B.C., 2022).

4.5 exploring a projection with a good visual sepa-
ration

4.5.1 Proposed experiments

To describe our experiments, we first introduce a few notations. S,
U, and T are the supervised (known labels), unsupervised (to be
pseudo-labeled), and test sets (see Sec. 4.4.3). Let I be the images
in a given dataset having true labels L and pseudo-labels P. Let
F be the latent features obtained by the three contrastive learning
methods; and let F′ be the features’ projection to 2D via t-SNE.

82

4.5 exploring a projection with a good visual separation

We use subscripts to denote on which subset I, L, P, and F are
computed, e.g. FS are the latent features for samples in S. Finally,
let A be the initialization strategy for training a classifier C.

Figure 4.2 shows the several experiments we executed to ex-
plore the claims C1-C3 listed in Sec. 4.1. These experiments are
detailed next.

nD

nD

nD

nD

C1

C2

C3

Legend

Figure 4.2: Summary of the proposed experiments.

4.5.1.1 Experiment for testing C1

Our first claim C1 is the following: contrastive learning meth-
ods produce high separability of classes (i.e., DS) in the learned
feature space. Also, we noticed that using contrastive learning
increased the propagation accuracy in up to 20% vs using a sim-
pler feature learning method, i.e., generating the latent space via

83

linking data separation, visual separation, and classifier performance

autoencoders (Benato et al., 2018). Since the concept of data sep-
arability is not uniquely and formally defined (see Sec. 4.1), di-
rectly measuring DS is a difficult task. As such, we assess DS
by a ‘proxy’ method: We train two distinct classifiers C, both
using 1% supervised samples. For this, we use Linear SVM, a
simple linear classifier used to check the linear separability of
classes in the latent space; and OPFSup (Papa and Falcão, 2009),
an Euclidean distance-based classifier. Our assumption is if these
classifiers yield high quality, then DS is high, and conversely. We
measure classifiers’ quality by accuracy and κ over correctly clas-
sified samples in T.

With the above, we conduct three experiments – one per
method of latent space generation (see Sec. 4.3.1):

a) SimCLR: Train with A on IS∪U ; extract features FS and FT ;
train C on FS and LS; test on FT and LT .

b) SupCon: Train with A on IS and LS; extract features FS and
FT ; train and test as above.

c) SimCLR+SupCon: Train SimCLR with A on IS∪U ; fine-tune
with SupCon on IS and LS; extract features FS and FT ; train
and test as above.

4.5.1.2 Experiment for testing C2

Similarly to C1, evaluating the VS of projections to test C2 can
be done in many ways since visual separation of clusters in a 2D
scatterplot is a broad concept. In DR literature, several metrics
have been proposed for this task (see surveys of Espadoto et al.
(2019a) and Nonato and Aupetit (2018) and also Sec. 2.3.4). Yet,
such metrics are typically used to gauge the projection quality
when explored by a human. Rather, in our context, we use projec-
tions automatically to drive pseudo-labeling and improve classifi-
cation (Sec. 4.3.2). As such, it makes sense to evaluate our projec-
tions’ VS by how well they can do this label propagation. For this,
we compare the computed pseudo-labels with the true, super-
vised, labels by computing accuracy and κ for the correctly com-
puted pseudo-labels over U. We do this via three experiments:

a) SimCLR: Train with A on IS∪U ; extract features FS∪U ; com-
pute 2D features F′ with t-SNE from FS∪U ; propagate labels
LS with OPFSemi from F′

S to F′
U ;

b) SupCon: Train with A on IS and LS; extract features FS∪U ;
compute 2D features F′ with t-SNE from FS∪U ; propagate
labels as above;

84

4.5 exploring a projection with a good visual separation

c) SimCLR+SupCon: Train SimCLR with A on IS∪U ; fine-tune
with SupCon on IS and LS; extract features IS∪U ; compute
2D features F′ with t-SNE from FS∪U ; propagate labels as
above.

4.5.1.3 Experiment for testing C3

Finally, we use the computed pseudo-labels to train and test a
DNN classifier, namely VGG-16, to test C3, i.e., gauge how CS is
correlated (or not) with VS and DS. For this, we do the following
experiments:

a) baseline: train with IS and LS; test on IT and LT ;

b) SimCLR: train with IS∪U and LS∪PU , with pseudo-labels PU
from (Sec. 4.5.1.2,a); test as above;

c) SupCon: train with IS∪U and LS∪PU , with pseudo-labels PU
from (Sec. 4.5.1.2,b); test as above;

d) SimCLR+SupCon: train with IS∪U and LS∪PU , with pseudo-
labels PU from (Sec. 4.5.1.2,c); test as above.

4.5.2 Results

We present the results of the experiments in Sec. 4.5.1 and along
our claims C1-C3.

4.5.2.1 C1: Contrastive learning yields high DS

Table 12 shows the classification results for the experiments in
Sec. 4.5.1.1 in terms of accuracy and κ (mean and standard de-
viation) for the trained Linear SVM and OPFSup classifiers. To
ease interpretation, we next summarize these results by averag-
ing classification values using a heatmap in Fig. 4.3.

We first discuss the contrastive learning methods trained from
scratch vs using ImageNet pre-trained weights. The best accuracy
and κ for all datasets exceed 0.70 and 0.59, respectively. Linear
SVM obtained the best results for most datasets, showing that
these latent spaces have a reasonable linear separation between
classes even when classified with only 1% supervised samples. In
contrast, OPFSup seems to suffer from the dimensionality curse
as it uses Euclidean distances in the latent space. This further mo-
tivates the latent space’s dimensionality reduction when using an
OPF classifier. In cases where OPFSemi values are higher than

85

linking data separation, visual separation, and classifier performance

Table 12: C1: DS assessment of SimCLR’s, SupCon’s, and Sim-
CLR+SupCon’s latent spaces using Linear SVM and OPFSup
on T. The three methods are compared trained from scratch
and with pre-trained weights during 50 epochs. Best values
per dataset and model initialization are in bold.

datasets metrics
from scratch

SimCLR SupCon SimCLR+SupCon

LinearSVM OPFSemi LinearSVM OPFSemi LinearSVM OPFSemi

H.eggs*
acc 0.842436 ± 0.047 0.861268 ± 0.019 0.811048 ± 0.048 0.752668 ± 0.058 0.890144 ± 0.015 0.902072 ± 0.006

κ 0.810976 ± 0.057 0.835316 ± 0.023 0.770732 ± 0.058 0.705686 ± 0.067 0.868792 ± 0.018 0.883541 ± 0.007

P.cysts*
acc 0.722607 ± 0.034 0.678489 ± 0.025 0.668973 ± 0.094 0.660611 ± 0.016 0.719723 ± 0.010 0.673876 ± 0.032

κ 0.616310 ± 0.047 0.569074 ± 0.031 0.559129 ± 0.121 0.553795 ± 0.019 0.616431 ± 0.011 0.562813 ± 0.039

H.larvae
acc 0.935545 ± 0.003 0.905213 ± 0.003 0.929858 ± 0.009 0.901422 ± 0.037 0.934913 ± 0.015 0.932070 ± 0.017

κ 0.710109 ± 0.040 0.564216 ± 0.050 0.673113 ± 0.020 0.554242 ± 0.165 0.708803 ± 0.064 0.683580 ± 0.094

H.eggs
acc 0.772056 ± 0.005 0.710778 ± 0.012 0.657975 ± 0.004 0.561930 ± 0.037 0.783572 ± 0.022 0.730335 ± 0.025

κ 0.565300 ± 0.041 0.524010 ± 0.017 0.122930 ± 0.116 0.259556 ± 0.045 0.595363 ± 0.062 0.543848 ± 0.038

P.cysts
acc 0.733078 ± 0.028 0.627772 ± 0.009 0.628701 ± 0.017 0.527342 ± 0.015 0.766284 ± 0.018 0.677464 ± 0.026

κ 0.561195 ± 0.025 0.409251 ± 0.010 0.254190 ± 0.056 0.260470 ± 0.017 0.600513 ± 0.037 0.482015 ± 0.033

datasets metrics
pre-trained

SimCLR SupCon SimCLR+SupCon

LinearSVM OPFSemi LinearSVM OPFSemi LinearSVM OPFSemi

H.eggs*
acc 0.809793 ± 0.031 0.834903 ± 0.032 0.854990 ± 0.017 0.842436 ± 0.018 0.839297 ± 0.013 0.880728 ± 0.020

κ 0.773903 ± 0.037 0.803842 ± 0.038 0.825372 ± 0.021 0.811695 ± 0.023 0.809970 ± 0.015 0.858649 ± 0.024

P.cysts*
acc 0.685410 ± 0.039 0.580450 ± 0.012 0.742215 ± 0.012 0.697232 ± 0.005 0.690312 ± 0.030 0.614764 ± 0.011

κ 0.579214 ± 0.048 0.444268 ± 0.019 0.652441 ± 0.012 0.595298 ± 0.006 0.571982 ± 0.039 0.483336 ± 0.013

H.larvae
acc 0.949447 ± 0.007 0.947551 ± 0.016 0.950079 ± 0.008 0.949447 ± 0.010 0.952607 ± 0.007 0.951343 ± 0.005

κ 0.779016 ± 0.039 0.767287 ± 0.080 0.755562 ± 0.061 0.748063 ± 0.072 0.777646 ± 0.049 0.775075 ± 0.045

H.eggs
acc 0.772490 ± 0.022 0.755976 ± 0.040 0.780965 ± 0.053 0.703390 ± 0.065 0.765971 ± 0.038 0.782051 ± 0.017

κ 0.606751 ± 0.031 0.586526 ± 0.055 0.566952 ± 0.146 0.469467 ± 0.108 0.591410 ± 0.056 0.617267 ± 0.022

P.cysts
acc 0.616278 ± 0.083 0.615117 ± 0.020 0.721932 ± 0.013 0.635551 ± 0.007 0.709857 ± 0.043 0.681528 ± 0.024

κ 0.378195 ± 0.125 0.370532 ± 0.043 0.505566 ± 0.043 0.419729 ± 0.011 0.526674 ± 0.052 0.486552 ± 0.030

Figure 4.3: C1: Values from Tab. 12 averaged per contrastive learning
technique.

86

4.5 exploring a projection with a good visual separation

LinearSVM, both are relatively close, i.e., for H.eggs* using Sim-
CLR+SupCon. Separately, we see that the ImageNet pre-trained
weights helped the three compared methods for most methods
and datasets, while the best values for H.eggs* and P.cysts are ob-
tained when trained from scratch. SimCLR had an increase of
around 0.10 in κ for H.larvae with pre-trained weights. SupCon
also had an extra 0.10 accuracy and κ for all datasets with pre-
trained weights. SimCLR+SupCon achieved its best results com-
pared to SimCLR and SupCon for most datasets with pre-trained
weights. We also see this in Fig. 4.3 – for the κ plot, brighter cells
are mainly in the SimCLR+SupCon columns. We also see that
higher accuracy values do not always reflect higher κ values, e.g.,
for the H.larvae dataset. This can be justified by the unbalancing
of classes presented in such datasets, as discussed in Sec. 4.4.2.

Although contrastive learning yields quite high DS values, we
see both in Tab. 12 and Fig. 4.3 that there exists quite some DS
variation across datasets. This will help us next explore how dif-
ferent projection methods map these values to visual separation
(VS).

4.5.2.2 C2: t-SNE projections of contrastive latent spaces yield high
VS

Table 13 show the results for the experiments in Sec. 4.5.1.2, i.e.,
the mean propagation accuracy and κ in pseudo-labeling for the
correctly assigned labels in U for EPL run on latent spaces cre-
ated by SimCLR, SupCon, and SimCLR+SupCon.

The best results were obtained when using the ImageNet pre-
trained weights. This shows that the pseudo-labeling on the con-
trastive latent space is favored by such pre-trained weights. Sup-
Con gained almost 0.20 in κ compared with SimCLR for H.eggs
and P.cysts without impurity. SupCon obtained the best results
for the H.Eggs and P.cysts without impurities, while the Sim-
CLR+SupCon obtained the best results for the same datasets with
impurities. SimCLR+SupCon improved the results of SimCLR for
those datasets. For H.larvae, the results of the three methods were
similar.

4.5.2.3 C3: Classifiers trained by pseudo-labels obtained from high-VS
projections have a high CP

Table 14 shows the results of classification for VGG-16 trained
from the pseudo-labeling performed on latent spaces from Sim-
CLR, SupCon, and SimCLR+SupCon.

87

linking data separation, visual separation, and classifier performance

Table 13: C2: Propagation results for pseudo-labeling U on the projected
SimCLR’s and SupCon’s latent spaces, from scratch and using
ImageNet pre-trained weights. Best values per dataset are in
bold.

trained from scratch with ImageNet pre-trained weights

a) SimCLR b) SupCon c) SimCLR+SupCon a) SimCLR b) SupCon c) SimCLR+SupCon

H.eggs

(w/o imp)

acc 0.861493 ± 0.012 0.713554 ± 0.077 0.896255 ± 0.041 0.795203 ± 0.129 0.951765 ± 0.041 0.830234 ± 0.123

κ 0.561568 ± 0.009 0.473379 ± 0.025 0.567093 ± 0.020 0.756312 ± 0.153 0.942519 ± 0.049 0.797482 ± 0.148

P.cysts

(w/o imp)

acc 0.652324 ± 0.027 0.641073 ± 0.038 0.650470 ± 0.027 0.568991 ± 0.036 0.706973 ± 0.092 0.565282 ± 0.091

κ 0.537704 ± 0.043 0.531090 ± 0.040 0.533208 ± 0.031 0.428962 ± 0.036 0.619738 ± 0.102 0.439581 ± 0.103

H.larvae
acc 0.898739 ± 0.033 0.886539 ± 0.003 0.941169 ± 0.013 0.959062 ± 0.007 0.946184 ± 0.010 0.954724 ± 0.005

κ 0.532710 ± 0.179 0.404983 ± 0.119 0.694591 ± 0.029 0.817274 ± 0.030 0.777621 ± 0.020 0.792838 ± 0.009

H.eggs
acc 0.710173 ± 0.035 0.585802 ± 0.026 0.741755 ± 0.065 0.719862 ± 0.077 0.751723 ± 0.052 0.780418 ± 0.080

κ 0.357514 ± 0.044 0.178536 ± 0.031 0.374099 ± 0.108 0.532788 ± 0.120 0.553654 ± 0.094 0.624724 ± 0.113

P.cysts
acc 0.607884 ± 0.049 0.530785 ± 0.019 0.666119 ± 0.027 0.670898 ± 0.051 0.577025 ± 0.049 0.705042 ± 0.035

κ 0.380969 ± 0.066 0.235849 ± 0.018 0.457391 ± 0.056 0.430201 ± 0.022 0.320479 ± 0.057 0.513962 ± 0.043

We notice that the results of VGG-16’s classification follow the
same pattern as the propagation results (Tab. 13). The best re-
sults were found by the methods using the ImageNet pre-trained
weights. Also, SupCon obtained the best results for H.Eggs
and P.cysts without impurities, while SimCLR+SupCon obtained
the best results for the same datasets with impurities. SupCon
showed a gain of almost 0.20 in κ for H.eggs without impurity
and H.larvae, and 0.15 for P.cysts without impurity when com-
pared with the baseline. In short, the results show that VGG-16

can learn from the pseudo-labels since it provided good classifi-
cation accuracies and κ – higher than 0.85 and 0.76, respectively –
for H.eggs and P.cysts without impurity and H.Larvae. However,
the compared methods could not surpass the baseline for H.eggs
and P.cysts with impurities. We discuss this aspect next.

Table 14: C3: VGG-16’s classification results on T when using pseudo
labels from SimCLR’s, SupCon and SimCLR+SupCon latent
spaces, from scratch and with ImageNet pre-trained weights.
Best values per dataset are in bold.

a) baseline
trained from scratch with ImageNet pre-trained weights

b) SimCLR c) SupCon d) SimCLR+SupCon a) SimCLR b) SupCon c) SimCLR+SupCon

H.eggs

(w/o imp)

acc 0.812932 ± 0.059 0.435028 ± 0.400 0.714375 ± 0.088 0.925926 ± 0.035 0.823603 ± 0.138 0.961080 ± 0.039 0.858129 ± 0.127

κ 0.775954 ± 0.073 0.292310 ± 0.506 0.662603 ± 0.098 0.912482 ± 0.041 0.790296 ± 0.164 0.953710 ± 0.047 0.831107 ± 0.152

P.cysts

(w/o imp)

acc 0.757209 ± 0.015 0.589965 ± 0.174 0.662053 ± 0.064 0.606113 ± 0.188 0.752905 ± 0.183 0.857411 ± 0.085 0.740945 ± 0.216

κ 0.651933 ± 0.023 0.383736 ± 0.334 0.558104 ± 0.071 0.408416 ± 0.354 0.622887 ± 0.185 0.766192 ± 0.043 0.608864 ± 0.200

H.larvae
acc 0.930806 ± 0.026 0.903950 ± 0.034 0.888784 ± 0.009 0.942496 ± 0.015 0.956714 ± 0.004 0.952607 ± 0.008 0.957978 ± 0.001

κ 0.613432 ± 0.233 0.538558 ± 0.196 0.406452 ± 0.168 0.738656 ± 0.061 0.809830 ± 0.019 0.803148 ± 0.018 0.807574 ± 0.021

H.eggs
acc 0.862234 ± 0.015 0.728814 ± 0.059 0.606693 ± 0.042 0.779444 ± 0.073 0.737723 ± 0.068 0.780095 ± 0.060 0.806389 ± 0.073

κ 0.740861 ± 0.028 0.566056 ± 0.064 0.286646 ± 0.063 0.627849 ± 0.099 0.553855 ± 0.114 0.592800 ± 0.116 0.661330 ± 0.103

P.cysts
acc 0.850691 ± 0.018 0.687333 ± 0.028 0.379775 ± 0.020 0.703820 ± 0.020 0.725648 ± 0.036 0.645304 ± 0.052 0.737258 ± 0.036

κ 0.751667 ± 0.028 0.429244 ± 0.179 0.184170 ± 0.023 0.522443 ± 0.027 0.540847 ± 0.049 0.395300 ± 0.079 0.565966 ± 0.045

4.5.3 Discussion

We next discuss several aspects pertaining to our results.

88

4.5 exploring a projection with a good visual separation

4.5.3.1 Visual separation vs classifier performance

Figure 4.4.i shows the 2D t-SNE projections of the three com-
puted latent spaces for all five studied datasets. For each dataset,
the top row (a) shows the few (1%) supervised labels (colored
points) thinly spread among the vast majority of unsupervised
(black) samples; the bottom row (b) shows samples colored by
the computed pseudo-labels.

We see in all images a good correlation of the visual separa-
tion VS (point groups separated from each other by whitespace)
with the lack of label mixing in such groups. For H.eggs with-
out impurity, all three latent space projections show a clear VS,
and we see that this leads to almost no color mixing in the propa-
gated pseudo-labels. For the H.eggs dataset, we see how the visu-
ally separated groups show almost no color mixing, whereas the
parts of the projection where no VS is present show color mixing.
For P.cysts without impurity, there is a clearly separated group at
the bottom in all three projections which also has a single color
(label). The remaining parts of the projections, which have no
clear VS into distinct groups, show a mix of different colors. For
P.cysts, the projections have even less VS, and we see how labels
get even more mixed – for instance, the impurity class (brown) is
spread all over the projection. For H.larvae, the larvae class (red)
is better separated from the big group of impurities (green), and
this correlates with the larvae samples being all located in a tail-
like periphery of the projection – thus, better visually separated
from the rest.

All in all, these results show that a good VS leads to a low
mixing of the propagated labels, and conversely. In turn, a low
mixing will lead to a high classification performance (CP), and
conversely, i.e., our claim C3. Figure 4.4.ii shows this by compar-
ing the results for the baseline and for VGG-16 trained with the
generated pseudo-labels. We see a gain of almost 0.20 in κ from
baseline (red) to the proposed pseudo-labeling method (green)
for those datasets with a clear VS and little label mixing in the
projections. Conversely, we see the CP results are are below to
baseline for the datasets with poor VS and color-mixing in their
projections.

4.5.3.2 Contrastive learning from few supervised samples

Our experiments with ImageNet pre-trained weights and higher
results show that SimCLR – even trained with thousands of unsu-
pervised samples (69%) – and having more information on the

89

linking data separation, visual separation, and classifier performance

H
. L

ar
va

e

VGG-16 classification results per dataset

H
. e

gg
s

(w
/o

)
H

. l
ar

va
e

P.
 c

ys
ts

(w
/o

)
P.

 c
ys

ts

H
. e

gg
s

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

H
.

eg
g

s
(w

/o
 i

m
p

.)

(a)

(b)

H
.

eg
g

s

(a)

(b)

P.
 c

y
st

s
(w

/o
 i

m
p

.)

(a)

(b)

H
.

la
rv

ae

(a)

(b)

P.
 c

y
st

s

(a)

(b)

baseline

SimCLR
SupCon
SimCLR+SupCon

Figure 4.4: (i) top left: t-SNE projections of the three contrastive latent
spaces (SimCLR, SupCon, SimCLR+SupCon) for the six stud-
ied datasets. In (a), black points are the unsupervised sam-
ples U and colored points the supervised ones S. In (b), colors
show the computed pseudo-labels. (ii) bottom right: κ values
for baseline, SimCLR, SupCon, and SimCLR+SupCon exper-
iments. Datasets are ordered on higher κ values from left to
right.

data distribution of the original space – did not surpass SupCon
which used only dozens of supervised samples (1%). Our expla-
nation for this is that the latent space generated when SupCon
was used to fine-tune SimCLR (SupCon+SimCLR) had a better
DS than the one created by SimCLR – this is by Tab. 12. This
shows the benefit of using SupCon with supervised data restric-
tion as compared to SimCLR, a finding that up to our knowledge
is novel. Separately, the fact that a higher DS lead to a higher CP
further supports our claim C3.

4.5.4 Summary of findings: C1-C3

Let us summarize our findings so far involving contributions C1-
C3. We proposed a method to create high-quality classifiers for
image datasets from training-sets having only very few super-

90

4.6 exploring multiple projections : c4-c5

vised (labeled) samples. For this, we used two contrastive learn-
ing approaches (SimCLR and SupCon) as well as a combination
of the two to generate latent spaces. Next, we projected these
spaces to 2D using t-SNE, propagated labels in the projection,
and finally used these pseudo-labels to train a final deep-learning
classifier for a challenging problem involving the classification of
human intestinal parasite images.

Our results so far show that SupCon performed better than
SimCLR when only 1% of supervised samples were available,
even though SimCLR uses thousands of distinct samples of the
data distribution. We showed label propagation accuracies up to
95% for the studied datasets without impurities (an adversarial
class) and up to 70% for datasets with impurities, respectively.

Additionally, our experiments show that a high data separa-
tion (DS) in the latent space leads to a high visual separation
(VS) in the 2D t-SNE projection which, in turn, leads to high clas-
sifier performance (CP). While partial results of this kind have
been presented by earlier infovis and machine learning papers,
our work is, to our knowledge, the first time that DS, VS, and
CP are all linked in the context of an application involving the
generation of rich training-sets by pseudo-labeling.

4.6 exploring multiple projections : c4-c5

We explored in Section 4.5 the links of DS, VS, and CP in the
context of using pseudolabeling. However, the end-to-end rela-
tionships between DS, VS, and CP – especially when using differ-
ent projection techniques – were still not fully studied. The key
limitation was using a single projection technique, t-SNE (van der
Maaten and Hinton, 2008), which gave good VS results. This thus
only shows that, if DS and VS are both high, then CP is also high.
This does not explain the full link between DS, VS, and CP. For
instance: Does a high DS always imply a high VS? Does a high VS
always imply a high CP? What are these correlations when one
uses a different projection technique than t-SNE?

To answer such questions, we extend our studies to evaluate 10

projection techniques (apart from t-SNE) which produce a wide
range of VS values. Apart from the work presented so far in
Sec. 4.5, which covered claims C1-C3, we now cover our last two
contributions:

C4 We identify projection techniques for which DS strongly cor-
relates with VS and also techniques for which this does not
happen;

91

linking data separation, visual separation, and classifier performance

C5 We show that good-VS projections are essential for training
classifiers that reach a high CP.

Our work brings evidence that DS, VS, and CP are strongly
correlated for a specific class of projection techniques. For these
projections, one can use our proposed pipeline to design high-CP
classifiers, specially for training sets with very few supervised
(labeled) points. We also identify a class of projection techniques
which lead to poor VS regardless of the available DS. We argue
that these projections are less useful instruments in classifier de-
sign tasks and, more broadly, any infovis task where assessing
DS via VS is important.

4.6.1 Proposed experiments

When describing, next, our different experiments, we used the
same notations as defined earlier in Section 4.5.1. Figure 4.5
shows the several experiments we performed to explore the
claims C4 and C5 listed in Sec. 4.6. We next detail these exper-
iments.

4.6.1.1 Experiment for testing C4

For testing C4, many strategies could be used to evaluate the VS
of projections since visual separation of clusters in a 2D scatter-
plot is a broad concept. Several metrics have been proposed for
this task in DR literature – see surveys (Espadoto et al., 2019a;
Nonato and Aupetit, 2018). However, existing metrics are usu-
ally used to gauge the projection quality when explored by a
human. Rather, in our context, we use projections automatically
to drive pseudo labeling and improve classification (Sec. 4.3.2) –
and, in this process, we aim to find which projection techniques
are best for this task. In this way, evaluating our projections’ VS
by how well they can do this label propagation is a good assess-
ment for this purpose. We compare the computed pseudo labels
with the true, supervised, labels by computing accuracy and κ for
the correctly computed pseudo-labels over U. This comparison
is performed using distinct projection techniques P (Sec. 4.4.1)
to understand how P is directly related to the different VS re-
sulted from each projection. We proposed three experiments aim
to achieve precisely this:

a) SimCLR: Train with A on IS∪U ; extract features FS∪U ; com-
pute 2D features F′ with P from FS∪U ; propagate labels LS
with OPFSemi from F′

S to F′
U ;

92

4.6 exploring multiple projections : c4-c5

nD

nD

nD

nD

C1

C2

C3

Legend

Figure 4.5: Summary of the proposed experiments for testing our claims
C1, C2 (C4), and C3 (C5). We added C1.c) to complement the
experimental setup first proposed in (Benato et al., 2023c).

93

linking data separation, visual separation, and classifier performance

b) SupCon: Train with A on IS and LS; extract features FS∪U ;
compute 2D features F′ with P from FS∪U ; propagate labels
as above;

c) SimCLR+SupCon: Train SimCLR with A on IS∪U ; fine-tune
with SupCon on IS and LS; extract features IS∪U ; compute
2D features F′ with P from FS∪U ; propagate labels as above.

4.6.1.2 Experiment for testing C5

Finally, the computed pseudo labels are used to train and test a
DNN classifier, in this case VGG-16, to test how CP is correlated
(or not) with VS and DS. For this, we do the following experi-
ments:

a) baseline: train with IS and LS; test on IT and LT ;

b) SimCLR: train with IS∪U and LS∪PU , with pseudo-labels PU
from (Sec. 4.6.1.1,a); test as above;

c) SupCon: train with IS∪U and LS∪PU , with pseudo-labels PU
from (Sec. 4.6.1.1,b); test as above;

d) SimCLR+SupCon: train with IS∪U and LS∪PU , with pseudo-
labels PU from (Sec. 4.6.1.1,c); test as above.

4.6.2 Results

We next show the results of the experiments in Sec. 4.6.1 along
our claims C4 and C5.

4.6.2.1 C4: Correlation between different projections and VS

Table 15 shows the results for the experiments in Sec. 4.6.1.1, i.e.,
the mean propagation accuracy and κ in pseudolabeling for the
correctly assigned labels in U for EPL run using the selected P on
latent spaces created by SimCLR, SupCon, and SimCLR+SupCon.
Figure 4.6(left) shows the same data using a heat map for easier
interpretation.

We got the best results using the ImageNet pre-trained weights
– see the lightgreen-yellow cells in the three rightmost columns
marked pre-trained in Fig. 4.6(left). This shows that such pre-
trained weights favor the pseudolabeling on the contrastive latent
space. Additionally, SimCLR+SupCon obtained the best results
among compared the compared projections – see the brighter col-
ors in the rightmost column in the same figure.

94

4.6 exploring multiple projections : c4-c5

More interestingly, we see a clear pattern of similar horizontal
colors in Fig. 4.6(left). For κ, these ‘color bands’ match very well
the projection techniques. For instance, the dark-blue block of
cells in the figure tells that FICA, ISO, KPCA, LLE, and MLLE
score very poor values, i.e., create a poor VS. In contrast, t-SNE,
UMAP, FA, and MDS have brighter cells, so, they create better
VS. We will explore this further in Sec. 4.6.3.

Figure 4.6: “C4: Propagation results" and “C5: Classification results". For
the proposed experiments, results of accuracy and κ are
shown for pseudolabeling using 10 projection techniques
P on SimCLR’s, SupCon’s, and SimCLR+SupCon’s latent
spaces trained from scratch or with pre-trained weights for
five datasets.

95

linking data separation, visual separation, and classifier performance

Table 15: C2: Propagation results for pseudo-labeling U on the projected
SimCLR’s and SupCon’s latent spaces, from scratch and using
ImageNet pre-trained weights. Best values per dataset are in
bold.
techniques datasets metric

from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

FA

H.eggs*
acc 0.747777 ± 0.068 0.560496 ± 0.050 0.791431 ± 0.040 0.807060 ± 0.026 0.641337 ± 0.071 0.766370 ± 0.065

κ 0.697796 ± 0.082 0.473382 ± 0.062 0.750259 ± 0.047 0.767607 ± 0.032 0.566708 ± 0.086 0.721839 ± 0.077

P.cysts*
acc 0.539688 ± 0.073 0.644288 ± 0.054 0.552300 ± 0.022 0.576286 ± 0.039 0.537092 ± 0.038 0.576781 ± 0.038

κ 0.389467 ± 0.085 0.530016 ± 0.059 0.427268 ± 0.046 0.428285 ± 0.047 0.383229 ± 0.065 0.428245 ± 0.059

H.larvae
acc 0.920835 ± 0.021 0.889115 ± 0.015 0.947540 ± 0.012 0.882201 ± 0.056 0.950386 ± 0.005 0.955809 ± 0.008

κ 0.649369 ± 0.093 0.455761 ± 0.078 0.726970 ± 0.092 0.599440 ± 0.164 0.751991 ± 0.044 0.785414 ± 0.053

H.eggs
acc 0.659959 ± 0.030 0.518726 ± 0.016 0.607322 ± 0.040 0.693032 ± 0.014 0.618129 ± 0.078 0.768586 ± 0.049

κ 0.445596 ± 0.026 0.187524 ± 0.014 0.368271 ± 0.066 0.480564 ± 0.027 0.319189 ± 0.101 0.587166 ± 0.078

P.cysts
acc 0.596337 ± 0.031 0.513513 ± 0.018 0.649445 ± 0.038 0.573540 ± 0.004 0.550197 ± 0.029 0.675427 ± 0.018

κ 0.305130 ± 0.020 0.219125 ± 0.034 0.399547 ± 0.084 0.331404 ± 0.048 0.271909 ± 0.046 0.482847 ± 0.007

FICA

H.eggs*
acc 0.191054 ± 0.003 0.174616 ± 0.034 0.191592 ± 0.017 0.167071 ± 0.005 0.164915 ± 0.028 0.180005 ± 0.001

κ 0.015913 ± 0.004 0.015189 ± 0.009 0.036693 ± 0.009 0.011312 ± 0.021 0.015913 ± 0.008 0.020143 ± 0.009

P.cysts*
acc 0.245920 ± 0.032 0.295128 ± 0.008 0.269288 ± 0.017 0.301681 ± 0.043 0.248393 ± 0.043 0.247404 ± 0.045

κ 0.013333 ± 0.009 0.017266 ± 0.010 0.012307 ± 0.005 0.018144 ± 0.009 0.004888 ± 0.005 0.009506 ± 0.009

H.larvae
acc 0.818219 ± 0.030 0.814152 ± 0.027 0.688762 ± 0.132 0.839637 ± 0.026 0.711265 ± 0.153 0.829606 ± 0.017

κ 0.001788 ± 0.003 0.009610 ± 0.012 0.013793 ± 0.026 0.014248 ± 0.006 0.017165 ± 0.013 0.003038 ± 0.022

H.eggs
acc 0.518539 ± 0.048 0.452674 ± 0.064 0.456307 ± 0.046 0.433016 ± 0.026 0.343767 ± 0.100 0.472331 ± 0.077

κ 0.016130 ± 0.002 0.015664 ± 0.006 0.013574 ± 0.005 0.018069 ± 0.001 0.010873 ± 0.002 0.016699 ± 0.001

P.cysts
acc 0.450948 ± 0.031 0.367179 ± 0.079 0.395749 ± 0.031 0.429745 ± 0.072 0.380469 ± 0.129 0.330695 ± 0.070

κ 0.018332 ± 0.004 0.013987 ± 0.007 0.020642 ± 0.008 0.014538 ± 0.008 0.014562 ± 0.003 0.007237 ± 0.003

ISO

H.eggs*
acc 0.194826 ± 0.011 0.182700 ± 0.014 0.172460 ± 0.017 0.176772 ± 0.028 0.162220 ± 0.028 0.164915 ± 0.032

κ 0.019858 ± 0.007 0.028010 ± 0.004 0.009387 ± 0.003 0.021445 ± 0.006 0.034176 ± 0.008 0.023816 ± 0.006

P.cysts*
acc 0.235534 ± 0.020 0.268917 ± 0.056 0.260880 ± 0.024 0.224901 ± 0.008 0.211795 ± 0.035 0.219955 ± 0.010

κ 0.011823 ± 0.004 0.013657 ± 0.005 0.013012 ± 0.001 0.008791 ± 0.003 0.010802 ± 0.006 0.002970 ± 0.003

H.larvae
acc 0.844923 ± 0.015 0.698116 ± 0.224 0.724278 ± 0.156 0.774976 ± 0.041 0.717365 ± 0.188 0.722380 ± 0.168

κ 0.022980 ± 0.016 0.023176 ± 0.015 0.009617 ± 0.008 0.010355 ± 0.018 0.017956 ± 0.010 0.009347 ± 0.011

H.eggs
acc 0.486398 ± 0.067 0.489379 ± 0.125 0.399665 ± 0.023 0.364263 ± 0.079 0.503168 ± 0.112 0.505496 ± 0.012

κ 0.014483 ± 0.013 0.020610 ± 0.005 0.010909 ± 0.007 0.004325 ± 0.007 0.013514 ± 0.004 0.019615 ± 0.003

P.cysts
acc 0.359365 ± 0.008 0.223732 ± 0.014 0.419790 ± 0.027 0.435717 ± 0.016 0.463541 ± 0.022 0.406202 ± 0.034

κ 0.015452 ± 0.008 0.009035 ± 0.001 0.014798 ± 0.002 0.016392 ± 0.006 0.019200 ± 0.012 0.017231 ± 0.004

KPCA

H.eggs*
acc 0.190245 ± 0.009 0.143088 ± 0.018 0.188898 ± 0.007 0.158717 ± 0.041 0.155753 ± 0.023 0.163837 ± 0.023

κ 0.022804 ± 0.011 0.017998 ± 0.006 0.020763 ± 0.004 0.009970 ± 0.008 0.016143 ± 0.015 0.016003 ± 0.003

P.cysts*
acc 0.252596 ± 0.046 0.304772 ± 0.056 0.243571 ± 0.047 0.222552 ± 0.008 0.302423 ± 0.049 0.164565 ± 0.012

κ 0.020874 ± 0.015 0.010778 ± 0.007 0.008015 ± 0.008 0.007448 ± 0.007 0.021246 ± 0.002 0.002761 ± 0.003

H.larvae
acc 0.838824 ± 0.006 0.709231 ± 0.179 0.741223 ± 0.126 0.837332 ± 0.029 0.697438 ± 0.162 0.709773 ± 0.181

κ 0.010105 ± 0.017 0.023394 ± 0.012 0.034326 ± 0.015 0.025248 ± 0.005 0.003343 ± 0.009 0.007443 ± 0.004

H.eggs
acc 0.550307 ± 0.052 0.452022 ± 0.185 0.421837 ± 0.030 0.499348 ± 0.054 0.574064 ± 0.022 0.490963 ± 0.064

κ 0.014382 ± 0.005 0.019979 ± 0.009 0.020720 ± 0.008 0.007635 ± 0.006 0.019011 ± 0.006 0.019884 ± 0.007

P.cysts
acc 0.441292 ± 0.024 0.367080 ± 0.125 0.417849 ± 0.047 0.323727 ± 0.088 0.490817 ± 0.017 0.371310 ± 0.053

κ 0.008013 ± 0.009 0.013086 ± 0.006 0.012913 ± 0.001 0.014376 ± 0.008 0.011941 ± 0.007 0.008518 ± 0.004

LLE

H.eggs*
acc 0.177580 ± 0.009 0.163029 ± 0.034 0.194557 ± 0.003 0.165185 ± 0.011 0.189976 ± 0.014 0.153058 ± 0.026

κ 0.012537 ± 0.006 0.010076 ± 0.003 0.024128 ± 0.006 0.016414 ± 0.006 0.033328 ± 0.010 0.000560 ± 0.012

P.cysts*
acc 0.217483 ± 0.016 0.260633 ± 0.039 0.252967 ± 0.020 0.238501 ± 0.070 0.244931 ± 0.047 0.220450 ± 0.002

κ 0.005612 ± 0.002 0.009387 ± 0.002 0.011296 ± 0.008 0.011855 ± 0.013 0.007083 ± 0.005 0.006551 ± 0.003

H.larvae
acc 0.833401 ± 0.006 0.677918 ± 0.162 0.712214 ± 0.188 0.817812 ± 0.038 0.688762 ± 0.160 0.847499 ± 0.029

κ 0.013540 ± 0.026 0.018801 ± 0.010 0.018322 ± 0.004 0.016302 ± 0.005 -0.004704 ± 0.009 0.006490 ± 0.016

H.eggs
acc 0.457798 ± 0.129 0.485374 ± 0.075 0.430501 ± 0.116 0.379356 ± 0.110 0.468604 ± 0.138 0.492920 ± 0.072

κ 0.017533 ± 0.002 0.022688 ± 0.005 0.012804 ± 0.007 0.010157 ± 0.005 0.018747 ± 0.003 0.015604 ± 0.008

P.cysts
acc 0.431039 ± 0.069 0.408242 ± 0.118 0.408541 ± 0.081 0.526106 ± 0.011 0.375890 ± 0.077 0.418446 ± 0.102

κ 0.013445 ± 0.006 0.009230 ± 0.004 0.014226 ± 0.008 0.018359 ± 0.007 0.012149 ± 0.006 0.015147 ± 0.004

MDS

H.eggs*
acc 0.831851 ± 0.010 0.679332 ± 0.055 0.825923 ± 0.028 0.852331 ± 0.047 0.710051 ± 0.024 0.863110 ± 0.016

κ 0.797733 ± 0.012 0.614286 ± 0.068 0.789018 ± 0.035 0.823455 ± 0.056 0.647216 ± 0.028 0.835812 ± 0.019

P.cysts*
acc 0.627473 ± 0.040 0.699060 ± 0.014 0.629204 ± 0.028 0.550198 ± 0.050 0.639343 ± 0.017 0.563922 ± 0.031

κ 0.494613 ± 0.061 0.595492 ± 0.015 0.490610 ± 0.043 0.408429 ± 0.058 0.514499 ± 0.022 0.416427 ± 0.040

H.larvae
acc 0.896570 ± 0.008 0.907279 ± 0.021 0.938728 ± 0.012 0.952691 ± 0.010 0.949573 ± 0.006 0.944286 ± 0.014

κ 0.530915 ± 0.025 0.532948 ± 0.100 0.670950 ± 0.103 0.799463 ± 0.039 0.746419 ± 0.050 0.716183 ± 0.115

H.eggs
acc 0.677008 ± 0.002 0.510062 ± 0.035 0.699273 ± 0.032 0.711384 ± 0.042 0.620179 ± 0.041 0.774734 ± 0.035

κ 0.455775 ± 0.042 0.223363 ± 0.025 0.480271 ± 0.045 0.501590 ± 0.055 0.325114 ± 0.050 0.584801 ± 0.064

P.cysts
acc 0.577920 ± 0.018 0.508685 ± 0.010 0.606142 ± 0.063 0.615699 ± 0.013 0.616694 ± 0.016 0.677517 ± 0.043

κ 0.318017 ± 0.034 0.241293 ± 0.016 0.383062 ± 0.068 0.382044 ± 0.036 0.359747 ± 0.024 0.489937 ± 0.053

MLLE

H.eggs*
acc 0.154136 ± 0.039 0.164915 ± 0.022 0.155753 ± 0.036 0.173269 ± 0.005 0.168418 ± 0.026 0.158717 ± 0.028

κ 0.004386 ± 0.008 0.024440 ± 0.004 0.019636 ± 0.003 0.012537 ± 0.004 0.030116 ± 0.005 0.018084 ± 0.001

P.cysts*
acc 0.261746 ± 0.027 0.244313 ± 0.039 0.258902 ± 0.006 0.225766 ± 0.023 0.250495 ± 0.057 0.228116 ± 0.005

κ 0.012912 ± 0.008 0.013391 ± 0.002 0.007871 ± 0.006 0.004547 ± 0.003 0.015660 ± 0.006 0.010145 ± 0.005

H.larvae
acc 0.836248 ± 0.009 0.764810 ± 0.062 0.790159 ± 0.048 0.728074 ± 0.064 0.862003 ± 0.011 0.621933 ± 0.135

κ 0.012424 ± 0.011 0.014140 ± 0.029 0.025816 ± 0.018 0.016783 ± 0.015 0.027929 ± 0.008 0.005776 ± 0.008

H.eggs
acc 0.379635 ± 0.038 0.539035 ± 0.034 0.449972 ± 0.049 0.389510 ± 0.077 0.531582 ± 0.065 0.520682 ± 0.031

κ 0.013558 ± 0.010 0.023266 ± 0.003 0.016370 ± 0.005 0.013985 ± 0.012 0.008897 ± 0.006 0.014190 ± 0.003

P.cysts
acc 0.331492 ± 0.042 0.400080 ± 0.050 0.429994 ± 0.023 0.427356 ± 0.085 0.362152 ± 0.077 0.377731 ± 0.022

κ 0.012621 ± 0.003 0.014195 ± 0.002 0.019642 ± 0.003 0.017896 ± 0.004 0.007093 ± 0.002 0.009973 ± 0.004

PCA

H.eggs*
acc 0.776341 ± 0.022 0.575047 ± 0.072 0.801132 ± 0.043 0.855026 ± 0.052 0.565616 ± 0.061 0.838857 ± 0.030

κ 0.730955 ± 0.027 0.485557 ± 0.093 0.760041 ± 0.053 0.826294 ± 0.063 0.485068 ± 0.065 0.808110 ± 0.035

P.cysts*
acc 0.572700 ± 0.042 0.696588 ± 0.023 0.615356 ± 0.055 0.585188 ± 0.019 0.573318 ± 0.033 0.590999 ± 0.040

κ 0.438663 ± 0.050 0.597055 ± 0.026 0.483103 ± 0.066 0.442557 ± 0.022 0.420640 ± 0.051 0.440307 ± 0.057

H.larvae
acc 0.910804 ± 0.005 0.910804 ± 0.026 0.931951 ± 0.017 0.915006 ± 0.033 0.950522 ± 0.007 0.958520 ± 0.001

κ 0.587131 ± 0.050 0.563387 ± 0.151 0.668527 ± 0.105 0.676664 ± 0.116 0.751620 ± 0.053 0.811768 ± 0.001

H.eggs
acc 0.587572 ± 0.038 0.545929 ± 0.022 0.612167 ± 0.033 0.703186 ± 0.041 0.612540 ± 0.088 0.777809 ± 0.042

κ 0.340487 ± 0.048 0.201855 ± 0.015 0.351600 ± 0.053 0.493198 ± 0.055 0.302314 ± 0.122 0.596395 ± 0.072

P.cysts
acc 0.530536 ± 0.034 0.508536 ± 0.005 0.615599 ± 0.039 0.544124 ± 0.031 0.584092 ± 0.007 0.669653 ± 0.048

κ 0.245823 ± 0.084 0.241375 ± 0.011 0.361185 ± 0.080 0.273647 ± 0.076 0.314512 ± 0.030 0.475270 ± 0.058

t-SNE

H.eggs*
acc 0.904069 ± 0.022 0.836163 ± 0.026 0.931016 ± 0.025 0.824306 ± 0.027 0.933980 ± 0.015 0.901374 ± 0.015

κ 0.885518 ± 0.026 0.804574 ± 0.031 0.918209 ± 0.030 0.791693 ± 0.031 0.921045 ± 0.018 0.882814 ± 0.017

P.cysts*
acc 0.726014 ± 0.060 0.674085 ± 0.025 0.691642 ± 0.027 0.537834 ± 0.030 0.710064 ± 0.007 0.572082 ± 0.028

κ 0.631292 ± 0.078 0.564841 ± 0.040 0.583401 ± 0.043 0.397794 ± 0.033 0.608087 ± 0.016 0.441656 ± 0.026

H.larvae
acc 0.906059 ± 0.013 0.892233 ± 0.039 0.925037 ± 0.022 0.957299 ± 0.008 0.955537 ± 0.002 0.955537 ± 0.005

κ 0.572966 ± 0.086 0.556742 ± 0.151 0.670628 ± 0.099 0.809426 ± 0.042 0.795117 ± 0.014 0.801494 ± 0.016

H.eggs
acc 0.703279 ± 0.032 0.570989 ± 0.040 0.731787 ± 0.013 0.772592 ± 0.009 0.669648 ± 0.085 0.783492 ± 0.030

κ 0.524161 ± 0.043 0.248194 ± 0.041 0.558122 ± 0.030 0.608138 ± 0.021 0.436442 ± 0.124 0.636986 ± 0.046

P.cysts
acc 0.630481 ± 0.012 0.538948 ± 0.013 0.678413 ± 0.011 0.644368 ± 0.035 0.616644 ± 0.019 0.667214 ± 0.028

κ 0.393737 ± 0.002 0.263230 ± 0.010 0.478606 ± 0.032 0.389898 ± 0.062 0.366433 ± 0.047 0.460750 ± 0.030

UMAP

H.eggs*
acc 0.880625 ± 0.020 0.811372 ± 0.056 0.907033 ± 0.026 0.823767 ± 0.070 0.926435 ± 0.018 0.908919 ± 0.011

κ 0.857432 ± 0.024 0.777552 ± 0.066 0.889462 ± 0.032 0.790407 ± 0.084 0.911833 ± 0.022 0.891483 ± 0.013

P.cysts*
acc 0.679896 ± 0.045 0.661597 ± 0.023 0.640826 ± 0.034 0.527201 ± 0.042 0.678783 ± 0.012 0.564293 ± 0.028

κ 0.566764 ± 0.059 0.554236 ± 0.022 0.518054 ± 0.051 0.382443 ± 0.048 0.562840 ± 0.029 0.414946 ± 0.045

H.larvae
acc 0.907957 ± 0.011 0.877999 ± 0.043 0.931815 ± 0.017 0.961095 ± 0.004 0.949980 ± 0.006 0.958113 ± 0.001

κ 0.584348 ± 0.059 0.499324 ± 0.130 0.710935 ± 0.049 0.830896 ± 0.019 0.763058 ± 0.053 0.803964 ± 0.011

H.eggs
acc 0.695640 ± 0.021 0.578349 ± 0.006 0.743432 ± 0.051 0.742035 ± 0.044 0.660145 ± 0.061 0.784796 ± 0.037

κ 0.488702 ± 0.012 0.217511 ± 0.009 0.563820 ± 0.081 0.567092 ± 0.056 0.410992 ± 0.121 0.637002 ± 0.051

P.cysts
acc 0.635707 ± 0.011 0.518342 ± 0.024 0.677318 ± 0.041 0.634214 ± 0.024 0.623264 ± 0.008 0.687223 ± 0.031

κ 0.368501 ± 0.023 0.215635 ± 0.010 0.470794 ± 0.064 0.388012 ± 0.058 0.387465 ± 0.006 0.491069 ± 0.035

96

4.6 exploring multiple projections : c4-c5

4.6.2.2 C5: Classifiers trained by pseudo-labels obtained from high-VS
projections have a high CP

Table 16 shows the results of classification for VGG-16 trained
from the pseudolabeling performed on latent spaces from Sim-
CLR, SupCon, and SimCLR+SupCon. Figure 4.6(right) shows the
same data as a heatmap plot for interpretation ease. We see that
the “C2: Propagation results" (left) and “C3: Classification results"
(right) subfigures in Fig. 4.6 are very similar – hence, CP is in-
deed highly correlated with VS.

We got the best CP results by the methods using the Ima-
geNet pre-trained weights – see the three rightmost columns in
Fig. 4.6(right) which have brighter cells. Also, SimCLR+SupCon
obtained the best results for most datasets, as shown by the
lighter color in the last column. Projection-wise, we see again
that t-SNE, UMAP, and MDS lead to the highest overall CP val-
ues. Separately, κ shows a bigger gap between projection tech-
niques with high values (lighter/yellow cells) and low values
(darker/purple cells). These results show that VGG-16 can learn
from the pseudo-labels since it provided good classification accu-
racies and κ – higher than 0.80 and 0.70, respectively – among the
studied datasets and projections.

4.6.3 Discussion

We next discuss the main findings emerging from our results.

4.6.3.1 Data separation vs visual separation depends on the projection
technique

Figures 4.3 and 4.6(left) give us two main insights.
First, we see a similar pattern in κ (lighter/yellow or dark-

er/purple colors) for distinct datasets. DS and VS are correlated
for some projections P, e.g., MDS, t-SNE, and UMAP; and some-
what less for FA and PCA. For other projections, e.g., FICA, ISO,
KPCA, LLE, and MLLE, this correlation is absent. For these last
projections, while there is some variation in κ for distinct datasets
in DS, VS is close to 0 for all datasets. This tells that some pro-
jections can map DS to VS quite well, whereas others cannot and
tend to create a low VS no matter how high DS is. In short, VS
strongly depends on the projection technique P.

Secondly, we see a distinct pattern for those projections that
capture well DS in their VS. Datasets with medium-high DS (ac-
curacy in [0.8, 1], κ in [0.7, 1.00]) tends to yield also medium-

97

linking data separation, visual separation, and classifier performance

Table 16: C3: VGG-16’s classification results on T when using pseudo
labels from SimCLR’s, SupCon and SimCLR+SupCon latent
spaces, from scratch and with ImageNet pre-trained weights.
Best values per dataset are in bold.

techniques datasets metric baseline
from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

FA

H.eggs*
acc 0.812932 ± 0.059 0.791588 ± 0.071 0.569994 ± 0.077 0.816070 ± 0.037 0.826114 ± 0.043 0.660389 ± 0.087 0.797238 ± 0.074

κ 0.775954 ± 0.073 0.750532 ± 0.086 0.481551 ± 0.096 0.780221 ± 0.044 0.790394 ± 0.052 0.589562 ± 0.106 0.758894 ± 0.088

P.cysts*
acc 0.757209 ± 0.015 0.574395 ± 0.132 0.684544 ± 0.056 0.590542 ± 0.015 0.663783 ± 0.037 0.586217 ± 0.049 0.648212 ± 0.033

κ 0.651933 ± 0.023 0.435072 ± 0.157 0.585071 ± 0.064 0.482646 ± 0.019 0.533400 ± 0.052 0.426891 ± 0.093 0.516758 ± 0.055

H.larvae
acc 0.930806 ± 0.026 0.917535 ± 0.033 0.889099 ± 0.015 0.948183 ± 0.018 0.891627 ± 0.057 0.947551 ± 0.010 0.951343 ± 0.014

κ 0.613432 ± 0.230 0.645066 ± 0.129 0.441950 ± 0.135 0.723843 ± 0.126 0.624029 ± 0.171 0.731107 ± 0.071 0.758448 ± 0.094

H.eggs
acc 0.862234 ± 0.010 0.708822 ± 0.015 0.582790 ± 0.047 0.655367 ± 0.035 0.730552 ± 0.010 0.667753 ± 0.058 0.782269 ± 0.057

κ 0.740861 ± 0.028 0.500625 ± 0.016 0.230899 ± 0.071 0.415120 ± 0.056 0.525028 ± 0.024 0.358934 ± 0.112 0.602154 ± 0.095

P.cysts
acc 0.850691 ± 0.018 0.650528 ± 0.010 0.569604 ± 0.016 0.698595 ± 0.039 0.638221 ± 0.013 0.646697 ± 0.024 0.736445 ± 0.012

κ 0.751667 ± 0.028 0.312113 ± 0.026 0.241764 ± 0.048 0.430761 ± 0.136 0.380899 ± 0.060 0.345129 ± 0.061 0.556038 ± 0.038

FICA

H.eggs*
acc 0.812932 ± 0.059 0.209040 ± 0.010 0.165725 ± 0.075 0.271186 ± 0.088 0.161331 ± 0.008 0.161958 ± 0.058 0.259887 ± 0.056

κ 0.775954 ± 0.073 0.002840 ± 0.004 0.009936 ± 0.022 0.092821 ± 0.104 0.002707 ± 0.037 -0.001412 ± 0.005 0.077978 ± 0.066

P.cysts*
acc 0.757209 ± 0.015 0.315744 ± 0.106 0.390138 ± 0.000 0.388408 ± 0.002 0.333045 ± 0.081 0.247981 ± 0.101 0.299884 ± 0.085

κ 0.651933 ± 0.023 0.000569 ± 0.001 0.000000 ± 0.000 0.002938 ± 0.004 -0.008047 ± 0.011 -0.000579 ± 0.001 -0.010702 ± 0.015

H.larvae
acc 0.930806 ± 0.026 0.871722 ± 0.002 0.872986 ± 0.000 0.769668 ± 0.141 0.872670 ± 0.000 0.841706 ± 0.039 0.872670 ± 0.001

κ 0.613432 ± 0.230 0.001145 ± 0.002 0.000000 ± 0.000 0.024169 ± 0.009 0.003042 ± 0.006 0.080839 ± 0.073 0.006713 ± 0.005

H.eggs
acc 0.862234 ± 0.010 0.649935 ± 0.005 0.647762 ± 0.004 0.644937 ± 0.009 0.646893 ± 0.005 0.467623 ± 0.257 0.651456 ± 0.003

κ 0.740861 ± 0.028 -0.004383 ± 0.005 -0.005765 ± 0.003 -0.007738 ± 0.012 -0.005335 ± 0.004 0.000909 ± 0.006 -0.001991 ± 0.002

P.cysts
acc 0.850691 ± 0.018 0.595147 ± 0.003 0.584814 ± 0.015 0.597353 ± 0.000 0.592825 ± 0.006 0.408452 ± 0.267 0.462441 ± 0.191

κ 0.751667 ± 0.028 -0.001485 ± 0.002 0.003837 ± 0.010 0.000000 ± 0.000 -0.005944 ± 0.008 -0.002462 ± 0.003 -0.008557 ± 0.012

ISO

H.eggs*
acc 0.812932 ± 0.059 0.248588 ± 0.062 0.173886 ± 0.028 0.173258 ± 0.033 0.164470 ± 0.058 0.118644 ± 0.051 0.137477 ± 0.050

κ 0.775954 ± 0.073 0.057848 ± 0.080 0.003443 ± 0.003 0.010141 ± 0.012 0.009016 ± 0.013 -0.000439 ± 0.000 0.018088 ± 0.012

P.cysts*
acc 0.757209 ± 0.015 0.326701 ± 0.098 0.247981 ± 0.101 0.315455 ± 0.106 0.173299 ± 0.010 0.141003 ± 0.065 0.180219 ± 0.010

κ 0.651933 ± 0.023 0.008227 ± 0.007 0.000000 ± 0.000 0.000000 ± 0.000 0.000000 ± 0.000 -0.000103 ± 0.000 0.000000 ± 0.000

H.larvae
acc 0.930806 ± 0.026 0.872986 ± 0.000 0.662243 ± 0.298 0.822117 ± 0.072 0.872670 ± 0.001 0.740916 ± 0.189 0.822749 ± 0.072

κ 0.613432 ± 0.230 0.014444 ± 0.013 -0.015757 ± 0.030 0.031433 ± 0.044 0.031303 ± 0.015 0.016744 ± 0.020 0.048051 ± 0.059

H.eggs
acc 0.862234 ± 0.010 0.649283 ± 0.006 0.577357 ± 0.107 0.642329 ± 0.009 0.621252 ± 0.044 0.643850 ± 0.013 0.650152 ± 0.004

κ 0.740861 ± 0.028 0.003225 ± 0.005 0.020891 ± 0.030 -0.006907 ± 0.003 0.001426 ± 0.003 -0.006799 ± 0.010 -0.003234 ± 0.004

P.cysts
acc 0.850691 ± 0.018 0.580634 ± 0.023 0.099036 ± 0.006 0.596424 ± 0.001 0.596424 ± 0.001 0.597237 ± 0.000 0.596308 ± 0.001

κ 0.751667 ± 0.028 -0.003610 ± 0.005 0.009051 ± 0.002 -0.001265 ± 0.001 -0.001084 ± 0.002 -0.000161 ± 0.000 -0.001397 ± 0.001

KPCA

H.eggs*
acc 0.812932 ± 0.059 0.193974 ± 0.003 0.112994 ± 0.031 0.209040 ± 0.010 0.131199 ± 0.054 0.157564 ± 0.063 0.163214 ± 0.059

κ 0.775954 ± 0.073 0.000112 ± 0.000 0.000674 ± 0.001 0.012136 ± 0.016 -0.018456 ± 0.013 -0.000097 ± 0.000 0.027955 ± 0.052

P.cysts*
acc 0.757209 ± 0.015 0.305651 ± 0.119 0.390138 ± 0.000 0.249423 ± 0.100 0.187139 ± 0.000 0.322376 ± 0.096 0.051038 ± 0.002

κ 0.651933 ± 0.023 -0.025975 ± 0.037 0.000000 ± 0.000 0.003966 ± 0.005 0.000000 ± 0.000 0.000000 ± 0.000 -0.002450 ± 0.003

H.larvae
acc 0.930806 ± 0.026 0.872670 ± 0.001 0.780411 ± 0.132 0.848657 ± 0.036 0.872354 ± 0.002 0.825908 ± 0.070 0.807899 ± 0.091

κ 0.613432 ± 0.230 0.003063 ± 0.007 0.037027 ± 0.027 0.104310 ± 0.066 0.013242 ± 0.010 0.066086 ± 0.022 0.040867 ± 0.052

H.eggs
acc 0.862234 ± 0.010 0.650804 ± 0.004 0.500217 ± 0.217 0.644285 ± 0.007 0.651021 ± 0.002 0.651890 ± 0.002 0.652977 ± 0.001

κ 0.740861 ± 0.028 -0.003327 ± 0.004 0.006654 ± 0.010 -0.008322 ± 0.006 -0.001763 ± 0.002 -0.001528 ± 0.001 -0.001004 ± 0.001

P.cysts
acc 0.850691 ± 0.018 0.596772 ± 0.001 0.427029 ± 0.240 0.596773 ± 0.001 0.411471 ± 0.260 0.597237 ± 0.000 0.597005 ± 0.000

κ 0.751667 ± 0.028 -0.000805 ± 0.001 0.001823 ± 0.003 -0.000298 ± 0.000 -0.000119 ± 0.002 -0.000161 ± 0.000 -0.000483 ± 0.001

LLE

H.eggs*
acc 0.812932 ± 0.059 0.192090 ± 0.003 0.152542 ± 0.075 0.199623 ± 0.010 0.185185 ± 0.028 0.227872 ± 0.045 0.151287 ± 0.075

κ 0.775954 ± 0.073 0.000017 ± 0.000 0.002360 ± 0.002 0.000179 ± 0.000 0.018815 ± 0.017 0.054332 ± 0.071 0.000028 ± 0.000

P.cysts*
acc 0.757209 ± 0.015 0.173299 ± 0.010 0.262976 ± 0.090 0.355824 ± 0.126 0.209054 ± 0.140 0.247981 ± 0.101 0.180219 ± 0.010

κ 0.651933 ± 0.023 0.000000 ± 0.000 0.006750 ± 0.010 0.080931 ± 0.115 0.000000 ± 0.000 0.000000 ± 0.000 0.000000 ± 0.000

H.larvae
acc 0.930806 ± 0.026 0.872354 ± 0.002 0.763349 ± 0.154 0.774723 ± 0.141 0.870774 ± 0.006 0.806319 ± 0.093 0.872986 ± 0.000

κ 0.613432 ± 0.230 0.009639 ± 0.007 0.034258 ± 0.030 0.027194 ± 0.019 0.027385 ± 0.021 0.035078 ± 0.027 0.000000 ± 0.000

H.eggs
acc 0.862234 ± 0.010 0.533681 ± 0.165 0.645589 ± 0.009 0.621903 ± 0.041 0.478705 ± 0.225 0.617557 ± 0.051 0.650804 ± 0.002

κ 0.740861 ± 0.028 0.005994 ± 0.013 0.019156 ± 0.029 -0.006981 ± 0.005 0.008658 ± 0.022 0.001140 ± 0.002 -0.002347 ± 0.002

P.cysts
acc 0.850691 ± 0.018 0.597353 ± 0.000 0.427145 ± 0.240 0.589690 ± 0.011 0.597353 ± 0.000 0.577383 ± 0.016 0.473006 ± 0.176

κ 0.751667 ± 0.028 0.000000 ± 0.000 0.000985 ± 0.002 -0.008861 ± 0.012 0.000303 ± 0.001 0.054789 ± 0.067 0.014402 ± 0.019

MDS

H.eggs*
acc 0.812932 ± 0.059 0.870057 ± 0.007 0.698054 ± 0.053 0.839924 ± 0.030 0.868801 ± 0.056 0.750785 ± 0.044 0.889517 ± 0.009

κ 0.775954 ± 0.073 0.844017 ± 0.009 0.635306 ± 0.066 0.806060 ± 0.038 0.843305 ± 0.067 0.696556 ± 0.054 0.867837 ± 0.011

P.cysts*
acc 0.757209 ± 0.015 0.660035 ± 0.042 0.729815 ± 0.018 0.679642 ± 0.008 0.675026 ± 0.019 0.688004 ± 0.049 0.623414 ± 0.047

κ 0.651933 ± 0.023 0.535152 ± 0.066 0.636650 ± 0.017 0.558141 ± 0.010 0.452008 ± 0.046 0.574029 ± 0.067 0.485190 ± 0.040

H.larvae
acc 0.930806 ± 0.026 0.896366 ± 0.010 0.907425 ± 0.021 0.941864 ± 0.022 0.961137 ± 0.003 0.948183 ± 0.014 0.944392 ± 0.020

κ 0.613432 ± 0.230 0.527845 ± 0.047 0.512390 ± 0.132 0.670216 ± 0.171 0.828970 ± 0.016 0.732767 ± 0.094 0.702961 ± 0.166

H.eggs
acc 0.862234 ± 0.010 0.735767 ± 0.006 0.556280 ± 0.010 0.755324 ± 0.023 0.736636 ± 0.040 0.649283 ± 0.049 0.787701 ± 0.039

κ 0.740861 ± 0.028 0.527193 ± 0.052 0.250879 ± 0.023 0.552969 ± 0.033 0.529298 ± 0.057 0.342224 ± 0.071 0.598315 ± 0.075

P.cysts
acc 0.850691 ± 0.018 0.640660 ± 0.022 0.541159 ± 0.012 0.672820 ± 0.066 0.639273 ± 0.041 0.684663 ± 0.022 0.742947 ± 0.021

κ 0.751667 ± 0.028 0.360158 ± 0.031 0.293691 ± 0.017 0.460289 ± 0.091 0.516147 ± 0.048 0.437128 ± 0.046 0.572537 ± 0.027

MLLE

H.eggs*
acc 0.812932 ± 0.059 0.176397 ± 0.069 0.186440 ± 0.007 0.149404 ± 0.053 0.231638 ± 0.028 0.133710 ± 0.051 0.172630 ± 0.061

κ 0.775954 ± 0.073 0.029830 ± 0.024 0.030248 ± 0.055 0.003127 ± 0.004 0.038996 ± 0.038 0.000489 ± 0.001 0.039277 ± 0.051

P.cysts*
acc 0.757209 ± 0.015 0.322664 ± 0.095 0.254902 ± 0.096 0.394175 ± 0.005 0.198673 ± 0.015 0.240773 ± 0.106 0.187139 ± 0.000

κ 0.651933 ± 0.023 0.000096 ± 0.000 0.000000 ± 0.000 0.009169 ± 0.009 0.001291 ± 0.006 0.000000 ± 0.000 0.000000 ± 0.000

H.larvae
acc 0.930806 ± 0.026 0.873618 ± 0.001 0.872670 ± 0.003 0.870774 ± 0.002 0.854029 ± 0.032 0.872986 ± 0.000 0.870774 ± 0.007

κ 0.613432 ± 0.230 0.008591 ± 0.012 0.080602 ± 0.071 0.027161 ± 0.028 0.121338 ± 0.009 0.000000 ± 0.000 0.236101 ± 0.148

H.eggs
acc 0.862234 ± 0.010 0.619513 ± 0.024 0.651456 ± 0.002 0.638418 ± 0.007 0.636679 ± 0.012 0.653629 ± 0.000 0.651456 ± 0.001

κ 0.740861 ± 0.028 -0.019102 ± 0.011 -0.002446 ± 0.003 -0.010811 ± 0.001 0.006862 ± 0.024 -0.000263 ± 0.000 -0.001735 ± 0.000

P.cysts
acc 0.850691 ± 0.018 0.583769 ± 0.015 0.585743 ± 0.016 0.596889 ± 0.000 0.592128 ± 0.007 0.528387 ± 0.095 0.596076 ± 0.001

κ 0.751667 ± 0.028 -0.013466 ± 0.014 -0.008483 ± 0.012 -0.000645 ± 0.001 -0.003423 ± 0.005 0.019087 ± 0.030 -0.001528 ± 0.001

PCA

H.eggs*
acc 0.812932 ± 0.059 0.782800 ± 0.022 0.575644 ± 0.086 0.827997 ± 0.033 0.865035 ± 0.065 0.593220 ± 0.072 0.868801 ± 0.027

κ 0.775954 ± 0.073 0.739026 ± 0.028 0.483446 ± 0.110 0.792577 ± 0.041 0.837979 ± 0.079 0.518984 ± 0.080 0.844098 ± 0.031

P.cysts*
acc 0.757209 ± 0.015 0.619666 ± 0.083 0.719147 ± 0.025 0.641580 ± 0.059 0.677047 ± 0.019 0.626586 ± 0.027 0.679354 ± 0.048

κ 0.651933 ± 0.023 0.496203 ± 0.104 0.632033 ± 0.030 0.520132 ± 0.069 0.556229 ± 0.027 0.474462 ± 0.041 0.551953 ± 0.072

H.larvae
acc 0.930806 ± 0.026 0.906793 ± 0.005 0.912480 ± 0.029 0.931438 ± 0.019 0.923539 ± 0.026 0.949447 ± 0.014 0.957662 ± 0.002

κ 0.613432 ± 0.230 0.567678 ± 0.037 0.557973 ± 0.171 0.644459 ± 0.162 0.696070 ± 0.105 0.737386 ± 0.095 0.807875 ± 0.003

H.eggs
acc 0.862234 ± 0.010 0.668622 ± 0.046 0.618644 ± 0.054 0.664711 ± 0.029 0.744242 ± 0.027 0.647327 ± 0.066 0.812690 ± 0.032

κ 0.740861 ± 0.028 0.433312 ± 0.065 0.260372 ± 0.051 0.411077 ± 0.062 0.543626 ± 0.048 0.321544 ± 0.130 0.647622 ± 0.057

P.cysts
acc 0.850691 ± 0.018 0.615000 ± 0.017 0.531638 ± 0.005 0.666899 ± 0.031 0.658307 ± 0.032 0.664229 ± 0.001 0.720771 ± 0.027

κ 0.751667 ± 0.028 0.284629 ± 0.104 0.263112 ± 0.026 0.395488 ± 0.115 0.344865 ± 0.153 0.403226 ± 0.034 0.535129 ± 0.032

t-SNE

H.eggs*
acc 0.812932 ± 0.059 0.932831 ± 0.032 0.846202 ± 0.025 0.964846 ± 0.022 0.850596 ± 0.051 0.954802 ± 0.023 0.938481 ± 0.017

κ 0.775954 ± 0.073 0.919898 ± 0.038 0.816217 ± 0.030 0.958337 ± 0.026 0.822694 ± 0.059 0.946002 ± 0.027 0.927126 ± 0.020

P.cysts*
acc 0.757209 ± 0.015 0.771626 ± 0.050 0.697232 ± 0.020 0.732122 ± 0.023 0.644464 ± 0.047 0.756920 ± 0.012 0.658881 ± 0.028

κ 0.651933 ± 0.023 0.688570 ± 0.066 0.594524 ± 0.035 0.633941 ± 0.042 0.534253 ± 0.057 0.665824 ± 0.024 0.544564 ± 0.034

H.larvae
acc 0.930806 ± 0.026 0.910901 ± 0.013 0.902685 ± 0.029 0.933965 ± 0.017 0.956714 ± 0.003 0.953871 ± 0.003 0.952291 ± 0.004

κ 0.613432 ± 0.230 0.599203 ± 0.111 0.595899 ± 0.123 0.705463 ± 0.079 0.810965 ± 0.018 0.785615 ± 0.022 0.787406 ± 0.014

H.eggs
acc 0.862234 ± 0.010 0.761191 ± 0.027 0.636028 ± 0.025 0.777705 ± 0.013 0.824641 ± 0.003 0.725772 ± 0.070 0.819426 ± 0.024

κ 0.740861 ± 0.028 0.599112 ± 0.036 0.299141 ± 0.077 0.621008 ± 0.032 0.685570 ± 0.014 0.500910 ± 0.118 0.686552 ± 0.042

P.cysts
acc 0.850691 ± 0.018 0.698711 ± 0.003 0.592476 ± 0.025 0.735748 ± 0.019 0.719378 ± 0.007 0.701614 ± 0.011 0.719959 ± 0.032

κ 0.751667 ± 0.028 0.484463 ± 0.017 0.313296 ± 0.022 0.559176 ± 0.038 0.483280 ± 0.034 0.460516 ± 0.054 0.527912 ± 0.030

UMAP

H.eggs*
acc 0.812932 ± 0.059 0.913999 ± 0.039 0.846202 ± 0.055 0.937225 ± 0.033 0.849341 ± 0.088 0.950408 ± 0.024 0.945386 ± 0.004

κ 0.775954 ± 0.073 0.897254 ± 0.047 0.817901 ± 0.065 0.925412 ± 0.039 0.820393 ± 0.105 0.940671 ± 0.028 0.935039 ± 0.005

P.cysts*
acc 0.757209 ± 0.015 0.728662 ± 0.044 0.686851 ± 0.023 0.666667 ± 0.040 0.601499 ± 0.098 0.702422 ± 0.022 0.636678 ± 0.004

κ 0.651933 ± 0.023 0.621347 ± 0.063 0.590353 ± 0.021 0.547625 ± 0.062 0.480729 ± 0.113 0.590077 ± 0.043 0.500455 ± 0.014

H.larvae
acc 0.930806 ± 0.026 0.911848 ± 0.010 0.883096 ± 0.034 0.935861 ± 0.015 0.959242 ± 0.006 0.947867 ± 0.013 0.958610 ± 0.005

κ 0.613432 ± 0.230 0.601489 ± 0.075 0.503848 ± 0.098 0.718764 ± 0.056 0.826163 ± 0.025 0.739471 ± 0.099 0.805239 ± 0.026

H.eggs
acc 0.862234 ± 0.010 0.755107 ± 0.009 0.644285 ± 0.019 0.781399 ± 0.045 0.790960 ± 0.025 0.707084 ± 0.063 0.814863 ± 0.036

κ 0.740861 ± 0.028 0.563245 ± 0.010 0.261623 ± 0.039 0.616187 ± 0.079 0.635362 ± 0.039 0.449519 ± 0.148 0.680416 ± 0.051

P.cysts
acc 0.850691 ± 0.018 0.684547 ± 0.012 0.575061 ± 0.010 0.743295 ± 0.036 0.691165 ± 0.025 0.703819 ± 0.017 0.741089 ± 0.014

κ 0.751667 ± 0.028 0.408555 ± 0.082 0.251174 ± 0.026 0.565152 ± 0.073 0.445321 ± 0.084 0.500526 ± 0.021 0.566037 ± 0.016

98

4.6 exploring multiple projections : c4-c5

high VS accuracy and κ (compare Figs. 4.3 and 4.6). H.eggs* and
H.larvae are examples of these datasets. We see a similar pattern
for low-medium accuracy and κ: For DS accuracy in [0, 0.5] and κ
in [0, 0.4], we get medium-high accuracy and κ for VS (see Fig. 4.6
for P.cysts*, P.cysts, or H.eggs). This tells that some projection tech-
niques can not only correlate VS with DS, but also keep differ-
ences for distinct datasets, while others do not.

4.6.3.2 Assessing the quality of visual separation

As explained earlier, we use κ as a measure of visual separation
of (same-labeled) points in a projection. While this is arguably
intuitive – one can propagate labels easier when surrounding
points are unlabeled or have the same label than when surround-
ing points would have many different labels – we would like to
directly test how κ and VS as perceived by humans agree.

To assess the correlation between κ and perceived VS, we
ranked our results as follows. We computed the average accuracy
and κ for each P (over all contrastive learning methods, initializa-
tion strategies, and datasets). Next, we sorted the projections P
over accuracy and κ (see Tab 17). Finally, we show in Fig. 4.7 the
actual projection results for the best, medium, and worst projec-
tion following the above ranking.

Table 17: Average values of propagation results (C2) for accuracy and κ

and studied P. P is ordered in increasing order for the respec-
tive metrics.

metrics techniques ordered by metric

acc
ISO M-LLE LLE FICA K-PCA FA PCA MDS UMAP t-SNE

0.400488 0.406233 0.411292 0.413671 0.414182 0.690367 0.697184 0.721874 0.752606 0.761406

κ
LLE FICA M-LLE K-PCA ISO FA PCA MDS UMAP t-SNE

0.013256 0.014352 0.014943 0.014971 0.015558 0.497711 0.505837 0.538983 0.583886 0.600066

The best-ranked projection in Fig. 4.7 is t-SNE. In line with this
ranking, we indeed see a quite good separation of points having
a label from those having different labels (or gray, i.e., unlabeled).
For H.eggs*, all three latent space projections (SimCLR, SupCon,
and SimCLR+SupCon) show a clear VS, and we see that this leads
to almost no color mixing in the propagated pseudo-labels. For
P.cysts*, there is a clearly separated group (red) in all three projec-
tions which also has a single color (label). The remaining projec-
tions, which have no clear VS in terms of distinct groups, show a
mix of different colors. For H.larvae, the larvae class (red) is bet-
ter separated from the big group of impurities (gray), and this
correlates with the larvae samples being all located in a tail-like

99

linking data separation, visual separation, and classifier performance

periphery of the projection – thus, better visually separated from
the rest. For H.eggs, we see how the visually separated groups
show almost no color mixing, whereas the parts of the projection
where no VS is present show color mixing. For P.cysts, the pro-
jections have even less VS, and we see how labels get even more
mixed – for instance, the impurity class (gray) is spread all over
the projection.

The medium-ranked projection technique in Fig. 4.7 is FA. Its
scatterplots show a less clear correlation between VS and lack of
label mixing in distinct groups. For H.eggs*, we notice some VS
for SimCLR and SupCon. Some groups are better clustered (red
and yellow) than others (brown and gray), but with few whites-
pace among those groups. No clear VS can be seen for all other
datasets and contrastive learning approaches – the points are con-
densed in a single group with similar colors close to each other
in this group.

Finally, LLE scored as the worst method in our ranking. Fig-
ure 4.7 shows, indeed, no clear separation of points into groups
having the same color – not only are colors intermixed all over
the projection, bit it is often hard to even visually ‘split’ the pro-
jection into distinct point groups.

All above results show, first of all, that the κ ranking of pro-
jections is indeed in line with our perception of visual separa-
tion. This empirically validates our decision to measure the latter
by computing the former. Also, our results show that a good VS
leads to a low mixing of the propagated labels, and conversely. In
turn, a low mixing leads to a high classification performance (CP),
and conversely, i.e., our claim C5. Table 17 shows this by ranking
the average results of each projection by each metric for the base-
line and VGG-16 trained with the generated pseudo-labels. We
see the best κ value for t-SNE with a clear VS and little label
mixing in the projections. Conversely, we see the medium-low κ
values [0, 0.6] for FA and LLE with poor VS and color-mixing in
their projections.

4.6.3.3 Data separation vs visual separation vs classifier performance

Section 4.6.3.1 discussed how a good projection P can map high
DS to high VS. Section 4.6.3.2 showed that VS can be measured
by κ. Section 4.6.2.2 showed that CP is correlated with VS. Let us
now put together all these observations.

Figure 4.8 shows plots of the correlation between (i) DS and
VS and (ii) VS and CP, using both accuracy or κ. To simplify
the plot, we averaged over initialization strategies (pre-trained,

100

4.6 exploring multiple projections : c4-c5

Figure 4.7: 2D projections of the best (t-SNE), medium (FA), and worst
(LLE) P for the three contrastive latent spaces (SimCLR,
SupCon, SimCLR+SupCon) and the six studied datasets
(columns). Colored points show the computed pseudo-labels
for distinct classes. Outlined points in red represent the su-
pervised points.

101

linking data separation, visual separation, and classifier performance

scratch) per contrastive learning method. As such, every point
in a plot is a (dataset, contrastive learning method, projection
technique) combination. Points are colored to indicate projection
techniques. For all same-projection points (15 of them), we also
plot a trend line showing their correlation.

Figure 4.8: Correlation plots DS-VS and VS-CP for accuracy and κ. In
each plot, a point corresponds to the average of initialization
strategies (scratch or pre-trained) for each dataset and con-
trastive learning method projected by a distinct P (in different
colors). Each line represents the trend of same-P (same-color)
points. Projections P are grouped into those which (a) map
well DS to VS and (b) create poor VS regardless of DS.

Figure 4.8 gives several insights. The DS-VS correlation plots
confirm our findings in Sec. 4.6.3.1. For accuracy, all trend lines
have an increasing slope which tells a positive DS-VS correlation,
i.e., good DS leads to good VS. We notice two main groups of
trend lines: one for (a) UMAP, t-SNE, MDS, PCA, and FA, and an-
other for (b) all other projection techniques. Indeed, Fig. 4.6(left)
showed a pattern of darker/blue points for (b) (see e.g. the
H.eggs*’s row). For κ, we see an increasing slope for trend lines
only for (a), and horizontal lines for (b). This says that only
projections in group (a) have a positive DS-VS correlation. Fig-
ure 4.6(left) confirms this by showing a stronger pattern of dark-
er/blue cells, i.e., low κ, for all datasets in (b). We conclude that

102

4.6 exploring multiple projections : c4-c5

projection techniques in group (a) yield a strong DS-VS correla-
tion, whereas projections in group (b) do not do that but rather
generate poor-VS results for any DS value.

The VS-CP correlation plots strengthens our earlier findings
from Fig. 4.6 in Sec. 4.6.2.2. For accuracy, all trend lines show an
increasing slope and thus a positive VS-CP, with a slight differ-
ence between projections in group (a) and group (b). For κ, we
also see the positive VS-CP correlation except for ISO which has
an almost flat line. Additionally, we see that the trend lines in the
middle of the plot correspond for projections in group (a). For
these projections, both VS and CP spread widely over the [0, 1]
range. In contrast, lines for projections in group (b) have values
lower than 0.05 for VS and CP. This is the same pattern found in
our earlier analysis for DS vs. VS, i.e., the presence of two groups
of projection techniques with distinct correlation values. The ex-
istence of these groups highlights the importance of the chosen
projection technique in supporting the DS, VS, and CP links. In
detail, for UMAP, t-SNE, MDS, PCA, and FA (group (a)), we con-
firm a strong DS-VS and VS-CP, thus DS-VS-CP, correlation. In
contrast, for FICA, ISO, KPCA, LLE, and MLLE (group (b)), we
find a VS-CP relation in the sense that both these values are low.
However, we did not find any DS-VS correlation since these pro-
jections map any DS values in [0, 1] to very poor VS values (close
to zero).

The above insights connect to our qualitative and ranked analy-
sis of the scatterplots in Fig. 4.7 and Tab. 17. The presence of two
groups in the correlation plots is also connected to the quality
of the perceived projection scatterplots. Scatterplots with a clear
VS among groups of different classes/colors separated by whites-
pace come from t-SNE, a projection in the group (a). Conversely,
scatterplots with no VS among groups of different classes/colors
and without any whitespace separation come from LLE, a projec-
tion in group (b).

Our key finding – that projections split in two groups – (a)
and (b), with good, respectively poor, DS-VS correlation – com-
plements and extends the largest former quantitative comparison
of projection techniques (Espadoto et al., 2019a). Our set (a), i.e.,
projections which best preserve DS-VS and are best for building
high-CP classifiers, matches quite closely the projections found
best in (Espadoto et al., 2019a). However, our quality criteria –
VS measured by pseudolabeling performance and CP measured
by classifier performance are completely different than the crite-
ria used in (Espadoto et al., 2019a) to measure projection quality.
The latter criteria include metrics such as trustworthiness, conti-

103

linking data separation, visual separation, and classifier performance

nuity, normalized stress, neighborhood hit, and Shepard correla-
tion. As outlined in Sec. 4.2, such metrics only measure how a
projection preserves local data structure. This is typically done by
using small-sized neighborhoods of under 10 points in both the
data and projection space. Visual separation (VS), however, oc-
curs at much larger scales in a scatterplot. Moreover, we measure
VS in a completely different way, namely, as the performace of
a ML algorithm (pseudolabeling) that handles all the scatterplot
points globally rather than in terms of small-scale, independent,
neighborhoods. As such, the fact that we ‘rank’ projections quite
similarly to (Espadoto et al., 2019a), but using completely differ-
ent metrics, has several potentially far-reaching implications (all
to be tested by future work):

• Projections assessed by local quality metrics (Espadoto
et al., 2019a) can be used to predict classifier performance;

• Higher-level properties like visual separation (VS) can be
predicted by lower-level metrics (Espadoto et al., 2019a);

• the VS of a projection, measured by κ or accuracy dur-
ing pseudolabeling, can be an additional quality metric
for generic projection assessment. Apart from their ability
to gauge a projection more globally, such metrics are also
much faster to compute than neighborhood-based metrics
such as trustworthiness, continuity, normalized stress, or
Shepard correlation.

4.7 conclusion

We presented a detailed study of the link between [C1] data sep-
aration (DS) in a high-dimensional partially-labeled dataset, [C2]
the visual separation (VS) in a 2D projection of that dataset, and
[C3] the performance of a classifier (CP) constructed by pseudo-
labeling the abovementioned projection.

In our work, we used two contrastive learning approaches
(SimCLR and SupCon) as well as their combination. We pro-
jected the latent spaces produced by these methods to 2D us-
ing ten projection techniques (FA, FICA, ISO, KPCA, LLE, MDS,
MLLE, PCA, t-SNE, and UMAP). We propagated labels in these
projections and finally used these pseudo-labels to train a deep-
learning classifier for a challenging problem involving the classi-
fication of human intestinal parasite images.

Our results show that SimCLR+SupCon performed better than
using only SimCLR or SupCon to create a data space with strong

104

4.7 conclusion

DS. In turn, this allowed us to construct an end-to-end classifier
with higher accuracy and κ values than earlier reported for the
respective datasets in the literature.

Separately, we showed that [C4] the 10 studied projection tech-
niques can be split into two groups. Projections in the first group
(FICA, ISO, KPCA, LLE, and MLLE) yield very poor VS results
for any DS values of their input data, and consequently also
very poor CP results. These projections are hence not useful for
our classifier engineering pipeline and, arguably, they will also
have challenges for other infovis applications where VS is impor-
tant. Projections in the second group (FA, MDS, PCA, t-SNE, and
UMAP) show a good DS-VS correlation and, next, [C5] a good
VS-CP correlation. These projections are thus ideal for our classi-
fier engineering task and, arguably, for other infovis applications
where VS is important. Our work shows, to our knowledge, for
the first time how specific projection techniques preserve a strong
DS-VS-CP correlation (or not). Our findings can assist additional
applications in infovis or machine learning where projections are
used.

Several future work directions are possible. First, the connec-
tion between pseudolabeling quality and visual separation could
be further exploited to e.g. design new metrics for visual separa-
tion using labeling algorithms or, conversely, to guide labeling by
existing visual quality metrics. Secondly, user experiments could
be designed and executed to assess more formally the relation-
ship between pseudolabeling quality and perceived visual sepa-
ration. Finally, we aim to involve users in the loop to assist the
automatic pseudolabeling process by e.g. adjusting some of the
automatically propagated labels based on the human assessment
of VS. We believe that this will lead to even more accurate pseudo-
labels and, ultimately, more accurate classifiers for the problem
at hand.

105

5M E A S U R I N G V I S U A L S E PA R AT I O N I N
P R O J E C T I O N S

5.1 introduction

As already introduced in Chapter 2 and supported by various
applications in Chapters 3 and 4, projections are a method of
choice for capturing the structure of high-dimensional data in a
low-dimensional embedding. This low dimensional embedding
can be used by the human user for visual exploration but also by
automatic algorithms for performing tasks such as pseudolabel-
ing1.

The success of such tasks involving projections depends on
the visual separation (VS) of the projection used to depict it. If a
dataset exhibits clear data separation (DS) into samples of differ-
ent classes, then analysts should be able to gauge this by seeing
a corresponding visual separation in the projection, in terms of
densely-packed, ideally non-overlapping, groups of points with
the same label (within a given group). Conversely, if a dataset ex-
hibits poor data separation, its projection should also show poor
visual separation. The relations between VS, DS, and classifier
performance (CP) have been discussed in detail in Chapter 4.

Many projection methods have been proposed, using differ-
ent underlying techniques as graphs, linear algebra, optimiza-
tion, and neural networks (Nonato and Aupetit, 2018). Such tech-
niques generate a wide variety of scatterplots for the same give
dataset, especially when one changes their various hyperparam-
eters. Several metrics have been proposed to quantify a projec-
tion’s quality. However, the most used metrics in the DR litera-
ture – Trustworthiness (T) (Venna and Kaski, 2006), Continuity
(C) (Venna and Kaski, 2006), Normalized stress (S) (Joia et al.,
2011), and Neighborhood hit (N) (Paulovich et al., 2008), intro-
duced in Sec. 2.3.4.1, do not directly measure visual separation
at a global projection level but rather more local properties (as
discussed further in Sec. 5.3.3).

Figure 18 shows this by a simple example of three DR tech-
niques (t-distributed stochastic neighbor embedding [t-SNE] (van
der Maaten and Hinton, 2008), stochastic proximity embedding

1 This chapter is a result of the published paper: "Measuring the quality of projec-
tions of high-dimensional labeled data" (Benato et al., 2023a).

107

measuring visual separation in projections

[SPE] (Agrafiotis, 2003), and uniform manifold approximation
and projection [UMAP] (McInnes et al., 2018)) and their T, C, S,
and N metrics, all ranging between 0 (worst quality) and 1 (best
quality). The SPE plot has high metric values but arguably much
poorer visual separation (of the 9 color-coded classes) into dis-
tinct, same-color, point groups than the t-SNE plot which has
much lower metric values. UMAP and SPE have similar (high)
metric values but, we argue, visual separation is much stronger
in the UMAP than the SPE plot. All in all, this shows that these
four metrics do not capture visual separation well.

projection T C S N scatterplot

t-SNE 0.516584 0.649824 0.809278 0.256746

SPE 0.833158 0.937247 0.777273 0.839947

UMAP 0.798405 0.871780 0.762065 0.978571

Table 18: Values of T, C, S, and N (Sec. 5.3.3) and scatterplots of a dataset
(cnae9, Sec. 5.3.1) for three projection techniques (t-SNE, SPE,
and UMAP, Sec. 5.3.2). S values are set as 1 − normalized stress
for easy interpretation. We see that the metrics do not correlate
well with the perceived visual separation of the label-colored
points in the projection.

Recent ML studies have explored the VS information of
2D projection spaces to assess data separation in high dimen-
sions (van der Maaten et al., 2009); understand deep learning clas-
sifiers (Rauber et al., 2017b); find misclassified samples (Nonato
and Aupetit, 2018); investigate decision boundaries of classi-
fiers (Rodrigues et al., 2019); build better classifiers (Benato et al.,
2018, 2021c, 2023e); and investigate the correlation among high-
dimensional separability, VS, and classifier performance (Benato
et al., 2023c). These studies have also made the object of the
work we presented in Chapters 3 and 4. Apart from the above,

108

5.1 introduction

some studies have investigated 1-near-neighbor classifiers (van
der Maaten and Hinton, 2008; Zhou et al., 2022) and Gaussian
mixture models (Abbas et al., 2019) to estimate the quality of
clustering. However, they did not aim to specifically measure the
correlation between classes and clusters. To our knowledge, ML
approaches were not directly used to measure this VS relation in
projections.

In this chapter, we propose a new VS quality assessment ap-
proach based on ML techniques. We exploit earlier findings that
studied VS in t-SNE projections to propagate labels, also called
pseudo labeling. Projections with high VS (as assessed qualita-
tively by users) led to good label propagation results (Benato
et al., 2023c). Our hypothesis is that the converse is also true:
If we measure a good label propagation score, then the projec-
tion will have a high VS. For label propagation, we use the semi-
supervised optimum path forest algorithm (OPFSemi) (Amorim
et al., 2016) in the 2D projection space provided by DR meth-
ods. OPFSemi was shown to lead to very good label propaga-
tion accuracies in both high-dimensional and low-dimensional
spaces (Amorim et al., 2016; Benato et al., 2023e) and as such is
a good candidate for this task. We evaluate the label propaga-
tion by computing the coefficient of agreement of Cohen’s Kappa
(κ) (Fleiss and Cohen, 1973) between true and pseudo labels, a
simple but fast and effective way to perform this task which
works well also for unbalanced labeled datasets. We assess our
proposal on 39 projection algorithms for 18 labeled datasets and
show that our method correlates with perceived VS (measured
by a user study) better than well-known metrics for projection
quality used in the DR literature. As such, we argue that our met-
ric is an additional useful way to characterize the quality of a
projection, atop of existing projection quality metrics.

Summarizing, we propose a method to quantify VS separation
in projections which

a) yields better global and local quantification of VS when
compared to four popular metrics in DR;

b) generically handles any high-dimensional quantitative la-
beled dataset and any projection technique;

c) is easy to use as it is parameter-free;

d) is fast to compute and simple to implement.

109

measuring visual separation in projections

5.2 measuring visual separation by pseudo labeling

Our work builds atop of the findings from Chapter 4 by hypoth-
esizing that high performance in label propagation indicates a
high separability of same-label groups in the projection space.
Fig. 5.1 illustrates this.

We use OPFSemi in the 2D projection space. As the algorithm
explores a complete graph with all samples in a given dataset
(Sec. 5.2.2), we argue that OPFSemi can capture local and global
information of data distribution instead of local information only
– as the neighbor-based metrics T, C, and N do. Other advantages
of OPFSemi are that the method is free of parameters and does
not make assumptions about the shapes of the classes (Amorim
et al., 2016).

Labels are propagated from supervised samples (colored) to
unsupervised samples (black). When there is poor VS in a given
projection (a), pseudo labels are wrongly assigned, something
which we can measure as described next in Sec. 5.2.3. When there
is good VS in the projection (b), pseudo labels are accurately as-
signed.

Figure 5.1: Pseudo labeling as a measure of visual separation (see
Sec. 5.2).

Fig. 5.2 shows our VS measurement pipeline which is detailed
next.

5.2.1 Sample selection

We start with a 2D projection P(D) of some labeled dataset D,
computed by any desired projection algorithm P. We next ran-
domly split P(D) into a ground-truth dataset A and test dataset

110

5.2 measuring visual separation by pseudo labeling

random
sample

selection

OPF
Semi

labeled samples A

Cohen’s k
estimation

visual
separation

assessment

2D projection P(D)

pseudo labeled
samples B

labeled
samples B

unlabeled
samples B

Figure 5.2: Pipeline of our approach to assess VS in projections.

B. In our experiments, we take 50% of the samples in P(D) in
each of A and B (different fractions can be considered).

5.2.2 Using OPFSemi for pseudo labeling

We pseudo label the samples in B by propagating the true la-
bels from A using OPFSemi (detailed in Chapter 3). Its time com-
plexity is O(m2) for m nodes, since the graph is complete, but
it is possible to precompute a minimum-spanning tree in O(m2)
and perform label propagation (optimum-path forest computa-
tion) on this tree in O(m log m) for any randomly chosen set of
prototypes in the case of our application. As the process is cal-
culated over a complete graph with all samples in D, we argue
that OPFSemi can capture local and global information of data
distribution, instead of local information only.

5.2.3 Pseudo labeling effectiveness measurement

To assess the quality of pseudo labeling, we measure the agree-
ment between the true labels (original labels of samples in B)
and the pseudo labels assigned to B by OPFSemi. This agree-
ment could be measured by accuracy, f1 score, or AUC, for exam-
ple. However, such metrics do not take into account the number
of false positives and false negatives, which can highly impact
the results for datasets having significant class imbalance. Earlier
studies showed the advantage of using κ over accuracy to mea-
sure the agreement in pseudo labeling (Benato et al., 2023c). In
Chapter 2, κ is presented in detail.

111

measuring visual separation in projections

5.3 experimental evaluation

To evaluate our usage of OPFSemi to gauge visual separation,
we designed several experiments based on the projection-quality
benchmark proposed in (Espadoto et al., 2019a) to our knowl-
edge, the largest public such benchmark for DR. All our results
and code are openly available (Benato et al., 2023d).

dataset type samples dimensions labels

bank (Moro et al., 2014) tables 2059 63 ordinal

cifar10 (Krizhevsky et al., 2009) images 3250 1024 categorical (10)

cnae9 (Ciarelli and Oliveira, 2009) text 1080 856 categorical (9)

coil20 (Nene et al., 1996) images 1440 400 categorical (20)

epileptic (Andrzejak et al., 2001) tables 5750 178 ordinal

fashion_mnist (Xiao et al., 2017) images 3000 784 categorical (10)

fmd (Sharan et al., 2009) images 997 1536 ordinal

har (Anguita et al., 2012) tables 735 561 categorical (30)

hatespeech (Davidson et al., 2017) text 3222 100 ordinal

hiva (Guyon et al., 2007) tables 3076 1617 ordinal

imdb (Maas et al., 2011) text 3250 700 ordinal

orl (Samaria and Harter, 1994) images 400 396 categorical (40)

secom (McCann and Johnston, 2008) tables 1567 590 ordinal

seismic (Sikora et al., 2010) tables 646 24 ordinal

sentiment (Kotzias et al., 2015) text 2748 200 ordinal

sms (Almeida et al., 2011) text 836 500 ordinal

spambase (M. Hopkins and Suermondt, 1999) text 4601 57 ordinal

svhn (Netzer et al., 2011) images 733 1024 categorical (9)

Table 19: The 18 datasets used in our evaluation and their characteristics.

5.3.1 Datasets

From the benchmark, we chose 18 datasets which are often used
in many ML and DR evaluations. Importantly, they are all labeled
and, since they are used in ML benchmarks, we know that labels
and features are correlated. These datasets come from different
application domains and have different sample and dimension
counts. Table 19 shows the type of data, sample count, dimension
count, and the type and number of labels for each dataset (for
more details, see (Espadoto et al., 2019a)).

5.3.2 Projection algorithms

From the 44 projection techniques evaluated in (Espadoto et al.,
2019a), we used 39 techniques (see Table 20). The remain-
ing 5 techniques were excluded since their code, as provided
in (Espadoto et al., 2019a), was hard to understand and run. All

112

5.3 experimental evaluation

these techniques are well known in the DR literature and practice.
Among them are examples of linear and non-linear and global
and local, projections. Also, we consider projections that input
the high-dimensional samples themselves and projections which
only require a similarity (distance) matrix of the samples. We
fixed the parameters of all projection techniques to the default
values proposed by each author. More details about the chosen
projection techniques and their default parameter values can be
found in (Espadoto et al., 2019a).

5.3.3 Metrics

As we are proposing a new metric to evaluate visual separation
(Sec. 5.2), an immediate question is how this metric compares to
well established metrics for measuring projection quality. To as-
sess this, we consider, for the latter, the four scalar metrics T, C,
N, and S described in Sec. 2.3.4.1. These are also among the met-
rics considered by the projection benchmark in (Espadoto et al.,
2019a). For brevity, we next refer to these four metrics as ‘stan-
dard’ metrics. We compute T, C, and N using K = 7 nearest
neighbors (see Eqns. 2.7, 2.8, and 2.10), in line with (Espadoto
et al., 2019a).

5.3.4 Experimental design

We executed two types of evaluations, as follows:

a) Quantitative analysis (Sec. 5.4.1):

(i) Correlation plots: We plot the correlation between our pro-
posed assessment of VS (κ) approach and each standard
metric. This yields one scatterplot for each of the four stan-
dard metrics. In such a plot, each point is a dataset pro-
jected by a projection technique, with all dataset-technique
combinations considered. The aim of this analysis is to see
whether our new metric correlates or not with existing met-
rics. If so (which we will show it is not the case), then our
new metric does not bring any added value. If not (which
is the case), then they cannot both gauge visual separation
equally well – either our new metric or the standard ones
are better for this measurement, but not both of them. We
analyze this aspect further via our qualitative analysis de-
scribed below.

113

measuring visual separation in projections

projection linearity input local or global

DM (Coifman and Lafon, 2006) nonlinear samples local

FA (Jolliffe, 1986) linear samples global

FMAP (Faloutsos and Lin, 1995) nonlinear samples global

GPLVM (Lawrence, 2003) nonlinear samples global

F-ICA (Hyvarinen, 1999) linear distances global

IDMAP (Minghim et al., 2006) nonlinear distances local

ISO (Tenenbaum et al., 2000) nonlinear distances local

L-ISO (Chen et al., 2006) nonlinear samples local

LAMP (Joia et al., 2011) nonlinear samples local

LE (Belkin and Niyogi, 2001) nonlinear samples local

LLC (Teh and Roweis, 2002) nonlinear samples local

LLE (Roweis and Saul, 2000) nonlinear samples local

H-LLE (Donoho and Grimes, 2003) nonlinear distances local

M-LLE (Zhang and Wang, 2006) nonlinear samples local

LPP (He and Niyogi, 2003) linear samples global

LSP (Paulovich et al., 2008) nonlinear samples local

LTSA (Zhang and Zha, 2004) nonlinear samples local

L-LTSA (Zhang et al., 2007) linear samples local

MC (Brand, 2002) nonlinear samples local

MDS (Torgerson, 1958) nonlinear samples global

L-MDS (De Silva and Tenenbaum, 2004) nonlinear samples global

N-MDS (Kruskal, 1964) nonlinear samples global

L-MVU (Weinberger et al., 2005) nonlinear distances global

NMF (Lee and Seung, 2000) linear distances global

PBC (Paulovich and Minghim, 2006) nonlinear samples local

PCA (Jolliffe, 1986) linear samples global

I-PCA (Lim et al., 2004) linear samples global

K-PCA-P (Schölkopf et al., 1997) nonlinear samples global

K-PCA-R (Schölkopf et al., 1997) nonlinear samples global

K-PCA-S (Schölkopf et al., 1997) nonlinear samples global

P-PCA (Tipping and Bishop, 1999) linear samples global

S-PCA (Zou et al., 2006) linear samples global

PLSP (Paulovich et al., 2011) nonlinear samples global

G-RP (Dasgupta, 2000) nonlinear samples global

S-RP (Dasgupta, 2000) nonlinear samples global

t-SNE (van der Maaten and Hinton, 2008) nonlinear samples local

SPE (Agrafiotis, 2003) nonlinear samples global

T-SVD (Halko et al., 2009) linear samples global

UMAP (McInnes et al., 2018) nonlinear distances local

Table 20: The 39 projection techniques used in our evaluation. We list
the linearity, input type, and whether the technique is local or
global.

114

5.3 experimental evaluation

(ii) Statistical analysis: We present the main statistical informa-
tion for our new metric and the standard metrics (mini-
mum, maximum, mean, standard deviation, median, and
mode).

b) Qualitative analysis (Sec. 5.4.2): We qualitatively study a sub-
set of such combinations, aiming to find out which metrics – our
new one and/or the standard ones – agrees with the perceived
visual separation in the projection scatterplots. For this, we per-
form four qualitative analyses, as follows.

(i) Random analysis: We select 8 datasets randomly from the 18

studied ones. For each dataset, we analyze 3 scatterplots of
distinct projections and the respective correlation plots.

(ii) Ranked analysis: For each dataset, we rank the projections by
each quality metric. For the three best and worst projections
in terms of this ranking, we study their visual separation vs
the computed metric values.

(iii) Correlation plot and ranked analysis: We plot the same as in
(a,i), highlighting the best and worse cases in (b,ii) in terms
of good and poor visual separation, respectively.

(iv) User study: We ask 108 participants to rank a total of 2916

projections in terms of visual separation and compute the
correlation of their rankings with κ.

To use any quality metric in practice, one needs to interpret its
values. In our concrete case, all metrics range between 0 (worst
case) and 1 (best case). Assuming that a given metric encodes
some quality aspect, it is clear that values very close to 1 will in-
dicate ‘good’ projections in that respect, whereas values close to 0

will indicate ‘poor’ projections. To simplify the analysis, we next
proceed by binning the [0, 1] range in three bins, as follows. Met-
ric values above a superior boundary sb, i.e., in the range [sb, 1],
are considered to indicate good projections. Metric values below
an inferior boundary (ib), i.e., in the range [0, ib], are considered
to indicate poor projections. Metric values in the range [ib, sb] will
indicate projections with average quality. Setting these thresh-
olds, thus, allows us to split the study of projection quality in
three categories. For T, C, S, and N, we set ib = 0.4 and sb = 0.8,
following earlier studies on how these metrics capture a projec-
tion’s quality from the respective four viewpoints (Espadoto et al.,
2019a). For κ, which measures our proposed visual separation,
we set ib = 0.4 and sb = 0.7 based on our empirical observation
of visual separation in projections discussed next in Sec. 5.4.

115

measuring visual separation in projections

Practically put, this leads to the following automated workflow
for usage of κ in practice: For a given projection, a computational
pipeline measures κ following Sec. 5.2.3). If κ > sb, the projection
has good visual separation – so, it can be further shown to its in-
tended users. If κ < ib, the projection has poor visual separation,
so it should not be offered for visual exploration to the users.
If κ ∈ [ib, sb], we cannot automatically determine if the projec-
tion is ‘fit for visual consumption’ from the perspective of visual
separation, so other metrics or factors should be considered in
its assessment. This workflow can be used e.g. by a system that
computes many projections of a given dataset, e.g., using several
algorithms or hyperparameter grid-search, and uses κ to find the
best one to serve to its users.

5.4 results

We next detail the results of our experiments and our observa-
tions in terms of how κ surpasses the standard metrics for VS
assessment in projections.

5.4.1 Quantitative analysis

5.4.1.1 Correlation plots

As outlined in Sec. 5.3.4, we have 18× 39 = 702 dataset-projection
combinations, each assessed by five metrics (T, C, S, N, κ). Analyz-
ing this information in table form is not very insightful. As such,
we aggregate it in terms of four correlation plots. Each plot com-
pares the values of one of the standard metrics with κ (Fig. 5.3a).
In each plot, we set κ on the x-axis and the standard metric on the
y-axis. The plotted points are the 702 dataset-projection combina-
tions. Each red line represents the trend of same-dataset points –
there are thus 18 such lines. We see that, for all the four correla-
tion plots in Fig. 5.3a, blue points are concentrated in the middle-
right regions of the plots, indicating that all quality metrics score
mostly average or high values. More interestingly, we do not see
any positive (or negative) correlation between κ and the standard
metrics. Also, for T, C, and S, there are more horizontal red lines
than increasing or decreasing trend lines, while, for N, we see
more increasing trend lines. This suggests no clear correlation
(strictly positive or negative) between κ and the standard met-
rics. For example, if there was a strong pattern of increasing lines
for all datasets in one of the four plots, then κ and the standard
metric for that plot would agree, i.e., they would gauge visual

116

5.4 results

separation similarly. Conversely, if there was a strong pattern of
decreasing lines, then κ and the standard metric for that plot
would still capture the same information – high values for one
metric would tell the same as low values for the other metric. In
these cases, κ would not bring clear added value atop of the re-
spective standard metric. However, our plots do not show this.
Since κ and the standard metrics do not show a clear correlation,
two situations can happen:

• if the considered projections all have similar VS, then all
metrics are equally poor predictors, since their values vary
a lot while the actual VS is not;

• if the considered projections have different VS, then either κ
is correlated with it and the standard metrics are not (thus,
κ measures VS better than the standard metrics), or the stan-
dard metrics are correlated with it and κ is not (thus, the
standard metrics measure VS better than κ).

Section 5.4.2 studies the above hypotheses in further detail by
considering the actual perceived VS in the projections.

Fig. 5.3 (b) shows the binning of the metric ranges using the
ib and sb thresholds introduced in Sec. 5.3.4). The nine cells are
colored to indicate the fraction of the total amount of projection-
dataset combinations that fall within each range. T, S, and N
present medium-right regions with higher percentages of points
(densely populated), while C presents right-medium regions
with higher percentages of points. This shows, in short, that in-
terpreting κ is easier than the standard metrics because it has a
higher variance. The fact that the standard metrics have a low
variance – thus small changes in their values – means that it is
harder to use their values in practice to determine the quality
of a projection. This is also visible in the selected examples in
Table 18. More interestingly, earlier work has observed that pro-
jections with very different visual separation yield standard met-
rics of quite similar values (Espadoto et al., 2019a; Castelein et al.,
2023). We show next in Sec. 5.4.2 that κ’s variance is connected to
the perceived visual separation in the projections.

5.4.1.2 Statistical analysis

Table 21 refines these insights on the variance of the compared
metrics. We show here the minimum, maximum, mean, standard
deviation (std), median, and mode values for all metrics com-
puted for the 702 dataset-projection combinations. Minimum and

117

measuring visual separation in projections

Figure 5.3: Correlation plots of κ (ours) and the standard metrics (trust-
worthiness T, continuity C, stress S, and neighborhood hit
N). Stress values are set as 1 − S for easy interpretation. In
the plots in (a), each blue point is one of the 702 dataset-
projection algorithm combinations. Red lines trend all points
for the same dataset. In (b), we show the fraction of dataset-
technique combinations that fall within the nine categories
created by the ib and sb thresholds.

maximum values are similar for all metrics, except for T, which
shows a minimum value of 0.4. Mean and median values are
higher than 0.72 for T, C, and S. For N, mean and median val-
ues are higher than 0.65 with the highest standard deviation of
all considered metrics. κ presents values between 0.49 and 0.55
for mean and median. Mode values are higher than 0.8 for T, C,
S, and N, while around of 0.7 for κ. Summarizing, T, C, S, and
N mostly assign high values for projections, while κ suggests
a wider range of values. This supports our earlier observation
that κ may be easier to interpret than the standard metrics. Inter-
estingly, mean, median, and mode are in the same range of the
most densely populated regions highlighted in the scatterplots of
Fig. 5.3.

5.4.2 Qualitative analysis

Our quantitative analysis showed that κ is not correlated with the
standard metrics (Sec. 5.4.1). We further study if κ better reflects
visual separation by several qualitative analyses.

118

5.4 results

metric minimum maximum mean std median mode

κ 0.120832 1.000000 0.541826 0.150 0.499891 0.696969

T 0.407621 0.998752 0.753015 0.145 0.762368 0.820627

C 0.087105 0.999063 0.833071 0.143 0.876587 0.940296

S 0.185023 1.000000 0.723541 0.128 0.729920 0.817838

N 0.203571 1.000000 0.653787 0.237 0.686142 0.914286

Table 21: Minimum, maximum, mean, standard deviation (std), median
and mode values for each metric. Values are calculated over all
datasets and projection techniques.

5.4.2.1 Random analysis

Since it is not practical to study all 702 projection-dataset scat-
terplots, we first randomly select several such scatterplots to
show the diversity of VS among different projection techniques
(Fig. 5.4). For this, we first randomly choose eight of the 18

datasets. For each standard metric T, C, S, and N, we next ran-
domly select three different projection techniques per dataset,
yielding a total of 24 projection scatterplots considered for each
standard metric. We next show the correlation plot between κ
and each metric. In this correlation plot, the points associated
to the three selected projection techniques are highlighted (blue).
In each column of Fig. 5.4, projections are sorted left-to-right by
decreasing κ.

Several things are visible in this figure, as follows. We first no-
tice that dense correlation plots, i.e., datasets for which the pro-
jections have small ranges of both κ and the compared standard
metric, presented projections with poor VS – see, for example, the
projections for the imdb, secom, seismic, and svhn datasets. The se-
lected projections for these datasets have values of T, C, S, and
N higher than 0.8. For these projections, κ ranges from 0.3 to 0.5.
Thus, here, the low κ agrees with the perceived poor visual sepa-
ration, while the standard metrics do not. In the leftmost columns
for each metric, we notice average visual separation – see e.g. the
datasets bank, cnae9, and hatespeech. For these cases, κ values ex-
ceed 0.6. The standard metrics for these cases range from very
low (0.4) to very high (0.9). This is a second indication that κ
reflects perceived visual separation better than the standard met-
rics. Finally, we can not see any projection with average or good
visual separation in the third (last but one) row of each metric.
These are the scatterplots with the lowest κ among the selected
ones. This also shows a good agreement between κ and the per-
ceived visual separation.

119

measuring visual separation in projections

Figure 5.4: Randomly chosen projections. Columns contain eight ran-
domly selected datasets. For each of the T, C, S, and N met-
rics and for each dataset, we show three randomly chosen
projections sorted left-to-right on decreasing κ. The fourth
row (for each of the four metrics) shows the correlation plot
between κ and the metric. Blue points in this plot indicate the
three selected projections.

120

5.4 results

5.4.2.2 Ranked analysis

Fig. 5.5 shows projections ranked by each metric for all 18 stud-
ied datasets. In each row (metric) per dataset, we show the best
three projections (three left columns in each dataset, surrounded
in green) and the worst three projections (three right columns in
each dataset, surrounded in red). Within each group of three such
projections, the projections are sorted left-to-right on decreasing
values of the respective metric. A larger version of Fig. 5.5 show-
ing more details is given in the appendix ad the end of this chap-
ter.

An immediate observation is that projections having the high-
est (respectively lowest) κ values are also the best, respectively
worst, in terms of perceived visual separation. We see many pro-
jections having similar VS that are ranked either best or worst
by the standard metrics, see e.g. the bank, cifar10, hiva, and imdb
datasets. So, standard metrics are not good predictors of VS. Pro-
jections with average VS are ranked as worst by at least one of
the standard metrics – see e.g. the coil20, fashion_mnist, fmd, and
har datasets. An interesting point concerns N: When both N and
κ agree in the (first) best projection, the second-best N value ac-
tually has poor VS – see e.g. the cnae9, coil20, fashion_mnist, fmd,
hatespeech, and imdb datasets. This matches the fact that N shows
more increasing trend lines for some datasets in the correlation
plots (Sec. 5.4.2) compared to the other standard metrics. Hence,
N is also not a good predictor of VS. Also, we see that one of the
best three projections in terms of κ is seen as the worst projection
by the standard metrics for the cnae9, coil20, fmd, har, hiva, and
sentiment datasets. All in all, we consistently see that κ has high
values for high perceived VS and low values for poor perceived
VS, while the standard metrics do not correlate with VS.

5.4.2.3 Correlation plot and ranked analysis

Fig. 5.3 showed that there is no correlation of κ with the standard
quality metrics (Sec. 5.4.1). However, this figure did not show
whether there is a correlation between κ and the perceived vi-
sual separation. To do this, we select, from the best three ranked
projections by κ in Fig. 5.5, those with convincingly good visual
separation as perceived by ourselves. These are UMAP (bank,
cnae9, coil20, fashion_mnist, fmd, har, hatespeech, imdb, seismic, sen-
timent, spambase); t-SNE (cnae9, coil20, fashion_mnist); Projection
by Clustering (PBC) (Paulovich and Minghim, 2006) (coil20, fash-
ion_mnist); and Interactive Document Maps (IDMAP) (Minghim

121

measuring visual separation in projections

Figure 5.5: Projections ranked by each metric (κ, T, C, S, and N) for all
18 studied datasets. In each row per dataset, the first three
columns show the best three (dashed green) projections; the
last three columns (dashed red) show the worst three pro-
jections according to each metric. (Figure in better quality is
presented in Sec. 5.7.)

122

5.4 results

et al., 2006) (sms). Note that, for some datasets, we did not find
any projection with a convincingly good visual separation. Sep-
arately, we take all the worst-three-ranked projections by κ in
Fig. 5.5 which we visually confirm that have a very poor visual
separation.

Figure 5.6 shows the correlation plots between κ and the stan-
dard metrics – same as Fig. 5.3, but with the projections selected
as best, respectively worst, marked in green, respectively red. We
see that the green and red points are far apart from each other
along the vertical (κ) axis. The green points clearly at the top,
above κ = 0.7. The red points are nearly all below κ = 0.4, with
and all below κ = 0.5. Hence, κ correlates very well with our
perception of visual separation. However, we see that both green
and red points spread quite uniformly along the entire range
of the co-plotted standard metric (horizontal axis). For example,
there are many red points with κ < 0.4 which have standard
metric values above 0.8 and even close to 1; and there are also
many green points with standard metric values below 0.7. All in
all, this shows that the standard metrics do not correlate in any
significant way with the perceived visual separation.

Figure 5.6: Correlation plots of κ with the standard metrics with points
denoting projections with good perceived VS in green and
poor perceived VS in red, respectively. We see that perceived
VS correlates very well with κ but not with any of the stan-
dard metrics.

5.4.3 User evaluation

We further check the correlation of κ with perceived visual sepa-
ration by a user evaluation2.

As explained before (Sec. 5.3), we consider 18 (labeled) datasets
and 39 projection techniques, resulting in a total of 702 possi-
ble combinations. For each dataset, we use a minimum of 34 of

2 We acknowledge the help of Carlijne Govers, Utrecht University, in the organiza-
tion and execution of the user evaluation.

123

measuring visual separation in projections

the total of 39 projection techniques. Some combinations were
excluded as they yielded extremely poor results, meaning the as-
sessment of the VS of the respective projections was further not
interesting. All in all, we have a total of 678 projection scatter-
plots which we next aim to assess. For each of these scatterplots,
we compute κ as described in Sec. 5.2.3.

5.4.3.1 Data preprocessing

Since the key idea of this study is to measure the visual sep-
aration of colored labeled groups from other colored labeled
groups in a projection scatterplot, the choice of the color palette
is very important. We used the alphabet palette derived from
Polychrome 36 (Coombes et al., 2019), a categorical palette with
26 high-contrasting colors. Since we have a maximum of 41 la-
bels in our considered 18 datasets, we manually picked the re-
maining 15 colors from the Dark 24, oldsky.colors, and sky.colors
palettes (Coombes et al., 2019), so that all 41 colors differ as much
as possible from each other. Figure 5.7 shows our color palette.
Next, in preparation for the user study, we render each scatter-
plot to a high resolution image (300 dpi) with round dot markers
(for the scatterplot points) of about 0.08% of the image size. The
color palette is drawn to the right of the scatterplot.

Figure 5.7: Chosen 41-colors palette for the user study.

Secondly, we manually label scatterplots considered as outliers.
We define outliers as plots in which there is significant, and con-
fusing, overplotting of points having different labels. When this
takes place, assessing the data that is actually plotted is hard; as
such, assessing whether the plot has a good (or poor) VS is also
confusing.

Figure 5.8 presents two examples of outlier scatterplots. Im-
age (a) shows a scatterplot having only two labels (colors), with
points overlapping along four horizontal line patterns. A closer

124

5.4 results

(a) (b)

Figure 5.8: Examples of outlier scatterplots for (a) bank-S-RP and (b)orl-
M-LLE dataset-projection combinations. In (a), points having
two possible labels (green and orange) overlap along four
lines. In (b), Points having 41 labels in total overlap in only
three points located close to the scatterplot’s corners.

inspection of the image shows that the green points can be eas-
ily missed since the purple ones dominate the horizontal line
patterns. As such, and due to the clear separation in four lines, a
user can inadvertently consider this plot as having a high VS (due
to the four well-separated lines), whereas it actually has a low VS
(due to the intermixing green-purple points along each line). Im-
age (b) shows a different outlier case. Here, the scatterplot has
41 labels (as visible in the right legend). However, the projection
yields an extreme case where only three distinct points are vis-
ible. Clearly, there is a very high amount of overplotting; and,
due to the label count, there is clearly poor VS. Yet, users who
e.g. do not consider the label count shown by the legend could
inadvertently consider that this plot has a very high VS due to
the presence of the three different dots visible in the image. We
further use the ‘outlier’ labels we assign to the scatterplots when
interpreting the users’ inputs (Sec. 5.4.3.4).

Finally, we bin the computed κ value – which ranges from
0.120833 to 1.0 over all 678 scatterplots – in 9 bins, each of size
0.1. Figure 5.9 shows the κ distribution after binning. Further, in-
stead of an actual κ value, we use the index of the bin this value
falls within. We call this next the ‘round κ’. This further simplifies
analyzing the correlation of computed values (round κ) with val-
ues provided by users in the evaluation (which are also integral
values to simplify the users’ task).

125

measuring visual separation in projections

Figure 5.9: Round κ values computed from actual ones via binning.

5.4.3.2 Study setup

To evaluate how users perceive VS in projection scatterplots, we
conducted an online study using Qualtrics. The study is a walk-
through scenario containing five phases, as follows.

1. Introduction: We shortly explain the overall context of the
study, that is, assessing the visual separation in scatterplots
used for ‘data science’ purposes, and asks for the informed
consent of the participants before proceeding.

2. Explanation We explain what VS is by means of several ex-
amples including plots which we consider as (clearly) hav-
ing high, respectively low VS. In this explanation, we re-
fer to VS values using a Likert scale with 5 values (”ex-
tremely bad“, ”bad“, ”neutral“, ”good“, and ”extremely
good“). However, we give no definition of what ‘good’ or
‘bad’ means, apart from the aforementioned scatterplot ex-
amples.

3. Control: In this phase, users are asked to actually score them-
selves four different scatterplots using the above-mentioned
Likert scale. After they score, we provide to them the cor-
rect answer (given our interpretation of VS) and explain
why this is the correct one. The examples include situations
containing multiple labels as well as overplotting, so users
become aware of such effects. The purpose of this phase
is to ensure a good (and uniform across participants) un-
derstanding of what we mean by VS. In turn, this should
reduce potential experience-induced biases across partici-
pants during the evaluation.

4. Sample selection: Clearly, we cannot ask participants to eval-
uate all our 678 scatterplots. Rather, we randomly sample
this set based on the distribution in Fig. 5.9, with a total of
27 scatterplots to evaluate, 3 for each round κ value. The
sampling is done in such a way so that scatterplots belong-

126

5.4 results

ing to the same round κ values are uniformly (and ran-
domly) spread over the participants – that is, no particular
scatterplot for that round κ value gets being seen by more
participants than other plots in the same group. All in all,
this sampling ensures that (a) all users see, and must assess,
scatterplots having all the round κ values (from very bad
to very good); (b) users get different scatterplots to score;
and (c) we score relatively more scatterplots for the more
frequent κ values, due to the aforementioned uniform sam-
pling per round κ value.

5. Scoring: Users receive each their set of 27 plots to score,
which they do using the aforementioned Likert scale. The
plots are offered in random order with respect to round κ
to avoid possible biases. Each plot is presented separately
in the survey page to avoid users to compare multiple plots
when providing their answers. Users can zoom in-and-out
the shown images in case they want to examine in more
detail some dense point agglomerations in a scatterplot. To
simplify execution (and evaluation of the results), we do not
allow going back to change previous responses. A progress
bar indicates how many of the 27 plots have been evaluated.
Finally, participants were allowed to terminate the test early
if so desired. Figure 5.10 shows an example of the survey
form.

6. Demographics: The study is concluded by asking various
questions on the users’ demographics (age, physical con-
ditions, experience with scatterplots).

5.4.3.3 Participants

We distributed the survey online via several media channels to
a wide variety of potential participants. No pre-selection was
done as we consider that the concept of visual separation in a
scatterplot should be easy enough to grasp for a wide popula-
tion. A total of 108 persons completed the study. Table 22 shows
an overview of the participants’ self-reported demographics. As
visible, the distribution of participants across the measured at-
tributes (gender, age, education, experience, and type of device
used for the study) is quite balanced.

127

measuring visual separation in projections

Figure 5.10: Example of a question page in the survey on a mobile de-
vice.

attributes values count percentage

gender

female 37 34%
male 64 59%
non-binary/third genre 2 2%
prefer not to say 5 5%

age

18-20 16 15%
21-30 62 57%
31-40 9 8%
41-50 4 4%
51-60 12 11%
> 60 15 5%

education

secondary school 37 34%
intermediate/technical study 2 2%
bachelor 44 41%
masters 21 19%
doctoral 4 4%

experience

< 1 13 12%
1 7 6%
2 15 14%
3 5 5%
4 3 3%
≥ 5 5 5%
no experience 60 55%

device laptop or desktop 51 47%
mobile 57 53%

total 108 100%

Table 22: Profile of the 108 study participants by gender, age, education,
experience, and device used during the study.

128

5.4 results

5.4.3.4 Study results

As we recruited P = 108 participants and each was asked to rank
T = 27 projection scatterplots, we expected to have P · T = 2916
evaluated projection scatterplots. Yet, three of the answers were
missing due to participants terminating the test early. We thus
have a total of S = 2913 evaluated scatterplots which we analyze
next.

Figure 5.11 shows the number of different answers for each
round κ. For round κ ≥ 3, we notice a trend: Low round κ val-
ues (3 ≥ round κ ≥ 4) correlate with a high number of “ex-
tremely bad” or “bad” user assessments. Similarly, high round
kappa values (κ ≥ 8) correlate with a high number of “good” or
“extremely good” user assessments. This shows a positive corre-
lation between our measured kappa and the users’ assessments.
An exception for this trend is for round κ ≤ 2. Here, we see a
more balanced amount of positive (“good”, “extremely good”)
vs negative (“bad”, “extremely bad”) assessments. This seems to
indicate a possible doubt of the users.

extremely bad
bad
neutral
good
extremely good

Figure 5.11: Number of different answers for each round κ value.

To understand the situation for low κ values, we plot in
Fig. 5.12 the number of outliers, i.e., plots which we ourselves as-
sessed as confusing in terms of VS (see Sec. 5.4.3.1), against their
measured round κ values. We see that most of outliers occur for
round κ ≤ 2. This explains the exception in the trend observed
in Fig. 5.11. In more detail: The two leftmost bars in Fig. 5.11 tell
that about half of the participants perceived overlapping samples
(which are characteristic to outlier plots as explained earlier) as
good VS. The other half would perceive outlier plots as having
poor VS. Interestingly, this is fully in line with how one can assess
such an outlier plot: Without additional information explaining
what data is actually overplotted (i.e., how many samples, and of
how many classes, overplot), one cannot say anything about the
VS of such a scatterplot. That is, the respective scatterplot can

129

measuring visual separation in projections

have a good VS (or not) with a likelihood of 50%, which is in line
with the users’ assessments expressed by the abovementioned
two leftmost bars.

Figure 5.12: Distribution of outliers per round κ. A scatterplot is defined
as an outlier concerning overlapping points of distinct col-
ors (labels).

Finally, we analyze the relationship of our measured κ with per-
ceived visual separation (inferred from the user study) through
Pearson correlation. Figure 5.13 plots the users’ recorded scores
vs the κ values for the S = 2913 evaluated projection scatterplots.
To reduce visual clutter, we averaged scores computed over the
same scatterplot by multiple users. The Pearson correlation of vi-
sual separation scores with κ is 0.55. Moreover, if we leave out
the projections with round κ ≤ 2 – that is, scatterplots consid-
ered as outliers – we get a correlation score of 0.64. While, as
expected, we see some spread of the user scores for the same
κ value (and conversely), Fig. 5.13 and the computed correlation
factors mentioned above tell us that κ is in good agreement with
the perceived visual separation.

5.5 discussion

We next discuss our main findings.

5.5.1 Assessing VS by existing metrics

Our experiments show that the T, C, S, and N projection-quality
metrics cannot be (easily) used to predict visual separation of
same-label clusters in projections. Our statistical analysis indi-
cates that these metrics have high mean, median, and mode val-
ues – they tend to assign values above 0.8 to many projections
of many datasets. Hence, even high values of these metrics can

130

5.5 discussion

m
e

a
s
u

re
d

 κ

0 0.5 1 1.5 2-0.5-1-1.5-2
0

0.2

0.4

0.6

0.8

1.0

perceived visual correlation

extremely
bad

extremely
good

neutral

Figure 5.13: Correlation plot of measured κ with perceived visual sepa-
ration scores (measured by 108 users on 2916 projections).

lead to poor or indistinct VS. Our qualitative analysis shows that
projections which have narrow ranges of these metrics have poor
or indistinct VS. Also, for a given dataset projected by several
methods, the one having the best VS does not necessarily have
the highest value of all (or some) of the standard metrics. Con-
versely, we see cases in which the highest metric value leads to
one of the worst-VS projections for a given dataset projected by
several methods.

5.5.2 Our approach to assess VS

Using κ to gauge OPFSemi’s performance in label propagation on
projected spaces – was consistently shown to better capture VS
of projections than the aforementioned four metrics. Our statis-
tical analysis indicates that κ shows reasonable values for mean
and median when considering all compared datasets. A mean
and mode around 0.5 and 0.7, respectively, suggests that our
approach evaluated a large number of projections with values
around 0.7, but also a significant amount of low values to com-
pensate the mean. Our qualitative analysis shows that κ values
can better capture the extreme cases: Values of κ roughly above
0.7 all have good perceived VS; values of κ below 0.4 correspond
to projections where no discernible VS is present. Values of κ in

131

measuring visual separation in projections

the range [0.4, 0.7] indicate projections with an average amount
of VS.

In our analysis, UMAP, t-SNE, and PBC consistently score high
VS values for all datasets. These were also the best techniques
found by the independent study of Espadoto et al. (Espadoto
et al., 2019a) which used the average of T, C, S, and N. Impor-
tantly, this does not mean that the said average can be used to
measure visual separation. As shown in Table 18 and Fig. 5.6 pro-
jections can have high T, C, S, and N values and still poor VS. The
said four metrics measure how well a projection captures data
patterns (neighborhoods and distances); our κ measures how well
a projection is visually separated into different same-label groups.
Hence, a good projection should have ideally high values of all T,
C, S, N, and κ. Our κ is an additional quality factor that comple-
ments, but does not replace, existing quality metrics.

5.5.3 Computational cost to assess VS

Measuring VS by our method is fast and requires no parame-
ter settings. For example, for the hiva dataset – N = 3076 sam-
ples, n = 1617 dimensions, the largest among the evaluated
datasets (Sec. 5.3.1) – computing κ took only 0.1216 seconds on a
consumer-grade laptop on average for all the considered 39 pro-
jections (0.1149 seconds to run OPFSemi; 0.0067 seconds to com-
pute Cohen’s Kappa). In contrast, assessing the four standard
metrics requires an expensive grid-search procedure to factor out
their hyperparameter values and is quite slow to compute (min-
utes per dataset (Espadoto et al., 2019a)).

5.5.4 Limitations

We measure OPFSemi’s performance by propagating labels from
50% of the samples in a dataset to the remaining ones. It is not
currently clear how our results – and the ability of κ to measure
visual separation – depends on this data split. Yet, earlier work
has shown that OPFSemi has consistent performance even when
using far fewer labels (Benato et al., 2018, 2021c, 2023e). Using this
fraction as a parameter is interesting to consider as this would
define a multiscale visual separation metric. We aim to study this
aspect in future work, together with a comparison of our kappa
score with Silhouette coefficient based metrics computed for a
wide range of clustering methods and clustering hyperparameter
settings.

132

5.6 conclusion

A separate aspect relates to the interpretation of visual sepa-
ration. A projection having poor visual separation is not neces-
sarily a ‘bad’ one – the labels may be intrinsically mixed up in
the high-dimensional space, in which case it is hard to assume
that a projection can separate them well. Conversely, if we know
that a projection is poor in terms of its T, C, S, and N quality
metrics, the fact that it has (or not) a good visual separation is of
little relevance to its actual usefulness for data exploration tasks
– in general, one should not further use such a projection since it
does not represent well the data structure. However, for datasets
where we know that labels are well separated in the data and we
know that the projection has high data-structure-preserving qual-
ity, we expect the projection to keep this aspect. In these cases, we
can use our approach to gauge the quality of the projection. As
such, visual separation should be used in conjunction with other
information to judge the suitability of a projection for visual ex-
ploration tasks – a conclusion drawn from different viewpoints
also by earlier authors (Nonato and Aupetit, 2018).

Lastly, while our user study (Sec. 5.4.2) shows that κ correlates
with perceived visual separation, extra analysis is needed to show
how this depends on projection techniques, datasets, and user
experience. We aim to cover this in future work.

5.6 conclusion

We proposed a novel approach to assess the visual separation
quality of 2D projections. Our approach is based on assessing
the performance of a graph-based semi-supervised classifier in
propagating labels in the projection (2D) space. If high label
propagation performance is achieved, i.e., few wrongly labels
are assigned then the projected space is well separated into dis-
tinct groups of same-label samples. To evaluate our proposal,
we executed both quantitative and qualitative analyses using 18

datasets and 39 projection techniques in line with the bench-
mark of (Espadoto et al., 2019a). We showed that our proposed
approach can better gauge visual separation in projections than
common projection-quality metrics. Up to our knowledge, this is
the first time that the visual separation quality of 2D projections
is assessed through label propagation task for many projection
techniques.

We next aim to evaluate the impact of different amounts of
labels in the classifier to assess visual separation in projections.
Also, we aim to explore the OPFSemi classifier to evaluate projec-
tion quality in reducing the high-dimensional space while pre-

133

measuring visual separation in projections

serving patterns of the original data, by combining optimum
path forests computed in both high and low dimensional spaces.

5.7 appendix

Figure 5.14: Details of Fig. 5.5 for the first 6 of 18 datasets.

134

5.7 appendix

Figure 5.15: Details of Fig. 5.5 for the second 6 of 18 datasets.

135

measuring visual separation in projections

Figure 5.16: Details of Fig. 5.5 for the last 6 of 18 datasets.

136

6A C T I V E L E A R N I N G U S I N G D E C I S I O N
B O U N D A RY M A P S

6.1 introduction

Our work so far has shown the added value of projection tech-
niques for the generation of pseudolabels for constructing high-
performance classification models. Specifically, in Chapter 3, we
explored OPFSemi’s ability to propagate labels in 2D projection
spaces leading to the aforementioned high classification perfor-
mance. In Chapter 4, we use such pseudo labels to further ex-
plore the correlation between data separation, visual separation,
and classifier performance, showing that these three aspects are
closely connected. In Chapter 5, we further showed that pseudo
labels constructed by OPFSemi in a 2D projection space can be
used to measure the projection’s visual separation as perceived
by users1

All in all, the above show that projections, and label propaga-
tion algorithms in projection spaces, are useful instruments for
automating both ML and VA tasks. However, this potentially con-
veys the incorrect message that the user has no actual place in
such pipelines. We argue that this is by far not the case. As men-
tioned in Chapter 2, the human ability to manually propagate
labels in a 2D projection was first assessed in (Benato et al., 2018).
The respective results showed that this ability can surpass auto-
matic label propagation in the data space. Further on, this man-
ual approach was combined with automatic label propagation
techniques by essentially doing automatic propagation in high-
confidence areas while leaving the low-confidence areas to be
manually annotated by the user (Benato et al., 2021c).

However, the quality of the pseudo labels produced in Benato
et al. (2021c) was constrained by the initial feature space. If the
feature learning step produces a feature space with poor visual
separation, then both automatic and manual label propagation
techniques would fail. We circumvented this problem in Chap-
ter 3 by proposing to improve the feature learning over iterations
of pseudo labeling using 2D projections. However, this approach
left the user (manual annotation) out of the loop.

1 This chapter is a result of the paper "Decision boundary maps for supporting
user-drive pseudo labeling" (Benato et al., 2024).

137

active learning using decision boundary maps

This chapter aims to complete our quest for assessing the
added-value of manual labeling by incorporating more advanced
VA techniques in support of this user task. Specifically, we
consider using Decision Boundary Maps (DBMs, introduced in
Sec. 2.4) and direct-and-inverse projection errors (introduced in
Secs. 2.3.4.1 and 2.3.5, respectively) as visual aids to help users
decide where, in a projection, they should concentrate their man-
ual labeling efforts. If the user is able to get insights about the
classifier’s decision, then the user can (arguably) successfully
intervene in its training by manually propagating labels as a
way to leverage both propagation and classifier performance. We
achieve this by adding an active learning looping in the classi-
fier step of our proposed DeepFA pipeline introduced in Chap-
ter 3. Figure 6.1 clarifies the above by comparing the pipeline we
have used in our previous DeepFA workflows with the interac-
tive pipeline that uses DBMs and error maps (further described
in this chapter).

Figure 6.1: (a) Generic pipeling using DeepFA. (b) Interactive pipeline in
an active learning scenario using DeepFA and VA tools.

6.2 related work

6.2.1 Active learning

Since, as mentioned in the previous section, our approach is re-
lated to Active Learning (AL), we next briefly describe the set-
ting of AL approaches. Classical AL pipelines work as follows:
An algorithm selects a set of samples based on specified criteria
and passes them to a user for labeling or inspection. The user-
provided information is given to the learner so the learner can
improve itself by it (Settles, 2009). The process iterates until some

138

6.2 related work

pre-established stopping criteria are reached, e.g., a desired target
classification performance or a maximal user effort being spent.

Modern classifiers use predominantly deep learning tech-
niques such as deep CNNs (Wang et al., 2017; Yu et al., 2015),
deep restricted Boltzmann machines (Zhou et al., 2013), Bayesian
CNNs (Gal et al., 2017) with dropout as stochastic regulariza-
tion, and also DBNs (Zou et al., 2015; Liu et al., 2017) for the
AL task. Apart from that, some studies explored the learning of
feature representation and classifiers together, such as incremen-
tal CNN learning (Wang et al., 2017) and incremental dictionary
learning (Liu et al., 2017) without many layers. Given our DeepFA
framework presented in Chapter 3, which targets labeling image
datasets based on CNNs, we concern ourselves next with studies
that consider AL and deep CNNs.

There are three main problems concerning deep AL strate-
gies (Ren et al., 2021): (1) DL models still require many super-
vised samples for training the deep model in the first AL iteration;
(2) using the softmax layer’s output from the DL model is unre-
liable for computing the confidence for sample selection (Wang
and Shang, 2014); (3) fine-tuning DL models during an AL loop-
ing may be difficult.

Solutions to alleviate (1) have considered user interaction us-
ing projected spaces. A recent study (Luus et al., 2019) aimed to
simulate user labeling in AL looping. For this, they used an im-
proved semi-supervised extension of the t-SNE (van der Maaten
and Hinton, 2008) projection, in which t-SNE plays the role of
user labeling. A deep classifier is periodically trained with all
available labeled samples and the softmax prediction vector de-
cides which samples to label next. However, this study did not
actually involve the user in the looping.

Iwata et al. (Iwata et al., 2013) proposed an AL framework for
interactive visualization which selects objects for the user to re-
locate in order to obtain a desired visualization. However, the
main goal of this work is to obtain better visualizations using AL
and not provide labeled datasets with high classification perfor-
mance. Bernard et al. (Bernard et al., 2018) compared the perfor-
mance of AL labeling and visual-interactive labeling using projec-
tions. Their findings suggest that visual-interactive labeling can
outperform AL if the dimensionality reduction step separates well
the class distributions. Our work in Chapter 4 outlines similar
findings by exposing the correlation between DS, VS, and CP.
Later, in another study, Bernard et al. (Bernard et al., 2018) pre-
sented a systematic quantitative analysis of different user strate-
gies (called computational building blocks) for selecting label-

139

active learning using decision boundary maps

ing samples via visual-interactive learning interfaces. While such
studies compared AL and visual-interactive labeling, they did not
combine these techniques, as we will be doing. Finally, all above-
mentioned studies only used relatively simple datasets. Real-
world complex datasets provide more complex feature spaces
which are more challenging to handle via AL (with or without
VA-based techniques). In our work next, we consider both a rela-
tively simple dataset, and a complex, real-world, one.

6.3 visual analytics for active learning and pseudo

labeling

We next describe in detail our proposed pipeline that combines
VA techniques and manual labeling in an active learning looping
(see also Figure 6.2).

Figure 6.2: Pipeline of the proposed interactive approach.

1) DeepFA: We start with a dataset with only a few true labels
available. Since we would like to have a fully labeled dataset in
the end, we use DeepFA to generate pseudo labels. This will
minimize the user effort in the labeling process. When executing
DeepFA, we consider only 1% of supervised samples. Produced
pseudo labels are used to train the classifier in step 5.

2) Direct projection: To let users label data in a meaningful
and intuitive way, we need a visual representation for it. We
achieve this by using a projection technique that maps the data
to a 2D scatterplot. We evaluated several different techniques
for this task: autoencoders (Hinton and Salakhutdinov, 2006),
PCA (Jolliffe, 1986), t-SNE (van der Maaten and Hinton, 2008),

140

6.3 visual analytics for active learning and pseudo labeling

SSNP (Espadoto. et al., 2021), and UMAP (McInnes et al., 2018).

3) Inverse projection: To compute the DBM of a given classifier,
we need an inverse projection able to map 2D points to the data
space, as outlined in Sec. 2.4. For this, we evaluated the use of the
autoencoders (Hinton and Salakhutdinov, 2006), SSNP (Espadoto.
et al., 2021), and NNinv (Espadoto et al., 2023) techniques.

4) Visualization errors: We use the data points, their projections,
and the computed inverse projection function to evaluate errors
of both the direct and the inverse projection functions (see
Secs. 6.3.1 and 6.3.2).

5) Classifier training: We train a classifier using 70% of samples
(including the pseudolabels assigned by DeepFA) and keeping
30% for calculating classification performance metrics. Any
classifier can be used here as our pipeline regards it as a black
box. In our concrete experiments, we will use a deep neural
network for this step (see Sec. 6.4).

6) DBM computation: We depict the trained classifier using the
DBM techniques discussed earlier in Sec. 2.4.

7) Manual labeling: The user can examine the projection scatter-
plot (of the input dataset), the direct and inverse projection errors
(computed at step 4), and the DBM of the trained classifier (com-
puted at step 6) to decide where to manually label data samples
(see Sec. 6.3.3). The newly-generated pseudo labels are used to re-
train the classifier – that is, the pipeline re-starts at step 5. Steps
5-7 thus constitute the active learning loop. The looping ends
when the classifier has achieved a desired target performance or
when the user decides that enough manual labeling effort has
been invested in the process.

In the next sections, we explain the technical details involved
in the operations contained in the above steps.

6.3.1 Direct projection errors

Showing local projection errors can help users decide where they
next channel their labeling effort. In more detail: Assume a group
of points in the projection is marked as having high errors. Then,
the information displayed in that area can be misleading. This
includes class labels and decision zones and decision boundaries
shown by DBM techniques. Let us refine both these cases. Con-

141

active learning using decision boundary maps

sider an area in a projection scatterplot showing inferred labels
by color coding. Such an area can contain a mix of many colors –
see e.g. the left image in Fig. 2.5 and related discussion in Sec. 2.4.
This can lead the user to believe that the classifier has some odd
behavior in the respective area. However, the abovementioned
color mix can be an artifact of the projection – the classifier can
work perfectly in the respective area. The same is true for DBMs:
An area in a DBM can show tortuous decision boundaries or a
wealth of small-scale islands – see e.g. the right image in Fig. 2.5
and related discussion in Sec. 2.4. Such artifacts can be caused by
projection errors rather than representing actual classifier prob-
lems.

To alleviate these problems, we can compute projection error
metrics such as Trustworthiness T, Continuity C, or Neighbor-
hood Hit N (Sec. 2.3.4.1) in a local fashion. That is, rather than
computing aggregate values for the entire projection (as given by
Eqns. 2.7, 2.8, and 2.10 respectively), we evaluate the considered
metric for each projected point. Next, we can color the respective
projection by the computed errors.

A second question concerns which of the T, C, and N metrics
we would like to use. A simple solution is to allow users to select
the metric they want to examine. However, we believe that this
would make the approach less practical, as one would have to
cycle through multiple metrics and mentally combine the insights
they each provide. Instead, we decided to compute a single error
metric

ϵ = ((1 − T) + (1 − C)/2. (6.1)

This metric, ranging in [0, 1], allows a simple interpretation: The
closer its value is to 1, the worse the projection is (in the area
the metric is computed) in both T and C; conversely, a value of
ϵ close to zero implies a good projection (locally speaking) in
both T and C. A separate advantage of combining T and C in a
single metric is that we do not need to distinguish between the
two separate components. Indeed, a projection having poor T or
C values (locally) is not a good projection for performing manual
labeling decisions. Finally, we note that we discarded N in our
error assessment, since this metric resides on the assumption that
point labels are well separated in the high-dimensional space (see
Sec. 2.3.4.1). As most of our labels are actually propagated (using
DeepFA), this assumption will likely hold for most data points.
As such, N is not a good indicator of the projection quality itself.

A further question concerns the visualization of the aggregate
error metric ϵ. A simple solution would be to color the projected

142

6.3 visual analytics for active learning and pseudo labeling

points by its value. However, this would make it hard to see re-
gions of points which have high, respectively low, error values, es-
pecially in the presence of potential overplotting (see the related
discussion on overplotting in Ch. 5). A slightly better solution
would be to extrapolate the error values up to a small, fixed, dis-
tance from their respective points, using radial basis functions,
as demonstrated earlier in (Martins et al., 2014). However, a prob-
lem with this technique is that controlling the respective fixed
extrapolation distance is tricky in practice. Too small distances
yield large empty areas in the projection far away from actual pro-
jected points. Too large distances can yield interpolation errors,
i.e., points where the computed error exceeds, or drops below, the
error values of close projection points.

To avoid such issues, we propose to interpolate projection er-
rors (from the projected points to all image pixels) using the com-
puted inverse projection function. For each such pixel y ∈ R2, we
can compute its corresponding data point x = P−1(y), x ∈ Rn.
Next, for both x and y, we can find their respective k-nearest
neighbors in R2, respectively Rn. With this information, we can
directly evaluate the expressions for T and C given by Eqns. 2.7
and 2.8 respectively.

Figure 6.3 shows a visualization of the combined projection er-
ror ϵ computed using the inverse projection technique described
above. Error values are encoded into brightness (high ϵ are bright;
low ϵ are dark, pixels, respectively). As visible, the projection er-
rors are low close to most of the actual scatterplot points, which
is expected, since the projection technique used here (t-SNE) is
known to have low errors everywhere on the considered dataset
(MNIST). As we go further from the projected points, we see how
errors increase. As a caveat of our approach, we should note that
it is dependent on the quality of the inverse projection technique
being used. However, note that, if a projected point has poor T
and C values, this will appear as a high-error point in our vi-
sualization, even in the presence of an imperfect inverse projec-
tion. At the point itself, using P−1 is not needed, since we know
its data-point counterpart; hence, at that location, we will simply
display ϵ = ((1− T) + (1−C)/2, which, as said above, will show
a high error. Close to that point, the inverse projection will use, in
its computation, the wrongly-projected point and, as such, yield
a data point which will be incorrectly placed in data space. As
such, the results of T and C will show a high error value.

143

active learning using decision boundary maps

Figure 6.3: Scatterplot image with 2D projected points for the MNIST
dataset with points colored by class. Projection errors ϵ are
computed using the inverse projection technique at every im-
age pixel. Light regions refer to a high error values; dark re-
gions represent low error values.

6.3.2 Inverse projection errors

Besides direct projection errors, also the inverse projection errors
can adversely influence the insights users get from the visualiza-
tion. Indeed, as explained in Sec. 2.4, all DBM methods in exis-
tence rely on using inverse projections. As such, if these inverse
projections are incorrect (in some area), the DBM will be mislead-
ing (in that area).

We quantify locally the quality of inverse projections using the
gradient map technique proposed by (Espadoto et al., 2023). In de-
tail, let y be a 2D pixel in the considered image, and yr and yb its
right, respectively bottom, neighbors. The gradient map method
computes the value

G(y) =
√
∥P−1(yr)− P−1(y)∥2 + |P−1(yb)− P−1(y)∥2, (6.2)

which can be seen as the finite-difference approximation of the
norm of the gradient of the function P−1 evaluated at y. The in-
terpretation of G is simple: Image points y with low G values
indicate low inverse projection errors. Indeed, small changes in
y correspond to small changes in the data space, which we ex-
pect from a well-behaved inverse projection function. Conversely,
image points y with high G values indicate problems (errors) in

144

6.3 visual analytics for active learning and pseudo labeling

the inverse projection function: Small changes in the image corre-
spond to ‘jumps’ in the data space2.

Figure 6.4 shows the visual representation of the inverse pro-
jection error G for the same dataset and projection as in Fig. 6.3,
encoded by luminance. As visible, most image areas have low G
values, except some thin ‘bands’ where G increases a lot. Note
also that this image is different from the direct projection errors
shown in Fig. 6.3. As such, users should consider both types of
errors when assessing if an area in the visualization is suitable to
perform manual labeling.

Figure 6.4: Image of inverse projection errors for the same dataset and
projection as in Fig. 6.3. Error values are mapped to bright-
ness.

6.3.3 VA tool for active learning

We next present the Visual Analytics (VA) tool that we con-
structed to assist users in interactively labeling samples for
improving the training of a given classifier (Fig. 6.2, large gray
box). When needed, throughout the explanation of the workflow
supported by the tool, we will refer to the steps (1)-(8) of the
pipeline in Fig. 6.2.

Pre-labeling: Our VA tool expects to start with a completely la-
beled dataset. Of course, if ground-truth labels are available for

2 To be more exact, we should say that large values of the gradient of G, i.e., dis-
continuities in the G signal, indicate inverse projection problems. In practice, we
have seen that G consists of large low-G areas separated by thin ‘bands’ of high-G
values. As such, for simplicity of exposition, we consider that high G values are
a reliable indicator for the mentioned problems.

145

active learning using decision boundary maps

such a dataset, they can be directly used in this process. When
this is not the case, i.e., when only a small fraction of the dataset’s
points have supervised labels, we use DeepFA to compute pseu-
dolabels for all remaining points (1). In our experiments, we used
for this 1% of the supervised samples in the dataset. This pre-
labeling process is done only once, before our VA tool is actually
started.

After the pre-labeling completes, we user uploads the pre-
labeled dataset and the classifier to train and chooses various
general settings in a configuration dialog, e.g., techniques to use
for the DBM generation. We will explain these settings further
on during the presentation of the VA workflow.

Interactive labeling: This is the main operation supported by our
VA tool. It starts with generating and displaying a DBM image for
the classifier and labeled dataset provided during tool start-up.
The DBM, (labeled) samples, projection (and inverse projection)
error metrics, and tooltips showing information about specific
samples, are all displayed, and offered to user interaction, in a
so-called labeling window, which we describe next.

Figure 6.5 shows an overview of the labeling window. In the
left part of the window, the tool shows the 2D projection of
the loaded dataset (according to the projection method selected
by the user during tool start-up). Training and test points are
shown here in white, respectively black. The DBM for the clas-
sifier trained by the labeled set loaded by the tool (that is, at
the beginning of the active learning process, before any manual
labeling has been executed) is also shown underneath the pro-
jection scatterplot. The DBM pixels y are colored by the class
assigned to the corresponding data points P−1(y) computed by
the inverse projection technique P−1 selected by the user during
tool start-up. As a modification to the standard DBM visualiza-
tion presented in Espadoto et al. (2019b), and in line with further
extensions of DBMs Oliveira. et al. (2022); Espadoto et al. (2023),
we also consider the confidence of the trained model evaluated
at each DBM pixel. We allow users to display this confidence;
the combined direct-projection error (Eqn. 6.1), the gradient-map
showing inverse projection errors (Eqn. 6.2), or a user-selected
combination of these measures. Since all these measures share
the same scale [0, 1], we combine them by multiplication. The
final result is then mapped to image saturation (low saturation
indicates a low value; high saturation indicates a high value). Fig-
ure 6.5 (left) illustrates this by showing the classifier confidence

146

6.3 visual analytics for active learning and pseudo labeling

mapped to saturation. As visible, DBM areas close to the decision
boundaries have a lower classification confidence.

When hovering a pixel y in the scatterplot, a tooltip image
with the data value P−1(y) corresponding to that pixel is shown.
This way, users can inspect both actual data points (present in the
dataset loaded by the tool) or newly inferred points correspond-
ing to areas in the DBM outside of the projection scatterplot. This
is useful for deciding how to manually label data points next. Top
right in the interface, we show the accuracy and κ value of the
current classifier (that is, trained with the actual set of labeled
points, including whatever points the user has manually labeled
so far). We also show the evolution of the classifier accuracy over
labeled iterations in a 2D line chart. This allows users to de-
termine whether their manualk labeling actions have increased,
or decreased, the classifier accuracy, and take corrective actions
(more on this below).

DBM overlaid by 2D projection of data points

training points
(white)

testing points
(black)

decision
zones

various metrics (confidence, direct/inverse projection
errors) are mapped to saturation

class
labels

classifier
performance
(accuracy, κ)

classifier
training
details

apply
labeling

undo
labeling

Figure 6.5: Overview of the visualization tool’s labeling window.

The user can start his/her first iteration of manual labeling. Us-
ing the tooltip, currently-labeled samples in the scatterplot, DBM,
confidence, and direct/inverse projection information, the user
decides on a set of unlabeled points to which he/she wants to
assign one of the existing labels in the dataset. Of course, this
is not a deterministic process – if it were, we would not need
the user’s help but, rather, automate this labeling, using e.g. tech-
niques presented earlier in Chapter 3. Rather, our claim is that, by
studying all the above-mentioned information (scatterplot, DBM,
confidence, errors), the user can spot patterns in the data struc-

147

active learning using decision boundary maps

ture which lend themselves well to adding manual labels so as
to increase the classifier’s performance. We will demonstrate this
next in Secs. 6.4 and 6.5.

At each labeling iteration, the user can select any subset of
points in the projection scatterplot to assign any of the dataset’s
labels to them. Multiple such sets can be selected in an iteration
and assigned the same, or different, labels. Figure 6.6 illustrates
this process. When the user is satisfied with the manual labeling,
he/she confirms this to the tool by pressing the apply labels
button. At this point, and at each iteration, the tool stores (i)
the classifier accuracy, (ii) the classification κ score, (iii) the
labeled samples, and (iv) a screenshot with the users’ view
of the tool at that moment. This information is used next to
support undoing manual labeling changes and also compute
performance statistics on the manual labeling, as discussed next.

(a) (b) (c)

Figure 6.6: User labeling procedure. (a) The user can see the tooltip im-
age for each point. (b) The user selects a set of points to label
by drawing a circle with the mouse. (c) Next, the user can
assign a new label to the selected points. In this artificial ex-
ample, the user has labeled a large set of points located in the
green decision zone with the blue label.

Classifier re-training: After an iteration is completed, the classi-
fier is re-trained to use the newly assigned (pseudo) labels – to be
more exact, the total set of labeled points, which contains points
whose labels the user has not changed manually, and points af-
fected by the manual labeling in the last iteration. The training
progress is shown in a text window in the tool so users can spot
possible problems. After the re-training completes, the labeling
window is updated to show the DBM of the newly-trained classi-
fier. Note that position of points in the projection scatterplot does
not change since the user can only change the labels of the data

148

6.3 visual analytics for active learning and pseudo labeling

points, but not add, remove, or otherwise change the values of,
these points.

Figure 6.7 shows scatterplots (a) before and (b) after a manual
labeling iteration, including the subsequent classifier re-training
and DBM recalculation. In this example, for illustration purposes,
the user manually selected a large set of points in the blue deci-
sion zone (marked by the black circle) and assigned them the la-
bel 3 (red). Image (b) shows how the re-trained classifier now has
a large red decision zone that includes largely all the points the
user has manually labeled as red. However, due to this massive
re-labeling, the classifier’s performance decreases significantly –
accuracy drops from 0.8793 to 0.7927; κ drops from 0.8685 to
0.7689. This is, of course, expected, given that the user has basi-
cally forced the disappearance of roughly the entire blue decision
zone. In practical use, manual labeling will select significantly
fewer samples to label during an iteration.

(a) (b)

Figure 6.7: Example of classifier re-training and DBM re-calculation. (a)
Initial state (classifier accuracy: 0.8793, κ: 0.8685). User selects
a large set of points in the blue decision zone (marked by the
black circle) and decides to manually assign them the label
3 (red). (b) Situation after classifier re-training with the new
manually added labels (classifier accuracy: 0.7927; κ: 0.7689).

If the classifier performance decreased (as shown in the tool’s
interface) as compared to the previous iteration, the user can de-
cide to undo the last-performed labeling. The labeling window
then changes to show the values (DBM, classifier performance,
κ) before this past iteration. The process continues until the user
decides to stop it, either because of time constraints or because
the desired classifier performance has been reached.

149

active learning using decision boundary maps

6.3.4 Implementation details

We next provide several implementation details concerning the
various steps of our proposed workflow.

DeepFA: As explained already, we create pseudo-labels for all
the dataset samples to be loaded by our VA tool. For this, we
use only 1% of supervised samples and 5 DeepFA iterations. All
other technical details concerning DeepFA are the same as the
ones we described in Chapter 3.

Direct projection methods: Our tool supports PCA (Jolliffe,
1986), vanilla autoencoders (the encoder part) (Hinton and
Salakhutdinov, 2006), t-SNE (van der Maaten and Hinton,
2008), UMAP (McInnes et al., 2018), and SSNP (the encoder
part) (Espadoto. et al., 2021). t-SNE and PCA use the Scikit-learn
implementation (Pedregosa et al., 2011). UMAP uses the default
implementation provided by its authors (McInnes et al., 2018).
All parameters are set to their default values, except the perplex-
ity of t-SNE, which we set to 30.

Inverse projection methods: Our tool supports vanilla autoen-
coders (the decoder part), NNinv (Espadoto et al., 2023), and
SSNP (the decoder part).

For NNinv, we use a fully connected neural network with ar-
chitecture 2-32-64-128-512-α. We use α = 784 for MNIST and
α = 5000 for P.cysts, respectively. Hidden layers use the ReLU
activation function, except the last one which uses a sigmoid acti-
vation. The first layer uses an L2 regularization penalty with con-
stant set to 0.0002. Weights are initialized using the HeUniform
kernel with bias set to 0.01. We train NNInv for 300 epochs (with
early stopping) and mean squared error (MSE) as loss function.

The decoder part of the vanilla autoencoder match the NNInv
architecture and use the same activation functions and weight ini-
tializer. The encoder architecture is the decoder one, but flipped.
We train our autoencoder for 300 epochs with MSE as loss func-
tion.

SSNP uses an identical architecture to the vanilla autoencoder
with the main difference of adding a data-dependent clustering
layer – that is, its output has as many classes as the treated
dataset has, e.g., 10 for MNIST. The clustering layer uses the
softmax activation function. SSNP uses two loss functions –
MSE for data decoding (as the vanilla autoencoder) and sparse
categorical cross-entropy loss (for the data clustering). In the

150

6.4 evaluation

total loss, these two functions contribute with weights of 1,
respectively 0.125. For further details, we refer to the original
SSNP paper (Espadoto. et al., 2021).

Direct and inverse projection combination: As outlined above,
we have a total of five direct projections P (PCA, autoencoders,
t-SNE, UMAP, SSNP) and three inverse projections P−1 (autoen-
coders, NNInv, SSNP) to use. This would lead to a total of 15

combinations of (P, P−1). However, we deem some combinations
to be less practical and/or useful than others. For instance, it
has little sense to use SSNP as P−1 with a different P than the
one SSNP provides, since SSNP jointly trains for P and P−1.
Similarly, when using autoencoders, it makes sense to do that for
both P and P−1. Figure 6.8 summarizes all possible combinations
of P and P−1 that our VA tool supports.

Figure 6.8: Possible combinations of direct and inverse projection meth-
ods provided by our VA tool.

DBM: Decision map images are generated as proposed
by (Rodrigues et al., 2019) (using NNinv) or by Espadoto. et al.
(2021) (using SSNP), at a size of 256 × 256 pixels.

Source code: The proposed VA tool is made publicly available34.

6.4 evaluation

We designed an experiment to evaluate the efficiency and effec-
tiveness of our proposed VA tool for manual labeling. In this
experiment, we used the VA tool as described above, with two
key modifications: (1) a labeling iteration can take a maximum
of three minutes; and (2) a maximum of 5 iterations are allowed.
The user can apply the manually assigned labels (that is, end
the current labeling iteration) at any moment before the mark of
three minutes. When this time passes, however, no more manual

3 https://pypi.org/project/decision-boundary-mapper
4 https://github.com/cristi2019255/MasterThesis2023

151

active learning using decision boundary maps

labeling is allowed. These constraints ensure that we measure
(and limit) the manual effort users put into labeling. Next, this
will allow us to compare the results obtained by different users
and, also, reason about the overall efficiency of the proposed pro-
cedure.

We next describe the classifier, datasets, and participants in-
volved in our user evaluation.

6.4.1 Classifier

The classifier we use in our experiments is a neural network
consisting of a flattening layer (with the input size), followed by a
dense layer with a softmax activation function (with the number
of neurons equal to the number of classes in the considered
dataset). The number of epochs for training and re-fitting is set
to 20. This is, on purpose, a quite simple classifier architecture.
We chose for it so as to offer the possibility for the classifier
to generate a significant number of errors, which next can be
diminished by the manual labeling proposed by our VA tool.

6.4.2 Datasets

Our evaluation is organized as a set of two consecutive experi-
ments. The first one is used as a control mechanism: During this
experiment, we select a relatively simple dataset (and classifica-
tion problem), to calibrate various settings of our tool. Next, we
use a significantly more challenging, real-world, dataset to mea-
sure the tool’s effectiveness and efficiency. The two datasets, and
related considerations, are described next.

6.4.2.1 Toy dataset: MNIST

We select a small subset of MNIST dataset with 3500 samples
and 10 classes to test our entire workflow. As we may have dif-
ferent variables that can influence our results, we intend to ex-
plore several possible combinations. For example, the number
of training samples can affect the performance of a given classi-
fier – and, thus, indirectly affect the efficiency and/or effective-
ness of our proposed VA tool. Indeed, a small labeled training-
set likely yields a poor classifier; but, likely too, the VA tool can
then quickly help increasing the classifier’s performance (because
the latter is so poor). Conversely, a large labeled training-set will
likely yield a high(er) classifier performance; however, further im-

152

6.4 evaluation

proving this performance by the VA tool will likely be hard (since
it is already quite high).

To test the above, we use 5 subsets of the MNIST dataset con-
taining 20%, 40%, 60%, 80%, and respectively 100% of all samples
as input to our VA tool. We next call these subsets D0.2, D0.4, D0.6,
D0.8, and D1.0.

Separately, as explained in Sec. 6.3.4 (Fig. 6.8), our VA tool al-
lows for five combinations of (P, P−1) - namely (t-SNE, NNinv);
(UMAP, NNinv); (PCA, NNinv); (autoencoder, autoencoder); and
(SSNP, SSNP). For brevity, we next denote by (autoencoder), re-
spectively (SSNP), the combinations (P, P−1) where both P and
P−1 are provided by an autoencoder’s, respectively SSNP’s, en-
coder and decoder parts respectively. We perform our experi-
ments with the five MNIST subsets considering all these five com-
binations separately. This allows us to select the best combination
of (P, P−1) to use next with our tool.

6.4.2.2 Real-world dataset: P.cysts

We now use the best combination of (P, P−1), as determined by
the toy dataset experiment, to manually label a more challenging
dataset. For this, we choose a small subset of the P.cysts dataset
without impurities with 2, 696 samples and 6 classes. This dataset
was introduced in detail in Sec. 3.3.1. Given the high dimension-
ality of P.cysts as compared to raw MNIST, we cannot directly
feed P.cysts to the projection P and expect to obtain good results.
Rather, we reduce this dataset to a lower dimensionality (n = 512)
using a standard autoencoder approach, in line with (Benato
et al., 2018). Next, we use this 512-dimensional dataset along the
same manual labeling workflow as for the MNIST dataset.

6.4.2.3 Training, testing, and performance evaluation

In all our experiments, we split the given input dataset D, that is
the five versions of MNIST or the P.cysts subset, into Dtrain and
Dtest with a proportion of 80% to 20% respectively.This allows the
computation of classification accuracy and κ. It is important to
highlight that no true labels are used in this computation. Rather,
classification accuracy and κ are computed over pseudo-assigned
labels as if they were true labels.

153

active learning using decision boundary maps

6.4.3 Participants

For both experiments in Secs. 6.4.2.1 and 6.4.2.2, two users are as-
signed to the task of manual labeling, which are referred next as
U1 and U2. U1 was closely involved in developing the VA tool,
but has no prior knowledge on the real-world dataset P.cysts and
its classification challenges. Conversely, U2 has detailed knowl-
edge on P.cysts but was not involved in implementing the VA
tool. Both users have a good understanding of the MNIST dataset.
This means that, for the first experiment (MNIST dataset), we can
assume that U1 has some potential advantage over U2. For the
second experiment (P.cysts dataset), we see no clear advantage
of any of the users. Apart from the above, both users have rel-
atively similar profiles in terms of age and experience with ma-
chine learning and data visualization.

During both experiments, the participants were not able to ex-
change any information concerning their way of working and/or
intermediate results, to avoid cross-learning or bias effects.

6.5 experimental results

We next present the results of our two experiments.

6.5.1 Toy dataset: MNIST

6.5.1.1 Defining the baseline

It is useful to start by defining a baseline for our subsequent exper-
iments. For this, we assess the classifier performance using the all
true labels; and also the performance obtained using the DeepFA-
generated pseudo labels, i.e., those given as input to our tool
(Fig. 6.2 (1)). Table 23 shows the DeepFA labeling performance,
classifier performance using DeepFA pseudo labels, and classi-
fier performance using all true labels, for the five different sub-
sets of MNIST introduced in Sec. 6.4.2.1. We see that the labeling
and classifier performance (when using DeepFA pseudo labels)
are around 0.77, largely independent of the MNIST subset being
used. Separately, we see that, when using true labels, accuracy
and κ increase with the sample count.

We can next see as the true-label performance being the upper
bound that one can achieve for this dataset; and the DeepFA-based
performance as the lower bound, respectively. That is, manual la-
beling cannot, likely, exceed the upper bound performance; but,

154

6.5 experimental results

for it to be useful, it has to exceed the lower bound performance
as much as possible.

metric D20% D40% D60% D80% D100%

labeling performance acc 0.7757 0.7607 0.7723 0.7728 0.7737

classifier performance

(pseudo labels)

acc 0.7507 0.7780 0.7987 0.7893 0.7540

κ 0.7226 0.7531 0.7761 0.7658 0.7266

classifier performance

(true labels)

acc 0.8347 0.8807 0.8960 0.9000 0.8947

κ 0.8161 0.8673 0.8844 0.8888 0.8829

of samples 700 1400 2100 2800 3500

Table 23: MNIST dataset. For different number of samples, DeepFA la-
beling performance, classifier performance using pseudo la-
bels, classifier performance using true labels (upper bound),
and number of samples are presented.

6.5.1.2 Comparison among different techniques and users

Table 24 presents the results of classification accuracy and κ for
pseudo labels generated by manual labeling using our VA tool,
for both users, all five subsets of MNIST considered, and all five
combinations (P, P−1) mentioned earlier in Fig. 6.8, after all five
labeling iterations.

First, we notice only small differences between U1 and U2
for the same dataset D and combination (P, P−1). As such, we
will next focus on the trends of performance vs dataset size D
and combination (P, P−1) only. In this respect, we notice that all
projection techniques using only D20% samples achieve a simi-
lar, poor, result. This means that the small number of samples in
D20% (around 700) was not sufficient for the projection techniques
to provide a good visual representation for manual labeling. Sep-
arately, we see that for not all (P, P−1) combinations show a per-
formance increase with the size of D. For instance, (PCA, NNinv)
showed poorer results in D100% compared to D20%. In contrast,
(t-SNE, NNinv) and (UMAP, NNinv) showed a performance in-
crease with the sample count. This suggests that these last two
combinations are more suitable to be used to generate visualiza-
tions for manual labeling.

We next explore the performance details aggregated in Table 24

in further detail by showing the actual variation of accuracy and
κ over all five labeling iterations.

Classifier performance for both users over the five iterations
are shown for accuracy (Figs. 6.9 and 6.11) and κ (Figs. 6.10 and
6.12). In all these figures, blue lines represent the user’s perfor-

155

active learning using decision boundary maps

P, P−1 user
D20% D40% D60% D80% D100%

acc κ acc κ acc κ acc κ acc κ

autoencoder
U1 0.8167 0.7961 0.8287 0.8094 0.8353 0.8169 0.8307 0.8117 0.8140 0.7932

U2 0.8180 0.7976 0.7980 0.7754 0.8160 0.7954 0.8240 0.8043 0.8140 0.7932

SSNP
U1 0.8180 0.7976 0.8167 0.7961 0.8280 0.8087 0.8007 0.7784 0.7860 0.7621

U2 0.7893 0.7657 0.7840 0.7598 0.7900 0.7664 0.7920 0.7687 0.7973 0.7746

t-SNE, NNinv
U1 0.8207 0.8005 0.8487 0.8317 0.8627 0.8473 0.8827 0.8695 0.8867 0.8740

U2 0.8400 0.8221 0.8513 0.8348 0.8480 0.8310 0.8613 0.8458 0.8600 0.8443

UMAP, NNinv
U1 0.8167 0.7962 0.8727 0.8584 0.8667 0.8517 0.8887 0.8762 0.8633 0.8481

U2 0.8333 0.8147 0.8460 0.8288 0.8260 0.8065 0.8473 0.8303 0.8487 0.8318

PCA, NNinv
U1 0.8127 0.7917 0.8120 0.7909 0.8260 0.8065 0.8127 0.7917 0.7620 0.7355

U2 0.7673 0.7413 0.7720 0.7465 0.7867 0.7628 0.7673 0.7413 0.7333 0.7034

Table 24: MNIST dataset. Results of classification accuracy and κ for clas-
sifiers trained with pseudo labels generated by the user interac-
tive labeling using the visualization tool after 5 iterations. Dif-
ferent techniques for direct (P) and inverse projections (P−1)
are compared for two different users.

mance over iterations; and green, orange, and red curves repre-
sent linear, logarithmic, and exponential trends (for comparison
purposes). That is, a blue line close to the green line represents
a (roughly) linear increase of classifier performance obtained by
the respective user over labeling iterations; a blue line close to
the orange curve shows that the user was much more successful
in the first labeling iterations than in the later ones; finally, a blue
line close to the red curve shows the used has difficulties in the
first labeling iterations but achieved better in later ones.

Similar trends can be seen for both users. While (tSNE, NNinv)
and (UMAP, NNinv) showed a more logarithmic trend – i.e., user
labeling was more effective in the first iterations –, (autoencoder),
(SSNP), and (PCA, NNinv) showed an exponential trend – that
is, the user had more labeling difficulties in the first iterations.
This result may be caused by the visualization generated by the
(P, P−1) combination used. For the exponential trend case, the
user might have done some significant wrong labeling in the first
iterations, possibly because of the unintuitive DBMs generated
by the (P, P−1) combination used, but managed to correct it in
later ones. Since not all (P, P−1) combinations show exponential
trends, we cannot say that the key difficulty of users was in learn-
ing how to use the VA tool.

6.5.1.3 Added value of manual labeling

Let us now analyze the added value of manual labeling com-
pared to the defined baseline (Tab. 23). For this, we show in
Table 25 the gain (difference) of classification performance ob-
tained by manual labeling (Tab. 24) vs using DeepFA pseudo la-

156

6.5 experimental results

Figure 6.9: Results of U1 for classification accuracy over five iterations,
using different direct and inverse projection techniques (P,
P−1) and input dataset fractions (D).

157

active learning using decision boundary maps

Figure 6.10: Results of U1 for classification κ over five iterations, using
different direct and inverse projection techniques (P, P−1)
and input dataset fractions (D).

158

6.5 experimental results

Figure 6.11: Results of U2 for classification accuracy over five iterations,
using different direct and inverse projection techniques (P,
P−1) and input dataset fractions (D).

159

active learning using decision boundary maps

Figure 6.12: Results of U2 for classification κ over five iterations, using
different direct and inverse projection techniques (P, P−1)
and input dataset fractions (D).

160

6.5 experimental results

bels (Tab. 23). Positive values here indicate that manual labeling
exceeds the lower bound (DeepFA); negative values indicate the
opposite.

P, P−1 user
D20% D40% D60% D80% D100%

acc κ acc κ acc κ acc κ acc κ

autoencoder
U1 0.0660 0.0735 0.0507 0.0563 0.0366 0.0408 0.0414 0.0459 0.0600 0.0666

U2 0.0640 0.0710 0.0440 0.0488 0.0620 0.0688 0.0700 0.0777 0.0600 0.0666

SSNP
U1 0.0673 0.0750 0.0387 0.0430 0.0293 0.0326 0.0144 0.0126 0.0320 0.0355

U2 0.0386 0.0431 0.0060 0.0067 -0.0087 -0.0097 0.0027 0.0029 0.0433 0.0480

t-SNE, NNinv
U1 0.0700 0.0779 0.0707 0.0786 0.0640 0.0712 0.0934 0.1037 0.1327 0.1474

U2 0.0893 0.0995 0.0733 0.0817 0.0493 0.0549 0.0720 0.0800 0.1060 0.1177

UMAP, NNinv
U1 0.0600 0.0736 0.0947 0.1053 0.0680 0.0756 0.0994 0.1104 0.1093 0.1215

U2 0.0826 0.0921 0.0680 0.0757 0.0273 0.0304 0.0580 0.0645 0.0947 0.1052

PCA, NNinv
U1 0.0620 0.0691 0.0340 0.0378 0.0273 0.0304 0.0234 0.0259 0.0080 0.0089

U2 0.0166 0.0187 -0.0060 -0.0066 -0.0120 -0.0133 -0.0220 -0.0245 -0.0207 -0.0232

Table 25: MNIST datset. Gain in classification performance obtained by
manual labeling vs DeepFA pseudo labels. Different direct and
inverse projection techniques and different amounts of samples
in D subsets for two users are considered.

We see that (SSNP) and (PCA, NNInv) yielded the lowest
gain for both users. Separately (autoencoder) also yielded lower
gain values for U1. The highest gain was consistently reached
for (tSNE, NNinv) and (UMAP, NNinv) for both users. Among
these two combinations, (tSNE, NNinv) got the best results with
more than 0.10 increase in accuracy and κ as compared to (UMAP,
NNInv).

Summarizing the above, we see that, when using specific
(P, P−1) combinations, manual labeling can surpass the perfor-
mance of DeepFA labeling, even when users are offered a rel-
atively short amount of time to visually explore (and label)
the dataset. The (P, P−1) combinations can be roughly grouped
in two classes – those which help manual labeling, i.e., (tSNE,
NNinv) and (UMAP, NNinv), and the remaining ones. Among
the ‘good’ combinations, (tSNE, NNinv) consistently showed the
best-added value for all considered dataset sizes and for both
users.

6.5.2 Evaluation in real-world problem: P.cysts

We now present the evaluations of manual labeling for the more
complex P.cysts dataset. For this, we only considered the (tSNE,
NNinv) combination, as this offered the best results for the man-
ual labeling of the simpler dataset (MNIST).

161

active learning using decision boundary maps

6.5.2.1 Defining the baseline

As for the MNIST dataset, we first establish a baseline indicating
the lower bound performance (reached by DeepFA labeling) and
the upper bound performance (reached by using all true labels).
Table 26 shows these results, as well as the DeepFA labeling per-
formance. Note that, as opposed to the MNIST experiments, we
now use the entire set of |D| = 2696 samples. This is due to the
larger difficulty of the P.cysts dataset, but also due to the earlier
observation telling that too few samples can create problems for
the manual labeling process (Sec. 6.5.1.2). We see that the differ-
ence between the upper bound and lower bound is 0.0225 and
0.0334 for accuracy and κ, respectively. That is, DeepFA already
yields a quite good result, leaving only a small interval where
manual labeling could present improvements.

metric D

labeling performance acc 0.8560

classifier performance

(pseudo labels)

acc 0.8564

κ 0.8043

classifier performance

(true labels)

acc 0.8789

κ 0.8377

of samples 2696

Table 26: P.cysts dataset. Performance of DeepFA labeling, classification
using the DeepFA pseudolabels (lower bound), and classifica-
tion using all true labels (upper bound). Right column shows
percentage of samples in the dataset used in the experiments.

6.5.2.2 Added value of manual labeling

Table 27 presents the classification accuracy and κ values ob-
tained after manual labeling by both earlier users (U1 and U2).
Obviously, they start from the same baseline value, i.e., those of-
fered by the DeepFA pseudolabeling. We see that both users man-
aged to use the VA tool to increase classification performance
over the five available iterations – specifically, U1increased accu-
racy by 0.0112 and κ by 0.0168; while U2 increased accuracy by
0.0173 and κ by 0.0249. This proves that our VA tool offers added
value even for more complex, real-world, datasets.

Figure 6.13 presents the aggregated results in Tab. 27 in a vi-
sual form. Here, we see similar trends like the one we found for
MNIST (Figs. 6.9-6.12) – that is, exponential, respectively logarith-
mic, improvement of performance over the iterations. However,
these trends are now not related to the use of different (P, P−1)

162

6.6 discussion

accuracy κ

iteration U1 U2 U1 U2

0 0.8564 0.8043

1 0.8538 0.8521 0.8019 0.7987

2 0.8581 0.8728 0.8096 0.8279

3 0.8590 0.8763 0.8107 0.8322

4 0.8616 0.8763 0.8131 0.8321

5 0.8676 0.8737 0.8211 0.8292

Table 27: P.cysts dataset. Results of classification accuracy and κ for clas-
sifiers trained with pseudo labels generated by the user inter-
active labeling using the visualization tool after 5 iterations by
two different users.

combinations, but to the two different users. For ease of compar-
ison, the last row of the figure shows the accuracy and κ trends
for the two users (U1: blue; U2: orange) superimposed. The differ-
ence in these two trends is consistent with our knowledge about
the users: Indeed, U2 was familiar with the P.cysts dataset, which
explains the quick gains obtained in the first iterations and, likely,
also the fact that, at the end, U2 obtains a slightly higher end per-
formance than U1. However, we believe that the results for U1 are
more interesting: Even if this user had zero prior knowledge of
(and exposure to) this dataset, U1 managed to achieve an almost
as high performance as U1 with the same effort (time).

6.6 discussion

We next discuss the overall advantages and limitations of our
proposed VA-based approach for manual labeling.

Genericity: Our approach is generic in the sense that it can be
applied to any dataset (and classifier), in a black box manner.
That is, no details of the internal operation of the classifier are
required by our VA tool. However, if the data dimensionality is
too large – roughly, over a few thousand dimensions – directly
using the tool’s projection technique (t-SNE) to construct the
DBM can be problematic. This can be inspected by the user by
monitoring the projection errors present in the visualization
(Sec. 6.3.1). When these are too high, the dataset can be reduced
to a smaller number of features using e.g. autoencoders prior to
its use in the tool.

163

active learning using decision boundary maps

Figure 6.13: P.cysts dataset. Classification results over five iterations, con-
sidering two different users.

Effectiveness: While demonstrated only up to a limited extent
– that is, for two datasets and two users only – we have shown
evidence that our VA tool can help constructing classifiers with
a higher performance than what can be fully automatically
obtained, i.e., by using an automatic pseudolabeling algorithm
such as DeepFA. This is, we believe, the strongest contribution
of our work as it underlies our original hypothesis, namely
that a combination of automatic algorithms and human insight
is the optimal way for ML engineering problems. That being
said, several limitations exist to this end. First, the increase of
effectiveness – the so-called gain that manual labeling offers vs
automatic labeling – is quite small (a few percent points), at least
for the problems we have studied. Secondly, it is not clear how
generalizable this gain is, i.e., if it could be consistently observed
for a wide spectrum of users, classifiers, and datasets.

Workflow: So far, our VA tool does not provide a specific way
to ‘instruct’ users on how they can best perform manual label-
ing, apart from the general interpretation of the visualizations
described in Sec. 6.3 – that is, the direct projection errors, in-
verse projection errors, confidence-annotated DBMs, and sample

164

6.7 conclusion

tooltips. Users learn how to use the tool via a trial-and-error pro-
cedure, i.e., selecting a few samples to label and monitoring the
change in DBMs and classifier performance that the new labels
create. Key to the effectiveness of this procedure is a fast execu-
tion of the label-retrain-visualize loop, so that one can perform
multiple such iterations quickly, including undo operations when
negative effects are observed. In our current implementation, this
loop takes a few up to ten seconds, depending on the used hard-
ware (a mid-range PC).

We see two avenues for improvement in this respect. First, a
more scalable computation of the (re)training and calculation of
the DBM is needed if one aims to use our VA tool for larger
datasets and/or more complex classifiers. Secondly, and more im-
portantly, we believe that explanations should be added to the pro-
vided visualizations to make them more effective. For instance,
we have (anecdotically) noticed that users do not know how to
exactly interpret the direct and inverse error maps, apart from ig-
noring samples that fall in high-error areas. Moreover, we know
that non-linear (inverse) projections can introduce deformations
in DBMs which are, next, potentially misleading users Wang et al.
(2023). Additional techniques such as interactive tools that show
users e.g. which are the true nearest-neighbors, in data space,
of a (set of) point(s) in the projection; and depicting the ac-
tual distance to the closest decision boundary of every DBM
point Rodrigues et al. (2019), could increase the efficiency and
effectiveness of manual labeling.

A small, but important, final improvement point concerns the
treatment of true labels. Currently, our VA tool does not distin-
guish between such labels and those pre-assigned by the DeepFA
pseudo labeling step executed prior to the start-up of the VA
workflow. As such, users may, during manual labeling, inadver-
tently change such true labels, therefore unnecessarily decreasing
the performance of the training. A simple fix could prevent this
from taking place.

6.7 conclusion

In this chapter, we have shown how automatic and user-driven
pseudo labeling methods can be combined in a single work-
flow that helps constructing high-performance classifiers. Our
proposed workflow starts by executing DeepFA, the automatic
pseudo labeling method we introduced in Chapter 3, from a
(very) small set of true labels to the entire training set; next,
users can examine this training set, together with the classifica-

165

active learning using decision boundary maps

tion model that this set leads to (depicted as decision boundary
maps), and additionally label data points to improve classifica-
tion performance.

We have provided two sets of experiments, on both a relatively
simple dataset (MNIST) and a more complex one (P.cysts), both
to be classified by a neural network architecture. We have shown
that, when using a specific combination of direct and inverse pro-
jection techniques to create the decision maps (t-SNE and NNInv,
respectively), users can achieve an average increase in classifica-
tion accuracy and κ of 8.21% and 0.00913 (MNIST), and 1.43%
and 0.0209 (P.cysts) with a relatively small effort – namely, a
maximum of 15 minutes of tool operation. We have also shown
evidence that supports the hypothesis that this gain is not de-
pendent on prior knowledge of the dataset and/or classification
problem at hand, and thus can be reached by a wide spectrum of
users having general knowledge in machine learning and visual
analytics. To our knowledge, this is the first study that explores
the use of decision boundary maps in an active learning looping
scenario with the aim of improving classifier performance.

Many avenues are now opened for future work. First and fore-
most, testing our VA approach with more users, datasets, and
classifiers is needed to confirm (or refine) our findings and thus
get a better idea of the added value it provides. Secondly, im-
provements in the depiction of the classifier behavior (via anno-
tated decision maps), but also for the depiction of how the classi-
fier actually uses the provided manual labels during training, can
reduce the iterative effort needed to manually construct a good
set of pseudo labels.

166

7C O N C L U S I O N S

We close this thesis by revisiting our proposed contributions and
also outlining directions for future work.

In Chapter 1 of this thesis, we introduced our general research
question:

How can we exploit the synergy between ML and DR techniques to
improve each other?

We further refined this general question into two more specific
ones that address relationship between machine learning (ML)
and dimensionality reduction (DR), as follows:

RQ1: How to use multidimensional projections to build better models
for machine learning?
RQ2: How does projection quality relate to data separation and classifi-
cation performance?

Throughout the Chapters 3 to 6, we explored this questions.
We next summarize the results obtained during this exploration,
as well as how these answer our initial questions.

We addressed RQ1 in Chapter 3 by proposing a pseudo-
labeling approach, called DeepFA, that explores the ability
of a multidimensional projection to generate a reduced (two-
dimensional) feature space with enough information to improve
feature learning and classifier performance over iterations. Our
findings confirm that the t-SNE projection technique – well
known in information visualization for its high ability to capture
data structure present in high dimensions – can generate 2D fea-
ture spaces which are also effective for feature learning and clas-
sifier engineering. In other words, we have shown that 2D projec-
tions can be used instead of the original feature space, which typ-
ically has hundreds of dimensions or even more, for designing
feature and classifier learning models through pseudo-labeling.

In addition to that, and in line with (Benato et al., 2021c), our
findings show that using such 2D projection spaces can lead to
better results (in terms of classifier performance) than using the
original high-dimensional feature space in the context of feature
learning strategies. Differently than (Benato et al., 2021c), we ex-
trapolate from a few supervised examples to use a more robust

167

conclusions

feature learning strategy as a pre-trained convolutional neural
architecture instead of an unsupervised autoencoder. This offers
a better initial feature space as input to the multidimensional
projection algorithm. For each chosen step in our pipeline, we
presented an extensive set of experiments that demonstrate the
power of our approach.

Research question RQ2 is explored in Chapter 4. In this chap-
ter, we explore pseudo-labeling and projection techniques to link
data separation (DS), visual separation (VS), and classifier perfor-
mance (CP). We assessed DS by evaluating the data structure of
learned features when using a linear classifier. High classification
values using such a classifier tell when data is linearly separable
in high dimensions and, thus, whether a dataset has a good DS.
From a high-dimensional feature space with good DS, we showed
that projections can produce a 2D feature space having a high VS.
Finally, we used such a 2D projection space (with good VS) to
pseudo label samples and showed that these can train a classifier
which exhibits a high CP.

In our work in Chapter 4, we define ‘good VS’ as having a
projection whose 2D scatterplot appears to be separated into dis-
tinct groups, each one having labels of mainly a single class. Af-
ter evaluating various projection techniques, our findings show
that VS indeed can be related to DS and CP for a group of such
techniques. Knowing which techniques exhibit this property, i.e.,
are part of the aforementioned group, is valuable for supporting
classifier engineering and, arguably, for other infovis applications
where VS is important. In addition, we demonstrate how to model
a classifier by certifying that this correlation exists. That is, by im-
proving DS and then VS, one can obtain a classifier with high CP.
To our knowledge, this is the first time that (a) the correlation be-
tween DS, VS, and CP is demonstrated, and (b) one has indicated
which specific projection techniques preserve a strong DS-VS-CP
correlation (or not).

We further address RQ2 in Chapter 5 by reverting the roles of
VS and CP analyzed in Chapter 4. That is, we extend our earlier
observation that high VS (assessed visually by users) implies a
high CP to hypothesize that a high CP (measured automatically)
implies a high VS. As such, we propose to assess the VS of 2D
projections by a metric that evaluates the CP of a graph-based
semi-supervised classifier used to propagate labels in the 2D pro-
jection. We concern ourselves with cases where the dataset being
projected is labeled. In more detail, we claim that, when a classi-
fier achieves high CP in the labeling task, then the 2D projection
has a good VS. Intuitively, this is based on the observation that,

168

conclusions

when a classifier propagates labels with low errors, then label-
ing (in the 2D projection space) is an easy task; this next implies
that the 2D projection is well separated into distinct groups of
same-label samples.

Our findings show that our proposed metric can better gauge
VS in projections than projection-quality metrics commonly used
in the DR literature. We further justify our proposal by perform-
ing a user evaluation that shows that our metric correlates well
with VS as perceived by over 100 subjects. To our knowledge, this
is the first time that VS of 2D projections is measured by a pseudo
labeling task. Our proposal is simple to implement, works for
any projection technique, and scales computationally very well,
being faster than existing projection-quality metrics. We can link
this contribution with the ones presented in Chapter 3 as follows.
Whenever we measure κ at the end of a DeepFA pseudo labeling
iteration, not only the produced feature space is evaluated, but
also the 2D projected space. This means that if we obtain a high
κ for the 2D feature space – which is precisely our proposed met-
ric to evaluate VS – then we guarantee that a 2D projected space
with good VS is achieved for the next DeepFA iteration.

Finally, in Chapter 6, we turn back to RQ1. In contrast to our
work in Chapter 3, which has shown how to use 2D projections
to automatically improve the construction of classification models
(by means of automatic pseudo labeling), we now consider as-
sisting the human user to perform such improvements. For this,
we incorporate an active learning looping to improve pseudo la-
bels produced by the DeepFA method (Chapter 3). For this, we
combine several visualization techniques, including direct pro-
jection errors, inverse projection errors, decision boundary maps
(DBMs), and data tooltips to present to the user both the training
dataset and the behavior of the classifier trained on this dataset.
This allows users to detect areas – more specifically, unlabeled
samples in the training set – which, if correctly labeled by man-
ual intervention, could improve the classifier performance. We
combine our techniques to produce a visual analytics (VA) tool
for manual labeling, training, and testing of classification models.

Our results show that, when starting from an automatic set
of pseudo labels computed by the DeepFA strategy in Chapter 3,
and using the assistance of the aforementioned VA tool, users can
achieve an increase in classification performance (as opposed to
the DeepFA baseline) after only a few iterations totalling 15 min-
utes of manual work. Our findings indirectly support our hypoth-
esis that multidimensional projections capture well data structure
present in high dimensions in a way that the resulting 2D feature

169

conclusions

space offers enough information for further human abstraction to
support manual labeling. Unlike Chapter 3, the information pro-
vided by the multidimensional projection is now exploited by a
user (human, interactively) instead of an algorithm (machine, au-
tomatically). At a higher level, the work in this chapter answers
RQ1 by showing that both humans and machines can use multidi-
mensional projections to build better classifiers; and that, when
cooperating (by using such projections), humans and machines ob-
tain results which surpass what can be obtained when using only
manual, or only automatic, methods.

As it should be evident by now, dimensionality reduction tech-
niques and pseudo-labeling play an essential role in all our con-
tributions. Dimensionality reduction successfully captures data
structure from high dimensions in a way that machines and hu-
mans can distill relevant information to design and improve ma-
chine learning models. Pseudo labeling can retain, and next cre-
ate, substantial knowledge in the produced labels during the en-
tire data flow from the learned space, to the reduced 2D projec-
tion space, and next to the way users abstract this information
during their iterative manual exploration and labeling of data
via 2D projection spaces.

7.1 directions for future work

Based on our research, we foresee the following potential direc-
tions for future work.

Feature and classifier learning: In our work, we have presented
(and validated by evaluations) an approach that results in labels
for unsupervised samples and, in the end, delivers a high-quality
trained classifier. However, as mentioned at the beginning of
this chapter, our approach has an indirect effect of added value:
Over the iterations of our DeepFA method, we improve the
feature space (in terms of data separation), which is our main
goal, needed for the final construction of high-quality classifiers.
As a side effect of this, given the observed correlation of data
separation with visual separation, we also improve the visual
separation exhibited by 2D scatterplots created by projections
from the feature space. This means that we could use a very sim-
ilar iterative pipeline to design novel ways to create high-quality
projections (in terms of visual separation) of high-dimensional
data.

170

7.1 directions for future work

Relationship between VS, DS, and CP: We have examined this
relationship under the pseudo labeling task, that is, using a
classifier to predict labels for unsupervised samples and consid-
ering this prediction accurate in the other steps. In other words,
we explore the classifier’s ability to predict labels (measured
as classifier performance) to link the VS, DS, and CP concepts.
However, an open question remains: Can we link VS, DS, and
CP using other ML tasks? Given the high level definition of
‘separation’ (either in the data or visual space), we believe this to
be the case. As such, one can next explore clustering or metric
learning strategies to find novel ways in which VS, DS, and CP
can be linked to each other – or, in more technical terms, novel
ways in which one can measure how well these aspects are
correlated with each other.

Projection quality: Our work in Chapter 5 has shown how VS in
projections can be simply and efficiently measured by means of
the computation of a classifier performance metric. However, the
respective metric – Cohen’s κ – requires the presence of labels for
the projected dataset. It is interesting to consider how we could
extend this approach to assess the VS of unlabeled data. This
requires, in the first place, a different definition of VS, likely con-
sidering only the relative (visual) separation of closely-packed
groups of points in a 2D projection. To measure this, one could
explore using an unsupervised version of the same classifier as
we used so far in supervised mode. A separate direction involves
exploring the same type of classifier to evaluate projection
quality in terms of reducing the high-dimensional space while
preserving data patterns, e.g., by combining optimum path
forests computed in both high and low-dimensional spaces. This
would open new avenues to quantifying the much-discussed,
but still insufficiently captured by current metrics, concept of
preservation of data structure by projections.

Active learning and decision boundary maps: In Chapter 6, we
have shown how visualization techniques (decision boundary
maps and error maps) can be employed to guide users to man-
ually label datasets so as to lead to the construction of higher-
performance classifiers than when using purely automatic label-
ing. Still, this limits the impact of the human analytic power to
the investigation of the 2D projection space only. We believe that
users, assisted by suitable visualization techniques, can be effec-
tive in driving the feature and classifier learning looping so as to
produce even higher-quality pseudo labels and, ultimately, clas-

171

conclusions

sifiers. For example, users can be empowered, by visual analyt-
ics tools, to manually change the classifier boundaries in the 2D
projections during classifier retraining. This way, they could see
how their actions can improve the feature space during the online
learning of the classifier. Ultimately, and at a higher level, the key
message we are sending for future work is that the gap between
the operation of machine learning tools (label propagation, clas-
sifier training) and human insight can, and should, be reduced
by means of visual analytics techniques. In the end, humans and
machines should seamlessly work with and alongside each other,
on all parts of the machine learning pipeline, dynamically com-
plementing and improving each others’ actions and results, so as
to lead to a higher-quality, and more explainable, final result.

172

B I B L I O G R A P H Y

M. M. Abbas, M. Aupetit, M. Sedlmair, and H. Bensmail.
ClustMe: A Visual Quality Measure for Ranking Monochrome
Scatterplots based on Cluster Patterns. Computer Graphics Fo-
rum, 2019.

D. K. Agrafiotis. Stochastic proximity embedding. Journal of Com-
putational Chemistry, 24(10):1215–1221, 2003.

G. Albuquerque, M. Eisemann, and M. Magnor. Perception-based
visual quality measures. In Proc. IEEE VAST, pages 13–20, 2011.

T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami. Contributions
to the study of sms spam filtering: new collection and results.
In Proc. ACM symposium on Document engineering, pages 259–
262, 2011.

W. Amorim, A. Falcão, J. Papa, and M. Carvalho. Improving
semi-supervised learning through optimum connectivity. Pat-
tern Recognit., 60:72–85, 2016.

W. Amorim, G. Rosa, Rogério, J. Castanho, F. Dotto, O. Ro-
drigues, A. Marana, and J. Papa. Semi-supervised learning
with connectivity-driven convolutional neural networks. Pat-
tern Recognit. Lett., 128:16 – 22, 2019.

N. Andrienko, G. Andrienko, G. Fuchs, A. Slingsby, C. Turkay,
and S. Wrobel. Visual Analytics for Data Scientists. Springer,
2020.

R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David,
and C. E. Elger. Indications of nonlinear deterministic and
finite-dimensional structures in time series of brain electrical
activity: Dependence on recording region and brain state. Phys-
ical Review E, 64(6):061907, 2001.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz.
Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. In Proc. IWAAL,
pages 216–223, 2012.

E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuin-
ness. Pseudo-labeling and confirmation bias in deep semi-
supervised learning. In Proc. IJCNN, pages 1–8. IEEE, 2020.

173

bibliography

R. Becker, W. Cleveland, and M. Shyu. The visual design and
control of trellis display. Journal of Computational and Graphical
Statistics, 5(2):123–155, 1996.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Proc. NIPS, volume 14,
pages 585–591, 2001.

B. C. Benato, A. C. Telea, and A. X. Falcão. Semi-supervised learn-
ing with interactive label propagation guided by feature space
projections. In Proc. SIBGRAPI, pages 392–399, 2018.

B. C. Benato, A. X. Falcão, and A. C. Telea. Measuring the quality
of projections of high-dimensional labeled data. Computers &
Graphics, 116:287–297, 2023a.

B. C. Benato, C. Grosu, A. X. Falcao, and A. C. Telea. Human-in-
the-loop: Using classifier decision boundary maps to improve
pseudo labels. In submitted, 2024.

B. C. Benato, J. F. Gomes, A. C. Telea, and A. X. Falcão. Semi-
supervised deep learning based on label propagation in a 2D
embedded space. In Proc. CIARP, pages 371–381. Springer,
2021a.

B. C. Benato, A. C. Telea, and A. X. Falcao. Iterative pseudo-
labeling with deep feature annotation and confidence-based
sampling. In Proc. SIBGRAPI, pages 192–198. IEEE, 2021b.

B. C. Benato, A. X. Falcao, and A. C. Telea. Linking data sep-
aration, visual separation, and classifier performance using
pseudo-labeling by contrastive learning. In Proc. VISAPP.
SciTePress, 2023b.

B. C. Benato, A. X. Falcão, and A. C. Telea. Linking data sep-
aration, visual separation, and classifier performance using
pseudo-labeling by contrastive learning. In Proc. VISAPP,
2023c.

B. C. Benato, A. X. Falcão, and A. C. Telea. Code repository.
https://github.com/barbarabenato/measuring_quality_of_

projections, 2023d.

B. C. Benato, J. F. Gomes, A. C. Telea, and A. X. Falcão. Semi-
automatic data annotation guided by feature space projection.
Pattern Recognit., 109:107612, 2021c. issn 0031-3203.

174

https://github.com/barbarabenato/measuring_quality_of_projections
https://github.com/barbarabenato/measuring_quality_of_projections

bibliography

B. C. Benato, A. C. Telea, and A. X. Falcão. Deep feature annota-
tion by iterative meta-pseudo-labeling on 2d projections. Pat-
tern Recognition, 141:109649, 2023e.

Benato, B.C. Deepfa: “deep feature annotation”, 2022.
https://github.com/barbarabenato/DeepFA.

J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13(null):281–305, feb 2012.
issn 1532-4435.

J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedl-
mair. Comparing visual-interactive labeling with active learn-
ing: An experimental study. IEEE Trans. Vis. Comput. Graph., 24

(1):298–308, Jan 2018. issn 1077-2626.

J. Bernard, M. Zeppelzauer, M. Lehmann, M. Müller, and M. Sedl-
mair. Towards user-centered active learning algorithms. Com-
puter Graphics Forum, 37(3):121–132, 2018.

J. Bertin. La graphique et le traitement graphique de l’information.
Flammarion, 1977.

J. Bertin. Semiology of Graphics. University of Wisconsin Press,
Madison, WI, 1983.

M. Brand. Charting a manifold. In Proc. NIPS, pages 985–992,
2002.

C. Bredius, Z. Tian, and A. Telea. Visual exploration of neural
network projection stability. In Proc. Machine Learning Methods
in Visualisation for Big Data. Eurographics, 2022.

B. Broeksema, T. Baudel, and A. Telea. Visual analysis of multi-
dimensional categorical datasets. Computer Graphics Forum, 32

(8):158–169, 2013.

C. J. C. Burges. Dimension reduction: A guided tour. Foundations
and Trends in Machine Learning, 2(4):275–365, 2010.

T. Caliński and J. Harabasz. A dendrite method for cluster anal-
ysis. Commun. Stat., 3(1):1–27, 1974.

P. Cascante-Bonilla, F. Tan, Y. Qi, and V. Ordonez. Curriculum
labeling: Revisiting pseudo-labeling for semi-supervised learn-
ing. arXiv preprint arXiv:2001.06001, 2020.

W. Castelein, Z. Tian, T. Mchedlidze, and A. Telea. Viewpoint-
based quality for analyzing and exploring 3d multidimen-
sional projections. In Proc. IVAPP, 2023.

175

bibliography

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
In International conference on machine learning, pages 1597–1607.
PMLR, 2020.

Y. Chen, M. Crawford, and J. Ghosh. Improved nonlinear man-
ifold learning for land cover classification via intelligent land-
mark selection. In Proc. IEEE IGARSS, pages 545–548, 2006.

F. Chollet et al. Keras. https://keras.io, 2015.

M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A.
Kadir, Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Iqbal,
N. Al Emadi, et al. Can ai help in screening viral and covid-19

pneumonia? IEEE Access, 8:132665–132676, 2020.

P. M. Ciarelli and E. Oliveira. Agglomeration and elimination of
terms for dimensionality reduction. In Proc. IEEE ISDA, pages
547–552, 2009.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and compu-
tational harmonic analysis, 21(1):5–30, 2006.

D. Coimbra, R. Martins, T. A. T. Neves, A. C. Telea, and
F. V. Paulovich. Explaining three-dimensional dimension-
ality reduction plots. J. of Information Visualization, 2015.
DOI:10.1177/1473871615600010.

D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE TPAMI, 24(5):603–619, 2002.

K. A. Cook and J. J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report,
Pacific Northwest National Laboratory (PNNL), Richland, WA
(US), 2005.

K. R. Coombes, G. Brock, Z. B. Abrams, and L. V. Abruzzo. Poly-
chrome: Creating and assessing qualitative palettes with many
colors. Journal of Statistical Software, 90, 2019.

J. Cunningham and Z. Ghahramani. Linear dimensionality reduc-
tion: Survey, insights, and generalizations. J. Mach. Learn. Res.,
16:2859–2900, 2015.

N. Das, S. Chaba, R. Wu, S. Gandhi, D. H. Chau, and X. Chu.
GOGGLES: Automatic image labeling with affinity coding. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 1717–1732. Association
for Computing Machinery, 2020. isbn 9781450367356.

176

https://keras.io

bibliography

S. Dasgupta. Experiments with random projection. In Proc. UAI,
page 143–151, 2000.

T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated
hate speech detection and the problem of offensive language.
In Proc. AAAI ICWSM, volume 11, pages 512–515, 2017.

V. De Silva and J. B. Tenenbaum. Sparse multidimensional scaling
using landmark points. Technical report, tec. rep., Stanford
University, 2004.

D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data. In Proc. of
the National Academy of Sciences, number 10, pages 5591–5596,
2003.

N. Elmqvist, P. Dragicevic, and J. Fekete. Rolling the dice: Mul-
tidimensional visual exploration using scatterplot matrix navi-
gation. IEEE TVCG, 14(6):1539–1148, 2008.

D. Engel, L. Hattenberger, and B. Hamann. A survey of di-
mension reduction methods for high-dimensional data analy-
sis and visualization. In Proc. IRTG Workshop, volume 27, pages
135–149. Schloss Dagstuhl, 2012.

M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. To-
ward a quantitative survey of dimension reduction techniques.
IEEE TVC, 27(3):2153–2173, 2019a.

M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. H. Jr, and
A. Telea. Deep learning inverse multidimensional projections.
In Proc. EuroVA. Eurographics, 2019b.

M. Espadoto, N. Hirata, and A. Telea. Deep learning multidimen-
sional projections. Information Visualization, 9(3):247–269, 2020.

M. Espadoto., N. S. T. Hirata., and A. C. Telea. Self-supervised
dimensionality reduction with neural networks and pseudo-
labeling. In Proc. IVAPP, pages 27–37, 2021.

M. Espadoto, G. Appleby, A. Suh, D. Cashman, M. Li, C. Schei-
degger, E. W. Anderson, R. Chang, and A. C. Telea. UnPro-
jection: Leveraging inverse-projections for visual analytics of
high-dimensional data. IEEE Transactions on Visualization and
Computer Graphics, 29(2):1559–1572, 2023.

C. Faloutsos and K. I. Lin. Fastmap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia
datasets. In Proc. ACM SIGMOD, pages 163–174, 1995.

177

bibliography

J. L. Fleiss and J. Cohen. The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability.
Educ. Psychol. Meas., 33(3):613–619, 1973.

J. A. M. Flores, L. Linsen, and A. Telea. Skeleton-based scagnos-
tics. IEEE TVCG, 24(1):542–552, 2017.

J. H. Friedman and J. W. Tukey. A projection pursuit algorithm
for exploratory data analysis. IEEE Transactions on Computers,
23(9):881–890, 1974.

Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learn-
ing with image data. In Proc. ICML, pages 1183–1192, 2017.

R. Garcia, A. Telea, B. da Silva, J. Torresen, and J. Comba. A task-
and-technique centered survey on visual analytics for deep
learning model engineering. Computers and Graphics, 77:30–49,
2018.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3–42, 2006.

J. B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar,
et al. Bootstrap your own latent: A new approach to self-
supervised learning. arXiv preprint arXiv:2006.07733, 2020.

I. Guyon, S. G. S, and A. Ben-Hur. Result analysis of the NIPS
2003 feature selection challenge. In Advances in Neural Informa-
tion Processing Systems, page 545?552, 2004.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning
vs. prior knowledge challenge. In Proc. IEEE IJCNN, pages 829–
834, 2007.

N. Halko, P. Martinsson, and J. Tropp. Finding structure with ran-
domness: Stochastic algorithms for constructing approximate
matrix decompositions. arXiv:0909.4061, 2009.

D. Hand, H. Mannila, and P. S. P. Principles of Data Mining. MIT
Press, 2001.

C. D. Hansen and C. R. Johnson. The Visualization Handbook. Else-
vier, 2005.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In Proc. IEEE CVPR, pages 770–778, 2016.

178

bibliography

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast
for unsupervised visual representation learning. In Proc. IEEE
CVPR, pages 9729–9738, 2020.

X. He and P. Niyogi. Locality preserving projections. In Proc.
NIPS, volume 16, pages 153–160, 2003.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):504–507,
July 2006.

A. Hyvarinen. Fast ica for noisy data using gaussian moments.
In Proc. IEEE ISCAS, volume 5, pages 57–61, 1999.

A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for
visualizing multidimensional geometry. In Proc. IEEE Visualiza-
tion, pages 361–378, Los Alamitos, CA, 1990. IEEE Press.

A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Label propagation
for deep semi-supervised learning. In Proc. ICCV, pages 5070–
5079, 2019.

T. Iwata, N. Houlsby, and Z. Ghahramani. Active learning for
interactive visualization. In C. M. Carvalho and P. Ravikumar,
editors, Proceedings of the Sixteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 31, pages 342–350, 2013.

L. Jing and Y. Tian. Self-supervised visual feature learning with
deep neural networks: A survey. IEEE PAMI, pages 1–1, 2020.

P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato. Local affine multidimensional projection. In Proc. IEEE
TVCG, pages 2563–2571, 2011.

I. T. Jolliffe. Principal Component Analysis (2nd edition). Springer,
1986.

M. C. Jones and R. Sibson. What is projection pursuit? Journal of
the Royal Statistical Society, 150(1):1–37, 1987.

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised contrastive
learning. Proc. NeurIPS, 33:18661–18673, 2020.

Y. Kim, M. Espadoto, S. Trager, J. Roerdink, and A. Telea. SDR-
NNP: Sharpened dimensionality reduction with neural net-
works. In Proc. IVAPP, 2022a.

179

bibliography

Y. Kim, A. C. Telea, S. C. Trager, and J. B. Roerdink. Visual cluster
separation using high-dimensional sharpened dimensionality
reduction. Inf. Vis., 21(3):197–219, 2022b.

D. Kotzias, M. Denil, N. De Freitas, and P. Smyth. From group to
individual labels using deep features. In Proc. ACM SIGKDD,
pages 597–606, 2015.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of fea-
tures from tiny images. tech. rep., 2009.

J. B. Kruskal. Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

N. Lawrence. Gaussian process latent variable models for visu-
alisation of high dimensional data. In Proc. NIPS, volume 16,
pages 329–336, 2003.

Y. LeCun and C. Cortes. MNIST handwritten digit database, 2010.
http://yann.lecun.com/exdb/mnist.

D. H. Lee. Pseudo-label : The simple and efficient semi-
supervised learning method for deep neural networks. In Proc.
ICML-WREPL, 2013.

D. Lee and H. S. Seung. Algorithms for non-negative matrix fac-
torization. In Proc. NIPS, volume 13, pages 556–562, 2000.

D. J. Lehmann, G. Albuquerque, M. Eisemann, M. Magnor, and
H. Theisel. Selecting coherent and relevant plots in large scat-
terplot matrices. Computer Graphics Forum, 31(6):1895–1908,
2012.

Y. Li and X. Chao. Semi-supervised few-shot learning approach
for plant diseases recognition. Plant Methods, 17:1–10, 2021.

J. Lim, D. Ross, R. s. Lin, and M. H. Yang. Incremental learning
for visual tracking. In Proc. NIPS, volume 17, pages 793–800,
2004.

T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects
in context. In Proc. ECCV, pages 740–755, 2014.

P. Liu, H. Zhang, and K. B. Eom. Active deep learning for classi-
fication of hyperspectral images. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 10(2):712–724,
2017.

180

http://yann.lecun.com/exdb/mnist

bibliography

F. P. S. Luus, N. Khan, and I. Akhalwaya. Active learning with
tensorboard projector. CoRR, abs/1901.00675, 2019. url http:

//arxiv.org/abs/1901.00675.

G. F. M. Hopkins, E. Reeber and J. Suermondt. Spambase dataset,
1999.

A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts.
Learning word vectors for sentiment analysis. In Proc. NAACL-
HLT, pages 142–150, 2011.

A. Machado, A. Telea, and M. Behrisch. ShaRP: Shape-
regularized multidimensional projections. In Proc. EuroVA,
2023.

D. Marghescu. Evaluating the effectiveness of projection tech-
niques in visual data mining. In Proc. IASTED, pages 186–193,
2006.

R. Martins, D. Coimbra, R. Minghim, and A. Telea. Visual analy-
sis of dimensionality reduction quality for parameterized pro-
jections. Computers and Graphics, 41:26–42, 2014.

M. McCann and A. Johnston. Secom dataset, 2008.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Mani-
fold Approximation and Projection for Dimension Reduction.
ArXiv e-prints, February 2018.

L. McInnes, J. Healy, N. Saul, and L. Grossberger. Umap: Uniform
manifold approximation and projection. The Journal of Open
Source Software, 3(29):861, 2018.

R. Minghim, F. V. Paulovich, and A. de Andrade Lopes. Content-
based text mapping using multi-dimensional projections for
exploration of document collections. In Visualization and Data
Analysis 2006, volume 6060, pages 259–270. SPIE, 2006.

T. Miyato, S. i. Maeda, M. Koyama, and S. Ishii. Virtual adversar-
ial training: a regularization method for supervised and semi-
supervised learning. IEEE PAMI, 41(8):1979–1993, 2018.

S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict
the success of bank telemarketing. Decision Support Systems, 62:
22–31, 2014.

R. Motta, R. Minghim, A. de Andrade Lopes, and M. C. F.
Oliveira. Graph-based measures to assist user assessment
of multidimensional projections. Neurocomputing, 150:583–598,
2015.

181

http://arxiv.org/abs/1901.00675
http://arxiv.org/abs/1901.00675

bibliography

T. Munzner. Visualization Analysis and Design: Principles, Tech-
niques, and Practice. CRC Press, 2014.

S. A. Nene, S. K. Nayar, H. Murase, et al. Columbia object image
library (coil-20). tech. rep., 1996.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature
learning. In Proc. NIPS, 2011.

L. Nonato and M. Aupetit. Multidimensional projection for vi-
sual analytics: Linking techniques with distortions, tasks, and
layout enrichment. IEEE Trans. Vis. Comput. Graph, 2018.

A. A. A. M. Oliveira., M. Espadoto., R. Hirata Jr.., and A. C. Telea.
Sdbm: Supervised decision boundary maps for machine learn-
ing classifiers. In Proc. IVAPP, pages 77–87, 2022.

D. Osaku, C. F. Cuba, C. T. Suzuki, J. F. Gomes, and A. X. Falcão.
Automated diagnosis of intestinal parasites: a new hybrid ap-
proach and its benefits. Comput. Biol. Med., 123:103917, 2020.

E. Packer, P. Bak, M. Nikkilä, V. Polishchuk, and H. J. Ship. Vi-
sual analytics for spatial clustering: Using a heuristic approach
for guided exploration. IEEE Trans. Vis. Comput. Graph, 19(12):
2179–2188, 2013.

J. P. Papa and A. X. Falcão. A Learning Algorithm for the Optimum-
Path Forest Classifier, pages 195–204. Springer, 2009.

F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high-precision multidimen-
sional projection technique and its application to document
mapping. IEEE TVCG, pages 564–575, 2008.

F. V. Paulovich and R. Minghim. Text map explorer: a tool to
create and explore document maps. In Tenth International Con-
ference on Information Visualisation (IV’06), pages 245–251. IEEE,
2006.

F. V. Paulovich, D. M. Eler, J. Poco, C. P. Botha, R. Minghim, and
L. G. Nonato. Piece wise laplacian-based projection for inter-
active data exploration and organization. Computer Graphics
Forum, 30:1091–1100, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
et al. Scikit-learn: Machine learning in python. Journal of ma-
chine learning research, 12(Oct):2825–2830, 2011.

182

bibliography

A. Z. Peixinho, B. C. Benato, L. G. Nonato, and A. X. Falcão. De-
launay triangulation data augmentation guided by visual ana-
lytics for deep learning. In 2018 31st SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pages 384–391, Oct
2018.

H. Pham, Z. Dai, Q. Xie, and Q. V. Le. Meta pseudo labels. In
Proc. CVPR, pages 11557–11568, June 2021.

T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz,
S. B. A. Kashem, M. T. Islam, S. Al Maadeed, S. M. Zughaier,
M. S. Khan, et al. Exploring the effect of image enhancement
techniques on covid-19 detection using chest x-ray images.
Comput. Biol. Med., 132:104319, 2021.

R. Rao and S. K. Card. The table lens: Merging graphical and
symbolic representations in an interactive focus+context visu-
alization for tabular information. In Proc. ACM Conference on
Human Factors in Computing Systems (CHI), pages 318–322, New
York, 1994. ACM Press.

P. Rauber, R. da Silva, S. Feringa, M. Celebi, A. Falcao, and
A. Telea. Interactive image feature selection aided by dimen-
sionality reduction. In Proc. EuroVA, 2015.

P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-
dependent data using dynamic t-SNE. In Proc. EuroVis – short
papers, pages 73–77, 2016.

P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. Telea. Visualizing
the hidden activity of artificial neural networks. IEEE Trans.
Vis. Comput. Graph, 23(1), 2017a.

P. Rauber, A. Falcão, and A. Telea. Projections as visual aids for
classification system design. Inf Vis, 17(4):282–305, 2017b.

P. Ren, Y. Xiao, X. Chang, P. Y. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang. A survey of deep active learning. ACM Comput.
Surv., 54(9), 2021.

F. C. M. Rodrigues. Visual Analytics for Machine Learning: Comput-
ing and Leveraging Decision Boundary Maps. PhD thesis, Univer-
sity of Groningen, 2020.

F. C. M. Rodrigues, M. Espadoto, R. H. Jr, and A. Telea. Construct-
ing and visualizing high-quality classifier decision boundary
maps. Information, 10(9):280–297, 2019.

183

bibliography

M. F. C. Rodrigues, R. Hirata, and A. Telea. Image-based visu-
alization of classifier decision boundaries. In Proc. SIBGRAPI,
pages 353–360, 2018.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science, 290(5500):2323–2326,
2000.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet large scale visual recognition chal-
lenge. IJCV, 115(3):211–252, December 2015.

F. S. Samaria and A. C. Harter. Parameterisation of a stochastic
model for human face identification. In Proc. IEEE applications
of computer vision, pages 138–142, 1994.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc.
CVPR, pages 4510–4520, 2018.

E. P. dos Santos Amorim, E. V. Brazil, J. Daniels, P. Joia, L. G.
Nonato, and M. C. Sousa. ilamp: Exploring high-dimensional
spacing through backward multidimensional projection. In
2012 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 53–62, 2012.

B. Schölkopf, A. Smola, and K. R. Müller. Kernel principal com-
ponent analysis. In Proc. ICANN, pages 583–588, 1997.

M. Sedlmair, T. Munzer, and M. Tory. Empirical guidance on
scatterplot and dimension reduction technique choices. IEEE
TVCG, 19(12):2634–2643, 2013.

M. Sedlmair and M. Aupetit. Data-driven evaluation of visual
quality measures. Computer Graphics Forum, 34:201–210, 2015.

M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of
visual cluster separation factors. Computer Graphics Forum, 31:
1335–1344, 2012.

B. Settles. Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin–Madison, 2009.

L. Sharan, R. Rosenholtz, and E. Adelson. Material perception:
What can you see in a brief glance? Journal of Vision, 9(8):784–
784, 2009.

184

bibliography

W. Shi, Y. Gong, C. Ding, Z. M. Tao, and N. Zheng. Transduc-
tive semi-supervised deep learning using min-max features. In
Proc. ECCV, pages 299–315, 2018.

B. Shneiderman. The eyes have it: A task by data type taxonomy
for information visualizations. In Proc. ACM VL, pages 336–
343, 1996.

M. Sikora et al. Application of rule induction algorithms for anal-
ysis of data collected by seismic hazard monitoring systems in
coal mines. Archives of Mining Sciences, 55(1):91–114, 2010.

K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2014. url arxiv.org/

abs/1409.1556.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud:
From transductive to semi-supervised learning. In Proc. ICML,
pages 824–831, 2005.

M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good
views of high-dimensional data using class consistency. Com-
puter Graphics Forum, 28:831–838, 2009.

C. Sorzano, J. Vargas, and A. Pascual-Montano. A survey of di-
mensionality reduction techniques, 2014. arXiv:1403.2877.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting un-
reasonable effectiveness of data in deep learning era. In Proc.
ICCV, pages 843–852, 2017.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales. Learning to compare: Relation network for few-
shot learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

C. Suzuki, J. Gomes, A. Falcão, S. Shimizu, and J.Papa. Auto-
mated diagnosis of human intestinal parasites using optical
microscopy images. In Proc. Symp. Biomedical Imaging, pages
460–463, April 2013.

A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind,
H. Theisel, M. Magnork, and D. Keim. Combining automated
analysis and visualization techniques for effective exploration
of high-dimensional data. In Proc. IEEE VAST, pages 59–66,
2009.

185

arxiv.org/abs/1409.1556
arxiv.org/abs/1409.1556

bibliography

A. Tatu, P. Bak, E. Bertini, D. Keim, and J. Schneidewind. Visual
quality metrics and human perception: an initial study on 2d
projections of large multidimensional data. In Proc. AVI, pages
49–56, 2010a.

A. Tatu, P. Bak, E. Bertini, D. Keim, and J. Schneidewind. Visual
quality metrics and human perception: an initial study on 2d
projections of large multidimensional data. In Proc. AVI, pages
49–56, 2010b.

Y. Teh and S. Roweis. Automatic alignment of local representa-
tions. In Proc. NIPS, volume 15, pages 865–872, 2002.

A. Telea. Combining extended table lens and treemap techniques
for visualizing tabular data. In Proc. EuroVis, pages 51–58, 2006.

A. Telea, A. Machado, and Y. Wang. Seeing is learning in high di-
mensions – the synergy between dimensionality reduction and
machine learning. In SN Computer Science (Proc. VISIGRAPP
2023). Springer, 2024. to appear.

A. C. Telea. Data Visualization: Principles and Practice, Second Edi-
tion. A. K. Peters, Ltd., Natick, MA, USA, 2nd edition, 2014.
isbn 1466585269, 9781466585263.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

Z. Tian, X. Zhai, G. van Steenpaal, L. Yu, E. Dimara, M. Espadoto,
and A. Telea. Quantitative and qualitative comparison of 2D
and 3D projection techniques for high-dimensional data. Infor-
mation, 12, 2021.

B. Tinsley. Evolution of the stars and gas in galaxies. Fundamentals
of Cosmic Physics, 5:287–388, 1980.

M. E. Tipping and C. M. Bishop. Probabilistic principal compo-
nent analysis. Journal of the Royal Statistical Society, 61(3):611–
622, 1999.

W. S. Torgerson. Theory and methods of scaling. Wiley, 1958.

E. R. Tufte. The Visual Display of Quantitative Information, 2nd edi-
tion. Graphics Press, Cheshire, CT, 2001.

J. W. Tukey and P. A. Tukey. Computer graphics and exploratory
data analysis: An introduction. The Collected Works of John W.
Tukey: Graphics: 1965-1985, 5:419, 1988.

186

bibliography

L. van der Maaten. Accelerating t-SNE using tree-based algo-
rithms. J. Mach. Learn. Res., 15(1):3221–3245, 2014.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE.
J. Mach. Learn. Res., 9:2579–2605, 2008.

L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Di-
mensionality reduction: A comparative review. Technical Report
TiCC TR 2009-005, 2009.

J. E. Vargas-Muñoz, P. Zhou, A. X. Falcão, and D. Tuia. Interactive
coconut tree annotation using feature space projections. In Proc.
IGARSS, pages 5718–5721, 2019.

J. Venna and S. Kaski. Visualizing gene interaction graphs with lo-
cal multidimensional scaling. In Proc. ESANN, volume 6, pages
557–562, 2006.

D. Wang and Y. Shang. A new active labeling method for deep
learning. In 2014 International joint conference on neural networks
(IJCNN), pages 112–119. IEEE, 2014.

K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin. Cost-effective
active learning for deep image classification. IEEE Transactions
on Circuits and Systems for Video Technology, 27(12):2591–2600,
Dec 2017.

Y. Wang, A. Machado, and A. Telea. Quantitative and qualitative
comparison of decision map techniques for explaining classifi-
cation models. Algorithms, 16(9), 2023.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM Comput.
Surv., 53(3):1–34, 2020.

K. Weinberger, B. Packer, and L. Saul. Nonlinear dimensional-
ity reduction by semidefinite programming and kernel matrix
factorization. In AISTATS, pages 381–388, 2005.

L. Wilkinson and G. Wills. Scagnostics distributions. Journal of
Computational and Graphical Statistics, 17(2):473–491, 2008.

L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic
scagnostics. In Proc. IEEE InfoVis, pages 21–21, 2005a.

L. Wilkinson, A. Anand, and R. L. Grossman. Graph-theoretic
scagnostics. In Proc. IEEE InfoVis, volume 5, page 21, 2005b.

187

bibliography

H. Wu and S. Prasad. Semi-supervised deep learning using
pseudo labels for hyperspectral image classification. IEEE TIP,
27(3):1259–1270, 2018.

R. Wu, N. Das, S. Chaba, S. Gandhi, D. H. Chau, and X. Chu. A
cluster-then-label approach for few-shot learning with applica-
tion to automatic image data labeling. J. Data and Information
Quality, 14(3), may 2022. issn 1936-1955.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms.
arXiv:1708.07747, 2017.

H. Xie, J. Li, and H. Xue. A survey of dimensional-
ity reduction techniques based on random projection, 2017.
arXiv:1706.04371.

F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: con-
struction of a large-scale image dataset using deep learning
with humans in the loop. CoRR, abs/1506.03365, 2015. url

http://arxiv.org/abs/1506.03365.

Z. Yu, L. Chen, Z. Cheng, and J. Luo. Transmatch: A transfer-
learning scheme for semi-supervised few-shot learning. In
CVPR, June 2020.

M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolu-
tional Networks, pages 818–833. Springer International Publish-
ing, Cham, 2014.

X. Zhai, L. Yu, X. Chen, and A. Telea. Skeleton-and-trackball in-
teractive rotation specification for 3D scenes. In Communication
in Computer and Information Sciences, volume 1474, pages 26–52.
Springer, 2022.

X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-
supervised semi-supervised learning. In Proc. ICCV, pages
1476–1485, 2019.

T. Zhang, J. Yang, D. Zhao, and X. Ge. Linear local tangent space
alignment and application to face recognition. Neurocomput,
pages 1547–1553, 2007.

Z. Zhang and J. Wang. Mlle: Modified locally linear embedding
using multiple weights. In Proc. NIPS, volume 19, pages 1593–
1600, 2006.

188

http://arxiv.org/abs/1506.03365

bibliography

Z. Zhang and H. Zha. Principal manifolds and nonlinear dimen-
sionality reduction via tangent space alignment. SIAM journal
on scientific computing, 26(1):313–338, 2004.

A. Zhmoginov, M. Sandler, and M. Vladymyrov. Hypertrans-
former: Model generation for supervised and semi-supervised
few-shot learning. In International Conference on Machine Learn-
ing, pages 27075–27098. PMLR, 2022.

S. Zhou, Q. Chen, and X. Wang. Active deep learning method for
semi-supervised sentiment classification. Neurocomputing, 120:
536 – 546, 2013.

Z. Zhou, X. Zu, Y. Wang, B. F. Lelieveldt, and Q. Tao. Deep recur-
sive embedding for high-dimensional data. IEEE TVCG, pages
1237–1248, 2022. issn 1941-0506.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component
analysis. Journal of Computational and Graphical Statistics, 15(2):
265–286, 2006.

Q. Zou, L. Ni, T. Zhang, and Q. Wang. Deep learning based fea-
ture selection for remote sensing scene classification. IEEE Geo-
science and Remote Sensing Letters, 12(11):2321–2325, Nov 2015.

189

A C K N O W L E D G M E N T S

First, I would like to thank my supervisors: prof. Alex Telea, for
all thorough and didactic guidance, supervision, and patience,
beyond your always positive insights, feedback, and cachaça pref-
erence; and Prof. Alexandre Falcão, for supporting my academic
and professional maturity during so many years, constantly rais-
ing interesting and differing ideas. You both certainly form a com-
plementary match. It is a privilege having you as supervisors. I
can not measure how much I have learned from you.

To members of the assessment committee, thank you for accept-
ing the task of reviewing this manuscript and for your presence
at the defense. I sincerely acknowledge your effort in those.

To the UNICAMP and UU staff, for institutional, material, le-
gal, and human help during my joint PhD.

To my LIDS friends, for being a special part of my professional
and personal life with me. Thank you for discussions, presenta-
tions, hints, feedbacks, coffees and teas. Specially, those I have
received most support during those years: Léo, Belém, Samuel,
Saulo, Matheus, and Gui. There are much of you with(in) me,
guys!

To my UU colleagues, professors, and friends in the Nether-
lands, thank you for sharing your knowledge and culture, host-
ing me out of my home (university), and all the nice moments
together. I especially thank Alister, Daga, and Heloysa for this
amazing year and Carlijne and Cristian for our work together.

Last but certainly not least, I thank my family for endless love,
support, care, and example in life. Thank you for teaching me
how to be, integrate, and mind about ourselves and other people.
To my parents, Julio and Hélen. To my grandmother, Lurdinha,
and especially to my grandparents in lovely memory, Mauro,
Bela, and Eustásio. To my aunts, Patrici, Helena, Valéria, and
uncle João Paulo – and their partners. To my cousins, Gustavo,
Bento, and Mateo. To my little brother, Mateus.

This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Fi-
nance Code 001, and by grants #2019/10705-8 and #2022/12668-5,
São Paulo Research Foundation (FAPESP).

191

colophon

This document was typeset using the typographical look-and-
feel classicthesis developed by André Miede. The style was in-
spired by Robert Bringhurst’s seminal book on typography “The
Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of June 6, 2024 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Resumo
	Publications
	Contents
	1 Introduction
	1.1 Machine learning
	1.2 Visualization
	1.3 Interaction of machine learning with visualization
	1.4 Research questions
	1.5 Contributions

	2 Related work
	2.1 Introduction
	2.1.1 Machine learning preliminaries
	2.1.2 The need for large datasets in machine learning

	2.2 Pseudo labeling
	2.3 Visualizing high-dimensional data
	2.3.1 Dimension mapping techniques
	2.3.2 Dimension synthesis techniques
	2.3.3 Multidimensional projections
	2.3.4 Quality of projections
	2.3.4.1 Classical quality metrics
	2.3.4.2 Visual perception metrics

	2.3.5 Inverse projections
	2.3.6 Discussion

	2.4 Visualizing ML models

	3 Feature and classifier learning
	3.1 Introduction
	3.2 Iterative deep feature pseudolabeling on 2D projections
	3.2.1 Deep feature learning
	3.2.2 Layer selection
	3.2.3 Dimensionality reduction
	3.2.4 Label estimation
	3.2.5 Sample selection
	3.2.6 Model and iteration selection

	3.3 Experimental evaluation
	3.3.1 Datasets
	3.3.2 Experimental setup
	3.3.3 Implementation details

	3.4 Experimental results
	3.4.1 Q1: Adding iterations: self pseudo labeling
	3.4.1.1 Results and discussion

	3.4.2 Q2: Pseudolabeling comparison: OPFSemi vs others
	3.4.2.1 Results
	3.4.2.2 Discussion

	3.4.3 Q3: Sample selection: adding OPFSemi's confidence
	3.4.3.1 Results
	3.4.3.2 Discussion

	3.4.4 Q4: Choosing the deep architecture
	3.4.4.1 Results
	3.4.4.2 Discussion

	3.4.5 Q5: Choosing the layer in the deep architecture
	3.4.5.1 Results and discussion

	3.4.6 Q6: Choosing the best DeepFA model and iteration
	3.4.6.1 Results
	3.4.6.2 Discussion

	3.5 Answers to the studied questions
	3.6 Limitations
	3.7 Conclusion

	4 Linking Data Separation, Visual Separation, and Classifier Performance
	4.1 Introduction
	4.2 Related work
	4.2.1 Relationship between data separation, visual separation, and classifier performance
	4.2.2 Self-supervised learning

	4.3 Linking data separation, visual separation, and classifier performance
	4.3.1 Contrastive learning
	4.3.2 Pseudolabeling by EPL
	4.3.3 Classifier training with pseudo-labels

	4.4 Experimental evaluation
	4.4.1 Projection methods
	4.4.2 Datasets
	4.4.3 Data layout for validation
	4.4.4 Implementation details

	4.5 Exploring a projection with a good visual separation
	4.5.1 Proposed experiments
	4.5.1.1 Experiment for testing C1
	4.5.1.2 Experiment for testing C2
	4.5.1.3 Experiment for testing C3

	4.5.2 Results
	4.5.2.1 Contrastive learning yields high DS
	4.5.2.2 t-SNE projections of contrastive latent spaces yield high VS
	4.5.2.3 Classifiers trained from high-VS projections have a high CP

	4.5.3 Discussion
	4.5.3.1 Visual separation vs classifier performance
	4.5.3.2 Contrastive learning from few supervised samples

	4.5.4 Summary of findings: C1-C3

	4.6 Exploring multiple projections: C4-C5
	4.6.1 Proposed experiments
	4.6.1.1 Experiment for testing C4
	4.6.1.2 Experiment for testing C5

	4.6.2 Results
	4.6.2.1 Correlation between different projections and VS
	4.6.2.2 Classifiers trained from high-VS projections have a high CP

	4.6.3 Discussion
	4.6.3.1 Data separation vs visual separation depends on the projection technique
	4.6.3.2 Assessing the quality of visual separation
	4.6.3.3 Data separation vs visual separation vs classifier performance

	4.7 Conclusion

	5 Measuring visual separation in projections
	5.1 Introduction
	5.2 Measuring visual separation by pseudo labeling
	5.2.1 Sample selection
	5.2.2 Using OPFSemi for pseudo labeling
	5.2.3 Pseudo labeling effectiveness measurement

	5.3 Experimental evaluation
	5.3.1 Datasets
	5.3.2 Projection algorithms
	5.3.3 Metrics
	5.3.4 Experimental design

	5.4 Results
	5.4.1 Quantitative analysis
	5.4.1.1 Correlation plots
	5.4.1.2 Statistical analysis

	5.4.2 Qualitative analysis
	5.4.2.1 Random analysis
	5.4.2.2 Ranked analysis
	5.4.2.3 Correlation plot and ranked analysis

	5.4.3 User evaluation
	5.4.3.1 Data preprocessing
	5.4.3.2 Study setup
	5.4.3.3 Participants
	5.4.3.4 Study results

	5.5 Discussion
	5.5.1 Assessing VS by existing metrics
	5.5.2 Our approach to assess VS
	5.5.3 Computational cost to assess VS
	5.5.4 Limitations

	5.6 Conclusion
	5.7 Appendix

	6 Active learning using decision boundary maps
	6.1 Introduction
	6.2 Related work
	6.2.1 Active learning

	6.3 Visual analytics for active learning and pseudo labeling
	6.3.1 Direct projection errors
	6.3.2 Inverse projection errors
	6.3.3 VA tool for active learning
	6.3.4 Implementation details

	6.4 Evaluation
	6.4.1 Classifier
	6.4.2 Datasets
	6.4.2.1 Toy dataset: MNIST
	6.4.2.2 Real-world dataset: P.cysts
	6.4.2.3 Training, testing, and performance evaluation

	6.4.3 Participants

	6.5 Experimental results
	6.5.1 Toy dataset: MNIST
	6.5.1.1 Defining the baseline
	6.5.1.2 Comparison among different techniques and users
	6.5.1.3 Added value of manual labeling

	6.5.2 Evaluation in real-world problem: P.cysts
	6.5.2.1 Defining the baseline
	6.5.2.2 Added value of manual labeling

	6.6 Discussion
	6.7 Conclusion

	7 Conclusions
	7.1 Directions for future work

	Bibliography
	Acknowledgments
	Colophon

