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Chapter 1

Introduction

1.1 Trends in software development

In the present days, we notice that software development life-cycle (SDLC) becomes in-
creasingly longer, more complex and more expensive. The reasons for this process are
multiple, including, but not being limited to, the following factors: an increase in the re-
quired functionality of the target systems, the proliferation of various software technolo-
gies and platforms with their many variants and flavors, and a decrease in the expected
time-to-market of the constructed software products. On the one hand, the increase in
required functionality and number of employed technologies causes an increase of the
size and complexity of the artifacts involved in the software construction process, in-
cluding source code, design blueprints, and documentation content. On the other hand,
the decrease in time-to-market causes numerous systems to be developed in a too rapid
pace. This creates several types of design and implementation errors, whose removal only
further increases cost.

The correlated effects of the increase in software development costs and decrease in
time-to-market put a high pressure on software professionals to augment their efficiency
and effectiveness in managing the large, complex, and rapidly changing software artifacts.

A typical SDLC, as it is accepted in mature software companies, comprises (at least)
the following activities: requirements elicitation, architecture design, detailed design, im-
plementation, testing, deployment, and maintenance. However, the costs of software de-
velopment are not uniformly distributed over a given product SDLC. Several studies over
a period of more than ten years [92, 16] have shown that

• maintenance costs have risen to over 80% of the entire costs of the SDLC

• the largest cost savings can be achieved if errors and suboptimal decisions are iden-
tified and corrected in the early design stages

A related observation is that up to 50% of the costs in the SDLC are involved with
understanding the structure, function and dynamics of the software under construction

1
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2 CHAPTER 1. INTRODUCTION

[45, 79]. Communication and understanding of the software artifacts is essential in ensur-
ing that each stakeholder can play their role during the design, development, and deploy-
ment of a software system [30].

Although there are other important causes of the high cost of the SDLC, such as
changeability of requirements, absence of testing environments, scheduling and budgeting
difficulties, and improper training of the workforce, we shall limit our analysis in this
thesis to the costs involved in understanding the artifacts in a given software product. The
main reason for this is that software understanding (and the design of methods to support
it) can be studied in more independence on the actual business context in which software
is developed, whereas the other abovementioned factors imply a more complex, context-
dependent analysis of company-specific social and economical factors.

Combining the above two observations, it seems natural to ask the question whether
improved methods and tools can be imagined to assist software engineers to increase
their efficiency and effectiveness in understanding software artifacts related to the design
process. This is the main goal of this thesis. In the following sections, we shall refine and
focus this goal. The remaining chapters describe the way in which we addressed this goal
and the obtained results.

1.2 Software understandability

Software has several attributes which make it hard to understand, regardless of the actual
context in which it is developed, as follows.

First, software is by excellence abstract. It consists of various types of artifacts. In
decreasing order of abstraction, these artifacts span several layers, from requirement doc-
uments, usually written in plain text; functional specifications, written in either plain text
or functional notations; architecture and design documents, written using various notation
systems such as UML [65]; and source code, written in programming languages having
precise syntax and semantics. Understanding the first types of artifacts mentioned above
is particularly difficult, given their often imprecise semantics and not always explcit rela-
tion with the lower-level artifacts. For example, an UML diagram constructed in a design
process can be interpreted in many ways, and its relation with the underlying implemen-
tation code is more often than not hard to determine in an unambiguous manner.

The second element that makes software hard to understand is its size. Modern soft-
ware systems are large. Typical industrial systems consist of hundreds of components,
each having hundreds of pages of design documents, and millions of lines of code in their
implementation. Since, as already mentioned, the correspondence between system layers
is not explicit and unambiguous, understanding such systems involves correlating infor-
mation from all artifacts in all layers, such as mapping insight extracted from source code
onto design documents or extracting actual architectural information from source code
and comparing it with the required architecture. Size increases the understanding prob-
lem tremendously, especially for weakly modular systems in which hundreds of modules
are tightly interlinked in function and structure.

The final factor that increases the difficulty in software understanding is that software
is evolving. Typical software products have hundreds of releases or versions, developed
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1.3. SOFTWARE DESIGN REPRESENTATION 3

by tens of programmers over many years. During such periods, changes in the different
artifacts, e.g. requirements, design documents, and source code, often create incompati-
bilities which are hard to discover and remove.

From the various types of software artifacts involved in the SDLC, design and archi-
tecture artifacts stand out as being highly abstract, as outlined at the beginning of this
section. The most widespread method that allows software practitioners to cope with this
abstract nature of design artifacts is to manipulate them via visual representations, such
as UML diagrams. Visual representations have several advantages for the design pro-
cess. First, they capture well the main aspects around which the design process revolves,
i.e. the structure of entities such as classes, components and packages, and the various
types of relations that these entities are involved into, such as dependencies between inter-
faces and containment of sub-modules in larger modules. Second, visual representations
support well the iterative, team-oriented, and exploratory nature of the design process.
Although such visual representations are known and used also to manage other types of
software artifacts, like code or requirements [22], they are central to the design process.

Regarding visual representation and tasks supported by such a representation, there
is no strong differentiation between design and architecture artifacts. Both artifact types
share very similar properties and are, in practice, visually represented in conceptually
identical ways. Although software design and architecture have given birth to different
schools of thought and research directions, we shall not draw a clear cut between these
two terms in the remainder of this thesis, and will use the term design to capture both
meanings. Qualitatively, the only difference we shall associate with these terms is that
we regard architectural information (when named as such in the following) as being of a
higher level and smaller size, though identical nature from the viewpoint of understanding
and visual representation, as compared to detailed design information.

As such, we refine our research question: we are interested in studying how visual
representations for design artifacts can be improved to support the effectiveness and effi-
ciency of the software understanding process. In particular, we are interested in support-
ing the process of combining information from the source code level with design artifacts
to improve the understanding process.

1.3 Software design representation

To better define our research question, we introduce the types of software artifacts that
are involved in our understanding process.

As we focus on design-related aspects of a software system, we shall review the types
of information that are involved at this level. In our research, we are mostly interested in
architecture and detailed design, but will also consider source code information, as code
and design artifacts are often tightly interrelated.

Design and architectural information consists of a number of so-called diagrams. A
diagram contains two main types of information: elements, or entities, which represent
the key artifacts of the design, corresponding to nouns in the design process, such as sub-
systems, packages, components, and classes; and relations, which represent interactions
and constraints between elements, corresponding to verbs in the design process, such
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4 CHAPTER 1. INTRODUCTION

as depend, inherit, and contain. Together, elements and relations capture the high-level
structure of a software system.

In a design, the same elements and relations can (and do) occur in different diagrams.
Separate diagrams are constructed to reflect a particular aspect, or function, of a system,
as it is impractical and often impossible to manipulate the entire set of elements and rela-
tions of a large system on a single diagram. For example, a system can have a structural
diagram, a data dependency diagram, a function call diagram, and a deployment diagram,
all separated from each other but sharing elements from the same system model.

In many cases, designers identify and use groups of elements of a system design or
architecture in their work, without separating these explicitly by constructing separate
diagrams. For example, consider all high-performance elements on a system architec-
ture diagram, or all multithreaded elements on a detailed design diagram. A given set
of diagrams may have an open set of such groups of elements, and the groups can be
intersecting. A key observation is that these groups are highly dynamic: they are created,
modified, and deleted during the iterative design process, but live on a given set of dia-
grams. In contrast, the diagrams change relatively less often, as they capture overall static
system properties which are more resilient to change. In the following, we shall call such
a group of elements of a design diagram an area of interest.

Both elements and relations involved in design diagrams can accommodate several
attributes. These can be textual annotations, e.g. names, but can also be numerical values.
In most cases, such numerical values are produced by various analyses of the design,
the underlying source code, or the run-time software execution. Such values are called
software metrics.

Metrics convey quantitative, precise insight in a software system, which complements,
but does not replace, the structural insight conveyed by the diagram drawings. Many types
of software metrics exist, targeting different aspects of the SDLC, such as maintainability,
testability, modularity, complexity, performance, and evolvability [51, 28, 123].

Metrics are of particular use when abstracting large software systems. For example,
well-known code-level metrics such as lines of code, fan-in, fan-out, cohesion, coupling,
and complexity are used to assess the maintainability and testability of a source code
stack without reading the code in detail, and are thus useful in tackling the size aspect
of understandability. Metrics can be defined on several levels of detail. If we are talking
about an object-oriented system, for example, metrics can be defined on namespaces,
classes, relations, class members, up to individual lines of code.

Since there are so many types of information involved in describing a software design,
we need effective ways to help engineers understand this information. This is the topic of
the next section.

1.4 Software design visualization

Software visualization has been defined as the discipline that makes use of various forms
of imagery to provide insight and understanding and to reduce complexity of an existing
software system under consideration [22, 30]. Software design visualization is the subdo-
main of software visualization concerned with the visual presentation of the design-level
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1.4. SOFTWARE DESIGN VISUALIZATION 5

software representation, i.e. the diagrams, entities, relations, and attributes outlined in
Section 1.3. As such, software design visualization is a subdomain of information vi-
sualization, the discipline concerned with the effective presentation of large amounts of
abstract information [118, 90].

Our first research sub-question is how to visually support the presentation and dy-
namic modification of a large set of areas of interest (AOI) on design diagrams. The
envisaged solution should cope well with overlapping areas, and be effective in helping
users perform tasks such as assessing which elements are in a given area, and which are
the areas that contain a given element.

Neither metrics nor system structure, are, by themselves, enough to understand a soft-
ware system. In many cases, one has to correlate metric values with system structure to be
able to reason about the semantics of the measured quantities. For example, the maximal
values of a performance metric need to be correlated with the system elements on which
these values occur, and the elements these are related with. Hence, to make the best use of
the information contained in software metrics, they should be presented in combination
with the system structure. In our case, this means combining metrics with architecture
and design structural representations, or diagrams.

Several methods have been proposed to augment design diagrams with software met-
rics, typically by overlaying or modifying visual attributes such as icons, shading, size,
and color in the design diagrams [48, 119, 110, 58, 98]. However, as we shall see in
Chapter 2, such methods still have several limitations. Some visualization methods focus
on diagram visual representations beyond the UML notations, such as general tree and
graph layouts [5, 52] and treemaps [36]. Although this increases scalability, it arguably
decreases acceptance, as software engineers are highly trained to use UML diagrams, and
also may not have the time needed to learn and use a different visual notation along with
their actual UML diagrams in a tight-deadline environment. Other information visual-
ization methods, such as the table lens, are highly effective in presenting large amounts
of metrics and metric values [77], and some have been used also in software visualiza-
tion [104]. However, such representations are not combined with UML (or similar) dia-
grams, making the correlation of metrics and structure difficult.

Our second research sub-question is how to augment traditional UML diagram visu-
alizations with metric visualizations, such that metric-structure and metric-metric corre-
lations are easy to perform. For this, we are interested in using, or adapting, existing
information visualization techniques in the context of software visualization.

Metrics can be defined on areas of interest, much like on the entities and relation-
ships of a standard system diagram. For example, the elements of a system involved in
graphics operations, contained in a separate area of interest, may have a numerical metric
describing their graphics performance. Our third research sub-question is how to visual-
ize the correlation of metrics and areas of interest. This implies seeing how a given metric
changes over the elements involved in a given area of interest, but also how different
metrics, defined on different (overlapping) areas, relate to each other.

Concluding, we are interested in creating new methods for visualizing correlations
between metrics, areas of interest, and diagrams. This is compactly outlined in Figure 1.1.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: Interactions between architecture, AOIs and metrics in this thesis

1.5 Requirements
Throughout out whole research, we are concerned with the following requirements:

• UML-related: how to visualize metrics and areas of interest without modifying the
layout and look-and-feel of typical UML diagrams;

• scalability: how to visualize a large number of metrics, metric values, and areas of
interest, defined on large design diagrams;

• understandability: how to produce visualizations which are easy to interpret given
the typical tasks done by a software designer or architect.

For each specific technique we shall develop, we shall further refine the above require-
ments, as described in Chapters 3-6.

1.6 Structure of this thesis
The following outlines the structure of this thesis.

In Chapter 2, we review related work in the direction of combining visualizations
of software architectures and software metrics. Additionally, we present existing work
which is related to our proposed technique for visualizing areas of interest.

In Chapter 3, we introduce two techniques for drawing areas of interest on UML-like
software diagrams and discuss their advantages and disadvantages from an algorithmic
point of view. The better performing technique is next selected as the basis of the visual-
izations further presented in this thesis.

Chapter 4 present a user evaluation of the understandability and acceptance of the
computer-drawn areas of interest as compared to human-drawn areas on identical dia-
grams. Secondly, we presents a quantitative comparison of the two types of drawings.
The aim of the evaluation is, first, to elicit the visual features of areas of interest which
are perceived as relevant by the users, and secondly to measure the degree up to which
the computer-generated areas of interest satisfy these desirable properties.
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Chapter 5 adds to our software architecture visualizations, enhanced by areas of inter-
est, the presence of class-member level metrics defined on class methods or data members.
We present several applications in reverse engineering where combinations of diagrams,
metrics and areas of interest are used to gain understanding of aspects of a software system
related to maintainability.

Chapter 6 completes our software visualizations by adding the depiction of area-level
metrics defined on possibly overlapping areas of interest. We illustrate the applicability
of the area-level metrics by a case study performed on a third-party software system.

Chapter 7 presents an evaluation of the developed visualization techniques performed
within the framework of a large-scale software engineering project involving both re-
search and industry practitioners. We detail the place and role of visualization in the
entire project pipeline and illustrate the added value of visualization by means of an ex-
ample application.

Chapter 8 discusses the presented visualization techniques from the perspective of
the main requirements introduced in this chapter, namely the addition of areas of interest,
area-level metrics, and class-member level metrics to UML-like visualizations of software
diagrams. The strong points, as well as the limitations, of the proposed techniques are
pointed out.

Finally, Chapter 9 concludes this thesis and outlines potential directions for future
research.
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Chapter 2

Related work

The aim of this thesis, introduced in Chapter 1, is the creation of scalable and understand-
able UML-like visualizations that combine software structures, software attributes, and
areas of interest. In this chapter, we present an overview of work that is related, either
in aim or techniques used, to the above goals. Firstly, we give a brief classification of
existing software visualization techniques. Next, we present a number of recent, ”state-
of-art” visualization methods, which combine the visualization of software structure and
software attributes. We next review methods related to the visualization of groups of el-
ements considered on general-purpose diagrams, since several such methods have been
created in contexts outside software visualization. Detailed techniques that are specifi-
cally related to the material presented in the remainder of this thesis are discussed further
in their relevant chapters.

2.1 Introduction

Diagrams are used to show the structure of software since the very beginning of com-
puter programming [22]. Among the first kinds of software diagrams were Jackson dia-
grams [43], control-flow graphs [34], and structograms [64]. However, with the growth in
the size and complexity of software systems, visualization goals moved from detailed al-
gorithm and data structure representations to higher level of abstractions in which diagram
entities are classes, components, or even entire subsystems. Along with the visualization
of software system structures, done by means of different types of diagrams, different
methods have been imagined to bring software attributes, whether numerical or not, in
the picture.

This thesis is devoted to visualization of software structure combined with quality at-
tributes represented by metrics. Within this scope, a large part of the work proposed here
concerns itself with the visualization of groups of software diagram elements or areas of
interest. Hence, the remainder of this chapter is divided in a part over related work on the
visualization of combined software structure and attributes (Section 2.2) and a part over
related work on visualizing areas of interest in general diagrams (Section 2.3). In both

9
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10 CHAPTER 2. RELATED WORK

these sections, we discuss existing techniques with an eye on the general requirements
related to our research goals stated in Chapter 1, i.e. the creation of scalable and under-
standable UML-like visualizations that combine software structures, software attributes,
and areas of interest.

There are many ways to classify the existing body of work in software visualization.
Here, we shall use a classification model which is inspired by the model proposed by
Marcus et al. [58]:

• Domains and tasks of software visualization: A list of possible domains usually
includes software comprehension, maintenance or reverse engineering. We should
consider for what specific tasks visualization is needed and who are the stakehold-
ers. Additionally, we need to know the questions we try to answer with the studied
visualization.

• Scope of visualization: Here, scope refers to what artifacts to visualize. These can
be artifacts from any phase of software development life-cycle, including knowl-
edge data, requirements and risks, structural dependencies, source code, and static
and dynamic analysis data.

• Data gathering method: The data can be collected automatically from the source
code or other artifacts, inserted manually by the users, or a combination of both.

• Interaction and representation: User interaction and navigation consider a number
of views which represent the data and navigation between these views. Different
properties of software can be shown in a signle view or can be present in different
multiple views or diagrams.

• Visualization dimensionality: 2D or 3D representations are usually used for soft-
ware visualizations.

2.2 Visualizing software structure and attributes
Visualizations that combine software structure and software attributes are arguably among
the most ubiquitous types of software visualizations in existence, and among the first
being proposed in the history of software visualization [22, 90]. Along the relevant di-
mensions of a software visualization method introduced in Section 2.1, the chief domain
of combined structure-and-attribute visualization is software comprehension, typically
within the framework of software maintenance activities. In such contexts, understanding
the structure of a potentially large, complex, and relatively unfamiliar software system
is best served by visualizing the structure. Moreover, adding attributes such as quality
metrics to this picture helps correlating various quantitative insights with structural and
architectural insights [51].

Since so many structure-and-attributes visualizations exist, it is relevant to outline
their main common features and emphasize any shared strong points or limitations. From
our experience, most such visualizations share two design elements, as follows
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2.2. VISUALIZING SOFTWARE STRUCTURE AND ATTRIBUTES 11

• structure: software structure is typically depicted by using a node-and-link graph
metaphor, where nodes are software entities, e.g. functions, classes, components, or
packages, and links are the relevant (sub)set of considered relations, e.g. function
calls, data dependencies, associations, or inheritance relations. For example, the
well-known UML notation is nothing else than a formalized representation of such
a visualization for a specific scope of activities.

• attributes: software attributes are usually depicted by mapping them to a visual
attribute of the corresponding nodes or links in the structure visualization. Visual
attributes that can be used to show software attributes are the position, size, shape,
color, texture, lighting, line size, and annotations of diagram elements.

In the following, we present a number of structure-and-attribute visualization designs.
Given the highly practical and applied nature of software visualization, we identify each
design by an actual software visualization tool. For each such example, we outline its
main characteristics as well as emphasize some of its limitations relevant to our research
goals stated in Chapter 1.

2.2.1 SHriMP

Figure 2.1: A SHriMP view.

The SHriMP (Simple Hierarchical Multi-Perspective) technique provides a customiz-
able and interactive environment for navigating and browsing complex information spaces.
Its goal is to combine graphical high-level views with textual lower-level views in order to
ease navigation within large and complex software programs. The SHriMP tool attempts
to visualize multiple aspects of an architecture through a single view. The primary view
in SHriMP uses a zoom interface to explore hierarchical software structures. Essentially,
this view shows two types of relations at once:
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12 CHAPTER 2. RELATED WORK

• containment of software elements is shown by visually nesting their box-shaped
representations in a containment layout. This nested layout shows parent-child
relationships in the system. For example, a Java program hierarchy can include
packages, classes and interfaces, attributes and operations.

• association of software elements is shown using a traditional node-and-link metaphor.
The layout of these relations is typically constrained by the containment layout.
Different types of relations can be shown using different colors for their lines in the
drawing.

SHriMP is implemented in several software visualization frameworks, among which the
one bearing the same name [93], the well-known Rigi reverse engineering framework [110],
and the SoftVision framework [103]. These frameworks support tasks such as under-
standing the structure of large and complex software systems at different levels of detail
by allowing the user to visualize the element containment hierarchy at the desired depth,
filter specific elements or relations in or out of the picture, and changing visual attributes.
Figure 2.1 represents a SHriMP view showing the architecture of the SHriMP program
itself.

SHriMP-like techniques favor understanding by exploration, and thus come together
with many interaction features, such as fisheye zooming, semantic zooming as well as
geometric zooming to serve different purposes of navigation. Geometric zooming allows
the user to scale a specific node in the nested graph. Fisheye zooming allows the user
to zoom on a particular piece of the software, while simultaneously shrinking the rest
of the graph. Semantic zooming chooses a particular view for a node depending on a
particular task. Moreover, software attributes such as element and relationship types, but
also numerical attributes such as e.g. entity sizes (measured in lines of code or a similar
metric), can be mapped to the elements’ visual attributes such as size and color.

SHriMP gives a good overview of hierarchical structures in a single representation
and is reasonably successful in showing the correlation between two types of relations
(containment and association) and one or two element and/or relation attributes. However,
this method also has some limitations. The combination of nested and node-and-link
layouts used by SHriMP can sometimes create cluttered images, especially for medium-
size or large systems. Such cluttering is generally absent in typical UML diagrams which
are carefully laid out to reduce edge-edge and edge-element crossings. The nested layout
also trades off the possibility of showing information for the non-leaf elements of the
containment hierarchy within the elements themselves, as this space is used to show the
children, much like a treemap metaphor. A related problem is that showing more than two
or three attributes per element, such as the signatures of the methods of a class in a UML
diagram, or several software metrics computed in that element, is relatively hard.

2.2.2 CodeCrawler

CodeCrawler is a lightweight software visualization framework that aims at adding soft-
ware metric information to software structure visualizations [51, 48, 49]. Similar to Rigi
and SoftVision, CodeCrawler is mainly targeted at static software visualization in the
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2.2. VISUALIZING SOFTWARE STRUCTURE AND ATTRIBUTES 13

context of reverse engineering and program understanding. CodeCrawler is used to im-
plement several software exploration techniques as class blueprints [23] and polymetric
views [50], which are compact ways of summarizing the correlations of a number of soft-
ware metrics over medium-sized and large software systems. Also, similar to the other
software visualization frameworks cited above, CodeCrawler can be used to visualizing
generic structures and data attributes, i.e. which do not necessarily come from the field of
software reverse engineering.

Figure 2.2: A CodeCrawler main window.

Figure 2.2 shows a typical visualization created with CodeCrawler. The visualized
system in this case is CodeCrawler itself. CodeCrawler offers multiple correlated views
to explore a software system, as follows

• a coarse-grained view shows an overview of the system

• several fine-grained views show additional details in selected parts from the coarse-
grained view.

• a coupling view shows coupling between modules in a given software architecture

• an evolutionary view shows changes of a given architecture over time using an
evolution matrix. Each column of the matrix represents a version of the software,
while each row represents the different versions of the same class.

From our perspective, we are mainly interested in analyzing the coarse-grained and
fine-grained views of CodeCrawler. As visible from Figures 2.2 and 2.3, CodeCrawler
uses similar node-link structure visualization strategies to the SHriMP tools discussed
earlier. Various layouts are possible, such as trees, directed graphs, and a combination of
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nested and tree layouts quite similar to the idea of SHriMP. This is visible in Figure 2.3
which shows a CodeCrawler fine-grained view called the class blueprint [23] in the ar-
chitecture. Class blueprints support the reconstruction of the logical flow of method calls
by decomposing a class into layers. The methods and attributes are shown using boxes
and positioned according to the layer they have been assigned to.

Figure 2.3: (a) a class blueprint structure. (b) a class blueprint visualization example.

Similar to the SHriMP-like tools discussed earlier, CodeCrawler offers standard visu-
alization interaction and navigation techniques to favor exploration, such as linked views,
different types of zooming, and the possibility to interactively select and layout subsys-
tems of interest.

CodeCrawler lays a strong emphasis on understanding object-oriented systems. As
such, it is integrated with third-party tools that compute such metrics from source code [60,
62, 29]. Several tens of different object-oriented metrics have been visualized in this way
with CodeCrawler, e.g. lines of code, lines of comment code, number of methods per
class, class cohesion and coupling, and cyclomatic complexity [51]. Metrics are visual-
ized by mapping them to the color, height, width, and position of the element box icons
(Figure 2.4). An interesting design decision is to use the elements’ height and width
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dimensions independently to show two different software metrics and their possible cor-
relations. Indeed, artifacts having two large metric values will show up as large balanced
aspect-ratio rectangles, while artifacts where the two metric values differ significantly will
show up as thin and long, or thick and short, rectangles. However, showing more than 2..3
attributes per entity becomes difficult, since the only parameterizable visual dimensions
are the elements’ sizes and colors.

The visualized entities represent concrete and non-concrete software artifacts. Con-
crete artifacts can be localized in the source code and include classes, methods, functions,
or packages, whereas non-concrete artifacts cannot be localized within the source code,
but represent often abstractions in the head of the developers. Examples for non-concrete
artifacts are groups of classes, subsystems, or aspects, which exists from a design per-
spective, but do not have direct equivalents in the code. As such, CodeCrawler is able, in
principle, to show the so-called areas of interest introduced in Section
refc:introduction:s:representations. However, since all CodeCrawler entities are drawn
as boxes enclosing, or connected to, other boxes, visualizing a complex set of several
partially overlapping areas of interest using such a method is not a scalable or easily un-
derstandable option.

Figure 2.4: A graphical representation of classes and metrics.

2.2.3 CodeCity

In the quest for more visual dimensions to use to show additional attributes, several re-
searchers have proposed the use of the third spatial dimension. For example, CodeCity [119]
proposes a software visualization metaphor that extends the basic ideas of SHriMP and
CodeCrawler: the structure of the software is represented using a two-dimensional layout.
The third dimension, orthogonal to the layout, is used to represent a scalar software met-
ric defined on the software entities. Overall, the global impression is that of a city map
populated by skyscrapers, the classes being buildings located in districts representing the
packages where the classes are defined. Using the third dimension allows showing one ad-
ditional metric. For example, CodeCity was used to show object-oriented Java software:
the number of methods of a class is mapped to the class building’s height; the number
of data attributes is mapped on the building’s base size; and the nesting level of the class
within a package is mapped on the district’s color saturation.

CodeCity propose two levels of visualization:
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Figure 2.5: An example of a CodeCity visualization

• coarse-grained: classes are represented as monolithic blocks, omitting internal de-
tails (shown in Figure 2.5)

• fine-grained: class methods are rendered as bricks that constitute the body of the
building corresponding to the class (shown in Figure 2.6)

Besides software structure and metrics, CodeCity shows its evolution too using several
techniques. For example, Figure 2.6 shows the evolution of a class at a fine-grained level.
In this image, we can easily see the growth of the class in a number of methods. Missing
bricks of the building show which methods were removed and when this happened.

The CodeCity authors claim that it can easily show thousands of classes whereas it
still allows to identify outliers, like two big buildings in Figure 2.5. A city metaphor
offers a clear notion of locality, thus supports spatial orientation. Still, this type of visu-
alization has several limitations. First and foremost, 3D software visualizations are prone
to several well-known problems, such as occlusion, difficulty in choosing a viewpoint,
and foreshortening effects causing difficulty in interpreting sizes correctly. This is espe-
cially critical when visualizing large, complex systems having hundreds of classes each
with tens of methods. In such a case, seeing all the details of all ’buildings’ is clearly not
possible. Second, CodeCity does not show relations between the software elements, as
CodeCrawler and SHriMP do. Although it is possible to add such relations, e.g. using
3D splines connecting the buildings or drawing them on the back of the city’s surface,
this would create too much clutter in combination with the third dimension. Finally, since
different metrics are mapped to different visual dimensions, such as building heights, base
areas, and colors, it is hard to compare such metrics among themselves.
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Figure 2.6: An example of the fine-grained CodeCity visualization with a notion of time.

2.2.4 Attribute-enhanced 3D city metaphor

Panas et al. refine the 3D city metaphor proposed in CodeCity by adding a supplementary
level of realism that helps in depicting additional attributes. The scope of this visual-
ization is understanding cost-related information of software production during software
maintenance, rather than software metrics obtained from static analysis as in CodeCity.
The focus here is on the business context of software production, e.g. getting insight in
the costs and efforts required to design, develop, test and maintain a software product.
This visualization aims to help in indicating the system hot spots and high cost areas.
The stakeholders here are not only the system developers or maintainers, but also project
managers, who are interested in business related information of a software system.

Although the visualization discussed here shares the same basic idea of a 3D city
metaphor with CodeCity, we see some enhancements and differences (Figure 2.7). The
components under modifications are indicated in yellow with the respective names, the
execution hot spots are are surrounded by animated fire, various system aspects [2] are
shown in specific colors, buildings with flashes indicate frequent component modifica-
tions, and so on. The graphic detail in representing the buildings that show the software
elements is much higher than in CodeCity. Various textures are used both for the ani-
mations that outline specific attribute values as for the basic appearance of the different
buildings themselves.

Using a realistic 3D city metaphor for showing business-related information about
software system can be useful in very high level system development analysis, where
technical and business aspects intersect and should be discussed together. The realistic,
animated effects are quite suggestive in attracting the attention of the user to specific
values and events, which makes the visualization easier to follow, especially for non-
technical users. The use of high-detail textures and shading is a promising idea, which we
shall exploit ourselves in the creation of our own structure-and-metric visualizations (see
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Figure 2.7: A 3D City example combining software structure and business-related soft-
ware information

e.g. Chapters 3 and 6).

2.2.5 MetricView

MetricView [107] is a software visualization and exploration tool that combines tradi-
tional UML diagram visualization with metrics visualization. In contrast to all visual-
izations discussed so far, MetricView uses existing class, sequence, state, use case, and
collaboration UML diagrams as a basis for software structure visualization. This has the
important advantage of presenting structure in well-known terms to many software engi-
neers, who are expected to easily understand the multiple views given by UML diagrams.
Apart from the diagrams, MetricView supports the visualization of metrics defined on
UML diagram elements. Metrics can have boolean and numeric values. Any UML model
element can have any number of metrics, such as obtained from reverse engineering or re-
verse architecting [51]. Metrics are visualized as icons, drawn atop of the UML elements
for which the respective metrics are available. For example, the icons for integer values
can be 2D rectangles, colored using different colormaps, 2D height bars, circles, and pies,
3D bars or cylinders, and more. Boolean metrics are visualized using a 2D checkbox-like
icon.

Figure 2.8 shows an example of UML class diagram with several metrics rendered
using 2D icons visualized with MetricView. Although the 2D layout used in this diagram
is arguably the most familiar one to software engineers using MetricView, the tool is
not limited to two-dimensional visualizations. For example, Figure 2.9 shows the same
diagram as in the previous figure, now using 3D icons. 2D icons use color, width and
height in the 2D plane, or shape (e.g. for the pie) or appearance (e.g. for the checkbox)
to show the data attributes. 3D icons use color and the height orthogonal to the 2D plane
to show data. As such, MetricView is conceptually similar to the ideas behind CodeCity
or the work of Panas et al. discussed earlier: Structure is displayed using a 2D diagram,
while metrics are shown using the third dimension. Metrics are correlated with structure
by means of containment of the metric icons within their respective diagram elements.

MetricView has a number of quite effective design elements which are relevant for
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Figure 2.8: An example of 2D UML class diagram visualized with MetricView.

Figure 2.9: An example of 3D UML class diagram visualized with MetricView.

our goals. First and foremost, it promotes a UML-like visualization. If desired, users can
interactively tune, or even completely switch off, the opacity of all metric icons, in which
case the visualization becomes a classical UML diagram. This allows a smooth transition
from the familiar UML diagrams showing just structure to UML diagrams enhanced with
software metrics. Also, the layout of the UML diagram is not affected, in any way, by
the metrics visualization. Metric icons simply take the space given by the UML diagram
layout, which immediately allows users to import existing third-party diagrams with no
effort. In other words, metric information is added to diagrams in a non-intrusive way.
This is important, as users keep their ’mental map’ of diagrams they are accustomed with.
In contrast, the visualizations discussed earlier typically create their own layouts from the
input structural data. Small changes in the input data may cause relatively large visual
changes in the layout, which makes following such visualizations more difficult. This is
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indirectly related to a difference in focus between MetricView and the tools discussed ear-
lier: While the former mainly focuses on design, where diagrams (and thus, their layouts)
are constructed by users, the latter mainly focus on maintenance, where visualizations are
constructed from reverse-engineered data often acquired from unnknown systems.

MetricView offers a wide range of fine-grained visualization customization options.
These allow users to specify which metrics to display, how to arrange (layout) them within
each diagram element, and which graphical shapes, colors, sizes, and transparency options
to use for the metrics. MetricView is very effective in showing up to 10..15 metrics defined
on each class with little clutter, hence is quite scalable in this respect. However, it has no
provisions to show method-level metrics, areas of interest, or area-level metrics.

All in all, the design promoted by MetricView combines the closest the requirements
stated in Chapter 1 for our research goal: Show, using a UML-like metaphor, a com-
bination of software structure and metrics defined at various levels of detail, as well as
additional structures such as areas of interest, potentially having their own metrics. As
such, we chose most design elements in MetricView as the basis for our own research,
e.g. the classical 2D UML structure visualization; the use of texturing and blending to
subtly add attribute information to an existing structural picture; and the dominant 2D vi-
sualization flavor and look-and-feel of the tool, which strongly reminds of a typical UML
diagram editor. Further in this thesis, we shall show how to extend these design elements
to add visualizations of metrics defined on class members (Chapter 5) and visualizations
of areas of interest and area-level metrics (Chapter 6). MetricView was used as a ba-
sis for the AreaView tool presented in Chapter 7 which was used to test our additional
visualizations in various usage contexts, including industrial applications.

2.3 Visualization of areas of interest
A particular goal of our research, as stated in Chapter 1, is to create visualizations able
to show areas of interest, or groups of software system structure elements. Additionally,
these areas of interest may have software metrics defined for their elements, which have
to be visualized too. In this section, we present research related to the visualization of
groups of elements.

2.3.1 Preliminaries

Before we proceed, let us make some important distinctions. Groups of elements can be
visualized many different ways. By their own nature, groups of elements are defined on
an element set, which is the ’main’ target of the visualization, following the terminology
of Marcus et al. [58]. In our context, this element set is an entity-relationship dataset, or
a graph. For example, all security-related classes in a class diagram constitute a group of
elements, which needs to be visualized in the context of the diagram itself. As such, a
first dimension of the choice space is whether we want to visualize the groups of elements
within the main visualization of this entity-relationship dataset, or outside it. The second
option is the simplest, and can be achieved in many ways, e.g. by listing the elements
contained in each area of interest in a separate tabular view. However, this option does
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not allow one to easily correlate the areas of interest with the main visualization, e.g. to
answer questions like ’which are all areas containing a given element’ or ’which are all
elements in a given area’. The first option attempts to visualize the areas of interest in the
same view as the main entity-relationship dataset. This is a preferred option, as correlating
areas with elements, or areas between themselves, should be easier. Therefore, we choose
this option in our research.

A second dimension of the choice space is whether the layout of the entity-relationship
dataset on which areas of interest are defined is fixed or free. Having a free layout allows
the visualization to arrange the elements in ways that simplify the visual construction
of the areas of interest. This is, by far, the most used technique so far in information
visualization and software visualization applications, as we shall see next. However, as
already mentioned, our desire is to keep the layout of a given software diagram fixed
when adding metric and area-of-interest visualizations to it, so we cannot take this way.
Having a fixed layout, however, diminishes the freedom for visual construction of areas
of interest. We shall present in Chapter 3 a method that constructs visualizations of areas
of interest on fixed diagram layouts.

A third dimension of the choice space is how to display the fact that an element is
within an area of interest. Several options exist. First, one can mark the element using
icons or colors that allow the identification of the area(s) it is contained within (each
area will have a particular color or icon assigned). This option is directly supported in
several InfoVis and SoftVis toolkits such as Prefuse [70], Rigi [110] and the InfoVis
toolkit [27]. In particular, the MetricView tool also supports this option using icons, as
discussed further in Chapter 3. However, this option has the marked drawback that it is
hard to see which are all areas containing an element, as areas are not drawn explicitly. A
second solution is to draw the containment relations between elements and areas explicitly
using a node-link metaphor: Both elements and areas are represented as nodes, and edges
are drawn from areas to all elements they contain. The resulting visualizations can be
displayed using standard graph layout algorithms such as e.g. provided by the GraphViz
toolkit [5]. If there are not many elements contained in the same time in different areas,
the results are suggestive, since graph layouts such as spring embedders will naturally
arrange the elements around the nodes representing area(s) in which these are contained
(see e.g. [100]). However, this works well only if there are few intersections between
areas and also if we are allowed to construct an own layout of the dataset rather than use
a given one.

Another solution of displaying the containment relations between elements and areas
is to render them as visual containment. That is, an element contained in an area will
be drawn inside the visual representation of that area. The element-in-area containment
relations can be rendered in various ways, such as using treemaps or nested layouts such
as the SHriMP layout discussed earlier in Section 2.2.1. Identifying all elements within
an area is now very easy. However, using rectangular containers such as treemaps or
SHriMP almost always implies that we have to re-layout a given diagram to construct
the visual nesting of elements. Moreover, such solutions do not work well if there are
many intersections between areas of interest, since rectangular containers are best suited
for visualizing strict hierarchies, as shown later in Chapter 3 by means of an example.

The remaining solution is to show visual containment by means of other shapes than
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rectangles. A classical solution of this type are the traditional renderings of mathematical
Venn-Euler set diagrams, where elements are represented as nodes, and areas are rep-
resented as smooth, curved shapes surrounding the elements they contain. This type of
solution has many advantages. First, we can use a given layout, subject to the geometric
freedom of the shapes used to draw the areas. Second, the element-in-area containment
is clearly shown as visual nesting. Third, it is easy to see which are all areas containing a
given element. Last but not least, Venn-Euler diagrams are intuitive for most users.

Given the advantages of Venn-Euler-like renderings of areas of interest, we shall use
this idea as the basis of our further construction of areas of interest for software diagrams.
In the following, we discuss a number of visualizations that are related to this type of
method.

2.3.2 Visualization of interconnected social groups
Social networks can be separated in groups, such as friends, families or people involved
in the same project. Theron et al. [108] developed a technique which shows such groups
by wrapping them by smooth shapes. The main requirements to area construction are
to surround elements which belong to a group and to show clearly areas’ intersections.
The layout of elements can be changed to improve the final result. Figure 2.10 shows
a conceptual example of three social groups. People in the group are represented by
different shapes, e.g. rounds and squares. Groups of elements are surrounded by contours
and half-transparent areas. The idea of area construction is similar to the one presented
in Sec. 3.3. However, while the image shown in igure 2.10 is only a conceptual sketch
in [108], we present in Chapter 3 an actual algorithm able to automatically compute such
shapes from a set specification of their contents.

Figure 2.10: The idea of social group visualization.

Figure 2.11 shows an shapshot of the implementation of the social group visualization.
In this figure, there are two intersecting areas which represent the most awarded movies
(yellow) and the movies that earned more money (green). The nodes in the areas are
actors who take part in these movies. In the implementation of this technique, a lot of
attention is dedicated to highlighting a particular node of interest and showing its details,
as well as showing an overview of the social network.
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Figure 2.11: An implementation of social group visualization.

2.3.3 Clustered graph layouts

Balzer et al. [6] propose to use implicit surfaces for the visually simplified representation
of vertex clusters and so-called edge bundles for the simplified visualization of large and
complex graphs. A major problem of graph visualization is the limitation in the number
of vertices and edges that can be visualized. If a graph contains more than a few hundreds
of vertices and edges, it can result in an incomprehensible representation with many over-
lappings and occlusions, which makes a study of individual elements almost impossible.
Furthermore, a large amount of graph elements can cause a drop in the visualization per-
formance and interactivity.

The clustered graph layouts solution is based on the substitution of a complex object
by a simplified object or the substitution of a group of objects by a single one. It focuses
on the spatial grouping of vertices, whereas the edge routing or the minimization of edge
crossing is of less importance. Edge renderings are constrained by the vertex positions in
the graph and the simplification of the graph. This means that an edge is visualized by a
direct connection between two vertices and all edges between two clusters of vertices are
represented as one aggregated edge that is also visualized by a direct connection (line)
between the clusters. An important role for this technique plays a chooice of the level-of-
detail for clustered graph layouts visualization and a viewpoint of the user. The changes
between the detail levels should be continuous to preserve the mental map of the user and
to enable the comprehension of abstractions. Figure 2.12 shows an example of a graph
visualized with the clustered graph layouts technique. A similar approach is presented
by Gross et al in [91]. A related technique from the perspective of graph clustering is
presented by Van Ham et al. [112], with the difference that clusters are, in the latter,
rendered using spheres, whereas Balzer et al. use the more flexible implicit surfaces,
discussed next.

The cluster representations in [6] are visualized using an implicit surface technique [9].
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Figure 2.12: Clustered graph layouts.

The nodes in a given cluster are used to construct a scalar potential field sampled on a grid
(regular or not) defined on the extent of the graph layout. The potential is high close to
the nodes and low further away. By contouring the potential field at suitable values, using
e.g. an isosurface constructing technique such as marching cubes or similar [57], smooth
surfaces are created which are guaranteed to enclose all nodes. The technique is repeated
for each cluster and the resulting isosurfaces are rendered using transparency to show
intersections or nesting.

The implicit surface technique has been used in many visualizations that need to show
visual containment of several elements in several clusters (which are conceptually equiv-
alent to our areas of interest). Implicit surfaces have several advantages. First, they are
easy to construct and reasonably fast to compute using modern isosurface extraction al-
gorithms. Second, the visual nesting of elements in the implicit surfaces is guaranteed
by construction.Third, the layout of the underlying graph that gives the positions of the
elements is not constrained in any way. Fourth, the produced shapes are smooth, and have
the look and feel of traditional Venn-Euler diagrams, which makes them easy to interpret.
We shall see more examples of techniques using various forms of implicit surfaces in the
following sections.

However, using implicit surfaces to show clusters or areas of interest has also several
important disadvantages. First and foremost, the choice of the isosurface level is critical
for the result. Isosurfaces are not connected by construction, so choosing a too high level
(or too low if the potential field is low close to the elements and high far away from them)
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will create disconnected surfaces, which give the impression of several clusters, rather
than a single one. Several heuristics and workarounds to this are presented in [91], but
the problem is inherent to implicit surfaces. Second, it is hard to locally control the shape
of the implicit surface. This shape is determined by the nature of the potential field used,
and a simple construction of such fields will treat all nodes similarly, e.g. by summing up
a radial potential function centered at each node, as described in Section 2.3.4 further on.
This yields overall smooth surfaces, but makes it more difficult to create surfaces with a
varying level of smoothness, such as rounded boxes, for example. Workarounds for this
issue exist, but they require the construction of more complex potential functions, a more
involved analysis of the spatial distribution of nodes, and higher computational times.

2.3.4 Graph splatting
Graph splatting [113] is a technique which transforms a graph into a two-dimensional
continuous scalar field. Splat fields are useful to rapidly gain a overview of the complete
structure of the graph. The scalar field can be rendered as a color coded map, a height
field, or a set of contours. Splat fields allow for the visualization of arbitrarily large graphs
without cluttering.

Figure 2.13: An example of the graph and its color coded splat field.

Graph drawing algorithms consist of two steps: layout and rendering. The layout
phase constructs the desired layout, subject to the preferences of the user. In the original
paper a spring embedder is used, but different algorithms can be used. The rendering
phase, which is the phase we are concerned with here, transforms the graph in a continu-
ous field F by summing up, or superimposing, a set of radial Gaussian basis functions or
splats centered at the locations of the nodes

F(p) =
N

∑
i=1

ke− f (pi−p)2
(2.1)

where pi are the positions of all graph nodes 1 . . .N, k are the weights (or importances)
of the nodes, and f is a scaling factor controlling the splat size. By choosing different
weights for different nodes, the constructed potential field can be made to emphasize
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stronger, or weaker, given nodes. For example, nodes with many edges, or having high
values for some metric of interest, can be made more prominent in the visualization. The
same idea can be used to splat the edges of the graph, by placing splats at several sample
points along each edge.

Figure 2.13 left shows a graph displayed with a traditional node-link method and
Figure 2.13 right shows the color coded splat field of the same graph. A rainbow colormap
is used to show the splat field values: blue denotes low densities, while red denotes higher
densities. The GraphSplatting technique allows to zoom into a region of interest. The
color coding is adjusted to show values in the region with more details. Figure 2.14
illustrates splat field zooming. The left image shows an overview of the splat field with a
region of interest. The right image shows the region of interest using zooming and a color
adjustment based on rescaling to the splat values in the region of interest.

Figure 2.14: An example of zooming into an region of interest in a splat field

The utility of splat fields is based on the assumption that the density of points is a
meaningful characteristic of the graph. That is, graph splatting mainly focuses of high-
lighting clusters of graph nodes which, due to the chosen layout, are spatially dense. The
technique can be combined with isolining along the lines described in Section 2.3.3 to ex-
plicitly show clusters of nodes. These are conceptually equivalent to our areas of interest.
However, as for the other uses of implicit surfaces to draw such areas of interest, graph
splatting results are strongly dependent on the underlying layout to place related nodes
close to each other. If we do not have such a layout, splatting will not be able to show
nodes far away from each other as being related, or in the same ’area of interest’. Also,
color-coded graph splatting cannot show different overlapping areas of interest.

Apart from color coded images and isolines, graph splatting results can be also visu-
alized as 3D height plots, and have also been used in software visualization [103].

2.3.5 Thematic software maps
Kuhn et al. [1] propose a consistent layout for software maps in which the position of
a software artifact reflects its vocabulary, and distance corresponds to similarity of vo-
cabulary. They use Latent Semantic Indexing (LSI) to map software artifacts to a vector
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space, and then use Multidimensional Scaling (MDS) to map this vector space down to
two dimensions. Conceptually, the layout technique is similar to force-directed spring
embedders, but the implementation is different.

Consistent layout for software should make it easier to compare visualizations of dif-
ferent kinds of information, but software artifacts have no natural layout since they have
no physical location. Kuhn et al. propose to use vocabulary as the most natural analogue
of physical position for software artifacts, and to map these positions to a two-dimensional
space as a way to achieve consistent layout, where distance between software artifacts
corresponds to distance in their vocabulary. Additionally, they use digital elevation, hill-
shading and contour lines to generate a landscape representing the frequency of topics.

The proposed technique was implemented in the Software Cartographer tool. Fig-
ure 2.15 shows the evolution of a software system using a thematic map approach. The
changes in the same software system are shown from left to right. As all four views use
the same layout, users can build up a mental model of the system’s spatial structure and
its changes.

Figure 2.15: An example of thematic software maps.

The rendering of groups of related elements, or areas of interest, is done using im-
plicit functions, in a very similar manner to the approaches presented in Sections 2.3.3
and 2.3.4. The same main limitations of implicit surfaces discussed before apply here:
connectivity of the areas of interest cannot be guaranteed, and it is difficult to show inter-
secting areas of interest.

2.3.6 Enridged contour maps
The enridged contour map technique [42] was designed to show a sequence of (nested)
contours, or isolines, of a scalar field. One added value of enridged contour maps consists
in adding shading to emphasize the visual nesting of contours. Shading is dark close to
a contour line and gradually increases to bright towards the following contour line, using
e.g. a parabolic luminance variation profile. The user perceives the variations in shading
as nesting of the contours, and can thus see which contours correspond to higher or lower
values without additional graphical information.

Figure 2.16 shows a result of applying the enridged contour map technique. The
technique works similarly to the implicit surface construction described earlier, in the
sense that a scalar field is constructed from the original input scalar data, and then used
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for shading. In the example in Figure 2.16, the input scalar data is a superposition of some
Gaussian functions centered at the locations indicated by the red dots, but it could be an
arbitrary function. Several isolines of this function are shown using enridged contours.
The shading and nesting of the contours conveys an idea of the data values - contours
which appear at the top have higher values than the ones which appear at the bottom.

Figure 2.16: An example of enridged contour maps.

The enridged contour technique is interesting in our context from the perspective of
shading. The smooth shading variations enhance the perception of nesting of contours.
Similar uses of parabolic shading profiles to convey shapes exist in information visual-
ization, most notably the cushion treemaps [115] and software structure cushions [56]. In
the latter method, the syntactic structure of source code is emphasized by means of axis-
aligned polygons whose borders are shaded similarly to the enridged cushion maps of [42]
to convey nesting. In Chapter 6, we shall use a related shading technique to emphasize
the extents of areas of interest in software architecture diagrams.

2.4 Conclusion
If we reflect back to our general goals stated in Chapter 1, i.e. the quest for a way to
visualize software architectures using a UML-like look-and-feel, combined with metrics
defined on diagram elements, element fields, and element groups, we see that there are
several ways to improve upon the current state-of-the art in software visualization.

First, a considerable part of the software visualization metaphors in existence, with
a focus on architectural data, use relatively abstract structural representation, like node-
and-link graph layouts or nested layouts like treemaps. While it can be argued that this
helps scalability, such views are also arguably less intuitive for software architects than
UML diagrams. Moreover, diagrams are typically under hundred elements, so extreme
scalability is not our central concern.

Second, only a few options for adding metric data to UML-like diagrams have been
explored. Most solutions use scaling, coloring, texturing, or shading of the diagram el-
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ements (or of additional icons) to add metric data. This solution is not scalable in the
number of metrics that can be shown at the same time on a given diagram element. More-
over, it is sometimes hard to compare different metrics or different values of the same
metrics across a large diagram.

Finally, there is room of improvement related to the visualization of areas of interest,
or groups of elements. There are only a few methods that render such areas in the style of
Venn-Euler diagrams, which is arguably one of the most intuitive ways to do it. Problems
concerning area overlaps and understandability need additional study.

In the following chapters, we shall attempt to address these problems. Chapter 3
discusses the rendering of areas of interest on UML-like diagrams. Chapter 4 presents a
user study aimed at evaluating our area-of-interest rendering method. Chapter 5 shows
how to render several method-level metrics having many values atop of the elements in
a diagram. Chapter 6 shows how to render element-level metrics on diagrams such that
these can be easily correlated with areas of interest.
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Chapter 3

Areas of Interest

In this chapter, we introduce the Areas of Interest (AOI), a new element of system design
information created with the purpose of emphasizing groups of diagram elements that
share common design properties. We present an overview of the main requirements for
the areas of interest and explain the reasons under which the design decisions were made.
Next, we describe and compare two different methods for visualizing AOIs, and discuss
their trade-offs from an algorithmic perspective. We present the application of AOIs on
UML class and component diagrams.

3.1 Introduction

An important part of understanding complex software systems requires getting insight
in how system properties, such as performance, trust, reliability, or code-level attributes,
such as complexity or cohesion, correspond to the system architecture. Such properties
can be seen as defining several areas of interest over the system architecture. Informally
put, an area of interest, or AOI, consists of as a set of system architecture elements that
share some common property of interest to the one analyzing the system.

In this chapter, we address one central question regarding areas of interest: How can
we visually represent several, possibly overlapping, areas of interest on a given software
architecture diagram, so that their graphical representation efficiently and effectively con-
veys the sets of elements sharing the underlying properties which the areas are built to
show? We proceed to answer this question in a design-oriented fashion, the steps being
as follows.

First, we give a more rigorous definition of areas of interest in terms of sets and data
attribute values (Section 3.2). This also enables us to express the goals of an AOI drawing
in a precise manner, and distill a set of requirements that such a drawing should comply
with. As we shall see, these requirements are of various natures, the main ones being
centered around visual understandability, scalability, and rendering speed (Section 3.3).
These requirements are in line with the overall requirements for the visualization of design
artifacts outlined for this thesis, as explained in Chapter 1.

31
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Next, we present a first method for visualizing the AOIs - the so-called inner skeleton
method. The inner skeleton method satisfies well the scalability and speed requirements,
but has limitations in visual understandability (Section 3.4). We use the observations de-
veloped during the design and application of this method to create a second visualization
method for AOIs - the outer skeleton method. As the naming suggests, the outer skele-
ton method uses geometric information defined on the outside hull of the elements in a
given AOI, while the inner skeleton uses geometric information located inside this hull.
The outer skeleton increases visual understandability by imitating the way humans would
draw AOIs with pen on paper (Section 3.5). We discuss several extensions that further
improve the understandability and scalability of the outer skeleton method in Sections 3.6
and 3.7. Sections 3.8 and 3.9 conclude our presentation of the AOI visualization with a
general discussion and several examples on real-world class and component UML dia-
grams.

3.2 Data model
First, we introduce our data model for the areas of interest, in line with the software de-
sign representation presented in Section 1.3. As input information, we consider a system
model (e.g. UML model), which contains a set of diagrams, such as class, component, or
sequence diagrams, related to it. Formally, we define an area of interest (AOI) as a set of
model elements. A model element m can be present in different diagrams Di, in which
case m will be shown by the corresponding diagram elements di ∈Di. Hence, in different
diagrams Di, the same AOI can be visualized as different sets of diagram elements di.
The simplified data model of the areas of interest is shown in Fig. 3.1 using a UML class
diagram.

Figure 3.1: Data model

Usually, model elements are grouped in a given AOI precisely to reflect the fact that
they share a common property of particular interest in a given system analysis. Simple
examples of areas of interest built along this idea are: ”all high-reliability components”,
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”all components using over 1 MB of memory”, ”all components introduced in the system
version 2.3”, or ”all components in the same thread” [116].

As we see in the above examples, the common properties that are shared by the model
elements contained in a given AOI essentially reflect the values of the data attributes of
those elements. Hence, we distinguish two main ways to create areas of interest, based
on the origins of the data attributes of the system elements:

• manual construction: AOIs, and their corresponding data attributes, are manually
assigned and created by users. This can happen either in the process of iterative
system design, but also in activities such as refactoring or reverse-engineering.

• automatic construction: AOIs, and their corresponding data attributes, are created
in a (semi)automatic manner by system analysis tools. Data attributes take their
values from various software metrics [28, 33] which can be computed by existing
analysis tools [123]. Clearly, a wide range of AOI types and scenarios is possible
in this case.

The AOI creation classification presented above is important as it helps us discover
several characteristics of AOIs from the way these emerge in practice. Manual AOI cre-
ation, being essentially a human design activity, is strongly visual: In most cases, users
effectively draw the desired AOIs around elements of an existing diagram. For exam-
ple, Figure 3.2 shows an actual photograph of a design tool after a design session. The
smooth-shaped, colored, contours indicate two areas of interest, whose intersection con-
tains exactly one diagram element. In this case, the AOI definition and its visual repre-
sentation are one and the same thing. This is an intuitive representation of AOIs, but it
has the disadvantage that it needs manual work to be created. In contrast, automatic AOIs
are not typically drawn, but represented implicitly using tables whose rows contain the
diagram elements and columns the various metrics computed on the system. However
easy to automate, a tabular AOI representation is quite unintuitive, as compared to the
visual representation discussed formerly. For instance, a visual AOI representation can
easily show which elements are in two AOIs at the same time; this is much harder to do
when using a tabular representation.

Our goal is to bridge the gap between the AOI definition and the AOI visual repre-
sentation sketched above. We want to enable users to define their AOIs using metrics and
data attributes, and be able to automatically create visual representations, or visualiza-
tions, which resemble the ones which are drawn by typical users during design sessions.

In the next session, we refine the above goals in a set of detailed requirements regard-
ing the drawing of areas of interest in software design diagrams.

3.3 Requirements overview
Understanding and communication of the structure and quality attributes of the architec-
ture is essential during development and maintenance activities for all stakeholders who
participate in them. We identify the main stakeholders concerned with software struc-
ture and quality understanding and knowledge sharing as shown in Table 3.1, following a
similar analysis done in [30]:
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Stakeholders Function/Roles
Designers share knowledge, take design decisions
Developers take technical decisions, implement a system
Maintainers take technical decisions, maintain a system
Testers test and analyze a system, share knowledge
Development managers share knowledge

Table 3.1: Stakeholders and roles

Figure 3.2: Whiteboard architecture drawing

From the above table, we see that sharing knowledge among a wide range of types
of technical experts is a crucial ingredient of the involved activities. When considering
AOIs as one of the datasets they work with, an immediate consequence is that AOIs
should be represented (visualized) with a high level of understandability. This is our
main requirement to the AOIs drawing. The way AOIs are drawn should be intuitive and
easy to interpret for all stakeholders.

But what is the most understandable way to depict an AOI? Clearly, we cannot an-
swer this question exhaustively, as this would imply trying out all possible visualization
designs for an AOI. We address this question by returning to the manual creation of AOIs
(Section 3.2). We assume, as a design start point, that an AOI visualization method which
imitates the way humans draw AOIs with pen on paper should produce understandable
results for a large class of users. To illustrate this, consider Figure 3.2 which shows an
actual whiteboard-like drawing from a design session of a component diagram with two
manually drawn AOIs (one drawn in filled light-blue and one drawn as a red outline).

The AOI visualization methods presented in the remainder of this chapter built around
this assumption by trying to imitate, in an automatic fashion, several graphical elements
that we identified when studying several human-drawn AOIs on system diagrams similar
to the one shown in Figure 3.2. The elements which we identified as typical for a human
AOI drawing are as follows
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• AOI shapes are two-dimensional, just as the diagram drawings

• AOI shapes surround the elements which are logically contained in the respective
areas

• AOI shapes are drawn without changing the layout of a given system diagram

• AOI shapes are typically soft, containing few sharp angles and straight lines

• AOI shapes have a ’sketchy’ look, different from the precise look of the diagram
drawing

• the pen style (thickness, sharpness) used to draw AOIs is different than the pen style
used to draw the diagrams

A more detailed analysis of these design elements and the understandability of user-drawn
AOIs is presented separately in Chapter 4.

Let us now detail the above observations. First, we limit ourselves to two-dimensional
AOI visualizations. This is a natural conclusion of the fact that software system diagrams
are predominantly drawn in 2D in practice, as reflected by the various UML design tools
(e.g. [37], [106], [13]). Second, the fact that AOIs surround the contained elements is
fundamental to the visual representation of the areas of interest, following the well-known
model of Venn-Euler diagrams used in many fields, such as discrete mathematics. Third,
the fact that AOI drawing should not change the layout of a given diagram follows natu-
rally from the usage scenarios: In most cases, users want to represent concerns expressed
by AOIs on a given, familiar system diagram. It follows that the diagram’s layout, that is
the positions and sizes of the diagram elements, should not be changed when adding AOI
information. We do not want to change a given layout to show areas of interest, as this
can destroy the user’s ’mental map’ and severely reduce understandability, a well known
fact in information visualization (see e.g. [89]). Finally, drawing AOIs in a different
graphical style (soft curves, using a fuzzy pen style) than the diagram (hard lines, sharp
pen style) visually separates the two types of information, i.e. structure (diagrams) from
attributes (areas), and also reflects that AOIs are added in a separate design process, atop
a diagram and after a diagram is created.

We should note that our AOI drawing constraints, as inferred from our explicit de-
sire to mimic human drawings, limits ourselves to a specific class of drawings. Several
other ways of visually representing areas of interest, i.e. groups of related diagram el-
ements, exist. Many software visualization tools such as Rigi [110], Prefuse [70], or
MetricView [107], often used in reverse engineering and reengineering activities, make
different representation choices. An overview hereof is given in Chapter 2. One possi-
bility is to simply draw AOIs as rectangular boxes instead of our proposed soft curves.
Drawing AOIs as boxes without changing the base diagram layout yields unacceptably
high visual clutter and diminished understandability on general diagrams where the ele-
ments of an area can be scattered across the entire diagram. A second option is to change
the layout of the diagram to bring elements logically contained in the same area(s) close
to each other. While this solution can lead good results for a small number of area over-
laps, this method destroys the user’s mental map which is reflected by the given diagram
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layout. Also, this solution does not work when we have several AOIs which we want to
show in sequence, rather than simultaneously, on a given diagram. It is unacceptable to
change the diagram layout every time we want to show (or hide) a given area of interest.
Finally, we mention the solution of visualizing an AOI by marking its elements with icons
scaled, colored, and shaped to show metric values. Yet, inferring AOIs from such markers
is hard for diagrams with many overlapping AOIs, as we shall see later.

Moreover, we would like to modify or explore our visualizations in real-time, even for
large diagrams and many AOIs. For example, users should be able to quickly switch on
or off a given AOI, change its drawing style, or even interactively re-layout the diagram.

We summarize now the requirements of our AOI visualization in Table 3.2. The re-
quirements are numbered for easy reference in the following discussion.

Requirement Description
UML-related
M1 - AOIs must preserve the given UML diagram layout and drawing
Understandability
U1 - the drawing technique should mimic the way humans draw

the areas themselves
U2 - AOIs should be drawn with minimal visual clutter, even

when they overlap
U3 - AOIs and other diagram elements should not visually interfere
Scalability
S1 - AOIs drawing should be real-time, even for large diagrams

and many areas

Table 3.2: Requirements to AOIs drawing

We next present two different methods for visualizing areas of interest, which attempt
to comply with the above listed requirements. As we shall see, these methods have a
number of particular advantages and drawbacks, and are therefore suitable for specific
scenarios.

3.4 Inner skeleton solution
Our first method consists of two steps. First, we build a so-called skeleton of the AOI
using the elements’ geometric layout data, thereby addressing requirement (M1). We call
this the inner skeleton of an area of interest, to distinguish it from the outer skeleton,
which will be the subject of our second AOI visualization technique (see Section 3.5).
Next, we draw the AOI using a graphics technique called texture splatting. By controlling
the various splatting parameters, we shall address requirements (U1, U2, U3).

3.4.1 Inner skeleton construction
The input of the first step is the set of elements in a given AOI. For every element, we
assume we have its geometric layout information in the diagram, i.e. the position and
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size of its 2D rectangular bounding box. We now build the skeleton of the AOI as follows
(see also Figure 3.3, which illustrates the complete process on a simple AOI that contains
three elements).

Figure 3.3: Geometric inner skeleton construction

For a diagram with elements ei having geometric centers ci, the skeleton is the line set
(ci,C), where

C = ∑
i

Aici/∑
i

Ai (3.1)

is the area-weighted barycenter of the elements (Ai is the area of element ci).
Given element ei, with bounding box of width wi and height hi, a radius Ri = max(wi,hi)

is computed for ei and a radius

R = kR ∑
i

Aici/∑
i

Ai (3.2)

for the center C as a fraction kR of the average radius. Setting the value for kR is explained
in the next section. Next, every line segment (ci,C) is sampled with several points pi j
spaced with some small distance δ = |pi− pi+1|, e.g. δ = 0.1R. For every pi j, we compute
also a radius ri j by linear interpolation between the radii R and Ri at the end of the segment
(ci,C). The final representation of the inner skeleton is the set of points and radius values
{(pi j,ri j)}.

3.4.2 Texture splatting
We now use the skeleton to draw the AOI, as follows. First, we construct a so-called
splat. This is a radial function T (x,y) = f (

√
x2 + y2). T looks as shown by Fig. 3.4 a

(dark=opaque, light=transparent). Here, f is called the splat profile, or shape. We shall
use f (x) = xk, so T increases linearly with the distance for k = 1, exponentially for k > 1
and logarithmically for k < 1 (see Fig. 3.4 b). We implement T as a transparency (also
called alpha) texture with the OpenGL graphics library [122]. Hence, T = 0 yields fully
transparent pixels and T = 1 fully opaque pixels.
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Figure 3.4: Splat texture(a) and texture profile (b)

The inner skeleton method renders the AOI by drawing the texture T centered at ev-
ery skeleton point pi j, scaled by the radius ri j, and colored by a user specified AOI color.
Figure 3.5 shows the result of the texture splatting for the AOI of the elements in Fig. 3.3.
The texture splatting method presented above is conceptually similar with another tech-

Figure 3.5: Area of interest drawn with splatting

nique, graph splatting [113, 103]. In graph splatting, a general graph is represented as a
continuous scalar field by convolving (summing up) a set of radial splats centered at the
graph node positions. While similar in technique, the two splatting methods serve differ-
ent purposes. In graph splatting, the idea is to replace an entire discrete graph drawing
by a continuous, smooth-looking, image where non-uniform spatial node densities are
reflected by different values of the splatted signal. In our case, the aim is to construct a
fuzzy shape (the AOI) where the transparency is low at the shape’s edge and high at the
shape’s center. Moreover, we use a uniform point sampling density along the skeleton
branches, since we want to achieve a uniform shape transparency along these branches.

Several properties of this method are visible here. First, the AOI drawing is visually
quite different (i.e, soft and round) from the diagram drawing (drawn with sharp, straight
lines). This distinguishes the two visually. Splatting the inner AOI skeleton is a robust,
simple and fast way to draw a shape that contains all elements in an AOI and has a simple,
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predictable star-shaped look. This also explains the use of the word ’skeleton’ in naming
this method: the set of lines on which the circles’ centers lie is, indeed, nothing else
than the geometric skeleton, also called the medial axis in computational geometry, of the
contour produced by splatting [87]. The resemblance goes further: in a different context,
circular texture splatting of an arbitrary 2D shape’s contour have been used to compute
the geometric skeleton of a shape [95]. Here, we do the opposite: we splat the geometric
skeleton, which we construct in advance, to obtain the corresponding shape’s contour.

We let users vary kR (see Sec. 3.4.1) to control the tightness and smoothness of the
AOI shape. Small (kR ∈ [0.1,0.5]) values yield the typical tight star-shaped AOIs shown in
Fig. 3.6 a. Large (kR ∈ [1,3]) values yield rounded, softer shapes (Fig. 3.6 d). In-between
kR values balance the trade-off between the shape smoothness and tightness (Fig. 3.6 b,c).

Figure 3.6: Area of interest drawn with inner-skeleton splatting

By controlling the various splatting parameters, we obtain visual effects useful for
different user scenarios. If we want to draw ’hard’ AOIs with a sharp, precise, border,
we set k < 1 for the texture profile (e.g. k = 0.3, Fig. 3.7 a). This is useful e.g. to show
important, prominent system properties or metrics having a high confidence value. If we
want to draw ’soft’, fuzzy AOIs, we set k > 1 (e.g. k = 5, Fig. 3.7 b). This is useful e.g. to
show less important properties, which should not distract the eye from the more important
diagram drawing, or metrics having a low confidence value.

A second variation our users found very intuitive and useful during our case studies
(see Chapter. 7) was to draw AOIs as contours instead of filled shapes. For the inner
skeleton solution, this is done in two passes. First, we draw the filled AOI using the splat
textures, as described so far. Second, we draw the same AOI, using the same splat texture
centered at the skeleton points, but now scaled to a smaller radius d ∗ ri j, and using the
background color, e.g. white. d ∈ [0,1] controls the contour width: d = 0 yields the
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Figure 3.7: Filled and contoured areas

filled shapes, and d ≈ 1 yields a very thin contour. As before, k controls the contour
sharpness. Figure 3.7 (c,d) shows two examples of areas of interest drawn with contours
with a contour width d = 0.8.

However, contour drawing using the inner skeletons has the unpleasant property that
it erases the inside of the contour. This leads to undesired effects when e.g. drawing mul-
tiple, overlapping AOIs, as shown in Fig. 3.8. If desired, this problem can be eliminated
by using multi-pass rendering techniques.

Figure 3.8: Inner contour-area overlap problem
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Figure 3.9: Eraser texture design

Figure 3.10: Erasing incorrectly overlapping elements

3.4.3 Exclusion problem
The inner skeleton drawing method, described so far, guarantees that the drawn shape
visually surrounds all elements in the AOI. However, the drawn shape might surround,
or overlap with, elements which are logically not in the AOI, but close to (or completely
inside) that AOI, e.g. the element marked as ”problem” in Fig. 3.9 a. This is, of course, an
undesired side effect. One of our hard constraints is to never modify the diagram layout
(see Table. 3.2 M1). Hence, we must find some other solution to visually show that such
problem elements are actually not in the AOI they visually interfer with. We use the term
exclusion to denote the process in which such elements are eliminated from the areas they
inadvertently overlap.

We solve the exclusion problem as follows. First, we draw all AOIs as described so far.
Next, for all elements not in any AOI, we draw an eraser texture. This is a transparency
texture, like the splat texture (Fig. 3.4 a) used to draw the AOIs, except that it has a
rectangular, instead of radial, shape (see Fig. 3.9 a) and a profile given by a slightly
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different function. Instead of f (x) = xk, we use now the following profile f (see also
Fig 3.9):

f (x) =

{
1, x < b( x−b

b

)k
, x≥ b

(3.3)

Using a fixed k = 4 and varying b in [0,1] yields an eraser ranging from hard (b = 1) to
very soft (b = 0.1), as shown in Fig 3.10. The value b = 0.8 is a good default.

Drawing the eraser texture mapped on background-colored (white) rectangles slightly
larger than the components effectively erases the AOIs underneath, yielding the effect
shown in Fig. 3.10. The element that was erroneously overlapping with the AOI appears
now to be outside the AOI. As for the splat textures, we can control the eraser strength by
the k parameter, yielding results ranging from hard to soft (Fig. 3.10 c,d). A limitation of
this technique is that it works only when combined with the filled style of AOI drawing,
but not with the contour style. Another more effective possibility to avoid including such
overlapping elements is discussed in Section 3.6

Figure 3.11: Area of interest drawn with splatting

3.4.4 Discussion
The main features of the inner skeleton method are its simplicity of implementation and
predictable visual results. Implementing the complete method takes under 500 lines of
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C++ code using OpenGL for the texture splatting. The resulting AOI shapes always ex-
hibit a fixed, star-like, topology, i.e. a center point connected to the elements’ centers.
However useful, the inner skeleton AOI drawing has a major problem: It scales quite
poorly for diagrams having overlapping AOIs of complex shapes, see e.g. Figure 3.11.
This problem stems from the design limitation of the inner skeletons: they have a fixed,
star-like, topology. Inner skeletons work quite well for small-size AOIs, containing un-
der 5 elements, or AOIs whose elements’ convex hull is geometrically close to a regular
n-sided polygon.

However, the inner skeleton method produces less understandable results for more
complex shapes, e.g. Figure 3.11. Moreover, the eraser technique described in the pre-
vious section, while effective in eliminating a small number of overlaps, can produce a
distruptive effect when the number of overlapping elements is large and/or the amount of
spatial overlap is large. In such cases, the rounded shape of the AOIs is abruptly inter-
rupted by the rectangular cuts, yielding shapes which are hard to follow visually. Finally,
the eraser technique does not work together with the contour drawing, as already men-
tioned.

All in all, the inner skeleton visualization technique for AOIs is successful in showing
that AOIs can be effectively rendered atop of traditional system diagrams, using a different
drawing style and no layout modification, albeit with a number of limitations. In the
next section, we present a different AOI visualization method that keeps these desirable
properties and also removes the limitations of the inner skeleton technique.

3.5 Outer skeleton solution
In our second methods, we create AOI visualizations also using a two-stage process.
Firstly, a different kind of skeleton of the area, called the outer skeleton, is constructed
using the geometries of the area elements. In the second step, areas are drawn using color
and texture splatting. Finally, we propose a number of enhancements to the exclusion
problem described in Section 3.4.3. These enhancements are detailed in Sections 3.6
and 3.7.

3.5.1 Outer skeleton construction

We first explain the outer skeleton construction. This process has three steps, see Fig-
ure 3.12b-d. We start with the 2D bounding boxes (b1i,b2i,b3i,b4i) of the elements ei in
the AOI (Fig. 3.12 a). We first compute the convex hull C = {qi} of the corner points
{bi j}, yielding the result in Fig. 3.12 b. This is the tightest convex polygon that encloses
all our element bounding boxes, i.e. a possible approximation for an AOI shape. Still,
we would like smoother, tighter fitting, shapes. To obtain this, we first subsample C
(Fig. 3.12 c) such that the average distance δ between consecutive points |qi−qi+1| is a
given, small fraction of the convex hull perimeter |C|= ∑i |qi−qi+1|. In practice, we set
δ = 0.01|C|.

Next, we deform the subsampled contour qi so that it fits tighter the elements inside
and, at the same time, yields a smoother curve than the convex hull (Fig. 3.12 d). We
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Figure 3.12: Construction of outer skeleton

deform the contour by moving every point qi to q′i:

q′i = qi + εn~n+ εs
qi−1 +qi+1

2
(3.4)

Here, ~n is the normal to the line segment (qi−1qi+1). Assuming {qi} are specified in
counterclockwise order, qi will be moved inwards inside C. This serves two purposes.
First, qi moves perpendicular to the contour with a distance εn which shrinks the contour,
making it tighter. Second, qi moves towards the center of the line segment (qi−1qi+1)
with distance εs. This is the well-known geometric Laplacian smoothing [99] with factor
εs applied to our contour, which guarantees to remove contour sharp corners. We do the
move in Equation 3.4 only if

d = min( min
| j−i|>1

|qi−q j|,min
j
|qi− p j|) > 2δ (3.5)

i.e. the contour point qi is farther from all element corners p j and other contour points
q j (except its immediate neighbors q j−1, q j+1) than a distance 2δ . This test prevents the
contour to self intersect during deformation. We move all points until we reach a user-
set stop criterion or a maximum number of iterations Nmax. Different stop criteria model
different contour properties, as follows:

• Stopping when the deformed contour area A(C) reaches a fraction fA < 1 of the
initial contour area controls the tightness of the AOI shape. Smaller fA values mean
tighter areas. Stopping after a given number of iterations N < Nmax does roughly
the same and is also cheaper to implement.

• Stopping when the deformed contour length |C| reaches a fraction fC > 1 of the
initial contour length controls the smoothness of the AOI shape. Larger fC values
mean less smooth contours.
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Figure 3.13: Controlling tightness in outer skeleton method

Figure 3.13 shows several deformation steps for a simple AOI, starting from the con-
vex hull until a quite tight shape is reached after 20 iterations. The parameter setting
εn = 0.005|C|= 0.5δ ,εs = |qi−1−qi+1|/4, N ∈ [5..20] and fC ∈ [1,2] give very good re-
sults in practice for all configurations (shape, position, and number of diagram elements).

Besides preventing self-intersection, we must also prevent the contour to become too
sparsely sampled, due to the contour length increase during deformation in concave re-
gions. We do this by checking the distances |qi−qi+1| and |qi−qi−1| between the moved
point qi and its neighbors. If these exceed 2δ , we insert a new contour point halfway
between qi and the respective neighbor. Similarly, we check for the contour becoming
too densely sampled, and remove sample points if they are at a distance smaller than
δ/2. Sample point removal occurs in convex regions of the contour which are moved
inwards [17].

Fast convex hull and deformation computations are crucial for an efficient outer skele-
ton construction, given that we want near-real-time rendering. We use the Triangle geo-
metric library [85] which provides a state-of-the-art convex hull implementation. For the
deformation, the distance testing in Equation 3.5 must be done very efficiently. A naive
implementation would use O(NC(NC +E)) operations per deformation step for NC con-
tour points and E elements, which is too slow for real-time performance. We solve this by
using a fast spatial search structure that locates the nearest point q j to the moving point qi
in O(log(NC + E)) operations, using kd-trees [4]. All in all, these choices let us deform
complex contours containing hundreds of elements (E) and hundreds of contour points
(NC) in sub-second time.
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3.5.2 Drawing the areas
We draw the AOIs using the outer skeleton in two steps. First, we triangulate the deformed
contour {qi} (Sec. 3.5.1) and render the resulting triangles in the area’s color. This takes
care of the area itself. Next, we would like to draw a soft, fuzzy contour, similar to the
effect in Fig. 3.6 for the inner skeleton drawing. We first tried the same idea of splatting
the contour points with the radial texture. However, this requires a very high number of
splats (roughly, one every few contour pixels) to produce relatively smooth border, which
is quite inefficient. Using fewer splats yields a poor visual quality, where the individual
splats are visible, see Fig. 3.14. The contour in Fig. 3.14 a is rendered with splats. We
can see on the zoomed-in detail (Fig. 3.14 b) that, even though we are using a high splat
density, the border looks jagged. We solved this problem by designing a better rendering

Figure 3.14: Contour splatting: (a) contour; details with (b) radial and (c) band splatting

method for the outer skeleton, as follows. We first offset the contour points qi outwards
along the contour normal~n:

Figure 3.15: Soft border splatting for outer skeletons

q′i = qi + εn~n (3.6)

Here, ~n and εn are the same as in Equation 3.4. This creates a narrow band along the
contour (Fig. 3.15 a). Next, we create a ’band’ texture T (x,y) = f (x) (Fig. 3.15 b) where
f is the same profile as for the splat texture (Fig. 3.4) and use it to render the border
quadrilaterals (qiqi+1q′i+1q′i). This yields the soft border effect (Fig. 3.16) which looks
very much like the soft edges of the inner skeleton rendering (Fig. 3.6). We can control
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the softness of the border by adjusting texture parameters, just as for the inner skeleton
splatting described in Section 3.4.2.

Figure 3.16: Outer skeleton contour

Figure 3.17: Two areas drawn with the outer skeleton technique

The problem of overlapping contours, discussed in Section 3.4.2 and illustrated in
Figure 3.8, is easily solved when drawing AOI contours using the outer skeleton method
(Fig. 3.17). The solution is to simply skip the drawing of the color-filled triangulation and
to draw only the soft contour band, this time using a mirrored band texture (Fig. 3.15 c)
to make the border look symmetric on the contour inside and outside.

As shown in Fig. 3.17, we can now easily understand which elements are in which
AOI, e.g. the upper-right element is in both AOIs. After our users experimented with
this display mode and some large diagrams (see Section 3.6 and Chapters 4 and 7), they
required the same intuitive display of overlapping AOIs also in filled area mode, not
only contour mode. To allow overlapping AOIs drawn in filled mode, we used a special
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blending mode, as follows. First, we render the background black. Next, we render
all AOIs using 1−RGBi, where RGBi is the actual color of area i, in additive OpenGL
blending mode. After all areas are rendered, we negate the image. The resulting color
will be

RGB = 1− (max∑
i

(1−RGBi)) (3.7)

The above can be interpreted as follows: Areas are rendered as before where they do
not overlap. Overlap regions have a color equal to the subtractive blending of the over-
lapping areas’ colors, i.e. overlapping regions show up as darker colors. The examples of
color blending in overlapping areas is in (Fig. 3.25).

However, blending more than two colors, such as in the case of regions where three or
more areas overlap, can create dark hues which are hard to distinguish. Another equally
serious problem is that blending mixes colors, yielding hues which may not have any
significance, or may even have a wrong significance, e.g. when the mix of two colors c1
and c2 of two areas A1 and A2 yields a color cmix which is very similar to the color of some
other unrelated area A3. In Chapter 6, we shall present a solution to this problem using
texture patterns in the different context of visualizing data values on areas of interest.

3.5.3 Mixing inner and outer skeleton AOIs

In comparison with the inner skeleton method presented in Section 3.4), the outer skele-
ton method reduces visual clutter, as the generated shapes follow the placement of the
enclosed diagram elements more closely. The outer skeleton blending mode combines
colors in regions where several areas of interest overlap in order to make such regions
easily visible. The inner skeleton method still can be useful for small or middle-sized
AOIs having a convex hull close to a regular n-sided polygon. For large AOIs or AOIs
containing elements which are spatially scattered over large diagrams, the outer skeleton
method produces results which are definitely easier to understand than the inner skeleton
technique.

However, the two techniques are not mutually exclusive. Figure 3.18 shows the same
large UML class diagram and areas of interest as in Figure 3.11, this time rendered with
a mix of outer and inner skeleton techniques, as well as filled and contoured areas. For
illustration, we have also included one area of interest drawn in a traditional style, that is,
using a rectangular frame surrounding its elements (see Figure 3.18, lower-right). Clearly,
the two rendering techniques and the filled and contour rendering flavors can nicely co-
exist in the same visualization. This variation in rendering techniques can be useful when
emphasizing different system aspects, e.g. by using different rendering styles for different
classes of properties.

3.6 Handling of exclusion

Albeit effective in rendering complex AOIs, the outer skeleton technique has an important
limitation: it cannot directly handle elements which inadvertently overlap the extent of an
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Figure 3.18: Mixed areas rendering using frames, inner skeletons and outer skeletons

area of interest, but are logically not inside that area - the so-caled exclusion problem in-
troduced in Section 3.4.3. This problem is also exhibited by the inner skeleton method,
as discussed earlier. We present next an effective solution to the exclusion problem im-
plemented in the framework of the outer skeleton method.

3.6.1 Reviewing the exclusion problem
The contour constructed using the outer skeleton method described in Section 3.5 may
erroneously overlap, or include, elements which are logically not in the AOI. In Sec-
tion 3.4.3, we presented a method for marking such elements using an eraser texture for
the inner skeleton method. The same method can be used for the outer skeleton technique.
However, as we shall see below, a number of important limitations of the eraser texture
method remain true for the outer skeleton case.

Consider Figure 3.19 where elements A−D are in the area and E, F are outside. The
eraser method works reasonably well if we draw filled areas and the overlapping elements
are completely inside the area, e.g. E in Figure 3.19 a. However, even in this case the
eraser cue is not salient enough to easily see that E is outside the area. For elements
partially overlapping the area which need to be excluded, e.g. F in Figure 3.19 a, the
cue is even weaker. For contour-drawn areas, the eraser technique works very weakly
(F in Figure 3.19 b) or not at all (E in Figure 3.19 b) as there is little or nothing to
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Figure 3.19: Limitations of the eraser technique. When drawing the AOI as a contour,
element E is incorrectly shown as being inside.(a) Filled drawing and (b) contour drawing.

erase. This is a serious limitation since contour drawing is preferred to filled drawing
in many situations, e.g. when one has only few available colors, when printing contours
in black and white, when many contours overlap, or when blending-capable graphics
hardware is not available. However, the most important problem of the eraser technique
was that it turned out to be very unnatural for the most users who were shown it during
our evaluations (Chapters 4 and 7).

In the following, we present an effective solution the exclusion problem in conjunction
with the outer skeleton visualization method.

3.6.2 Geometric exclusion
Our main idea for tackling the exclusion problem is to edit the contour, before deforming
it, in order to exclude the wrongly overlapping elements. The process works as follows
(see also the scheme in Figure 3.20 and Listing 3.1).

Figure 3.20: Geometric-based exclusion steps. (a) Start situation, (b) find cut line, (c)
connect contours, and (d) cut sharp corners

1 compute o v e r l a p p i n g e l e m e n t s e t O = {oi}
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2 f o r ( a l l oi i n O )
3 {
4 c r e a t e c o n t o u r p i e c e Co a round oi
5 po = p o i n t on Co c l o s e s t t o c o n t o u r C
6 pC = p o i n t on C c l o s e s t t o Co
7 r e a d y = f a l s e
8

9 whi le ( ! r e a d y )
10 {
11 / / Move i n n e r p o i n t l e f t
12 p = po
13 whi le ( d(p, po) < dmax )
14 {
15 i f ( ppC i n t e r s e c t s no e l e m e n t e j )
16 { r e a d y = t rue ; break }
17 move p t o l e f t a l o n g Co
18 }
19 i f ( r e a d y ) break ;
20

21 / / Move i n n e r p o i n t r i g h t
22 p = po
23 whi le ( d(p, po) < dmax )
24 {
25 i f ( ppC i n t e r s e c t s no e l e m e n t e j )
26 { r e a d y = t rue ; break }
27 move p t o r i g h t a l o n g Co
28 }
29 i f ( r e a d y ) break ;
30

31 / / I n n e r move f a i l e d , do o u t e r move
32 move pC t o l e f t a l o n g C
33 }
34

35 c o n n e c t Co t o C us ing l i n e ppC
36 c u t s h a r p c o r n e r s
37 }

Listing 3.1: Iterative exclusion algorithm

First the overlapping element set O = {oi} is computed by testing, for all elements,
if any of the four element corners falls within the already computed AOI convex hull
C (Section 3.5). This requires a simple point-in-convex-polygon test which is fast and
robust [20]. Next, each element oi ∈ O is excluded in turn, as follows. A finely sampled
rectangular contour Co is constructed around the bounding box of oi (Fig. 3.20 b). Next,
a short cut line connecting Co with the original contour C is computed such that it does
not intersect any of the elements ei in ei ∈C. To do this, we use the following heuristic.
We find first the closest two points po ∈ O and p ∈ C. Next, we move both po and pC
along the inner and outer contours O and C respectively, until the line does not intersect
any element. We start by moving po around O to the left (counterclockwise sweep) until
a non-intersecting line is found or a too high distance dmax from the starting position, as
computed along O, is reached. If no line can be drawn, we try now moving po to the right
(clockwise sweep). If this fails too, then we move the other point p one step along the
outer contour C, and repeat the inner contour sweep again. When a cut line was found
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(dotted line in Figure 3.20 b), we connect the inner and outer contours by constructing
two sampled line segments, close and parallel to the cut line (Figure 3.20 c).

The contour editing described above can create contours having unnecessary sharp
corners. We reduce these in a separate pass. For each point pi along the contour, we
compute the angle α = ̂pi−1 pi pi+1 made by that point with its two neighbors. If the angle
drops under a minimal value αmin, and the line pi−1 pi+1 does not intersect any diagram
element ei, then we remove pi from the contour by connecting pi−1 and pi+1. Good val-
ues for αmin are in the range [40,70] degrees. We repeat this procedure iteratively until
no removal is possible. The final result is shown in Fig. 3.20 d. When excluding sev-
eral overlapping elements oi, sharp corners are removed after excluding each element oi,
and not at the end. This gives better quality, as unnecessary sharp corners are eliminated
as soon as possible. This also accelerates the further smoothing steps, since the contour
gets simpler (that is, has less points). Finally, the shrinking process, which moves con-
tour points in normal direction with constant speed, is more stable if sharp corners are
eliminated, a well-known fact from the geometric level-set theory [84].

Figure 3.21 shows the same diagram as in Fig. 3.19. We see how the elements F
and E are iteratively removed (Figures 3.21 b and c). The red line shows the contour
after exclusion and sharp corner removal. The dotted black line shows the contour after
exclusion but before sharp corner removal. Figures 3.21 d-f show the result after doing a
few smoothing steps. Clearly, these results are better than the initial one in Figure 3.19 b.
The exclusion algorithm now very clearly shows what is inside, and what outside, an
area. The unnatural eraser effect is now gone. The sharp corner cutting procedure has
the additional positive effect of smoothing the contour, yielding a more natural ’flow-of-
hand’-like drawing.

Figure 3.21: Geometric-based exclusion.
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3.6.3 Limitations and workarounds for excluding elements
There are situations when the above heuristic for element exclusion (or any other algo-
rithm, for that matter) cannot find a cut line that connects the element to be excluded witht
he AOI contour without hitting some other element contained in that area. This occurs,
e.g. when the element to be excluded is completely surrounded by a ring of elements
which are in the area (see e.g. Figure 3.22). This situation can be easily detected algo-
rithmically by monitoring when point pC has executed a full loop over the area’s contour
C (line 32 in Listing. 3.1). Although such configurations would not be typically found in
most software architecture diagrams, we discuss below two methods to handle them.

Figure 3.22: Exclusion algorithm for cases when no straight cut from the excluded ele-
ment(5) to the area’s contour is possible. Shortest-cut solution (left) and eraser solution
(right)

The first solution groups all elements in O from an Area A which cannot be excluded
using the cut technique in a new AOI Aexcl . Since these elements are completely blocked
from seeing A’s contour, they must be fully contained in A. We now show the exclusion of
these elements from A by drawing the contour of Aexcl using the standard AOI algorithm,
i.e. taking care to exclude elements which are in A but not in Aexcl . Next, we draw the
contour of A ignoring the exclusion. Figure 3.22 (left) shows an example. The Area A
logically contains the elements 15 but not the elements Excl1 and Excl2. The latter two
cannot be handled by the cut line technique, so they constitute Aexcl . Hence, we draw
the contourof A ignoring Excl1 and Excl2 and separately the contourof Aexcl , this time
taking care to avoid element 5, which is not in Aexcl . The Aexcl contour is nested in the A
contour, since the elements in Aexcl are completely within A. This technique handles well
a large range of configurations. However, it would fail when the inner contour drawing
(Aexcl , which involves the cut line method, fails from precisely the same reason the initial
exclusion of its elements from A failed. This happens in configurations involving several
concentric rings of elements which alternately belong to A and Aexcl . Although we could
handle such situations by the addition of more contour pieces, this would create AOIs
with several disconnected components which are increasingly hard to follow visually.

From discussions with actual software engineers who use UML in their daily work
and tested our tool on repeated occasions, we observed a net preference for rendering
AOIs as simply connected contours (shapes without holes) rather than multiple (inner and
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outer) contours. The main explanation given was that simply connected shapes are easier
to follow visually, especially in complex diagrams with several areas whose contours
overlap. In such cases, one needs to visually follow an area’s contour to discern that area,
so an area with multiple disconnected boundaries may be wrongly perceived as several
separate areas. Secondly, there are cases when one only has a few (or no) colors to draw
the areas, e.g. in print-outs. In such cases, it is hardly possible to group disconnected
contours as inner and outer boundaries of the same area, since color discrimination is not
available.

A second solution for the cases when the cut line algorithm fails due to blocked con-
tour visibility is to use as cut line the shortest segment linking the element(s) to exclude
with the AOI’s contour, i.e. the segment (po, pC) computed as in lines 5 and 6 in List-
ing. 3.1. Although this cut will intersect (at least) one of the elements which are logically
inside the area, it has the desirable property of being the shortest possible one, thus the
visually least disturbing, and also it generates a simply connected contour.

Figure 3.22 (middle) shows such a situation. The AOI contains elements 1 . . .4 but
must exclude element 5, which cannot be connected via a straight path with the area’s
contour. Since no non-intersecting cut line can be found, the shortest cut line is used,
which will intersect element 3. To further emphasize this cut, we skip the sharp corner
cutting and smoothing (described in Section 3.6.2 and Chapter 4) for this cut. The cut will,
hence, stay thin and have a visually distinct appearance from the regular cuts (compare
Fig. 3.22, left, with Figure 3.21 f). For comparison purposes, Figure 3.22 (right) also
shows the original eraser technique described in Sec. 3.4.3, which only works on filled
areas. Overall, the preferences informally observed ranked the shortest-cut solution as the
most accepted (Figure 3.22 middle), followed by the multiple contours (Figure 3.22 left)
and finally the eraser technique (Figure 3.22 right).

3.7 Natural flow-of-hand

Figure 3.19 shows also a second problem of the original AOI rendering technique (apart
from the exclusion problem discussed above). Close to the elements, the contours are too
tight. In the middle, they are too loose. The contour smoothness is not optimal, as it looks
too much like a sharp-angled polyline. The non-uniform tightness and sharp angles create
a computer-made, unnatural contour look, quite different from the flow-of-hand typical to
human drawings.

Figure 3.23: Contour smoothing close to elements
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We achieve a more uniform tightness along the entire contour by the following pre-
processing step. Right after the convex hull is sampled, and before the exclusion begins,
we offset every point pi on the contour C outwards with a small distance equal to the
shrinking step εn. Figure 3.23 a shows this process on a zoom-in at one of the corners of
the diagram in Fig. 3.19. The offset makes the initial contour looser, which gives it further
space to deform and nicely curve itself around the elements (Fig. 3.23 b). The usage of
this technique is also shown in Fig. 3.21.

The natural flow-of-hand technique presented here is easy to provide in the framework
of the outer skeleton method, as this method explicitly models the contour of an AOI as
a set of points. In contrast, such a technique would be not possible in the framework
of the inner skeleton, which uses an implicit contour representation given by the linear
variation of the circles’ radii that get splatted (Section 3.4.1). By definition, the inner
skeleton produces shapes that are symmetric with respect to the star-shaped skeleton,
while a natural flow-of-hand contour requires more freedom in defining the shape.

3.8 Discussion

3.8.1 Improved AOI rendering method
Our improved method arguably brings the results of AOI drawing algorithm closer to the
results of actual human drawings. To illustrate this, let us consider three drawings of areas
of interest on the same diagram (Figure 3.24).

The top image is an actual scan of one of human drawings, done in a user evaluation
described further in Chapter 4. The middle image shows the result of the our AOI drawing
method produced on the same diagram using the eraser technique (Section 3.4.3). In this
drawing, we recognize all problems named so far: Some elements (A,B,C) are incorrectly
included in surrounding areas, whereas they should be outside, as shown in the top draw-
ing; and the contours are tight and sharp close to the elements but loose and smooth in
the middle. The bottom drawing shows our rendering method which uses the geometric
exclusion (Section 3.6.2). The elements A,B,C are now correctly excluded. The contours
have a more uniform smoothness and are not so tightly close to the elements. This draw-
ing looks of a higher quality as compared to the one produced by the original algorithm.
Probably the most appealing fact is that the areas drawn here simply look natural and quite
similar to the human-drawn one shown in the top image in Figure 3.24. A more detailed
analysis and measurements of similarities of computer and human-drawn AOI drawings
will be presented separately in Chapter 4, in support of our claims of understandability.

Following the presentation so far in this chapter, we conclude that the outer skele-
ton method, complemented by the geometric exclusion and flow-of-hand techniques pre-
sented in the last two sections, is our method of choice for visualizing areas of interest
from the point of view of understandability.

To illustrate the scalability aspect of this method, let us consider Figure 3.25, which
shows an example featuring twelve areas on a UML class diagram with 110 classes, drawn
as filled contours. The right zoom-ins show the areas framed in white on the left images.
We see now the two problems of the method without geometric exclusion: Class A is
incorrectly marked as contained in area 1. This is because the eraser (Section 3.4.3) is
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Figure 3.24: Comparison of AOI drawings (scans of the paper images)
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overwritten by the color of area 2, in which A is indeed included. Class B is only in area
2, so the eraser is visible as a faint white border. However, when the diagram is zoomed
out, this eraser becomes almost invisible. The improved method (Section 3.6) remediates
both problems. Now the inclusion of A in Area 2 and the fact B is outside both Areas 1
and 2 is clear.

Figure 3.25: The improved exclusion method

The AOI rendering technique can be used on different types of diagrams besides class
diagrams. Figure 3.26 shows two areas of interest rendered on a message sequence chart.
Here, the new exclusion technique is crucial, due to the typical layout of such diagrams.
Usage AOIs to show performance related-parameters of component-based systems is dis-
cussed in Chapter 7. Generally speaking, the AOI rendering technique can be used to
emphasize logical subsets on many types of graph-like diagrams.

The improved method (Section 3.6) does not introduce new parameters that the user
has to explicitly tune. The main user parameters, i.e. AOI color, drawing mode (filled
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Figure 3.26: Example of drawing AOIs on message sequence diagrams

or contour), AOI transparency, and contour tightness, are still the same as in the original
method. In particular, the relatively complex geometric exclusion algorithm is fully auto-
matic. The speed of the improved method is slightly (about 10-15%) worse as compared
with the original method. This is due mainly to the exclusion process which has to find an
optimal cut line (Section 3.6) and also cut corners, both being iterative processes. How-
ever, we should stress that we have not highly optimized this code. Standard geometric
optimizations such as spatial search techniques [4] can easily eliminate this performance
decrease. Even with the performance drop, the AOI rendering still occurs in subsecond
time.

3.8.2 Incorporating edges in areas of interest

In some cases, it may be desirable to constrain not only elements of a diagram to be
contained in a given AOI, but also edges denoting relationships between such elements.
For example, if two elements e1 and e2 are contained in an area A, then one may desire to
constrain A to also include all edges (e1,e2) between them. A typical use-case hereof is
emphasizing structural patterns such as design patterns. This can be achieved by adding
sample points on the edges whose both end-elements are contained in a given AOI to the
set of sample points generated on the elements’ bounding boxes. The AOI construction
algorithm will treat all these points uniformly, i.e. deforming the contour and constructing
the cut lines without getting too close to them. When using straight-line segments to
represent edges, these are contained by default in the initial convex hull that encloses all
the area elements, so the only difference is the increased number of sites (points) taken
into account during the area deformation and exclusion step. Note that precisely the same
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technique can be used for handling elements with non-rectangular shapes.
This technique works very well for diagrams having areas with little overlap. Con-

sider, for example, a class hierarchy drawn on several layers as a tree or directed acyclic
graph. The elements’ convex hull will automatically include all edges in this hierarchy.
The deformation (shrinking) step will move the contour inwards, as usual. If sample
points on these edges are explicitly added to the AOI, the contour shrinking will stop
when getting in their proximity, the rest of the algorithm staying unchanged.

However, when several areas considerably overlap and they also contain many edges,
the blocking configuration described in Sec. 3.6.3 may occur more frequently. Such sit-
uations can generate overly complex curved contours, which, again, are hard to follow
visually. An alternative solution to handle the logical edge inclusion in AOIs is to refrain
from geometrically including them in the areas, but mark them with the color(s) of the
area(s) they are part of. Though not ideal, this solution is robust and easy-to-implement.

3.9 Conclusion
The methods for rendering areas-of-interest presented in this chapter have been tested
on a large set of tens of UML diagrams, both hand-drawn and automatically extracted
from source code. In virtually all cases, the results produced by the improved rendering
method (Section 3.8.1) were satisfactory, in the sense of being easy to understand and
close to human-style drawings. We only noticed a few pathological cases when the outer-
skeleton method was not able to construct suitable shapes, beyond the cases described in
Section 3.6.3. However, these so-called pathological cases contained configurations such
as several overlapping elements (due to an incorrect construction of the original input lay-
out). We can safely assume that actual UML diagrams used in software engineering do
not contain such configurations. Alternatively, an actual production-quality implementa-
tion of our AOI algorithm could easily detect such cases and refrain from attempting to
construct AOIs in those situations.

In terms of understandability, the computer-drawn AOIs are close to human-drawn
ones. As this is an important requirement of our research (see Chapter 1), we shall study
the differences between the two types of AOIs in greater detail in the next chapter.



i
i

“thesis” — 2009/4/22 — 14:06 — page 60 — #65 i
i

i
i

i
i



i
i

“thesis” — 2009/4/22 — 14:06 — page 61 — #66 i
i

i
i

i
i

Chapter 4

Evaluation of Areas of Interest

In this chapter, we present a qualitative evaluation that delivered insight in how users per-
ceive the quality of computer-drawn AOIs as compared to hand-drawn diagrams. Besides
the user evaluation, we present a quantitative analysis to compare different AOI draw-
ings, based on a distance metric defined between contours in image space. The results
of this study are twofold. First, we obtained an empirical justification for the design cri-
teria which are used in the computer-based construction of AOIs, based on what users
perceive as important understandability features. Secondly, we obtained a quantitative
assessment of the fact that our improved rendering method for AOIs, described earlier in
Section 3.6, produces indeed results closer to good human drawings as compared to the
initial visualization design presented in Section 3.5.1.

4.1 Introduction

Areas of interest, introduced in Chapter 3, are defined as groups of elements of system
architecture diagrams that share some common property. Visualizing AOIs is a useful
addition to plain diagrams, such as UML diagrams. In the previous chapter, two main
methods have been presented to automatically draw AOIs on architecture diagrams: the
inner skeleton and the outer skeleton method. The presented methods render AOIs as
soft, fuzzy shapes surrounding the diagram elements, by a combination of geometric and
texture-based techniques. The rendering method scales computationally well to tens of
areas and hundreds of elements.

For the outer skeleton method, a number of improvements were presented that attempt
to produce a contour which is close to the way humans would (like to) draw an AOI
using pen and paper. Informal evaluations done during the design of the methods, as well
as actual user tests done in a software engineering project (see Chapter 7) gave us the
strong impression that the improved outer-skeleton method produces the best results, and
moreover, results which are similar to human-drawn areas.

However, some important questions still remain to be answered: Do actual users like
computer-drawn AOIs comparably to hand-drawn AOIs? If not, why, and how can we

61
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improve the computer-drawn AOIs so that they resemble more closely good-quality hand-
drawn ones? In particular, are the improvements to the outer skeleton method discussed
in Chapter 3 indeed useful? If yes, which are the actual features of the drawing which are
most important for acceptance by users? Understanding these aspects is important both
in validating the choices made during the AOI design process, and also for further work
in improving the AOI drawing quality.

To evaluate the quality of AOIs, we designed and executed a detailed empirical evalua-
tion. This evaluation is presented in this chapter. From the evaluation results, we distilled
salient strengths and weaknesses of the original AOI rendering algorithm (Section 3.5)
and of hand-drawn areas. Our conclusion was that hand-drawn areas, although quite vari-
able across different humans, are perceived as easier to understand than computer-drawn
ones. Two main drawbacks of computer-drawn areas were found: eraser-based exclusion
of overlapping elements (Section 3.6.1), and unnatural flow-of-hand (Section 3.7). These
are precisely the drawbacks that out improved outer skeleton method attempts to correct.
After introducing the geometric exclusion (Section 3.6.2) and natural flow-of-hand (Sec-
tion 3.7) in creating out improved method, we designed a distance metric to compare AOI
renderings, and showed that the results of improved algorithm are closer to (good) hu-
man drawings than the results of the original outer-skeleton algorithm. This serves as a
validation of the design choices made in the improved algorithm.

Section 4.2 presents the empirical evaluation conducted to compare the quality of
computer and human drawings. Section 4.3 presents a quantitative comparison of the
human-drawn and computer renderings. Section 4.4 presents and discusses the results of
our evaluation. Section 4.5 concludes this chapter.

4.2 Empirical user-study
The purpose of this user-study is to deliver insight in how users perceive the quality of
computer-drawn AOIs as compared to hand-drawn diagrams. Specifically, we want to
assess which type of AOI rendering is the best, and why. Since we are not aware of
specific studies to evaluate the quality of AOI renderings, firstly we shall consider the
wider range of evaluating quality aspects of UML diagram renderings.

4.2.1 Related work

Related work concerns evaluating the quality of a visual depiction of system (UML) ar-
chitectures. Purchase et al. have conducted numerous user experiments to assess the
comprehensibility, aesthetics, and user preferences of UML (and similar) diagram render-
ings [74, 73, 75, 76]. Such results are valuable both as methodology and lessons learned,
yet they cannot be applied directly to our problem, since AOIs are an extension of the
standard UML notation. Several authors propose frameworks and methodologies to eval-
uate the comprehensibility and overall quality of UML models [47, 10, 3, 54, 66, 80].
Still, the question ”what are good quality criteria for visual modeling languages” is not
exhaustively answered.

There is a large body of related work in the area of quality attributes of hand-drawn



i
i

“thesis” — 2009/4/22 — 14:06 — page 63 — #68 i
i

i
i

i
i

4.2. EMPIRICAL USER-STUDY 63

diagrams and diagram annotations beyond UML. Notably, Plimmer et al. have presented
several systems for human annotation of computer-made diagrams [15, 69]. In partic-
ular, the RCA tool manages user-drawn annotations to fit around edited source code in
an IDE, which is similar to our requirement that AOIs should fit the elements they en-
close, regardless of their layout [72]. Beautification issues of hand-drawn diagrams and
annotations are discussed by Plimmer and Grundy [68] and Yeung et al. [124]. Identified
desirable issues such as annotation line smoothness, annotation constrainment to user-
specified layouts, and the use of a natural stroke or flow-of-hand, are all directly relevant
to our computer-drawn AOIs, as we discovered from the early phase of our AOI design
process. Our particular challenge is, however, to generate such annotations entirely auto-
matically, rather than starting from a user sketch.

One emerging conclusion from previous work is that plain, unannotated UML is often
hard to comprehend and can perform better if extended by task-specific annotations. Our
areas of interest are precisely such an annotation, useful to show cross-cutting concerns
atop of a given system structure. Since this is a new notation, the characteristics that
make for a good AOI drawing have not yet been studied in particular. Our aim is to
construct a computer algorithm that renders AOIs similarly to good hand-drawn AOIs.
The mentioned requirements mentioned in Table 3.2 attempt to capture the a priori quality
criteria of a good AOI drawing - that is, what we, as visualization designers, think a good
drawing should look like. Yet, to assess the perceived quality of an AOI drawing, we need
a specific study. The next sections present such a study.

4.2.2 Experiment set-up
The empirical evaluation was designed and executed in the following way. Thirty users
of higher computer science education levels (master, post-master, PhD, senior software
designers, and computer science researchers) were selected. Some users were enrolled at
the Eindhoven University of Technology in the Netherlands. Some others were part of an
industrial European research project [40] where visualizing trust-related areas of interest
on UML and component diagrams were a key task. This project is further discussed in
Chapter 7. All users had good knowledge of UML and had worked before for at least a
few months (up to a few years) with class diagrams in daily or weekly software design
activities. The evaluation flow is depicted on Figure 4.1. It consists of three stages:
drawing production, drawing comparison and results evaluation.

In the drawing production phase, the participants were given a complex class dia-
gram with 110 classes marked by numbers, printed in black-and-white on an A4 paper
(Figure 4.2) and seven AOIs, each given as a list of class numbers, printed on a separate
paper. The list looked as follows:

• Area 1: 4, 5, 13, 12, 17

• Area 2: 51, 52, 55, 58, 59, 57, 68

• Area 3: 14, 21, 22, 32, 40, 41, 60, 58, 59, 80

• Area 4: 33, 34, 35, 36, 43, 61, 62, 66
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Figure 4.1: Evaluation process

• Area 5: 66, 82, 81, 95, 96, 103, 105, 104

• Area 6: 49, 50, 51, 67, 69, 111, 76, 78

• Area 7: 86, 92, 93, 99, 94, 80, 96, 95, 103

The participants were next asked to draw the areas as contours on this diagram, with
a red marker pen we provided ourselves. The subjects were told that the goal of the
drawing is to accurately and quickly convey, to another person, which class is in which
area(s), and which area contains which classes. An example drawing, done on a different,
much smaller, UML diagram containing 10 classes and one AOI, was also provided for
basic illustration purposes. The complete experiment instructions were also provided on a
separate A4 sheet. The subjects were given also a few paper sheets to practice on, before
producing the final drawing. No verbal indications were given during the actual work,
which lasted approximately 15 minutes. The subjects were not supervised. Also, they
all worked independently, and had no knowledge of, or access to, the results of other
participants.

Figure 3.24 a shows a scan of the drawing done by one of the participants.
Apart from the drawings made by the participants, and without their knowledge, we

also produced a computer drawing on the same class diagram using the AOI rendering
method described in Section 3.5. We adjusted the algorithm and rendering parameters
(e.g. line thickness and color) to look as similar as possible to the human drawings, and
then printed the computer drawing on a similar sheet of paper. The scan of the given
computer-drawn AOI is shown in Figure 3.24 b. Essentially, the only salient difference
between the computer and human drawings is the shape of the contour.

In the drawing comparison phase, we collected the results, and gave to each participant
two drawings: a randomly picked drawing of another participant, as well as our unique
computer-rendered drawing (Fig. 3.24 b). Without telling which is which and without
giving any hint that one of the drawing was computer-made, we asked the participants to
complete a questionnaire. The questions included:
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Figure 4.2: Class diagram used in the evaluation

1. rank the ease of understanding of the areas in each drawing on a scale of 1 (hardest)
to 5 (easiest), accordingly to a Likert scale [53]

2. which is the most complex area to understand

3. rank the perceived similarity between the two drawings on a scale of 1 to 3

4. list, in plain text, what you liked least in the given drawings

5. list, in plain text, what you liked most in the given drawings

In the questionnaire, we mentioned that the main quality of an AOI drawing is given by
its understandability, which is further related to its purpose. That is, the drawings should
clearly show which area contains which classes, and which class is in which area(s). The
questionnaire data was analyzed and aggregated. After collecting the questionnaires, we
also had some short discussions (10-15 minutes) with the participants, in which we let
them freely present their impressions and explain their results, and silently recorded their
observations in writing. The results of the user study is discussed in the next section.

4.2.3 Evaluation results
The results of the questionnaire are summarized in the table in Figure 4.3. Several points
become apparent now, as follows.

Most users found the machine-generated drawing (M) to be comparably understand-
able to the human-made one (H). Yet, the human drawings were almost always found to
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be better than the machine-generated ones, i.e. in 29 out of 31 cases (94%) (Figure 4.3,
column A). The perceived similarity between the machine and hand-drawn AOIs (Fig-
ure 4.3, column D) showed a larger spread among users: 19 out of 31 (61%) marked a
2 (”not so different”), 10 users (32%) marked a 1 (”very different”), and the remaining
two users (6%) marked a 3 (”very similar”). This can be explained by the relatively large
variability of the different human drawings involved, and also in the fact that we refrained
from providing similarity criteria to the users, to limit any potential biasing of the other
assessments.

It is interesting to see that there is only a weak correlation between the perceived
difference (column D) and the numerical difference between the perceived human and
machine drawing qualities (columns B and C). Users that perceived their two drawings as
being very different (value 1 in column D), e.g. rows 3, 5, 6, 8, 14, 17, 19, 22, 26, and
27 would score absolute human-machine quality differences of 1 (4 users, or 40%), 2 (2
users, or 20%), 3 (3 users, or 30%) and respectively 4 (1 user, or 10%). The two users
that perceived their respective human and machine drawings ot be very similar (score 3
in column D) ranked their human and machine drawing qualities to be 4 and 2, and 4
and 4 respectively. Finally, the three users who indicated the highest human and machine
drawing quality scores (5 and 4, respectively) all indicated a perceived difference of 2
between their drawings. Overall, the emerging impression is that similar drawings are not
essentially implying the same drawing quality (from the perspective of the indicated AOI
goals), nor would a similar quality in two different drawings imply that they perceptually
look the same.

The hardest-to-grasp (most complex) areas were quite consistent, i.e. areas 2 and 3
(Figure 4.3, column E). This matches also our opinion, and gives further an indication
that the drawings done by different users are of comparable quality concerning under-
standability. Among different drawbacks of the machine-drawn areas found during the
results analysis, two were most frequently named. The first drawback concerns the eraser
technique (Section 3.4.3). The eraser, used to mark elements overlapping an AOI contour
but not logically part of that AOI, is not working well, as we indeed suspected beforehand.
We call this the wrong exclusion problem. For example, class 56 is not part of Area 2,
as it is wrongly suggested by the computer drawing. This is clearly visible in Figure 4.4,
which shows a zoomed-in detail from the diagrams in Figure 3.24. Figure 4.4 a, drawn
using the AOI rendering algorithm, does not show the AOI correctly. Figure 4.4 b, done
by a human, is however correct. This problem was found by most subjects, as reflected in
column G of the table.

The second drawback of the machine-generated areas concerns the contours’ tightness
and smoothness. These were perceived as being unpleasantly non-uniform (column F),
and the flow of hand, i.e. similarity to the way humans draw, was lacking (column G). All
users mentioned these aspects as hindering the drawings’ understandability. As a third
drawback, many subjects found the computer-drawn areas’ overlaps confusing (column
D). Contours which are near-tangent close to their intersection points were consistently
named hard to understand in the light of the posed questions (Section 4.2.2). This was
something we did not expect beforehand.

Clearly, there was room for improvement. The collected results point clearly in an
overwhelming preference of the users for the human drawings, a fact which is also sup-
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ported by the vast majority indicating higher or equal quality scores for the human draw-
ings. It is natural to believe that a part of these differences are also reflected by the
above-mentioned drawbacks of the machine drawings. In other words, removing some of
these drawbacks has the potential of increasing the quality of the machine drawings. Af-
ter analyzing the mentioned drawbacks, we designed several algorithmic improvements
to the original AOI rendering method to address them. These improvements are in Sec-
tions 3.6.2 and 3.7.

Figure 4.5 b shows the result of our improved method on the same diagram detail
as in Figure 4.4. We see that the improved method (4.5 b) is more similar to hand-
drawing(4.5 a) than the original method (4.4 a).

4.3 Quantitative analysis

As the results of our user study showed (Section 4.2), the human-made drawings were
perceived by users to be almost always better understandable than our computer-generated
ones. We presented in Sections 3.6.2 and 3.7 several algorithm improvements by which
we hoped to address the shortcomings of our computer rendering method.

However, how to measure how well we improved as compared to the original algo-
rithm? Repeating the user study (Section 4.2) with the same audience could be biased,
since the users by now knew our aims, diagram datasets, and already had some experi-
ence. Conducting the same study on a different group of subjects and/or different datasets
could be done, but how to quantitatively compare subjective qualitative opinions of two
different groups and/or datasets? Additionally, a user experiment does not give a pre-
cise, quantitative answer for how much closer or further our new algorithm improves the
rendering.

If we were interested to test the suitability of the AOI renderings for a very specific
comprehension task, e.g. the amount of time it takes to visually locate a given diagram el-
ement in a given area, we could indeed perform two user experiments to measure the time
difference when using the improved, versus the original, rendering methods. However,
there are several drawbacks to such an approach. First, as indicated by the user comments
collected in our study, human-drawn AOIs have several quality attributes which help com-
prehension (e.g. the natural flow-of-hand). These are hard to quantify by means of e.g.
timing a single (or a few) narrow tasks. We do not yet know which tasks would be the
most representative here. Our main assumption is that drawing AOIs as humans do it is
good for comprehension, in line with previous authors [68, 124, 72]. Hence, we would
like to test that our improved algorithm produces drawings closer to human drawings than
the original algorithm.

We designed a way which provides a quantitative answer to the above point. The
quantitative analysis process is described next.

4.3.1 The quantitative analysis set-up

The analysis pipeline is shown in Figure 4.6 and described below.
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Firstly, we extracted the area contours from all drawings, i.e. human and computed-
generated with both the original and improved algorithm. For this, we used a simple
filter-by-color thresholding technique, which was reliable as the contours and diagrams
were drawn with two predefined distinct colors, i.e. red, respectively black, and we gave
the users identical pens to drawn with. An example of the extracted contour is shown in
Figure 4.7, which is indeed a clean, noise-free, contour representation.

Next, we would like to measure the difference between any two contours, i.e. human
and/or computer-drawn. We do this as follows. Consider two contours Ci and C j like the
ones in Figure 4.7. For a contour C, we denote by D the distance transform, or distance
map, of C. The distance map is defined as:

D(p) = min
q∈C
|p−q|, ∀p ∈ R2 (4.1)

for any point p in the 2D plane. Essentially, D(p) gives the distance from any point p to
the closest point q on the contour C. We know that the distance map of an object C is the
solution of the so-called Eikonal equation:

|∇D|= 1 (4.2)

with the boundary condition D = 0 on all points of C. We solve Equation 4.2 using
the Fast Marching Method as described by Sethian in [84], on the same pixel grid as the
one on which the scanned contour C is stored, and obtain the distance map D at a pixel-
level spatial resolution. A careful implementation of the Fast Marching Method ensures
the distance map D is computed on an image of 1024x768 pixels in under one second
on a 1.8 GHz Windows PC [78]. Figure 4.8 shows the distance map D using a blue-to-
red colormap (blue denotes low, red denotes high, distances) of the contour C (shown in
white).

Now, given a contour Ci and its distance map Di, computed as above, we define the
distance di j of Ci to another contour C j as:

di j =
1
2

(
∑p∈C j Di(p)

|C j|Dimax

+
∑p∈Ci D j(p)
|Ci|D jmax

)
(4.3)

In the above, D j denotes the distance map of contour C j, while Dimax and D jmax are
the maximum values of Di and D j respectively over the considered images. |Ci| and |C j|
denote the contour lengths in pixels. The above definition of di j ensures d is a symmetric
function di j = d ji, and also is normalized between 0 and 1. Intuitively, Equation 4.3
states that the distance between the two contours C and C′ is proportional with the area
between the two contours, which is a perceptually good measure [18]. Alignment and
image registration problems were, in our situation, not an issue, since all drawings were
done on the precisely the same class diagrams, printed on identical A4 canvases, scanned
at the same resolutions. Moreover, the distance metric given by Equation 4.3 is robust
to small shifts and rotations. Let us stress that the proposed distance function is just one
of the many ways in which we can compare contour drawings. Other more sophisticated
measures, e.g. perceptual-based metrics [7], template-based matching [31], or contour
matching using the earth mover’s distance [35], can be used as well. We prefer to use our
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simpler metric since its numerical behavior is easier to interpret and its implementation
is quite straightforward. Also, using more complex distance metrics typically involves
having a clearer idea of which features (e.g. angles, protrusions, concavities, flat regions)
are perceptually more important for the match, and how to quantify this importance. This
is information that we do not have at the present moment.

4.3.2 Results of the quantitative analysis

We can build now a matrix di j containing all distances between any two contours of the
31 hand-drawn ones plus the two computer-drawn ones (with the original, respectively
improved, methods). However, as the user evaluation results showed (Figure 4.3), not all
hand drawings are found to be of the same quality. We are in particular interested to see
how our computer-drawn contours compare to the good human drawings and, also, if the
proposed improvements did, indeed, bring us closer to these drawings.

For this, we first split the 31 human drawings into three groups: good, average, poor,
based the ”human quality” scores of 5,4 and 3 respectively (see Figure 4.3). Figure 4.9
shows the distances of the six good drawings (H1..H6) to themselves and to the computer-
generated drawings with the original (OLD) and improved (NEW) outer-skeleton meth-
ods. We see that all drawings in this table are quite similar to each other. We also see that
the NEW drawing is consistently closer to the human drawings than the OLD drawing.

Figure 4.10 graphs the distances between all 31 human drawings and the two (initial
and improved) computer drawings. The human drawings are grouped according to their
perceived quality, as described above. Several observations can be made here. First, there
is quite some variation in the distances within the same quality class. This is expected,
since each quality value was assigned subjectively by just one person.

However, the distance values, averaged per quality class (Figure 4.11), show that the
computer-generated drawings are closer to good than to bad drawings, both for the origi-
nal and improved methods. Also, we see that the improved method brings the computer-
generated drawings closer to the human drawings in all quality classes as compared to the
original method. The improvement is of roughly 20 percent for the ”good” and ”average”
classes and 12 percent for the ”bad” class. This is also visible from the graphs in Fig-
ure 4.10. More importantly, the improved method brings the computer drawings closer to
the good human drawings than to the bad ones.

Finally, we notice an outlier: the human-drawing 30 in Figure 4.10. Looking at it
(Figure 4.12), we can indeed see it has a very different style from a typical good human
drawing (e.g. Figure 3.24. Also, the user who made drawing 30 forgot to draw one
area (Area 6 - see Section 4.2), which explains the high spike in the distance metric.
This shows that our distance metric is quite discriminative in the presence of erroneous
drawings.
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4.4 Discussion

4.4.1 Human-machine drawing comparison
The distance metric proposed to compare contours is well-known in shape analysis and
computer vision applications (see e.g. [18]). Its main advantage is good robustness to
small-scale geometric noise, and rotation and scale invariance. However, it does not take
into account specific quality attributes for the tasks related to areas of interest. For exam-
ple, we can argue that a small geometric difference between two contours is perceptually
more important if located at some point where several contours overlap or intersect, or
in an area covered by a complex diagram, than at the periphery of the drawing. Integrat-
ing perceptually driven distance metrics [7, 31] in our evaluation should lead to further
insights.

Finally, we are aware that we have not conducted a formal user experiment, i.e. a
quantitative measurement of the (in)validation of a hypothesis. Our evaluation’s main
goal was to harvest information about the differences perceived between computer- and
human-drawn AOIs, and to adapt our computer drawings accordingly. Assuming that
our hypothesis holds that human-drawn AOIs are easy to understand, we argue that our
improved rendering algorithm produces better drawings, since these are measurably closer
to human drawings than the original computer drawings.

The main advantages of the machine drawings, as compared to the human drawings
are as follows

• rapid and automatic handling of complex areas on large diagrams. A human will
typically take several minutes to draw a set of areas, while the algorithm presented
here needs a few seconds;

• correct drawing. As shown by the experiment, humans can draw incorrect areas,
especially for complex configurations (see e.g. Figure 4.4);

• easy parameterization of the drawing process (contour smoothness, color, thick-
ness, filled or not)

The main elements which still need to be incorporated in the automatic algorithm, as
outlined by the user study, are

• contour crossings: Although the improved algorithm presented here significantly
reduces sharp angles and produces overall smooth contours, it can still produce
contour crossings having small angles. These crossings can be detected, and an
additional force can be added to the contour points in the crossing’s vicinity to
maximize these angles in the shrinking process;

• contour separation: Since contours are drawn independently, they can have (near)
overlapping fragments, which are hard to separate visually. This could be addressed
by a separate relaxation pass: After all contours are constructed independently,
repulsion forces are added to the contour points, and several deformation steps are
performed. Alternatively, the contours can be drawn iteratively, and the repulsion
forces can be added to each newly drawn contour as it is shrunk.
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4.4.2 Limitations learned from the user study
Although the improved AOI drawing method yields better appreciated drawings, which
are measurably closer to human drawings than the original method, it still has some lim-
itations. First, our users have found near-tangently intersecting contours to be hard to
understand (Section 4.2.3). We have not addressed this problem yet. For this, we should
consider a global contour rendering rather than the per-contour rendering we use now.

Besides a possible optimization of the contour crossing angles, a global contour con-
struction could also optimize the actual positions of contour points, in order to pull apart
AOI fragments which are too close. Although this direction should be explored in future
work, it introduces some important problems. In typical usage scenarios, one neeeds to
switch areas on and off interactively during analysis. If the shape and position of an AOI
are influenced by other AOIs, then toggling on or off an area Ai may abruptly change the
look of another area A j in the same drawing, which is highly disruptive. Precomputing
all AOI contours beforehand is not an option, since a typical diagram can easily have
tens of areas showing different concerns (performance, resource usage, reliability, coding
and documentation aspects, and so on), and we do not know in advance which areas one
may want to visualize at a time. Finally, a global optimization may incur performance
problems on large diagrams with many areas.

4.5 Conclusion
The main result of our evaluation can actually be seen as an a posteriori justification
of the early decisions taken when designing the AOI rendering method based on outer
skeletons. Based on the actual evaluation, we identified which of the drawing aspects are
found important by actual users when completing typical understanding tasks, and discov-
ered some limitations of our original AOI rendering method. Based on this insight, we
designed several algorithmic improvements to the rendering method and showed quan-
titatively that our improvements bring the computer drawings closer to human drawings
identified as good. Overall, this gives us good ground to claim that the improved AOI
method is able to produce drawings which are, on the average, comparable in quality and
understandability with good human drawings.

However, this study also identified several limitations of our AOI rendering method
as compared to human drawings. The most important is our choice to draw areas sep-
arately, while humans consider already-existing information when adding new elements
to a drawing. An instance hereof is our inability to optimize angles at contour crossings,
while humans seem to do this when drawing overlapping areas.

With this chapter, we conclude our study of drawing areas of interest on software
diagrams. The following chapters are dedicated to adding different types of metric infor-
mation to diagrams annotated with areas of interest.
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Figure 4.3: Results of drawing comparison. Columns A-E indicate: which drawing was
overall found to be better (human or machine); perceived quality of the human drawing;
perceived quality of the machine drawing; perceived similarity of the two drawings; visu-
ally most complex area. Columns F-I indicate often-perceived drawbacks of the machine
drawings.



i
i

“thesis” — 2009/4/22 — 14:06 — page 73 — #78 i
i

i
i

i
i

4.5. CONCLUSION 73

Figure 4.4: Element 56 is not part of the area, as correctly shown in the human drawing
(b). The eraser-based technique incorrectly shows 56 as inside the area

Figure 4.5: Comparison of human drawing (a) with the improved rendering method (b).
Details from Figure 3.24)

Figure 4.6: Quantitative analysis procedure
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Figure 4.7: Extracted contour

Figure 4.8: Distance map D (blue-to-red colormap) of contour C(white), used to compare
C with a second contour C′ (black).
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Figure 4.9: Distance table of the best human drawings and AOI rendering

Figure 4.10: Comparison of AOI rendering algorithms. The improved rendering method
yields results closer to the human-drawn AOIs than the original rendering method
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Figure 4.11: Comparison of average distances between three groups of human drawings
(good, average, bad) and two computer-generated drawings (initial and improved).

Figure 4.12: Atypical human drawing (a scan of the paper image)
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Chapter 5

Method-level metrics

In this chapter, we address the question of how to visually correlate an object-oriented
software architecture with metric values defined at method level. To support this task and
its specific scalability and understandability requirements, we designed two new visual
metaphors. First, we propose the metric lens, a new visualization of several method-level
code metrics atop of traditional UML class diagrams, which allows users to quickly per-
form metric-metric and metric-structure correlations on large diagrams, and also works
in a level-of-detail manner. Second, we present the metric legend, a new way to interac-
tively specify a spectrum of analyses involving different metrics, value ranges, and visual
mappings. The metric legend is interactively correlated with the metric lens to enable
users to quickly specify a wide palette of analyses, and also acts like a legend for the data
displayed in these analyses.

5.1 Introduction
There are several possible sources for the architectural diagram data which has been the
subject of the previous chapters. At a high level, we can classify these sources in two main
categories, according to the software development life-cycle introduced in Chapter 1:

• design-phase diagrams: these diagrams are manually specified during the design
phase of a system;

• maintenance-phase diagrams: these diagrams are typically extracted from source
code in the maintenance phase.

Diagrams in the above categories share the same data: entities, relationships, areas
of interest, and various metrics. Their main role is also quite similar: to convey insight
into the high-level structure and function of a given system. In this context, one way
to understand source code is to represent it on a higher level of abstraction, e.g. on a
design or architectural level. If someone would like to analyse an object-oriented system,
UML diagrams would be the conventional choice to represent the system on a design
level. However, there are also several differences. Design-phase diagrams have, typically,

77
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a weak relation with lower-level artifacts such as source code, since these artifacts do
not yet exist in the design phase. Diagrams created during maintenance, however, must
take the existing source code into account, as source code is often the most important
asset produced during software development, also called the ”hard currency” of software
development [94].

During maintenance, diagrams are put into accord with source code typically by ex-
tracting them directly from source code in a process called reverse engineering or reverse
architecting [46, 110]. This creates several challenges, which we can relate to our origi-
nal requirements of scalability and understandability (Chapter 1). First, we need effective
methods to present, or visualize, extracted diagrams, much in the same way we did it with
design-phase diagrams. Second, such methods need to be scalable. Diagrams extracted
from source code are, often, much larger and more verbose, i.e. have more entities, rela-
tionships, and class members, than hand-drawn diagrams in the design phase. The reason
is that it is very hard to automatically separate low-level (implementation) details from
higher-level (design and architecture) facts when extracting diagrams from source code.

Since diagrams produced from source code are quite large, we need ways to simplify
these in order to achieve our understandability goals. Methods to do this can be classified
in two categories, depending on the moment when they occur:

• analysis methods: the data extracted from source code is simplified, of abstracted,
before its (visual) presentation;

• visualization methods: the extracted data is simplified, or presented in a scalable
way, during the visual presentation.

In the first class of methods, several approaches are possible, such as automatic tech-
niques for extracting and filtering design patterns from code [59, 88], and metrics-based
techniques [51]. Metrics-based techniques are particularly interesting in the context of
our work. These techniques abstract the low-level structure of the source code by re-
ducing it to a number of metrics that capture properties of interest, such as complexity,
testability, maintainability, and evolvability [51, 104]. In this thesis, our interest goes to
the second class of visualization methods. As such, we shall not concern ourselves with
ways to improve the source-code mining process, or with specific requirements for these
methods such as scalability, accuracy, and completeness. Our assumption is that we have
a set of software diagrams extracted from source code, together with several code-level
metrics computed at class or class-member level, and we wish to present these visually in
a scalable and understandable way1. This is the focus of this chapter. In the next chap-
ter, we address the related problem of visualizing several types of metrics computed on
groups of diagram elements, or areas of interest.

Combining code metrics and diagram information in a single representation is an
effective way to help several types of system assessments, such as spotting (cor)relations
among code attributes, relations, and diagram element types; determining where, on a
system’s architecture, do code attributes reach outlier values; and identifying specific

1In this chapter, we shall use the terms method and member interchangeably, since we treat both artifacts
identically from the perspective of visualization
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code patterns and their correlation with code metrics. Ultimately, these activities help
users to assess the quality, modularity, and maintainability of a given software system.

To be most effective, a solution for combining code metrics and structural (diagram)
information should comply with several requirements, as follows:

1. show the system structure and code metrics in a single representation, so that
metric-structure correlations are easy to do;

2. show several metrics in the same time, which may have different value ranges, so
that metric-metric correlations are easy to do;

3. the envisaged solution should be scalable for large diagrams of tens or hundreds of
classes having hundreds of methods, and several metrics;

4. let users specify and control all above operations in an easy, interactive, way.

These requirements map directly on our original requirements of UML-based presenta-
tion, scalability, and understandability (Chapter 1). Summarizing the above, we aim at a
technique that should enable correlation and comparison between many metrics, having
different ranges and meanings, on large diagrams, all in an easy, interactive way.

In this chapter, we propose such a solution, consisting of two new combined tech-
niques: the metric lens and the metric legend. We start by overviewing the improvements
which can be done in the areas of software architecture and software metrics visualization
(Sec. 5.2). Section 5.3 outlines activities that come before the code metric visualization,
i.e. structure and metrics data extraction from source code. Section 5.4 presents our new
solution for structure-and-member-metric visualization: the metric lens, which adapts
and extends the well-known table lens technique for software datasets (Sec. 5.4.1); and
the metric legend, which lets users both specify analyses interactively and interpret the
metric lens visualizations (Sec. 5.4.2) and outlines the implementation of our techniques
(Sec. 5.4.3). Section 5.5 presents case studies of our techniques in understanding a real-
world software system. Section 5.6 discusses our results. Finally, Section 5.7 concludes
the chapter.

5.2 Related work
In this chapter, we focus on a specific class of software: object-oriented (OO) code bases
written in an OO language, such as C++, Java, or C#. OO software is highly structured, a
favorable attribute in development, maintenance, and understanding in general. However,
OO software can also be highly complex, posing an increased burden on understanding,
due to the many types of relationships that can be created at code level, e.g. the many
flavors of data and type dependencies, and complex inheritance hierarchies. Although
several methods and tools exist for understanding this type of software, there are still
limitations in the provision of a high integration of data mining and data presentation
(visualization) capabilities, which limit their applicability.

The related work in the areas software architecture and software metrics visualiza-
tion is reviewed in Section 2.2. As already outlined there, the above methods can be
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improved in several directions. First, mapping software metrics to visual attributes of di-
agram nodes, such as size, color, texture, and shading, works well for metrics defined at
the level of an entire class (or component, for component-based diagrams) but does not
scale to the finer-grained level of method metrics. Adding metric icons to UML-based vi-
sualizations [107] has the advantage of using an accepted structural visualization (UML),
but cannot show method-level metrics.

Secondly, in all the systems we are aware of, the process of choosing and correlating
a subset of the several available metrics is quite difficult for non-experienced users. In
a typical reverse-engineering process, many metrics can be computed on hundreds of
methods of the classes of the same system, e.g. code complexity, coupling, cohesion, fan-
in, fan-out, and comment density. The question is: how to assist the user in the process of
specifying how to map these metrics to visual attributes in a given analysis scenario, such
that the visual correlation of the selected metrics is easy to do and supports the questions
at hand.

In the remainder of this chapter, we shall address the two goals mentioned above, i.e.
designing a scalable and understandable visualization of method-level metrics on UML
diagrams; and supporting the user task of visually choosing and correlating different such
metrics.

5.3 A software analytics pipeline
As outlined in the previous sections, our aim is to have an end-to-end solution that seam-
lessly combines data mining and visualization for object-oriented software systems, all
starting from the source code. Hence, we must consider several issues:

• how to extract metrics and structure from source code;

• how to visualize these in a scalable way;

• how to enable users specify the question they are interested in an easy, interactive
way.

Our proposed solution consists of a pipeline of operations, as outlined in Fig. 5.1.

Figure 5.1: Architecture of the metrics-and-structure visualization pipeline
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The pipeline is divided in two major components: data extraction and data visualiza-
tion. Hence, our proposal combines both data mining and data visualization in a single
solution. This is an exact instance of the so-called visual analytics process: combining
data processing and mining with interactive visual interfaces for the goal of analytical
reasoning about a given system [109, 121]. In this context, we call our approach software
analytics: the combination of structure-and-metrics data mining and visualization tech-
niques for understanding software maintainability, which explains the title of this section.

5.3.1 Structure and metrics data extraction

Our visualization target, in the terminology of [58], is a system model, consisting of a set
of UML class diagrams Di. For each class in such a diagram, we store its methods and
data members, as well as a number of different real-valued software metrics µ1, . . . ,µn,
each having a given value-range µi ∈ [mi,Mi] ⊂ R. This model fully complies with our
general data model discussed earlier in Sec. 3.2 and represented in Fig. 3.1.

Since all our input is the software source code of the system under study, we must
extract our UML model from this code. For the applications presented in this section, we
shall focus on code bases written in the C++ programming language [94]. However, we
note that the visualization techniques which form the subject of this chapter are directly
applicable to diagrams and metrics extracted from any object-oriented languages, once
one avails of the needed data extraction tools.

For the task of extracting structure from source code, we can use various tools, as
follows.

First, we can use the CCCC extractor [55]. CCCC is a so-called ligthweight extractor.
Lightweight extractors do not attempt to parse all constructs in the input source code,
but focus on the subset of these constructs which is relevant to the type of information
they aim to collect. As such, they are relatively simple and fast, as they do not have to
implement the full grammar of the language under analysis, nor do they have to perform
involved operations such as type checking and disambiguation. Code constructs which
are not understood in the input, either due to the extractor’s parsing limitations, or due
to inherent incorrect or incomplete code in the input, e.g. code with missing headers, are
skipped. The result emitted a lightweight parser is a partial partial abstract syntax tree
(AST) of the input code.

A second solution for the structure extraction from source code is to use a so-called
heavyweight extractor. In contrast to lightweight extractors, heavyweight ones attempt to
process all code constructs in the input and produce a complete AST. For heavily context-
dependent languages such as C++, this often involves also performing type checking (se-
mantic analysis) of the input, as several C++ constructs cannot be correctly parsed with-
out this information [67]. Several heavyweight extractors can be used for our task, e.g.
Columbus [29], SolidFX [104], and extractors constructed with the ANTLR parser gener-
ator [67] using the C++ grammar described in [120]. The advantage of such tools is that
they produce the entire AST of the input code, thereby allowing the extraction of many
more types of code relationships than lightweight parsers, e.g. declaration-definition re-
lations, variable or function use-definition relations, or template information. Depending
on the aspects we want to capture in our UML diagrams, such relations may be necessary.
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A second advantage of heavyweight parsers is that they can correctly handle the extrac-
tion of relations in complex code, e.g. declaration-definition relations that depend on the
complex lookup rules of the C++ language, which in turn require semantic analysis. The
disadvantage of heavyweight extractors is that they are usually significantly slower than
lightweight ones and require a more complex set-up phase. For example, an ANTLR-
based parser for C++ is up to 5 times faster than SOLIDFX, but produces less detailed
information, e.g. will skip the code in a class or method declaration after a parse error up
to the end of the enclosing scope. SOLIDFX is much more robust, but slower. A detailed
discussion of the relative advantages and disadvantages of heavyweight and lightweight
extractors for C++ can be found in [44].

After the basic classes and class-relationships are extracted from the source code, we
must specify how to group classes and relationships into diagrams. As outlined in Chap-
ter 1, each diagram in a UML model typically captures a different concern, aspect, or
subsystem of a given design. However, such information is, in most cases, not explicitly
present in the source code, so we have to add it back when extracting the diagrams. The
solution we used here was for the user to manually specify a division of the analyzed
code base into subsystems by assigning source files to each subsystem. Next, one UML
diagram for each subsystem is automatically created, containing the classes in that sub-
system’s files. Alternative methods could be used, e.g. automatic class-to-diagram and
relation-to-diagram assignment, in those cases when (meta-)information is available to
this end.

The second step of the data extraction from source code concerns the computation
of software metrics. We can compute code quality metrics both on the level of classes
and class methods. Class metrics include the typical number-of-methods, number-of-
bases, inheritance-depth, and number-of-overriden-methods [51]. Method metrics include
the lines-of-code (LOC), lines-of-comment-code (COM), and McCabe’s cyclomatic com-
plexity (MVG) metrics, among others. In the following, we shall focus on the method-
level metrics, since it is for these that we provide our novel visualizations (Sections 5.4.1
and 5.4.2).

For metrics calculation, we used the Understand software analysis tool [82], which can
compute all the method-level metrics mentioned above efficiently and reliably on large
C++ code bases. The extracted metrics are saved in a XML-based database, where each
row corresponds to a class or method, and each column to a particular metric. Depending
on the completeness of the extraction process, the values of several software metrics can
miss for specific methods. We will have to accommodate these missing values in our
metric visualization (Section 5.4.1).

Separating the structure and metric extraction processes allows us to easily upgrage
our metrics collection by adding new parsers, rather than attempt to achieve everything
within a single tool. This massively reduces development effort. Overall, we adopt here
a pragmatic approach, similar to [8]: we use a combination of existing tools, whenever
available, to extract and combine the complementary information needed for our final
analysis.

After extracting the UML model and method-level metrics, this information is next
fed to the visualization step of our software analytics pipeline. This step, and the two
novel techniques it introduces, are described next.
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5.4 Visualization Design
Our combined structure-and-metrics visualization design revolves around two views: the
metric lens and the metric legend. The views are tightly coupled, as shown in Figure
5.2. The metric lens combines a classical UML viewer with a visualization of method-
level metrics using an enhanced version of the well-known table-lens technique [77]. The
metric legend has the double role of allowing users to specify which metrics, value ranges,
and visualization metaphors to use in the creation of the metric lens view, and of acting
as a legend for the displayed metrics in this view.

As mentioned in Sec. 5.1, the goals of our two-view solution are:

• specify and show several method-level metrics simultaneously

• correlate and compare several metrics

• easily spot outlier metric values

• emphasize metric values in a specific range

The following sections describe how these goals are met by our two-view solution, i.e.
the metric lens (Sec. 5.4.1) and the metric legend (Sec. 5.4.2).

Figure 5.2: Stucture-and-metrics visualization design: metric legend (left) and metric
lend (right)

5.4.1 Metric lens visualization
The basis of the metric lens technique is a traditional UML class diagram, which displays
all data members within each class frame (see Fig. 5.3). Atop of this image, we display
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metrics following a table model, where the rows are methods meti and columns are metrics
M j. Each table cell shows one metric value using different icons. Missing metric values
(Sec. 5.3.1) have no icon. All metric tables of all displayed classes can be sorted on
various criteria, such as the method names or metric values, enabling different types of
analyses, as discussed next in Section 5.5. The metric icon table can be placed within the
class frames (Fig. 5.3 a,b), which yields a compact layout but does not let users read the
method names, or on the right side of the class frames (Fig. 5.3 c), which does not occlude
the displayed method names but yields a less compact layout.

Figure 5.3: Metric layout options (actual snapshots)

Each metric value in a table cell is shown using a metric icon. We first used here the
same design as in [107], i.e. a number of general-purpose icons such as 2D and 3D bars,
pie charts, and cylinders, scaled by the metric values. However, this design does not scale
well, since a UML diagram can easily have a few hundred methods, several tens per class,
and each such method can have several metrics. In such a case, the actual screen space
that we can dedicate to display one metric icon can be very small, e.g. under 10 pixels.

To address this problem, we use a modified version of the table-lens technique [77].
We start by rendering each table cell as a horizontal bar, scaled and/or colored by its metric
value. The actual value-to-color or value-to-size mapping is controlled by the metric lens
widget, described next in Section 5.4.2. Along with this, we provide two independent
zoom mechanisms:

• diagram-level: this zooms the entire diagram, i.e. both the UML layout and the
metrics and method names of each class;

• class-level: this zooms only the contents of each class (metrics and method names)
but keeps the UML layout fixed.

The two zoom modes serve different purposes. Diagram zooming allows users to fo-
cus on a specific subsystem, i.e. displays a subset of the entire diagram at high resolution,
so one can read the actual method names shown within the displayed classes. Class-level
zooming, in combination with class contents sorting, allows users to smoothly navigate
between seeing the the entire contents of each class, as a set of colored bar graphs (when
zoomed out), and seeing the individual signatures and names of methods and members
(when zoomed in). When the class-level zoom level is low and the class frame size can-
not accomodate all methods and metric icons, we display a scrollbar at the right of each
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class and allow users to scroll through its contents (see Fig. 5.2 right). We also imple-
mented two enhancements as compared to the original table-lens method [77]: First, we
modulate the methods’ text opacity by the class zoom level, so that class-zooming effec-
tively smoothly interpolates between a traditional text-based diagram view and a set of
bar graphs. Second, we render each metric bar using a vertical gradient-shaded (dark to
bright) texture (see Figure 5.2 right). This creates a subtle contrast that visually separates
the extents of each method when the class contents are zoomed out and the text is not
visible, thereby allowing one to better distinguish the individual metric icons.

5.4.2 Metric legend

When visualizing several different metrics over large UML diagrams, inferring the exact
metric values from the sizes and/or colors of the metric bars can be very hard. Moreover,
additional questions remain: How to visually compare metrics which are defined over
totally different value ranges, such as e.g. coupling and lines-of-code; and how to specify
which metrics to compare in a given scenario from the potentially large available set of
metrics produced in the extraction phase? (Section 5.3.1)

We address these goals using a new visualization: the metric legend widget. This
widget has two roles. First, its lets users interactively control which metrics from the data
model are mapped to the icons of the metric lens, and how (Section 5.4.1). Second, it acts
like a legend for interpreting the icons in the metric lens visualization.

Basic design

The metric legend has a compact tabular structure (see Figure 5.2 left for a schematic
overview and Figure 5.4 from an actual screen snapshot). Each metric µi of the data
model generated by the metric extraction phase occupies a row in the widget. For each
such metric, a checkbox in the legend shows whether it is visible, i.e. shown with colored
bars in the metric lens, or not; the metric’s name, e.g. M1 . . . M7 in Figures 5.2 left
and 5.4; and the metric’s actual and visible ranges. To explain the latter two, consider
a metric having values in the range [mi,Mi] ⊂ R. The right part of the metric legend
in Figure 5.4 displays the ranges [mi,Mi] of all metrics µi as colored bars, scaled and
translated so that we can compare them visually. For example, we see that the maximal
values of M3 and M4 are the largest among all available metrics, and that the range of M5
is contained in the range of M6.

The bar colors indicate how each metric is shown in the table lens, as follows. Gray
denotes metrics that are not shown in the table lens, e.g. M3 and M7. A flat, uniform,
color indicates that the bar-icons of that metric in the metric lens are simply drawn in that
color. This mode is useful when we want to encode metric values in the bar sizes, and
metric identities in the bar colors, e.g. M1,M2,M5 and M6 in Figure 5.4. A blue-to-red
(rainbow) colormap indicates that the respective metric is hue-mapped in the metric lens
using colors from blue (indicating the minimum mi) to red (indicating the maximum Mi),
e.g. M4. Other colormap choices are, of course, possible. Clicking on the legend widget
allows changing the color mapping from flat to rainbow.
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Figure 5.4: Metric legend (actual tool snapshot)

Selecting visible metric ranges

In most cases, software metric values are not uniformly spread over their actual ranges
[mi,Mi]. Values may be concentrated in, say, the lower range half, with only a few spuri-
ous values in the upper half. In such a case, we do not actually want to visualize the entire
actual range [mi,Mi] of that metric, but only the lower half, where the most values are.
The metric legend supports this by specifying a so-called visible range for each metric,
i.e. an interval [vi,Vi]⊂ [mi,Mi]. Users can specify the visible range by dragging two slid-
ers (show as small black triangles in Figure 5.4) over the range bar of the desired metric in
the metric legend. Values outside the visible range [vi,Vi] are clamped to vi (if lower) and
respectively Vi, if higher. This effectively lets users focus the metric visualization over a
desired subrange of values, with direct applications, as shown later in Section 5.5.

As mentioned above, one of our goals was to create compact visualizations. As such,
the metric legend can contain many different metrics, each with a different visible range.
We noticed, during actual use of the widget, that visually comparing the different ranges
in this widget by comparing the positions of the small triangular sliders is quite hard. To
enhance the perception and support the visible comparison, we show visible ranges by
blending a half-translucent shaded texture, dark at the margins and bright in the center,
atop of the colored range bar, between the two sliders. This emphasizes that part of the
actual range which is visualized, without obscuring the color map drawn in the bar. For
example, in Fig. 5.4 we see that the visible range [vi,Vi] for metric M6 is approximately
the lower half of its actual range [mi,Mi], by comparing the sizes and positions of the
respective shaded textures.

We construct these shaded textures as follows (see also Figure 5.5). First, we build a
parabolic luminance texture dark at the borders and bright in the center, similar to the so-
called structure cushions used by [56], and multiply the actual color-mapped metric with
it. This effectively darkens the metric’s color at the borders and keeps it unchanged in the
center. Next, we blend the result with a white rectangle, textured with a Gaussian-shaped
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transparency texture opaque in the center and transparent at the borders. The final result
shows a metric bar with specular-like highlight in the center, and dark at tbe borders.
Using textures to mark subranges atop of an existing visualization is more effective, and
visually less disturbing, than using for example line markers, as shown in [56], among
other applications. Note, finally, that the visible ranges can be both smaller, but also
larger, than the actual ranges. M1 and M2 in Fig. 5.4 are an example of the latter.

Figure 5.5: Texture design for the metric legend

Grouping metrics

In practice, different software metrics may have completely unrelated meanings and ranges.
For example, it may not make sense to compare a lines-of-code metric with a safety
metric. Conversely, there are cases when we do want to compare two logically related
metrics, e.g. lines-of-code and lines-of-comments. We support both scenarios allowing
related metrics to be grouped. Grouped metrics are marked by being surrounded by a
black frame and a superimposed translucent gray cushion, both in the metric legend and
the metric lens, see for example M1 and M2 in Fig. 5.2 left and right, respectively. Several
groups can exist in a single visualization, the meaning thereof being that the user should
compare the ranges and values of only those metrics located in the same group.

All in all, the metric legend is a compact way for both specifying and understanding
the metric lens values in the UML diagram view. A typical usage scenario for the two
widgets would proceed as follows. First, one selects which metrics to visualize from
a potentially large precomputed set, by enabling their checkboxes in the metric legend.
Second, those metrics which are related, from the perspective of the analysis at hand, are
grouped in the metric legend. Third, the visual ranges of the selected metrics are adjusted,
e.g. to focus the analysis on a specific sub-range where most values of interest lie. Finally,
the resulting metric lens visualization is examined to discover important metric-metric
and metric-structure correlations, by looking at the metric icon colors and bar lengths to
spot value outliers, distributions of metric values within each class, and distributions of
values across different classes. Tooltips in both the metric lens and legend indicate the
actual metric values under the mouse. Colors in the metric lens are interpreted by using
the metric legend.



i
i

“thesis” — 2009/4/22 — 14:06 — page 88 — #93 i
i

i
i

i
i

88 CHAPTER 5. METHOD-LEVEL METRICS

5.4.3 Implementation details
We implemented the metric lens-and-legend combination described so far in a fully inte-
grated reverse-engineering tool aimed at C++ code bases. As outlined in Section 5.3, the
metrics-and-structure data mining is done using third-party C++ parsers. The metric lens
and metric legend visualizations described in Section 5.4.1 and 5.4.2 are implemented
using OpenGL. Specifically, the metric lens technique is used to draw the visible metrics
atop of each class icon, scaled and colored as indicated by the metric legend.

Since we extract UML diagrams directly from source code, we must also provide a
layout engine for them. As a basic layout engine, we use GraphViz’s dot engine[5], which
works well on connected directed acyclic graphs (DAGs), such as delivered by classes
and their inheritance relationships. dot works best for moderate graph sizes, e.g. under
a hundred nodes. This matches well the size of a typical UML diagram. Before running
dot, we first compute the class frame heights based on the number of their public class
members, and class frame widths, based on the method signature lengths. Class member
signatures are available from the architecture extraction phase (Section 5.3.1). Next, we
lay out the diagrams using dot, considering only the inheritance relations. Finally, we
draw the resulting graphs, adding the association relations too. This delivers a quick, but
robust, layout method, with predictable results. If desired, more sophisticated layouts can
be substituted, e.g. as provided by the GDT [32, 21], SUGIBIB [25, 26], Tom Sawyer
Software [111], or VCG [52] tools, at the expense of a more complex implementation.

Additionally, we visualize other architectural aspects using the areas-of-interest (AOI)
visualization technique (Chapter 3). Sets of classes in a diagram which constitute an
aspect, e.g. all classes involved in a given design pattern or functionality, are drawn
surrounded by the AOI contour (see e.g. Figure 5.6).

5.5 Case study
To assess the effectiveness of our proposed combined lens-and-legend metrics visualiza-
tion, we conducted a case study. The study’s goal was to get an understanding of the
modularity and maintainability of a given C++ code base containing more than 15000
lines of code. The system, a UML editor, has been developed by several individuals over
a period of four years. The editor has been developed using the MetricView tool [107] as
a basis and contains all the functionality described in Chapters 3, 5 and 6. The current
developer, involved in the last few development years, has mentioned the existence of
several maintenance and evolution problems, related to the use of different coding styles,
badly documented parts, and undocumented dependencies between the various classes in
this system.

Our study’s main question was: Would a outside person (the investigator), who is
not involved in the system’s development but is experienced in C++ development and
reverse-engineering in general, be able to use our visual software analytics tool for a short
period of time, and derive insight regarding the maintenance problems of the system under
scrutiny, which would be confirmed by the current system developer?

To answer this question, a UML model, several software metrics, and areas-of-interest
denoting smaller subsystems, were first extracted from the code base by the current devel-
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oper, as described in Section 5.3.1. As relations, we consider inheritance and association,
the latter being further specialized to data object usage and function call (that is, an entity
A is associated to an entity B if it uses a data object from within B or calls a function or
method from within B). Containment relations, such as functions and data members in
classes, are also extracted. These form the basis of the UML class icon construction in
the visualization.

We did not involve the investigator in this task, so that additional insight derived
during the setup of the extraction phase should not bias the actual visualization evalu-
ation. The investigator was then given access to the lens-and-legend visualization, and
told which metrics were available in the database, as well as given a very brief (under 10
minutes) description of the functional aspects captured in each UML diagram. The inves-
tigator next performed three types of analyses: a complexity assessment (Section 5.5.1),
a change propagation analysis (Section 5.5.2), and a code-level documentation review
(Section 5.5.3). All analyses took under two hours, and involved chiefly the usage of our
visualization tool. The actual C++ source code of the analyzed system was investigated
only for about 10-15 minutes, to check some hypotheses which were not evident from the
visualization alone. Finally, the investigator reported and cross-checked his findings in a
discussion with the current developer.

The analyses performed in this case study are described next.

5.5.1 Complexity Assesment

In this first analysis, we aim to understand how complexity is spread over the system’s
structure, in search for so-called complexity hot-spots, i.e. parts of the system which may
prove hard to understand or maintain.

Figure 5.6 shows one of the extracted UML diagrams displaying three areas-of-interest
for three subsystems: UML Data Model, Visualization Data Model and Visualization
Core (implementation). As relevant metrics for the complexity analysis, the lines-of-code
(LOC) and McCabe’s cyclomatic complexity (MV G) of each method were chosen, using
the metric legend widget (shown lower-right in the same figure). The LOC metric is vi-
sualized using rainbow-colormapped constant-size bars (the left bar-graph in the classes
in Figure 5.6). The MV G metric is visualized with purple bars scaled to the metric value
(the right bar-graph in the classes in Figure 5.6). Next, the metric lens display was sorted
decreasingly on LOC (from top to bottom of the class icons), and also the visible ranges of
LOC and MV G were set to 50 and 10, respectively. This enables one to quickly discover
methods larger than 50 LOC and/or having a complexity above 10, which are figures that
was considered by the user to indicate a ”complex” method, simply by looking for red,
respectively long purple, bars in Figure 5.6).

Looking at Figure 5.6, we quickly see that the most complex and large classes (by both
number-of-methods and methods LOC) belong to the visualization subsystem. Although
there is no strict correlation between complexity and size, we still see that the Data Model
classes are quite small and of low complexity. Brushing the method names with the
mouse, we see indeed that most of them are get() and set() data-accessors, which are
indeed simple and short. We conclude that the Data Model subsystem is relatively simple
and easy to maintain.
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Figure 5.6: Complexity assessment of a UML diagram with three subsystems.

In contrast, the Visualization Core subsystem contains quite large classes, having quite
large methods (warm colors in left bar braph), and also the largest and most complex
classes (marked A in Figure 5.6). This subsystem concentrates likely the highest com-
plexity. Finally, the Visualization Data Model subsystem contains quite small and low-to-
medium complexity classes (e.g. the two marked B in Figure 5.6).

Overall, the conclusion is that complexity (and size) are not uniformly spread over the
system architecture. The Visualization subsystem contains the largest and most complex
classes, while the other two subsystems contain relatively simpler and smaller classes,
with only a very few moderately large and complex classes, too. As such, maintenance
(and development) effort seem clearly to be focused on the Visualization subsystem.

5.5.2 Change Propagation Resilience

In the second analysis, we would like to assess if our system is resilient to changes. In
other words: would a change in the code of a class trigger lots of changes in other classes,
due to data-dependencies? Spotting such situations is essential to assess the maintainabil-
ity of a system, as many cascading changes indicate a hard-to-maintain system.

We use the same UML diagram as for the complexity assessment, but now consider the
number of variables read (INPUT S), respectively written (OUT PUT S), by each method.
Metrics are sorted in decreasing order of INPUT S, and visualized with scaled bars, blue
for INPUT S and purple for OUT PUT S. Both ranges of INPUT S and OUT PUT S are
set to the same value, since the metrics have the same dimensionality. The resulting
visualization is shown in Figure 5.7.

We quickly see that there is no evident correlation between INPUT S and OUT PUT S
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Figure 5.7: Change propagation analysis.

values, but also discover some interesting outliers. The class marked A reads and writes
a lot. This class, called UMLModelVisualizer, is responsible for the rendering, or visu-
alizing, of UML model elements. Following the UML diagram, we discover it inherits
indirectly from a Visitor interface (shown marked in red in Figure 5.7). Looking at the
method signatures in class A, we understand that it accepts objects of UML Data Model
types through its Visitor interface. A quick code browse of this class shows that the high
read and write metrics are actually due to the Visitor pattern implementation. Since this is
a clean design pattern, it was assessed that the strong dependency of UMLModelVisualizer
from the Data Model subsystem is a safe, acceptable one.

Another outlier class, marked B in Figure 5.7, reads a lot of data (high INPUT S
metrics on most of its methods). Looking at its association relations (arrows on the UML
diagram), we discover that this class has a single relation, which is actually an arrow
(read) pointing to the std::pair class, which belongs to the Standard Template Library
(STL) C++ library. Since STL can be considered as a very stable component, whose
interfaces should only rarely change (if ever), we conclude that our class B is also resilient
to change.

Now, we add to the LOC metric to our analysis, to discover whether read or write-
intensive methods are also large ones. Such a case would be undesirable, since it would
imply that methods that ’couple’ their class with other classes, by reading or writing
data, are also intricate methods, which are difficult to change when adding or removing a
data dependency. Ideally, the methods that couple different classes should be simple, so
modifying the data dependencies should cause only limited code modifications.

Figure 5.8 shows a zoom-in on the same UML diagram as in Figures 5.6 and 5.7,
this time showing the INPUT and OUT PUT metrics grouped (since we want to visu-
ally compare them on the same scale), drawn with scaled blue and purple bars respec-
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Figure 5.8: Correlation of number of reads and writes and method sizes

tively, and the LOC metric drawn with scaled, rainbow-colored bars. The grouping of the
INPUT and OUT PUT metrics is visible in the shaded texture covering the left and mid-
dle metric-lens columns displayed within the classes. The third metric, LOC, drawn as
the rightmost column in the metric lens, is not contained under this texture, meaning that
it is not grouped with the former two. If we now look at the same Visitor implementation
class A, which was identified as having the largest number of reads and writes connecting
it to other classes, we see that it writes more data than reads (OUT PUT metric larger than
the INPUT metric for most methods). Additionally, we see that methods writing the most
are also its largest methods - the OUT PUT metric is high when the LOC metric is also
high. Given the purpose of this class, it is expected that these are the methods where the
core of the UML rendering activity is concentrated. A detailed code investigation showed
that this is indeed the case.

Overall, the relatively low values of the INPUT and OUT PUT metrics indicate that
code changes due to data access changes should not be large, so the system should not re-
quire a lot of recoding in the case its architects decide to change the way data is accessed.
The largest number of data accesses occur in the Visitor implementation (class A). How-
ever, as we can also see on the diagrams, this class is actually connected with only another
class, namely its superclass, via inheritance. Hence, all its data accesses, albeit numerous,
are localized: they go to the superclass, probably as a part of implementing the Visitor
interface. This is a good sign: if this class ever needs to be changed due to data access
changes, its changes are limited to its interaction with its superclass.

5.5.3 Code-Level Documentation Review

In our third study, we would like to assess which parts of the code are well commented
(or not), and in particular how this happens for the largest methods. Having a few uncom-
mented system components is not critical for maintenance, but having a system where the
most complex or tightly-connected components are poorly commented is a typical sign of
unmaintainable code.
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Figure 5.9: Code-level documentation review

For variation, we consider here another diagram which represents the Graphical User
Interface (GUI) of the system and the visualization part related to GUI. We display the
LOC and comment-lines (COM) metrics, sorted in decreasing order of COM, using red,
respectively blue scaled bars (Figure 5.9). This emphasizes the best commented parts.
Using the metric legend, the visible maximal values of COM and LOC are set to be in a
ratio of 1 to 7. This means that equal-length metric bars in the visualization will indicate
methods having one comment-line (or more) per 7 code-lines, which was considered to
be a good comment-to-code ratio.

Looking at Figure 5.9, we see that in most cases there are no blue bars of equal length
to the red bars, indicating that most methods are not well commented. However, for the
largest methods, such as those at the top of the classes marked with A, this situation is
better: here the blue and red bars are roughly equal, indicating a good comment-to-code
ratio. We also discover a class (marked B) which has quite many methods, and contains
one of the largest methods (red bar at top) with very little comments. Overall, this seems
to be one of the weakest classes from a documentation perspective: it has many methods,
some of which are large, and those are badly commented. Moreover, this class is also
connected with several other classes: it inherits from a STL container (shown by the bold
arrow connecting it with the small class eight from left on the top row in the figure),
but also has 12 other associations with 12 other classes (shown by the light gray lines
connected to this class). We have here, thus, a quite large class, with many methods and
connections to other classes, but which is badly commented. This is a good candidate for
adding documentation.

5.6 Discussion
During the validation phase, the developer confirmed the observations made, and conclu-
sions drawn, by the investigator. Besides confirmation, he also exposed the reasons for
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which the various outliers detected by the visualizations, e.g. large classes concentrat-
ing high complexity; large and well-documented classes; and classes tightly coupled in
various design patterns, occured in the design. The Data Model and Visitor pattern parts
are cleaner than the Visualization Core part, that includes the largest and most complex
classes, which are currently in an unstable state and contain mostly highly experimen-
tal code. Overall, the considered system can be quite clearly split into a stable, clean,
maintainable ’legacy’ part, and a lower-quality, complex part containing code still un-
der development. Of course, these reasons could not have been deduced solely by using
the visualization and without some understanding of the functionality of the system under
study. However, we argue that our study succeeded in the sense that a programmer with no
knowledge of the studied system could locate quite reliably a number of design patterns
and maintenance-related bottlenecks in the system structure, using chiefly the proposed
visualization, in a very short time.

The typical operations involved in setting up analysis scenarios with our proposed
techniques are quite simple: select a number of metrics of interest; tune the visible ranges
to reflect ratios or maxima that one wants to check (or one expects) in the code base; and
sort on the different metrics to see metric distributions and detect their correlations over
all methods. Overall, constructing visualizations like the ones presented here can be truly
done with just a few clicks in the metric legend. This assists users to actively explore
large systems with many diagrams and metrics, by massively diminishing the amount of
time needed to check a correlation or distribution of some metrics over some subsystem.

Combining the metric icons with the subsystem partitioning rendered as areas-of-
interest (AOIs) effectively helped us understanding the relations between metrics and
structure at a finer level than diagrams themselves. As such, the typical analysis scenario
observed was: loading several UML diagrams, toggling through their visualizations, then
concentrating on a particular metric or metric-structure pattern, possibly in conjunction
with a given AOI, and finaly zooming in at class-level (Sec. 5.4.1) to read the methods’
names.

A recurring question is how our proposed techniques compare to related work in vi-
sualizing structure and metrics, e.g. in the CodeCrawler, sv3D, and CodeCity systems
discussed in Chapter 2. We see several differences, as follows.

First and foremost, our underlying visualization uses a UML diagram layout and look-
and-feel, in line with our first requirement stated in Chapter 1. Although other visualiza-
tions, such as the ones named above, can produce more compact layouts and thereby are
visually more scalable, our observation is that UML diagrams are easier perceived and
understood, and thus more accepted, by typical software engineers.

Secondly, the way we add method-level metrics to our UML diagrams is different. In
the above systems, methods are rendered as separate geometric entities, e.g. squares or 3D
bars, and method-level metrics (when visualized), are mapped to geometric attributes of
these entities, such as width or height. This creates treemap-like visualizations, in which
methods are sorted in a two-dimensional layout. These have a different flavor and pose
different interpretation challenges as compared to our table lens visualizations, where
methods are sorted in a one-dimensional layout (the table). Showing several metrics in the
above visualizations means mapping them to different visual attributes, such as size and
color. In contrast, we map metrics strictly to the table lens icons, which are all rendered
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in the same way, and not change the layout or size of the methods themselves, which are
rendered as text in the classical UML diagram style. Given our uniform visual mapping of
metrics to the same type (and size) of metric icons over an entire UML diagram, we argue
that metric-metric comparisons are easier to achieve in our case. Additionally, the diagram
layout is always fixed in our case, whereas the other named methods typically change the
layout to accommodate variations in the method icon sizes given by the metric-to-size
mapping. Layout changes are well-known to be disruptive, especially when users have
learnt a given system and expect to find the same entity in the same place, and having the
same size, on a given diagram.

A third difference resides in the use of the third dimension. The sv3D and CodeCity
systems discussed in Chapter 2 use icon height to map one metric value. Although this
lets users quickly spot maximal outliers as high icons, this also brings several well-known
undesired aspects of 3D software visualizations, such as occlusion and the difficulty to
choose a good view point.

Finally, we provide explicit support in constructing (and interpreting) visualizations
that target specific questions, by the functionality of the metric legend widget. As far
as we are aware of, the other named visualizations do provide options to customize the
visualization in terms of configuration scripts or similar mechanisms, but do not encode
these explicitly and compactly in a visual interactive representation. As such, we argue
that our method better supports the quick design visualization that answer questions posed
on-the-fly during system understanding, with a minimal amount of learning. The fact that
both our table lens and metric legend are two-dimensional, tabular, visualizations makes
their visual correlation easier than, for example, in the case one would like to add a similar
metric legend widget to software visualizations which encode metrics in a different way
and lay out metric icons differently.

Our focus here is on visualizing the combined structure and metric data, and not on
extracting it. However, the presented metrics-and-structure visualization can be quite eas-
ily integrated with other reverse-engineering pipelines involving different code analyzers
for C++ and/or other object-oriented languages, e.g. Java or C#.

Finally, a word on visual scalability. By controlling the diagram creation, we limit the
number of elements per diagram and allow for several diagrams, hence making the layout
of a single diagram scalable. The display of several tens (or more) of methods per class is
highly scalable, given the underlying table lens technique (Section 5.4.1). The strongest
scalability limitation regards the number of metrics that can be shown in the same time
on a class. In our experiments, we saw that displaying more than three different metrics
per method on even a part of a diagram makes the result overcrowded and hard to read
(see e.g. Figure 5.10). Increasing the class frame widths alleviates this problem, but can
produce too wide diagrams which are unnatural or occupy too much space. However,
it can be argued that this is not a major problem for the typical use cases of correlating
metrics with structure in examining software system diagrams. True, in such scenarios,
one may need to examine many metrics, but we are not aware of typical scenarios in
which the number of metrics that are to be examined simultaneously in a single scenario
would exceed a few (2..4).
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Figure 5.10: Class frames with five metrics

5.7 Conclusion
In this chapter, we have presented a technique to support visual analyses related to member-
level metrics on software diagrams. The method constitutes of two parts: a metric lens,
which is essentially a table lens, adds metric information within the typically limited space
of a diagram element; metric widget helps both in tghe specification and interpretation of
the metric lens visualizations. Overall, the presented techniques work well for tasks such
as spotting metric distribution and metric value outliers and help in the task of correlat-
ing such outliers among themselves and with the system structure. These tasks are basic
ingredients of more complex activities in software understanding involving architectures
and metrics. Concerning the visual design, a desirable fact is that we allow a certain
scalability of the visualization without having to change the layout of a given diagram.
However, this constraint also ultimately limits the method’s scalability to approximately
three metrics per element for typical layouts of UML class diagrams.
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Chapter 6

AOI-level metrics

In this chapter, we present a new method for the combined visualization of software ar-
chitecture diagrams, such as UML class diagrams or component diagrams, and software
metrics defined on groups of diagram elements. To this end, we extend the rendering
technique for areas of interest presented in Chapter 3 to visualize several metrics, possi-
bly having missing values, defined on overlapping areas of interest. We use a solution that
combines color mapping, texturing, blending, and smooth scattered-data point interpola-
tion. The presented method simplifies the task of visually correlating the distribution and
outlier values of a multivariate metric dataset with a system’s structure. We demonstrate
the application of our method on component and class diagrams.

6.1 Introduction

As outlined in Chapter 2, software metrics can be defined on software architecture dia-
grams at several levels of detail. For object-oriented systems, these levels are class mem-
ber, class, and group of classes. In Chapter 5, we have presented a method that uses a
modified table lens metaphor to visualize member-level metrics on UML diagrams. The
visualization of class-level metrics on UML diagrams is covered by previous work, no-
tably [107, 48]. These visualizations aim at enabling the users to correlate metrics with
each other and with the system architecture, and therefore require effective ways to com-
bine the presentation of several metrics and the architecture in a single picture.

In this chapter, we consider the last type of metrics, which are defined on groups of
software components (e.g. classes), also called areas of interest (AOIs). We extend the
technique for rendering AOIs (Chapter 3) by using color mapping, blending and texturing
to render several metrics, defined as a multivariate dataset with potentially missing values,
atop of such areas, so that users can spot metric-metric and metric-area correlations. Our
technique removes the need of drawing metric icons atop of the diagram elements, as it
is done by related visualization techniques [107, 48]. Hence, we can use the space within
the diagram elements to show other information, such as class member metrics, using the
metric lens technique (Chapter 5), or text annotations.

97
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This chapter is structured as follows. Section 6.2 details the analysis tasks and the
related visualization requirements and challenges for AOI-level metrics. Section 6.3
presents our new technique for rendering several metrics atop of AOIs. Section 6.4
presents case studies of using our new rendering technique on UML and component di-
agrams. Section 6.5 discusses the obtained results (Sec. 6.5.1) and using different color
schemes for visualizing metric values (Sec. 6.5.2). Section 6.6 concludes the paper.

6.2 Visualization requirements
Let us first introduce the data model for our AOI-metrics visualization. This data model
extends the data model presented in Section 3.2 by adding area-level metric information.

Consider a system diagram with n areas of interest A1 . . . An defined over its elements,
where ei j, j ∈ [1, |Ai|] are the elements in area Ai and |Ai| is the number of elements in area
i. For each Ai, we have a metric mi : [1, |Ai|]→ R∪None defined over its elements. mi j,
the value of mi on e j, can have either a numerical value, or None, if that value is missing.
Missing metric values are frequent in software analysis, e.g. due to various limitations of
the analysis tools [123]. If desired, several metrics mk

i , k > 1 can be defined over a given
area of interest Ai, in the same way as above. In the following, we shall consider only one
metric per area of interest, for the sake of exposition simplicity.

AOI-level metrics occur in many software analysis applications when

• a given software metric is defined only over a subset of the elements of a given
diagram;

• these elements share some common property, or aspect.

For example, imagine a software system diagram in which a subset of the elements
are involved in multithreading and another, possibly overlapping, subset in involved in
performance-critical operations (a similar concrete example will be presented later in Sec-
tion 6.4.1). First, if we want to visualize the elements involved in the two system aspects,
we could define two areas of interest Athread and Aper f and render them as described in
Chapter 3. Now assume that we compute two metrics on the elements involved in the
above areas, namely msa f ety that gives a safety measure of all multithreaded elements
in Athread and mspeed that gives the speed of all performance-critical elements in Aper f ,
respectively.

The question is, now, how to support tasks such as correlating values of these metrics
with the AOIs and the overall system structure. This implies being able to perform several
subtasks, such as:

• correlate the elements with the AOIs and overall system structure,

• correlate the elements with their AOI-level metric values,

• correlate several AOI-level metrics among themselves.

The first subtask is already addressed by the AOI visualization method presented in
Chapter 3, which draws AOIs atop of a given system diagram, and enables users to tell
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which elements are in a given AOI and also which AOIs contain a given element, e.g.
which are all multithreaded elements and whether a given element is multithreaded and/or
performance-critical, in our example.

The next two subtasks relate to the question of how to show the AOI-level metrics. Let
us discuss this aspect in more detail. The set of metrics mi defined over all areas Ai in a
given diagram could be seen as a multivariate scattered-point dataset [90], with elements
j as data points and the metric values i as variables. Hence, if we view the metrics from
an element-centric position, that is from the perspective of each element j, we could say
that our task is nothing more than showing a set of metric values mi j at a given element
j. We could approach this problem in the same way as we solved the task of visualizing
method-level metrics, i.e. using a table lens with i values mi j rendered atop of element
j (Chapter 5), or alternatively using metric icons rendered atop of the same element j as
described in [107, 48]. This solution would allow the comparison of all metric values for
a given element. However, there are several drawbacks.

Consider, for example, the method of Termeer et al. that shows element metrics using
icons scaled and colored by metric values, drawn atop of the elements [107]. Although
quite intuitive, this approach has several drawbacks. Let us examine a diagram with five
metrics defined over five areas of interest (Figure 6.6), visualized with metric icons. First,
we see that icon sizes are constrained by the element sizes, which can be quite small, since
one of our main requirements mentioned in Chapter 1 was that the layout of a diagram,
including the sizes of its elements, should be fully at the discretion of the user. If elements
are small, it is hard to see specific metric values, since their icons will be also quite small.
Second, we want to keep the element surfaces free to draw other data, such as method
names and annotations. Hence, we cannot draw area-level metrics within the elements.
Third, correlating metrics with areas of interest, e.g. seeing how metric values change
over one or several areas, is difficult, since there is no explicit visual correspondence
(mapping) from metrics, rendered within elements with icons, to areas, rendered outside
elements with textured contours (Chapter 3). In other words, we want to present the AOI-
level metrics from an area-centric, rather then element-centric, perspective, i.e. emphasize
the relationship between these metrics and the areas they are defined on. Similar problems
arise when using the table lens technique. A second example of these types of problems
is presented later in Section 6.4.1.

There is a related problem related to the possible use of icons or table lens techniques
to show AOI-level metrics. if we want to visualize both AOI-level and class-level or
member-level metrics on the same diagram, we cannot use icons or the table lens tech-
nique for AOI-level metrics , since the space within the elements is already occupied by
icons showing the latter two metrics.

Considering the above, the specific refined requirements for an AOI-level metric vi-
sualization are as follows:

• visualize AOI-level metrics so that metric-metric and metric-AOI correlations are
easy to perform,

• keep the space within the elements free for visualizing class-level or method-level
metrics.
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Besides these requirements specific to our current goal of showing AOI-level metrics,
we want also to satisfy the overall requirements of UML-like aspect, understandability
and scalability introduced in Section 1.5.

6.3 Texture-based solution
If we summarize the requirements of AOI-level metric visualization discussed in Sec-
tion 6.2, we state that we want to show all metric values for all areas in one image, so
that

• we can compare the metric values of each element,

• we can visually follow how a metric varies over an area,

• we see the elements having missing values,

• we do not draw metrics on the elements themselves.

The AOI drawing method, presented in Sec. 3.6.2, constructs a contour that encloses
the elements located in an area of interest (see e.g. Figure 3.21). We show next how to
render several metrics so that metric values, elements, and areas of interest can be easily
correlated, and the space within elements is left free for visualizing annotations or class-
level or method-level metrics. We use a two step solution. First, we render the values of
a single metric mi over a given area Ai (Sec. 6.3.1). Next we combine all metrics mi for
all areas Ai in a single image (Sec. 6.3.2). Finally, we add shading to the areas to further
emphasize their structure (Sec. 6.3.3). In the implementation of our proposed solutions,
texturing and blending will play an important role.

6.3.1 Rendering a single metric
They key idea used to address the requirements outlined in the previous section is to
render metric values outside the diagram elements. Denote by {ei} the elements in area
A, with metric values mi - we drop area-indexes here since we consider, for the moment,
a single area. We encode missing metric values in a separate dataset pi : [1..|A|]→{0,1},
i.e. set pi to 0 if mi is missing, else set pi to 1.

Our idea is to produce an interpolation function M of the values mi over area A.
M (x) should equal the given metric values mi for points x inside or close to the elements
ei, and vary smoothly in-between. We compute M as follows. First, we compute the
Delaunay triangulation of A using the Triangle library [85]. Next, we initialize M at each
triangulation vertex x with the metric value m(eclosest) of the element

eclosest = argmin
i∈[1..|A|],mi 6=None

(||ei− x||)

i.e. the closest element to point x which has a metric value. This yields an approximation
of the Voronoi diagram of the element set {ei}, so M is a piecewise-constant interpolation



i
i

“thesis” — 2009/4/22 — 14:06 — page 101 — #106 i
i

i
i

i
i

6.3. TEXTURE-BASED SOLUTION 101

Figure 6.1: Smooth interpolation of element metrics over an area-of-interest

of {mi} over A. Figure 6.1 b shows M for the metric values in Figure 6.1 a, using a red-
to-blue colormap (or any other colormap, as desired). Element D has a maximum value,
as shown by the surrounding red color. Element A has a minimum value, shown by the
blue color. Elements E and F do not belong to the area. Element B, although inside the
area, has no value. We show this using a neutral gray hue, as follows. We compute an
interpolation P of the set {pi} over A, just as the interpolation M of {mi}. With M and
P , we now compute the hue-saturation-value color of any point x ∈ A as

h(x) = rainbow(M (x)) (6.1)
s(x) = P(x) (6.2)
v(x) = 1 (6.3)

where rainbow() is the chosen colormap (see Figure 6.1 right). Hence, points having met-
ric values are rendered with saturated colors, while points with missing values are gray.
Finally, we render the area’s border using a soft gray texture, as described in Chapter 3.

In the final step, we smooth our piecewise-constant interpolation. For this, we apply
a Laplacian filter [19] on M and P , by setting the value of each triangle vertex x to
the average value of all vertices connected to it, and repeating the process for 30..50
iterations. The points contained inside the elements ei are kept fixed to the prescribed
metric values mi, to enforce the interpolation’s boundary conditions. The result shows
the values mi close to their elements ei, smooths values in-between, and grays out colors
close to elements without values (see Figure 6.1 c). The idea behind this smoothing
step is that it is easier to visually follow smooth color changes across an AOI than the
piecewise-constant color variation, as the user does not get distracted by the sharp color
changes occurring at the edges of the underlying Voronoi diagram. This point, and the
implications of using smooth interpolation on metrics defined as a scattered point set, is
detailed later on in this chapter in Section 6.5.2.

6.3.2 Combining several metrics
Now we must combine several metrics defined on possibly overlapping areas, each of
them rendered as described in the previous section. We cannot simply additively blend
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areas of different colors as described in Chapter 3 (see e.g. Figure 3.25), as this would
mix the individual colors which show metric values beyond recognition, even when only
two areas overlap.

We use a texture-based solution, as follows. To each area Ai, we assign a different
texture. We carefully designed a small set of textures (see Figure 6.2). The overlap of
any textures in this set is intended to create a visually different pattern. The textures
contain just opacity data: black denotes opaque zones, white gaps are fully transparent,
gray indicates an alpha value between 0 and 1.

Figure 6.2: The proposed set of textures. Gray value denotes opacity

We now render each area Ai by combining its color (showing metrics) computed by
interpolation (Section 6.3.1) with its transparency texture (showing the area’s identity)
using OpenGL’s texture modulation capability. Figure 6.3 shows the application of texture
c from Figure 6.2 on the area. When we have several areas, we draw them starting from the
largest to the smallest one, so that small areas appear atop large areas, as this maximizes
information visibility.

Figure 6.3: Applying a texture on the area

Figure 6.4 shows the application of the texturing idea to three overlapping areas de-
fined over four elements. Transparency creates hole-like patterns that let us see which
textures, i.e. which areas, overlap, since each area has a different texture. The visual
’weaving’ of the textures also lets us distinguish their different colors, hence correlate
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metric values. For example, we see that D has low values in area 1 and high values in area
3 - blue circles atop red diagonal lines; B has high values in area 1 and no value in area 3
- red circles atop gray diagonal lines; and so on.

Figure 6.4: Diagram showing three areas of interest with metrics

Transparency acts more like a stencil, so there is little or no actual blending; colors do
not mix, but get spatially woven. Color interpolation spreads the metrics information from
elements over entire areas, creating large smooth hue spots which are easier to follow than
rapid color changes. We acknowledge this is a controversial issue: color blending may
suggest that there is a continuous metric variation over an AOI, which is not the case.
If less blending is perceived as better, one can simply do less smoothing iterations - see
e.g. Figure 6.12 where only a few iterations are done, which yields well-separated color
areas around the elements, and almost no interpolated colors. For instance, the transition
between blue and green in A2 is sharp and quick . Also, one can use discrete (categorical)
colormaps with no change in the method, if these are seen to produce less ambiguous
results. More on this issue of color interpolation is presented in Section 6.5.2.

Note that the color smoothing is of additional value in the case of overlapping areas.
If several such overlaps exist in a visualization, it would be quite difficult to distinguish
how values in each area change at overlap points if we had sharp color transitions caused
by both the texture stripes and the sharp color borders given by the Voronoi-like color
assignment described in Section 6.3.1. Color smoothing eliminates the latter, so sharp
color changes are only caused by the texture weaving.
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6.3.3 Shading for enhanced area separation

Although each area has its own distinctive texture, this can create confusing overlaps
where it is hard to tell where an area exactly stops and another one starts. This happens
e.g. where contours of different areas run almost tangent.

To alleviate this, we emphasize each area A by shading, as follows. We construct a
signal S over A that is zero on the contour ∂A of A, one further from the contour, and
varies smoothly with the distance within a narrow band of thickness δ along the contour.
We compute S on the same triangle mesh as M and P used for the color interpolation
(Sec. 6.3.1), as follows. First, we set S to 0 on the contour vertices and 1 elsewhere.
Next, we use the same Laplacian filter as for color smoothing, keeping S fixed to 0 on
the contour points, for 3..7 iterations. More iterations increase the thickness of the shading
effect. After each iteration, we renormalize S to the range [0,1].

We now use S as luminance by setting v(x) = S in Eqn. 6.3. This darkens areas
close to their borders, but keeps them bright in the middle. Normalization ensures that
shading is always bright (i.e. equal to one) in the middle of an area and dark (i.e. equal
to zero) on the contour. A direct application of shading would only affect the texture
stripes (non-transparent) but would not show up in the texture ’holes’. This would create
a broken, distracting shading effect.

A cheap way to prevent this is to increase the holes’ opacity α in the texture patterns
from 0 (fully transparent) to 0.2 (slightly opaque). Overall, this gives the effect of convex,
shaded 3D shapes - compare Figure 6.4 (no shading) with Figure 6.5 (with shading). At
overlaps, the shaded shapes get woven by blending. The darkened borders help to visually
separate areas (see the images in Section 6.4). The slight opacity of the texture pattern
holes is able to show the shading close to the areas’ contours and also a faint hue of the
interpolated colors, i.e. metrics, in the pattern holes, as if texture colors would ’bleed’
into the holes. It may be argued that this further strengthens the visual cohesion of all
elements within an area and limits the breaking effect of the holes, but still allows pattern
weaving to take place (for a rendering variant that does not exhibit this color bleeding see
further below). When using textures to show metrics, as users noted on several occasions,
textures seem to complicate the visual tracking of an area’s contour, so shading has a
stronger value for areas textured to show metrics. As a side effect, the textured borders
proposed in Chapter 3 used to show the borders of areas can be dropped when using the
shading technique.

The simple method to strengthen shading by increasing the texture holes opacity out-
lined above has, however, the undesired effect of attenuating the texture weaving effect.
Consider, for example, two areas A1 and A2 rendered with two textures T1 and T2, that
overlap. Consider a point situated in a hole of, say, T1 in the overlap region. At this point,
we would actually see the color α ∗T1 +(1−α)∗T2. This is visible in Figure 6.5. This is
not precisely what we need: we would simply like to see T2 through the holes of T1, just
as in Figure 6.4, whereas what we now see in Figure 6.5 is a bleeding effect where the
colors showing the interpolated metric values extend to the holes and mix with the colors
of the underlying area(s).

We can obtain a texture weaving effect without color bleeding, i.e. having fully trans-
parent holes showing the underlying textures and a shaded border, by using a slightly
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more complex implementation based on pixel shaders. When rendering each area, we re-
place the blending mechanism offered by the standard OpenGL pipeline by a pixel shader.
The shader will set the hue of the current fragment as given by the texture, and the lumi-
nance as given by the shading signal S , just as before. In contrast, the shader will set
the opacity or alpha value to the luminance signal S multiplied by the texture opacity,
instead of using the constant value α = 0.2. In other words, the rendered areas are dark
and opaque close to the rendered area’s border, bright and opaque over the texture stripes
far away from the border, and fully transparent in the texture holes far away from the
border. The shader that accomplishes this is under 10 lines of code. All shaded images in
Section 6.4 are produced using this method. If we look at Figure 6.11, for example, we
see the desired effect: holes let the colors of the underlying textures fully show through,
and the pixels close to an area border are equally dark, whether in a hole or not.

Figure 6.5: Enhanced areas using shading (compare with Figure 6.4)

The overall effect created by our superimposed shaded areas of interest is somewhat
similar to the enridged contour maps technique [42]. This technique was used to add
a similar shading profile, i.e. dark at the borders and bright in the middle, to isolines
drawn on weather maps of similar scalar fields. However, there are also some important
differences. First, the enridged contour technique assumed that the contours (isolines)
are strictly nested, and exploited the shading to communicate the isoline values by means
of shading. In our case, shading is used strictly to emphasize the areas’ contours, but
data values are encoded strictly in the texture hues. For strictly nested areas, e.g. the
small area containing two elements at the right in Figure 6.11 contained in a larger area,
our shading effect conveys a relatively similar effect of having the small area atop of
the large area, but this effect is not present when areas intersect. Secondly, the shading
is computed differently. The enridged contour maps use a per-pixel computation of the
shading based on the difference between the actual value of the contoured signal at that
pixel and the value of the nearest lower isoline, whereas in our case the shading is purely
based on the geometric distance between the vertex of our area triangulation and the area’s
border. A further analysis of the similarities and differences of the two techniques could,
nevertheless, lead to some interesting enhancements of both methods.
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6.4 Case studies
We now illustrate the use of our AOI-level metric visualization in two different case stud-
ies.

6.4.1 Analysis of the JPEG decoder performance

Figure 6.6: JPEG decoder architecture. Icons show the memory usage metric µmem over
five tasks. Areas show the tasks. The metric legend shows the placement of metric icons
within each component. Although this figure is quite large, it is hard to correlate metric
values and areas

We consider a real-world software project: the architecture of a component-based
JPEG decoder [12, 40]1. The system model was built and its operation numerically simu-
lated using the CARAT toolkit [11]. This delivered several run-time performance metrics.
We next show two such metrics:

• µCPU : CPU usage for active components (each active component has its own pro-
cess)

• µmem: memory usage for passive components (a passive component is used by
active processes)

Given the actual architecture of the JPEG decoder, not all components have both memory
and CPU metric values.

The decoder performs five tasks (T 1 . . . T 5): JPEG stream starter (T 1), inverse dis-
crete cosine transform (IDCT), IDCT column process (T 2), IDCT row process (T 3), ras-
terization (T 4), and rendering (T 5). For a detailed description, we refer to [12]. We

1A more detailed description of the embedding of our visualization techniques in the context of this project
is presented separately in Chapter 7
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consider six areas: A1 . . .A5 contain the components in tasks T 1 . . .T 5. Each component
has a memory usage metric µmem for each task area it is part of. The sixth area ACPU holds
all active components, which also have a CPU usage metric µCPU . We now address two
goals which were named as important by the system’s developers:

• understanding the distribution of tasks over the system structure and the memory
usage of passive components

• understanding the CPU utilization over different tasks

Figure 6.7: JPEG decoder architecture (five tasks with memory usage metric).

To illustrate the advantage of our method, we first use metric icons [107]) to show
the memory usage metric. First, we draw the areas T 1. . . T 5. Next, we draw pie and
height-bar icons colored by task and scaled to show memory usage µmem (Figure 6.6).
The metric legend shows the tasks’ colors and also shows where each icon from each
task-area is placed within each element (see [107]). However, in Figure 6.6 it is hard to
tell the metric values of each component for each area it belongs to. We cannot increase
icon sizes, as each icon already takes one-sixth of a component’s size - this is a design
constraint ot the original metric icon method. Also, it is hard to visually correlate metric
values over large areas. Finally, a missing icon has an ambiguous meaning: does it show
a zero µmem = 0 or missing metric value or a missing metric value µmem = None?

We now use our new technique. Each area (task) uses a different texture (see legend in
Figure 6.7). Color shows the memory usage µmem (blue=low, red=high). We now better
see which value µmem each component has in each area, than in Figure 6.6, where the icon-
based visualization is used. We see, for instance, that components A, C, D, E and F use
much more memory than the rest in at least one task they are involved in. Components
A and C consume high memory amounts in the tasks they are involved in (T 1 and T 3
for A and T 2 and T 4 for C). Component C is the main memory consumer of the entire
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Figure 6.8: JPEG decoder architecture (memory and CPU usage metrics)

system, as both textures surrounding it are red. Indeed: C implements the decoder’s pixel
raster buffer, which consumes a lot of memory. Finally, we see that components D . . .F
have a similar memory usage pattern: low in task T 4, high in task T 5. The results match
the design expectations, as rendering (T 5) is more memory-demanding than rasterization
(T 4).

Figure 6.9: JPEG decoder architecture (shaded AOIs)

In our second scenario, we add the CPU utilization metric µCPU (Figure 6.8). The area
ACPU , containing all active components using CPU cycles (G . . .K), intersects the task-
areas T 1 . . .T 5. To visually segregate the two aspects (tasks and CPU utilization), we use
diagonal stripes for the task-areas T 1 . . .T 5 and vertical stripes for the CPU utilization
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area ACPU . We see now the CPU-intensive components: J and K. We also see that all
components in ACPU miss memory consumption data: the diagonal stripes textures around
all components (G . . .K) are gray (Figure 6.7). This is correct, as the design of this JPEG
decoder splits data (passive) components from algorithm (active) components.

Figure 6.9 shows the effect of adding the shading described in Section 6.3.3. The left
image depicts the six areas with color interpolation (showing metrics) but no textures. We
provide this image to emphasize the useful effect of shading to understand area overlaps.
The shaded and textured areas are shown in Figure 6.11

6.4.2 Identifying design aspects during reverse engineering

Figure 6.10: Large UML class diagram with 7 areas and over 50 classes. Metrics show
the participation of classes in two aspects

In our second application, we extract an UML class diagram from the source code of
a C++ graphics editor in a reverse engineering process, using the technique described in
Section 5.3. Talking to the system designer, we identified several high-level functional
aspects:

• main: the application’s entry point

• core: the application’s control code

• logging: code involved in logging actions

• GUI: user interface code

• I/O: code for saving and loading data

• OpenGL: rendering code

• XML: code for loading 3D models
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Each aspect yields an area-of-interest Ai. We now want to see which class participates
in which design aspect, and how much. An ’ideal’ object-oriented design would require
each class strongly involved only in one aspect [51]. We quantify the participation degree
pi j of each class j in each aspect Ai as its code percentage specific to Ai. For example,
an OpenGL class has p = 0.5 if it has 50% OpenGL-specific code. Alternatively, other
aspect mining techniques could be used, if desired. The goal is to understand how the
identified aspects map to actual classes, i.e. whether the code follows the intended design,
and whether we have modularity problems.

Figure 6.11: Visualization of the UML diagram in Figure 6.10, now with area shading
and half-transparent elements

The entire system is shown in Figure 6.10. The legend shows, for each area Ai, the
number of classes it contains, the number of classes having missing values for that area’s
metric pi (due to the fact that we were unable to reliably estimate the percentage of code
involved in each aspect), and the texture used to show the area. We notice several facts.
Few classes participate in two aspects, and none take part in three. This indicates a good
functional modularity. The only class strongly involved in two aspects is B, part of the
main and core areas. Since B is actually the system’s entry point, this strong involvement
is not a problem. Class E participates strongly in core (red in A6) and weakly in GUI
(blue in A1). E the main window, so its weak involvement in core and strong in GUI is
correct. Class D is strongly I/O-related (A7), and also part of the core (A6). However, its
code is quite complex, so we were unable to assess how strongly it belongs to the core
(missing metric of D in A6).

Figure 6.11 shows the same diagram, areas, and metrics as in Figure 6.10, with shad-
ing added. In this figure, shading helps better seeing which elements are in which areas,
similarly to the example presented in the previous section.

Figure 6.12 shows a part of another class diagram of the system described in Sec-
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Figure 6.12: UML class diagram with two areas, class-level participation metrics, and
method-level lines-of-code metrics.

tion 5.5. We show two functional areas: classes involved in visualization (A2), and the
class hierarchy modeling a UML graphical element, or glyph (A1). Colors show degrees
of participation in the two aspects. Since our AOI-level metric visualization does not
draw on classes, we can show an additional metric: the lines-of-code (LOC) for all class
methods, drawn atop of classes with purple bars, using the table lens technique described
in Chapter 5. Long bars indicate large methods. Methods are sorted in decreasing LOC
from top to bottom within each class. This effectively shows the size distribution of all
methods, and correlates it with the participation of each class in the two AOIs.

We can use this image to understand how code complexity relates to system structure,
to predict potential maintenance hot-spots. First, we see that area A1 contains a class
hierarchy, rooted at A, which is the glyph common interface. A1 is entirely contained in
A2, which is desirable, as glyphs are visualization objects. All glyph classes in A1 have
the same number of methods and similar bar graphs, i.e. similar LOC distributions for
their methods. This confirms a desired property: all glyph subclasses should use the same
coding pattern. At closer code investigation, this was confirmed. Secondly, we notice that
class C, although in the visualization area A2, has no metric here (is gray). C is also the
root of a small class hierarchy. This indicates a mix-in class: its code cannot be readily
classified as visualization, but it roots several visualization classes, so it is classified as
visualization-related. The reason for the mix-in is clear when looking at the class name: C
is a C++ STL container (set), so its two visualization subclasses inherit implementation
rather than interface.

The classes having the largest methods (longest bars) have also the most methods: B,
D, E. Stronger, the largest class B has also the largest methods. This suggests a ’God
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class’ pattern [51]. Code examination confirmed this: B contains an implementation of
different geometric operations. Correlating the methods’ LOC metric with the areas, we
also see that D and E are the largest visualization classes, but the most complex class
(B) is located outside these areas. Hence, we identified three potential maintenance hot-
spots, two in the visualization subsystem (D,E) and one outside (B). In contrast, the glyph
subsystem (area A1) contains only simple, small, similar-pattern classes, hence should be
much easier to maintain.

6.5 Discussion
We have conducted several informal evaluation studies of our proposed AOI-level met-
ric visualization technique. Our aim is to compare the effectiveness and acceptance of
the new texture-based technique as opposed to the classical icon-based techniques. We
specifically compared our new method against [107] as the functionality of both tech-
niques is supported in our UML visualization tool, which offers the same look-and-feel of
the UML visualization and GUI controls for both methods. Moreover, we had a relatively
large base of users already familiar with this UML visualization tool, in the framework of
a 2-year industry-academic cooperation project [40]. The user base includes around 10
professional software engineers involved in creating UML architecture diagrams, such as
the JPEG decoder (Section 6.4.1), and computing quality metrics on them.

6.5.1 Results

We discuss several aspects of our technique noticed during the performed evaluation, as
follows.

Scalability: we can easily show up to 10 areas of interest, each with its own metric, on
diagrams of 20..80 of classes. Larger diagrams occur very rarely in software engineering
practice. The Delaunay triangulator [85] and Laplacian filter [19] used are well-known
for their fast, subsecond performance on meshes of thousands of triangles. Rendering a
metric over an AOI uses a single texture pass over a triangle mesh, which is also very
fast on any graphics card. The added value of this real-time performance is that users
can quickly change all visualization parameters, e.g. transparency of the metrics, shading
strength, or colormap, and see the results immediately, which encourages exploration.

Understandability: The main limitation is the number of distinct areas that can
overlap at one given place. Consider the AOIs A1 = (A,B,C,D), A2 = (A,B,C) and
A3 = (A,B,D) in Figure 6.13, rendered with textures shown in the legend. From the
’woven’ texture pattern we believe it is possible to distinguish which element is in which
area and the colors (metric values) at overlaps. The addition of shading (Section 6.3.3)
further helps in separating areas with complex overlaps. Yet, adding a fourth overlapping
area can make this image very hard to understand.

However, the question is whether realistic scenarios exist in which one would like
to compare or correlate four (or more) metrics in the same time. As mentioned in Sec-
tion 5.6, we noticed that most software understanding and analysis tasks require the com-
parison of two, maybe three, such metrics at the same time, but not more. Although we
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have no hard evidence for the lack of real-world scenarios in which more metrics need to
be compared at the same time, we believe that the practical upper limit of three metrics
supported by our method is able to cover most practical applications. The same observa-
tion, in conjunction with a similar limitation of the number of overlapping textures at one
point, was made by Voinea et al. [117]. In their method, textures were used to show two
or three categorical metrics mapped on rectangles to show software evolution artifacts. In
their case, the overlap problem was further aggravated by the small size of the textured
elements (a few pixels in each dimension), which practically limited their method to two
overlapping metrics in most cases.

Figure 6.13: Complex intersection of three overlapping areas.

Obtaining a good pattern mix constrains the texture parameters. All textures should
have similar ratios of opaque-to-transparent pixels, so we can ’see through’ at all overlaps.
Ratios between 40% and 60% give good results - lower values yield too sparse textures,
on which we cannot see colors or shading; higher values yield occlusion at overlaps, so
we cannot see more than one texture. Patterns must be chosen so that the overlap of any
n− 1 patterns looks different from the nth pattern, n being the number of overlapping
areas. The texture set used here gives good results for n ≤ 3, as shown in a different
application [117]. Finally, the frequency range (related to the pattern stripe thickness
and circle radius) is important. Too thin patterns are hard to distinguish at overlaps; too
thick patterns do not let the eye smoothly switch between areas at overlaps. We found an
empirically good pattern size in the range of 10..20 pixels (Figure 6.2).

Related methods: To our knowledge, there is only one other software visualization
at the time of writing this thesis that uses textures to show numeric metric values [36].
Our method differs from this as follows. Holten et al encode two metrics in the texture
frequency and luminance, and use a treemap layout, so their areas are rectangular, can-
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not overlap, and always contain a single element. We smoothly interpolate metrics over
arbitrarily-shaped, overlapping areas. We use a fixed texture-set, use opacity to allow
overlaps, and encode metric values in hue and metric availability in saturation. Finally,
we use luminance to pseudo-shade the areas to visually emphasize contours rather than
encoding data. This is conceptually similar to the cushion treemaps used by Holten et al,
but generalizes to complex-shaped, overlapping, areas.

6.5.2 Color schemes and color interpolation issues

The choice of the color scheme, or colormap, as well as the metric interpolation decision
described in Section 6.3.1, deserves a separate discussion.

So far in this chapter, we demonstrated only a simple continuous colormap: the rain-
bow colormap. Also, we chose to interpolate the metric values (defined on the diagram
elements) at the points situated between the elements. The motivation of these choices
was the observation that visually following a continuous change in hue, as yielded by a
continuous colormap and metric data spatial interpolation (see Figure 6.1 c for example),
is easier than visually following a pattern where colors would change rapidly at discrete
points ( see Figure 6.1 b for example). This observation is well known from the use of
continuous colormaps and color interpolation in many application in scientific data visu-
alization.

Yet, a number of issues arise when choosing for continuous colormaps and color
smooth spatial interpolation. First, our data values are defined strictly at the locations
of the diagram elements. As such, it does not strictly make sense to speak about a data
value between two diagram elements, as there is no element to carry data there. Sec-
ondly, the color interpolation may suggest the existence of data values situated between
the values defined on the elements (in data value space). For continuous metrics, such as
for example speed or memory consumption, such values have a meaning. For inherently
discrete metrics, such as for example indicators that classify a component’s performance
as ”excellent”, ”very good”, ”good”, ”average”, or ”poor”, such in-between values are
meaningless, as discussed e.g. in [102]. Also, such metrics are typically visualized with
discrete colormaps, e.g. the diverging colormap shown in Figure 6.14.

From the above observations, we see that there is a tight connection between the
nature of the visualized data, the type of colormap used, and the decision whether to
interpolate data or not. The colormap and interpolation choices are fundamental to the
metric visualization algorithm proposed in this chapter. Given the high impact of these
choices on this algorithm, we present next a number of observations related to possible
variations in these choices.

Figure 6.14: Examples of different types of discrete colormaps

The first choice, or degree of freedom, of the AOI-level metric visualization is the



i
i

“thesis” — 2009/4/22 — 14:06 — page 115 — #120 i
i

i
i

i
i

6.5. DISCUSSION 115

actual colormap used. Many kinds of colormaps are used in data and information visual-
ization. The main ingredients of a colormap are as follows [81]:

• the type of colormap: continuous or discrete

• the number of colors used

• the actual colors used

Continuous colormaps, sometimes also called color transfer functions, are functions
c : D→ C that map a data value from a continuous domain D to a RGB or HSV color
space C. In most cases, such colormaps have an infinite number of colors, as for any
different x ∈ D a different color c(x) ∈ C is generated. Discrete colormaps, sometimes
also called color tables, are typically used when the data domain D is a discrete set of
elements, like a vector or an enumeration of values. Every element x ∈ D is then mapped
to a distinct color c(x) ∈ C, where C is also a discrete set of colors. For example, we
can use a discrete colormap to map a software metric ’component failure’ having values
in B = {true, f alse} to the color set C = {red,green} respectively. Discrete colormaps
can be classified as sequential, diverging or qualitative, as shown in Figure 6.14 which
depicts several examples from the well-known ColorBrewer colormap construction ap-
plication [14]. Clearly, software visualization applications can use both continuous and
discrete colormap, depending on the type of software metrics at hand.

Several colormaps can be used within the same diagram visualization. For example,
Figure 6.15 (bottom row) shows the same UML class diagram as in Figure 6.11, this
time using two colormaps: the diverging colormap and the sequential colormap from
Figure 6.142. Using several colormaps has an advantage when different areas of interest in
the same diagram have different types of metrics. In such a case, the identity, or meaning,
of an area is also visible in the type of colormap used on it. To eliminate any interpretation
ambiguities, this technique requires the usage of colormaps that do not share colors, like
the diverging colormap (which uses shades of red, yellow, and green) and the sequential
colormap (which uses shades of blue). In contrast, Figure 6.15 (top row) shows the same
diagram and metrics, this time using a single colormap - the diverging one. Separating the
different areas from each other is more difficult when using a single colormap than when
using two different colormaps.

The second choice, or degree of freedom, is whether we interpolate colors at points
situated between diagram elements, as described in Section 6.3.1, or not. To illustrate
this choice, consider Figure 6.15 (right column) that shows the same diagram and metrics
using the same colormaps as in Figure 6.15 (left column), this time without performing
linear interpolation of colors. The color borders that appear between elements, corre-
sponding to the approximate edges of the Voronoi diagram having elements as sites (see
Section 6.3.1), are now clearly visible, whether we use one or several colormaps, as il-
lustrated by the images. This has advantages and disadvantages, as follows. Only those
colors that exist in the discrete colormaps are used, as there is no color interpolation. This
is precisely what is required when using discrete colormaps. However, it may be argued

2The assignment of colormaps to areas is here arbitrary, done only for the purpose of illustrating the effect
of using more than one colormap in the same image
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that the color borders visually interfere with the texture patterns, thereby making it more
difficult to follow the variation of a color, thus the variation of the depicted metric, over a
given area. For continuous colormaps, such as the rainbow colormap, we can technically
choose for interpolation, as the interpolated colors are part of the colormap. This will
generate colors between diagram elements that do not correspond to actual data values,
which is potentially confusing, but the resulting image will be arguably easier to follow
visually. From the user evaluations done so far (see also Chapter 7, we have noticed no
confusion or objections from the users, but this topic requires more investigation.

one colormap, interpolation

two colormaps, interpolation

one colormap, no interpolation

two colormaps, no interpolation

Figure 6.15: Effect of color interpolation and the usage of several colormaps when visu-
alizing AOI-level metrics

The third and last degree of freedom is the choice of the colors in the colormap. Apart
from application-driven considerations like which colors make more sense for which met-
ric type, there is also an interaction of colors with the texture patterns and shading mech-
anisms described earlier in this chapter. To illustrate this, consider Figure 6.16 which
renders a simple area of interest with one metric using a three-value sequential color
scheme similar to the one shown in Figure 6.14. The top row shows the application of
texturing and shading, whereas the bottom row also adds interpolation. Several obser-
vations can be made. First, we see that the texturing step considerably diminishes the
actual number of pixels on which color is shown (in this case by roughly 50%). Since
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the colors in the colormap are quite similar visually, it becomes quite hard to tell the ac-
tual color that surrounds an element after texturing (top-middle image in the figure). If
color interpolation is also done, then telling which color surrounds each element is even
harder (bottom-middle image in the figure). Shading does not change this situation in
worse or in better as it only affects pixels close to the area’s boundary (right column in
the figure). Concluding, we believe that, to obtain the best results with our texture-based
method, one should choose colormaps that use strongly different hues, especially in the
case when interpolation is applied. As a final observation on colormaps, several users
remarked that using full-saturation hues is sometimes seen as distracting. To address this,
we provide a global opacity control that allows users to set the overall opacity of all AOIs,
thus smoothly navigate between ’bare’ UML diagrams and diagrams with full-color tex-
tured areas. In practice, using a global area opacity of 0.4..0.6 gives good results - the
actual value used depending on one’s taste and type of color screen.

Figure 6.16: Applying sequential color scheme, interpolation, texturing and shading on a
simple area example

As mentioned earlier in Section 6.3.3, shading has the added value of enhancing the
perception of which elements are in which area and how areas overlap. Moreover, we
believe that shading does not affect the perception of which metric values and element
has. Figure 6.17 illustrates this. Here, the same UML class diagram and metrics as in
Figure 6.15 is shown, without color interpolation, once with the rainbow colormap, and
once with the diverging colormap discussed above, but without shading or drawing the
contours of the areas. Seeing which metric values an element has in all areas it is con-
tained within is arguably easy, and at least not more difficult than in Figure 6.15 which
also showed the areas’ borders. The rainbow colormap is better, as its hues are perceptu-
ally more different than the ones from the diverging colormap, as already discussed above.
However, distinguishing the areas themselves is hard, since there are no borders drawn.

To summarize this discussion on colormaps and our metric visualization on AOIs:

• both discrete and continuous colormaps can be used, depending on the type of
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Figure 6.17: Metrics visualization without area shading using a sequential colormap (left)
and the rainbow colormap (right)

metrics

• several colormaps can be used in one visualization as long as they have different
colors

• discrete colormaps require switching off color interpolation

• interpolation may be confusing even for continuous colormaps, but it can easily be
switched off

• colormaps using strongly different hues work best together with texturing

• shading enhances perception of areas and does not interfere with color mapping

6.6 Conclusion
In this chapter, we have presented a method to visualize metrics, defined on groups of el-
ements represented as areas of interest, atop of software design diagrams. The key design
decision in our proposed method is the rendering of metric information outside the extents
of the diagram elements, and inside the extents of areas of interest, using a combination
of textures, blending, and shading. The proposed method scales well in terms of the sizes
of diagrams and areas of interest, and allows up to three overlapping areas with metrics
at any given point. Moreover, the method combines well with the previously presented
methods for drawing areas of interest (Chapter 3) and method-level metrics (Chapter 5),
keeps the layout of a given UML-like diagram unchanged, and thereby concludes our
investigation in the field of adding different types of metrics to software design diagrams.
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Chapter 7

Applications in Industry

In this chapter we discuss the importance of verification of proposed theoretical ideas in
industrial settings and benefits of validation and acceptance of new designed techniques.
We present the main goals and constrains of a joint academic-industry project in which
our proposed AOIs drawing technique was applied. We describe the case study which
was considered in the project, our section of work in the project and collaboration with
other project partners. Finally, we present the archived results.

7.1 Introduction

The central goal of the visualization techniques presented in this thesis is to help software
engineers in understanding existing correlations between software architectures, areas of
interest, and software metrics. In the previous chapters, we have presented several types
of evaluations of the proposed visualization techniques. The largest body of work in this
direction has been covered in Chapter 4, where we described a user study that produced
both quantitative and qualitative assessments of the similarities of computer-drawn and
hand-drawn areas of interest. In Chapters 5 and 6, we presented several smaller-scale
case studies where our method-level and area-level metric visualizations, respectively,
have been used to support several program comprehension tasks in reverse engineering.

Overall, these evaluations and case studies indicated that, in most cases, our visu-
alizations are accepted, understood, and useful by software engineers. However, these
studies do not fully answer the question of how our software visualizations would be ac-
cepted and integrated in the actual workflow of a typical software engineering project,
along with other design and implementation techniques and practices. In other words,
these studies do not fully close the gap between theory and practice. Doing this is quite
challenging. Many additional problems exist in practice, like a great variability in actual
requirements and working practices of industrial software engineers; time limitations for
testing and verifying new tools and methods; the need to integrate a visualization tool
with other tools; and the specificity of questions that need to be answered.

Because of all these, it is difficult to carry out experiments to validate a new technique,

119
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whether related to visualization or not, in an industrial setting. Furthermore, trying a
new technique that emerges from a research setting in another context usually requires
additional implementation or adaptation. Finally, visualization tools are not immediately
recognized as valuable in a ’traditional’ industrial software engineering context, where
people are accustomed to work with command-line tools and only a small set of visual
tools such as UML editors.

In this chapter, we describe our efforts to test a subset of our visualization techniques
within such an industrial setting. In parallel with developing the AOI rendering method
described in Chapter 3, we participated in the ITEA Trust4All project [41, 40], which
involved partners both from academy and the software industry. In this context, we in-
troduced our AOI rendering technique, implemented in an end-user tool for visualizing
and editing UML diagrams and areas of interest. The tool was presented with the goal of
helping the people involved in this project in a number of specific tasks related to their
activities, as described further in this chapter. In the following, we describe our partici-
pation in the Trust4All project and overview the feedback obtained from the other (non-
visualization-related) participants in the project as to the usefulness of our visualization
techniques. Since the project took place during the phase of our research where only the
AOI visualization was available, we present only feedback related to this technique. The
method-level and area-level metric visualizations are evaluated separately as described in
Chapters 5 and 6.

Section 7.2 describes the context of the project, the domain of the addressed prob-
lems, and the requirements we elicited for our work in the project. Section 7.5 presents a
case study we have worked on, our UML-based AOI visualization tool, and the achieved
results. Section 7.7 concludes the chapter with observations related to the acceptance of
our visualization within this type of industrial context.

7.2 Context of the evaluation

The application of our proposed AOI drawing method was done in the context of the
Trust4All project [41, 40]. The aim of this project was to improve the state-of-art in
component-based software development (CBSD) by introducing new techniques for up-
grading and extending embedded software systems, while the system is in use by a cus-
tomer. CBSD techniques are briefly overviewed in Section 7.2.1. For this purpose, the
component-based systems should be analyzed and results of the analysis should be repre-
sented in an effective way. Since these results contain both system architecture diagrams
and groups of components related by their participation in different aspects, a natural
application of our AOI visualization technique was possible.

To better understand the place of visualization in this project, we first briefly overview
the basics of the component model used in the Trust4All project (Section 7.2.1) and the
main goals of this project (Section 7.2.2). Based on these premises, we next describe the
requirements for visualization of component-based systems which formed the basis of our
work in this project (Section 7.3).
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7.2.1 Component-based software development
One of the recent answers to the decrease in time-to-market and development costs of
software products outlined in Section 1.1) is the use of component-based software devel-
opment (CBSD). The basic idea of CBSD is that a system is assembled from pre-existing
software components, thereby favoring the reuse of off-the-shelf software. In this con-
text, a software component can be defined as: ”a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.” [97]. It is widely
accepted that a software component should have the following properties:

• it should be designed and implemented for multiple use

• it does not expose its internal state to a system

• it provides well-specified interfaces, by which it can be bound to a system

• its dependencies on external resources are clearly specified

• its internal implementation should be encapsulated

• it communicates through its interfaces (provided and required)

• it can be substituted by some other component having compatible interfaces

In the Trust4All project, the ROBOCOP component model was used [38]. ROBO-
COP stands for Robust Open Component Based Software Architecture. It was developed
for use in middleware for consumer electronic devices, such as mobile phones, domotic
devices, or industrial automation software. Its design is based on ideas from the previous
CORBA [63] and Koala [114] component frameworks, which, in their turn, incorporate
ideas from older component frameworks such as Microsoft’s COM [61] and Sun’s Enter-
prise JavaBeans [96].

Besides components, there are two other important concepts in the ROBOCOP frame-
work: component models and component composition. A component model specifies
the component development and deployment process, component implementation details,
specification of component properties which include behavior, resource use, and context
dependencies. It serves as a specification for composing individual components into an
assembly. A ROBOCOP component is a set of possibly related models. Here, models
can be represented in readable form, e.g. text, or as binary code. Examples of a compo-
nent model are a security model, executable model or source code model. The models
should be specified and packaged at the component development phase. A component
composition is a set of instantiated components and bindings (connections) between their
respective provided and required interfaces. Components are selected and composed by
an architect in order to satisfy global system requirements, and according to the rules
specified in the component model. For example, the executable model enforces rules
specifying how actual functions in the source code are called when components interact
which each other, while a security model specifies how a system’s security depends upon
the security of individual component interfaces in its composition.
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The primary task that we supported in our visualization tool was the actual system cre-
ation by visual component composition. In this sense, our visualization tool implemented
most of the functions typical to a UML editor, such as creation, deletion, connection, and
disconnection of components on a ’component diagram’. However, we did not support
the visualization of system deployment or of the communications with the underlying op-
erating system or any hardware components. The component composition visualization
is further detailed in Section 7.5.1.

7.2.2 The Trust4All project

The Trust4All project was the third step in a series of three ITEA projects in the area
of CBSD. The first project, ROBOCOP, addressed the design and implementation of the
ROBOCOP component model [38]. The second project, Space4U, added supplementary
component models to the basic ROBOCOP framework, to specify resource-constrained
(e.g. memory, processor, and power consumption) system design for embedded applica-
tions [39]. In each of these projects, six academic institutes and ten industrial companies
from four European countries participated.

In Trust4All, the third and last project in this series, the goal was to add new mech-
anisms to the original ROBOCOP framework in order to specify and enforce security-
related features to component-based systems whose software is dynamically extended and
upgraded. Briefly put, this framework is a middleware layer built atop of the underlying
operating system, which manages component creation and binding, registration, and de-
ployment. Upon the dynamic downloading of a new component in a running system, the
component framework ensures the proper working of the composed system by inspecting
the various models of the downloaded component. Next, the framework attempts to opti-
mize the overall system functioning by considering the requirements and provisions of all
components (as specified in their models) and the resource constraints of the underlying
hardware. Such computations are usually done in real-time.

To model these new dynamic aspects, a trust model was added to the ROBOCOP com-
ponent model. The trust model captures software properties such as security, reliability
and robustness. The main purpose of the trust model is to make these properties measur-
able. The component framework measures the properties according to rules predefined in
the trust model and reacts depending on the computed results. For example, it can accept
or deny a specific action on a new component, or emit other ’load-balancing’ actions on
existing components in the running system.

The second task that we supported in our visualization tool, along with the visual
composition mentioned in Section 7.2.1, was to visualize the trust-related attributes of
a component system. The main stakeholders of our visualization tool are the system
architect, developers and testers, who need to analyze the changes in the system quality
properties, e.g. trust, before and after any changes in the system structure due to new
component deployments in a running system.

Visualization of trust is similar aspects to the visualization of other attributes, or met-
rics, of a software system, such as quality or complexity, which were discussed in the
previous chapters. From the point of view of visualization, trust can be seen as a per-
component, per-subsystem or per-entire-system numerical or categorical attribute or met-
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ric, which is computed by some methods outside of the scope of the visualization itself.
In this sense, the tasks that trust visualization should address are:

• let users spot correlations and/or outliers of the trust values of specific elements and
their relationship with the system structure;

• give an overview, as well as a detailed, understanding of the trust values of specific
components, subsystems, or other system architectural elements.

However, for a visualization tool to be useful within this project, several requirements
had to be fulfilled. In the following section, we detail these.

7.3 Visualization requirements
As mentioned above, a visualization tool in the Trust4All project should serve several
tasks. In brief, this tool should support both the design and analysis of component-based
systems along the lines mentioned in the previous sections. A large list of such functional
requirements (FR) and non-functional requirements (NFR) were elicited from discussions
with the project partners. In the following, we present only a small subset of these require-
ments, which are directly related to our work presented in this thesis. These are divided
into two main classes:

• R1: Requirements related to obtaining insight into the quality attributes of a com-
ponent diagram

• R2: Requirements related to the interaction (creation, editing, and navigation) with
a component diagram

Table 7.1 lists the sub-requirements of class R1, as extracted from the actual require-
ment documents of the project. These are further categorized as functional (FR) and
non-functional (NFR) requirements.

Table 7.1: Requirements on visualization of quality attributes
FR-11 The tool shall be able to visualize component compositions
FR-12 The tool shall be able to correlate and visualize components

and their quality attributes
FR-13 The tool shall be able to store and retrieve the visualization results
NFR-11 Each visualization model entity should represent information

unambiguously (by color, shape, texture, or text)
NFR-12 The tool should be configurable to work with different types of input

information (for example, UML-like diagrams)
NFR-13 The set of supported layouts and views shall be extendable

Table 7.2 lists the sub-requirements of class R2, as extracted from the actual require-
ment documents of the project.
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Table 7.2: Requirements on interaction with a component visualization
FR-21 The tool must be able to perform conditional selections of the

components and their trust attributes
FR-22 The tool must be able to navigate through the levels and areas of

the visualization model
FR-30 The tool should be integrated with data sources providing

metrics computed on the analyzed system

In the following section, we overview the design of the entire tooling framework that
was constructed to integrate the component-based system design with the data analysis
required to compute the actual attributes which serve as inputs to our visualization, and
finally the visualization itself. The actual use of our visualization method is covered
further in Sections 7.5 and 7.5.1.

7.4 Overall framework design
To address the various tasks of system design, quality metrics computation, and metrics-
and-structure visualization, several tools were constructed and integrated in a tooling
framework. The overall framework architecture, outlined in Figure 7.1, shows the three
main elements mentioned before: the system design tool, the system analysis and metrics
computation tool, and finally the visualization tool.

Figure 7.1: Architecture of the design, analysis, and visualization framework

Both the design tool and the analysis tool are provided by the CARAT toolkit, also
developed as part of the Trust4All project [11, 12]. CARAT is a framework for design
and performance analysis of real-time component-based software systems. It supports
the complete design cycle and by means of three tools: a a component repository, a visual
designer, and a simulator. The repository provides storage and retrieval of executables of
software components and various models of software components and hardware blocks.
The designer, implemented using the Eclipse framework [24], contains two editors for
visual construction of component assemblies and hardware resource topologies with as-
signed deployment of the software components. Visual design is supported by means
of drag-and-drop of components from the repository to a design canvas and point-and-
click connection of provided and required interfaces, much like other visual application
builders [105]. Figure 7.3 shows a typical component diagram for an actual system de-
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signed with this tool. The simulator uses the designed system model for static system
analysis and predictions, which are stored as software metrics.

Our visualization tool comes at the end of a design and analysis cycle performed with
the CARAT toolkit. This is illustrated in Figure 7.2), which shows a typical workflow
in the design-simulation-visualization framework. The pre-design and design blocks rep-
resent respectively the construction of the component models and component assembly
into a running system, both done with the CARAT toolkit. The execution of the resulting
system is then simulated in the prediction block, which outputs various quality metrics,
mapped to their corresponding components on the initial design diagram. These form the
input for the last step, the visualization. In this step, the user can visually correlate the
results of the system simulation with the initial design decisions, and, if desired, repeat
the loop by adjusting its initial design decisions to optimize various quality metrics.

Figure 7.2: Software design/analysis life cycle covered by CARAT and AOI Visualizer

The actual operation of the integrated design, simulation, and visualization tools in
this framework is illustrated next by means of a case study which was developed during
the Trust4All project.

7.5 Case study: Car Media Center
Using the integrated framework presented in the previous system, a Car Media Center
(CMC) software system was developed. This system contains several of the typical em-
bedded software applications present in a modern car: GPS-based car navigation, radio
and digital TV reception and display, and CD/DVD playback. Figure 7.3 is a snapshot
from the CARAT designer tool showing the CMC system design consisting of 28 com-
ponents and the connections between provided interfaces (pin-like icons at the left of the
components) and required interfaces (icons at the right of the components).
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Figure 7.3: Car Media Center component-based design (CARAT composer snapshot)

The CMC has a dataflow-like design, with the following components. The Main
UI component (1) receives user input by polling the buttons on the car dashboard. The
TV UI (2) and DVD UI (3) components receive and process TV and DVD-related user
commands. TV UI sends the currently selected TV channel to the TV Tuner (4). The
transport bit stream of the chosen TV channel is sent to the TS DMX (5) component,
which de-multiplexes the stream into video and audio. The video stream is next processed
by several video filters: VLDecoder (6, variable length decoder), Inverse Quantizer (7),
IZigzag Scanner (8, inverse zigzag scan), IDCT row and IDCT column (9, 10, inverse
row/column discrete cosine transform). The decoded video stream is next sent to the
VideoController (11) component, which specifies on which display to show the video.
A second video stream comes to the Video-Controller from the Graphics (12) component
carrying the graphical data (UI and navigation) coming from the Main UI component. The
VideoController outputs two video streams to the Main Scaler (13) which scales images
to display size or the PiP Scaler (14) which scales images to picture-in-picture format).
Two VideoRenderer (15, 16) components perform the actual rendering. The audio path
starts from the TS DMX (5) or DVDReader (17) and PS DMX (18) components, goes to
the AudioDecoder (19) and AudioController (20), and ends up in the AudioOutput (21)
component, which controls the car loudspeakers. AudioController also accepts the audio
stream from the Radio (22) component and decides which of the two streams to play.
The car navigation is implemented as follows. The user inputs an address via the Smart
Typewriter (23) component. The address is next sent to the SearchEngine (24) component,
which finds the desired location by querying the DataBase (25) component, compares
it with the current car location received from the GPSReceiver (26), and computes the
best driving path. The path and driving instructions are sent to the Graphics component



i
i

“thesis” — 2009/4/22 — 14:06 — page 127 — #132 i
i

i
i

i
i

7.5. CASE STUDY: CAR MEDIA CENTER 127

for video rendering and to the AudioController component for voice messages. Finally,
the Timer (27) and Logger (28) components perform system-wide synchronization and
logging.

7.5.1 Visualization results
During the analysis phase of the CMC system described above, the CARAT simulation
produced a number of software metrics were produced, such as CPU load, memory con-
sumption, and component availability. Other metrics, such as the different types of ven-
dors of the off-the-shelf software components involved in the design, were readily avail-
able from the component repository. A number of questions of the designers involved
these metrics, as follows:

• How are component functions related to vendors?

• Which components are on the video or audio paths?

• Which components have user interface functions?

• Is performance-sensitivity related to functionality?

• How is availability related to functionality?

These questions relate well to our areas of interest. Indeed, we could define one
separate area of interest for all components which fall into one of the categories induced
by the above questions. Next, we could visualize the correlation of these areas of interest
to answer the questions.

In total, the designers of the system defined seven areas of interest, as shown in Fig-
ure 7.4.

Figure 7.4: Areas of interest for the CMC architecture

For constructing the areas, we used thresholds on the metric values, based on values
mentioned as relevant by the actual system designers. Introducing a threshold hides the
actual metric values on the components, but, on the other hand, it simplifies understanding
by producing a simple overview of the system.

Our users first tried to visualize these areas of interest using the standard metric icons
provided by MetricView tool, which they were familiar with [107], by assigning differ-
ent marker icon shapes and colors to every area. Components in one area thus share the
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same marker shape and color, which are chosen in some way so that they look different
for different areas. The markers are also scaled to reflect the metric values before thresh-
olding, but this aspect is not important in the following discussion. Figure 7.5 shows the
result for three such areas, related to components shading the same vendor, components
involved in the video and audio paths, and components which are sensitive to availability,
performance, and user interaction aspects. As expected, this visualization is not very easy

Figure 7.5: AOIs for the CMC system (shown with icons)

to follow, due to the difficulty in correlating small icons spread over a relatively large
diagram.

Next, the users tried to visualize the same areas, this time using the inner-skeleton-
based splatting method described in Chapter 3. Figure 7.6 shows the result, which uses
the same area colors as for the markers in Figure 7.5. The areas are now easier to follow.
Looking at the Vendors and Paths visualizations, for example, we see now easily that all
video components (A3) come from vendor A (A1).
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Still, this visualization has some problems. In the Paths view (Figure 7.6 middle), it is
not quite clear whether the leftmost component is in both the video (A3) and audio (A4)
areas. Also, in the Sensitivity view (Figure 7.6 bottom), it is not clear how the availability
(A5) and performance (A6) areas overlap exactly. Moreover, the star-shaped form of
the AOIs is somehow visually distracting. This suggested (at least to one user) there is
something special about the element(s) located at the star center, which is of course not
the case.

We used next our improved outer skeleton rendering method. The result is shown in
Figure 7.7. In the middle image, we see a dark area around component 1 (leftmost)1.
This says, as explained in Section 3.5.2, it is in two areas (i.e. video and audio). The
advantage of this visualization is even clearer when we compare Figure 7.7 (bottom) with
Figure 7.6(bottom). The dark areas show now easily the overlap of A5 (availability)
with A6 (availability) and A7 (performance). Comparing the Sensitivity with the Vendors
and Paths views answers further questions. We see that only video components (A1) are
performance-sensitive (A6). The interaction-sensitive components (A7) are found only at
the beginning of both video and audio paths (A3,A4). Only components from vendor B
(A2) have availability-related problems (A5), except video component 11 which is from
vendor A. Finally, we locate three interesting components (VideoController, MainScaler
and PiP Scaler, i.e. 11,13, and 14 in Fig. 15) which are both performance and availability-
sensitive.

Finally, let us mention that we can show diagrams, component metrics, and areas of
interest together in a single view, if desired. Figure 7.8 illustrates this with a snapshot
from the actual visualization tool used in this project. The various user interface controls
support several navigation, selection, and searching functions, in line with the visualiza-
tion requirements outlined earlier in Section 7.3.

Apart from the CMC system, we used our AOI visualization for several other component-
based systems designed and simulated with the CARAT framework. A second example
featuring a JPEG decoder was described earlier in Section 6.4.1. This second example also
demonstrates the visualization of area-level metrics within the analysis of component-
based systems.

7.6 Evaluation

Within the project, we conducted several sessions with designers to present our tool,
demonstrate our visualization techniques, and get feedback. This development was origi-
nally driven by the specific project requirements listed in Tables 7.1 and 7.2. User feed-
back was important in several aspects, and allowed us to perform several improvements
of our visualization method, as well as establish and refine the general requirements of
the AOI rendering method (see Table 3.2), which we used after that throughout our work.
These improvements, as well as other relevant user feedback elements, are discussed next.

1In the following, the component numbers refer to Figure 7.3
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7.6.1 AOI construction
The initial technique used within our evaluations was the inner skeleton method (Sec-
tion 3.4). From early stages, users noticed and reported several limitations of this tech-
nique, such as the inability to handle complex area configurations containing elements
situated far away on the same diagram. Interestingly, the generation of ’false colors’ due
to the blending of the actual area colors, which is discussed in Section 3.5.2, was not
perceived as a problem by the users. This may be due to the fact that there were relatively
few (under 5) areas on a diagram at a single time, and that the overlaps were, in the initial
CMC case study, relatively small.

However, the inability of the inner skeleton areas to handle complex geometric con-
figurations was clearly reported as problematic. This led us to the development of the
outer skeleton method (Section 3.4). This method was immediately perceived as superior,
which led us to its adoption and to the further refinements described in Section 3.6.

7.6.2 Interactivity and robustness
A requirement mentioned as essential by users of our visualization, even in its early
stages, was interactivity. In detail, the possibility to perform both interactive re-layouts
of the component diagram, e.g. by dragging the elements around with the mouse, and
interactive changes in transparency and coloring, were mentioned as highly desirable by
actual users. Together with this, robustness of the AOI rendering method, i.e. its ability to
handle complex configurations without producing incorrect results, was mentioned as es-
sential. This led to a number of further improvements to the AOI method (Section 3.6.3),
as well as some of the computational optimizations mentioned throughout Chapter 3.

7.6.3 Area-level metrics
As the first results of our flat-shaded AOI allowed addressing some of the developers’
questions such as the ones mentioned at the beginning of Section 7.5.1, a set of refined
questions appeared. For example, instead of ”is performance-sensitivity related to func-
tionality?”, the question would be ”in what measure is performance-sensitivity related to
functionality?”. These questions prompted our further research into ways to show the
actual variation of a metric on an area of interest, and ultimately to the creation of the
area-level metric visualization described in Chapter 6.

7.6.4 Smooth navigation
In the beginning, users of our AOI visualizations were not familiar with the concepts of
’areas of interest’. Moreover, we noticed that the visualization tool was also frequently
used for other tasks than just answering questions related to areas of interest, such as
browsing the system architecture. For this purpose, the possibility to smoothly navigate
between a ’classical’ diagram-like view and a diagram view annotated by the colored areas
of interest, by means of interactively tuning the areas’ transparencies, was one of the most
used interaction features. This underlies our initial claim from Chapter 1 that users are
more inclined to adopt a visualization tool when the tool allows them to incrementally add
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new features to an already known, familiar, visualization, such as the diagram view. In
our case, this view was familiar from the CARAT designer tool (compare e.g. Figures 7.3
and 7.8).

7.6.5 Tool integration
Probably the most important requirement mentioned by the users of our visualization
was its integration within the accepted workflow of the project, in this specific case the
CARAT-based toolkit described in Section 7.4. This did not come as a surprise, as visual-
ization tool integration is frequently mentioned as one of the main issues in tool adoption
within the software industry [46, 83]. Here, as well as in many other contexts, this re-
quired a high amount of custom development and implementation work, more often than
not unrelated to actual visualization issues, as well as a high amount of effort needed to
understand the specific requirements of the users. However, without this effort, we are
almost certain that it would not have been possible to convince the other project partners
to consider visualization as a useful contribution to the overall project goals.

7.7 Conclusion
In this chapter, we have presented the experiences and lessons learnt when using the AOI
visualization method introduced in Chapter 3 within the workflow of a large software
engineering project containing a mix of research and industry participants. The overall
conclusion, drawn after extensive discussions with the project participants during several
working sessions spread over a period of two years, is that the AOI technique was per-
ceived as useful and intuitive in understanding the correlation of a system’s architecture
with several (non)functional aspects, represented by areas of interest. This experiment
also provided additional confirmation of our suppositions that the use of a known visu-
alization metaphor, in our case the traditional node-and-link component diagram, and a
high level of integration with other tools used in the established workflow, are essential el-
ements that contribute to the acceptance and success of a visualization tool in an industrial
software development context.
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Figure 7.6: AOIs for the CMC system (shown with the inner skeleton rendering method)
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Figure 7.7: AOIs for the CMC system (shown with the outer skeleton rendering method)
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Figure 7.8: A snapshot of the area-and-metrics visualization tool
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Chapter 8

Discussion

In this chapter, we provide a short discussion of the main results and findings obtained
during the research which was described in detail throughout this thesis. As such, we do
not repeat the specific conclusions drawn at the end of each of the previous chapters. The
focus here is rather on outlining higher-level findings, or cross-cutting concerns, observed
during the overall work in this thesis, which may have an influence on the continuation of
this research.

8.1 Dimensions
In the beginning of this work, we identified three main requirements that an integrated
method for visualizing metrics and software architectures should follow: UML-related
look and feel, scalability, and understandability (Section 8.1). As such, the following
discussion of our findings will also be structured along these requirements, or dimen-
sions, with a focus on explaining the degree up to which these requirements have been
fulfilled. Within each dimension, we shall consider the three main algorithmic contribu-
tions presented in this thesis: visualization of areas of interest, member-level metrics, and
area-level metrics, as well as their possible interactions.

8.2 UML-like look and feel
The UML look-and-feel of all our visualizations appears to be well preserved by the
techniques developed throughout our work. First and foremost, the basis of all our vi-
sualizations consists of a classical rendering of a UML diagram [107]. The only salient
difference between this type of rendering and the ones produced by classical UML editors
such as Rational Rose, Poseidon, Telelogic’s Tau or MetricView, is the use of transparency
and blending to (de)emphasize certain elements. However, in the context of diagram ren-
dering, transparency is used sparingly. By default, there is a single transparency value for
the entire diagram, which is close to one (opaque). In a single scenario, we use a separate
low transparency value for the association edges of the diagram (Section 5.4.3). As an

135
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additional observation, we noticed that, when adding method-level metrics (Chapter 5),
the transparency of the methods’ textual names needs to be turned down so that the text
does not interfere with the metric lens.

Another observation is the good fulfilling of the predefined layout constraint. That
is, in virtually all use cases and experiments we did, we used in our visualizations the
unchanged diagram layouts as we got them from earlier stages such as manual user lay-
outs or input XMI files. The only case where we actually computed diagram layouts from
scratch was in the reverse-architecting scenarios described in Section 5.4. However, we
should stress that our work did not target the improvement of the quality of layouts. Some
of these automatically computed diagram layouts were expectedly not optimal, and that
we had to adjust a few either by hand or by changing the parameters of the layout en-
gines used. In this context, it is important to note that these layout adjustments were not
triggered by our visual additions to UML diagrams, such as metrics and areas of interest.
Rather, the required adjustments were caused by problems in the structural comprehen-
sibility of the produced diagrams. As such, we believe that our additional visualizations
(metrics and areas) do not require layout changes for diagrams which already exhibit good
structural comprehensibility.

Finally, we note that the rendering of method-level and area-level metrics, and of the
areas themselves, leaves the look-and-feel of the UML diagrams largely unchanged. In-
formation is added either inside element frames (method-level metrics) or between such
frames (area-level metrics and areas). This, added to the fact that we can globally tune
the transparency of all metrics and areas, makes our visualizations functionally look like
annotations of UML diagrams. This is in strong contrast with the structure-and-metrics
visualizations discussed in Chapter 2 (except MetricView that our work inherits from),
which choose radically different layouts and shapes to show their information as com-
pared to UML diagrams. As already stated, this is an important choice. We argue that
UML-like visualizations favor acceptance and comprehensibility, at a possible expense in
terms of scalability and freedom of constructing new, possibly more effective, visual rep-
resentations. A large-scale longitudinal study for determining whether UML-like visual-
izations are indeed more effective than other types of metrics-and-structure visualizations
would be needed. Such a study, however, is subject of future work.

8.3 Scalability

The main aspect of scalability we are interested in is the visual one. That is, we are
interested in understanding what is the maximal size of diagrams and maximal number
of areas of interest, metrics per element, and metrics per area, that we can visualize at
one time. This aspect is strongly correlated with understandability (larger diagrams and
more metrics arguably generate images which are harder to understand). We discuss
understandability separately in the next section. Here, we focus strictly on algorithmic
(computational) scalability of our proposed techniques.

From a computational perspective, the scalability of our improved rendering algo-
rithm for areas of interest (Section 3.6) is sufficient for the targeted domains, i.e. typical
UML diagrams having at most 100..200 elements and 10..20 areas of interest. Higher
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amounts of data are theoretically possible, but highly unlikely in practice on typical dia-
grams. Moreover, rendering more data at one makes little sense with our techniques, as
understandability becomes a bottleneck (see Section 8.4).

The rendering complexity for a single area of interest is dominated by the cost of trian-
gulating its contour (Section 3.5.2), in the case we render the area filled with a single color
or when we use area-level metrics (Chapter 6). When sampling the area’s contour with
n points, this cost is O(nlogn). The other costs, e.g. computing the nearest-element to a
given contour point and the actual rendering cost, are much smaller (see Section 3.5.1).
Overall, a careful implementation using spatial search structures, fast triangulation meth-
ods, and optimized OpenGL rendering code, delivers near-real-time performance for the
typical datasets mentioned above. This is important as users can edit the diagram or
change visualization options interactively to explore different analysis scenarios.

The rendering of method-level metrics (Chapter 5) is equally scalable. This process is
linear in the number of methods visible on a class diagram times the number of metrics
chosen for display for these methods. Since typical diagrams will show at most a few
hundreds of such (method,metric) pairs, the rendering is fast. Moreover, the underlying
table-lens technique used to visualize these pairs is proven to work in real time for data
tables of tens of thousands of items [101].

Finally, the rendering of the area-level metrics (Chapter 6) is also scalable to our
targeted datasets. For one area, the complexity of this method is again dominated by the
triangulation cost, which is discussed above for the rendering of filled areas of interest.
Apart from this, the other main computational task in the area-metrics technique is the
Laplacian diffusion used to smooth out colors and compute the shading (). This cost is
linear in the number of mesh points within the triangulated area. Overall, several area-
level metrics can be rendered in subsecond time on complex diagrams.

8.4 Understandability

Understandability of a (software) visualization is naturally related to the tasks that the
visualization is supposed to support. Strictly speaking, we cannot measure understand-
ability in general, but should design either several understandability measurements for
specific tasks, or factor out and evaluate a number of general understandability measures
which are relevant for a set of tasks.

In this thesis, the most detailed analysis of understandability relates to the rendering
of the areas of interest, which is done by means of a user study involving quantitative and
qualitative aspects (Chapter 4). The considered tasks revolved around quickly detecting
which elements are part of a given area and which areas contain a given element. Overall,
the conclusions of this experiment are that our automatically-generated areas of interest
are similar in visual quality and comprehensibility to good-quality areas drawn by human
users, but they cannot match the quality of the best-drawn areas by humans. The main
factors limiting the understandability of areas-of-interest relate to configurations when
several areas visually overlap at a given place. Specifically, near-tangent contours cause
problems in visually tracking the contour of an area of interest (Section 4.2.3). Such
problems exist less in user-drawn configurations, as users tend to consider the already
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drawn areas when drawing a new one.
The algorithms presented in Chapter 3 can be extended to incorporate global opti-

mizations that would reduce such contour crossings. For example, one could detect zones
of contour overlaps using a distance function between contours similar to the one intro-
duced in Section 4.3. Next, the contours placement could be optimized by using a cost
function that incorporates all quality aspects, such as high-angle contour intersections,
contour smoothness, and the correct inclusion of elements. However, this potential so-
lution would require additional study, as it is not clear design a cost function which is
effective in encoding the desired quality metrics and also very efficient to optimize.

For the method-level metrics, understandability is related mainly to the tasks of finding
elements having (large or small) outlier metric values for several methods; and finding
metrics which are correlated, that is, show similar values for the same methods of different
diagram elements. Here, we noticed that the encoding of the metric values in both metric
bar length and hue (Section 5.4.1) is considerably more effective than using just one of the
encodings. This is not surprising, as the visual space allocated to one single metric can be
as small as a few tens of pixels when zooming out on large diagrams. In terms of number
of methods shown, understandability is good up to several tens of methods per class, due
to the table lens metaphor. In terms of number of metrics, understandability becomes
limited once we try to visualize more than three metrics in the same time on the same
diagram. The reason seems to be due to a layout constraint: in many (class) diagrams,
element icons are relatively thin but tall, i.e. they allow displaying many methods, but not
long signatures. Tables having many columns will thus have little space on the horizontal
axis for showing each column (see e.g. Figure 5.10). If we relax our original constraint
and allow changing the diagram layout by making the elements wider, visualizing more
than three metrics with good results should be possible.

For area-level metrics, understandability is related mainly to the tasks of finding el-
ements having (large or small) outlier metric values in several areas; elements having
different, or similar, values, within all areas they are part of; and getting an idea over the
evolution of a single metric over an entire area. For these tasks, the understandability of
the visualizations produced by our method is limited by two main factors. First, there is
the choice of the colormap and interpolation method. As discussed in Section 6.5.2, using
colormaps with strongly different hues is recommended when color interpolation is pre-
ferred (the suitability of the latter being a matter of debate). Second, area metrics become
hard to understand at places where more than three areas overlap. This seems to be inher-
ent to our method of combining colors at one point using texture weaving (Section 6.3.2).
It may be possible to design different visualizations that address the above-mentioned
tasks for area-metrics with a higher degree of understandability. However, this is subject
for future work.

8.5 Conclusions

From the perspective of our three main requirements, we can conclude that the techniques
presented in this thesis allow us to construct combined visualizations of software system
diagrams and software metrics defined on groups of elements and element members, and
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that these visualizations maintain a UML-related look and feel, scale well to the typical
datasets available in software architecting, and are understandable from the perspective of
typical program comprehension tasks. Moreover, our techniques require a minimal user
intervention, i.e., work automatically, do not pose additional requirements or limitations
on the data in the treated diagrams, and can be added in a non-intrusive way to classical
UML-like software visualizations.
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Chapter 9

Conclusion

9.1 Summary
In this thesis, we have studied the creation of visualizations of combined software ar-
chitecture diagrams and software metrics. For the architectural data, we have used a
UML-like representation of the software structure, as UML diagrams are arguably well
understood and widely accepted by the main target group of our visualizations, the soft-
ware architects and designers involved in creating and understanding complex software
systems. Besides the structural data which is inherent to UML diagrams, such as entities
and relationships between entities, we also considered a new data type: groups of ele-
ments that are related to one concern, or aspect, in a given system design, called areas of
interest. We have presented methods to render areas of interest on software diagrams in
a way that imitates the style actual human users would draw such annotations on paper
or whiteboard diagrams. For metrics, we have presented ways to visualize metrics de-
fined on diagram element members, such as class methods, as well as metrics defined on
elements involved in areas of interest.

Overall, the presented techniques work as annotations on existing UML-like dia-
grams, rather than proposing entirely new ways for combining metrics with diagrams,
such as, for example, 3D visualizations. Using transparency and blending, all visualized
items, i.e. metrics and areas, can be emphasized, visually pushed in the background, or
completely removed from a given UML diagram visualization, without changing the vi-
sualized diagram’s layout. This enables users to smoothly navigate between a classical,
well-understood, diagram view, and a diagram view annotated with additional metric or
area-of-interest information.

We have evaluated the proposed visualizations on several levels. First, we have con-
ducted a user study that compared the understandability of our automatically-generated
areas of interest with user-drawn areas of interest, and elicited a number of algorithmic
improvements that brought our visualizations close to good human drawings. Secondly,
we have used our visualizations in several case studies focusing on understanding various
aspects of software architectures, with a focus on reverse engineering and maintainabil-
ity. Finally, we have used the prototype visualization tool that was constructed during this

141



i
i

“thesis” — 2009/4/22 — 14:06 — page 142 — #147 i
i

i
i

i
i

142 CHAPTER 9. CONCLUSION

work in the framework of an academic-industry collaboration, and observed the reactions
of actual users with respect to the proposed visualization methods.

9.2 Directions of Future Work
There are several possible directions of future work from the results presented here. In
the following, we outline these directions, ordered on their perceived potential to produce
useful results for the overall task of helping users understand the correlation of structures
with metrics on diagrams.

9.2.1 Metrics on relations
All techniques presented in this thesis consider the visualization of metrics defined on
entities in the entity-relationship model that underlies a software architecture diagram.
However, many such metrics exist also for relationships [51]. For example, for asso-
ciations that indicate function calls, we can consider the number of times a function is
called; the length (duration) of the call; whether the function is virtual, overloaded, static,
or a remote procedure call. For associations that indicate data members, we can con-
sider the number of times the member is accessed, and whether the access is a read or a
write. For inheritance relations, we can consider the type of inheritance (public, private,
or protected); or the amount of interfaces which is defined, specialized, or used within the
inheriting class.

It is challenging to consider how to render several such metrics atop of relations in
a UML-like diagram, especially if we want to keep our constraints of not modifying a
given layout. The problem is not trivial, since typical diagrams can have a large number
of relations, whose visual line-like representations can intersect several times. A different
way would be to explore visualizations where relations become first-class citizens [71],
and see how such methods can be combined with classical UML diagram visualizations.

9.2.2 Relations and areas
Our areas of interest are, so far, strictly defined in terms of entities. However, it may
be desirable to explicitly include relations within areas of interest (Section 3.8.2). This
would be useful, for example, in the case when certain elements are involved within an
area of interest from the perspective of a given relation, and involved in other areas, or
no area, from the perspective of another relation. Since a UML-like diagram has a single
representation for a given element, we may need ways to make the connection between
areas and relations visually explicit on the diagram.

Different routes are possible to address the above goal. First, one could constrain
the geometric shapes and positions of areas of interest so that they make explicit which
relations between their contained elements these areas include. However, using solely
this technique, the visual connection between an area and the relations it includes may
be not sufficient. Secondly, one could design additional visual cues to mark the inclusion
of relations within a given area (or areas), such as using specific shading and texturing
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between that area’s contour and the included relations. This technique may give good
results, however it can also potentially cause undesired occlusions and visual clutter. Fi-
nally, one may consider a way to draw the areas of interest which is radically different fro
our current Venn-Euler diagram-like shapes, with the aim of making the inclusion of both
entities and relations within an area visually explicit.

9.2.3 Visual scalability
As outlined in Chapter 8, there are several limitations to the visual scalability of our
visualization methods. Improved results and increased usability can be obtained if we
augment the number of method-level and area-level metrics displayed at a given time on
a diagram; and if we reduce the visual clutter created by multiple overlapping areas of
interest. For the latter goal, it seems possible to adapt or reuse many of the geometric and
shape processing methods in existence, such as feature-preserving smoothing or medial
axes, so that we construct geometric shapes for the areas which are closer to those quality
criteria which are perceived as important by users. Assuming that we have reliably de-
tected which are these quality criteria, and that we can quantify them, the main concern
here is to maintain the current robustness and speed of our visualization methods, which
are indispensible for their actual use in practice.

9.2.4 Different application domains
Essentially, there is little that makes our work here strictly applicable to software engi-
neering diagrams. As outlined in Chapter 2, metrics and areas of interest occur also in
datasets emerging from other domains, such as social network and organization analysis.
It would be interesting to see whether the techniques presented in this thesis are applicable
to these other domains and datasets, and which modifications may be needed. In particu-
lar, it would be challenging to consider relational diagrams defined over ’concrete’ spaces,
such as geographical maps, and to extend the idea of areas of interest to incorporate the
inclusion of entire zones from such maps, rather than the more restricted definition we
have now which focuses only on inclusion of nodes from a graph.

As a less technical, but still suggestive, example in this direction of larger applicability
of our areas of interest to different domains, we choose to end this thesis with an image
taken from a movie [86] which shows a doctor sketching a diagram showing relations
between various diseases, an image which is strikingly similar to our own areas of interest
on software architecture diagrams.
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Figure 9.1: Areas of interest present in different application domains
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