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Abstract

Multidimensional datasets are increasingly more prominent and important in data
science and many application domains. Such datasets typically consist of a large
set of observations, or data points, each which is described by several measure-
ments, or dimensions. During the design of techniques and tools to process such
datasets, a key component is to gather insights into their structure and patterns,
a goal which is targeted by multidimensional visualization methods. Structures
and patterns of high-dimensional data can be described, at a core level, by the
notion of similarity of observations. Hence, to visualize such patterns, we need
effective and efficient ways to depict similarity relations between a large number
of observations, each having a potentially large number of dimensions. Within the
realm of multidimensional visualization methods, two classes of techniques exist
– projections and similarity trees – which effectively capture similarity patterns
and also scale well to the number of observations and dimensions of the data.
However, while such techniques show similarity patterns, understanding and in-
terpreting these patterns in terms of the original data dimensions is still hard.

This thesis addresses the development of visual explanatory techniques for the
easy interpretation of similarity patterns present in multidimensional projections
and similarity trees, by several contributions. First, we propose methods that make
the computation of similarity trees efficient for large datasets, and also allow their
visual explanation on a multiscale, or several levels of detail. We also propose
ways to construct simplified representations of similarity trees, thereby extending
their visual scalability even further. Secondly, we propose methods for the visual
explanation of multidimensional projections in terms of automatically detected
groups of related observations which are also automatically annotated in terms
of their similarity in the high-dimensional data space. We show next how these
explanatory mechanisms can be adapted to handle both static and time-dependent
multidimensional datasets. Our proposed techniques are designed to be easy to
use, work nearly automatically, handle any types of quantitative multidimensional
datasets and multidimensional projection techniques, and are demonstrated on a
variety of real-world large datasets obtained from image collections, text archives,
scientific measurements, and software engineeering.
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Samenvatting

Multidimensionele datasets zijn steeds prominenter and belangrijker in data sci-
ence and een groot aantal toepassingsgebieden. Deze datasets bestaan in het al-
gemeen uit een grote verzameling observaties, of datapunten, waarbij elk punt
beschreven wordt door een aantal metingen of dimensies. Tijdens het ontwerpen
van technieken en tools voor het verwerken van dergelijke datasets, een cruciale
taak is het verzamelen van inzichten in de structuur en patronen van deze datasets.
Deze taak is het onderwerp van multidimensionele visualisatiemethodes. Op een
basisniveau kunnen structuren en patronen in hoogdimensionale data beschreven
worden door het concept van similariteit van observaties. Voor het visualiseren
van dergelijke patronen heeft men dus technieken nodig die similariteitsrelaties
tussen veel observaties, elke met veel dimensies, afbeelden. In het context van
multidimensionele visualisatiemethodes kent men twee klassen van technieken
die similariteitspatronen effectiev vangen en ook schaalbaar zijn in het aantal ob-
servaties en dimensies van de data: projecties en similariteitsbomen. Alhoewel
deze technieken similariteitsrelaties kunnen afbeelden, het begrijpen en inter-
preteren van dergelijke patronen in termen van de oorspronkelijke datadimensies
is uitdagend.

Dit proefschrift beschrijft de ontwikkeling van visueel uitlegtechnieken die het
makkelijk interpreteren van similariteitspatronen in multidimensionele projecties
en similariteitsbomen, mogelijk maken. Als eerste bijdrage presenteren wij meth-
odes die het berekenen van similariteitsbomen efficiënt maakt voor grote datasets,
en deze bomen ook visueel uitlegt op een multischaal manier, via verschillende
niveaus van detail. We laten ook zien hoe versimpelde representaties van simi-
lariteitsbomen geproduceerd kunnen worden, waarbij hun visuele schaalbaarheid
verder toeneemt. Als tweede bijdrage presenteren wij methodes voor het visueel
uitleg van multidimensionale projecties door middel van automatisch gedetecteerde
groepen van gerelateerde observaties die ook automatisch afgebeeld worden op
basis van hun hoogdimensionale similariteit. We laten vervolgens zien hoe deze
uitlegmechanismen aangepast kunnen worden voor het afhandelen van statische
en ook tijdsafhankelijke datasets. Onze technieken zijn ontworpen voor gebruik-
ersgemak, werken bijna volautomatisch, zijn te gebruiken met alle kwantitatieve
multidimensionale datasets en projectietechnieken, en worden gedemonstreerd
op een varieteit van realistische datasets uit beeldverzamelingen, tekstarchieven,
wetenschapelijke metingen, en software engineering.
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Resumo da tese

Conjuntos de dados multidimensionais são cada vez mais proeminentes e impor-
tantes em data science e muitos domínios de aplicação. Esses conjuntos de dados
são tipicamente constituídos de um grande número de observações, ou objetos,
cada qual descrito por várias medidas, ou dimensões. Durante o projeto de téc-
nicas e ferramentas para processar tais dados, um dos focos principais é prover
meios para análise e levantamento de hipóteses a partir das principais estruturas e
padrões. Esse objetivo é peseguido por métodos de visualização multidimensional.
Estruturas e padrões em dados multidimensionais podem ser descritos, em linhas
gerais, pela noção de similaridade das observações. Portanto, para visualizar esses
padrões, precisamos de meios efetivos e eficientes para retratar relações de simi-
laridade dentre um grande número de observações, que potencialmente possuem
um grande número de dimensões cada. No contexto dos métodos de visualiza-
ção multidimensional, existem duas categorias de técnicas – projeções e árvores
de similaridade – que efetivamente capturam padrões de similaridade e oferecem
boa escalabilidade, tanto para o número de observações e quanto de dimensões.
No entanto, embora essas técnicas exibam padrões de similaridade, o entendi-
mento e interpretação desses padrões, em termos das dimensões originais dos
dados, ainda é difícil.

O trabalho desenvolvido nessa tese visa o desenvolvimento de técnicas explica-
tivas para a fácil interpretação de padrões de similaridade presentes em projeções
multidimensionais e árvores de similaridade. Primeiro, propomos métodos que
possibilitam a computação eficiente de árvores de similaridade para grandes con-
juntos de dados, e também a sua explicação visual em multiescala, ou seja, em
vários níveis de detalhe. Também propomos modos de construir representações
simplificadas de árvores de similaridade, e desse modo estender ainda mais a
sua escalabilidade visual. Segundo, propomos métodos para explicar visualmente
projeções multidimensionais em termos de grupos de observções relacionadas, de-
tectadas e anotadas automaticamente para explicitar aspectos de sua similaridade
no espaço de alta dimensionalidade. Mostramos em seguida como esses mecanis-
mos explicativos podem ser adaptados para lidar com dados de natureza estática
e dependentes no tempo. Nossas técnicas são construídas visando fácil utilização,
funcionamento semi automático, aplicação em quaisquer tipos de dados multidi-
mensionais quantitativos e quaisquer técnicas de projeção multidimensional. De-
mostramos a sua utilização em uma variedade de conjuntos de dados reais, obti-
dos a partir de coleções de imagens, arquivos textuais, medições científicas e de
engenharia de software.

Palavras-chave:
Visualização, Análise visual, Dados multidimensionais, Computação gráfica
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1Introduction

In the last years, the world has witnessed several disruptive changes created by
technology. Among these, information technology (IT) stands out at the forefront
of changes that we see both in daily life and also in professional and industrial
activities. Within the IT context, we can further classify change as related to hard-
ware, data, and software. Hardware capabilities have enormously increased in
terms of computing power, computing speed, and ease of use, on the one hand,
while form factors and prices continuously drop. For example, a consumer-grade
Graphics Processing Unit (GPU) in a modern mobile phone provides considerably
more computing power than a state-of-the-art desktop workstation fifteen years
ago. Data is the second key element of the observed change. The size (Volume),
speed of change (Velocity), and diversity of types of datasets being acquired and
manipulated (Variability) have increased hundreds of times in the last years, lead-
ing to what is currently known as the ‘big data revolution’ with its 3V challenges.
Finally, software algorithms, computing paradigms, and development tools have
widely diversified, leading to increasingly sophisticated applications, running on
all types of hardware, and addressing all types of data out there.

However, such large developments always come paired with equally large chal-
lenges. In this thesis, we focus on the pair data and software, in the following
sense. First, we observe that the 3V characteristics of data are making the efficient
and effective use of large, complex, hybrid, and time-dependent datasets increas-
ingly harder in terms of using such datasets in concrete applications. The increase
of volume does not come as a surprise: Large datasets are, by definition, harder
to process (efficiently, in any case) than smaller datasets, all other things being
kept equal. The same holds if we compare time-dependent (dynamic) datasets
with time-independent (static) datasets. However, variability poses several specific
challenges. Simply put, given a dataset of N data items (also called observations
or sample points), it is far harder to analyze, process, or even make sense of such
a dataset in the case the N points have different structure and/or semantics than
in the case they represent the same (simple) type of data elements. This implies
increasingly complex challenges in terms of the design of software to handle such
datasets: Even in cases when the problem to solve on the data at hand is relatively
well understood, designing such software can become hard due to the 3V aspects
of the underlying data. As such, the increased size, complexity, and variability of
data induces increased difficulties for designing software applications to handle
such data, which in the end reflect in decreased ability of addressing the end-user
tasks for applications using the respective data.
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2 I N T R O D U C T I O N

Recognizing the importance of understanding big data spaces prior to designing
applications to handle such data, scientists and engineers have focused on devel-
oping methods, techniques, and tools for the exploration, analysis, and interpre-
tation of such data spaces. Such methods have emerged from many disciplines,
including data mining [67], machine learning [124], information systems [176],
database technology [5], cloud computing [23], and data visualization [183].
During this development, it has been recognized that, as the 3V aspects of big
data become increasingly large and intertwined, solutions for data exploration
need to include aspects taken from all above-mentioned disciplines, in order to
approach the challenges at hand from a multi-facet perspective.

Within this context, visual analytics has emerged as one of the key approaches
to understanding big data. Visual analytics, a synthesis of data visualization, data
mining, and human-computer interaction, focuses on the development of theo-
ries, techniques, and tools that facilitate analytical reasoning about (big) data by
the use of interactive visual interfaces [207, 31]. Since its inception, roughly one
decade ago, visual analytics has known an impressive development, currently ad-
dressing data-exploration problems in application domains as diverse as business
intelligence, medical science, engineering sciences, chemistry, physics, and social
sciences. One of the key tenets that makes visual analytics an attractive (and effec-
tive) solution to the so-called ‘sensemaking’ from data, is its iterative approach to
the task: The classical process of defining a hypothesis concerning a phenomenon
to which the data relates, defining a model to capture the hypothesis, instantiat-
ing the model, and verifying its results concerning the hypothesis, is kept in place.
However, this process is both significantly accelerated and made iterative by the
use of visual interactive tools. Simply put, end users can perform all above steps
rapidly and intuitively; and multiple exploration paths can be spawned, explored,
and either discarded or further refined, as needed, by iterating the steps of the
data-exploration process as many times as needed until a conclusion is formed –
or, in visual analytics terminology, insight is obtained or one has been able to make
sense of the data [101, 100].

However, as we shall see, while visual analytics promises to be an effective and
efficient solution to the problem of understanding data to further support the con-
struction of end-user applications or to provide the final insights required by such
use-cases, it is also confronted by several technical challenges. In this thesis, we
explore one type of such challenges, related to the dimensionality of the data at
hand. As we explain next in Sec. 1.1, datasets having high dimensionality are very
hard for humans to comprehend, thereby hard to intuitively and easily manipu-
late in a visual analytics pipeline. To this end, several specific techniques have
been designed, of which the so-called multidimensional projections have specific
properties which make them of high potential, as we next explain in Sec. 1.2. The
core research questions of this thesis related to the refinement of multidimen-
sional projections for supporting the understanding of high-dimensional data are
next distilled in Sec. 1.3. This introductory chapter is closed by the presentation
of an outline of this thesis in Sec. 1.4.
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1.1 Multidimensional data

Recalling the 3V aspects of big data, let us focus on the Volume, or size, aspect.
Roughly speaking, most data collections, or datasets, are structured as a set of so-
called observations, also called data points, measurements, records, or samples.
Each such observation is a record of the same type of aspect of the underlying
phenomenon being studied. Therefore, observations have the same structure, de-
fined in terms of what they measure, but take different values, defined in terms
of what the values of the measurements are. Per observation, one can measure a
single or multiple data values. When such multiple measurements are taken per
observation, one speaks of a multidimensional dataset. Here, each dimension, also
called attribute, variable, or feature, describes a different aspect of the data at
hand. Typically, all observations have values for the same set of dimensions. As
such, a multidimensional dataset can be thought of as a (large) table having one
row per observation and one column per dimension.

a) line chart

b) small multiples

c) stacked area charts

d) stacked bar chart

e) line charts

f) parallel coordinate plot

Unidimensional dataset Multidimensional dataset

Figure 1.2: Left: Unidimensional dataset visualized with a simple line chart (a). Right: Mul-
tidimensional dataset visualized with (b) small-multiple line charts; (c) stacked
area charts; (d) stacked bar charts; (e) line charts; (f) parallel coordinates.

Multidimensional datasets are common in virtually all domains of science and
engineering where (big) data is collected, analyzed, and visually explored. For ex-
ample, multimedia data (sound, image, and video) collections can be thought
of a set of observations, each being an individual content item. Here, dimen-
sions are typically extracted using machine learning techniques to characterize
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the observations in terms of their similarity, as this is perceived in the application
domain [74]. This enables next applications such as content-based retrieval and
browsing of large multimedia collections [95]. Collections of text documents can
also be thought of as multidimensional datasets. Here, an observation is a docu-
ment, and its dimensions are the frequencies of specific terms (keywords) com-
puted over the entire document collection [34]. Typical applications based on this
model are document retrieval, document indexing, and text collection summariza-
tions [141]. Many other application domains use multidimensional datasets, such
as business intelligence [70, 18], weather forecast [32], software maintenance
[106, 153], and customer analysis [33]. Several of these application domains will
be detailed in the context of the techniques and applications discussed later on in
this thesis.

Given the above model, it is clear that the size of a dataset is given by the size,
or number of cells, of the data table that would contain values for all observa-
tions over all dimensions. While this simple model captures the size of a dataset
quite well, it does not explain the various difficulties encountered when analyz-
ing multidimensional data. To understand this, consider a simple unidimensional
dataset having one attribute measured over 1000 observations, such as a time se-
ries depicting the evolution of a stock price. The size of this dataset is, obviously,
1000 numerical data values. Consider now a 10-dimensional dataset having ten
attributes measured over 100 observations, such as the description of 100 types of
computers along attributes such as price, CPU speed, memory size, hard disk size,
graphics card speed, and weight, up to a total of 10 such attributes. The sizes of
the two datasets are identical. However, the unidimensional dataset can be visual-
ized very easily, e.g. by using a classical line chart (Fig. 1.2a). This visualization is
very simple to interpret – most end users would be able to use it to detect patterns
such as peaks, valleys, plateaus, instability regions, and sustained growth or de-
cline. Moreover, line charts are very scalable to the number of observations, and
simple and fast to compute. In contrast, visualizing the second 10-dimensional
dataset is far more challenging. Using simple charts such as one line chart per
dimension (an instance of a broader class of techniques known as ‘small multi-
ples’, Fig. 1.2b), stacked area charts (Fig. 1.2c), stacked bar charts (Fig. 1.2d),
or superimposed line charts (Fig. 1.2e) do not reveal most of the interesting pat-
terns in the dataset, such as outliers, correlations of dimensions, groups of similar
observations, or independent dimensions.

1.2 The need for multidimensional data visualization

The previous section has outlined some of the challenges involving the under-
standing of data patterns existing in high-dimensional datasets. This problem has
received attention in several research fields, of which two most important ones
are machine learning and data visualization, discussed below.
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1.2.1 Machine learning

In machine learning, multidimensional data is essentially analyzed by using vari-
ous (semi)automatic methods that search for patterns of interest in a given dataset [124].
Such patterns can be as simple as finding correlated or independent dimensions,
finding groups of similar observations, finding outliers [79], ranging up to more
complex patterns such as shapes and distributions [15]. The key advantage of
such approaches is automation: Given that one knows which are the patterns of
interest, and how to describe them in terms of combinations of a dataset’s di-
mension, one can design algorithms to automatically search for such patterns in
the data, and report their presence to the end user [74]. This process can function
largely without any human intervention, such as in the case of classifiers and clus-
tering techniques being used to group large data collections into types, or classes,
that reflect application-specific concerns [92, 107]. However, this advantage of
automated methods does not come for free – one must know in advance how
to design, train, and fine-tune machine learning algorithms to detect the desired
patterns of interest. In many cases, doing this is far from simple. Challenges that
appear during this process include the following:

• Description: It is far from obvious how to describe such patterns in terms of
the available data dimensions. For example, consider the task of capturing
the similarity of images in a collection for the purpose of classification or
pattern recognition. To this end, a multitude of features can be extracted
from images [46]. From these, how to find those features that are the most
effective in capturing specific patterns present in the images?

• Decision support: Consider the construction of a classifier tool used to clas-
sify, or label, observations – a standard task in machine learning [47]. In
supervised learning, this is typically done by training the classifier using a
limited-size set of manually labeled examples. However, it is far from clear
how to optimally select such a set, or how to fine-tune the various parame-
ters of the machine learning technique being used so it achieves the desired
classification performance next. To do this, the designer would ideally need
to understand how the data is organized in the high-dimensional space.

• Discovering the unknown: There are also cases when one does not know
what to look for specifically in the data, i.e., one is interested to ‘discover
the unknown’ insights that may be part of the data at hand [183]. This task
cannot be approached by standard machine learning techniques, since we
do not know what to search for in the first place.

1.2.2 Multidimensional visualization

The above challenges of machine learning are addressed by a second class of
methods – multidimensional data visualization. Multidimensional data visualiza-
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tion is a subfield of information visualization, the branch of data visualization
that focuses on the visual depiction of large, non-spatial, abstract data spaces
[126, 172]. Like classical scientific visualization, multidimensional visualization
attempts to map the available data to visual variables (position, shape, size, ori-
entation, texture, color, animation) so that patterns of interest, as well as unex-
pected patterns, are easily detectable by looking at the produced images [114].
Many multidimensional data visualization techniques have been proposed, start-
ing from simple (but usually limited) ones, such as the charts shown in Fig. 1.2a-e,
to more advanced ones, such as the parallel coordinate plots (Fig. 1.2f) [114]. A
comprehensive survey of these techniques will be presented later in Chapter 2,
Sec. 2.3.1.

In the following, we focus on two classes of multidimensional visualization tech-
niques – projections and relational data visualizations. As we shall see, these are
related in intimate ways, and these relationships will lead us to the formulation
of our research questions, described next in Sec. 1.3.

color map values of  

a selected column 

Data table 2D projection 

a table row gets 

mapped to a point 

2D point distance reflects 

nD row distance 

2D2D

nD

Figure 1.3: Conceptual operation of a projection. Image taken from [38].

1.2.2.1 Dimensionality reduction techniques

Within the large palette of multidimensional visualization techniques, projections
or dimensionality reduction techniques occupy a particular place. Simply put, pro-
jections address one of the key difficulties of understanding multidimensional
data – the large number of dimensions – by reducing this number while main-
taining important interrelations between data points. Given a high-dimensional
input dataset, a projection technique outputs a low-dimensional dataset, typically
having the same number of observations (Fig. 1.3). The dimensions of the latter
usually aggregate or amalgamate the data variation present along the original di-
mensions of the input dataset in ways that preserve the so-called data structure
– that is, groups of similar observations, outliers, trends, and correlations. When
the number of dimensions of the output dataset is two or three, such datasets can
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be directly visualized using, for example, 2D and 3D scatterplots [171]. If the di-
mensionality reduction was properly done, in the sense of preservation of the data
structure, the users should be able to employ such scatterplots to reason about the
high-dimensional data patterns. For instance, if the projection preserves distances
between observations or neighbors of observations, then we can see whether the
input data consists of coherent groups of highly similar observations by looking
for groups of densely-packed points in the projection. As we shall see in Chap-
ter 2, Sec.2.4, many multidimensional projection techniques exist that cover the
entire spectrum from fast and simple to implement, but less able to preserve data
structure [96], to sophisticated techniques that can be tuned to preserve various
aspects of the data and that can handle datasets of hundreds of thousands of
observations and hundreds of dimensions [95].

Projections combine several attractive aspects, as compared to other visualiza-
tion techniques for multidimensional data: Like certain machine learning tech-
niques, they can be applied with minimal or no user intervention; they are ar-
guably the most visually scalable visualization techniques out there for high-
dimensional data – an observation having tens up to hundreds of dimensions is
reduced to a single scatterplot point; recent projection techniques are accurate,
robust, and can handle large volumes of data (both in number of observations
and number of dimensions), and data of different attribute types, efficiently; and
understanding the metaphor of a scatterplot is arguably simpler for typical end
users than other multidimensional visualization metaphors such as parallel coor-
dinates.

However, projections also have a significant drawback. As mentioned earlier in
this section, dimensionality reduction typically takes the form of synthesizing a
low number of dimensions from the original data dimensions [164]. While they
enable the direct creation of 2D or 3D scatterplots, these synthetic dimensions
do not have a direct meaning to the end users. As such, interpreting the patterns
present in the projection, or performing the so-called ‘inverse mapping’ from the
visualization to the original data [183] is very hard. In contrast, the vast ma-
jority, if not all, of the other multidimensional visualization methods explicitly
encode the original data dimensions in the final image. This makes projections
much more challenging to use. For example: Consider the 2D projection shown in
Fig. 1.3 right. In here, we see a large central cluster of close points, surrounded
by several outliers. In turn, the central cluster appears to be divided into an upper
sub-cluster and the remaining points. If we assume that the projection being used
to create this image preserves distances between points (as is the case with many
of the existing multidimensional projection techniques), then it means that there
are several distinct groups of highly similar points in the data (the aforementioned
clusters), and a few points which are very different from all the others (the afore-
mentioned outliers). The question is: Which dimensions, and which dimension
values, can explain these patterns? Without knowing these, the projection tells us
that there is some structure in the data, but not what that structure means.
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coding for 3D projection. (e) Local explanation proposed in this thesis, Chap-
ter 5. Image taken from [38].
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The above issue is addressed by so-called explanatory techniques for multidi-
mensional projections. Simply put, such techniques annotate, or enrich, a raw
projection scatterplot with visual cues that explain the patterns present in it.
Among other aspects, such cues aim to ‘put back’ summaries of the original high-
dimensional information, such as dimension names and values, into the projected
data. In visualization terms, they act as legends that allow the user to interpret,
or explain, the projection [183]. Several such techniques have been proposed
in the literature. The simplest explanatory techniques involve color-coding the
projected points by the values of a user-chosen dimension, as done in the exam-
ple in Fig. 1.3; and interactively brushing the points to show details on demand
[211]. More complex techniques exist as well. For instance, one can cluster the
projected points and annotate the resulting point groups with dimension names
[143]. Biplot axes can be drawn to indicate the directions of maximal variation
of the original dimensions [71, 28], see also Fig. 1.4b. Thumbnail-like icons can
be drawn atop the projected point positions in case one can effectively summarize
the high-dimensional data points by such icons, such as when the observations are
actual images (Fig. 1.4a). Legends can be used to explain the screen’s horizontal
and vertical axes in terms of the original dimensions [18, 28] (Fig. 1.4c,d). How-
ever useful, such techniques still have several drawbacks. First, except the local
brushing and the clustering methods, all other methods are global by nature, i.e.,
explain an entire projection rather than the patterns it contains. Separately, local
brushing and clustering require a non-negligible amount of input from the end
user, and thus are not optimal in terms of usability. As we shall see in Chapters 5
and 6, more intuitive explanatory techniques for projections can be imagined,
such as the local color-coding and labeling illustrated in Fig. 1.4e.

1.2.2.2 Relational data visualization

Projections, as a visualization technique for multidimensional data, are closely
related to relational data visualization methods, in several ways. First, one can
consider the (square) distance matrix containing the distances, in the original
data space, among all observations. Lower thresholding this matrix by some pre-
set distance value yields a sparse matrix that encodes the distances between the
highly similar observations in the dataset. In turn, this matrix induces a graph re-
lating these observations. Computing a projection that preserves well the (small)
distances is roughly equivalent to computing a layout of the (sparse) graph where
connected nodes are placed close to each other. This relationship has been used
both to compute layouts of graphs by first embedding the graphs in a high-
dimensional space and next project this space to 2D using, for instance, principal
component analysis (PCA) [77]; and also by computing layouts of multivariate
graphs by computing a 2D projection of a distance matrix that captures both the
similarity of points in terms of data attributes and their graph connections [119].

A second relation between projections and relational data visualization can be
found if we consider the errors produced by a projection. Understanding these
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Figure 1.5: Visualization of projection errors. (a) Distance scatterplot matrix. (b) Aggregate
projection error. (c) False neighbors of projected points. (d) Missing neighbors
of a single selected point. (e) Missing members of a selected point group. Image
taken from [38].

errors is very important for the usefulness of a projection – we can use the pro-
jection as a ‘proxy’ to reason about the high-dimensional data patterns only if the
projection accurately captures these patterns. Defining (and next understanding)
projection errors is by excellence a task that involves relations between points. Fig-
ure 1.5 illustrates this. In Fig. 1.5a, we show a scatterplot matrix (SPLOM) where
each cell displays the scatterplot of the high-dimensional distances between point-
pairs vs the distances between the same point-pairs in the projection [95]. A good
projection should yield scatterplots close to the matrix cell diagonals. Figure 1.5b
shows a 2D projection whose points xi are colored by the sum of distance errors
between xi and all other projected points xj 6= xi [118]. Figure 1.5c shows a sim-
ilar image to Fig. 1.5b, where points xi are colored by the number of so-called
‘false neighbors’, i.e., points which are placed in 2D closer than they are to xi
in the original data space [120]. As in image (a), images (b) and (c) consider
all point-pair relations when computing errors. In contrast, Fig. 1.5d shows the
so-called ‘missing neighbors’ of a selected point xi, i.e., the points which are pro-
jected too far away from xi than they actually are in the high-dimensional data
[118]. Finally, Fig. 1.5e shows the so-called ‘missing group members’, i.e., points
which are projected too far away from a selected compact group of points than
they actually are in the original dataset. In images (d) and (e), thus, the relations
of one, respectively a subset, of points with all other points are visualized. The
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relational nature of such data is made explicit by the use of edge bundling [213]
to show the missing neighbors and missing group members in Figs. 1.5d,e.

Summarizing the above, we see that a key element for both computing and
interpreting projections regards distances between observations – indeed, the ma-
jority of patterns that create the so-called data structure mentioned previously
are constructed by considering the position of an observation in relation to other
observations. Separately, we see that such relations involve reasoning about the
distance between, or similarity of, observations. Hence, similarity of observations
is an essential element for understanding projections. Separately, we also see that
existing techniques can show which points are similar in a projection, but not why
these points are similar. This complements our earlier observation in Sec. 1.2.2.1
that additional explanatory mechanisms for multidimensional projections are re-
quired.

This insight concerning the importance of understanding similarity can be lifted
to the exploration of multidimensional datasets with techniques beyond projec-
tions. Consider the construction of a hierarchy of observations in terms of their
similarity, as if one applied a bottom-up agglomerative clustering process [93].
When displayed, this hierarchy, also called a similarity tree, shows groups of simi-
lar points at multiple scales, and without having to choose an explicit scale like in
standard cluster labeling [136]. By using a hierarchy to explicitly display data sim-
ilarity, trees have also the advantage of avoiding the ambiguity often observed on
multidimensional projections, which can easily lead to wrong conclusions about
the dataset. Moreover, by using suitable graph layout techniques, similarity trees
can be drawn by avoiding various clutter issues that appear when displaying
large multidimensional datasets using projections. In all the examples mentioned
above, relational visualization techniques share similarities with projections in
terms of creating the same type of visual ‘backbone’ (points representing observa-
tions, placed in the 2D space so as to reflect data similarities), and also in terms
of high visual scalability in both the observation and dimension counts. However,
they also share some common problems, most notably in terms of the ease for
understanding what groups of related observations mean. A separate problem of
similarity trees is that they scale poorly with the dataset size, making them un-
suitable for datasets containing hundreds of thousands of observations or more.

1.3 Research questions

Summarizing the above introduction on multidimensional data visualization, we
see that similarity is a key concept to understanding multidimensional data pat-
terns, whether these are groups of related points or projection errors (in a pro-
jection) or groups of related points (in a similarity tree). Both projections and
similarity trees use proximity in the 2D space to depict similarity in the original
high-dimensional space, whereby one can easily detect patterns such as groups
of related observations and isolated outliers. However, both projections and sim-
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ilarity trees are limited in explaining what such patterns actually mean in terms
of the original data dimensions. Several explanatory techniques for such visual
metaphors exist, but they either demand a non-negligible amount of effort from
the end user or provide explanations which, in our view, are not always intuitive.

Given the above, we can now formulate the central research question of this
thesis:

How can we help a wide range of users to easily visually reason about, and explore,
the notion of similarity present in large multidimensional datasets?

Given that we focus on projections and similarity trees as visualization metaphors,
our aim is thus to enrich these techniques with explanatory mechanisms that keep
their various advantages but decrease their disadvantages. As such, we can refine
the above research question into two sub-questions:

R Q1: How can we enhance similarity trees so they become computationally scal-
able and also provide local and automatic explanations of their subtrees?

R Q2: How can we enhance multidimensional projections with explanatory mech-
anisms that provide local and automatic explanations of the perceived pat-
terns?

1.4 Structure of this thesis

The structure of this thesis follows the subdivision of its main research question
into sub-questions (see Sec. 1.3), as outlined next.

In Chapter 2, we review related work covering the main domains of research
related to our own research questions. We start by discussing the structure and
organization of multidimensional data, which underlies all our work. Next, we
discuss clustering techniques, as these techniques are instrumental to the extrac-
tion of patterns in terms of groups of similar entities, and are also a key ingre-
dient of the construction of similarity trees, and of the multilevel presentation of
large datasets more generally. Next, we discuss visualization techniques for mul-
tidimensional data, with a particular focus on projections and hierarchical (tree)
structures.

In Chapter 3, we propose our improvements to the construction and visual ex-
ploration of multidimensional datasets using similarity trees. The first proposed
improvement here addresses the computational scalability of similarity trees in
terms of a large number of instances. The second class of proposed improvements
concerns the explanation of a computed similarity tree, which is done in terms of
annotating the resulting tree-based visualization with colors, textures, and labels
so as to depict summarizations of the data subsets encoded by the various tree
parts.
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Chapter 4 extends the visual scalability of the proposed similarity tree design
described in Chapter 3. Specifically, we show how we can adapt and extend hier-
archical edge bundling so as to construct compact summarizations of large simi-
larity trees. Separately, we show how our proposal extends the flexibility of edge
bundling as a tool for simplifying the depiction of large graphs, by adding seman-
tic information obtained from the underlying multidimensional data. Together,
Chapters 3 and 4 thus address our first research question RQ1.

Chapter 5 switches our focus to projections. We present here a novel technique
for the visual explanation of multidimensional projections in terms of groups of
similar points. In contrast to the construction of a hierarchy based on the data
similarity in the original high-dimensional data space, we now exploit similarity
in the projection space. As such, the resulting explanatory visualization focuses on
explaining patterns present in the projection, rather than patterns present in the
original dataset.

Chapter 6 extends our explanatory techniques for multidimensional projections
from the static (time-independent) case discussed in Chapter 5 to treat dynamic,
or time-dependent, multidimensional datasets. For this, we use a projection tech-
nique able to handle time-dependent datasets, and also leverage the use of edge
bundling to depict the space-time aspects of the underlying multidimensional
data. Together, Chapters 5 and 6 thus address our second research question RQ2.

Chapter 7 concludes the thesis by discussing the various strengths and weak-
nesses of the proposed techniques, their interdependencies, and also by outlining
interesting directions for future work in the area of visually exploring multidimen-
sional datasets.





2Related Work

As outlined in Chapter 1, this thesis addresses the goal of exploring similarity
in multidimensional datasets by means of projections and similarity trees visu-
alization metaphors. To provide background for this research, we survey in this
chapter the main techniques related to our field of research, structured as follows.
In Section 2.1, we introduce the main concepts and notations related to multi-
dimensional data. In Section 2.2, we overview data clustering and aggregation,
an important aid for the handling of large datasets when producing visualizations
thereof. Section 2.3 overviews the main techniques known in the literature for the
visualization of multidimensional data, thereby laying the context in which we
will work next. Here, we dedicate specific attention to the visualization techniques
that we will reuse, adapt, or extend, namely projections and visualization of rela-
tionships. Section 2.4 overviews techniques for computing multidimensional pro-
jections, as well as for visually explaining such projections.

2.1 Introductory Concepts

2.1.1 Multidimensional datasets

Multidimensional datasets are collections of data entities, also called data points,
observations, measurements, samples, or records. Informally put, each observa-
tion describes the measurement of several properties of a given phenomenon.
Typically, all observations share the same number and type of measured prop-
erties. These properties are also called attributes, dimensions, variables, or fea-
tures. Informally put, multidimensional datasets can be thus modeled as data
tables, where each table row describes one observation, and each column de-
scribes one dimension. More formally put, let n be the number of data points and
m the number of dimensions respectively; and let D1 . . .Dm be the domains of
the respective m dimensions. Hence, an observation xi is a point of the space
D1 ×D2 . . . ×Dm. We denote the set of all observations under consideration,
thus a multidimensional dataset, by D = {xi}. Each observation is thus a tuple
xi = (x1i , . . . , xmi ), where xji ∈ Dj, 1 6 j 6 m denotes the value of its jth dimen-
sion. Finally, we denote the values of dimension j over all n observations by the
vector xj = (xj1, . . . , xjn) ⊂ Dnj .

Multidimensional datasets can be obtained from various sources. Without being
formal, we classify these into two categories. First, multidimensional datasets can
be the actual form in which data is stored in an application domain. For example,
in an Electronic Patient Record (EPR) database, patients can be seen as observa-
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tions. Each patient record has several dimensions, such as the name of the patient,
age, medication, duration of treatment, condition, and so on. More generally, any
application domain where data is stored as a table where rows encode individual
observations, can be thought of as generating multidimensional datasets. When
data is stored into multiple tables, linked e.g. by means of foreign keys, ‘simple’
data tables that conform to our above mentioned model can be generated on-the-
fly using joins. As such, the table metaphor is both an intuitive and practical way
to think of multidimensional data. This is also seen in the advent of specialized
information visualization software that revolves around the table concept [179].

Apart from the above direct interpretation of existing data sources as multidi-
mensional datasets, such datasets can be also derived from existing data by a pro-
cess commonly known as feature extraction. Here, the original data usually comes
in a form where separate dimensions are either not present, or not suitable for
further analysis [74]. A simple example hereof are collections of images. Typical
tasks involving such data revolve around finding items similar to a given data item
(query-by-example, or content-based retrieval [115, 42]), grouping data items in
subsets of similar items, or classifying items into several categories [104]. For all
these tasks, one needs to extract relevant dimensions from the data items in order
to support comparison, the key operation that next enables computing similar-
ity, which next enables the computation of groups and outliers. For this, several
techniques collectively known under the name feature extraction are used. For our
example of image data, such features involve usually histograms of color compo-
nents, edges, and textures [130, 95]. For other datasets, such as audio data, one
can use histograms describing the signal’s frequency spectrum [123, 29]. For text
data, frequencies of the most common terms found in a document collection are
typically used [1]. In all these cases, the output of the feature extraction step is
a multidimensional dataset, where each dimension captures the values of one of
the computed features. As such, for our scope, multidimensional datasets will be
treated identically, whether obtained directly from a given application domain, or
by feature extraction.

A further difference between multidimensional datasets regards the types of the
domains of definition Di of their dimensions. Following information visualization
terminology, these domains can be characterized based on the operations that
their elements, i.e., data attributes, admit. The following main types of attributes
are recognized [126, 183]:

• categorical: Categorical attributes admit only exact comparison, i.e., the op-
erators = and 6=. They are defined over countable sets. They usually describe
types or classes, such as, for instance, gender, label, or product brand type;

• ordinal: Ordinal attributes add the comparison operators < and > to cate-
gorical attributes. They are defined over countable ordered sets. They de-
scribe ranks, e.g. scores on a Likert scale;
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• integral: Integral attributes essentially model values over (subsets of) N or
Z. They add the difference, or distance, operator ‖ · ‖ and the sum operator
+ to ordinal attributes. They usually describe counts, such as number of
persons in a census;

• quantitative: Quantitative, sometimes also called continuous, attributes model
(subsets of) R. They add the multiplication with a real weight to integral at-
tributes. They describe values over a (subset) of an uncountable set, such
as R. Also, when they describe dependent dimensions, the dependency is
usually implied by a (Cauchy or Lipschitz) continuous function. They are
the most ‘powerful’ type of attributes.

Apart from the above basic attribute types, many other domain-dependent at-
tribute types can be defined. For instance, one can consider images, text, or source
code to be valid domains Di. However, since such domains do not generally admit
a simple-to-use algebra providing operations, they are in practice reduced to the
above-mentioned basic domains by means of feature extraction. Also, relations,
such as edges in a graph or tree, can be seen as a separate attribute type [183].
However, a relation is defined by definition by at least two observations, whereas
all above attribute types can be defined by a single observation. This sets relations
apart from all other attribute types discussed here. Also, different terminologies
exist for the same concepts. For example, the well-known Tableau feamework for
visual analytics calls quantitative and integral attributes measures and ordinal and
categorical attributes dimensions [179], and adds a further distinction into dis-
crete attributes (all except the quantitative ones) and continuous attributes (what
we call here quantitative attributes). For clarity, we use the terminology presented
above in our text in the remainder of this thesis.

Given the above basic attribute types, a multidimensional dataset can be char-
acterized by the types of the attributes of its observations. Two main classes of
datasets exist in this sense:

• uniform datasets: These are datasets where all domains Di are of the same
type D. In this case, a dataset having m dimensions basically has observa-
tions taking values in Dm. Uniform datasets are relatively simple to handle
once we have a well-defined set of properties for the domain D;

• hybrid datasets: Also called nonuniform or mixed datasets, the domains Di
of the individual m dimensions have different types. For example, a client
record dataset where, per patient, one stores a name, birth date, and billing
amount is a three-dimensional dataset of attributes of type text, integral, and
quantitative. Hybrid datasets are (considerably) more complex to handle
than uniform datasets due to the diversity of operations that the individual
attributes support. In practice, a simple way to approach this is to reduce
hybrid datasets to uniform categorical ones, e.g. by binning the quantitative,
ordinal, and integral attributes [18].
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Covering all combinations of attribute types in a visualization work is a tremen-
dous endeavor, and also one that would distract the reader from the main goal of
the thesis. As such, we focus on uniform quantitative datasets in the remainder
of this work, as these are, arguably, a generalization of the other attribute types.
When our concrete datasets will have different (mixed) types, we will show how
uniform quantitative datasets can be derived from those respective types.

2.1.2 Distance Metrics

One important step in data analysis is to define a meaningful way to compare
data observations. In particular, this step is essential to our thesis work, where
we want to be able to depict similarities of data items. For comparison, several
distance metrics are used. A distance metric δ : Dm ×Dm → R+, δ(xi, xj), takes
two observations xi, xj from some dataset X ⊂ Dm as arguments and produces a
positive real number as output. A true metric has to satisfy the following condi-
tions:

• Positivity: δ(xi, xj) > 0,∀i, j;

• Symmetry: δ(xi, xj) = δ(xj, xi),∀i, j;

• Reflexivity: δ(xi, xi) = 0,∀i, j;

• Triangle inequality: δ(xi, xj) 6 δ(xi, xk) + δ(xk, xj),∀i, j,k.

The first three conditions are easy to understand, as they directly map to the
generally accepted concept of dissimilarity or distance between any items. The
triangle inequality intuitively states that the ‘direct path’ between two observa-
tions is always equal or shorter than a path connecting the same two observations
via a non-straight path. In other words, a distance between a pair of observations
cannot be shortened by trying to use a third observation as ‘shortcut’.

If δ fulfills the following additional restriction,

• δ(xi, xj) 6 max
(
δ(xi, xk), δ(xj, xk)

)
,∀i, j,k

it is called ultrametric. If δ is ultrametric, given any combination of three ob-
servations xi, xj, xk, the distances δxi, xk and δxj, xk, will ‘contain the distance
′deltaxi, xj [85].

Many concrete distance metrics exist that satisfy the above properties. We out-
line below the most common such metrics in the context of analyzing and visual-
izing multidimensional data.

Minkowski metric: The Minkowski, or Lp, norm is a family of distance metrics
defined by

δ(xi, xj) =

(
n∑
l=1

∣∣∣xli − xlj∣∣∣p
)1/p

. (2.1)
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For p = 1, the Minkowski metric becomes the Manhattan distance, also kown as
city-block distance. This distance is computed as if an axis-aligned grid is posi-
tioned over the data space, which allows distances to be computed only along
paths following the grid. For p = 2, the Minkowski metric becomes the Euclidean
distance, which can be intuitively seen as the length of a ‘straight" line segment be-
tween two observations. For p = ∞, the Minkowski distance becomes the Cheby-
chev distance, i.e., δ(xi, xj) = max16l6n

∣∣∣xli − xlj
∣∣∣, which considers that only the

dimension yielding the largest distance matters.

Mahalanobis metric: This metric takes into account the data distribution. It uses
the inverse of the dataset’s covariance matrix to weigh each dimension in the
distance computation. It is define by

δ(xi, xj) =
(
xi − xj

)T
Cov(X)−1

(
xi − xj

)
(2.2)

where Cov(X) is the covariance matrix of the dataset X and the superscript T

denotes transposition. It can be seen as a data transformation prior the compu-
tation of the Euclidean distance for the transformed data. Intuitively, this metric
is similar to the Minkowski metric, but adapts itself to normalize the data dimen-
sions as a function of the distribution of attribute values over the dataset X. One of
its major drawbacks is the cost on computing the inverse of the covariance matrix.

Cosine metric: Intuitively, this distance measures the angle of two multidimen-
sional vectors, not considering their magnitudes. As such, this metric is useful in
cases where observations which are scaled versions of each other are considered
to be identical. It is defined by

δ(xi, xj) =
xTi · xj
‖xi‖

∥∥xj
∥∥ (2.3)

where ‖ · ‖ denotes the Euclidean norm and · denotes scalar product, respectively.
This metric is frequently used in information retrieval, where the observations are
sparse multidimensional vectors.

In the remainder of this thesis, we will use the various distance metrics defined
here to define similarity of multidimensional items, based on the most appropriate
choices implied by the nature of similarity in the studied application domains.

2.2 Clustering Techniques

Clustering, or aggregation, techniques are of fundamental importance for effec-
tive analysis of large datasets. The goal of a clustering technique is to partition
the dataset into groups of similar observations, according to some distance or
similarity metric, thus offering a coarser level of similarity abstraction for the
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dataset [92]. In other words, given a dataset X ⊂ Dm and a distance metric
δ : X× X → R+ (Sec. 2.1.2), clustering essentially provides a ‘coarsening’ of δ to
a function δ′ : X′ × X′ → R+ on a dataset X′ = {x′i} which is a so-called partition
of X, i.e.,

⋃
i x′i = X and x′i ∩ x′j = ∅,∀i 6= j. By coarsening, we mean here that

δ(xi, xj) ' δ′(x′i, x′j) for any xi ∈ x′i and xj ∈ x′j and for any x′i ∈ X
′ and x′j ∈ X

′.
The key idea is that this coarsening reduces the cardinality of the input dataset
while keeping its data structure, i.e., |X′| < |X|, and thus analyzing X′ using δ′ is
less costly, and easier, than analyzing X using δ. When several versions X′ of de-
creasing sizes |X′| can be obtained by clustering X, one speaks about a multiscale
clustering, or multiscale simplification, of X.

A wide spectrum of clustering techniques exist. For instance, k-ary approaches
divide the dataset X into k disjoint groups; hierarchical approaches create an en-
tire set of simplifications X′i for various degrees of simplification, or levels of de-
tail, i.e., |X′i| < |X′i+1|,∀i; fuzzy methods assign a degree of membership for each
observation to every cluster, i.e., do not create a strict partitioning of X, or in other
words ∃i, j, x′i ∩ x′j 6= ∅ [72].

We will next introduce several examples of clustering techniques which we con-
sidered in our research. For a complete overview including (many) other methods,
we refer to [92].

K-Means: K-Means is an example of k-ary clustering technique. Here, an observa-
tion can belong to only a single cluster. The initial step of K-Means is the definition
of the desired number k of clusters, which is assumed to be known beforehand.
Next, representative values (centroids) for each cluster are assigned, based on
the values of randomly selected observations of the dataset. Next, an iterative
procedure starts to create clusters for all observations, also updating their cen-
troids. Observations are assigned to a cluster by comparing their values to cluster
representatives. An observation is assigned to the cluster for which the centroid-
to-observation distance is minimal, in a greedy approach. After each observation
is assigned to a cluster, the centroids are updated by taking the average value of
all observations in that cluster. The procedure stops when the assignment step
produces no further changes. K-Means is simple to implement and understand,
but works well only for data distributions that form convex clusters and where
the number k of clusters is known in advance.

DBScan: This technique belongs to the so-called density-based clustering methods
which essentially define a continuous density function from the discrete samples
xi ∈ X [55]. Methods in this category considers cluster internal similarity and a
minimal density value when defining a cluster. This way, smaller groups of points,
below a specified minimal density, are not included in any cluster. The algorithm
starts by the definition of a distance radius ε, and ρmin, the minimal density of
a cluster. Next a random observation xi ∈ X is selected. The iterative procedure
starts by checking how many neighbors of xi lie within the distance ε. If less
neighbors than ρmin are found, they are marked as noise. Otherwise xi and its
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neighbors create a cluster, and this procedure is repeated to process more neigh-
bors until a densely connected cluster is created, i.e., until no more elements can
be added to this cluster. Next this procedure is repeated to process another ran-
dom unvisited (unassigned) point, until all points are marked as visited (assigned
to a cluster). DBScan can treat convex and concave clusters of variable local point
density (inter-point distance) better than K-Means. However, the setting of the
parameters ε and ρmin is not always obvious.

Hierarchical: Hierarchical clustering techniques create aggregations of data by
imposing a hierarchy of closely-related observations. Essentially, the idea is to de-
fine clusters in a divide-and-conquer way, by either splitting the given dataset X
recursively in smaller, and increasingly more similar, bits (divisive or top-down
clustering), or by recursively aggregating elements in the dataset X in larger, and
increasingly less similar, chunks (agglomerative or bottom-up clustering). The ag-
glomerative strategy starts by defining each observation as a cluster, and next
iteratively joining the most similar pairs of clusters, until only one cluster, equal
to X, is left. The divisive strategy does the opposite, and starts by considering the
entire dataset X as a single cluster, to next divide it in smaller partitions until all
clusters have only one element. Hierarchical clustering is generic, and simple to
implement, but has in general high costs (O(N3) for N observations in X). Also,
once the clustering is ready, one typically obtains a binary tree having the ob-
servations xi as leaves and the entire dataset X as root. This tree must then be
‘sliced’ at some appropriate height to yield the desired partition {x′i}. Finding a
good height yielding a desired compromise between enough simplification (clus-
tering) but sufficient presence of the details is not trivial.

Let us first consider an given level of partition of X into k clusters x′i, i.e.,
X =

⋃
i x′i. A key issue for both top-down and bottom-up clustering is how to

define the similarity function δ′ at the level of groups, based on a given similar-
ity function δ defined on observations. For this, one typically chooses from three
options, called single-linkage, complete (or full) linkage, and average linkage. For
single linkage, δ′(x′i, x′j) is defined as the minimum of δ(xi, xj) over all elements
xi ∈ x′i and xj ∈ x′j, respectively. For full complete-linkage, δ′(x′i, x′j) is defined as
the maximum of δ(xi, xj) over all elements xi ∈ x′i and xj ∈ x′j, respectively. For
average linkage, δ′(x′i, x′j) is defined as the average of δ(xi, xj) over all elements
xi ∈ x′i and xj ∈ x′j, respectively. Generally, average linkage is preferred, as it is
less sensitive to data outliers or noise [40].

Fuzzy C-Means: In fuzzy clustering approaches, each data observation can belong
to multiple clusters. To each membership association between an observation xi
to a cluster x′j, there is a weight wij ∈ R+ of this membership. This way, it is
possible to observe how strongly an observation is associated to a given cluster,
i.e., transcend the limitations of ‘hard’ cluster computations such as given by K-
Means, DBScan, or Hierarchical. One commonly used algorithm in this category
is the Fuzzy C-Means technique [50]. Other techniques include algebraic multi-
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grid [103, 72]. For the fuzzy C-means technique, the first step is to select the
number of clusters k to partition the dataset into. Next, a matrix U = (wij)i,j
is initialized to hold the membership degree wij of each observation xi to each
cluster x′j. Then, an iterative procedure starts, computing the centroid for each
cluster. Based on the newly computed centroids, the values in the matrix U are
updated. This procedure finishes until convergence, i.e., when changes of values
in U become smaller than a predefined threshold. In mathematical terms, this
procedure is equivalent to finding a basis x′j that describes the observations xi via
the weights wij. Fuzzy clustering results can be visualized in a simplified way by
depicting the clusters having maximal weights for each observation [72]. Visual-
izing the full set of fuzzy relationships is hard, since each of the N observations
has k relations (weights) with all existing k clusters.

2.3 Multidimensional Data Visualization

Given our research question outlined in Chapter 1, we are interested to see how
multidimensional datasets can be visually depicted, so that similarities between
(groups of) observations become apparent. From this perspective, we can classify
the existing multidimensional data visualization techniques into two groups:

• observation-centric: These techniques focus on depicting the observations
explicitly. Various forms of relations between observations are captured in
the visualization up to different degrees, but the focus is here on depicting
the absolute observation values rather than their interrelationships. These
techniques are briefly overviewed next in Sec. 2.3.1;

• relation-centric: In contrast to the above, these techniques focus (more) on
the depiction of relations between observations. Absolute values of the ob-
servations may or may not be displayed along, but the focus is on the inter-
relationships of observations rather than the observations themselves. These
techniques, more central to our scope, are discussed in Secs. 2.3.2 and, fur-
ther on, in Sec. 2.4.

2.3.1 Visualizing Multidimensional Values

Table Lens

A first, and arguably one of the simplest, techniques to visualize multidimensional
observations follows from the table organization of multidimensional data out-
lined in Sec. 1.1. Here, given a dataset X ⊂ Dm of N observations, we can visual-
ize it by drawing a table of N rows and m columns, where every row represents
and observation and every column represents a dimension, respectively.

For relatively small datasets, in terms of N and m, individual attribute values
x
j
i can be represented as text values in the table cells, such as in a standard Excel
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sheet (Fig. 2.1a). However, when N and m surpass the values of what can be dis-
played in a readable form on s typical computer screen, other means are needed.
One such mean is proposed by table lenses [150]: Here, each row is reduced to
a single horizontal pixel line, formed by line segments which encode, by means
of color and/or length, the cell values xji (Fig. 2.1b). As such, columns are re-
duced to color-coded bars and/or to classical 1D bar charts. Subsequent sorting
of rows on the value of a user-selected column (dimension) of interest can easily
reveal patterns such as correlations, inverse correlations, or independence of the
present dimensions. Further on, if the data values in D admit a simple aggrega-
tion, as is the case e.g. for continuous data values (Sec. 2.1.1), such a so-called
table lens can be easily zoomed out to show an unbounded number of rows (ob-
servations). Additional cue such as shaded cushions can be used to e.g. delimit
groups of similar-value observations in the sorted dimension [182].

b)a)

Figure 2.1: (a) Classical visualization of tabular data. (b) Table lens visualization. Images
generated with TableVision tool [182].

A salient feature of table lenses is that, when combined with multiple dimension
sorting and clustering of observations along the values of the sorted dimensions,
they can easily create data hierarchies from unstructured data tables. In particular,
multiple such hierarchies can be created from the same single dataset, depending
on the order of sorting of data dimensions and the grouping criterion. This effec-
tively yields a ‘visual’ way to apply operations equivalent to SQL database GROUP
BY and ORDER BY statements. This allows the on-the-fly creation of a wide set
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of hierarchies from the data, which can be next visualized using classical hierar-
chical attributed tree visualization methods, such as treemaps [198, 182]. Such
mechanisms are quite powerful in creating multidimensional data views where
observations are clustered in terms of subsets of attribute values. However, they
also require a non-trivial amount of user interaction to construct these hierarchies
from the data.

Scatterplot Matrices

A different approach of visualizing multidimensional data is to explicitly focus on
showing the correlation of dimension pairs. Given, again, a dataset X ⊂ Dm, the
idea here is to show, for any pair of dimensions 1 6 i 6 m, 1 6 j 6 m, i 6= j, the
correlation of observations with respect to dimensions i and j. This yields a matrix
ofm×m cells, where each cell shows the correlation of xik, xjk, for all observations
j and the dimension pair (i, j). Scatterplot matrices (SPLOMs) are quite scalable
in the number of observations, since each observation becomes a single point
in a SPLOM cell. However, they are less scalable in the number of dimensions
m, since a SPLOM grows quadratically with the number of dimensions m. More
problematically, it is quite hard to reason about individual observations (and their
similarities), since a single observation becomes in essencem2 points in a SPLOM,
one point per SPLOM cell.
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Figure 2.2: Scatterplot matrix of a 7-dimensional dataset.
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Scaterplot matrices are effective, as stated, for a relatively small number of
dimensions (roughly, m < 10). And, even for such relatively low dimensional
datasets, they can be hard to interpret, since, as said a single observation becomes
m2 points in the SPLOM (or, more foemally speaking, m2/2 points if we consider
that the SPLOM is a square symmetric matrix).

Figure2.2 shows a SPLOM for a 7-dimensional dataset where each observation
describes a car along the attributes miles-per-gallon (inverse of fuel consumption),
number of cylinders, horsepower, weight, acceleration, year of manufacturing,
and country of origin. The dataset is a standard benchmark for multidimensional
information visualization techniques [183]. As visible, this is a hybrid dataset,
including quantitative, integral, and categorical data. Several cells in the bottom-
lower part show clear inverse correlation patters, such as between the miles-per-
gallon (MPG) and horsepower.

Parallel Coordinates

Parallel coordinates is the third and last observation-centric visualization method
for multidimensional data. Here, a (typically vertical) axis is drawn for each of
the m dimensions. An observation xi is next plotted as a fractured polyline of
m− 1 segments that connect the linear mapping of the values xji along the m ver-
tical axes. This way, similar observations become closely spaced polylines; and in-
versely correlated dimensions show up as characteristic x-like patterns of line seg-
ments linking dimensions which are mapped adjacently to each other in the plot.
Observation values are easily visible by following where these fractured polylines
intersect the m vertical axes. However, parallel coordinate plots suffer from sev-
eral limitations: (a) They can generate a significant amount of line clutter for large
datasets containing many uncorrelated observations; (b) they require a good, typ-
ically manual, arrangement of the dimension so that neighboring axes encode
variables whose (lack of) correlation is interesting to see; and, last but not least,
they are in general perceived as quite unintuitive, and require a non-negligible
training of their users to become usable.

Figure 2.3 shows a parallel coordinate plot (PCP) for the same 7-dimensional
car dataset as discussed in Sec. 2.3.1. Several enhancements atop of the basic
PCP design are also illustrated here. Axis directions (top to bottom vs bottom
to top) can be swapped to minimize the amount of line crossings. Ranges along
the axes can be selected (see orange selection box on second axis from right in
Fig. 2.3), to highlight the observations having the respective value range (red lines
in the figure). This allows to better spot outlier observations, such as the red line
diverging from the tight red-line bundle in Fig. 2.3.

As we see from the review of the standard multidimensional visualization meth-
ods, such methods can show patterns related to similarity in multidimensional
datasets, such as groups of similar observations and outliers. However, finding
such patterns can be hard for some of the visualizations, such as table lenses and
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Figure 2.3: Parallel coordinate plot of the same 7-dimensional dataset as in Fig. 2.2. Image
taken from [183].

SPLOMs, and arguably requires quite some training for PCPs. More importantly,
none of the discussed visualizations scales well to over roughly ten dimensions.

2.3.2 Visualizing Multidimensional Relations

As explained in Chapter 1, our focus is on visualizing similarity in multidimen-
sional datasets, and this task is intimately related to visualizing hierarchies and
relationships in general. As such, we next provide a brief overview of visualization
methods that focus on data that is both relational and multidimensional.

Diagrams

One frequently met form of multidimensional and relational data comes in the
form of attributed graphs. In these, the graph part encodes the relational infor-
mation in terms of nodes and edges; the multidimensional aspect is present in
the form of several attributes added to nodes, edges, or both. An example of such
datasets are multivariate networks extracted from software data, such as depen-
dency graphs [44]. Here, nodes are software entities, such as functions or classes.
Edges indicate interaction and collaboration between entities, such as calls or data
flows. Attributes can be recorded both on nodes, e.g., name, number of lines or
code, and number of arguments of a function; and on edges, e.g., duration of a
function call.

Probably the best known metaphor for the visualization is provided by dia-
grams. Here, the relational (graph) information is displayed using the classical
node-link metaphor, and the multidimensional attributes are added atop of this
skeleton by encoding it into glyphs, color, or texture. The positions of nodes in the
visualization, or embedding of the graph, are computed using specialized graph
layout algorithms [43]. Figure 2.4 shows several flavors of diagrams for the visu-
alization of multivariate graphs describing the structure of software systems. As
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a) b)

c) d)

e)

Figure 2.4: Visualization of multivariate attributed graphs using diagrams. (a,b) UML class
diagram with software quality metrics ,[189]. (c,d) UML class diagram with
software quality metrics and groups showing similar elements [22]. (e) Soft-
ware system hierarchical structure with software quality metrics [205].
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visible, graphs are drawn in two dimensions using a UML-like layout (Figs. 2.4a-d)
or a treemap showing the containment of entities (Figs. 2.4e). Attributes are de-
fined on entities (nodes) and are displayed using glyph shapes (Fig. 2.4a), glyph
sizes (Figs. 2.4b,d,e), and glyph colors (Figs. 2.4a-d).

Diagrams are quite powerful tools for visualizing multivariate attributed graphs,
mainly because they use a familiar visual metaphor. However, displaying multiple
dimensions simultaneously is quite hard. These dimensions are shown either by
encoding them into separate visual variables, such as size, texture, shape, and
color; or by using a small multiple design, where each dimension is encoded into
a different glyph. The first solution is limited to the small number of independent
visual variables we can encode in the same image [12, 13]. The second solution
allows up to about 20 variables to be displayed per entity (observation), as shown
in the small table-lens-like displays drawn atop of the entities in the UML diagram
in Fig. 2.4d. However, finding similar entities is very hard with this metaphor, as
one needs to compare several tens of glyphs drawn atop of different entities in the
diagram. To assist this task of finding similar elements,

color:
edge length

color:
shaded
clusters

a) FDEB

c) KDEEB

e) 3DHEB

b) WR

d) SBEB

f) CUBu, standard style

Figure 2.5: Graph bundling techniques: a) Force-directed edge bundling (FDEB, [84]).
b) Winding roads (WR, [108]). c) Kernel density estimation edge bundling
(KDEEB, [87]). d) Skeleton-based edge bundling (SBEB, [56]). e) 3D histogram
edge bundling (3DHEB, [125]). f) CUDA universal bundling (CUBU, [194]).

Graph bundling

The node-link metaphor used for creating diagrams works reasonably well for
graphs having hundreds up to roughly one thousand elements (nodes and/or
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edges). Specifically, it is possible to reason about structural patterns by inspect-
ing how nodes are positioned in the visual space and by examining groups of
densely connected points. However, this metaphor can easily break down for
larger graphs, due to the large amount of clutter created by overlapping nodes
and/or edges intersecting at various angles. In such cases, seeing salient patterns
in the graph structure can be very hard or even impossible, even when such pat-
terns do exist.

This problem can be attacked by edge bundling techniques. They can simplify
the visualization by aggregating and bending closely related edges, thus provid-
ing a coarser view of the structure of the same graph and drastically reducing the
visual clutter. More specifically, edge bundling trades overdraw of edges (which
is increased) for a diminished number of edge intersections happening at various
angles. In more formal terms, if we consider the edge spatial density in the draw-
ing ρ and the distribution of edge crossing angles δ, edge bundling ‘sharpens’ the
signals ρ and δ [87]. This creates larger amounts of white space in the drawing,
thus allowing one to better separate edge bundles from each other than original
unbundled edges from each other, due to the sharpening of ρ; and makes edges
in a bundle largely run parallel to each other, due to the sharpening of δ. Over-
all, bundling can be seen as a kind of coarsening operator, conceptually similar
to the clustering methods outlined in Sec. 2.2, that operates on the drawing of a
graph. Following this analogy, if an unbundled graph drawing is useful in assess-
ing the node-to-node connections, a bundled drawing is useful in assessing the
connections between groups of closely placed nodes [194].

One of the first, and arguably one of the best known, bundling techniques is
Hierarchical Edge Bundling (HEB) [82]. This technique uses a hierarchy defined
atop of the graph nodes to guide the bending and grouping of the edges. Edges are
modeled as B-Spline curves, whose shapes are controlled by intermediate points
of the given hierarchy. Bundling techniques have also been proposed for general
graphs that do not avail of a node hierarchy [84, 35, 108]. Recent efforts in graph
bundling have led to algorithms that scale well computationally to graphs of hun-
dreds of thousands to millions of edges [64, 87, 194] and rendering techniques
that emphasize the simplified structure of the bundled graph [185, 56]. A recent
overview of graph bundling techniques is given in [213]. Additional related work
on graph bundling is discussed in context in Chapter 4.

A relatively less well covered area of graph bundling is the treatment of mul-
tivariate graphs. In such graphs, nodes and/or edges have additional data at-
tributes. This makes them effectively be multidimensional and relational datasets.
For such graphs, one would naturally like to extend bundling to incorporate not
only similarity of the graph structure (which is already captured by classical bun-
dling techniques), but also of the graph attributes. This way, bundles would depict
connections between groups of nodes which are similar both in terms of position
in the layout and position in the attribute space. In this respect, directional bun-
dling incorporates bundling of edges controlled by their direction, which supports
the exploration of directed graphs [165]. Recently, this method has been extended
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to also incorporate one quantitative attribute per edge when computing the edge
similarities that drive the bundle formation [147]. Ersoy et al. mention that their
method [56] can handle edge similarities driven by multiple edge attributes, but
do not present examples hereof. Overall, the use of several attributes of both
nodes and edges to create simplified views of multivariate relational datasets has
not been explored further, to our knowledge.

Point-based tree drawing

As outlined earlier, the visualization of large datasets is typically approached by
defining a multiscale representation, usually computed by means of clustering
similar items. This applies also to multidimensional datasets. As such, hierarchies
that capture the multiscale representation of the data can be used to increase
visual scalability.

To allow the visualization of hierarchies from thousands of elements in a single
single view, Schulz et al. [162] proposed an approach to visualize a tree using
a modified point sampling approach. The approach uses a modified version of
the
√
5-sampling algorithm [173], which was initially proposed to accelerate the

rendering of polygons. To visualize trees, the approach in [162] uses a recursive
strategy to position observations from the hierarchy. The first step is to define a
grid in the visual space. Next, this grid is rotated in 27 degrees. The tree root is
positioned in the center of the visual space, and its first four children are posi-
tioned along the grid diagonal (Fig. 2.6a). In the next iteration, the grid cell size
is scaled down by a ratio

√
5 and the next four children of the root node are po-

sitioned along the new diagonals. In this same iteration, the four children of the
previously positioned nodes are also placed (Fig. 2.6b), following the same pat-
tern of the root node. This procedure is then repeated, by dividing the grid again,
and positioning another hierarchy level (Fig. 2.6c), until all nodes are placed. In
the final image, the depth of nodes in the tree can be color-coded so as to get a
clearer impression of the tree structure (Fig. 2.6d).

Overall, the idea of this type of methods is to densely fill the available screen
space by the tree structure, so that wasted white space is minimized, and also so
that related data elements (children of the same subtree) are placed close to each
other. Interaction techniques are added to aid the tree exploration. By zooming
it is possible to focus only on a selected subtree, which is then scaled to occupy
all the visual space and allow one to see more details. Filtering allow hiding tree
regions that do not met user-defined search criteria, like visualizing only nodes
from a defined level, or visualizing nodes that have a minimum number of chil-
dren. Rotation allows that branches positioned in regions of less importance are
“promoted" to more visible regions (Fig. 2.7).

Figure 2.8 shows a visualization from the hierarchy of DMOZ1 websites. This hi-
erarchy has 754, 403 elements and 576, 818 leaf nodes. Color maps the tree depth.

1 http://www.dmoz.org
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(a) Placement of the
root node and its
four first children

(b) First division by√
5, rotation, and

children position-
ing

(c) Next divisions, grid
rotations, and chil-
dren positioning

(d) Final layout

Figure 2.6: Overview of point-based tree visualization. The root node is positioned in the
center of the visual space, and the remaining hierarchy is positioned in a rotated
grid that covers the visual space.

(a) Original tree (b) First rotation (c) Second rotation (d) Rotation scheme

Figure 2.7: Point-based tree rotation procedure. On every rotation, branches in regions of
less importance are repositioned. Source: [162]

The authors have also assessed the severity of overplotting in their proposal by us-
ing a heat map (Fig. 2.8b), where blue indicates no overplotting and red indicates
maximum overplotting, respectively. As visible, the technique achieves an overall
quite low overplotting distribution.

The key advantages of this technique is its visual scalability that can easily show
hundreds of thousands of nodes in a hierarchy simultaneously on the same screen.
The technique also allows modifications in a hierarchy branch to remain local
to the nodes positioned in that branch. However, the technique cannot be used
to visualize node similarities encoded by continuous distance metrics – in other
words, the visualization maps the position of nodes in the hierarchy, but cannot
take into account edge weights. In contrast, classical graph layouts depicted with
node-link metaphors can easily incorporate such constraints when placing nodes
in the embedding space.

Multiscale Document Map

Another approach to visualize similarities between multidimensional observations
was proposed by Nocaj and Brandes [131]. In their work, a multiscale visualiza-
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(a) Visualization of DMOZ directory (b) Amount of overplotting

Figure 2.8: Visualization of the DMOZ directory. The hierarchy contains 754.403 elements.
The splatting view indicates regions with nodes overplotting. Source: [162]

tion showing similarities between documents is proposed to allow finding groups
of highly related documents. To do this, they employ a multidimensional scaling
(MDS) technique to project the documents to a 2D visual space, based on the
preservation of similarities between features extracted from the documents. The
MDS result is visualized using a scatterplot-like metaphor. To reduce visual clut-
ter, they propose a multiscale approach that displays only a fraction of the total
number of observations during the interactive exploration. To select which points
are to be displayed, the document collection is clustered to create a hierarchy,
and a single selected hierarchy level is displayed at a time, aiming to optimize the
scatterplot density (number of displayed items taken from the current hierarchy
level per visual-space area unit).

Furthermore, groups of similar observations, which are mapped by MDS to
closely spaced points in the scatterplot, are emphasized by using Voronoi treemaps [132].
These also serve as visual cues that help maintaining the mental map when the
user navigates between hierarchy levels.

The first step to build this map is to compute similarities between documents.
For this, documents are converted to the Vector Space Model [159] where each
document is represented as a vector of word (term) frequencies. Inter-document
distances, computed using the cosine distance metric between vectors, are next
stored in a distance matrix. Finally, this distance is used by MDS to place points
representing documents in the visual space. More details over MDS are given next
in Sec. 2.4.1. Separately, the document dataset is hierarchically clustered, based
on the same distances, to yield a hierarchy organizing documents by similarity.
The hierarchy is used both for selecting the desired level of detail (as outlined
earlier), and also visualized using Voronoi treemaps.
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(a) Reference map (b) Map filtered by search (c) Final layout according to
the user search terms

Figure 2.9: Multiscale document map. a) Reference map. b) As the user enters search
terms, the map shows only documents that contain these terms. c) Adapta-
tion of the map to emphasize document relevance with respect to the search.
Images from [131]

The multiscale aspect of the visualization is also outlined by its interactive use.
One starts with a so-called ‘reference map’ that shows a coarse level of the doc-
ument hierarchy (Fig. 2.9a). As the user performs searches using keywords, the
map is filtered to show only documents (and their surrounding cells) that match
at least one of the entered terms (Fig. 2.9ab). To preserve the user’s mentap map
during such interaction, and diminish the abrupt changes appearing when switch-
ing between the display of different hierarchy levels, MDS is re-executed when
the points to be displayed change, but the final layout of the displayed points is
constrained to also follow their positions in the reference map. Documents that
contain many hits of the search terms are emphasized by displaying them as larger
points (Fig. 2.9ac). Finally, the similarity of the visualized points is emphasized by
linking these by straight lines in the visualization – a technique which is reminis-
cent of the drawing of similarity trees [162] discussed earlier in this section.

GMap: Compact maps of point layouts

Given an embedding of a graph or multidimensional dataset in two dimensions,
the GMap technique [63] proposes to visualize these, and highlight groups of sim-
ilar items, by using a cartographic map metaphor. Here, groups of closely related
points appear as countries; empty space separating such groups appears as rivers
or seas; outlier points show up as islands. While the aims of this visualization are
quite close to the ones discussed earlier – helping users to locate groups of similar
observations – the proposed visual encoding makes the detection of groups eas-
ier, and also reduces visual clutter that appears in some other techniques, such as
multidimensional projections or point-based tree layouts.

GMaps are constructed as follows. First, clustering is used to partition the input
dataset into groups of similar points, based on any user-specified distance metric
between observations. As clustering techniques, GMaps proposes to use K-Means
or Fast Greedy [127], though other techniques can be used equally well. Next, a
Voronoi diagram is constructed to create one cell per identified group (Fig. 2.10a).
However, such cells can be arbitrary convex polygons, which do not necessarily
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(a) Initial Voronoi dia-
gram

(b) Voronoi cell
smoothing

(c) Inclusion of labels (d) Final GMap

Figure 2.10: GMap construction pipeline.

surround the points in an intuitive manner. This has been observed also by other
related applications where Voronoi cells are used to visually group points in a
multidimensional projection [18]. To alleviate such problems and make cells look
more like regions on a cartographic map, Voronoi cells are smoothed by inserting
a number of randomly placed artificial points around each data point and recom-
puting the diagram (Fig. 2.10b). Next, explanatory labels are defined for each cell,
and placed in the cells themselves. To accommodate for this, the artificial points
are arranged to follow the labels’ hulls (Fig. 2.10c). Finally, cells corresponding to
each initial group are merged to yield the final regions in the map (Fig. 2.10d).

(a) Scientific colaboration network (b) Map defining main groups

Figure 2.11: Graph and respective GMap of scientific colaboration.

Figure 2.11 shows an example of a GMap created to visualize a graph that en-
codes a scientific collaboration network whose nodes are 509 authors edges are
1, 517 co-authorship relations respectively. Showing only the graph highlights a
large central cluster of interconnected authors and a few outlier clusters (Fig. 2.11a).
In contrast, the GMap splits the large cluster into smaller regions, and thus em-
phasizes collaboration patterns at a finer scale (Fig. 2.11b). In the same time, the
outlier groups become easier to separate from the surrounding space. We shall
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exploit a conceptually similar visual metaphor in our own work further described
in Chapters 5 and 6.

2.4 Multidimensional Projections

Multidimensional Projection (MP) techniques are a central element of our re-
search goals outlined in Sec. 1.3. Formally put, given a dataset X embedded in
n-dimensional space, for instance in Rn, MPs are are functions P : Rn → Rm,
where m < n and typically m � n. The result of a projection technique, i.e. the
set {P(x)|x ∈ X} ⊂ Rm is next denoted by XP. In the literature, this set is some-
times also called a projection, which may create confusions between projection
techniques (the function P) and the result of applying such a technique (the set
XP). Moreover, the value P(x ∈ X) is also called the projection of observation x. In
the following, we will next use the shorthand ‘projection’ to refer to all the above
concents when the distinction is clear from the context, and otherwise refine the
explanation as needed.

An additional property of MPs is that they aim to preserve the similarity struc-
ture of the data from X to XP. While a formal and fully covering definition of
‘similarity structure’ is lacking, it is generally accepted that this takes two forms
in practice. First, structure can be defined in terms of the pairwise distances
dn : X× X → Rn between observations in the input dataset and the pairwise
distances dm : XP × XP → Rm between the projections of the same observa-
tions. In this case, a projection technique is said to preserve distances if dn(xi, xj)
and dm(xi, xj) are (nearly) identical up to a scaling factor for any point-pair
(xi, xj) ∈ X× X. Separately, structure can be defined in terms of the neighbors
νn : X → P(X) and νm : X → P(X) of points in both the original dataset X and
its projection XP. Here, P denotes the power set; νn is defined with respect to the
distance dn; and νm is defined with respect to the distance dm(P(·)). A projection
is said to preserve neighborhoods if νn(xi) and νm(xi) are (nearly) identical for
any observation xi ∈ X. In the remainder of our work, we will consider projections
from both types (distance preserving and neighborhood preserving). However, for
the ease of exposition, we assume that the projections being discussed are distance
preserving, unless otherwise specified.

Projections serve two main goals (see also Sec. 1.2). First, they can be used to
simply decrease the dimensionality of a large dataset prior to its further process-
ing, e.g., by eliminating dimensions which are redundant, for instance due to a
high correlation or low variance. Secondly, they can be used to get insights in the
structure of a multidimensional dataset. Our research falls into the second con-
text. For this, projections are typically used to embed high-dimensional data into
2D or 3D (i.e., m ∈ {2, 3}), in which case the projected data XP can be directly
visualized by a scatterplot. If the projections preserves data structure, then one
can use such a scatterplot to reason about the high-dimensional data patterns.
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Projections can be classified as global or local techniques, based on which parts
of the data structure they aim to preserve. Global techniques aim to preserve the
structure in all spatial scales, i.e., aim to preserve dn(xi, xj) for all point pairs
(xi, xj). Local techniques aim to preserve structure only on local (small) scales,
i.e., aim to preserve dn(xi, xj) only for low values of this distance. Overall, global
techniques are technically simpler and arguably better when the task at hand in-
volves comparing any point pairs. However, they generally succeed less in terms
of highlighting patterns such as groups of strongly similar items. Local techniques
are more complex, and also yield projections where far-away points may be incor-
rectly placed with respect to each other. However, they achieve far better results
in terms of highlighting groups of similar items.

We next discuss several projection techniques in both the local and global classes.

2.4.1 Global Techniques

Arguably the best known (global) projection technique is Principal Components
Analysis (PCA) [96]. The goal of this technique is to capture the principal direc-
tions in the Rn space that contribute most for data variance in X. In other words,
the technique aims to find the m orthonormal directions that describe most of
data variance. The solution for that is given by finding the m eigenvectors asso-
ciated to the largest eigenvalues of the covariance matrix of X. PCA is simple to
implement, fast to execute, and well known in the scientific and engineering lit-
erature [71, 70]. However, it has a major limitation: When the observations in X
do not live on a hyperplane embedded in Rn, the projection errors can be quite
large. For instance, consider points uniformly distributed over the surface of the
Earth. For this dataset, PCA will essentially project the points on a randomly ori-
ented plane. As such, diametrically opposed points will falsely appear as being
very similar.

Another global projection technique is Self-Organizing Maps (SOM)[102], which
can be roughly seen as an extension of the K-Means clustering algorithm to project
the high-dimensional data into a grid in the low-dimensional space, typically R2.
This technique starts by firstly defining a number of labels (groups). Next, repre-
sentative observations are randomly assigned to each cell of this grid, creating a
Voronoi grid in the multidimensional space. The representatives of each cell are
next updated using the average values of all observations that lie within a cell,
thus defining a new arrangement for the membership of observations to cells. The
process of updating representatives and assigning observations to cells continues
until convergence. The final grid is then visualized in the target space, with ob-
servations placed in their assigned cells.

Another well known global technique is Multidimensional Scaling (MDS) [105].
It aims to minimize a so-called stress function, which computes how well the
multidimensional reduction procedure preserved the distances from the high-
dimensional space to the lower one. This function is essentially capturing the
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ratio dm/dn discussed at the beginning of Sec. 2.4. Several approaches exist for
this, many of them being based on minimization of the stress (also called error,
or cost) function, e.g. by gradient descent [142]. To accelerate such optimizations,
the LLE [155] and ISOMAP [188] methods use special numerical solvers for sparse
eigenproblems. Another way for acceleration is to use a small set of so-called ‘land-
marks’, which are observations in X that characterize well the overall structure of
the dataset. Here, Landmarks MDS [168] and Pivot MDS [17] use classical MDS
to place these landmarks in the target space and arrange the remaining points in
X around the landmarks using simple interpolation schemes. Other techniques in
the MDS class that achieve high computational performance are Fastmap [58] and
MetricMap [204], and GLIMMER, which implements a multilevel MDS scheme on
the GPU [89].

MDS projections are intimately related to computing graph layouts. Given the
distance matrix (dn(xi, xj))i,j, one can construct a graph where the observations
xi are the nodes, and an edge (xi, xj), with a weight 1/dn(xi, xj), is present if
dn(xi, xj) is smaller than some given threshold. Next, the graph can be laid out in
Rm using a classical spring embedder technique [43]. This will place observations
which are close in Rn close to each other in the embedding space. The positions
of the graph nodes next give the desired projections P(xi). The converse connec-
tion is also possible: Given a graph G = (V ,E) with nodes V = {xi} and edges
E = (xi, xj), a distance matrix (dG(xi, xj))i,j can be created, where dG(xi, xj)
reflects the graph-theoretic distance between nodes xi and xj. Next, this matrix
can be used to project the observations xi to Rm, by using any suitable projec-
tion technique. By drawing the edges in E long with the positions of the projected
points P(xi), we obtain a layout, or drawing, of the graph G [77, 119]. Overall,
MDS methods are computationally scalable and easy to use. However, the faster
such methods trade off precision (in data structure preservation) for speed, yield-
ing results which may not be suitable for detailed visual analysis. Also, as the
other considered global methods, they tend to have less power to separate local
groups of similar observations when compared to the local techniques discussed
next.

2.4.2 Local Techniques

As explained at the beginning of Sec. 2.4, local techniques attempt to preserve
data structure only on small scales, i.e. for small distance ranges or neighborhoods
defined around the high-dimensional observations xi ∈ X. This offers more flex-
ibility in performing the embedding than global techniques. Indeed, depending
on the characteristics of the data in a neighborhood, different parameterizations
leading to an embedding, or even completely different embedding functions, can
be used.

In the class of distance-preserving local techniques, most approaches use the
earlier-mentioned idea of selecting a few landmarks for accurate positioning,
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followed by fitting the remaining observations locally around their closest land-
mark(s). For example, the Least Square Projection (LSP) [141] projects its land-
marks by a force-based point placement procedure. The remaining observations
are next projected using a Laplacian operator, which aims to position observations
close to its representative neighborhoods and also achieve a smooth mapping from
Rn to Rm. A faster local technique is the Local Affine Multidimensional Projection
(LAMP)[95]. It first projects a small set of landmarks into the low-dimensional
space and next interpolates the remaining instances using a family of affine map-
pings. LAMP has the advantage of achieving high precision and performance, even
using only a small number of samples. Another advantage of LAMP is that it al-
lows direct control of the landmarks’ positions in the projection, after which the
placement of the remaining points is very fast. This allows one to interactively
manipulate the projection, e.g. by moving the landmarks to better suit a desired
visual organization or perceived inter-landmark distance. Several other local tech-
niques exist [25, 146]. We use LAMP, a good quality, fast, robust, and easy-to-use
projection in our work on attribute-based projection explanation in Chapter 5.

In the class of neighborhood-preserving local techniques, arguably the best-
known one is the t-Distributed Stochastic Neighbor Embedding (t-SNE) [193], which
improves the earlier Stochastic Neighbor Embedding (SNE) technique [81]. These
techniques first find a probability distribution that captures how likely is that an
observation is the neighbor of another observation given a certain neighborhood
size. A similar distribution is designed for the low-dimensional embedding space.
Next, a cost function capturing the distance (difference) of the two distributions
is minimized using gradient descent. This penalizes dissimilar observations in the
high-dimensional space to be in close neighborhoods in the low-dimensional space
– though, highly-similar observations in the high-dimensional space can become
dissimilar in the low-dimensional space. The original SNE technique uses Gaus-
sian distributions in both spaces. In contrast, t-SNE uses a heavy-tail Student t-
distribution for the embedding space. Among other advantages, this makes t-SNE
converge better and give better results in terms of neighborhood preservation.
Recently, t-SNE was extended to also handle time-dependent datasets while guar-
anteeing a good preservation of both spatial and temporal data patterns [151].
We will use dt-SNE in our work on visualizing multidimensional dynamic datasets
in Chapter 6.

2.4.3 Assessing Projection Precision

From the previous discussions on projection techniques, it has become evident
that their precision, defined in terms of their ability to preserve relevant data
structures in the embedding space, is key to their usefulness for visualization pur-
poses. Indeed, the ‘inverse mapping’ that connects a visual pattern discovered by
the user in the visualization to a data pattern present, in our case, in the high-
dimensional dataset X [187], can only take place correctly if the projection pre-
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serves this type of pattern. Otherwise, two types of problems can appear. First,
one may see patterns where actually none are in the data – a problem also called
false positives. Conversely, one may never discover actual data patterns as these
do not appear in the visualization – a problem also called false negatives.

Ideally, the precision of a projection should be measured as a function of the
types of patterns it shows and their importance in a concrete task [164]. However,
doing so it is quite hard, since such patterns can be very complex in general, and
also it is hard to have ground truth for their evaluation, i.e., high-dimensional data
labeled to mark such patterns. As such, the precision of a projection is usually
assessed by measuring how well it captures similarity relations, which are the
basic building element for more complex patterns. Measuring the preservation of
similarity can be done at different levels of detail. From coarse to fine levels, these
are as follows.

Aggregated Normalized Stress

The stress function measures how well the projection function can preserve dis-
tances between all pairs of observations. Preservation is measured by a single
aggregated value over all such pairs, which is also normalized for ease of interpre-
tation across different projections. The aggregated normalized stress σ is defined
as

σ =
∑

(xi,xj)∈X×X

(dn(xi, xj) − dm(P(xi),P(xj))2

(dn(xi, xj))2
. (2.4)

Zero stress values give perfect preservation, while values larger than zero show in-
creasingly poorer preservation. This formulation of aggregated normalized stress
is the most used one in projection literature.

A slightly different formulation of the stress, called aggregated projection error,
is proposed in [118] and is defined by

ε =
∑

(xi,xj)∈X×X

∣∣∣∣ dn(xi, xj)
maxi,jdn(xi, xj)

−
dm(P(xi),P(xj))

maxi,jdm(P(xi),P(xj))

∣∣∣∣ . (2.5)

This formulation is largely equivalent to the stress defined in Eqn 2.4, being how-
ever slightly more sensitive to outlier observations.

Aggregate measures are simple to compute and compact. However, as any ag-
gregate metric, they only give a global indication of the overall quality of a pro-
jection. This is sufficient when statistically comparing several projection methods
across a large collections of dataset to determine which is better. However, for
a specific dataset, one typically wants to know (a) where in the projection (over
which observations) do large errors appear; and (b) what kind of errors these are,
e.g., false positives or false negatives.
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Neighborhood Preservation

The average neighborhood preservation (NP) metric aims to measure how much
a projected layout preserves the neighborhoods of original high-dimensional ob-
servations. It is analogous to the average normalized stress for the situations
where we are interested in reasoning about neighborhoods rather than abso-
lute distances. The NP metric is computed as follows. Let νn : X → P(X) and
νm : X → P(X) be functions that compute the neighborhoods of points in the
original high-dimensional space, respectively the projection, as defined at the be-
ginning of Sec. 2.4.

NP =
1

|X|

∑
xi∈X

|νm(xi)∩ νn(xi)|
|νm(xi)|

(2.6)

A value of NP = 1 indicates perfect neighborhood preservation, while values
NP < 1 indicate problems such as false positives and false negatives.

Obviously, the definition of NP is a function of the size of the neighborhoods
being used. Typically, these are constructed using k nearest neighbors, so νn, νm,
and NP are actually functions of k. As such, NP is usually visualized by plotting
its values for all k ∈ {1, . . . , |X|}. Here, the value k acts much like a scale factor on
which one assesses the NP value. Interestingly, the plots NP(k) are not monotonic
in k. Indeed, for k = 0, NP = 1, since any point is its own neighbor; and for
k = |X|, NP = 1, since a point will naturally contain all other points in X when the
neighborhood size is the entire dataset. As such, assessing which ranges, or values
of k, of the plot are the most relevant to study to capture the quality of a projection
in terms of neighborhood preservation, is a nontrivial question. Neighborhood
preservation metrics are used in Sec. 3.2.1 to compare various algorithms for
constructing similarity trees.

Neighborhood Hit

The neighborhood hit (NH) metric is a variation of the NP metric used to de-
termine the quality of group preservation for labeled data. To compute it, one
proceeds by defining the same neighborhoods νm and νn as for the NP metric.
Next, for each point xi ∈ X, one computes the ratio of how many neighbors in νm

have the same class as xi to how many neighbors of P(xi) in νm have the same
class as xi. Again, values are averaged over classes, points, and neighborhood
sizes, and the results are presented as a function NH(k) of the neighborhood size
k.

Local Measures

At the finest level of detail one can inquire about projection errors for specific
subsets of points in a projection. For instance, one can measure the stress σ, ag-
gregated error ε, neighborhood preservationNP, or neighborhood hitNH as func-
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tions of observation xi ∈ X, by suitably adapting their aggregated formulations.
This allows plotting such errors over the projection, and thereby finding specific
zones where they appear. In the same way, measures can be designed not only
to show the amount of errors, but which points cause these errors. For example,
one can show which of the neighbors of a given xi have been placed too close to
P(xi) in the projection – that is, show so-called false neighbors. Similarly, one can
show which of the neighbors of a given xi, in the high-dimensional space, have
been placed too far away from P(xi) in the projection – that is, show so-called
missing neighbors. The same notions can be extended to members of a group of
close points, yielding notions of missing group members and false group mem-
bers, respectively. All these local measures can be visualized by combinations of
heat maps, level sets, projection triangulations, and bundled edges, leading to
detail-rich and insightful descriptions of local errors [118, 120].

Compared to the aggregated metrics presented earlier, such local measures are
less useful for deciding which of two projection techniques is in general better.
However, they are useful for telling users where, in a projection, can one trust the
visible patterns, and where not – thus, they serve as aids that guide the interpre-
tation of a given projection for a concrete dataset [160, 118]. An adapted version
of such local error measures has been proposed by Pagliosa et al. to color-code the
value of quality measurements on a family of projections and their interpolation,
to show differences between projections vs a particular error-distribution [135].

2.4.4 Explaining Projections

As we have seen so far, multidimensional projections are efficient and effective
tools for mapping multidimensional datasets to 2D or 3D scatterplot-like views. A
key ability they have, and which is essential given our research interest for explor-
ing similarities of such data, is that they are geared precisely to show how similar
an observation is to all other observations. However, the above ability is by itself
not sufficient for making projections usable to explore data similarities. Two prob-
lems exist in this respect, both caused by the fact that a classical scatterplot view,
used for a projection, shows just a point cloud, each point being an observation:

• interpreting observations: While each point P(xi) in a projection represents
precisely one observation xi from the input high-dimensional dataset, the
inverse mapping P(xi)→ xi is not explicit. In other words, we do not know
which observation xi corresponds to a given point P(xi) in a projection;

• interpreting dimensions: Compared to all other multidimensional visualiza-
tion techniques reviewed in Secs. 2.3.1, projections are the only technique
that does not explicitly encode dimensions. As such, projections may show
that certain observations are similar, but do not tell why this is so.

To address both above issues, several so-called explanatory mechanisms have
been proposed. Globally put, these enrich a raw projection scatterplot with ad-
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ditional information that helps interpreting observations and/or interpreting di-
mensions. The most prominent such mechanisms are outlined next.

Interaction

Interactive techniques explain projections by showing on-demand information to
help making sense of the group and outlier structures visible in the projection.
Basic techniques include brushing close points in the projection to see which di-
mensions make them similar (this requires significant effort and memorization);
and scagnostics methods which pre-analyze all scatterplots in a scatterplot-matrix
(SPLOM) [10] to detect which ones best capture interesting patterns in Dn [192]
(this still requires interaction and manual linked-view correlation). Other methods
include ForceSPICE which uses a force-directed spring model to lay out a scatter-
plot of textual elements, on which the user can incrementally add annotations to
highlight specific items [54]; and using phylogenetic trees to project documents
by placing similar ones in close tree nodes [34]. Next, users can execute a topic
extraction algorithm to automatically label selected tree branches to guide explo-
ration. A technique suitably called ‘explainers’ create custom projection functions
that align with user-specified annotations, by using machine learning optimiz-
ers [66]. Overall, all such interactive methods can explain regions in a projection
Dm, but require user interaction effort to specify where to explain the projection.

Color Coding

Color coding is arguably the best known and simplest explanation for interpreting
dimensions. Given one dimension xj of the n dimensions of a dataset, points P(xi)
in the projection are colored to indicate the values xji. If dimension j is quantita-
tive, a continuous colormap is typically used. If dimension j is categorical, a cate-
gorical colormap is used. This allows, at the lowest level, seeing how dimension j
varies over the projected points. Furthermore, it potentially allows explaining the
reason for appearance of patterns such as groups or outliers in terms of different
value ranges of dimension j over such structures.

Figure 2.12 exemplifies this. Here, a projection of 1, 000 observations and 16
dimensions is color mapped to values of a selected dimension. A color legend on
the top-left i shows that dark brown maps low values and bright yellow maps
high values of the selected dimension, and that this dimension is quantitative.
in the projection, we see a relatively well separated group of points to the left
(surrounded by a dotted outline). We also see that all points in this group are
dark, thus have low values of the selected dimension. Moreover, all points outside
this group have higher values of the same dimension. Hence, we can say that the
group can be explained as ‘all observations that take low values in the selected
dimension’.

While simple to understand, color coding has some strong limitations. In most
real-world cases, groups and outliers in a projection cannot be explained by the
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Low values region for 
the selected dimension

Figure 2.12: Color coding explanation of a multidimensional projection.

values of a single dimension. More formally, this can only be done when the
same groups and outliers are also visible in the projection of the high-dimensional
dataset on one of the planes defined by two axes of the Rn space the data resides
in. Often, however, such groups and outliers can be explained by sets of dimen-
sions, i.e., combinations of different dimension values. For example, considering
a projection where three groups are visible, it can be possible that one group is
explained by certain values of dimension 1, the second group by certain values of
dimension 3, and the third group by the remaining values of dimensions 1 and 3.
Such insights can be obtained by successively color coding a projection by the val-
ues of all n dimensions, and mentally combining the impressions obtained from
each such view. It is clear that this approach does not scale to more than a few
dimensions, as it heavily relies on human memory.

Biplots and Axis Legends

A second class of explanatory mechanisms for interpreting dimensions is formed
by biplots and axis legends.

Biplots are essentially a generalization of classical Cartesian coordinate axis
shown in function graphs, for the context of projections. They work as follows.
For an n-dimensional dataset, we have n orthogonal dimensions, or axes ai, 1 6
i 6 n. Data values range along each axis within an interval [aimin, aimax]. Biplot
axes are essentially the mapping of the line segments determined by [aimin, aimax]
along all axes ai to the low-dimensional embedding space via the projection func-
tion P. As such, they show, in the visual space, the directions of maximal variations
of all n original variables, as well as the ranges of these variables. They can be
used to judge the values of specific projected points along any dimension, much
as it is done when viewing a Cartesian plot, except that they are usually not or-
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thogonal to each other. Secondly, they can be used to judge the correlation of
dimensions: If two biplot axes are nearly parallel, then the respective dimensions
are strongly directly or inversely correlated, the correlation sign depending on the
relative orientation of the biplot axes. If two biplot axes are nearly orthogonal,
then the respective dimensions are uncorrelated. As such, a projection with biplot
axes can be seen as a generalization of a scatterplot to a multidimensional dataset.

Biplots can be constructed by using SVD decomposition on the high dimensional
dataset [197, 71, 70]. However, this works well only for linear projection tech-
niques such as PCA. For non-linear projections, Coimbra et al. [28] generalized
biplot axes by densely sampling the lines ai in high-dimensional space, projecting
the samples via the projection function P, and connecting these to yield the biplot
axes in the low-dimensional space. Apart from the above-mentioned properties of
biplot axes, this technique allows assessing the (local) non-linearity of the projec-
tion by looking at the curvature of the biplot axes. The example in Figure 2.13a
illustrates these generalized biplot axes for a dataset containing 2814 elements
from a dataset of 9 dimensions projected via LAMP [95]. The biplot axes intersect
at the projection centroid, and labels are positioned next to each axis to indicate
the mapped dimension by that axis.

(a) Biplots axis explanation. Image from [28].

Cement
Min Max

x Legend

y Legend

(b) Axis legends explanation

Figure 2.13: Biplots and axis legends explanation of multidimensional projections.

A second way to explain dimensions is to visualize how each of the n dimen-
sions of the original dataset influences to the positioning of projected points along
the screen axes x and y. In other words, this tries to explain what the x and y
screen axes mean, in terms of the original n dimensions, rather than biplot axes
which explain what the original n dimensions mean in terms of the screen x and
y axes. To do this, one first observes that, for all but trivial cases, the x and y
positions are explained by a mix of all n dimensions, each contributing up to
different amounts. These amounts are called loadings for linear projections such
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as PCA [71], and can be visualized by drawing a n-element bar chart for the x
and y axes, where a bar length indicates the contribution of one of the original
dimensions to the respective screen axes [18]. For other projection techniques,
quantities similar in spirit to loadings can be computed by projecting the general-
ized biplot axes along the screen axes [28]. Further color coding and sorting of the
bars allows users to tell which are the most important dimensions that determine
the spread of points along the screen axes or, in other words, allows interpret-
ing the projection much like a Cartesian scatterplot. Figure 2.13b illustrates axis
legends for a projection of 1030 observations. This dataset epresents mixtures of
ingredients required to make construction concrete and has 8 dimensions (ingre-
dients) [210]. According to the axis legends, dimension cement and furnace are
the ones with highest influence over the point mapping to axis y, whereas di-
mension fly ash. To verify this, one can color code the projected points by one of
these dimensions. In our example, we do this on the values of the cement dimen-
sion. The observed dark-to-bright color gradient matches the vertical direction (y
screen axis), which matches the fact that cement is the largest bar in the y axis
legend.

Clustering and Labeling

All explanatory mechanisms presented so far share two characteristics: They are
global, in the sense that they do not explain certain projection patterns by different
variables than other patterns; and they are dimension centric, in the sense that
they focus on showing dimensions and linking these with observations, rather
than showing observations and linking these to dimensions.

An alternative way to explain a projection is to do this locally, focusing on ex-
plaining specific groups of points. These groups might be obtained both by manual
selection in the visual space, or by an automatic clustering technique taking as in-
put either the projected space or the original space. Paulovich et al. [143] propose
such an approach to automatically explain projected groups from textual data
(Fig. 2.14). For this, they segment visual groups in the projection space, and next
compute the convex hull of each set of segmented points, or cluster. Next, docu-
ments in each cluster are analyzed to find relevant (high frequency) terms, which
are then used as explanatory keywords for that cluster. The few most-relevant such
terms are then drawn atop of the cluster using a tag cloud label layout, with labels
scaled by the relevance of the respective terms. This way, clusters are explained
by the most frequent data values that their observations take.

Other cluster-based explanation of projections exist. ImageHIVE extracts rep-
resentative points from clusters of points representing images, and show these
using graph drawing techniques [180]. Similarly, Nocaj et al. visualize documents
by hierarchical clustering of the projected points and drawing cluster represen-
tatives [131]. Kandogan [99] visually annotates clusters in the embedding space
based on the attribute trends detected in them. Clusters are computed by an
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a) b)

Figure 2.14: Local explanation of a projection layout. Based on a user-defined selection (a),
regions of the projection are delimited. Next, each region is explained by the
most frequent values its dimensions meet over all contained observations (b).

image-based scatterplot density estimation. Important attributes are found based
on their statistical relevance.

Compared to earlier global explanations, local explanation has the strong added
value of being able to adapt the explanation to the actual structure of the data.
In other words, different groups of observations can be explained by different di-
mensions and/or dimension values, as needed. However, such explanations are,
to our knowledge, mainly limited to text documents represented by a Vector Space
Model, and do not generalize to other datasets such as quantitative ones. More-
over, the explanation relies on the precise delineation of meaningful clusters. We
shall see in Chapters 5 and 6 how local explanations can be extended to overcome
such limitations.



3Multiscale Exploration of Similarity Trees

Similarity-based visualization techniques map observations onto a visual space
such that similar ones can be recognized as such by the user. As explained in
Chapter 2, similarity over a set of multidimensional observations can be visually
encoded using either projection techniques [95, 193] or similarity-based layouts
such as similarity trees [34, 141, 89, 136], classical treemaps [11], and Voronoi
treemaps [132]. However, when collections involving hundreds of thousands or
even millions of observations are given, few if any of the above methods are scal-
able both visually and computationally. In other words, for large datasets, such
methods are either slow, or they generate clutter and mixture of potentially dis-
tinct data points in the final image.

To find potential solutions to the problem of visualizing similarity in large mul-
tidimensional datasets, let us further examine the advantages and limitations of
our two classes of techniques of interest – multidimensional projections and simi-
larity trees.

Multidimensional projections: These techniques are fast enough to allow the
construction of similarity-based scatterplot-like maps for millions of observations.
Moreover, recent techniques offer a good control of the preservation of similari-
ties (distances) from the original high-dimensional space to the projection space,
as explained in Chapter 2. However, there is little help in exploring the resulting
maps at different scales or levels of detail: At coarser scales, points tend to group
together. This impairs their visual separation and, in the limit, when one visual-
izes a large dataset with a limited projection (screen) space, one may even get a
significant amount of clutter and overdraw. At finer scales, there is significantly
less consistency among neighbors, since projection methods cannot fully preserve
distances from any high-dimensional dataset to the 2D projection space [139]. In
other words, when exploring a small region in the projection space, projection er-
rors, present in the form of missing neighbors and false neighbors, become more
apparent and may adversely influence the interpretation of the data [118]. These
problems of projections have been recognized, and multiscale approaches for com-
puting and exploring multidimensional projections have been proposed [140].
However, to our knowledge, such approaches do not scale computationally to
handle large datasets, and also are geared to the visualization of textual data.

Similarity trees: Trees as encoders of similarity relationships [34, 136] allow the
exploration of a visual map both globally and locally employing the same visual
metaphor, as the tree’s branch structure organizes similarity across the levels of a
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tree. In other words, levels in a tree correspond to different degrees of similarity
between nodes. This allows to directly find groups of similar items, which will be
located on the same or neighbor levels in the tree. Besides this partitioning of the
‘similarity space’, levels also provide a multiscale description of the observations,
with layers close to the tree root having fewer nodes that give a coarse repre-
sentation of the dataset, and layers close to the tree leafs giving a finer-grained
description. However, a limiting factor for similarity trees is that, to be constructed
with good precision in terms of similarity-based grouping of nodes, they require
O(n3) time and O(n2) memory for a dataset of n observations [169, 206]. This
is prohibitively slow for large data collections.

In this chapter, we aim to create a visualization algorithm for similarity of mul-
tidimensional datasets that combines the advantages of multidimensional projec-
tions and similarity trees and reduces their disadvantages. For this, we propose a
novel visualization approach to construct and explore similarity trees, based on a
partitioning strategy which allows the exploration of large collections efficiently
and with good precision concerning the assessment of similarity. Visual scalability
is handled by making the visualization to reflect the scales of a recursive partition-
ing algorithm. The exploration strategies implemented with this scheme allow the
exploration of large trees in varying levels of detail while still keeping a global per-
spective of the collection. We call this combination of techniques for large scale
similarity visualization the Visual SuperTree (VST). We evaluate our approach on
large collections of images, text and other data types. The VST enables exploration
of large datasets at interactive rates and the multiscale approach for navigation
allows fast drilling down to interesting data areas. In other words, VSTs provide
a scalable approach to visualizing large multidimensional data both in computa-
tional and visual terms.

The remaining of this chapter is organized as follows. Section 3.1 presents re-
lated work on similarity-based visual mapping strategies. Section 3.2 describes the
construction and exploration strategies of Visual SuperTrees. In section 3.3.1 we
assess the precision of our VSTs on several datasets. Section 3.4 present use cases
of VSTs for the exploration of large datasets. Section 3.5 discusses our technique.
Section 3.6 concludes this chapter.

3.1 Related Work

As explained in Sec. 2.3, an important goal of multidimensional visualization
methods is to reflect the similarities of the visualized items, defined in terms of
either their data attributes or their relationships. The construction of visual maps
based on similarity among observations usually relies on point placement strate-
gies, also called embedding strategies, that encode similarity in different ways.
We refine this topic below so as to better understand the existing techniques that
address this goal.
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Classical methods: In general, any (multidimensional) visualization method re-
flects the similarity of data items, up to certain extents, either implicitly or ex-
plicitly. Indeed, if the data-to-visual-variables mapping proposed by the method
is consistent, then it should map identical data items to visually identical vi-
sual items; and should map highly similar data items to highly similar visual
items [183]. The difference between methods appears in the extent up to which
they satisfy this property, i.e., how easy is to recognize data similarity by looking
at the similarity of the visual items that map the data.

Classical multidimensional visualization methods achieve the above goal up to
various extents. For instance, table lenses map similar observations (rows) to sets
of horizontal bars having similar lengths and colors. However, due to the layout
of the visualization, it is hard to find such rows, especially if they are not close to
each other in the table [150]. Scatterplot matrices (Sec. 2.3.1) are, by excellence,
a dimension-centric visualization, so they cannot easily show the similarity of ob-
servations. Detecting pairs of dimensions that have similar correlations is possible,
but not entirely easy, as it involves finding cells in the matrix that show similar
two-dimensional point clouds. Parallel coordinates map similar observations to
sets of polylines that closely follow the same visual path (Sec. 2.3.1). While it is
possible to visually find such sets, the task can be seriously impaired by clutter
and crossings in case of larger datasets.

Multidimensional embeddings: These techniques are, arguably, the most used
approach when one focuses on mapping observation similarity (Sec. 2.4). Re-
cently, large progress has been made in building alternative projections of multi-
dimensional data, searching to improve optimization criteria, computational com-
plexity and precision, as well as local control over the results [141, 89, 95, 193].
Most such approaches are computationally fast and, subject to proper parameter
choices, effective regarding the target goal of preserving distances in the original
high-dimensional data space.

At the core of the interpretation of such point placements is the user’s ability to
recognize proximity in visual space, and to use this as an indication, or ‘proxy’, of
detecting similarity or correlation of the original high-dimensional observations.
This works arguably better than for other multidimensional visualizations – that
is, it is easier to locate and separate compact groups of points in a 2D point cloud
than, for instance, locate and separate bunches of closely-drawn polylines in a
parallel coordinate plot. While we are not aware of formal analyses of the reasons
behind this, it seems to use that this is due to the much stronger visual separation
(of similar items from other items) that 2D point clouds offer in contrast to other
mappings. Moreover, clutter, if present, does not impair separation in a 2D point
cloud; one can even say that having more observations only increases the ease of
separating groups of compact points (if these exist in the visualization, of course).
In contrast, clutter in parallel coordinate plots, coming in the form of intersections
between polylines, decreases the ease of visual separation.
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In terms of input data, two alternatives are known for projections. First, embed-
ding can directly use similarity (or distance) relationships between observations. A
second alternative is to use the actual dimensions of the observations. Methods in
the first class are by construction more versatile than methods in the second class,
as they do not need actual dimensions but only distances between observations.
However, such methods need to store a (typically large) distance matrix, and are
also slower than the fastest embedding algorithms known, which directly use di-
mensions. Methods in the second class can be reduced to those in the first class,
given that a distance metric can be computed from the dimensions. However, in
some applications, one does not avail of explicit dimensions for observations, but
only of distances between them.

Similarity trees: An alternative to classical embedding, similarity trees [34, 136]
have been proposed to reflect similarity relationships. Such approaches organize
the similarity relationship in levels. This allows the recognition of similarity pat-
terns beyond those captured by ‘flat’ multidimensional projections. Another ad-
vantage of similarity trees is to capture, within a particular branch, observations
sharing similar properties, due to the use of the precise Neighbor-Joining (NJ)
phylogeny reconstruction algorithm, which is widely used in biology [65]. Addi-
tionally, compared to other point embedding strategies, visual clutter is reduced
with similarity trees by the constraints of the underlying tree layout algorithm. Fi-
nally, the tree structure, visible in the form of branches, provides cues or ‘reading
paths’ for the multilevel exploration of the embedding.

The precision of similarity trees in terms of capturing similarities was originally
demonstrated for applications in visualization of collections of textual documents
as well as for image collections by Eler et al. [52]. Similarity trees were also em-
ployed as a supportive tool for supervised dimension reduction processes [136]. A
major disadvantage of a precise similarity tree is its construction time, which im-
pairs computational scalability to large data sets. Another issue of similarity trees
regards visual scalability: For relatively small trees, the underlying tree layout al-
gorithm separates branches quite well from each other, leading to an uncluttered
display. However, for datasets larger than a few thousand elements, such tree lay-
out algorithms cannot prevent clutter and overlaps to form, thereby limiting visual
scalability. Besides node-link layouts, similarity trees can be also visualized using
space partitioning schemes such as treemaps [11, 132]. However, several such
methods also have computational and/or visual scalability issues.

Our proposal: In this chapter we propose a new type of similarity tree, built to
explore large multidimensional datasets. Our algorithm handles computational
scalability problems by partitioning the data space and by creating a visual repre-
sentation of the individual partitions that is based on the Neighbor-Joining (NJ)
principles, described in detail next in Sec. 3.2.1. To achieve this, we pre-cluster
the dataset in multiple levels, creating a set of recurrent NJ trees of decreasing
sizes. Each such tree represents a level of the dataset’s partition. These trees are
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next joined to create a global, dataset-wide, similarity ‘supertree’. This final tree is
visualized via an exploratory interface that presents the data in a multiscale fash-
ion, using an overview plus detail metaphor [27], by allowing the user to move
up and down the levels of the tree to examine the data. This addresses the visual
scalability issues mentioned earlier.

Compared to hierarchical clustering, both agglomerative (bottom up) and divi-
sive (top down) [93], our approach also produces a multilevel solution that leads
to a multiscale exploration. Specifically, by forming the final similarity tree by
joining data clusters, the similarity relationships among clusters are captured in
the tree, which next helps analyzing similarity at various levels of detail. In con-
trast to clustering, our approach does not has as end goal the creation of a tree
that encodes similarity in a multiscale fashion, but the creation of a layout that
preserves similarity relations in the final visualization.

The term supertree has also been used before in a different context within com-
putational biology. In that context, it refers to the trees constructed by the combi-
nation of different phylogenetic trees for overlapping sets of taxonomic units [69].
The aim there is to combine trees built by different specialists and from differ-
ent data, obtaining a single large consensual tree. Building biological supertrees
is computationally hard when different input trees contradict each other with
respect to specialization. Minimizing the disagreement among trees is also diffi-
cult [48]. However, such problems are not related to our problem here of orga-
nizing and displaying large quantities of observations by similarity.

Trees in visualization have been frequently used as a means to express multi-
dimensional hierarchical data in various ways [161]. Many visualization systems
allow effective ways of exploring trees via various versions of link-node represen-
tations [149]. Widely used techniques such as treemaps [11] improve space usage
against conventional link-node representation and optimize the number of obser-
vations that can be presented in a rectangular space without occlusion. Treemaps
have also been adapted to handle non-rectangular spaces [8], and also to improve
the harmony and effectiveness of display [132]. Another example of this class of
techniques is presented by Schulz et al. [162], who build a tree through rotation
and grid-fitting procedures to fully occupy the visual plane. Although space-filling
tree-display techniques have been designed to show data that are hierarchical in
origin, they can be directly used on data which can be transformed into hierar-
chies, such as similarities.

While space-filling methods are very effective in terms of the information den-
sity they can realize for a given screen surface, they have the disadvantage –
when compared to node-link tree visualization methods – of not being able to
easily show the neighboring relations between tree branches. We believe that
showing such relations is essential for interpreting similarity on a multiscale, and
thus choose for a node-link visualization metaphor. This metaphor also reflects
well the binary structure of the underlying NJ trees. Separately, our method is
adaptable to uneven group distributions and also lends itself to the creation of
multiscale mosaic views. Such views are very helpful when data can be meaning-
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Tree Construction

(A)

Tree Layout

(B)

Dataset

Id    Attr0   Attr1    Attr2   ...    Attrn

V1    0.56    0.34     0.26    ...     0.38

V2    0.21    0.67     0.90    ...     0.52

V3    0.86    0.73     0.14    ...     0.11

V4    0.01    0.41     0.64    ...     0.19

V5    0.61    0.37     0.29    ...     0.25

Vn    0.51     0.19     0.55    ...     0.63

 .       .         .         .      .        . .       .         .         .      .        . .       .         .         .      .        . .       .         .         .      .        .

 .       .         .         .      .        .

Similarity Tree

Scale A

Scale B

Data Summarization

(D)

Multiscale Interaction

(C)

Group node
(supernode)

data observation node

Upper Level Tree

Lower Level Tree

Selected node

Figure 3.1: Overview of the Visual SuperTree construction pipeline.

fully summarized, as we shall illustrate with the visual analysis of image and text
collections.

In summary, our method, which we call the Visual SuperTree (VST), is able to
visually encode similarity in a multiscale manner, in a visually scalable way, for
datasets of hundreds of thousands to millions, at interactive speeds. We believe
that this combination of desirable properties is unique to the VST as compared
to other existing tree visualization methods. The way in which this is achieved is
described next.

3.2 The Visual SuperTree

We next discuss the requirements that a VST should comply of and, in the same
time, detail the combination of techniques used to enable interaction, summariza-
tion and exploration. An overview of our proposed VST construction pipeline is
given in Fig. 3.1.

3.2.1 Construction

The VST requires as input a tree which reflects similarity relationships between
observations of a dataset. It also requires that the branches of this tree can be
partitioned into several levels of detail, i.e., into groups of highly similar nodes
that can be summarized by aggregating them. We call these groups supernodes.
As such, a VST consists of a similarity tree having as nodes both observations and
supernodes (groups of observations). We use the supernode abstraction to allow a
consistent and controlled exploration of the data, mainly in the sense of reducing
visual clutter when visualizing large datasets. The construction of supernodes is
detailed separately in Sec. 3.3 so as not to interrupt the flow of the main narrative,
and since the supertree is intimately linked to its visualization methods discussed
next.
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To build the similarity trees required by VST as input, several methods can be
used. We next detail three popular ones:

Neighbor-Joining (NJ): As input, we consider a dataset of n observations {xi},
1 6 i 6 n. From this dataset, we derive a distance matrix D = (Dij), where Dij
is the distance between observations xi and xj in our dataset. This can be done
either explicitly, by using the dimensions of the observations to compute distances
between them, or the distance matrix can be provided by some other means of
characterizing the similarity of observations that does not consider explicit di-
mensions, as explained in Sec. 3.1 in the context of projections. From D, the NJ
algorithm builds an unrooted tree where its n leaves are the observations xi, and
where the n− 2 non-leaf tree nodes represent ‘ancestors’ with two children each.
NJ starts by creating the n leaves. At each step, the algorithm (i) selects a pair
of nodes (i, j) with the smallest sum of branch lengths Sij, defined as the sum of
distances of nodes i and j to the lowest level in the tree, expressed as

Sij =
1

2(n− 2)

∑
k6=i,j

(Dik +Djk) +
Dij

2
+

1

n− 2

∑
k<l
k,l 6=i,j

Dkl. (3.1)

In step (ii), the algorithm adds a node x to the set of current nodes, by connecting
x to i and also to j. Next, the algorithm (iii) evaluates the edge lengths Lix and
Ljx as

Lix =
1

2

Dij + 1

n− 2

∑
k6=j

Dik −
∑
k6=i

Djk


Ljx =

1

2

Dij + 1

n− 2

∑
k6=i

Djk −
∑
k6=j

Dik

 . (3.2)

Edge lengths Lij model the distance between nodes corresponding to observations
xi and xj, as captured by the NJ tree. Edge lengths will be next used when drawing
the tree, so as to visually reflect the similarity of nodes connected by edges, and
thereby construct a final drawing that encodes well the original similarities in Dij
that the tree captures.

After computing edge lengths, we (iv) replace rows and columns i and j by
a new row (and corresponding column) x in the distance matrix. To do this, it
evaluates the distancesDxy from the newly added element x to all other elements
y in the matrix by

Dxy =
1

2

(
Diy +Djy

)
. (3.3)
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When only three nodes 1, 2, 3 are left, a final node x connecting them is added,
and the lengths of the three corresponding added edges are set to

D1x =
D21 +D31 −D32

2
, D2x =

D21 +D32 −D31
2

, D3x =
D31 +D32 −D21

2
.

(3.4)

After this, the NJ algorithm has completed its work.

WPGMA: The WPGMA (Weighted Pair Group Method with Arithmetic Mean) [170]
is a tree construction method based on a bottom-up agglomerative clustering. The
algorithm receives a distance matrix D as input, which holds the distances be-
tween pairs i, j to all n observations, just like the NJ algorithm. The WPGMA
algorithm next creates a rooted tree by grouping the two most similar observa-
tions (i, j) each time. These observations will be represented by the nodes ni and
nj in the tree. Next, a new node n(i∪j) is created to represent this group, and
will become their parent in the tree. For this tree, we also define the edge lengths
L(i∪j),k, k ∈ {i, j} as

L(i∪j),k =
Di,k +Dj,k

2
− Sk, (3.5)

where

S(i∪j) =
Di,j

2
(3.6)

represents the total distance of the node k to the lowest level in the tree. Obvi-
ously, if k is a leaf node, then Sk = 0. The matrix D is then updated to remove
the distances for observations i and j and include distances D(i∪j),k from the new
node n(i∪j) to the remaining k observations. These distances are computed as

D(i∪j),k =
Di,k +Dj,k

2
. (3.7)

This process of grouping and updating D is repeated until there is only one node
left, which is the tree root. One important aspect of WPGMA is that it creates an
ultrametric tree. This means that, given a node k, the total length of its path down
to the lowest level of the tree is the same.

UPGMA: The UPGMA (Unweighted Pair Group Method with Arithmetic Mean) [170]
is a similar tree construction algorithm to WPGMA. Both are bottom-up agglom-
erative techniques, but UPGMA uses a different approach to update the distance
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matrix. When updated, distances are weighted by the number of nodes contained
in each group. That is, UPGMA replaces Eqn. 3.7 from WPGMA by

D(i∪j),k =
‖i‖di,k + ‖j‖dj,k

‖i‖ ‖j‖
. (3.8)

Best algorithm: All the approaches presented above aim to find the “ideal sim-
ilarity tree", i.e., a tree which matches the distances in D by the lengths Li,j of
branches between corresponding tree nodes. UPGMA and WPGMA are faster to
compute (O(n2) for n observations) than NJ, which is O(n3). However, the main
disadvantage of UPGMA and WPGMA is that they can create misleading results
when the ideal similarity tree is not ultrametric.

(a) Test dataset (b) Neighborhood preservation plots

Figure 3.2: Testing neighborhood preservation for three similarity-tree construction algo-
rithms.

The above issues in terms of quality, or distance preservation, of a similarity
tree algorithm are very important in our context, since, as explained, we want to
visualize such a tree to be able to reason about similarities in the original dataset.
To assess quality, we compared the three studied algorithms (NJ, UPGMA, and
WPGMA) using a synthetic dataset which contains five well defined separate ob-
servation groups (Fig. 3.2a). Here, the distance D corresponds to the pairwise
Euclidean distances between the points plotted in the figure. Having this dataset,
we ran each algorithm separately, obtaining thus three different similarity trees.
Next, we need to assess which of these trees reflects the input data more faithfully.
Since we do not have a way to compute the ideal similarity tree to use as ground
truth, we proceeded by using a proxy quality metric – the neighborhood preser-
vation (Sec. 2.4.3). In detail, this works as follows: For each observation xi in our
dataset, we can define a set of k neighbors νdatai as the k observations more sim-
ilar to xi. For the node i in a similarity tree that corresponds to xi, we define its
k neighbors νtreei as the k nodes whose sum of edge lengths in their path to i is
minimal. The neighborhood preservation πi is defined as the ratio of observations
in νdatai whose corresponding nodes i are in νtreei to the size of νdatai . For an
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entire dataset mapped to a similarity tree, neighborhood preservation π is defined
as the average of the neighborhood preservation πi for all data items i. Ideally, all
values of πi should be one for any neighborhood size.

Using this model, we evaluated the neighborhood preservations π for the three
studied algorithms by plotting them as functions of neighborhood size, using
neighborhood preservation plots (Sec. 2.4.3). The neighborhoods are defined by
the k-nearest neighbors, and the values of k used here range from k = 1 to k = 30

neighbors. Figure 3.2b shows the results. Here, we see that NJ performs signif-
icantly better than WPGMA and UPGMA, for roughly all neighborhood sizes. As
such, we use NJ in our further tree construction (see also Sec. 3.3). When drawing
this conclusion, it is very important to stress that the quality assessed here is that
of the neighborhood preservation of the similarity tree and not that of a drawing
of the similarity tree. Indeed, at this point of our design, we want to assess which
similarity tree, seen as an abstract data representation, encodes best our initial
dataset similarities. Tree drawing, a separate concern, is discussed next.

3.2.2 Tree Layout

Having a similarity tree constructed as discussed above, we need next to draw
this tree so that we can use it to assess similarities of our original observations.
For this, we use three different tree layout approaches: a radial layout [7], a cir-
cular layout [7] and a force-directed layout [25]. Figure 3.3 shows the results for
a similarity tree constructed from an artificial dataset wich contains 1000 observa-
tions divided in four groups. Details about the construction method used to build
this tree are discussed in Sec. 3.2.1. Both radial and circular layouts are specif-
ically designed to work on rooted trees. As root, a central node, i.e., having the
smallest sum of shortest paths to all other nodes, is selected. A cheap approxima-
tion of the above, which considers all edges of the same length, is to iteratively
remove leaf nodes from the tree, in a first-in-first-out order, until only one node is
left – the root. Note that this ‘visual root’ is not necessarily the same node as the
root of the similarity tree being constructed as explained in Sec. 3.2.1.

Several observations can be made when we compare the three considered tree
layouts, as follows.

Radial layout: This layout is designed to preserve edge lengths (as encoded by the
values Lij computed as explained in the previous section) into the visual space as
well as possible, and provides a general overview of the tree structure (Fig. 3.3a).
The algorithm assigns angular wedges of a circle to the tree branches, so that a
wedge’s size is proportional to the number of leaves of its branch. Edges are then
drawn along wedge-angle bisectors and branches are kept disjoint on the layout
plane. This way edges can have any length without violating disjointness. The al-
gorithm works directly with a standard similarity tree. However, as we explained
in Sec. 3.2.1, our VSTs can contain both plain nodes and supernodes, the latter
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Short edges
(more similarity)

Long edges
(less similarity)

(a) Radial layout

Size: 54

Node Id: 1003 

(b) Circular layout (c) Force-directed layout

Figure 3.3: Visual SuperTree layout strategies. The radial layout (a) preserves edge lengths
and gives a general view of the tree structure. The circular layout (b) helps
comparing the sizes of supernodes in terms of the circular sector sizes. The
force-directed layout (c) spreads the tree to better fill the visual space, removing
overlaps and allowing a more detailed view of individual branches.

being groups of nodes. To handle this tree structure, we modified the original
algorithm [7] to also consider the size of each supernode to define the angular
wedges, so the bigger a supernode is, the bigger will be its contribution to define
the size of its branch angular wedge.

Circular layout: This layout places leaf nodes equidistantly along the perime-
ter of a circle. Recall that we have to handle a VST, whose leaves can be either
individual observations or supernodes. To do this, we modified the original cir-
cular layout algorithm [7] to reserve node wedges proportional to the size of the
supernodes, i.e., reserve larger angular wedges to supernodes containing more
observations. Figure 3.3b shows a result of this modification. To help the inspec-
tion of the wedge sizes, we also display a radial pie chart around the tree, where
each circular sector represents the angular wedge reserved for a node. This helps
the analysis of cluster sizes and provides an overview of the clustering structure.

Force-directed: This layout simulates a physical system where graph nodes are
connected to imaginary springs that iteratively push or pull nodes based on edge
weights. Along these forces, nodes repel each other inversely proportionally to the
distance between them. The physical system starts with a random positioning of
the nodes and iterates the placement until a force equilibrium is reached. We use
this approach to spread the tree on the visual space, which enables a more detailed
inspection of individual branches. Figure 3.3c shows the result. This layout is also
important for the summarization of a VST (detailed next in Sec. 3.2.4), since the



58 M U LT I S C A L E E X P L O R AT I O N O F S I M I L A R I T Y T R E E S

force-directed layout favors an even distribution of free space between nodes and
removes most, if not all, node clutter in the drawing.

3.2.3 Multiscale exploration and summarization

(a)

Upper Level Tree

(b)

Appended subtree

(c)

Figure 3.4: Multiscale expansion. When a supernode is selected (a), a new subtree can be
displayed in a new window (b), or appended into the VST (c). Large nodes
represent clusters and small nodes represent data observations.

(a)

Contracted branch

(b)

Figure 3.5: Multiscale contraction. Branches can be contracted into supernodes, saving vi-
sual space for the remaining nodes (b).

To interact with a VST having millions of observations, we must resort to data
aggregation, coordination of the layout, and content summarization. To this end
we rely on the similarity-based partitioning provided by clustering techniques.

The primary view of a large VST is typically collapsed, where small nodes repre-
sent observations and large nodes represent supernodes, as illustrated in Fig. 3.4a.
This favors a fast overview rendering of large datasets. Next, the data can be ex-
plored by selecting and collapsing branches, moving nodes, loading contents (e.g.,
images or text related to nodes), brushing nodes for details on demand, pan and
zoom, and other interaction tools, as detailed next.
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Starting from a collapsed view (Fig. 3.4a), selecting a supernode triggers the
display of the NJ tree for that cluster, as illustrated in Fig. 3.4b. When a supern-
ode is expanded, an overview of the previous coarse view is shown in a mini-map
that also highlights the entry point to the current level of detail, i.e., the expanded
supernode. This allows the user to keep track of the navigation, or maintain the
mental map, and also to return to the previous level of detail through the mini-
map. It is also possible to append the finer-grained level tree into the coarse-level
tree visualization, as shown in Fig. 3.4c). This approach allows creating views of
the entire dataset where different parts have different levels of detail in the visu-
alization. On the other hand, the view can become cluttered when many fine-level
trees are appended together – in the limit, such a view is equivalent to display-
ing the raw similarity tree, when all supernodes have been expanded. Hence, one
should keep a balance during the visual exploration of the VST between append-
ing fine-grained views to the overview or displaying them separately in a new
window.

The reverse procedure to expanding supernodes is contracting tree branches
into supernodes. This way, the selected branch will be displayed on a coarser
scale, by being replaced by a supernode in the current visualization. Figure 3.5b
illustrates this. Contracting branches allows a selective selective visualization of
the VST by saving visual space to allocate to the remaining expanded branches
present in the current level of detail. This feature is especially important when
exploring large datasets through visual summaries, as detailed next in Sec. 3.2.4.

3.2.4 Data summarization

(a) Image mosaic of the Corel1 dataset. (b) Text mosaic of the Papers dataset.

Figure 3.6: Summarization of VSTs exploring image and text datasets. We emphasize se-
lected branches by increasing mosaic cell opacities.
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Summarization is a key feature when exploring large datasets. VSTs are amenable
to summarization because they group observations along branches by similarity,
and because trees admit a planar overlap-free embedding. Indeed, the first factor
(similarity) ensures that computing relevant summaries is easy, as the elements
to summarize are similar. The second factor (planar overlap-free embedding) en-
sures that we can display visual summaries without running the risk that these
would overlap, which would render them hardly readable.

Similarly to the approach adopted by ImageHive [180], we divide the 2D visual
space around tree nodes through a Voronoi diagram. Thus, each data observation
or cluster represented by a node becomes associated with a cell of the diagram.
Next, each cell may be filled with a texture that represents the data, like images
or text (see Fig. 3.6). Details on the image and text datasets used here are given
further in Sec. 3.3.1, Tab. 3.1. We call this Voronoi-based summarization a mo-
saic. To communicate the data structure, we overlay the tree drawing atop of this
mosaic.

Text mosaics are built by employing a topic extraction algorithm based on the
relevance of document words followed by a polygon filling algorithm [143]. This
algorithm arranges the most important terms (topics) so as to fit in and fill the
convex polygons representing Voronoi cells, whereby the text for the terms are
scaled to reflect their relative importance in the summarization. When text is to
be shown for a plain observation (single text document), terms are extracted from
this document only. When we treat a supernode (collection of documents), terms
are extracted from the union of all documents corresponding to observations in
the supernode. For images, we proceed differently: When an image is to be shown
for a plain observation (single image), we naturally use that respective image.
When we treat a supernode (collection of images), we use the supernode’s cluster
medoid to retrieve the associated image to be displayed.

The user can focus on part of the data by selecting a tree branch. This high-
lights the related cells. This operation conceptually supports the query “show me
all data items, or summarizations thereof, that correspond to the concept being
aggregated by the node at the root of this branch”. Selecting more central nodes
thus shows larger portions of the data space. Selecting nodes closer to the tree
periphery (leaves) selects smaller, and more specific, portions of the data space. It
is also possible to coarsen the mosaic level of detail, by joining neighboring cells
in a new cell. In this case, a new texture (text or image) has to be constructed
for the new cell. This is done by defining a distance threshold in the visual space.
Next, all tree leaves that are at a distance smaller than this threshold from the in-
dicated location where the join should occur, are grouped in a supernode. Finally,
this supernode is summarized as indicated earlier for the original VST.

When a cell represents a group of observations, i.e., a supernode, scrolling down
from the top of the cell shows the sequence of images associated with that region.
This is similar to the so-called ‘flicking’ interaction present in many image gallery
tools. It is also possible to move, separate, and merge nodes and branches to
readjust the diagram.
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3.2.5 Alternative explorations

A typical issue during the exploration of moderate to large-size datasets is find-
ing out the optimal number of underlying groups that helps unveiling unknown
relations in data. As a bottomline, this can be done by manually expanding or
collapsing various supernodes of a given VST, until an optimal local level-of-detail
is obtained. However, this procedure requires significant user effort.

A different approach is to use several clustering algorithms to produce a family
of VSTs from the same input dataset. From these, the user may select one or sev-
eral for more for in-depth exploration. The same idea may be applied recursively
to subsets of the data, i.e., to subtrees of the VST. To overcome the potentially
high computational cost of computing many different clusterings, a dimensional-
ity reduction technique can be used to reduce the data dimensionality to a few
dimensions that capture the essence of the similarities of the underlying obser-
vations. Next, this reduced dimension set can be used for clustering. This makes
clustering algorithms faster, since computing similarities is now faster. However,
this trades off precision, as the reduced set of dimensions typically only approxi-
mates the original distances, as discussed in Sec. 2.4.3.

3.3 VST Construction Example: Multiscale NJ

As outlined in Sec. 3.2.1, similarity trees are too costly to display, and also gen-
erate too much clutter, to serve for the visual exploration of large datasets. As
such, in that section we have introduced the idea of a supertree that consists of
observations and supernodes (groups of observations). In this section we explain
how to construct a supertree that has the multiscale properties we require for a
fast and effective exploration of large datasets.

A L G O R I T H M : As described in Sec. 3.2.1 too, the Neighbor-Joining (NJ) algo-
rithm offers a good solution to the construction of similarity trees due to its preci-
sion. Therefore we selected this algorithm as an basis to build a VST. To overcome
the computational limitations of the NJ technique, we construct the VST by par-
titioning the input dataset recursively. This procedure is guided by the parameter
smax which defines the maximum cluster size in terms of observations. If a clus-
ter is larger than smax, it is recursively subdivided, thereby defining a hierarchy
of clusters. The sizes of the smaller clusters emerging from this subdivision are
evaluated, and this procedure continues until there are no clusters larger than
smax. At this point, an NJ tree is constructed directly for each cluster, and the re-
sulting NJ trees are connected by other NJ trees between partition levels. A high
level pseudo-code for our clustering algorithm is given in Algorithm 1. In here,
clustering() can be any clustering algorithm that delivers a partition of the in-
put dataset into several clusters. This can be either a single-level method, such as
k-means, or a multilevel method, such as hierarchical bottom-up agglomerative
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clustering (Sec. 2.2). In case of multilevel methods, we do not use the produced
hierarchy, but simply select a single, typically coarse, level. Indeed, the multilevel
data partitioning is created by our own algorithm, the top-down data-division
procedure SuperTreeConstruction().

Algorithm 1 Algorithm for the VST construction.
1: function SUPERTREECONSTRUCTION(data, smax)
2: if data.size < smax then
3: matrix D← evaluate-distances(data)
4: return NJ-tree(D)
5: else
6: C← clustering(data)
7: Let C be a new matrix
8: for all cluster ci ∈ C do
9: ci.tree← SuperTree(ci.data, smax)

10: add ci.centroid to C
11: end for
12: matrix D← evaluate-distances(C)
13: return NJ-tree(D)
14: end if
15: end function

Any clustering algorithm that partitions data according to similarities between
observations can be used as basis for a VST construction. Of course, different such
algorithms will yield different data hierarchies and different construction times.
The value of smax will also impact the same issues, since it defines the size of
data chunks that are managed by the tree construction algorithm. We address
these questions in Section 3.3.1, where some experimental results are shown for
real and artificial datasets.

The Neighbor-Joining (NJ) algorithm [157] is used to connect observations
in the lowest tree level and clusters in the other levels, respectively. Figure 3.7
shows two views of supertrees for a collection with 12000 instances from 4 classes.
Class values – a categorical attribute – are mapped to colors, but are not used
in the clustering process. This visualization serves as a simple visual means to
ascertain whether similar entities have been indeed grouped in the same subtrees.
To construct the VST we used here the k-means clustering algorithm, with k = 10

clusters and smax = 100. The figure shows a collapsed version of the tree (left)
and an fully expanded version of the same tree (right), along the lines of our
proposed multiscale visual exploration discussed in Sec. 3.2.3.

S C A L A B I L I T Y I M P R O V E M E N T S : We also implemented a strategy for building
VSTs and storing them on disk prior to visualization and exploration. This strat-
egy has the advantage of allowing the computation of clusters and VSTs for larger
datasets offline using parallel clustering approaches. In turn, this enables a quick
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(a) First scale (b) All scales expanded

Figure 3.7: Example of a VST for a collection of 12, 000 observations. Instance classes are
mapped to color for easy assessment of similarity.

exploration of a large VST on commodity computers by loading the required in-
formation on demand, without overloading the main memory and without having
to re-run the expensive clustering processes. We use binary files to store records
sequentially. Each record holds the configuration of one VST level, i.e., which
clusters are computed for the level, the medoids for each cluster, labels related
to each medoid, and data summaries per cluster, such as number of elements per
cluster. The record also holds the tree topology and edge lengths in the Newick
format [144]. Indexes are used to store the position of each record in a data file.
Records are loaded on demand as specific VST levels are explored. In this way,
the original (large) multidimensional data is used only to compute the clusters
and the VST levels, and is no longer required during the actual interactive explo-
ration. All in all, these mechanisms lead to smooth interactive exploration and
visualization on commodity computers having limited amounts of RAM, even for
large datasets.

3.3.1 Experimental evaluation

Point placement, either by multidimensional projection or by similarity trees, have
good precision in terms of preserving neighborhoods from the original space. As
datasets grow larger and have more dimensions, however, it is harder to achieve
high precision with any technique. Clustering-based partitioning, such as the one
described above, might further compromise precision, especially when it is a
greedy method like the one we propose. To assess the quality of VSTs in terms of
similarity-based point placement and of computational scalability, we performed
a series of experiments. These experiments led us to conclude that VSTs are very
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fast to explore and fairly preserve neighborhoods of observations even for large
datasets. These experiments are described next.

Table 3.1: Datasets used in our experiments.

Dataset Description Type Size Attributes Classes

Papers VSM 675 1423 4

Corel1 SIFT 1,000 128 10

Corel2 BIC 3,906 128 85

Freephoto BIC 3,462 128 9

Caltech CCV 9,144 128 101

RBF4K RBF 4,000 4 4

RBF12K RBF 12,000 4 4

RBF20K RBF 20,000 4 4

Imagenet Fall 2011 SIFT 1,261,406 1000 -

Stackoverflow VSM 1,056,010 1693 -

KDD intrusion attributes 4,898,431 38 5

D ATA S E T S : Table 3.1 presents the datasets that were used in the various exper-
iments and examples reported in this chapter. Corel1 and Corel2 are photographs
(images) represented by scale-invariant features (SIFT) [113] and border-interior
pixel classifications (BIC) [174]. These are well-known descriptors used to rep-
resent images as multidimensional feature vectors in applications such as image
classification and retrieval. The Papers dataset contains extracts (title, authors,
abstract and references) of scientific papers from 4 research areas processed by
the conventional vector space model (VSM). Caltech [59] contains images repre-
sented by color coherence vectors (CCV) [138], another standard way to repre-
sent images as multidimensional data. RBF4K, RBF12K, and RBF20K are synthetic
datasets, used as ground truth data to understand how VSTs behave. They all
contain four well-separated, dense, hyperspheres covered by dense point sam-
pling, and were generated by using radial basis functions (RBFs) using the MOA
toolkit [14]. KDD is a popular and widely used dataset considered for the KDD
Competition, consisting of network intrusion reports data [6]. Freephoto contains
nature photos selected at random from www.freefoto.com and next represented
by BIC descriptors. Imagenet Fall 2011 [41] is a dataset sampled from a large
ontology of images organized in a hierarchical structure. It is represented as a
bag-of-visual-features using SIFT descriptors. The Stackoverflow dataset is a sub-
set of textual documents from the MSR Mining Challenge 2015 [212]. It contains
discussions between users of the Stackoverflow community from August, 2008 to
September, 2014, represented using the VSM model.

As visible from the above overview, the considered datasets cover a wide va-
riety of application domains, data types, sizes, dimensionalities, and number of
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class labels. What is common to all, is that the dimensions aim to capture simi-
larity in the data. As such, we believe this collection is a good test dataset for the
performance of VSTs.

C L U S T E R I N G : Clustering algorithms and their evaluation have already been
addressed extensively in the literatire [93]. We chose k-means [92] as clustering
algorithm in our experiments due to its speed, precision, ease of use, implemen-
tation simplicity, and popularity. For this technique, the user has to define the
number of clusters to partition the data, which is one of the major drawbacks of
the algorithm, since the best number of groups is seldom known beforehand. As a
guiding estimate for k, we use use

√
N, where N is the number of observations in

the dataset. This is a frequently accepted as an upper bound for the actual number
of clusters to be found in the data [137].

The value for the parameter smax directly impacts tree construction. Larger
values will trigger the clustering algorithm less frequently, which means less com-
putation time, specially for large datasets. However, larger values will also cause
the construction of larger leaf nodes, which might be more expensive to further
process due to the cost of the single-level NJ algorithm (Sec. 3.2.1), which is cubic
in the number of input data points.

Table 3.2: Construction times for VSTs and NJ trees, in seconds.

Dataset Clustering smax VST NJ Tree

RBF4K

4-means 100 6.04

65.824-means 250 3.76

4-means 500 3.04

4-means 1000 3.55

RBF12K

4-means 300 16.34

1671.104-means 750 13.84

4-means 1500 18.43

4-means 3000 48.46

RBF20K

4-means 500 41.01

–4-means 1250 40.41

4-means 2500 64.57

4-means 5000 201.27

Imagenet 200-means 500 337,515.88 –

KDD
150-means 250 20,976.30

–150-means 500 20,384.99

150-means 1000 20,223.74

Stackoverflow 100-means 300 52,782.91 –
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(a) Corel1 dataset. Clustering: 8-means
(smax = 100, cyan) and 10-means
(smax = 50 (pink), 100 (blue), and 200
(green)). Plain NJ algorithm in red.

(b) Corel2 dataset. Clustering: 20-means
(smax = 200, blue) and 40-means
(smax = 400, green). Plain NJ algorithm
in red.

(c) Papers dataset. Clustering: 4-means
(smax = 120, blue) and 6-means
(smax = 120, green). Plain NJ algorithm in
red.

(d) Caltech dataset. Clustering: 20-means
(smax = 100, red) and 40-means
(smax = 200, blue). Plain NJ algorithm in
green.

Figure 3.8: Neighborhood preservation (2 to 30 neighbors) for different datasets and clus-
tering parameters.
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T I M I N G S : We considered different values of smax in our experiments. These,
and the resulting times, are outlined in Tab. 3.2. For the smaller datasets RBF4K,
RBF12K, and RBF20K, computations use a laptop with Intel i7 processor at 2.50GHz
and 4GB RAM. The times for building a plain NJ tree for the whole data set are
also shown for the smallest two datasets, RBF4K, RBF12K. For the other datasets,
we did not compute plain NJ trees, since the cubic computational complexity and
square memory complexity makes such computations far too expensive. It is clear
that building a VST is much faster than building an NJ tree. The table also shows
the relation between the time spent by the clustering algorithm and the time
spent by NJ under influence of smax. The larger Imagenet, KDD, and Stackover-
flow datasets were processed on a desktop PC with Intel Xeon E5-2630 processor
at 2.3 GHz and 64GB RAM. For these datasets, we stored the VSTs on disk for
later exploration. While VST computation trees are, in absolute value, very large
for these datasets, we stress that plain NJ trees would be simply impracticable,
due to the aforementioned much higher computational and memory costs.

Q UA L I T Y: Neighborhood preservation is a means to assess layout precision
through neighborhood relationships, as discussed in Section 3.2.1. Figure 3.8
presents a plot of neighborhood preservation values for the range of 2 to 30
neighbors for the Corel1, Corel2, Papers, and Caltech datasets. We can see that,
although precision for the VST is generally smaller when compared to plain NJ
trees, its behavior as a function of the neighborhood size k closely resembles that
of NJ trees.

As expected, starting k-means with k closer to the actual number of classes typ-
ically improved precision. The effect of smax can also be observed in Figure 3.8a:
Larger values allow direct construction of larger NJ trees at lowest levels, improv-
ing precision. Separately, the plot for the Papers dataset shows that a large number
of dimensions (1423 in this case, see Tab. 3.1 did not cause a larger drop in rel-
ative precision as compared to the plain NJ algorithm and as compared to other
datasets. Overall, this evaluation shows that VSTs are computationally far more
scalable than classical NJ trees, and offer an arguably good trade-off between be-
ing able to handle larger datasets but offering lower precision for neighborhood
preservation.

3.4 Example Applications

As stated several times so far, the main goal of VSTs is to allow the visual explo-
ration of large datasets based on their organization by similarity. Additionally, the
VST approach enables useful explorative interactions when points or groups of
points can be summarized meaningfully, as it is the case for images and text. We
now exemplify the exploration approach we implemented atop of the VST visual-
ization, as well as its functionality for exploration of image and text collections.
The exploration is done by a tool in which we have implemented the VST compu-
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tation, display, summarization, and interactive navigation mechanisms described
so far.

3.4.1 Exploration of network monitoring data

Figure 3.9 shows snapshots of the exploration of the KDD dataset, a collection
of network connections composed by 4, 898, 431 observations divided in 5 classes
(see also Tab. 3.1). Observations model connections in a computer network. Class
values identify the type of each connection, which can be regular or attacking. The
attacking class is further specialized into probe, denial of service (dos), user-to-root
(u2r), and remote-to-local (r2l). Throughout the application we map the class
attribute to a categorical color scheme: dark blue for regular connections, light
blue for probe attacks, green for dos attacks, yellow for u2r attacks, and red for r2l
attacks. When visualizing supernodes in the tree, we assign to them the class color
corresponding to the cluster medoid. Since class values are categorical attributes,
this is equivalent to the class that is dominant, in number of observations, in the
respective cluster. While this does not reflect the distribution of summarized class
types, it is a simple and easy to understand mechanism. It can be easily enhanced
to show more information, such as e.g. the percentage of summarized nodes that
corresponds to the maximal class, encoded for instance in the color saturation.
Other schemes are possible to show more information on the summarized nodes.
We leave such refinements for future work.

regular dosprobe u2r

(a) Radial layout.

NodeId: 4898433
Size: 2268191

(b) Circular layout.

Figure 3.9: Coarsest scale of a VST for the KDD dataset.

To generate the VST we have chosen k = 150 clusters and smax = 500. We
selected smax based on experimenting with the visual screen occupancy by the
resulting VSTs, so as to have not too many nodes displayed at finer scales, but
also have a not too deep tree. On the coarsest scale, (Figure 3.9a), we see two
large regions relating dos attacks (dark blue) and regular connections (green).
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A small number of supernodes were assigned to probe attacks (cyan). Using the
circular layout, we observe a high unbalanced clustering result, where dos attacks
dominate the first scale (Figure 3.9b). Here, a single cluster, indicated by the
mouse location, contains more than 2 million observations. This is expected due to
the nature of dos attacks: These consist of attacking servers that flood the network
with several connections from various sources, so are typically high-volume in the
number of connections.

Upper Level Tree

(a) Scale 2, dos attacks.

Upper Level Tree

(b) Scale 3, dos attacks.

Upper Level Tree

(c) Scale 3, probe attacks.

Figure 3.10: Exploration of a 4, 898, 431 data elements tree. In this case smax = 500 and
150-means. Three levels of exploration on the tree’s branches are shown.

To illustrate the exploration of a supernode in more detail, a dos supernode was
next selected and expanded for investigation (Figure 3.10a). At this second level
of detail, we notice long tree branches, indicating high similarity among clusters
in the same branch. In other words, there are quite large sets of dos attacks that
behave similarly. If we expand next a cluster from this level, we obtain, on the
third scale, the leaf nodes or actual observations (Figure 3.10b). We see here,
even better than on the second level of detail, the long-branch structure of the
tree. To get more insight into the meaning of these branches, we inspected the
multidimensional features of their nodes, and discovered that these are identical
for nodes along a branch. The same happens for other classes (Figure 3.10c). This
indicates many repetitive observations (connections for an attack) in this dataset.

3.4.2 Exploration of large image collections

The VST is capable of representing any dataset for which similarity may be de-
fined. As such, image visualization based on similarity is a natural target appli-
cation for our technique. From previous work on visualizing image collections,
we extract a number of desirable requirements, such as showing the similarity of
images, providing overview, and preserving structure in terms of groups of highly
similar images [128]. These requirements are also the aim of our VST. We note in
this context that some other visualization approaches for image collections also of-
fer semantic views [203]; however, the multiscale aspect as well as drilling-down
strategies of such approaches are limited.
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Class
Min Max

(a) Radial layout

NodeId: 1261483
Size: 15407

(b) Circular layout.

Figure 3.11: First scale exploration of the Imagenet dataset. The radial layout indicates the
group separation, and the circular layout indicate the clustering balance.

Figure 3.11 shows part of the exploration possibilities offered by a VST for
image collections. Here, we explore the Imagenet Fall 2011 dataset containing
1, 261, 406 observations (see also Tab. 3.1). This dataset is organized in a hierarchy,
where the first level contains 9 image classes: plants, geological formation, natural
objects, sport images, artifacts, fungi, persons, animals, and miscellaneous. We
used these image classes as categorical attributes in our dataset. To construct the
VST, we selected 200 clusters and set smax = 500.

Using the radial layout (Figure 3.11a), it is possible to detect well defined
groups of branches, indicating structure in terms of different similarities in the
data. However, we also see that image classes are mixed among a branch, espe-
cially once we get closer to the root. Note that this does not necessarily indicate
that our VST erroneously places images which are different in terms of their at-
tributes (SIFT descriptors) closely to each other. Indeed, this layout can also indi-
cate that the used SIFT descriptors are not able to provide a good discrimination
between the nine high-level class types used as annotations in this dataset.

Further on, we used the circular layout (Figure 3.11b) and noticed that k-means
forms a balanced data partition. Finally, we used the force-directed tree layout to
create a visual summary of the dataset (Figure 3.12a). Here, space around the
tree nodes is partitioned into Voronoi cells and textured by representative images
in a cell’s cluster, as explained in Sec. 3.2.4. Here, we see some challenges of
the proposed mosaic construction: Cell shapes and aspect ratios, can vary signifi-
cantly, making it hard to fit rectangular images in them well. Moreover, peripheral
nodes, which typically correspond to leaves, get more space than central nodes,
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which correspond to higher-level concepts describing larger groups of images. As
such, the summarization by images dedicates more space to the former than to
the latter. Possible improvements of the mosaic, using e.g. Voronoi-diagram modi-
fications such as proposed by GMap (Sec. 2.3.2), can be considered in future work
to alleviate such issues.

However, the current VST design allows alleviating the above issues by differ-
ent mechanisms too. For this, we select some branches, based on their density
and length, to contract into supernodes. The result, showing the contracted nodes
in white, is illustrated in Fig. 3.12b. This mosaic contains larger cells, which are
easier to visualize than the original mosaic in Fig. 3.12a. We next decided to drill
down in a cell (supernode) to explore it in more detail. To simplify the mosaic
at this second scale, we also decided to merge cells corresponding to leaf nodes
which are at a small distance from each other in the tree. The resulting visualiza-
tion shows a mix of images related to sea landscapes, animals, and miscellaneous
images (Figure 3.12c). We next repeated the process of drilling down, by expand-
ing a cell in this level-2 mosaic, and reached the third and deepest level of the VST
(Figure 3.12d). The mosaic for this level displays a more specialized (similar) set
of images, most related to sea landscapes and animals.

3.4.3 Exploring text collections

In our second application, we illustrate the capabilities of VSTs for the exploration
of textual datasets. For this, we analyzed documents from the StackOverflow por-
tal, a knowledge-sharing community of programmers, focusing on the exploration
of the main topics of this portal1. This community, arguably one of the largest and
most prominent of its class, is to let programmers ask and answer questions re-
lated to software development in general. Users can also mark questions with
specific words (tags) to facilitate the search for topics of interest. Our dataset
contains programmer discussions ranging from August, 2008 to September, 2014.
From this period, we extracted 20,000 documents per month. Due to the unbal-
anced number of messages per month, this resulted in in 1,056,010 messages in
total. The month is also used as an attribute of each message.

To characterize messages in terms of similarity, we use the vector space model
(VSM), which is a typical way to treat text data, as already outlined. For this, we
first manually selected a set of 1693 keywords from the most frequent message
tags. Next, we parsed the messages’ contents and built a document-term frequency
matrix for the selected set of keywords. We next used this matrix to generate and
store the VST on disk, as described in Sec. 3.2.1. In this process, we used k-means
with k = 100 clusters and smax = 300 so as to keep a good balance between
processing time and space occupation on screen for each level of the VST.

The resulting VST is shown at its coarsest scale in Figure 3.13. The radial and
circular layouts (Figures 3.13a,b) show how groups are separated. We also show

1 http://www.stackoverflow.com
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(a) Force-directed layout and mosaic of the
coarsest scale.

(b) Simplified tree and mosaic of the
coarsest scale.

Upper Level Tree

(c) Scale 2.

Upper Level Tree

(d) Scale 3.

Figure 3.12: Exploration of the Imagenet Fall 2011 dataset, with k = 200 clusters and
smax = 500. Contracting branches into supernodes and merging cells helps
to simplify the image mosaic.

the nodes’ messages’ dates encoded on a dark brown-to-light yellow ordinal col-
ormap. Next, we used the force-directed layout as input to create a text mosaic
(Figure 3.13c). The text mosaic summarizes the VST by showing an overview of
the main topics in the dataset, as described in Sec. 3.2.4. In the mosaic we notice
some branches on the left with topics related to web development, while branches
on the right indicate database discussions. The top-left part of the mosaic summa-
rizes discussions related to Windows, Java, Apple and Android development. In
the remaining mosaic areas, we can notice a mix of different subjects, like data
structures, compilation strategies and programming languages.

Let us next illustrate a targeted subject-based exploration. If we want to search
for discussions related to Apple technologies, we can select the cell of this topic
and expand it to explore a lower level of the tree. This lower level (Figure 3.13d)
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Upper Level Tree

(c) First level mosaic (d) Apple level mosaic

(e) iPhone/iPad level (f) Selected branch content

(a) Radial layout

NodeId: 1056011
Size: 129841

(b) Circular layout

Upper Level Tree

high similar 
instances

selected
branch

Message date
Min Max

Figure 3.13: Visualization of the Stackoverflow dataset. The radial (a) and circular (b) lay-
outs indicate group separation and cluster balance, respectively. A text mosaic
is created for the force-based layout on the first scale to summarize it, showing
the its main topics (c). Expanding the subtree from Apple enables exploring
specific groups of messages in more detail (d). The deepest level of the iPad/i-
Phone group can be explored by selecting branches (e) and displaying the
content of individual messages (f).
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contains groups of topics regarding Apple technologies, such iPhone, iPad, iOs and
xCode. Let us say that we want to explore topics related to mobile Apple hardware.
For this, we select and expand the iPhone/iPad cell, and we reach the deepest level
of this branch (Figure 3.13e). This level which contains 232 messages. We can
then select branches of this tree to inspect the content of individual discussions in
detail. For example, when selecting the region highlighted on the tree, we found
a group of discussions about iPad resolution screen issues (Figure 3.13f).

This particular subtree shows two very long branches (top and bottom parts
of the image), which indicate many documents with very similar content. After
inspecting them by brushing, we noticed that they represent very short messages
about iPad and iPhone issues. They are grouped on a single branch only due to
the presence of the words ‘iPad’ and ‘iPhone’ on their vector representations, being
thus considered identical in the similarity computation procedure.

Overall, the grouping proposed by the VST for this text dataset succeeds in
clustering similar items (messages) better than the grouping of images in our first
application (Sec. 3.4.2). This is not surprising, as the VST model used here is
known to capture quite well the similarity of short and specific text fragments,
such as technical messages in an IT internet forum are. Moreover, a careful man-
ual selection of the keywords that drive the features’ construction, as we have
done here, can massively improve the quality of the induced distance function,
since this actually ‘samples’ the semantic space as the user desires it. In contrast,
as already mentioned in Sec. 3.4.2, automatically extracted SIFT features are, in
general, too low-level to compute a semantically accurate distance function over
large collections of images having a high variability. As such, and since the VST
visualization gives good results for exploring the documents dataset, we conjec-
ture that it can be effective for exploring other datasets of other types too, as long
as the available dimensions accurately capture the notion of similarity specific to
the application domain.

3.4.4 Using VSTs to understand class structure

As a final example of the use of VSTs to understand multidimensional data, we
show how VSTs can help understanding the behavior of labeled image data. Here,
we proceed inversely than for the example in Sec. 3.4.2: Rather than clustering by
image features, we cluster the first level of the tree by class values. Doing this for
the Caltech dataset yields 101 clusters, since this dataset has 101 different class
values. For the deeper levels of the tree, we use the image features to construct
the VST, as in the earlier examples. This essentially structures each class of images
in terms of similarity measured by actual image attributes.

The first level (Figure 3.14a) shows the coarsest level of the VST. Next, we
can select a supernode, such as the one showing flowers indicated in the figure.
This unveils a finer-level tree, which shows how flowers are organized in terms
of similarities (Figure 3.14b). This example shows that VSTs can be consstructed
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by hybrid clustering procedures, where different types of attributes are used per
level. In practice, when one has annotated datasets, or reliable ways to extract
semantic-related attributes from the data, using such attributes to construct the
coarsest level(s) of the tree is preferred. The lower levels of the tree can be con-
structed by using attributes having weaker semantics which are extracted from
the dataset itself.

Class
Min Max

(a) Global view.

Upper Level Tree

(b) Group flowers.

Figure 3.14: Exploration of the Caltech data set by labels. First level has one representative
per label. Expanding the flowers group shows its internal similarity structure.

3.5 Discussion

The most important property of the Visual SuperTree is its capability to preserve,
up to large extents, the ability of earlier similarity trees (such as the NJ tree)
to encode a similarity matrix, while being considerably faster to construct, using
less memory for the construction, and offering a multiscale perspective on the
data, which makes exploring large datasets faster and less cluttered. The exam-
ples shown in this chapter have outlined that the VST is able to handle generic
multidimensional datasets having millions of observations and hundreds of di-
mensions.

The multiscale aspect is present in two senses in the VST. First, the construction
of the VST uses a hierarchical top-down clustering method to split the data re-
cursively into increasingly similar, and smaller, clusters. This implicitly makes the
execution of the original NJ tree algorithm faster. The depth and breadth of the
clustering tree can be controlled by the user by setting, in our implementation, the
smax and k parameters of the algorithm. However, any other clustering algorithm
that produces a multilevel representation based on the underlying data similarity
can be used as well. Secondly, the VST uses this tree to display the data organized
along similarity in a hierarchical fashion. This allows visualizing similarities at



76 M U LT I S C A L E E X P L O R AT I O N O F S I M I L A R I T Y T R E E S

various levels of detail, e.g., between entities or groups of entities. Interactive ex-
ploration mechanisms allow users to simplify (or refine) the visual representation
either uniformly, i.e., one level at a time, or locally, i.e., by expanding or collaps-
ing specific parts of the tree. This allows effectively re-organizing the view so as
to bring into focus those (groups) of entities which are best suited to understand
the data structure.

In terms of visual mapping, the VST is displayed by a mix of relational visualiza-
tion techniques (tree layouts), space partitioning techniques (Voronoi diagrams),
and annotations (images, tag clouds, and color mapping). These allow not just
summarization, but also a display which is both observation-centric (as it shows
the observations or groups thereof as points) and dimension-centric (as it shows
values of the salient dimensions that characterize a group or observation).

Alternative mappings could be used to visualize the VST structure, instead
of the node-link tree layouts we chose for. Examples are classical and Voronoi
treemaps. While such representations are more compact than node-link tree lay-
outs, they also have some limitations. First, space-filling hierarchy visualization
methods dedicate, by construction, most of the screen space to showing the hi-
erarchy. This does not leave enough space to show the data attributes, like done
with our image thumbnails or tag clouds. Secondly, comparing items in terms of
similarity is arguably harder using (Voronoi) treemaps. Indeed, in such treemaps,
the positioning of the items would respect the original distances even less than
our VST method does. Thirdly, treemap methods focus presentation mainly on
the leaves or one level at a time, whereas the node-link layout we chose to use
can show multiple levels (from the root onwards) in a tree in the same time.
Figure 3.15 illustrates this by comparing visualizations of the Freephoto dataset
computed using (a) classical squarified treemaps; (b) Voronoi treemaps; and (c)
our proposed VST. Treemap images were generated using the software available
at http://www.treemap.com/. Here, we used only the first two levels of the tree
hierarchy – using more levels is technically possible, but more levels are hard to
see in the treemap. Compared to the VST image, we argue that the treemap im-
ages offer a more abstract, and harder to understand, view on similarity between
items. Additionally, it is hard to adapt treemaps so that they take into account the
edge weights of the VST that encode similarities. However, on the other hand,
treemap views make it easier to find the supernode that a lower-level node is part
of. This can be done using the VST too, but entails either displaying two tree lev-
els and correlating them in linked views using interaction, or visually separating
a lower-level tree layout into visual groups that correspond to separate branches.

The relative pro’s and con’s of node-link views and treemap views suggest that
the two techniques could be combined. For example, treemap-like views could be
an alternative for the exploration of higher levels of a VST, since one is typically
not interested for assessing exact similarity at such levels. For lower levels of the
exploration, one could switch to the node-link views.

VSTs also have several limitations. First, the clustering technique being used
may or may not generate an optimal hierarchical view of the data at hand. The

http://www.treemap.com/
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Class
Min Max

(a) Treemap view of the freephoto dataset.

(b) Voronoi Treemap view of the freephoto dataset.

(c) VST top and second level views of the freephoto dataset.

Figure 3.15: Treemap, Voronoi Treemap, and VST views. Although more compact, the
Treemap views do not allow the distinction of levels of similarity within a
group.
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issue is particularly visible for datasets where the distribution of inter-observation
distances is relatively flat. Since clustering draws ‘hard’ borders between groups,
and since the resulting tree is visualized with a node-link layout that tries to avoid
overlap of different subtrees, the actual screen space distance at which points are
placed may not reflect well the data space distance of the observations. Secondly,
clustering results depend, as explained, on clustering parameters, and it is not ev-
ident which are good settings for these for a given dataset and problem at hand.
In terms of visual encoding, limitations concern the relative simple summariza-
tions we offer so far (one color-coded attribute value, one image, or a small set
of tag words), and the lack of direct encoding of the actual data distance values.
Edges of the node-link layout could serve as a potential support for adding such
information, by using color and/or thickness encoding, along the metaphor pre-
sented in [148]. Additionally, nodes could be used to convey the sizes, in terms
of numbers of observations, and/or nested tree levels, that the nodes contain.
Scalability-wise, our implementation could be further optimized to handle a fast
processing of image and text information, and a multithreaded or distributed im-
plementation of NJ clustering could speed up the VST construction.

3.6 Conclusions

We have presented the Visual SuperTree (VST) a strategy for fast similarity-based
visualization of large datasets by developing a multiscale similarity tree. Our ap-
proach is suitable for any dataset where similarity can be encoded as a distance
matrix, thus covers implicitly multidimensional datasets. VSTs reach interactive
display and navigation times during the exploration of millions of observations
by pre-clustering the data and forming a similarity tree, which is computed on
smaller subsets in the various levels of clusters of the original data. The tree build-
ing time is dominated by the time to run the clustering algorithm, but the cluster-
ing organization and the disk access procedures designed to realize the strategy
offers very fast exploration of the results. Quality-wise, VSTs offer a slightly lower
neighborhood preservation than classical neighbor-joining trees, but massive ac-
celerations in terms of computation time, thus scalability.

VTSs are amenable to implementation in small-display and large-display de-
vices, yielding full and partial views as required by the device restrictions and ca-
pabilities. Our approach extends the capabilities of currently available similarity-
based visualizations to the next level of scalability, given as input any multidimen-
sional data set or a similarity relationship between observations of any kind. By
partitioning also the visual space, the VST lends itself to the exploring of data that
can be summarized, such as image and text datasets.

Several interesting extension directions are possible. First, as already mentioned
in Sec. 3.5, several computational optimizations can be done to make the gener-
ation of the VST faster and thus more scalable. Secondly, existing similarity data
can be encoded more explicitly atop of the VST layout, and more information-rich
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summarizations can be thought of. Another very promising direction is to combine
multidimensional projections, treemaps, and the VST metaphor in a single hier-
archical similarity based visualization of large datasets. This would combine the
compactness advantages of treemaps, the more exact distance-preservation capa-
bilities of projections, and the high scalability and intuitive display advantages of
VSTs in a single powerful metaphor. Finally, VSTs could be extended to handle
richer multimodal datasets, such as combined text, image, audio, and video data.





4Similarity Trees for Data-Driven Edge Bundling

Graphs or networks are present in a wide range of problems, being useful to
model different kinds of relationships between elements [202, 80]. The visual
representation of datasets modeled as graphs is frequently used in data analytics.
Here, the classical node-link metaphor is (still) the most frequently used, given
its intuitiveness and also familiarity. However, graph visualization presents sev-
eral challenges. One of the most salient challenges relates from the increase of
visual clutter when large graphs are drawn, which in turn reduces the power of
data analysis. Clutter reduction is a frequent thread in different areas of study
in information visualization [53]. The general solution to it is to reorganize, ag-
gregate, and/or transform the visual elements that encode the graph so that the
attained representation can reveal patterns that are hidden and/or cluttered in a
raw (node-link) representation.

At a high level, the problem of visualizing large graphs with reduced clutter
is directly related to our goal of visualizing large similarity trees, which was dis-
cussed in Chapter 3. In there, we showed how a mix of data aggregation, suitable
visual encodings, and interactive navigation can effectively and efficiently display
large similarity trees on a multiscale. In this chapter, we essentially take the same
requirements (efficient, effective, and multiscale display of relational data) but
extend them to the context of a general graph. What differs, thus, is the input
data (a general graph vs a tree) and the technical solutions used to address the
problem (to be discussed next). What is similar, is the fact that we extract such
graphs from datasets that can be represented in terms of a distance matrix, just as
we did for the visual supertrees discussed in Chapter 3.

Among the graph visualization techniques, edge bundling has obtained great
success in the simplified presentation of large graphs in terms of a modified node-
link metaphor [213]. The main goal of this technique is to transform a straight
node-link graph representation by bending and aggregating edges. Edge group-
ing reduces edge crossings and increases the amount of whitespace, thereby ar-
guably reducing visual clutter and making the visual analysis of a graph easier
(Sec. 2.3.2). Additionally, the smoothness provided by the curved bundled edges
also helps improving the data analysis in the visual representation by helping to
follow high-level edge patterns, in line with the Gestalt continuity principle [175].
Among the most famous such techniques, Holten [82] introduced Hierarchical
Edge Bundling (HEB) to visualize relationships between software artifacts. This
technique uses the inherent containment hierarchy of software data to guide the
bundling, joining edges that follow the same hierarchy. However, there is no dis-
cussion about building hierarchies from unorganized data.

81
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Further on, many other edge-bundling techniques have proposed different ways
to group (bundle) edges in general graphs, where no hierarchy is explicitly present.
Examples include strategies based on force-directed edge bundling (FDEB) [84,
165], geometry processing [35, 108], clustering [64, 16], and image process-
ing [185, 56, 86]. A key commonality of all these techniques is the usage of spatial
information to do the bundling. While this effectively simplifies a drawing that re-
flects the data, it does not produce a simplified drawing of the data. Recently, the
use of data to perform bundling has gained some attention [147, 73, 209, 178].
However, such techniques are, we argue, mainly adaption of earlier spatial bun-
dling methods to incorporate data elements, and not techniques for directly visu-
alizing data that has no given spatial embedding.

Given our research interest in generating simplified views of large datasets
which reflect the similarity of data elements introduced in Chapter 1, edge bun-
dling is an interesting candidate for analysis and extension. In this chapter, we
extend and adapt HEB in order to construct bundled graph layouts for visualizing
similarities of large collections of unstructured data in a simplified way. In con-
trast to existing bundling techniques, we consider data points that do not have
a given spatial embedding, and are characterized only in terms of a similarity
function. We first employ a multilevel clustering approach to aggregate the most
similar nodes, similar to the construction of the VST discussed in Chapter 3. Next,
we compute a high precision similarity tree that guides the bundling process and
faithfully represents the high-level structure of the multilevel data representation.
We visualize the resulting bundled graphs using a radial layout representation, as
in HEB, and also using a force-directed graph layout, as in FDEB. We also pro-
pose a multiscale visualization which enables the exploration on multiple levels
of detail of a given dataset. We evaluate and compare our technique vs state-of-
art bundling techniques in terms of how meaningfully the bundling can represent
high level data patterns in artificial and real datasets.

Summarizing the above, our main contributions here are:

• A framework to build bundled-edge layouts from similarity measures defined
on an unstructured dataset. This framework, we argue, can meaningfully
simplify the similarity-based visualization of such datasets;

• A summarization of bundled-edge layouts that takes into account data-based
similarities. This summarization improves the visual and computational scal-
ability for exploring large datasets;

• Several applications of our technique to visualize different kinds of data,
such as paper citations and dynamic tweets.

We structure this chapter as follows. In Section 4.1 we give an overview of
edge-bundling state-of-the-art techniques that refines the discussion presented in
Sec. 2.3.2. In Section 4.2 we describe our bundling technique as well the simplifi-
cation procedure we propose to enable a simplified multiscale navigation through
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the data hierarchy. Section 4.3 presents analysis and comparisons with state-of-art
bundling techniques on several datasets. In Section 4.5 we discuss our technique.
Section 4.6 concludes the chapter.

4.1 Related Work

A brief introduction of edge bundling is given in Section 2.3.2. Below we extend
this review from the perspective of bundling seen as a method to visualize rela-
tional data of an increasing amount of diversity.

T R E E S : The original idea, proposed by Holten [82], and called Hierarchical
Edge Bundling (HEB), is basically a method to produce a simplified visualization
of relational datasets that are organized as trees. Such data is sometimes also
called a compound graph [44, 45], as it consists of two types of relations: hierar-
chical ones (that define the tree) and other relations (that define the relational
dataset proper). HEB employs the tree information to settle paths to guide the
bending and grouping of the relations. This is performed drawing each edge as
a B-Spline curve taking as control points the intermediate points of a given hi-
erarchy. The proposed strategy is fast since the vertices and control points are
fixed during the drawing phase, so reducing the entire process to drawn B-Splines
curves. However, it relies on an inherent hierarchy as input data, and consequently
cannot be applied to scenarios where the input data is of a different type.

G R A P H S : Recognizing the limitations of HEB, following approaches have con-
sidered relational data that comes as general graphs, i.e., contains nodes that are
not organized in any hierarchical fashion. Different approaches have been pro-
posed to tackle this problem, avoiding the need of any other information besides
the graph adjacency and the node positions to perform the bundling. A first exam-
ple here is Force Directed Edge Bundling (FDEB) [84]. FDEB essentially creates a
system of forces that attract close points along close edges in a straight-line graph
drawing. Thereby close edges are bent until they group to form bundles. The
Divided Edge Bundling (DEB) [165] technique improves the FDEB layout by sep-
arating edges with different directions, improving readability for directed graphs.
The major problem of force-based strategies is their high computational cost, due
to the need of finding close edge fragments in a large changing set of curves.

Another group of techniques are geometric-based approaches. One example is
Geometry-Based Edge Blustering (GBEB) [35]. GBEB builds a mesh based on
the straight-line graph drawing and uses this mesh to reason about the rela-
tive position of close edges to guide bundling. Although a suitable solution, the
mesh construction is a complex process with high computational cost. Winding
Roads (WR) [108] addresses this limitation using a hybrid approach that com-
bines quadtree decompositions and Voronoi diagrams to accelerate the various
proximity queries that are needed to find and route close edges.
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Recognizing the computational cost of general-graph bundling as being a prob-
lem, image-based techniques have next been developed. These reduce this cost
by suitably modeling proximity queries and the displacement of close edges to
a common central location in terms of image processing operators, which are
highly parallelizable. A first technique in this group is Image Based Edge Bun-
dling (IBEB) [185]. IBEB does not actually bundle graphs, but proposes a way to
create multiscale simplified drawings of already bundled graphs. The Skeleton-
Based Edge Bundling (SBEB) [56] technique finds bundle locations as the centers
of groups of close edges, which are computed by medial axis techniques. Kernel
Density Estimation Edge Bundling (KDEEB) [86] finds the same locations by an
iterative sharpening of the density of edges in a graph drawing, essentially re-
casting the well-known mean-shift technique used in image segmentation [30],
which is much faster than previous methods. A further speed-up is proposed
by CUBu, which implements the KDEEB process fully on the GPU in the CUDA
programming language, achieving the so-far fastest general-graph edge bundling
technique known [194] technique. Besides image-based techniques, speed-ups are
also achieved by using a hierarchical approach, similar to well-known techniques
for graph layout computations [77]. For example, Multilevel Agglomerative Edge
Bundling (MINGLE) [64] aggregate the edges based on an ink-minimization con-
cept. The algorithm iteratively groups the closest edges until the amount of ink
used to create the visual representation reaches a minimum. This process can be
viewed as a edge-simplification strategy, where groups of edges are aggregated
and represented as single edges. After simplification, curved lines connect these
aggregated edges to the original vertices. Although this simplifies the graph draw-
ing and is relatively fast to compute, such layouts are less readable due to the lack
of a clear definition of the main edge patterns [86].

AT T R I B U T E D G R A P H S : All previous techniques can be seen as purely geomet-
ric, in the sense that they aim to produce a simplified view of a graph drawing,
and not of a graph itself. However, in practice, graphs often encode additional
data, for example in terms of node and/or edge attributes. A few recent tech-
niques recognized this limitation and proposed to incorporate attribute data. The
Attribute-Driven Edge Bundling (ADEB) [147] technique extends KDEEB by using
edge attributes define which edges are allowed to be bundled. However, besides
direction, only a single other attribute is used. Yamashita and Saga [209] extend
the FDEB technique by using the edge type or attributes on the force calculation.
In both cases, only edge information is considered, and information contained on
the vertices are still ignored.

O T H E R D ATA S E T S : Besides graphs and trees, bundling has been also applied
to other datasets. The most salient example are trails, or trajectories, of vehicles
and of eye tracking [88, 147]. In both cases, however, the dataset to be bundled
is still spatial.
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B E Y O N D S PAT I A L D ATA : Given the proven ability of bundling to produce sim-
plified views of relational data, It is tempting to consider its application to non-
spatial data. More precisely, since bundling’s core ability is to simplify a drawing
based on spatial similarities in the drawing, we are interested to see how we
can simplify a dataset, based on the similarity relations between its elements, by
constructing a suitable spatial embedding of these similarities, and next adapting
bundling to simplify this embedding. This would allow bundling to handle a much
more diverse set of data types.

A separate direction of study is how to extend the simplification power of bun-
dling. The bundling operation itself can be seen as a multiscale operator that cov-
ers the entire range from a fine-scale representation of the data (unbundled view)
to a coarse-scale representation (fully bundled view). This is also explicitly seen in
the iterative structure of many existing bundling techniques [84, 56, 86, 64, 194].
However, this multiscale is purely spatial – the number of data elements being
shown stays the same at all simplification level, and the simplification is simply
achieved by overdraw. We consider to add to this simplification in the data space,
by providing a multiscale representation of the actual data. When combined to
bundling, this will yield a multi-resolution representation of bundled data, that is
arguably able to cope with much larger datasets in terms of reduced visual clutter.
This will enable the exploration of a similarity-based relational dataset on differ-
ent levels of detail, from a more abstract to a more concrete view, where coarser
levels are better suited to explore the main patterns between groups, and finer
levels are better suited to verify intra and inter groups relationships.

4.2 Similarity-driven Edge Bundling

A multidimensional dataset of N observations can be modeled as a matrix X =

{x1, . . . , xN}, in which each observation xi ∈ Rn is defined by a n-dimensional
vector of quantitative attributes. For data such as images or text, represented by
extracted features, the dimensionality n of observations can range from tens to
thousands.

As outlined earlier, we aim to visualize the similarity structure of such a dataset.
To capture this similarity, we can use a distance matrix D = (Dij) where Dij ∈
R+ encodes the distance between observations xi and xj. Such distances can
be computed from the attribute values of the two observations, as outlined in
Sec. 2.1.2.

Distance matrices can be further represented in a simplified form by similarity
trees, such as Neighbor Joining (NJ) trees [157]. NJ trees have been successfully
used in the context of multidimensional data exploration [34, 136, 57]. NJ trees
group similar observations under the same parent recursively. We describe the
construction of such trees from multidimensional data in Sec. 4.2.1. Further on,
such trees can be further simplified, and computed faster, by pre-clustering the
observations, as described in Sec. 4.2.2. We use such multilevel NJ tree represen-
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tations to guide the bundling of similarity relations to obtain our final simplified
visualization of the data similarities, where bundles connect highly similar obser-
vations and observation groups, as described in Sec. 4.2.3. Figure 4.1 shows our
entire pipeline, whose steps are detailed next.

Dataset

Graph Attributes

Id    Attr0   Attr1    Attr2   ...    Attrn

V1    0.56     0.34     0.26    ...     0.38

V2    0.21     0.67     0.90    ...     0.52

V3    0.86     0.73     0.14    ...     0.11

V4    0.01     0.41     0.64    ...     0.19

V5    0.61     0.37     0.29    ...     0.25

Vn    0.51     0.19     0.55    ...     0.63

 .       .         .         .      .        . .       .         .         .      .        . .       .         .         .      .        . .       .         .         .      .        .

 .       .         .         .      .        .

(a)

Bundling Skeleton

Subgroup
Group

Control Point

(c)

Bundled Graph

(d)

Multilevel Clustering

(b)

Group
Subgroup

Figure 4.1: Similarity-based data visualization using bundling.

4.2.1 Similarity Tree Construction

A phylogenetic tree describes evolutionary relationships between entities. They
are positioned in a hierarchical model where entities that belong to the same
evolutionary descendancy are kept on close neighborhoods. The process of con-
structing the true topology to represent the minimum evolutionary distance is
known to be NP-hard, since all possible topologies have to be explored. However
there are algorithms that build approximations in polynomial time, in which the
Neighbor-Joining (NJ) [157] is one of the most widely used. The NJ algorithm has
been described in Sec. 3.2.1. As explained there, the input for the NJ algorithm is
the distance matrix D (defined also at the beginning of Sec. 4.2), and the output
is a tree having the N observations in the input dataset as leaves and other N− 2

non-leaf nodes.
The visual encoding of a phylogenetic tree is intuitive and easy to explore.

Groups of similar observations are easily spotted by examining small neighbor-
hoods of tree branches, allowing the visualization a certain freedom in placing
nodes on the visual space, unlike when using multidimensional projections, where
the screen-space distance between points is the only encoding of their data-space
distance (Sec. 2.4). This way, phylogenetic tres can be visualized using several
graph layout approaches [19, 7], which might each highlight different data pat-
terns. The NJ algorithm offers good precision, and it has been applied in informa-
tion visualization with great success [34, 136]. We also describe several applica-
tions of visualizations based on the NJ tree idea in Chapter 3.

Since non-leaf nodes join similar nodes, branches formed by such nodes can be
used to define a ‘skeleton’ to the bundling process, much like the given hierarchy
data is used to define a skeleton for the HEB bundling [82]. Here, non-leaf nodes
will serve as control points for routing graph edges, which in turn encode inter-
observation similarity relations. This process is further described in Sec. 4.2.3.
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4.2.2 Multi-level Aggregation

Due to the cubic computational complexity of the NJ algorithm, it is not well
suited to process large datasets. Handling datasets larger than a couple of thou-
sand observations takes a long time demands large amounts of memory to fit the
distance matrix. Additionally, there is a high number of non-leaf nodes present in
a typical NJ tree that are part of the same leaf-to-leaf branch – if the tree is bal-
anced, this is O(log2N) for N leafs, but can be as large as O(N) for unbalanced
trees. This creates several potentially very long paths with many control points,
which in turn can yield on distracting wiggles in the resulting bundles. As such,
large NJ trees are not always suitable as skeletons for bundled visualizations. Fi-
nally, our aim of providing a multiscale (coarse to fine) visualization requires the
ability of showing NJ trees at various levels of detail.

5 4 3

2

1st Level

2nd Level

3rd Level

2 2

Data Collection 

(a) Multi-level clustering (b) Multi-level similarity tree

Control points

1st Level
2nd Level

3rd Level

Figure 4.2: a) Multi-level clustering using k = 3 clusters per level and smax = 3. b) Multi-
level similarity tree constructed from the clustering.

We jointly attack these problems by employing as similarity tree the Visual Su-
perTree (VST) described in Chapter 3. To construct it, we first cluster the input
dataset X to create k clusters C0,0 =

{
c0,0
1 , . . . , c0,0

k

}
. Next, we recursively split

each cluster c0,0
i larger than a user-given value smax using the same clustering

procedure as for the first step, yielding a partition Cj,1 =
{
c
j,1
1 , . . . , cj,1k

}
, and

add all cj,1i , 1 6 i 6 k as children of c0,0
i , for a given i. Together, these elements

form a cluster tree (not to be confused with the NJ tree). Here, cj,li defines the ith

element of cluster j on level l in this tree. The procedure stops when only clusters
smaller than smax exist. Figure 4.2 illustrates an example of multilevel clustering
using k = 3 and smax = 3 for a dataset of 12 elements.

Next we build a tree T l for each level l of the clustering hierarchy. The nodes of
T l are clusters in {Cj,l}, ∀j. Concretely, on the lowest level, we create a phyloge-
netic, or classical similar, tree connecting the individual observations in a cluster.
On the upper levels, we create a similarity tree connecting clusters, using clus-
ters centroids as representatives to create the distance matrix needed for the NJ
algorithm (for details, see Sec. 3.2.1). Hence, each level l of the clustering hier-
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archy, from the top to the bottom-most one, generates an increasingly larger tree
|T l| < |T l+1|, ∀l, representing similarity on an increasingly finer scale.

The set {T l}| of similarity trees is next used to produce a simplified view of the
data similarities at various level of details. This is described in the next section.

4.2.3 Graph Drawing and Bundling

To display similarities using the set {T l}| of similarity trees and bundling, we use
a given tree T l, or combination of parts of several such trees, to bundle edges
between the original observations. This generates a different notion of scale from
the approach of using NJ trees presented in Chapter 3: There, when selecting a
coarser scale, the number of displayed data elements is decreased, as groups of
related observations are replaced by their enclosing supernode. In the method de-
scribed in this chapter, selecting a coarser scale uses a coarser similarity-tree T l

to display similarities, but these still relate full set of lowest-level observations. In
other words, the method in Chapter 3 proposes a notion of scale for both data
items and their similarities, whereas the method presented in this chapter pro-
poses a notion of scale only for similarities. Using the full set of observations
is motivated by the fact that bundling achieves the desired visual simplification
without any additional reduction of the number of displayed nodes. This was not
possible when drawing relations using straight node-link metaphors as we did in
Chapter 3.

The selection of scale can be done interactively, as follows. We usually start by
using the coarsest similarity tree T0 implied by the coarsest-level clustering C0,0.
We next arrange all leaf nodes (observations) following this tree (as described fur-
ther below), and then bundle observation relations between all these nodes along
the branches of T0. This produces a coarse-level, simplified, view of the edges in
the dataset, guided by a structure that reflects similarity of observations. Next, we
can refine the exploration of similarities, either by replacing T0 by T1 (uniform
refinement of the level-of-detail), or by selecting a specific cluster c0,0

i ∈ C0,0 to
refine (local refinement of the level-of-detail). In the latter case, we retrieve the
similarity tree that is contained within c0,0

i and replace the corresponding node in
T l by this tree. This yields a ‘mixed’ similarity tree which describes different parts
of the dataset at different levels of detail. We then use this mixed tree to bundle
edges between observations, as described earlier. The process of navigating the
scale of similarities is done interactively, as described next in Sec. 4.4.1

We describe next the technical elements that construct the bundling process it-
self, once a (mixed) similarity tree has been chosen by the procedure described
above. For this, we need two operations: placement of the nodes to be connected
by bundled edges, and the bundling of the edges themselves.

Node placement: For this step, we take advantage of the NJ tree structure, and
use a tree drawing algorithm to lay out the chosen similarity tree. As we want
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to show edge bundles linking all lowest-level observations, we replace, in this
tree, any leaf cluster node by its individual observations. This way, the leafs of
the resulting tree will always be raw observations. As a tree layout algorithm, we
experimented here with radial and force directed algorithms. These have been
described earlier in Sec. 3.2.2.

Edge bundling: We consider here all edges connecting leaves of the above-mentioned
tree. For each such edge, we construct its control polygon by searching for the
shortest path Π in the similarity tree between its endpoints. This path will include
non-leaf nodes in the similarity tree. Given such a path, we route the drawing of
an edge along the path’s control points using a B-spline curve, as in the original
HEB algorithm [82]. Next, we construct discrete finely-sampled polyline represen-
tations of these B-spline curves, and render them with suitably chosen colors and
transparencies, again following the guidelines of the original HEB algorithm.

We also allow the user to control the tightness of the bundling, again, following
the HEB technique. For this, we introduce a parameter β ∈ [0, 1] that controls the
movement of the points of the polyline representing the fully-bundled drawing
of an edge towards the corresponding points of the sampling of a straight line
connecting its endpoints. Denoting the fully-bundled drawing of an edge by the
polyline {bi} and the corresponding straight-line connecting the edge’s endpoints
by {si}, 1 6 i 6 S, where S is the number of sample points, the positions of the
relaxed points qi that we ultimately use to render the edge are given by

qi = βbi + (1−β)si. (4.1)

Values of β close to 1 produce less bent edges, thus an image closer to a straight-
line rendering, which has however more clutter in terms of edge intersections.
Values of β close to 0 produce more distorted (bent) edges, which however reduce
clutter and enhance visual separation by increasing the amount of whitespace
between bundles. As such, we allow users to control β interactively, like in many
other bundling applications [82, 84, 86, 56, 194].

However, changing the bundling strength β can highly deform short edges
which have many control points in their paths. In order to avoid this behavior,
we propose to use an adaptative β setting, where each edge has its own β value,
instead of use the same global β for all edges. The per-edge β value is based on
the length and weight of each edge. Concretely, we apply less bending (use higher
β values) for short and low-weight edges to make them straighter and thus easier
to follow end-to-end in the visualization. We note that a related special treatment
of short edges was also proposed by CUBu [194]. There, the authors observed that
short edges can often be obscured in large bundled graph drawings – since they
are short, they have a very low chance of standing out in bundled visualizations,
as they easily get ‘sucked in’ larger bundles. Long edges have this problem less,
since they themselves determine the appearance of long, salient, bundles. The so-
lution proposed there was to modulate the opacity and/or color of edges based
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on their length, to emphasize short edges. Our solution addresses the same goal
– increasing the visibility of short edges – but the proposed solution is different:
Rather than changing the opacity or color of edges, we simply change their bun-
dling strength. This way, short edges bundle less, thus get a higher chance to stand
out in the final visualization.

4.3 Comparison

In this section, we compare our method, which we dub Similarity-Driven Edge
Bundling (SDEB), with other well-known edge bundling algorithms in the liter-
ature. The main goal of this comparison is to determine the differences between
SDEB and other algorithms in terms of produced results, and next to analyze
these differences and reason about the added-value of our method versus existing
methods.

Evaluating edge bundling algorithms is a complex task. The key problem here is
that one does not have, in general, a ‘ground truth’ image that would be the ideal
one produced by a bundling technique. Hence, when evaluating a concrete tech-
nique, it is hard to say (a) which patterns in the displayed image are correct (true
positives), (b) which patterns in the displayed image are misleading since they
do not exist in the data (false positives), and (c) which patterns in the data are
not reflected by the displayed image (false negatives). Moreover, such evaluations
depend strongly on the types of patterns that one is interested to find.

Figure 4.3: Synthetic dataset of 5 clusters projected by Multidimensional Scaling.

This problem is well-recognized in many publications on edge bundling. As
such, most such publications propose to evaluate bundling by comparison and
with respect to a set of generic aesthetic criteria. In detail, bundling is evaluated
in terms of visually comparing bundling images constructed by different algo-
rithms on the same dataset; and the comparison involves checking for desired vi-
sual properties such as smoothness of bundles, clear separation between bundles,
ease of following a bundle end-to-end, and reduced deformation of the original
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paths [213, 185, 56, 194]. It is argued that if a bundling method A respects such
properties better than a bundling method B, the A will arguably better show the
underlying data patterns than B for the same dataset.

We take the same approach here for evaluating SDEB. For this, we select the fol-
lowing methods to compare it against: FDEB [84], MINGLE [64], and CUBu [194].
This selection is motivated by several factors: These methods are designed to work
on general graphs; they are well known in the literature; they can handle large
graphs; and they are easy to implement or we have access to a standard imple-
mentation.

The second element in our comparison is to select a dataset. We chose here to
create our own synthetic dataset, so as to be able to control the type of patterns
that it contains. This way, we can judge much better whether a bundling method
is more faithful than another method than if we used a real-world dataset for
which we do not have a clear understanding of the involved data patterns. In
detail, we created a synthetic dataset containing 600 multidimensional elements
that are separated into five groups. Figure 4.3 shows a projection of this dataset
using Multidimensional Scaling (MDS).

These elements will constitute our nodes in the bundled image. As similari-
ties, we consider the high-dimensional inter-point distances. From this data we
generated 4000 edges, and then we simulated three edges distributions for our
comparison experiments, as follows:

1. several connections between vertices from two compact groups, and few
connections between others vertices;

2. several connections between vertices from one compact group directed to
vertices on two compact groups, and few connections between others ver-
tices;

3. several connections between vertices of the same group, in two different
groups, and few connections between others vertices;

Figure 4.4 shows the comparison of the layouts obtained with SDEB, FDEB,
MINGLE, and CUBu. Each row of the figure shows images computed with the
four considered layouts. Consecutive rows show the usage of a radial vs a force-
directed node-placement layout. Edges are colored based on their lengths: dark
blue for short edges, up to light green for long ones, with transparency adjusted
to help on the identification of regions with dense concentration of edges.

Before analyzing the results, one important observation has to be made. The
effectiveness of our type of visualization in showing groups of similar nodes is
affected by two components: the placement of nodes and the bundling being used.
In our case, nodes are placed by using a drawing of the similarity tree, either by
a radial layout, or by a force-directed layout, as explained earlier in Sec. 4.2.3.
It can, of course, be argued that other node placement techniques are better for
our goal of highlighting similarities. However, we cannot analyze an open set of
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Figure 4.4: Comparison of bundling techniques on three edge distributions, using radial
and force-directed node placements.
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such algorithms, so we have to make choices. Secondly, by fixing the node place-
ment and varying the type of bundling, we can compare the bundling algorithms
themselves. It can also be argued that a certain bundling method would give bet-
ter results when used in combination with a different node placement algorithm.
Such studies, while very interesting and valuable, are however out of our scope,
and also of the scope of most evaluations of bundling methods known in the lit-
erature. As such, we fix the node placement and vary bundling techniques in our
evaluations, and leave the more complex joint evaluation of bundling-and-node-
placement for future work.

Several observations can be made in Figure 4.4. First, we see that the considered
methods yield dramatically different pictures for the same input dataset. We also
see a large variation in the amount of structure (or alternatively clutter) created
by different methods. Overall, FDEB and SDEB show the coarse-scale similarity
patterns which stands out from the remainder of the graph. CUBu is able to show
finer-scale similarity patterns quite well, but cannot highlight the coarsest-scale
ones, yielding an ‘organic network’-like effect where bundle crossings create am-
biguities when following bundles end to end. MINGLE has, in general, the least
success in creating well-delimited bundles and in simplifying the visualization, an
effect also seen in other evaluations [194]. In terms of edge smoothness, the meth-
ods can be ordered as: MINGLE (smoothest, but too smooth, as bundles do not
form well); FDEB; SDEB; and CUBu (very well formed fine-grained bundles, but
too many ondulations). Methods also vary with respect to their interaction with
the node placement being used: SDEB and CUBu arguably show similar quali-
ties of bundles for both the radial and force-directed placement, while FDEB and
MINGLE produce low-quality results when the radial layout is used. Overall, we
believe that SDEB strikes a good balance between the simplification of the image,
ease of following bundles, and independence on the underlying node placement
algorithm.

4.4 Enhancements

Our proposed simplified similarity visualization can be enhanced in several di-
rections. We present next two such directions: multiscale interactive exploration
(Sec. 4.4.1) and exploration of dynamic datasets (Sec. 4.4.2). This discussion also
introduces some real-world datasets and questions that we target with our visual-
ization.

4.4.1 Multi-level exploration and summarization

A graph representation is frequently used to model collaboration among differ-
ent researchers. A simple model for organizing documents (articles) is here the
so-called authors network, where nodes indicate articles (documents) and edges
indicate articles co-authored by the same persons. Other models for organization
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of articles are known, such as using relations to model citations between papers.
For this application, we consider the Visualization publications dataset, which con-
tains publications in the IEEE Visualization conference in the period ranging from
1990 to 2015. Entries in this dataset consist of papers, attributed by their author
names, title, abstract, citations (within the same dataset), and year of publication,
among others. A full description of the dataset is available online [91].

a) coarse scale b) intermediate scale c) fine scale

Figure 4.5: Exploration of similarities of the IEEE Visualization papers dataset on three
different scales.

In our application, and in contrast to collaboration networks, we focus on vi-
sualizing the similarity structure of the papers. For this, and in order to build the
similarity tree, we first convert all papers into multidimensional vectors following
the bag-of-words representation [158]. Next we conduced an experiment to clus-
ter this multidimensional datasets, checking which parameters would present the
best data distribution for the k-means clustering technique. We obtained k = 4

and the maximum cluster size being smax = 100. Then, we applied the SDEB
algorithm as described in Sec. 4.2.

Figure 4.5 shows three different scales of the resulting visualization, ranging
from coarse to fine. Edges are blended and colored using a color map that depicts
similarity – dark blue values show connections between the most similar nodes
(shorter) and light green values show connections between the least similar ones
(longer). The number of leaf nodes (papers) is the same in all three cases. The first
scale (image (a)) shows an overview of this dataset. We see here a clear separation
of the four aforementioned clusters, and also the balance between intra-cluster
and inter-cluster relations. We see here that papers are organized, similarity-wise,
into one smaller group and three large groups, with the smaller group densely
connected with two other group. As we explore finer scales (images (b,c)), we
can see a finer-grained grouping and the resulting edge patterns.

Taking advantage of the hierarchical structure, we propose an interactive sum-
marization mechanism. Here, one can select groups of similar vertices, e.g. by se-
lecting closely-placed nodes in the visualization or by selecting an entire subtree,
including non-leaf nodes. Next, these nodes are collapsed into a single supernode.
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When doing this, we hide all vertices of the lower hierarchy of the selected group,
and we display only the root vertex of the selected hierarchy. Next, in the space
left blank by this hiding in the layout, we display topics for the textual data associ-
ated to the selected leafs (papers), using a tag cloud technique. Figure 4.6b shows
this. The left image shows the fine-scale visualization of the papers dataset, and is
similar to Fig. 4.5b. The right image shows a summarized visualization, where the
user has selected three separate groups of papers to be summarized. For clarity,
each group is rendered in a different color. Keywords (tags) are retrieved based
on the relative frequency of the words in the papers in a group, by selecting a few
most-relevant such words [143]. The sizes of the tag bubbles maps the frequency
(importance) value.

(a) Non-summarized dataset (b) Summarized dataset

Figure 4.6: Summarization of selected groups in a SDEB visualization of the IEEE Visual-
izations papers dataset.

The similarity tree that serves as skeleton for bundling in SDEB allows addi-
tional layout variations to be designed. One of these addresses the problem of
many bundling algorithms, including the standard SDEB, that visually tracing
bundles end-to-end can be hard when many hierarchy levels exist. Indeed, in
such cases, there are many bifurcation points of the bundles, and since these have
various turns, it can be hard to visually follow the path of a specific bundle.

To address this, we propose to remove a part of the ‘central’ control points along
an edge. These are control points which correspond to higher-level nodes in the
similarity tree. We proceed as follows. For a given level of detail of the SDEB vi-
sualization, we define for each control point of an edge the distance (in terms of
similarity tree levels) of the point to the leaf nodes. When this distance exceeds a
user-set threshold, the control point is removed, i.e., it will not influence the bun-
dling of that edge. Figure 4.7 shows this method for the finest level of detail of the
IEEE Visualizations papers dataset. The images (a-d) show the effect of removing
control points at a distance of 1, 2, 3, and respectively 4 from the root of the
similarity tree. As visible, the effect is to increasingly ‘pull out’ bundles to follow
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(a) (b)

(c) (d)

Figure 4.7: Removal of central control points: (a) Root node; (b) Second level nodes; (c)
Third level nodes; (d) Fourth level nodes.
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straighter paths between their endpoint groups. This removes part of the bundling
structure present in the center of the image, and pushes it towards the periphery.
Edges that connect dissimilar nodes (encoded by the light green color) are now
weakly bundled, so they become much easier to follow. Edges that connect highly
similar nodes (encoded by the darker blue colors) are still strongly bundled. The
effect is conceptually similar to a relaxation method where one would use a re-
laxation factor β which is a function of the similarity (Sec. 4.2.3). However, if
we were to do the above, we would obtain a continuously weaker set of bundles
over the entire image, as the parameter β varies. This would yield several ‘wide’
bundles, thus many more crossings which would create clutter. Our proposal does
not explicitly weaken the coherence (tightness) of the bundles, but only changes
their paths.

4.4.2 Dynamic Graphs

A second extension of SDEB is towards the visualization of dynamic graphs. These
are graphs where edges, or both nodes and edges, change in time, in terms of
their presence and/or attributes at a given time moment. Dynamic graphs can be
further classified into streaming graphs, where each node and edge has a ‘life-
time’ modeled as a compact interval along the time axis; and sequence graphs,
which are discrete ordered sets of graphs with explicit correspondences between
nodes and edges from adjacent elements in the sequence, or frames [88]. Dynamic
graphs are visualized both by edge bundling methods [88, 129] and other more
general graph drawing methods [4, 9].

The advantage of SDEB of letting one control the bundling by a separate data
structure – the similarity tree – allows the easy creation of bundled visualiza-
tions of dynamic graphs where only edges change. In order to demonstrate this
application, we collected a set of publications from Twitter1, between December
19, 2014 to January 21, 2015, related with the NBA All-Star Game polling. This
dataset has more than 1.37 million tweets with the tag #NBABallot. Each tweet
contains, apart from the tag, a timestamp of its publication, and a player names
which generates a vote for the respective player in the NBA election. Based on this
data, we build a graph connecting players voted by the same Twitter user, yielding
11793 different edges and 426 nodes.

Using the temporal information about the publication of a tweet, we can seg-
ment the votes through different frames, each covering a consecutive day during
the lifetime of the entire dataset. For each frame, we thus also extract a separate
graph built as discussed above, considering only tweets emitted in that time-span.
Next, using as similarity function 14 statistics for each player in that season, we
constructed a single similarity tree for the entire dataset (all time-spans). Finally,
we bundle edges describing players voted by the same Twitter user along this tree,

1 https://twitter.com
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using sets of edges for the different time-spans based on their publication time of
the respective tweets.

For this application we employed the force-directed layout for the similarity
tree. The force-directed method has a key advantage in comparison to the ra-
dial layout – the latter suffers from the issue of creating too long edges between
nodes which are placed far away from each other on the circle’s circumference.
A force-directed layout ensures that the positions of nodes can better reflect their
distances in the tree hierarchy, so that the node-to-node distances in the drawing
reflect better the similarities of nodes. Figure 4.8 illustrates our dynamic SDEB
bundling. Here, we selected 4 time-frames from the entire dataset, for 4 consecu-
tive days of voting. We notice here how the layout changes smoothly from frame
to frame, due to the use of the same ‘skeleton’, given by the similarity tree. We also
notice here several long edges, which connect dissimilar nodes in all considered
frames.

4.5 Discussion

The proposed SDEB bundling technique can be thought as being at the cross-roads
of HEB and all other general-graph bundling techniques. Similar to HEB, it uses
a hierarchy (tree) to route edges into bundles. However, similar to all general-
graph techniques, it does not require one to provide such a tree. The tree itself
is built from data that comes with a set of observations, by a similarity function.
The above make SDEB more general than both HEB and general-graph bundling
techniques.

Similarly to HEB, SDEB uses the constructed similarity tree to spatially em-
bed nodes. By using suitable tree layout algorithms, we then get similar nodes
(which next will be linked by bundled edges) being placed relatively close to each
other in the embedding space. This implicitly reduces clutter and crossings int the
bundled image. This is also a property of general-graph bundling methods which
embed nodes based on the graph structure – nodes being close to each other in
the graph will be placed, in most cases, close to each other in the embedding
space, thereby improving the bundle readability. However, many general-graph
bundling algorithms are used on graphs where nodes have fixed locations, such
as geographical placement [84, 86]. In such cases, bundles cannot be ‘shortened’,
and a large number of crossings will arguably take place.

Formally speaking, SDEB cannot be applied to graphs with given node place-
ments such as the above-mentioned ones, since SDEB assumes to be able to con-
struct the node placement by the execution of the layout of the similarity tree.
This restriction can however be relaxed, by using a tree layout algorithm where
leaf nodes are fixed and only non-leaf nodes are allowed to move. Creating such
an algorithm from, for instance, a force-directed method is quite simple. However,
the quality and readability of the resulting bundled images may be low. Indeed,
in such images the bundle structure will try to encode similarity of the nodes in
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Edge length
Min Max

a) frame 1 b) frame 2

c) frame 3 d) frame 4

Figure 4.8: Four sample frames of the #NBABallot dynamic dataset, visualized with dy-
namic SDEB bundling.

terms of their data, while spatial proximity of the nodes will not encode that.
As such, we get two conflicting signals in one image. In contrast, when the tree
layout is driven by similarity (as explained earlier), both bundles between nodes
and proximities of nodes encode the same information – similarity of nodes – and
thereby lead to an easier to interpret image.

Visualizing similarities of datasets with SDEB is related in aims, but comple-
mentary in the used means, to the visualization of similarities proposed by the
visual supertree (VST) techniques in Chapter 3. Both techniques offer a multi-
scale, or level-of-detail, view of essentially the same data – similarities in a large
set of observations. However, the VST visually encodes this multiscale by a num-
ber of straight-line tree drawings, where the different levels have significantly
different numbers of nodes being drawn. At coarse levels, for instance, one visu-
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alizes only supernodes, which are groups of similar observations. SDEB encodes
this multiscale by the bundle structure, where the different levels have signifi-
cantly different numbers of bundle branches being drawn. At coarse levels, for
instance, one visualizes all leaf nodes (observations), but these are connected by
a simplified bundle structure. As such, we can say that the VST is a observation
centric visualization, whereas SDEB is a relation centric visualization. Of course,
the borders between the two approaches are not hard: VST also shows relations in
terms of edge-paths between nodes in the tree; and SDEB can also simplify visu-
alizations by collapsing groups of similar nodes and replacing them by tag-cloud
summarizations (Sec. 4.4.1).

SDEB depends, just as VST, on a reliable and efficient computation of a multi-
level similarity tree. In both cases, such a tree is computed by using a combination
of data clustering and the NJ algorithm (see Secs. 3.3 and 4.2.1). In both cases,
the key parameters to set here are the number of clusters to create per level (pa-
rameter k if k-means clustering is used) and the maximum size of a cluster smax.
These parameters affect both types of visualizations, and finding their optimal
values require experimentation with the concrete datasets at hand. Heuristics for
determining good presets for these parameters can be offered here, as described
both in this Chapter and in Chapter 3; however, even in this case, changing these
parameters will influence the resulting visualization, so one cannot completely
factor our a certain amount of user experimentation with parameter values to
obtain a visualization deemed suitable for a given dataset and analysis task at
hand.

4.6 Conclusion

In this chapter, we have presented a new technique for the simplified similarity-
based visualization of large datasets. Our technique, called Similarity-driven Edge
Bundling (SDEB), uses a phylogenetic tree to guide the bending and grouping of
edges connecting data entities. The proposed visualization is related to graph bun-
dling in the sense of using the same visual metaphor – edge bundles – to reduce
clutter and simplify the drawing of large relational datasets; and is in the same
time different from general-purpose graph bundling in the sense of requiring as
input a set of observations with a similarity matrix defined atop of them, providing
thus a way to visualize the main edge patterns guided by a similarity backbone.
As another contrast to existing general-purpose graph bundling techniques, we
provide a multiscale way to explore the graph structure induced by similarity re-
lations, where this multiscale is induced by a tree that represents the similarity
data in a hierarchical fashion. This allows producing coarse-to-fine-grained views
of a given dataset, and also to locally refine or coarsen the visualization, based on
user input. We demonstrate our proposed SDEB method on several static (time-
independent) and also one dynamic (time-dependent) dataset. Compared to clas-
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sical state-of-the-art graph bundling techniques, we show that SDEB can achieve
less clutter, and a better encoding of the structures present in datasets.

Many extensions are possible to SDEB. A quite interesting one is to generalize
it to handle different types of node positioning. Rather than using the positioning
of nodes determined by the layout of the similarity tree, we could, for instance,
consider positioning leaf nodes based on their actual similarities, using a mul-
tidimensional projection method; or alternatively using fixed positions, such as
in geographical datasets. Next, a similarity tree based on the attributes of these
nodes could be constructed and fitted atop of these node positions, followed by the
bundling proper. This would combine the advantages of the data-similarity-based
bundling offered by SDEB with the increased flexibility of placing nodes based on
other criteria. Another equally interesting extension would consider similarities
of relations (edges) themselves, aside similarities of observations. The bundling
could then be influenced by similarities of both nodes and edges, leading to a fully
general method for bundled visualization of multivariate and relational datasets.





5Attribute-based Explanation of Projections

In chapters 3 and 4, we have presented two different methods for explaining
datasets in terms of the similarity of their entities. As explained within that con-
text, such methods can be used also for multidimensional datasets. In that case,
the similarity being used is based on the distance between multidimensional enti-
ties. Different ways to compute such distances have been introduced in Sec. 2.1.2.

The main advantage of the similarity-based visualizations in Chapters 3 and 4 is
their ability to produce a multiscale representation of the similarity, which allows
exploring large datasets in a compact way. This multiscale is given by the NJ simi-
larity tree (Sec. 3.1). However, the similarity tree also introduces a disadvantage,
as it forces nodes to be placed at specific spatial positions which may not opti-
mally reflect similarity. In other words, while the tree structure captures similarity
well, the positions of the tree leaves do that less. This may cause interpretation
problems, as the spatial proximity of items is a strong cue to them being thought
of as associated, or in our case, similar [191, 13].

Multidimensional projections take a complementary approach to similarity trees.
They place observations in the visual (embedding) space so as their relative po-
sitions encode the observations’ similarities [60, 171]. As such, inter-observation
distance in the embedding space is a direct cue that maps similarity. Additionally,
modern projection techniques have become increasingly more robust, computa-
tionally scalable, and easy to use [95, 135]. Yet, MPs have a fundamental limita-
tion: While they show groups of similar entities, they cannot directly explain why
these entities are similar [164, 28]. For similarity trees, such local explanations are
possible, e.g. in the form of summarizations added by means of colors, textures,
and tag clouds (see Secs. 3.2.3 and 4.4.1).

In this chapter, we propose a visual encoding that addresses precisely the above
limitation of projections. Our encoding augments projection scatterplots with sev-
eral explanatory aids that bring back in the dimension-related information that
has disappeared during the projection. For this, we automatically and implicitly
partition the projection space into zones of close (thus similar) observations and
next compute an explanation of each zone based on the values of the data di-
mensions over its observations. We next use an image-based technique to con-
struct a smooth-varying map that explains the entire projection by color coding.
We enhance this explanation by explicit partitioning of the projection into large
same-explanation zones which we annotate with dimension names and dimen-
sion values, much like tag clouds techniques used in earlier related work [143].
We demonstrate our explanation techniques by exploring several real-world mul-
tidimensional datasets from different application areas.
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The structure of this chapter is as follows. Section 5.1 overviews related work
in explaining multidimensional projection visualizations. Section 5.2 introduces
our visual explanatory tools. Section 5.4 shows how our explanatory techniques
can be used to understand the structure of high-dimensional data depicted as
projections for several real-world datsets. Section 5.5 discusses our techniques.
Section 5.6 concludes the chapter.

5.1 Related Work

For a datasetDn = {p1, . . . , pN} ⊂ Rn ofNn-dimensional points pi = (p1i , . . .pni ),
projections create a dataset Dm = {q1, . . . , qN} ⊂ Rm, with m � n (usually,
m ∈ {2, 3}). If the projection function P(pi) = qi preserves inter-point distances
(e.g., [95]) or nearest-neighbors (e.g., [193]) when mapping Dn to Dm, a scat-
terplot of Dm can be used to reason about the Dn data structure.

As explained earlier in Sec. 2.4.4, visualizing a ‘raw’ projection as a point cloud
of Dm shows similarity-related data patterns, but does not explain these in terms
of the n dimensions of Dn, and is thus of limited use by itself. Hence, several
methods have been proposed to explain projections. These methods have been
overviewed in Sec. 2.4.4. We revisit this survey of explanatory methods for pro-
jections here from the perspective of our goal – explaining what makes groups of
points similar in a projection. This way, we are able to highlight the strong points
of such methods, which we aim to preserve, and also their weak points, which we
aim to eliminate.
Interactive techniques explain MPs by showing on-demand information to help
making sense of theDm structures. Basic techniques include brushing close points
in Dm to see which dimensions make them similar; scagnostics methods which
pre-analyze all scatterplots in a scatterplot-matrix (SPLOM) [10] to detect which
ones best capture interesting patterns in Dn [192]; and adding manual anno-
tations to highlight specific items [54]. Overall, all such interactive methods are
very precise, as they show actual dimension names and values for the explanation.
However, they do not scale well visually (we cannot add annotations everywhere
in a projection), and require manual effort.

Color coding: This well-known method colors all projected points with the value
of a user-chosen dimension. This explains very well patterns such as minima, max-
ima, constant-value zones, and regions of high variation of the respective dimen-
sion. An attractive aspect of color coding is also that it is very scalable visually (for
one dimension) and easy to interpret. However, this technique can show a single
dimension at a time, and showing multiple dimensions in turn overloads easily
the user’s memory. We note that color coding is also used to explain projection
errors [160, 135]. Various interpolation methods have been proposed in this con-
text to ‘fill in’ the gaps in a projection scatterplot. This replaces the harder task of
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interpreting a color-coded scatterplot with the easier task of interpreting a map
having differently colored regions [118].
Axis techniques explain the relations of the dimensions of the original space Dn

with those of the projection space Dm. Such techniques include biplots, which
show where the original Dn dimensions, or axes, project in Dm [71, 70]; and
histograms showing how the m dimensions of Dm are composed of (linear) com-
binations of the Dn dimensions [18, 28]. However, such methods are global in
nature. Moreover, they work less well for nonlinear projections (e.g., [193, 95]),
which require different local explanations of neighborhoods in Dm.

Clustering organizes the Dm points into closely-related groups, which may admit
simple explanations. The general idea is to segment the projection space into
groups of closely-spaced points, since these groups will arguably be those that
a user perceives first, and wants to have explained. Next, various statistics are
computed on each group, to find out which dimensions and/or dimension values
best explain the closeness of its points. Alternatively, representative observations
are selected from a cluster and their details are displayed to explain the cluster.
Finally, the results of this analysis are displayed using annotations such as labels
and tag clouds [180, 131, 99, 143]. These methods are visually quite scalable,
offer a relatively good level of detail, and are intuitive. However, clustering always
introduces some arbitrary decisions on where to draw cluster borders, and can be
sensitive to various parameters (see also Sec. 4.5). Also, explaining a cluster by a
single representative can be confusing in cases when individual observations do
not carry particular strong meanings. In such cases, one would like to explain Dm

by dimensions or dimension-values rather than observations.

5.2 Local attribute-based explanation

From the review of existing explanatory methods for projections given in Sec. 5.1,
we see that no single such method meets all desired qualities, i.e., local explana-
tion, sufficient level of detail, visual scalability, ease of interpretation, and auto-
mated use. Different methods have, however, several strong points. Specifically,
we see that

• color coding methods are intuitive and easy to interpret;

• annotation based methods are very precise in their explanations;

• clustering methods achieve a high degree of summarization.

As such, we propose in the remainder of this chapter a novel explanation method
which aims to combine the above-mentioned advantages. This will be done by
adapting and extending the techniques that the aforementioned explanatory meth-
ods use to achieve their goals. We call this method a local attribute-based explana-
tion, as the method explains different zones in a projection differently (as opposed
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to axis-based methods) and the explanation is based on attributes, or dimensions,
and their values over the dataset. This method is explained next.

Virtually all projection techniques aim to place points which are similar in Dn

closely in Dm. Of course, certain methods may achieve better or worse results in
this placement than other methods. However, as explained in Sec. 2.4.3, many
established methods exist for assessing the precision of a projection, or its ability
to preserve distances. We assume in the next discussions that the projections we
study have sufficient precision for the tasks at hand, and that this precision has
been already verified by means of the error metrics mentioned earlier. We also
assume that the resulting projections are two-dimensional, i.e.,m = 2. This covers
the majority of projection usages known in the literature.

The key patterns that one sees, and needs to explain, in a 2D projection scat-
terplot are groups (closely placed points) and outliers (points far away from the
rest of the scatterplot). As such, our approach aims to explain why close points
in Dm are similar. For this, we define, for each qi ∈ Dm, a 2D neighborhood
νPi = {q ∈ Dm|‖q − qi‖ 6 ρ} as all projected points closer to qi than a given
radius ρ. This induces a neighborhood νi = P−1(νPi ) ⊂ Dn of pi, over which
a ranking µi = (µ1i , . . . µni ) ∈ Rn for all n dimensions of pi is computed. The
lower a rank µji is, the better can dimension j explain the similarity of points over
νi. Sections 5.2.1 and 5.2.2 next outline the rank computation and visual rank
encoding. Section 5.3 next presents a different way to explain projections based
on clusters.

5.2.1 Dimension ranking

To compute ranks of all n dimensions over a neighborhood of points, we intu-
itively want to find out how much each of the dimensions contributes to the fact
that the respective points have been placed close to each other in the projection
space. To do this, we study next how the n-dimensional distance between two
points is affected by its individual components caused by all the n dimensions.

Euclidean similarity ranking:
To compute the ranks µi, a first way is to consider the Euclidean distance

d(p, r) : Rn × Rn → R+. Let lcjp,r be the contribution of dimension j to the
distance between two Dn points p and r, defined as

lc
j
p,r =

(pj − rj)2

‖p − r‖2
. (5.1)

For each pi ∈ Dn, the local contribution of dimension j is next defined as the
average of the distance-contributions between pi and its neighbors r ∈ νi, where
νi ⊂ Dn is the image of a small neighborhood vuPi located in the projection
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Dm by the inverse P−1 of the projection function. Hence, we compute this local
contribution of dimension j over νi as

lc
j
i =

∑
r∈νi lc

j
pi,r

|νi|
. (5.2)

Our key idea next is to explain a neighborhood νP by highlighting dimensions that
contribute to similarities in ν and that are not similar outside ν – i.e., dimensions
that discriminate between points inside and outside νP. For this, the global con-
tributions (gcj) of al dimensions j is first computed, by applying Eqn. 5.2 to the
centroid of the whole dataset Dn and defining the neighborhood ν of this point
as the entire set Dn. The final Euclidean dimension-ranks are then computed, for
each point j, as ratios between local and global contributions, normalized to cap-
ture the relative importance of different dimensions. Thus, the rank of dimension
j for point i is

µ
j
i =

lc
j
i/gc

j∑n
k=1

(
lcki /gc

k
) . (5.3)

Variance similarity ranking: We also investigated an alternative to the Euclidean
ranking, by using data variances. Let GV = (var(p1), . . . , var(pn)) be the global
variance of all dimensions over Dn. Here, var(pj), denoted next by GVj, is the
variance of the jth dimension of the data points over the entire dataset. To capture
how dimension j contributes to similarity over a neighborhoods νi centered at
point i, the ratio of the local variance LVji over νi and global variance GVj is
computed, normalized to indicate relative importance of dimensions. Here, LVji is
simply the variance of dimension j over the data points in νi. This gives the rank
of dimension j for point i as

µ
j
i =

LV
j
i/GV

j∑n
j=1(LV

j
i/GV

j)
. (5.4)

Note the similarity of Eqn. 5.4 to Eqn. 5.3.

Dissimilarity ranking: A projection may also be influenced by dissimilar values
among its points. Indeed, two point groups might be projected far away from each
other inDm even when sharing similar values for some dimensions, if the remain-
ing dimensions are sufficiently different. To explain such differences, we propose
a dissimilarity ranking that finds dimensions that contribute most to dissimilarity
between two selected point groups in Dm. For this, the user first manually selects
two point-groups Q and Q′ which are, typically, far away in Dm and whose dis-
similarity she wants to explain. Let P and P′ be the counterparts in Dn of Q and
Q′ respectively. Given two points q ∈ Q and q′ ∈ Q′ with high-dimensional coun-
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terparts p ∈ P and p′ ∈ P′, we compute using Eqn. 5.2 the contributions lcjp,p′ of
all dimensions j to the Euclidean distance between p and p′. We next define the
contribution of dimension j to the distance between p and the entire group P′ as
the average

lc
j
p,P′ =

∑
p′∈P′ lc

j
p,p′

|P′|
. (5.5)

For a point pi ∈ P, let µji be the jth largest value of lc1p,P′ , . . . , lc
n
p,P′ . The ranking

vector µi = (µ1i , . . . ,µni ), which we construct as output, thus gives the most-to-
least important dimensions that contribute to the dissimilarity between point pi
and all points in P′. The dissimilarities of points p′ ∈ P′ with respect to the entire
group P are computed analogously.

Note that both the Euclidean and variance rankings (Eqns. 5.3 and 5.4) are sim-
ilarity rankings – that is, low values of µji indicate dimensions j which are better
for explaining a local neighborhood. Indeed, a low rank indicates more similar
values for that dimension, i.e. a stronger cohesion of points from the perspective
of the property sampled by that particular attribute. In contrast, the dissimilar-
ity ranking implied by Eqn. 5.5 has an opposite interpretation –high values of µji
indicate dimensions j which are better for explaining why two point-groups are
different. Both above effects will be illustrated in Sec. 5.4.

A second note relates to the analogy of our rankings to the local projection
errors proposed by Martins et al. [118] (see also Sec. 2.4.3). Our similarity rank-
ings are analogous to the false neighbors metric of Martins et al. – that is, they
characterize groups of close points in a projection. In contrast, our dissimilarity
ranking is analogous to the missing neighbors metric of Martins et al. – that is, it
characterizes groups of far away points in a projection. This analogy also extends
to the input we need to compute our rankings: For the similarity rankings, all we
need is the size of a neighborhood; given this, we (and also Martins et al.) can
compute the respective metrics at any point in a projection. Moreover, such met-
rics can be easily visualized for all points in a projection, since a point implicitly
defines its surrounding neighborhood. In contrast, for the dissimilarity ranking,
we need an explicit selection of two groups of (far-away) points that we want to
know why they are dissimilar. Analogously, Martns et al. needs to explicitly select
the point(s) for which missing neighbors are to be computed. Visualizing such dis-
similarity metrics also cannot be done for all points in a single image, since, in our
case, that would involve selecting all pairs of far-away groups, and in the case of
Martins et al. it would involve showing all missing neighbors, potentially spread
anywhere over the projection, for each projected point. These analogies will influ-
ence our visual encoding of projection explanations, described in the next section.

A final note regards the choice between the Euclidean and variance-based sim-
ilarity rankings. We have experimented with both rankings by applying them
to create explanatory visualizations of a variety of datasets of different num-
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bers of observations and dimensions. In general, we have seen that the variance-
based ranking is more robust, i.e., it produces locally less sharply varying top-
explanation dimensions for neighborhoods of the data where we know that the
n-dimensional distribution of observations does not rapidly change. As such, we
shall use the variance-based similarity ranking (Eqn. 5.4 in the remainder of this
chapter, unless explicitly stated otherwise.

5.2.2 Visual encoding

Basic idea: For each point i of the dataset, we compute a vector {(j,µji)}16j6n
with the IDs and ranks of all its n dimensions, sorted on rank values increasingly
(for the Euclidean and variance rankings) or decreasingly (for the dissimilarity
ranking). Next, we select the C dimensions having top-ranks for most of the N
points in our dataset, and map their IDs to colors via a categorical colormap with
C = 9 entries, built using ColorBrewer1. This way, dimensions which are top-rank
for many points get mapped to distinct colors. Dimensions which are top-rank
for few points do not get colors (due to the colormap’s limited size C) and are
mapped to the reserved color dark blue.

Encoding confidence: As noted previously, a top-rank dimension is important,
but not solely responsible for the similarity of a projected point qi with its neigh-
bors. The same is true for the dissimilarity of points. To show this, we analyze the
top-ranks of points in a 2D neighborhood νPc centered at qi, defined like νP but
using a smaller radius ρc < ρ. In detail: Let t be the ID of the top-rank dimension
for qi, i.e., t = arg max16j6n µ

j
i. The confidence cti of t being the top-rank di-

mension that best explains the similarity of qi with its neighbors is next computed
as the sum of ranks µtj for all points qj ∈ νPc having t as top-rank dimension, nor-
malized by the sum of all top-ranks over all points in νPc , i.e.

cti =

∑
qj∈νPc∧arg maxk µ

k
j =t

µtj∑
qj∈νPc maxk µkj

. (5.6)

Intuitively, the above operation acts as a smoothing filter with kernel radius ρc
that assigns high confidence to homogeneous (same top-rank) regions and low
confidence to mixed regions (having points with different top-ranks). High ρc
values de-emphasize outliers (points having different top-ranks than their neigh-
bors), while low ρc values emphasize the variation of ranking confidence over
finer scales (see also Fig. 5.1 discussed next).

Visualization: The top-ranks and confidences of projected points are encoded into
point hues and brightnesses respectively, using the dense map technique of Mar-

1 http://www.colorbrewer.org

http://www.colorbrewer.org
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Figure 5.1: Visual explanation of a synthetic cube dataset.

tins et al. [118], i.e., nearest-neighbor (Voronoi) interpolation of the scatterplot,
done by drawing textured and colored Gaussian splats centered at the projected
points.

Figure 5.1a shows this for a simple synthetic dataset of 3000 points randomly
sampled from three faces of a cube, and next perturbed by uniform spatial random
noise of amplitude equal to 5% of the dataset’s extent. We project this 3D dataset
to 2D using PCA [96] (since PCA is a very well known technique and preserves
distances well for this very simple dataset) and ranked the dimensions by the
variance metric. The radius parameter ρ is set to 10% of the diameter of Dm.
The resulting explanation (Fig. 5.1) shows that the projection consists of three
‘zones’ that correspond very well to cube’s faces, each being very well explained
by a single dimension, as expected. Points close to face intersections are darker,
so their explanation by a single dimension is less confident, as expected. Indeed, if
we center our neighborhood close to an edge, it will include points from at least
two faces of the cube, thus points whose similarity cannot be explained by a single
dimension.

We add next a global ranking legend (Fig. 5.1c) to show which color encodes
the identity which dimension, and how many points have that dimension as top
rank. The last value also sorts the bars in the global ranking legend top-down, so
one can easily see the overall importance of a given dimension for explaining the
similarity of all the points in the input dataset. In our case, the legend shows that
the point count is divided in three roughly equal parts, which is correct, given the
roughly equal number of samples on the three cube faces.

A brush tool is provided to interactively inspect the ranks µji for a given point
i. These are shown in a second bar chart (Fig. 5.1d). Here, dimensions are sorted
top-down in the same order as in the global ranking legend (Fig. 5.1c), so one
can see how important are each dimensions locally as opposed to globally. For
our cube example, we see that the top-rank dimension x (purple) has variance 0,
which is indeed correct, as the brushed point is in the middle of a face orthogonal
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to the x axis. Dimensions y and z have low, and roughly equal, variances. These
are correct, since our points, sampled from the cube faces, are perturbed by a
small amount of noise, as explained earlier.

Multiple-dimension explanation: If the top k ranks µji of a point j are very simi-
lar, the ‘winning’ top dimension arg maxj µ

j
i may be subject to noise. As such, we

propose to explain such areas using multiple (top-ranked) dimensions. Given a
point i, we first define its top-rank set as all the top-ranked dimensions j whose
ranks µji sum up to be (just) larger than a user-defined small threshold τ. This
set contains thus all to–ranked dimensions whose cumulative effect on the rank-
ing metric is lower than τ. If the standard deviation of ranks µji is small, then
this set will be large, i.e., we need many dimensions to explain the neighborhood
around point i. In the opposite case, this set will be small – in the limit, it contains
a single element maxj µ

j
i, so the top-rank set becomes identical to the top-rank

discussed earlier. To visualize top-rank sets, we assign categorical colors to the
C most-frequent rank-sets in the projection, and map the remaining sets by the
reserved color dark blue. Examples hereof are shown next in Sec. 5.2.3, where we
also discuss several examples.

5.2.3 Example Applications

We next use our method to explain projections from three real datasets. As pro-
jection P, we used LAMP [95] due to its accuracy and computational speed, both
studied extensively in [118]. As outlined at the end of Sec. 5.2.1, we use the vari-
ance ranking. As parameter values we used ρ = 10% for the projection diameter
(largest distance between any two points) and τ = 0.05. Dimension labels were
added manually on the projection to help easier identification.

We next illustrate the use of our local attribute-based explanations of projec-
tions for three datasets: quality of wines, quality of software projects, and US
counties.

Wine quality: This dataset has 6497 samples of Portuguese vinho verde wine (4898
red wine; 1599 white wine) [33]. Each sample has n = 12 physicochemical mea-
sures like acidity, residual sugar, and alcohol rate. The projection is shown in
Fig. 5.2 a). If we imagine the visualization of this projection without the attribute
explanations in the figure, we would see an unstructured single clump of points,
which cannot be further easily interpreted or locally analyzed, since there are no
outlier clusters.

We start exploring this dataset using first our single-dimension explanation.
This explanation splits the projection clump into three regions defined by the
top-rank dimensions alcohol rate, sodium chloride/dm3 and residual sugar, and a
smaller group defined by volatile acidity (Fig. 5.2 a). Zones close to region borders
are dark, intuitively showing that they cannot be explained by a single dimension.
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Figure 5.2: Visual explanations of three datasets using a single dimension (left column)
and dimension-sets (right column).
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Using the brush tool, we discover that the first two dimensions account for 5% of
the total rankings on several areas.

To get more insight into what makes points in a region similar, we use next the
dimension-set explanation on the same dataset and projection. The dimension-set
explanation (Fig. 5.2 b) splits the regions identified by the single-dimension expla-
nation into finer detail. First, residual sugar is split into two subregions A1 and A2.
A1 also include the dimensions free sulfur dioxide and total sulfur dioxide in its ex-
planation, and A2 also includes total sulfur dioxide. Hence, sulfur dioxide is closely
related to residual sugar to explain these regions. Region A3 appears in the border
of two regions of the previous map, and is defined by the union of these dimen-
sions. In subregion A4, the dimension wine quality was added to the explanation,
showing samples with similar quality and alcohol values. Subregion A5 covers the
union of the former alcohol and volatile acidity regions. Other subregions remain
best explained by the same top-ranked dimensions since, over them, the sum of
ranks between the first and second top-rank dimensions is above the threshold
τ. Finally, about 12% of the points are explained by less-frequent dimension sets,
mapped by the color dark blue.

Quality of software projects: Our second dataset describes 6773 software projects
from sourceforge.net written in C [121]. Each project has 12 dimensions (11 soft-
ware quality metrics and the project’s total download count). These metrics were
extracted using static analysis tools. The original intention of this study, presented
in [121], was to find out whether correlations exist from these objective measure-
ments of software quality, and the number of downloads of each software project.
In our study of this dataset, we only use the software quality metrics.

The projection of this dataset shows two large connected regions (Fig. 5.2 c,d).
Single-dimension explanation (Fig. 5.2 c) shows that the left region is best ex-
plained by dimension total lines of code. The right region is roughly evenly split
into two parts explained by dimensions total lines of code and lack of function co-
hesion respectively. Several small groups and a low-confidence border connect the
above two regions. Dimension-set explanation shows that most subregions can
be explained by two dimensions (Fig. 5.2 d). The left region becomes now mainly
blue, showing that there are too many small-scale regions that would need more
than one dimension to be explained, and that no such region has a sufficient num-
ber of points to ‘win’ a place in our limited categorical colormap. Exceptions are
the subregions A1, which adds the quality metric number of public variables, and
A2, which adds the metric number of source files, which is also related to the neigh-
bor green region. The right region is split in several compact sub-regions: A3 is a
union between lines of code and lack of function cohesion; A5 adds the same dimen-
sion of A3 and also the number of function parameters; A4 also adds the number
of function parameters; finally, A6 adds the metric number of public variables to its
explanation. As before, we see how the confidence of the explanation smoothly
drops from the center of a region towards its border, as shown by the luminance
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variation.

US counties: This 12-dimensional dataset describes social, economic, and envi-
ronmental data from 3138 USA cities [133]. Its projection yields a single visual
cluster (Fig. 5.2f,g). Single-dimension explanation shows six main regions, chiefly
explained by dimensions related to social statistics (Fig. 5.2e). The dimension-set
explanation (Fig. 5.2f) splits these regions, as follows: The former below 18 re-
gion gets split into four. One subregion (A2) remains best explained by the below
18 dimension. A2 is explained by the unemployed and population density dimen-
sions which also defined the two neighbor regions in the single-dimension expla-
nation. A3 is explained by the same dimensions, plus the dimension percent of
college/higher graduates. Hence, A3 can be seen as a more specific subset of A2.
Finally, A1 is defined by the same dimensions as A3, plus the dimension median
of owner-occupied housing value, being thus an even more specialized subset of
A2. The subregion A4 is defined by dimensions percent of high school graduates
age 25+ and population > 65 years old. Finally, the region defined by median of
owner-occupied housing value stayed the same as the single-dimension explanation
map, indicating that this dimension is sufficient to clearly define this region.

5.2.4 Parameters Discussion

Our basic visual encoding has three main parameters which are intuitive and sim-
ple to control:

• ρ acts as a scale factor – small values create more detailed explanations
and thinner region borders (Fig. 5.3a) , but also emphasize outliers more.
Larger values create less regions but thicker fuzzy borders, thus a coarse
scale explanation (Fig. 5.3b);

• ρc acts as a smoothing filter: small values create more noisy regions but
thinner borders (Fig. 5.3c); large values create smooth regions but thicker
borders (Fig. 5.3d);

• τ controls the coherence of points in a region: small values create less-
coherent regions (Fig. 5.3e); large values create many strongly-coherent
regions (Fig. 5.3f).

Once values for these parameters are set, the partition of a projection into re-
gions, which are next explained by means of color-coding is fully automatic. The
only interaction required here is brushing regions to bring up the dimension-value
bars or clicking on them to select groups of points for the dissimilarity ranking, if
this is desired.
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Figure 5.3: Effect of parameters ρ, ρc, and τ on the visual encoding. Values of ρ and ρc are
given in percentages of the size (diameter of circumscribing circle) of the 2D
projection. Values of τ are pecentages of the similarity ranking metric µ.
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5.3 Improved Visual Encoding

The visual explanations in Sec. 5.2 produce a hue-saturation map that locally en-
codes the dimension(s) that best explain point similarity in the projection. This
replaces the discrete scatterplot with an image in which compact color spots in-
dicate dataset regions being similar for different reasons (dimensions). This gives
good results for relatively simple projections having a small number of large spots.

However, we noticed some important problems on that approach.
Firstly, the visual encoding based on nearest-neighbor interpolation of colors

creates visual artifacts which ressemble a polygonal, mosaic-like, structure super-
imposed on the projection. These artifacts are especially visible in areas where dif-
ferent colors meet, and when the local density of the projected points is medium
or low. Such artifacts are visible along the edges of the cube dataset projection
in Fig. 5.1, and are repeated with a detail image in Fig. 5.4a, for clarity. Such
artifacts are distracting and do not convey any additional information to the pro-
jection explanation.

Secondly, our color-based visual map can lead to interpretation problems, de-
pending of the assigned color/brightness configuration of different regions. For
example, a highly confident region, drawn using bright brown, might visually look
similar to a low confident region, drawn as dark orange. This is a problem caused
due to the lack of very different categorical colors in an already-large categorical
colormap, and due to the fact that we modify these colors to encode confidence,
by changing their brightness.

A third limitation of our visual encoding is the lack of information about the
values of the explained dimensions. Figure 5.2 c is a good example of such limita-
tion. The explanation of this projection shows two big regions, drawn in purple,
explained by the same attribute lines of code. Since these regions are far apart, it is
clear that observations contained by them have different values of this attribute.
However, the explanation does not show which are these different values.

To alleviate these problems, we enhance the basic visual encoding described in
Sec. 5.2.2. First, we use an improved interpolation of colors to create a smoother
visualization and remove the visual artifacts caused by the Vornoi interpolation
(Sec. 5.3.1). We next compute explicit same-explanation clusters, providing addi-
tional informational cues to understand these, by a four-step process: cluster iden-
tification, delineation, labeling, and dimension-value explanation (Secs. 5.3.2-
5.3.5). These improvements are discussed next.

5.3.1 Smooth Explanatory Map

To explain this improvement, let us go back to the example that explained the 2D
projection of three faces of a cube dataset (Sec. 5.2.2). The result of our visual
encoding presented so far is displayed in Fig. 5.4, for clarity. Even for this sim-
ple dataset we can notice a distracting reticular pattern between the plot points
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(Fig. 5.4a, insets). This pattern manifests itself by non-smooth variations in both
brightness and hue. The borders between different-hue regions actually follow the
Voronoi cells of the 2D scatterplot. The appearance of this pattern is not surpris-
ing, as the splatting technique we use, borrowed from [118], is simply a nearest-
neighbor interpolation in visual space of the categorical information (dimension
IDs) computed by the ranking on the projected points. As mentioned earlier, this
pattern is distracting and does not convey any actual information.

We improve this issue by using Shepard interpolation for both hue and bright-
ness (Fig. 5.4b), as follows. For each pixel x in the image, we find all projected
points qi in a small neighborhood νr(x) of radius r pixels centered at x (with
r = 5 pixels set to all our experiments). Let φ : R → R+ be a smooth monotonic
decaying filter function – in our experiments, we chose φ(x) = exp(−(xr )

2). We
interpolate the dimension ranks µji of all qi for all dimensions j at pixel x as

µ(x)j =

∑
qi∈νr(x)φ(‖qi − x‖)µji∑

qi∈νr(x)φ(‖qi − x‖)
, (5.7)

and set the color of pixel x by finding the dimension that maximizes µ(x)j for
all j ∈ {1, . . . ,n}. The brightness of x is computed analogously, by using the in-
terpolation in Eqn. 5.7 for the confidences cji. In other words, we use a Shepard
interpolation to find, at each pixel, the values of the ranks and confidences, based
on the values of these signals over the data points around x in a small neigh-
borhood νr, and next use these interpolated values to determine the actual color
and brightness for the pixel. Note that using the continuous Shepard interpolation
on the values of µji and cji is sound, since these are continuous signals over R2,
and the categorical color mapping is applied after interpolation. The alternative
of interpolating the categorical colors would, of course, not make sense.

a) b)

Figure 5.4: Visual explanation of a synthetic cube dataset: (a) original and (b) smooth.
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Figure 5.4 shows the effects of the smooth Shepard interpolation for the cube
dataset. As visible, the Voronoi-like artifacts have been removed. We can now see
a clear and smooth border that separates the different hue regions. Performing
the Shepard interpolation is computationally as efficient as the original nearest-
neighbor splatting, since we implement Eqn. 5.7 using NVidia’s CUDA platform as
a simple 2D convolution. Practically, this allows us to render images like Fig. 5.4
for projections of thousands of observations in real-time on a consumer-grade PC
availing of a CUDA-capable graphics card.

The visualization techniques explained so far produce a projection where points
are implicitly grouped, by color-coding, on the dimension(s) best explaining their
local similarity. While this explanation of a projection is automatically computed,
which is attractive from an usability perspective, it also has some limitations:
Reading the explanation of a group involves searching its color in the color legend,
which can be tedious for datasets having tens of dimensions or time-dependent
datasets. Moreover, as we have outlined above, changing brightnesses to encode
confidence can make different categorical colors look similar. Finally, we cannot
place explanatory labels atop of such groups (as shown in Fig. 5.2) automatically,
since the groups are implicit.

We address the above issues by computing explicit same-explanation clusters,
in four steps: cluster identification (Sec. 5.3.2), cluster delineation (Sec. 5.3.3),
cluster labeling (Sec. 5.3.4), and dimension-value explanation (Sec. 5.3.5). These
steps are explained next.

5.3.2 Cluster identification

Given a projection Dm where each point is explained by a top-rank dimension
or dimension-set, we segment Dm into compact same-explanation zones, using a
simple connected components approach. Here, a point in Dm is considered to be
connected to its nearest neighbor having the same explanation and a confidence
higher than 50%. This extracts from Dm a set of clusters Dmi which, intuitively,
contain same-hue points and meet at the dark (low-confidence) areas. For in-
stance, the projection in Fig. 5.4 is split this way into three clusters (red, yellow,
and purple regions). This process is fast to execute, simple to implement, and re-
quires no user intervention or parameter setting, unlike e.g. hierarchical clustering
used for similar tasks [131].

Note, however, that this segmentation does not produce a partition of Dm: very
low-confident points in Dm will not be included in any cluster. This is desired,
since we want next to explain such point clusters using explicit dimension labels;
as such, the clusters should only contain high-confidence points, otherwise the
label explanation may be misleading. Separately, the connectivity criterion is used
to ensure that the resulting clusters are compact; this will help us when position-
ing labels to explain them, as described next.
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5.3.3 Cluster delineation

The second step in our cluster-based explanation is to delineate the clusters Dmi
created by the segmentation procedure presented in Sec. 5.3.2. For each clus-
ter Dmi , delineation aims to build a closed, connected, self-intersection-free, and
smooth outline L(Dmi ) ⊂ R2 that completely surrounds the projected points in
Dmi and also wraps tightly around these points. The purpose of these outlines is
threefold: They (a) make the regions which are next explained by labels explicit in
the visualization; (b) allow placing the labels automatically; and (c) allow users
to select all points in a cluster easily, by a single click operation inside the outline.

Delineation is implemented as a two step process, as follows.

Inflation: We first compute the convex hullH(Dmi ) of all points in a cluster. This is
a convex polygon that tightly surrounds all points in Dmi . For this, we use the con-
vex hull implementation which is part of the well-known Triangle library [166],
which is easy to use, fast, and very robust. Other convex hull implementations
can be, of course, used instead. Next, we slightly inflate (upscale) H with a small
uniform scaling factor, roughly 5% of its size, with respect to its barycenter. This
creates a small offset between the hull and the surrounding points, which will
help the shrinking procedure described next. Finally, we sample H is uniformly
in arc-length space, which transforms it into a finely-sampled closed 2D contour
polyline L(Dmi ).

Shrinking: L is next iteratively shrunk by moving its points with a small step along
the contour’s inward normal. We alternate shrinking iterations with Laplacian
smoothing iterations, following the idea of mean curvature flow [26] or gradient
vector flow [208]. This way, the contour’s curvature does not increase; this would
be undesirable given that we want smooth delineation and, also, high curvature
may cause normal estimation problems. After each shrink-smooth pass (about 10
in total), L is resampled again so as to preserve an uniform point density during
the shrinking. Contour points are not moved if they get closer than a user-given
offset value α to a point in Dmi or if motion would cause L to self-intersect. The
obtained outline is visualized by drawing it in black.

Figure 5.5 shows two cluster outlines built for two different offset values α
by the above process. As visible, small α values create a tighter, but more tortu-
ous, outline; larger α values create a smoother, but looser, outline. This outlining
technique is fully automatic; handles any cluster configurations (convex, concave,
compact, or variable density); produces by construction outlines that surround
all points, have a given smoothness, are compact, and are intersection-free; and
has a single user parameter (α) which is simple and robust to set. Arguably the
best know related technique is alpha shapes [51] which can also produce concave
contours surrounding all given points, but does not guarantee contour smooth-
ness or user-prescribed offsets. Other related techniques include, most notably,
the algorithm of Byelas et al. [21], which also uses iterative shrinking of a convex
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a) b)

α
α

Figure 5.5: Outlines computed for a point cluster for (a) small and (b) large offsets α.

hull to compute outlines of groups of elements in UML class diagrams. Our tech-
nique can be seen as a simplified version of the above algorithm, which includes
additional (complex) steps to handle input configurations which consist of sets
of rectangles (rather than points) which are possibly far from each other in the
drawing. Another difference with Byelas et al. regards the precision of outlines. In
our case, we have observed that smoother and looser outlines are easier to inter-
pret, in the sense of quickly locating the elements they contain when visualizing
a projection. The potential imperfection in terms of tight delineation of the points
in a cluster caused by loose outlines does not appear to affect the assessment of
the visualization. This is in contrast to Byelas et al., where outlines need to be
very precise in terms of potential overlaps and intersections. This is explained by
the different goals of the two types of outlines. Byelas et al. use these to reason
about the precise containment of a graphical element in a set of outlined groups,
which can have any sizes and spatial distributions of elements over the 2D surface.
In our case, we use outlines only as indications of large and compact groups of
observations, much like hand-drawn annotations done atop of a paper drawing.

5.3.4 Cluster labeling

Having found the cluster outlines L(Dmi ), we now use these to position labels
to explain the clusters Dmi . As label tex, we use the names of the dimension(s)
identified earlier in the top-rank sets for each cluster (see Sec. 5.2.2). For single-
dimension explanation, a single label per cluster is created; for dimension-set
explanation, multiple labels per cluster are used.

For label placement, we adapt the technique of Paulovich et al. used to cre-
ate tag clouds for the similar purpose of explaining multidimensional projec-
tions [143]. This algorithm expects as input a 2D shape, for which we use our
outlines L(Dmi ); and a set of weighted labels, for which we use the names of the
top-ranked dimensions weighted with their corresponding ranks µji, which are
identical for all points in a cluster by construction, see Sec. 5.3.2. Labels are next
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scaled (in font size) by their weights and placed so as to reside inside the out-
line. In brief, the algorithm builds an axis-aligned uniform grid over L(Dmi ), after
which labels are placed, in decreasing weight order, over free grid cells as close
to the centroid of L(Dmi ) as possible. If a label cannot find a valid place, due to
the lack of available free cells, all label sizes are decreased and the placement
re-starts, until all labels are placed.

The original label placement in [143] can position labels both horizontally or
vertically, much in the spirit of tag clouds. We have experimented with this place-
ment, but found that it can create label sets which are hard to read due to the
changing text-reading direction. For our context, we chose to place all labels for a
given cluster at the same angle. This favors visually comparing the font-sizes for
labels in the same cluster, which is essential for quickly telling which dimension is
most important for describing that cluster. Additionally, this simpler layout lets us
design the placement of dimension-value bars, explained next in Sec. 5.3.5. As an
extension to [143], we allow placing labels at arbitrary angles, rather than only
horizontally or vertically. The placement angle, or vector parallel with the text di-
rection, is given by the direction of the major eigenvector of the covariance matrix
of the sample points in L(Dmi ). Figure 5.6 shows an example of automatic label-
ing for the well-known segmentation dataset [6] projected using LAMP [95]. As
visible, labels are well-centered inside their respective clusters and also oriented
to take maximum advantage of the cluster shape.

Figure 5.6: Automatic labeling for the segmentation dataset.

Cluster labeling has several key advantages as opposed to the basic color coding
introduced in Sec. 5.2.2. First, it can accommodate significantly more dimension-
names than the small number of colors (C = 9) present in the categorical col-
ormap used for dimension color coding. This added-value increases as we move
from single-dimension to multiple-dimension explanation, where more colors would
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needed to cover the typical number of dimension-sets required for an explanation.
Secondly, one can directly read the top-ranked explanatory dimensions, and their
relative importances, in terms of labels and font sizes on the projection itself, rather
than having to correlate colors from the projection to the color legend. This is par-
ticularly helpful for disambiguating potential confusions in matching colors from
the projection to the color legend, due to the brightness encoding of confidence
(see discussion at the beginning of Sec. 5.3).

5.3.5 Dimension-value explanation

Our visual explanation techniques so far partition the projection space into clus-
ters explained by dimension names, indicating in which such dimensions are points
in a cluster most similar. However, this explanation can create several same-hue
regions in a projection – see e.g. the two purple regions explained by the lines of
code dimension in Fig. 5.2c: These are point groups being similar, indeed, mainly
from the perspective of the same dimension, but having different dimension val-
ues.

We solve this issue by showing dimension values using a color-legend bar be-
sides the textual (label) cluster explanation discussed in Sec. 5.3.4. The legend
follows the model proposed by Oliveira et al [134]: A 1D bar is drawn, partitioned
into maximally four parts, colored using an ordinal colormap (Fig. 5.7a). Each
part maps an equal-sized interval between the minimum and maximum value, for
a given cluster, of the respective dimension. The length of each part shows the
number of data values in that range. Three numerical labels atop the bar show
the minimum, average, and maximum values of the data in the cluster. In other
words, this bar represents a compact version of a four-bin histogram of the data
values.

Dimension-value bars are shown on demand when the user brushes a dimen-
sion label in a cluster, so as to not needlessly clutter the visualization. Figure 5.7b
shows an example of dimension-value bar for the cluster best explained by Attr17
in the segmentation dataset, which is also shown in Fig. 5.6. We see that the min-
imum value for Attr17 in the brushed cluster is 0.1, attained only for few data
points (short dark brown bar segment). Almost half of the points have values
varying from 25% up to 50% of the maximum of Attr17, as shown by the dark
orange bar segment. The remaining (roughly half) points have values from 50%
to 75% of the maximum of Attr17 (light orange bar segment).

5.4 Example Applications

To illustrate the working and value of our entire set of visual explanatory tools,
we use them to address three different analysis tasks for three real-world datasets
(Secs. 5.4.1-5.4.3). As projection technique P, we now use t-SNE [193] instead of
LAMP, which has been used in our examples so far. This choice has two motiva-
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min average max

(a) Categorical colormap for dimension-value ranges

(b) Value ranges for dimensionAttr17 over the brushed cluster

Figure 5.7: Visualizing values of dimensions over a point cluster.

tions. First, from an application viewpoint, t-SNE is arguably better than LAMP, as
it favors a better separation of groups of similar observations in the projection im-
age (in case such groups exist in the data). Secondly, from a validation viewpoint,
we want to show that our explanatory techniques do not depend on the choice
of a projection technique. Showing that we can handle t-SNE is a particularly
interesting test. Indeed, as outlined in Sec. 5.3, t-SNE does not aim to preserve
Euclidean distances (like LAMP) but neighborhoods. However, our explanatory
techniques are based on the use of distance-based metrics (see Sec. 5.2.1, can be
challenging). Hence, it is interesting to see whether we can use our techniques for
a projection which does not explicitly aim to preserve distances.

5.4.1 Handwritten digits dataset: Finding discriminative dimensions

This dataset describes numerical digits handwritten by 44 human writers [2]. Each
writer was asked to write 25 samples for each digit (class) in random order using
a pressure sensitive tablet. Each digit is represented by a feature vector of 16
dimensions, defined by a sequence of 8 coordinates (x,y) captured by the tablet.
Such feature vectors are typically used to build classifiers for automatic hand-
writing recognition. A key challenge here is to find out which features (and feature
values) are best to discriminate the various digit classes. This so-called feature
selection task is standard in the design of classification systems [104].

To help answering the above, we selected 100 random samples for each digit
class, yielding a total of 1000 data points. Figure 5.8a shows the resulting pro-
jection, done using the 16-dimensional attributes only (the class attribute is not
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Figure 5.8: Handwritten digits dataset. Projection colored by (a) class IDs and (b) values
of attribute 15. See Sec. 5.4.1.

used), and color-coded by class, using a categorical colormap. We see five of the
ten classes are well separated into five visual groups: digit 0 (dark blue), digit 5
(light green), digit 6 (lime), digit 7 (light orange) and digit 8 (dark orange). The
five remaining visual groups contain a mix of the remaining five classes: digit 1
(pink), digit 2 (purple), digit 3 (cyan), digit 4 (dark green), and digit 9 (red).
Assuming that the projection captures well the 16-dimensional similarities of the
data points, this shows that separating certain digit classes from other classes is
hard.

As such, it is interesting to find out which dimensions contribute to the good
(or bad) class separation. For this, we start with the single-dimension explanation
(Fig. 5.9a). We see here that digits 5 and 2 are best explained by similar values of
dimension 14 (yellow group). Digit 7 is explained by similar values of dimension
3 (beige group). Digit 6 is best explained by dimension 9 (red group), but this
dimension also explains about half of the digit 8 samples. Dimension 13 (brown)
explains a small subset of the digit 3 samples, with significant noise, shown by the
low luminance. Dimension 15 (purple) is most relevant for digits 1, 4, and 9, and
also the remaining samples of digit 8. Finally, digit 0 is explained by two groups
defined by dimensions 10 (pink) and 8 (green).

By looking for bright-colored groups in Fig. 5.9a which match well-separated
class-groups in Fig. 5.8a, we find that some classes can be very well separated
by single attributes, e.g., digit 7. To separate the other classes, we need, however,
to use multiple attributes. We explore this using the dimension-sets explanation
(Fig. 5.9b). We see here how groups of dimensions can, indeed, separate several
classes, e.g. digit 5 (dimensions 9, 1); and digit 1 (dimensions 15, 13, 6). Inter-
estingly, we also see that dimension 15 appears with high ranks in many far-apart
groups corresponding to different digits. This suggests that this dimension is not
really useful for a classification task.

Figure 5.9b also shows another visual design for the dimension-value legends
introduced in Sec. 5.3.5. In contrast to the on-demand display of these legends
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illustrated earlier, we use now a design where the legends are displayed for all
explanatory dimensions for a set of selected clusters (three in the figure). This al-
lows comparing the distribution of values of different dimensions across the same
and/or different clusters. For this visual design to work, dimension-labels are ori-
ented horizontally and ordered top-to-bottom in decreasing rank order per group.
As such, reading the explanation of a given group is simple: Top labels give the
most important dimension explaining that group, and the distribution of values
for a dimension is given by the bar displayed right next to that dimension’s label.

Validation: To validate our findings, and get more insight on dimension 15, we
color map its on the projection (Fig. 5.8b) and compare the emerging patterns
with our explanatory maps. We see a value gradient going roughly from low val-
ues (top-left) to high values (bottom-right). The direction of this gradient matches
quite well the spread of the three purple groups in the single-dimension explana-
tion in Fig 5.9a. By adding dimension value bars atop of these groups, we verify
indeed that dimension 15 increases from top-left to bottom-right, and has very
different value-ranges for the three purple groups. This insight is refined by the
value bars shown for the finer-grained dimension-set map (Fig. 5.9b).

a) single dimension explanation b) dimension-set explanation

Figure 5.9: Handwritten digits projection explanation by both single dimensions (a) and
dimension-sets (b).

5.4.2 Concrete strength dataset: Finding predictive variables

This dataset describes how values of eight ingredients influence the strength of
concrete, a key material in civil engineering [210]. It contains 1030 samples that
measure how concrete strength is affected by the mix of eight ingredients: ce-
ment, blast furnace slag (BFSlag), fly ash, water, superplasticizer, coarse aggregate
(Caggregate), fine aggregate (Faggregate), and age. Figure 5.10a shows the projec-
tion of the data using only the eight ingredient attributes and colored by concrete
strength. We see here several well-defined groups, and a concentration of high
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concrete-strength values in the lower right. A typical question for this kind of data
is to find out how the eight input variables (and their ranges) correlate with desir-
able values of the output variable (high concrete strength). This is a typical task in
machine learning of predicting the value of a so-called dependent variable based
on the measured values of independent variables [47].

a) b) 

high strength values

low BFSlag
values

concrete strength BFSlag

Figure 5.10: Concrete dataset colored by concrete strength (a) and BFslag (b) attributes.

Using the single-dimension explanation (Fig. 5.11a), we see two large groups,
defined by dimensions fly ash (yellow) and BFSlag (purple), respectively. BFSlag
also explains two smaller groups upper-right in the projection. Adding the di-
mension value bars to the three purple groups shows an increasing BFSlag trend
top-to-bottom. Two remaining well-defined groups are explained by similar values
of age (beige) and cement (red). Finally, we see a dark confusion area between the
cement and BFSlag top groups, indicating points which are not clearly differenti-
ated from their neighbors by any single dimension.

To refine these insights, we use the dimension-set explanation (Fig. 5.11b). As
also seen for the example in Fig. 5.9, finer grained and better explained groups
appear now. For example, the large fly ash group is now split into four smaller
groups, which add the dimensions cement and BFSlag to the explanation. Interest-
ingly, a large part of the bottom two groups (Fig. 5.11b, dotted circles) matches
very well high-strength value areas (Fig. 5.10a, dotted circles). Exploring these
groups with the dimension value bars (not shown here to reduce visual clutter)
can, thus, tell us which specific BFSlag and fly ash value ranges correspond to high
concrete strength.
Validation: To validate our explanatory maps, we proceed as in the previous case
(Sec. 5.4.1): We color map an attribute used for the projection (BFSlag, which
was shown to have interesting correlations with concrete strength), leading to
Fig. 5.10b, and compare patterns in this figure with our maps. We easily see that
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a) single dimension explanation b) dimension-set explanation

high strength areas 

Figure 5.11: Concrete dataset projection explanation by both single dimensions and
dimension-sets.

the bright band of points having very low BFSlag values (Fig. 5.10b, dotted area)
correlates well with the extent of the three purple BFSlag clusters in Fig. 5.11a.
Showing dimension value bars atop of these clusters indicates that they have very
low BFSlag values, which again correlates with the color map in Fig. 5.10b. Apart
from the above, Fig. 5.10b also tells us that the lower-right groups shown earlier
in Fig. 5.11b, which as we have seen contain high concrete strength points, are
characterized by high BFSlag values.

5.4.3 Forest fires: Explaining groups of observations

This dataset contains measurements in the Portuguese Montesinho park, collected
daily from January 2000 to December 2003 to predict and prevent forest fires [32].
Every time a forest fire occurred (517 occurrences in total), ten features were reg-
istered. These describe the fire’s spatial x and y locations in a 9-by-9 cell grid,
wind speed, temperature, and the six attributes of the Canadian system [181] for
rating fire danger: fine moisture code (FFMC), duff moisture code (DMC), drought
code (DC), initial spread index (ISI), buildup index (BUI) and fire weather index
(FWI).

We start exploring this dataset by projecting it (Fig. 5.12a). A first salient obser-
vation is that the projection is clearly split into two groups A and B. As such, we
are interested to find out what ‘binds’ the points to form these groups. The classi-
cal option is to successively color code the projection by all attributes to find out if
an attribute causes the group separation. Doing this, for instance, for temperature
does not show a clear difference between the two groups (Fig. 5.12a). We could
repeat this process for all other nine attributes, but we prefer a less tedious so-
lution. For this, we first try the single-dimension explanation (Fig. 5.13a). Here,
we notice that the placement of most points is mainly determined by the rain di-
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a) 
temperature

b) DC

group A

group B

Figure 5.12: Forest fires dataset projection colored by (a) temperature and (b) value of the
DC attribute. See Sec. 5.4.3.

mension – except a small well-defined yellow group that is explained by the DC
(drought code) dimension. Showing the rain values in the two purple groups by
using dimension value bars tells that these are very similar. Hence, rain does not
explain the separation of groups A and B, but the separation of the yellow group
from the rest.

a) single dimension explanation b) dimension-set explanation

Figure 5.13: Forest fires projection explanation by both single dimensions and dimension-
sets. See Sec. 5.4.3.

We next refine the exploration using the dimension-set map (Fig. 5.13b). As
expected from Fig. 5.13a, we see that rain is the key explanatory attribute for
most emerging groups. We also see how both groups A and B are now split and
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explained locally in terms of several other dimensions. For instance, the pair (rain,
DC) determines the appearance of three purple groups. Adding dimension value
bars to these shows that two of these (located in the top group A) are explained
by high DC values, and the third one (in the bottom group B) is explained by
low DC values. Upon having seen this, we realize that, indeed, the rain and DC
(drought) attributes are expected to appear together in explaining similar points,
as they are inversely correlated.

To further inspect why the groups A and B are separated, we select them and
use the dissimilarity ranking (Sec. 5.2.1) to explain the separation. The result
(Fig. 5.14) is to be interpreted as follows: a same-color area R in group A tells
why points in R are far away from the entire group B; and a same-color area in
group B tells why these points are far away from the entire group A. With this rule
in mind, the fact that both groups A and B are mainly covered by dimension DC
(purple) means that they are chiefly separated because of different values of this
dimension. Bringing up dimension value bars on the two purple areas shows that
this is the case. Additionally, we see a red DMC group split from the top group A.
This means that the respective points are placed far away from the bottom group
B because mainly of the DMC dimension.

Figure 5.14: Explaining the separation of two groups in the Forest fires projection.

Validation: Checking whether our explanation for the separation of the two groups
holds is simple – we color the projection by theDC attribute (Fig. 5.12b). We now
easily see that the top group has high DC values and the bottom one low DC val-
ues. Hence, DC is indeed a chief explanation for the groups’ separation.

5.5 Discussion

We next discuss the main aspects of our visual explanatory method for projections.
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Way of use: Our explanatory method can be used to support various tasks involv-
ing the analysis of multidimensional data, as shown in the application examples
in Sec. 5.4. These range from a general high-level characterization of apparent
point clusters in the projection to finding more fine-grained correlations between
observation classes and dimension values. In turn, these support high-level tasks
such as feature selection for the design of classifier and predictor systems. For
finer-grained insight, our methods should be combined with additional explo-
ration tools such as classical brushing and color mapping data by values of a
user-selected dimension.

Advantages: Our method is easy to understand, easy to use, computationally ef-
ficient (runs in real-time for datasets up to 10K points on a typical PC for a C++
CPU single-threaded implementation), and generic (can use any projection and/or
dataset with quantitative dimensions). Importantly, the projection technique can
be used as a black box, i.e., without making any assumption about its internals
or characteristics, i.e., whether the projection is linear or not or global or local.
Martins et al. have shown that such characteristics of explanatory techniques for
projections are very important for their ease of use [118]. The partition of the 2D
projection space into same-explanation regions is automatic. Next, this partition
can be viewed implicitly, i.e., as a colored image consisting of several same-color
zones; or explicitly, i.e., as a point set being partitioned into disjoint clusters. The
implicit view is useful when one requires a high-level overview of the entire pro-
jection ‘landscape’, such as in presentations. The explicit view is useful when one
needs to reason in more depth, and about specific groups of points in the projec-
tion.

Limitations: Color-coding explanations are inherently limited to the maximum
number of colors that a categorical colormap can reasonably have. This can of-
ten be less than the number of regions we can detect in a projection. Separately,
the proposed metrics for ranking dimensions (Sec. 5.2.1) are sensitive to local
and global variance of the data, and also are not well suited to work very high-
dimensional datasets (hundreds of dimensions or more). Better explanation met-
rics can be envisaged for 2D neighborhoods, e.g. based on feature scoring and
discrimination techniques [152]. On the positive side, however, we should note
that our visual explanatory techniques can easily accommodate using any such
feature scoring metrics instead of our proposed Euclidean and variance ranking,
with no changes to their implementation.

A separate high-level limitation relates to the power of our visual explanations
in supporting complex end-to-end applications such as classifier or predictor sys-
tem design. As the examples in Sec. 5.4 show, our explanations can form a part of
the data sensemaking required to get insights for the construction of such complex
systems, such as finding correlations, and dimensions and their values that explain
observation groups. However, many other elements are required to construct a
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good classifier or predictor, such as the selection of suitable machine learning
algorithms; the selection of suitable training datasets (for supervised methods);
and the fine-tuning of the parameters of such systems for obtaining optimal per-
formance. As such, albeit we argue that our techniques can help understanding
multidimensional data, we should recognize their limitations and limited scope
too.

5.6 Conclusion

We have presented a set of simple and automatic techniques that visually explain
2D scatterplots created by multidimensional projections. Explanations take the
form of partitioning the projection into compact and well-defined areas which are
next annotated by color coding, outlines, labels, and dimension value bars. All
these elements support answering the questions of which attributes and/or at-
tribute values make points be similar, or be separated, in a projection. Answering
such questions helps higher-level tasks in multidimensional data understanding in
the scope of machine learning related applications. We demonstrated our meth-
ods on several real-world multidimensional datasets projected by three types of
dimensionality-reduction techniques.

Our explanatory tools can be extended in several directions, as follows.
First, extending the ranking methods used here to handle datasets of hundreds

of dimensions, e.g. by combining different types of feature ranking metrics, would
make our visual explanations more useful for more complex datasets. A challenge
here is that the current ranking metrics we use essentially look, for each neigh-
borhood, for the axis (or axes) in n dimensions along which the neighborhood
has a small projection – this is the essence of dimensions having a high rank. As
the number of dimensions of a dataset grows, finding such axes is increasingly
unlikely. Moreover, other significant data patterns can exist over a neighborhood,
e.g., the fact that its data lives on a low-dimensional manifold, which is not nec-
essarily oriented orthogonal to some axes. We imagine that specific detectors for
such local data patterns can be designed, followed by specific visual encodings for
their presence. This would make the specificity of our visual explanations much
higher than it currently is.

Secondly, we believe that the dimension and dimension-set explanations pre-
sented here could be generalized to produce a multiscale (hierarchical) expla-
nation of large projections in terms of a set of nested regions, ranging from local
and precise explanations to more global and simple ones. This would allow explor-
ing different areas of a projection at different levels of detail, thereby combining
summarization with precision in the same view. Visualization-wise, the envisaged
look and feel if such multiscale explanatory maps could resemble that of cushion
treemaps [196], given the cushion-like luminance profile formed by our color-
and-brightness encoding, and the perceived spatial nesting of specific-explanation
zones within more-general-explanation zones. This analogy suggests that our vi-
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sual design would scale well to large projections consisting of tens of thousands
of observations.

Finally, extending our visual explanatory techniques to time-dependent multi-
dimensional datasets is an interesting (and useful to solve) challenge that would
broaden the applicability scope of our proposal. This last challenge forms the goal
of our next chapter.



6Explanation of Time-Dependent Projections

In Chapter 5, we have shown how projection scatterplots can be enhanced by var-
ious visual metaphors so as to enable users to explain the structure of the projec-
tion, in terms of groups of observations, by means of dimensions and dimension
values of the original high-dimensional dataset. The respective metaphors have
been demonstrated by the visual analysis of several real-world datasets.

As noted in the conclusions of the same chapter, several extensions are possi-
ble to the proposed visual metaphors. In this chapter, we focus on one of them –
the visual explanation of time-dependent, or dynamic, multidimensional datasets.
Similar to the static (time-independent) datasets discussed so far in this thesis,
dynamic datasets consist of observations having a (large) number of dimensions.
However, in contrast to static datasets, the values of the dimensions for dynamic
datasets change in time for the observations they describe. Such datasets can
be visually depicted by means of multidimensional projections, just as for static
datasets. However, two new challenges occur here:

• How to handle the fact that the dimensions of the observations change in
time when generating multidimensional projections?

• How to explain patterns present in the projection, such as groups of obser-
vations and outliers, from the perspective of the (changing) dimensions?

In this chapter, we aim to answer the above two questions, thereby extending
our visual explanatory means from the static to the time-dependent domain. To do
so, we first need to choose an application domain which delivers us rich multidi-
mensional dynamic datasets. We choose here for program comprehension during
software evolution, a branch of software maintenance, and discuss the types of
datasets related to our goal that this domain delivers, as well as the concrete
questions that this application domain spawns regarding our dynamic multidi-
mensional datasets. These issues are discussed in Sec. 6.1. Next, we proceed by
discussing related work from the perspective of the chosen application domain
(Sec. 6.2). Section 6.3 discusses the process we use to acquire dynamic multi-
dimensional datasets from a corpus of software undergoing evolution, obtained
from software repositories. Section 6.4 contains the core of our technical contri-
butions which aim to answer the top-level questions listed earlier in this section.
We exemplify the working of our proposed techniques by the visual analysis of the
evolution of two real-world software repositories in Section 6.5. Section 6.6 dis-
cusses various technical aspects of our proposed techniques. Finally, Section 6.7
concludes this chapter, which is also the last chapter introducing technical contri-
butions in this thesis.
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6.1 Program Understanding in Software Evolution

A key issue in software engineering is to understand how a project is organized
during its development lifecycle. To this end, two main approaches can be taken.
First, one can analyze the changes of the so-called explicit structure of the project,
captured by its physical or logical hierarchy and dependencies [20, 184, 83]. Al-
ternatively, one can mine the repository to find so-called implicit structure, i.e.,
aspects of the recorded data which create groups of highly-related entities. Such
aspects can be inferred by finding groups of highly-similar software entities from
the perspective of their quality metrics [111], source code (i.e., clones) [156], co-
change [3], and lexical term frequencies [106]. Analyzing changes in the explicit
project structure is the by far more common approach in program comprehen-
sion, and is motivated by the relative ease of extracting and presenting change
data along well-known project subdivision axes, such as folders and files (phys-
ical hierarchy); namespaces, classes, and methods (logical hierarchy); and call,
dataflow, include, and inheritance relations (dependencies). Many methods have
been designed to extract and present information along such axes in the scope
of what is commonly known under the name software visualization [44, 122]. In
contrast, detecting implicit structure can uncover previously unknown patterns
and changes in the software under study, since the search for such patterns is not
constrained to follow a given organization of the project. Additionally, presenting
data obtained from this perspective can offer additional insights in the evolution
of the software. However, detecting (or mining) and presenting such implicit as-
pects is harder, since the search space is larger.

One well-known way to characterize software and its evolution is to extract so-
called software quality metrics and study their values, distribution, and changes [111].
Conceptually speaking, this process is identical to the well-known feature extract-
ing used to characterize other large collections of complex entities, such as text
or images, which is well known in machine learning and pattern recognition [46].
The essence of this process is as follows: Given a collection of such complex en-
tities, one aims to find patterns such as groups of similar observations, outliers,
and changes into the above, as data evolves in time. However, one usually does
not know which aspects are key to capturing such patterns. As such, a number of
features are extracted for each item, in the hope that values (and changes) of these
will capture the essence of the underlying processes. Such features are typically
called software metrics in program comprehension. Since a key goal in software en-
gineering is the increase of quality of produced software, most such metrics relate
to the quality of software, and as such are called software quality metrics [111].
Once the data collection has been reduced to a multidimensional observations, its
study follows the traditional pattern of analyzing multidimensional datasets.

If we focus on aspects implied by software quality metrics and their change, a
challenging point is the large number and variability of such metrics. Typical soft-
ware static analysis tools deliver tens of such metrics, each capturing a different
facet of the software [163]. Understanding how entities in a software system re-
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late to each other, according to their metric values, and how such relations change
in time, imply understanding how tens of measurements, recorded on hundreds
of items, change over hundreds of revisions in time. Reducing the amount of data
to analyze can be done, but is risky. For instance, one can analyze the evolution
of a single (or a few) metrics over all entities. This process is similar to what one
would call feature selection in machine learning [74]. If done arbitrarily, e.g. by
manually selecting a few metrics to analyze [199], this can easily miss important
underlying aspects relating the entities, which are captured by the metrics not
considered in the analysis. Conversely, analyzing the evolution of all metrics over
a few entities offers only a coarse partial view of the existing aspects and their
change [189]. To understand the full data space, we essentially have to under-
stand the evolution of a multidimensional dataset D of n metrics, measured on
m entities, over T time moments, for large values of n, m, and T . In turn, to do
the above we need ways to capture and depict metric-implied patterns formed by
groups of entities, and ways to track pattern changes over time.

We approach this problem by proposing Metric Evolution Maps (MEMs), a novel
approach for the visual exploration of multidimensional time-dependent datasets.
We use software quality metrics, mined on all entities (classes) of all revisions of a
repository to detect groups of highly-similar entities in revision, by using multidi-
mensional projection techniques. Next, we explain these groups in terms of their
shared metrics and metric-value properties. Finally, we explain change patterns
at entity and group level in terms of the underlying metric changes. Overall, the
presented techniques aim to answer two types of questions:

Q1: How do entities group in a given revision? Which are the main groups?
Which metrics determine these groups?

Q2: How do groups change in time? How do entities migrate between groups,
and due to which metric changes?

To address the above, we propose two types of contributions. First, we enhance
multidimensional projections with visual explanatory tools so as to support Q1.
For this, we use the visual explanatory techniques proposed in Chapter 5, suitably
adapted to handle projections that come from time-dependent datasets. Secondly,
we enhance these techniques with additional visual explanatory tools to support
questions regarding evolution (Q2).

The remaining of this chapter is organized as follows. Section 6.2 overviews
related work on visualization of the evolution of software metrics and related
artifacts. Section 6.4 describes our approach. Section 6.5 shows how MEMs can
be used to discover several aspects, and their changes, in two real-world software
repositories. Section 6.6 discusses our results. Section 6.7 concludes the chapter.



136 E X P L A N AT I O N O F T I M E - D E P E N D E N T P R O J E C T I O N S

6.2 Related Work

Many techniques have been proposed to visualize similarity (and changes) in the
structure of code over various types of entities such as code lines [201], syntactic
blocks [184], hierarchies [20, 83], and code clones [75]. Such techniques typi-
cally consider a single or a very few attributes to capture and detect change. As
such, many aspects that induce similarity (or changes) are not captured. In the
same time, these techniques organize the data to be presented along the lines of
the explicit structure of the software system. For example, the visualization tool
presented in [201] organizes data mined from a software repository along lines
of code, files, and folders. Other software visualization tools organize data along
hierarchical physical structure [20, 83]. This structure consists of a so-called com-
pound graph [44] which in turn consists of containment edges (typically folders,
files, and methods) and dependency edges (typically function calls, inheritance
relations, type usage, and dataflows).

As already mentioned in Sec. 6.1, a major advantage of this organization of
the data is that it is familiar to the developer interested to study the software.
Indeed, one will arguably easily recognize the main folders or classes in a software
system one works on. However, a problem of this organization is that aspects
which do not follow this structure can be hard to find. For example, consider
the task of finding classes which have a similar evolution in time in a software
project. If classes are depicted along a physical hierarchy, then one will be able to
easily compare classes located in the same folder or folders close to each other in
the physical hierarchy; but it will be harder to spot correlated changes in classes
located far away from each other in the project structure. These aspects have been
recognized in program understanding, and various techniques have been designed
to search for similarity relating any set of entities in a software project. One of the
best known class of techniques in this area is detecting duplicates, or software
clones [156]. These are code fragments which have a high lexical or structural
similarity, and can occur in any parts of a software project. Code clones can be
visualized by various techniques that essentially depict a compound graph such
as hierarchical edge bundles [200], polymetric views [49], Hasse diagrams [94],
and adjacency matrices [98]. From our perspective of being able to easily explore
similarity relations, we can argue that such techniques go only half-way: While
clone relations are, indeed, mined between any entities of the considered dataset,
their visual presentation still follows the explicit software structure. As such, the
visual distance between entities does not usually reflect their similarity. As we
have seen in Chapters 3 and 4, making the visual distance reflect data similarity
is a powerful cue to exploring similarity relations.

At the other end of the spectrum of analyzing software, static analysis and
repository mining can be used to extract tens of metrics such as code size, com-
plexity, cohesion, coupling, number and type of bugs, and identity of developers
changing it [111, 122, 199]. While such approaches provide very rich character-
izations of the underlying software entities, depicting patterns (of similar and/or
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related entities) and their changes is hard, due to the high dimensionality of the
data. Several techniques attempt to depict such high-dimensional data, with var-
ious degrees of success, as follows. Space-filling approaches such as table lenses
[154], evolution lines [201], and evolution matrices [110] use a 2D Cartesian lay-
out populated with sparkline-like encodings [190] to show the variation of metrics
vs entities vs time. Variations include 3D Cartesian layouts and UML layouts using
bar charts [109, 62]. However, such approaches typically cannot show the entire
data space in case of hundreds of entities, tens of metrics, and hundreds of change
moments. Moreover, finding groups of similar entities, or understanding how en-
tities change in time with respect to each other and with respect to the underlying
metrics, is hard, due to the usage of a visual layout which does not essentially
reflect similarity, but software structure.

The challenge of showing similarity, as given by many software metrics, has
been recognized in program understanding and software visualization, and sev-
eral specific approaches have been proposed to address it. In this class, the most
prominent ones use a map metaphor to place entities so as to reflect their simi-
larity in terms of metric values. Several such approaches employ Self-Organizing
Maps (SOM) to create 2D visual representations of multidimensional data [145,
116, 153]. The key idea is to create a neural network, and dispose it in a 2D
grid. After the network training, each multidimensional input data is disposed in
one cell of the grid, according to the most similar neuron. Similarity can be next
visualized by analyzing clusters of 2D elements. However the user must define
the number of nodes (or cells) in the map to give the desired level of granularity,
and the underlying number of clusters in a dataset might not be known before-
hand. Also, SOMs are not always perceived as being very intuitive. More details
on SOMs are given in Section 2.4.1. Other ways to construct software maps cre-
ate a force-directed layout of a graph whose nodes are software entities and edges
capture relations of interest. If edges are weighted by similarity, the resulting lay-
out will naturally pull similar entities close to each other. Based on this layout, a
density map encoding one metric of interest can be next computed and displayed
to show so-called ‘hot spots’, i.e. areas containing many related entities that share
high values of the metric of interest [195, 186].

Other approaches use multidimensional projections (MPs) to map multidimen-
sional data into the visual space: For a set of entities E = {ei} ⊂ Rn (having n
real-valued metrics each), an MP creates a set of typically 2D points P = {qi} ⊂ R2

so that the pairwise distances ‖qi − qj‖ are as close as possible to ‖ei − ej‖. The
resulting 2D scatterplot-like image P can then be used to find groups of similar
entities as well as outliers in E. Many MP techniques exist that score highly in
distance preservation for a static dataset E, e.g., ISOMAP [188], LAMP [95], LSP
[141], and t-SNE [193], to mention just a few. More details on MP techniques are
given in Sec. 2.4 and throughout the previous chapters of this thesis.

When compared to other high-dimensional visualization techniques such as ta-
ble lenses, evolution lines, evolution matrices, parallel coordinates [90], and scat-
terplot matrices [78], MPs are considerably more scalable in number of entitiesm
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and dimensions n, and easier to use to find groups of related entities. However,
they have two challenges:

Group explanation: MPs do not show by default which dimensions are responsi-
ble for the appearance of groups. Our techniques introduced in Chapter 5 aim to
address this goal. However, these techniques were developed for the analysis of a
static projection. As such, it is not clear how they fare, or need to be extended, to
handle dynamic datasets.

Evolution: The vast majority of MPs do not handle dynamic datasets Et. We know
only two exceptions, as follows.

Kuhn et al. [106] use multidimensional scaling (MDS) [177] to show the evo-
lution of lexical similarity of source-code entities, computed based on term (iden-
tifier) frequencies processed by Latent Semantic Indexing (LSI) to factor out syn-
onymy and polysemy. To make the emerging projections Pt consistent over time,
they propose two variants – offline MDS, i.e., projecting the union of revisions⋃
16t6T Et; and online MDS, i.e., constructing Pt+1 by projecting Et+1 using Pt

as an initialization of MDS. Additionally, they note that term frequencies typically
change slowly in time over the same software corpus – a situation that clearly
does not hold for software metrics in our case. Both above MDS variants have is-
sues: Offline MDS will generate high projection errors for a large number of time
steps T , as it tries to preserve distances between points in any two revisions Et1
and Et2. Online MDS that starts with a previous dataset-projection (as opposed
to random initialization) is strongly biased and can easily converge in a local min-
imum. Both above issues are discussed for the well-known t-SNE MP technique
[193] by Rauber et al. [151], and apply to MDS as well.

The recent dynamic t-SNE (dt-SNE) technique in [151] is, to our knowledge, the
only MP for time-dependent datasets that offers explicit and verified guarantees
in terms of spatial and temporal coherence. Trade-off between preservation of
distances in the same projection vs preservation of distances across projections
which are close in time is controlled by a user parameter. However, dt-SNE has not
yet been used for software evolution exploration or, for that matter, for the visual
exploration of complex real-world datasets. Also, change patterns are depicted by
animation, which makes spotting such patterns quite hard for more than a few
time frames Pt.

The following two sections outline our proposal to construct a visual explo-
ration system for the similarity-based study of the evolution of software entities
in a software repository. The presentation is divided into two steps, along the typ-
ical construction of a software visualization solutions: First, we describe how we
gather software quality metrics from a given software repository, thereby creating
our dynamic multidimensional dataset to be explored next (Sec. 6.3). Next, we
describe the extensions to the visual explanation techniques in Chapter 5 that we
propose to visualize our dynamic multidimensional dataset (Sec. 6.4).
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6.3 Software quality metrics extraction

Software quality metrics aim to measure different characteristics of software en-
tities (e.g. classes). Several metrics exist, providing a quantitative measure of de-
gree of a characteristic to a software entity. These measurements can be used by
organizations to control or draw conclusions about a project and its development
process. For example, some metrics can be used to evaluate the development of
new products, by inspecting desirable characteristics of successful products, and
next aim to achieve similar measurements on a new product. Other metrics, like
source code size and complexity, can be used to estimate software development
costs [112] or estimate how error-prone it can be.

Our goal is to understand the implicit structure of software entities provided by
similar metrics values. These are computed from source code, can be quickly gen-
erated, and there are several automatic tools for that. Our approach can, however,
be employed on any quantitative measurements, including dynamic ones (which
are based on software execution, and thus are more difficult to extract). Specif-
ically, we focus on the analysis of software metrics of three kinds: complexity,
volume and object oriented metrics, as follows.

Complexity: These metrics are related to the measurement of the complexity of
information flow and organization of code. Examples of such metrics are cyclo-
matic complexity and depth of conditional nesting. The cyclomatic complexity mea-
sures the number of independent paths on the execution of code, providing an
upper bound of the number of tests to be executed in an entity to fully cover all
its execution paths. The depth of conditional nesting measures the depth of nested
if-then-else statements. Large values for this metric might indicate potentially
error-prone software, since it is easier to introduce flow-related bugs on deeply
nested conditionals.

Volume: These metrics relate to the measurements of software size. Examples are
KLOC (thousands of lines of code), number of files, number of statements, number
of blank lines, and number of line comments. Volume metrics are typically mea-
sured per unit of system structure, such as methods, classes, or files. High values
of these metrics indicate large entities, which are typically harder to understand
and maintain, and indicate potential needs for refactoring.

Object oriented: These metrics aim to capture the maintainability and under-
standability of object-oriented software. They extract information at the level
of classes, methods, or packages (groups of related classes). Examples are Lack
of Cohesion in methods (LCOM), Coupling Between Object Classes (CBO) and
Number of Children (NOC). High cohesion in object-oriented programming is im-
portant, since it helps promoting encapsulation. The LCOM metric indicates how
much methods are different in a class by means of its shared attributes, thus mea-
sures the opposite of cohesion. Coupling measures the number of elements that
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relate two software entities such as classes; such elements can be function calls,
direct reads and writes to data members, or usage of locally defined data types.
Ideally, coupling should be low, as it promotes encapsulation and decouples the
maintenance and understanding of different classes. High coupling indicates that
changes in one class will affect many other classes, thus, demanding more effort
on code maintenance.

To characterize software, we extract a large number of software quality met-
rics from all above-mentioned types from a given software project. To charac-
terize evolution, we apply the above process to consecutive versions, also called
revisions, of a software project. Since versioned software typically comes in soft-
ware repositories, such as CVS, Subversion, or Git, we use such repositories as
the primary source of information to collect our dynamic multidimensional metric
datasets. The process of creating such datasets from a given repository is described
next. Specifically, Sec. 6.3.1 describes the choice of repository type and handling
of its multiple revisions. Section 6.3.2 describes the process of extracting metrics
from a single revision.

6.3.1 Extracting metrics from software repositories

The first choice to be made here is to select the type of source control versioning
system, or type of software repository, as it is more commonly known in the soft-
ware engineering practice. As mentioned in the previous section, several types of
software repositories exist and are widely used in practice – the best known be-
ing CVS, Subversion, Git, CM/Synergy, and Microsoft’s Team Foundation Server
(TFS). From the above, we excluded first CM/Synergy and TFS, since these are
commercial systems, so the vast majority of software projects managed by them
are closed-source, thus not open to us for analysis. From the remaining open-
source repositories, we excluded CVS, as being relatively outdated and less fre-
quently used nowadays. Comparing the remaining alternatives (Subversion and
Git), we note that Git [24] has several advantages: It is fast, since the whole repos-
itory can be downloaded and explored offline, avoiding unnecessary queries to a
network server to collect information. Git stores file changes using an efficient file
system, where each revision (commit) is seen as a snapshot of the current project
state. Files that do not change between revisions are not stored redundantly, which
saves space and allows efficient search throughout the revision history. Git also
provides a well documented library1 to explore the revision history.

A second choice to make is the type of software, in terms of programming lan-
guage, to explore next. We focused on exploring projects developed in C++ and
Java. These are very popular programming languages with many open source
projects available for download in hosting services such as github and bitbucket.
Furthermore, these are object-oriented languages, which offer us more metrics to
analyze than projects written in procedural languages such as C.

1 libgit2 – http://libgit2.github.com
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Once a project is selected for exploration, we create a directory hierarchy on
disk to represent the revision history. This is a two-level tree, where siblings on
the second (leaf) level represent the different revisions to analyze. Each revision
directory contains all files of the respective revision. Files that do not change with
respect to an earlier downloaded revision are represented here as symbolic links.
This way, we achieve two desiderates: (a) we minimize the storage space on disk
for large repositories; and (b) we offer, per revision, a directory that contains all
the files (either stored physically or as links) in that revision. This way, we can
directly use existing software metrics extractor tools on every single revision of
the repository, even if such tools are not designed to handle versioned data.

To extract metrics from a given Git repository, our process requires specifying
the repository name (URL), a set of specific file names to analyze from the repos-
itory (by default, all files written in C++ and Java are selected), a start revision
rS, an end revision rE, and a number S of time samples in [rs, re] to analyze. Next,
we extract metrics from S revisions uniformly distributed, time-wise, in the inter-
val [rs, re]. This allows specifying a trade-off between precision and processing
time when analyzing large repositories having thousands of revisions and thou-
sands of files per revision. The extracted metric values are saved next as a set of S
comma-separated-values (CSV) text tables, one table per analyzed revision. Table
rows describe the entities that have been analyzed, such as classes, files, or pack-
ages, depending on the capabilities of the selected analyzer tool (discussed next
in Sec. 6.3.2). Table columns describe all metrics that the analyzer extracted, one
column per metric. All tables share the same number of columns. In other words,
we extract the same set of metrics from all analyzed revisions, their exact num-
ber and identity being given by the capabilities of the selected analyzer. Tables
can however have different rows, depending on the presence of specific entities
in different revisions, due to changes such as additions and deletions of code. The
set-up of our repository-wide analysis is very similar to other tools that extract
metrics from software repositories, such as ClonEvol [76] or SolidTA [154]. The
main difference is that we do not use a relational database to store the extracted
values. This decision is motivated by implementation simplicity; since we do not
need to execute complex queries on the extracted metrics; and since we only store
quantitative attributes (metric values) and text attributes (software entity names),
whereas the other aforementioned tools need to store a much more complex set
of artifacts, such as categorical and relational attributes.

6.3.2 Tools for metric extraction

Given the analysis set-up described in Sec. 6.3.1, our next choice to be made
regards the tool(s) to use to extract software metrics from a single revision.

Software metric tools have a long history and have been extensively used in
both research and industrial practice [111, 122, 117, 61]. However, surprisingly
enough for such an established field, it is still far from evident how to choose a
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‘good’ metric extractor, given a number of requirements it should satisfy. In our
context, these requirements are as follows: (i) fully automatic execution, i.e., abil-
ity to execute in batch mode, since we need next to extract metrics from hundreds
of revisions of a repository; (ii) fast metric extraction, since we need to process
potentially thousands of revisions having thousands of files each; (iii) ease of use
and good documentation; (iv) extraction of a large number of quality metrics,
since we aim to visually analyze high-dimensional datasets; (v) ability to handle
code that does not build, since many repositories contain such code, e.g. they miss
libraries or build rules; (vi) ability to extract metrics at a fine-grained level of de-
tail, e.g. per class, file, or method, so that we have enough observation points in
our multidimensional dataset to be able to reason about intra-project similarities;
(vii) ability to deliver the metrics in a simple-to-parse file format, which we need
to easily gather the metrics for further use in our pipeline.

Given the above, we approached the process of selecting a suitable metric ex-
tractor by practical testing. We tested 7 popular tools for extracting metrics, based
on their prominence in the software metrics literature and/or their presence in
various forums on the internet dedicated to metric extraction. We next compared
these tools based on the above-mentioned set of requirements. As comparison ma-
terial, we used several open-source projects of sizes varying from a few thousand
lines of code to over 100 KLOC (Tab. 6.1). The tools themselves, and the insights
obtained from their analysis, are outlined below. For brevity of exposition, we
limit ourselves here only to the main insights that determined our tool-selection
process. An in-depth discussion of all aspects learned from this comparison is, we
believe, out of the scope of this thesis.

SonarQube2: SonarQube is a professional tool dedicated to the continuous anal-
ysis and measurement of source code quality. It has interesting features that relate
to the detection of coding rules and is able to find possible bugs and violations.
However, SonarQube is not simple to configure and execute. To do this, one has
to edit several files to set parameters properly, and there is also a need of running
a server to execute it.

SonarQube was designed to perform continuous inspection, which means that,
as developers push their changes to a SCM (Software Configuration Management)
system, a module triggers an automatic build and the project is analyzed, gener-
ating a report that is uploaded to a report server. It is possible to skip this step
via command line to bypass the SCM. However, the data will still be stored at the
server, and it requires executing queries to retrieve it. A tool with the option to
generate a textual output would be a simpler and more effective alternative for
our context. The performance achieved was not ideal. For instance, this tool took
over 20 seconds to analyze a 6KLOC project. Moreover, SonarQube extracts only
project level metrics, which does not comply with our fine-grained requirement.

2 http://www.sonarqube.org/
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Google CodePro Analytix3: Like SonarQube, Analytix does not only compute
software metrics, but also has features related to code analysis and software test-
ing. It is possible to tune its behavior by disabling some features to increase perfor-
mance, and by focusing only on selecting a set of metrics to be extracted. However,
to gauge the maximal extent of the tool, we enabled all possible software metrics
in our tests. Once properly configured, it is very simple to analyze a project with
Analytix – all extraction configuration options can be summarized in three simple
script files to be added to the project’s root directory, followed by running a shell
script on these files.

Regarding speed, our tests indicate that the tool’s throughput (number of KLOC
analyzed per second) decreases as project size increases. For example, a 3.6KLOC
project was analyzed in 10 seconds; a 101 KLOC project, however, tool 23 seconds.
Analytix also has a good documentation and delivers a satisfactory amount of
metrics in a convenient way (XML and HTML reports). Analytix offers 22 project
level-metrics, 25 package-level metrics, and 17 class-level metrics.

Analizo4: Analizo is a tool which can extract metrics from code in C, C++ and
Java using the Doxygen third-party tool used for parsing code to automatically
construct documentation5. We could successfully extract metrics from C++ code
of single files using this tool. However, the tool has several bugs that make it
unable to extract metrics from C++ source code directories in some cases. It was
possible, however, to use the tool successfully on Java repositories. Analizo proved
much slower than Analytix. For example, for a Java project of 26KLOC, Analizo
took 70 seconds, whereas Analytix took only 17.3 seconds. In another test, Analizo
tool 1440 seconds for a Java project of 101KLOC, whereas Analytix took only 23
seconds. Analizo can extract 10 project level metrics and 37 class level metrics.

iPlasma6: This tool was prominently advertised in the book of Lanza and Mari-
nescu on object-oriented metrics extraction and interpretation [111], which is one
of the key references in the field. The tool is supposed to handle C, C++, and Java
code, and provide most of the object-oriented metrics described by the aforemen-
tioned book, which would more than cover our requirement for a rich set of fine-
grained metrics. However, upon practical testing, we concluded that the tool has
not been maintained for a long period of time, and as such it lacks a good and
automated support of recent dialects of the above-mentioned languages. While
the tool can be used in batch mode, its documentation is incomplete.

CCCC7: This tool has been used by various researchers to extract metrics from
software repositories with the purpose of visualizing these [154]. Its main attrac-

3 http://marketplace.eclipse.org/content/codepro-analytix
4 http://www.analizo.org/
5 heep://www.doxygen.org
6 http://loose.upt.ro/reengineering/research/iplasma
7 http://cccc.sourceforge.net/
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tive points are ease of use via the command line, zero-configuration effort (the
tool only requests a root directory to analyze), and support of various program-
ming languages, among which also C++ and Java. However, the tool is based on
a lightweight parser that can handle relatively simple source code constructs, but
easily gets confused by more complex ones, especially in C++. The error recov-
ery mechanisms CCCC has are minimal, meaning that, upon certain errors, it will
completely skip the remainder of the current file. As such, CCCC often generates
a large amount of missing metric values.

SourceMeter8: This tool is a heavyweight extractor that aims to analyze source
code in detail to find a wide variety of metrics, similar in spirit to SonarQube.
We found SourceMeter to be quite hard to configure, and definitely lacking the
automatic configuration we require in our context. We could only extract metrics
from the project provided with the tool9, for which all configuration files were al-
ready provided. Adapting these configuration files for other projects was far from
trivial. For the above-mentioned sample project, the extraction tool 218 seconds
on 14KLOC. This throughput is far too low for our context.

SciTools Understand10: Understand is a commercial tool for static code analy-
sis. It provides an IDE which combines software testing, quality metric extraction,
charts and visualizations of the relations and structures contained within the soft-
ware project. There is a very comprehensive documentation available, with a very
good support for usage and installation.

The tool offers a command line executable for batch execution, and the result-
ing metrics can be exported to a text format. The metrics can be extracted on
several levels of granularity: 39 package level metrics, 43 class level metrics and
19 method level metrics. This tool achieves the best throughput among all consid-
ered tools we tested.

Summarizing the above observations, the best candidates found were Under-
stand and CodePro Analytix. To gain more insight in these two tools, we compared
them by extracting metrics from 9 open source projects. Table 6.1 shows the abso-
lute and relative performances of the two tools. We see that Understand has best
performance in most cases. Moreover, Understand extracts about three times more
class-level metrics than Analytix. This, as noted earlier, is an important require-
ment for our goal to visually analyze high-dimensional metric datasets. Overall,
Understand proved to satisfy all our requirements very well, so was selected to
work further with.

8 http://www.sourcemeter.com
9 https://github.com/log4cplus/log4cplus

10 http://scitools.com/
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Table 6.1: Performance comparison between CodePro Analytix and Understand.

Project Name Analytix / Understand Time Analytix Time Understand

(KLOC/second) (seconds) (seconds)

JMeter 101 / 118 23 30

Checkstyle 94 / 95 32 32

Gitblit 77 / 77 31 20

JUnit 26 / 26 17 10

JavaGame 3 / 3 10 4

Netty 116 / 194 70 66

Guava 76 / 242 120 168

Zxing 41 / 42 20 11

MPAndroidChart 20 / 20 14 8

6.4 Construction of Metric Evolution Maps

The previous section has explained how we extract a dynamic multidimensional
dataset from a software repository. In detail, if we use Understand as a metric
extractor, for a revision rt ∈ [rs, re], our metric extraction delivers a set Et =

{ei}16i6N, where ei are software entities in revision rt. For Understand, these
can be packages, files, and classes. We choose next to consider classes only, since
these give the highest level of granularity of our analysis, i.e., largest number of
observations. If desired, packages and files can be handled analogously, with no
change to the designs we present next. For classes, Understand delivers 43metrics
per class, i.e., ei has n = 43 attributes.

To construct a visualization of this dynamic multidimensional datasets, two ele-
ments have to be considered – the visualization of a single revision, and the visu-
alization of evolution, or dynamics, between revisions. The first aspect is detailed
in Sec. 6.4.1. The second aspect is detailed in Sec. 6.4.2.

6.4.1 Revision Visualization

As outlined at the beginning of this chapter, we aim to construct a visualization
which, for a given software revision, highlights the similarity of its entities. For
this task, and following the discussions and results shown in the earlier chapters
of this thesis, it is natural to choose a Multidimensional Projection (MP) to create
a simpler representation of this data. For our case, such a projection will reduce
the 43-dimensional set Et = {ei}16i6N to a two-dimensional set Pt = {qi}16i6N,
so that similarities between classes ei ∈ Et will be reflected by similarity in point
positions qi ∈ Pt.

One key difference with respect to the use of projections demonstrated in ear-
lier chapters is that we have to consider the dynamic aspect when creating such
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a projection. In detail: If we wanted to analyze a single, isolated, revision rt, we
could construct Pt by using any MP technique that preserves distances from the
original 43-dimensional data space, such as, for instance, LAMP [95]. However, if
we do that for another revision rt′ , there is no guarantee that we can next com-
pare the projections Pt and Pt′ to reason about change. In other words, elements
close in Pt will, indeed, denote similar classes in rt, and elements close in Pt′
will denote similar classes in rt′ , respectively. However, elements in Pt close to
elements in Pt′ do not necessarily denote classes in the two revisions which are
similar (possible false positives can appear). Similarly, classes in the two revisions
which are indeed similar may not project to elements close in Pt and Pt′ (possible
false negatives can appear). This problem is inherent for any projection technique
that treats revisions independently.

As such, when constructing the visualization for a single revision using a projec-
tion technique, we must take into account the other revisions too. Intuitively, we
want that, for revisions rt and rt′ which are close in time (|t− tprime| is small),
classes from the two that are similar project in areas of the 2D embedding space
which are close to each other. In other words, in areas where the data does not
change much, the projection should not change much. On a high level, this will
preserve the ‘mental map’ of the users who visualizes the software evolution, al-
lowing them to associate stability in the projection with stability in the data, and
change in the projection with change in the data, respectively. As such, we say that
a suitable projection for our dynamic multidimensional dataset should exhibit two
kinds of coherence:

• spatial coherence, i.e., the fact that similar observations in the same revision
rt should project to close points in Pt;

• temporal coherence, i.e., the fact that similar observations in revisions rt and
rt′ which are close in time should project to points which are close in Pt and
Pt′ .

Ideally, a projection technique should achieve both above types of coherence.
However, achieving this in practice is challenging, for the reasons discussed under
MDS in Sec. 6.2. Recently, a technique called dynamic t-SNE technique (dt-SNE)
was proposed, that achieves precisely that [151]. To briefly outline how this is
done, let us the cost function minimized by the original t-SNE technique [193]
that dt-SNE extends:

Ct−SNE[t] =

N∑
i=1

N∑
j=1,j6=i

P(ei [t] , ej [t]) log
[
P(ei [t] , ej [t])
P(qi [t] , qj [t])

]
(6.1)

In the above, ei[t] denote observations at time step, or moment, t, and qi[t]
denote their respective projections. The term P can be considered as a random
process whose value is high when two entities (observations or projections) are
near. This cost function corresponds to the Kullback-Leibler divergence between
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P(ei [t] , ej [t]) and P(qi [t] , qj [t]), which penalizes neighbors in Et to be far apart
in Pt – that is, it penalizes the appearance of missing neighbors in Pt.

To incorporate temporal coherence, dt-SNE extends the above cost to

Cdt−SNE =

re∑
t=rs

Ct−SNE [t] +
λ

2N

N∑
i=1

re−1∑
t=rs

‖qi [t] − qi [t+ 1]‖2 . (6.2)

Here, ‖ · ‖ denotes Euclidean distance in 2D. The added cost term in Eqn. 6.2 pe-
nalizes projections of observations from moving too much between consecutive
time moments. It avoids the problem of abrupt changes between consecutive pro-
jections, but keeps the property of adjusting the layout to reflect similarity changes
among its observations. The parameter λ controls the trade-off between preserv-
ing spatial coherence (like t-SNE does) and preserving temporal coherence. Small
values of λ favor the former, while larger values favor the latter. For further details
on dt-SNE, we refer to [151].

Given the above desirable coherence properties, we adopted dt-SNE as a pro-
jection technique to create a sequence of 2D projections Pt from our sequence of
multidimensional metric datasets Et. Next, we use the visual explanatory tech-
niques described in Chapter 5 to explain the projections Pt in terms of colored
regions, outlined clusters, cluster labels, and dimension-value bars. However, we
adapted the dimension-ranking color mapping so as to consider the fact that we
now color map an entire set of projections rather than a single one. In detail,
we assign colors to the most frequent top-ranked dimensions throughout all revi-
sions rt ∈ [rt, re]. This way, a top-ranked dimension is mapped by the same color
throughout the entire set of visualizations Pt.

6.4.2 Evolution Visualization

The techniques presented in Sec. 6.4.1 let us visualize a single revision from
a repository by a colored and annotated projection. As already mentioned in
Sec. 6.4.1, dt-SNE preserves well both (a) distances between points in the same
projection and (b) between points in projections for close time-frames. Feature (a)
enables us to reason about groups of similar classes at any given time, i.e. supports
answering Q1. Feature (b) allows us to reason about the amount of change (of
class metrics) by looking at the amount of visual change, i.e. supports answering
Q2.

To visualize change, we propose two options. First, we can use a small-multiple
or animation of the projections Pt, drawn all using the same metric-ID-to-color
mapping, see e.g. Fig. 6.2 (for more details, see Sec. 6.5.1). These techniques are
good for analyzing a short time-range or getting a coarse overview of the dynamics
in an entire project. However, for hundreds of revisions, such an approach cannot
show detailed insights.
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For this, we propose a second method: For each class ei, let πi = (qrsi , . . . , qrei )

be its 2D projections in Prs , . . . ,Pre . We next construct polylines from the points πi
for all classes. These can be thought of as ‘trails’ indicating the evolution of classes.
For projects with hundreds of classes and revisions and significant change dynam-
ics, drawing the raw trail-set {πi} creates a cluttered image. Instead, we show
a simplified view by bundling trails using an existing high-performance edge-
bundling technique [194] (any other trail or general-graph bundling techniques
can be used equally well). Figure 6.1a shows an example for the Guice repository
evolution (described in detail in Sec. 6.5.2). Trails are color-coded from green
(first revision rs) to red (last revision re), similar to edge color-coding in other
software visualizations [83]. The trail pattern allows reasoning about change dy-
namics: Short trails indicate classes that stay very similar to each other, metric-
wise. Long trails indicate classes having large changes. Bundle splitting and merg-
ing show classes that become more different, respectively more similar, during the
project lifetime.

This type of image gives a high-level overview of the project dynamics. For detail
insights, we provide two additional views: First, we can select a specific group of
classes (in any time-frame Pt) and explain their entire evolution from a metrics
perspective (Fig. 6.1b). Here, all trails that do not pass through the selected classes
are rendered gray (to provide context); a trail that contains a selected class ei
is rendered, at each point qti with the color mapping the top-ranked metric for
revision rt for the cluster containing ei at that moment. Trails change colors, thus,
showing how the most important metrics explaining the similarity of a class at
each moment of its evolution changed. In Fig. 6.1b, for instance, we see that most
of the selected trails are orange, which maps to the average essential cyclomatic
complexity metric (as encoded by the top-right color legend).

In addition to the above, we can also select a revision of interest rt, and show
the evolution of all classes around this moment (Fig. 6.1c. For this, we show only
trail fragments in the interval [t− δ, t+ δ], where δ is the user-specified size of
the window of interest centered at t, typically a few revisions. Fragments are
alpha blended with a Gaussian profile centered at t and vanishing at the window
borders, so as to focus the visualization on the moment of interest, and are colored
like described earlier for Fig. 6.1b. Overlaying these trails atop of the projection
Pt shows the local dynamics of each class, i.e., where it came from, and where it
will go next, from the perspective of revision rt.

6.5 Sample applications

We next illustrate our approach to visualizing dynamic multidimensional metric
datasets, which we call metric evolution maps (MEMs), by analyzing two well-
known open source repositories: JUnit [97] and Google Guice [68]. For both repos-
itories, we selected 100 revisions and extracted 43 metrics per class, using the
approach outlined in Sec. 6.3.2. To focus on the most salient time dynamics, we
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Figure 6.1: Evolution visualization. (a) Overview showing changes of all classes in all revi-
sions. (b) Evolution of selected classes color-coded by top-ranked metrics. (c)
Evolution of all classes around a selected revision.

kept only classes that are present in all considered revisions. Next, we created the
respective projections using dynamic t-SNE, as explained in Sec. 6.4.1, and finally
explored these interactively.

6.5.1 JUnit 4

JUnit is a popular Java testing framework. It allows unit testing by providing
helper classes which repeatedly invoke methods from the tested class and compare
with expected results. We considered here revisions from March 2010 to March
2016. Data acquisition delivered us 314 classes. Per revision, JUnit has 20.5 KLOC
on average.

Figure 6.2a-d shows an overview of the start phase of the evolution (revisions
1-4), using small multiples. We see that the overall cluster layout is kept well by
dt-SNE, which is indeed expected for a relatively small time-span of 4 revisions.
This helps when comparing consecutive maps. Let us now compare the first with
the last (100th) revision (Figs.6.2e,f). While the spatial distribution of clusters
changes considerably (which is expected, given the 6 year period being studied),
we see that the main clusters of similar classes are caused by the same metrics –
see the similarity of the color legends in Figs. 6.2e,f, both in terms of bar colors
and bar order. For instance, most classes in both revisions 1 and 100 are similar
due to the metrics number of default methods (yellow) and average cyclomatic
complexity (purple). This means that, even though individual classes do change,
there is a strong underlying grouping of classes in terms of aspects captured by
the above metrics. We also see, in all Figs. 6.2, an isolated stable outlier orange
group, explained by the metric average cyclomatic modified. While we did not dig
deeper into the semantics of this class-set, it is clear that they evolve (or rather,
stay constant) in a very different way than the rest of the code.

The evolution trails for the entire dataset show a high dynamics (Fig. 6.2g). We
see here several isolated, coherent, bundles. These indicate classes which changed
their metric values together, i.e., evolved as a ‘block’. One instance is the bottom
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Figure 6.2: Metric evolution maps for four revisions of the JUnit project. See Sec. 6.5.1.

horizontal bundle in Fig. 6.2 which moved in the indicated arrow sense. To un-
derstand this better, we select one of the end clusters of this bundle and show
evolution details (Fig. 6.2h). The selected group (16 classes) are related mainly
by average cyclomatic complexity (yellow) in revision 1, and evolved together, be-
ing finally mainly similar due to number of default methods (purple). Brushing the
views shows us that these classes belong to packages org.junit.internal.runners
and org.junit.internal.builder. A stray trail (purple, Fig. 6.2h, shows a single class
diverging from the grouped change. Fig. 6.2i shows a second group-analysis ex-
ample. The selected classes change together (as told by the bundles), but due
to several metrics (as told by the bundle colors): First, this group was explained
by the metric average cyclomatic codified (orange), next by average line comment
(yellow), and next by average strict cyclomatic complexity (purple).

6.5.2 Google Guice

Google Guice is a Java framework which provides dependency injection for Java
objects [68]. Here, we analyze how 524 classes evolve during 100 revisions be-
tween April 2007 and March 2016. The maps of revision 1 and 100 show that
most classes share similar values of the metrics average modified cyclomatic com-
plexity (purple) and average cyclomatic complexity (yellow) (Figs. 6.3a,b). The
overview trails (Fig. 6.3c) show, in contrast to the JUnit repository (Sec.6.5.1),
many more short trails. This tells that Guice has many more stable classes, which
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do not change much with respect to other classes. The color legend in Fig. 6.3c
tells that the values of the average modified cyclomatic complexity metric are the
most similar for most classes during the analyzed period.

As the images show, the largest group in revision 1 is explained by metric av-
erage strict cyclomatic complexity (purple) splits during the evolution. To further
study this, we use the animation of the projections (see Sec. 6.4.2) to find out that
splitting occurs at revision 22. This is also visible in the revision-centric visualiza-
tion in Fig. 6.3d. During this process, the splitting bulk of purple classes is joined
by a distinct group of yellow classes, explained by the metric average cyclomatic
complexity.

We next focus on the question of what explains the change of class-groups hav-
ing a high dynamics. To study this, we select a group of classes showing high
dynamics, i.e., part of long trails (see next Fig. 6.3e). This group has the inter-
esting behavior of moving very close to its original position on the last revision
(100). As such, we want to understand which were its intermediate values during
its evolution. After selecting the group classes, we noticed a prominent region of
blue colored edge fragments half-way of the group’s trajectory. According to the
color legends, blue can map the metrics count of coupled classes or average num-
ber of lines of code, so we decided to refine the investigation. By displaying the
windowed trails (see Sec. 6.4.2), we found that the blue edge fragments appear
around the 24th revision. Brushing the metric values, we confirmed that the most
similar metric values in revision 24 are, indeed, the count of coupled classes and
average number of lines of code.

6.6 Discussion

We next discuss the main aspects of our metric evolution maps (MEMs).

Advantages: Our method is easy to use, computationally efficient (runs in real-
time for datasets up to 10K observations on a typical PC for a C++ CPU single-
threaded implementation having a recent NVidia card), and generic (can be used
on any set of artifacts, as long as one has a way to extract several quantitative
metrics on these artifacts). MEMs create partitions of projections of the available
data entities (classes, files, packages) in terms of groups of entities that are most
similar from the perspective of any of the underlying metrics. Most importantly,
users do not have to select which these metrics are – they are determined auto-
matically by the visualization. The resulting segregations of projections in similar
groups can be displayed either implicitly, i.e., as a colored image consisting of
several same-color zones; or explicitly, i.e., as disjoint point clusters. The implicit
view is useful when one requires a high-level overview of the entire projection
‘landscape’, such as in presentations. The explicit view is useful when one needs
to reason in more depth, and about specific groups of points in the projection.
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Figure 6.3: Guice repository. (a,b) First and last revisions. (c) Evolution trails, entire period.
(d) Focus on revision 22. See Sec. 6.5.2.

By employing a MP technique crafted for time-dependent data, dynamic t-SNE,
MEMs can explain how groups of software artifacts are similar to each other at
any time moment (revision), and also how they change across time. The key ad-
vantage of using MPs is the high visual scalability thereof: Datasets are essentially
reduced to scatterplots, irrespective of the number of underlying dimensions (met-
rics). Using a high-quality projection, such as dt-SNE, guarantees next the accu-
racy of the obtained visualizations. Change visualization is supported by a sim-
plified view, consisting of bundled trails. While bundling does remove small-scale
spatial-change details, it also massively reduces clutter, letting users perceive the
main motions (changes) of highly-related entities. Since absolute 2D position in
a projection does not have a formal meaning, we believe this simplification has
strong advantages. This is especially true for the t-SNE class of projections, which
do not optimize for distance preservation, but neighborhood preservation. Finally,
color coding is used to explain which metrics are the most important to explain
the change.

Parameters: MEMs have only three free parameters which are intuitive and sim-
ple to control: ρ, ρc, and α, which have been detailed in the context of the
attribute-based visual explanation of projections (Chapter 5. Apart from these
parameters, the dynamic aspect introduced by MEMs adds a single parameter λ
(Eqn. 6.2) which controls the trade-off between spatial and temporal coherence.
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Setting λ = 0.1 has given an empirically assessed good balance between the two.
The partition of a projection into regions, which are next explained by means of
color-coding, outlines, dimension labels, and dimension value bars, is fully au-
tomatic. The only interaction required here is brushing regions to bring up the
dimension value bars.

Limitations: MEMs inherit several limitations from the underlying attribute-based
visual explanation of projections, as follows. Color-coding explanations are in-
herently limited to the maximum number of colors that a categorical colormap
can reasonably have (about 10 colors). The current similarity-ranking metrics
(Sec. 5.2) are, in general, not well suited to work very high-dimensional datasets
(beyond roughly 50 dimensions).

Apart from these, MEMs have some limitations of their own. The current visual
designs we proposed here are geared towards showing the evolution of entities
that exist through the entire evolution period. While, technically speaking, we
could use our proposal to show entities that have shorter lifespans, such as classes
which are created and/or disappear during the project lifetime, future work is
needed to emphasize the precise lifetimes of such entities.

Arguably the largest limitation of the presented techniques relates to their per-
ceived value in terms of connecting to concrete end-user problems such as soft-
ware maintenance tasks. We acknowledge not having studied these aspects. How-
ever, prior to being able to address such issues, we have the technical challenge of
being able to show the dynamics of large sets of entities, as captured by large sets
of quality metrics. We believe that our current work has addressed this technical
challenge up to a large extent. Using our techniques to concretely address actual
real-world maintenance problems is a key task, but one for future work.

6.7 Conclusion

We have presented a set of techniques that allow users to explore the evolution
of entities in software repositories from a metric-centric perspective. For this, we
adapt and extend the visual explanations proposed in Chapter 5 for static mul-
tidimensional data to handle time-dependent multidimensional datasets. Key to
our technical proposal is the ability of visually explaining groups formed in mul-
tidimensional projections, and the evolution in time of (parts of) these groups,
in terms of individual entity attributes, such as software metrics. Our techniques
include a mix of annotations and segmentations of static 2D projections, bundle-
based and metric-based simplified visualizations of the evolution of entities in
time, and several interactive mechanisms to provide level-or-detail insight on se-
lected entities and metrics. We demonstrate the technical applicability of the pro-
posed techniques on two real-world software repositories.

Future work can target several directions. First, the proposed visualizations can
be enhanced to show additional metrics, such as the speed of change, identity of



154 E X P L A N AT I O N O F T I M E - D E P E N D E N T P R O J E C T I O N S

changers, and identity of the changed artifacts, in line with earlier repository ex-
ploration methods [199, 154]. Secondly, researching scalability in terms of num-
ber of metrics can lead to novel visualization methods. Thirdly, validating the
end-to-end added-value of the proposed exploration methods should be done by
organizing actual user studies involving concrete maintenance tasks. Beyond the
scope of software visualization, our methods could be tested and applied to the
more general challenge of understanding any multidimensonal time-dependent
dataset. Finally, it is interesting to consider how to combine the bundling tech-
nique used here to map trails of evolving entities with the similarity-driven bun-
dling proposed in Chapter 4. Doing so would add more semantics to our bundled
trails, in terms of grouping sets of related entities in an even stronger way.



7Discussion and Conclusions

In this thesis, we have presented several methods for the visual exploration of
similarity-induced relations in the context of multidimensional datasets. Specifi-
cally, in Chapter 3, we have shown how to make similarity tree more scalable, and
display richer information. Chapter 4 showed how similarity trees can be used
to add semantics, in terms of observation similarity, to edge bundling displays of
multidimensional relational data. Chapter 5 has proposed methods for the visual
explanation of spatially compact regions in a multidimensional projection from
the perspective of dimensions that make observations similar. Chapter 6 has ex-
tended these explanations to time-dependent multidimensional datasets.

In this final chapter we revisit our initial research questions, stated in Sec-
tion 1.3, discussing our results and reasoning about how well they cover the
problems concerning these questions. We conclude this discussion by highlight-
ing promising directions for future research based on the results presented so far.

To start with, let us recall the first research question that motivated this work:

R Q1: How can we enhance similarity trees so they become computationally scal-
able and also provide local and automatic explanations of their subtrees?

We addressed this question at two different levels. In Chapter 3, we proposed
multiscale implementation of a high precision similarity tree for exploration of
multidimensional data, the Visual SuperTree (VST). The VST scales better, both
computationally and visually, than standard similarity trees, by working with a
multiscale partitioning of the input multidimensional data. By building a set of
trees, one for each scale of this partitioning, the VST can process large datasets
at competitive precision and computational times. The visualization of such data
is next possible using a multiscale approach: One can visualize either a uniformly
simplified representation of the entire dataset (by selecting a level of the afore-
mentioned multiscale partitioning), or a mixed-level representation, where cer-
tain regions of the data are summarized and other regions are shown in more
detail (by interactively collapsing or expanding parts of the current VST). The ex-
amples presented in Chapter 3 show that the VST can handle datasets of millions
of entities and hundreds of dimensions.

Next, in Chapter 4, we used the VST in the context of simplified visualization of
relational datasets, using bundling techniques. The Similarity-driven Edge Bun-
dling (SDEB) uses as similarity backbone the hierarchy of the VST to control
how relations between the input observations are aggregated. Differently than
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most existing bundling techniques, which only use the nodes’ geometric informa-
tion to group edges, SDEB creates bundle patterns based on the similarities from
node attributes. This way, SDEB generalizes recent work in attribute-driven edge
bundling. Such relations can either be provided explicitly, as in a classical graph
dataset, but can also be computed from the similarities of observations (nodes)
themselves. As such, SDEB bridges the domains of multidimensional data visual-
ization and relational data visualization. Similarly to VSTs, SDEB offers a multi-
scale way to explore the simplified (bundled) representation, which generalizes
earlier multiscale exploration methods such as hierarchical edge bundling (HEB)
to the case where one does not have an explicit hierarchy.

Both VST and SDEB approaches offer automatic summarizations of their sub-
trees. The VST automatically builds image and text mosaics, thus allowing a com-
pact and intuitive presentation of the type of observations contained in a group of
similar observations. SDEB creates tag clouds when dealing with associated tex-
tual data, thus allowing a quick inspection of the main topics covered by groups of
similar nodes. Such summarizations are, in our context, a first step of explaining
what kind of entities constitute a group of related entities.

We now recall our second research question:

R Q2: How can we enhance multidimensional projections with explanatory mech-
anisms that provide local and automatic explanations of the perceived pat-
terns?

Note that both RQ1 and RQ2 revolve around the notion of similarity in mul-
tidimensional datasets, and how this can be explained to users. The main differ-
ence between the two questions is that we approach RQ1 focusing on one specific
technique, similarity trees, and RQ2 by focusing on another specific technique,
respectively multidimensional projections. We approache RQ2 by considering the
cases of static (time independent) and dynamic (time dependent) multidimen-
sional data visualized with projections.

For static data, we showed in Chapter 5 how a projection can be explained
locally in terms of the most prominent dimensions that make points in a neigh-
borhood similar to each other. Compared to global explanations, such as biplot
axes, axis legends, and color coding, our explanations have the key added value
that they can freely vary across a projection – thus, they locally adapt to providing
the best way (within the reach of our proposed metrics) to tell why points are sim-
ilar. This implicitly segments a projection, even in the case that it does not contain
a set of visually well-separated clusters, into regions that have different explana-
tions. If desired, we showed how we can make the separation, or segmentation,
of a projection into distinct clusters explicit, and how these clusters can be next
explained by means of the same small set of dimensions that contribute most to
their points’ similarity. Compared to other explanatory techniques for projections,
we believe that our proposal is simpler to understand and use, as it produces a
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visual map consisting of regions having different colors and textual annotations,
a metaphor which should be familiar to most users.

In Chapter 6, we extended the visual explanations proposed in Chapter 5 to the
context of dynamic multidimensional datasets. For this, we used dynamic t-SNE,
a very recent technique that aims to preserve both spatial and temporal coherence
in such datasets. As a collateral added value, our application of dynamic t-SNE to
explore such datasets is the first real-world usage of this technique on large and
complex datasets emerging from a concrete application area – in our case, pro-
gram understanding. This chapter also presents additional material that illustrates
the way of working and added-value of the visual explanatory techniques intro-
duced in Chapter 5 for real-world datasets. Additionally, Chapter 6 introduces a
novel way to visualize change in dynamic multidimensional datasets by means
of bundled trails of observations. Trail visualization provides a compact, visually
scalable, summarized representation of the evolution in time of hundreds up to
thousands of observations across tens up to hundreds of time frames. Additional
color coding and interaction allows inspecting which groups of similar observa-
tions change in time, and why. We demonstrated our approach by presenting the
construction of an end-to-end pipeline for mining and visualization of evolving
software quality metrics from large software repositories.

7.1 Advantages and Limitations

It is interesting to reflect on the various advantages and limitations of the pro-
posed techniques from a high-level perspective – that is, beyond the discussions
provided in the concluding remarks of each chapter. This is also the moment of
reflecting on comparing the approaches proposed by these techniques to the high-
level aim of visually encoding similarity in multidimensional data.

Our proposed approaches essentially visualize the same information – similar-
ity of multidimensional observations. However, how and which similar observa-
tions are selected, and how is similarity visualized, differs. VSTs select similar
entities based on an explicit clustering process working in high-dimensional data,
and encode these in the node-link structure of the visualized similarity tree. Spa-
tial positioning of the tree nodes is driven by this tree structure, and not the
explicit similarities of the data elements, and is thus subject to placement deci-
sions taken by tree layout algorithms. VSTs make explicit the level of similarity of
different groups of items, by encoding this into the paths between such groups,
and their lengths. SDEB acts very much in the same way. Its main difference with
respect to VSTs is that it can handle also association relations between observa-
tions, by grouping associations between similar observations into the same bun-
dle(s). Projection-based methods work differently. First, they select similar entities
based on visual proximity, based on the assumption that the underlying projection
can preserve distances well. This can be seen as an implicit or explicit clustering
process working in the low-dimensional projection space. Spatial positioning of
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observations is driven fully by the projection, rather than by some clustering tech-
nique based on data. However, we can argue that projection explanations are
subject to the quality of the underlying projection techniques in the same way
that similarity-tree based explanations are subject to the quality of the underlying
tree layout techniques. In this sense, all our explanatory mechanisms for similarity
are only as good as the ‘weakest link’ in the entire data processing chain.

All presented techniques are designed to offer a high level of visual scalabil-
ity. VSTs achieve this by using the multiscale representation provided by the un-
derlying data clustering. SDEB achieves this both by leveraging the aforemen-
tioned multiscale, and also by exploiting the inherent visual scalability of edge
bundling. Attribute-based explanations of projections achieve scalability by lever-
aging this property that all projection techniques have, and by using compact
image-based techniques to explain groups of similar observations in the projec-
tion. Additionally, all our techniques have a visual multiscale component: VSTs
and SDEB achieve this by allowing one to choose the level-of-detail at which a
tree, respectively a set of bundled edges, is to be drawn. Attribute-based explana-
tions of projections achieve this by allowing one to explain local groups by means
of a single dimension or a dimension set. In other words, VSTs and SDEB propose
a multiscale in the space of number of observations, whereas the attribute-based
projection explanations propose a multiscale in the space of number of dimensions.

Preservation of the mental map during exploration of large datasets is also a
shared concern for all our techniques. For VSTs, this is achieved by using mini-
maps to link the current and previous navigation views. For SDEB, this is achieved
by keeping the position of leaf nodes fixed during the multiscale exploration. For
the attribute-based exploration of dynamic datasets, this is achieved by choosing a
suitable multidimensional projection technique (dt-SNE) that preserves temporal
coherence, and by using consistent visual encodings across different time frames.

However, our proposed techniques also have several limitations. At a high level,
we underline the following ones. VSTs and SDEB inherently rely on the quality of
a clustering algorithm. As explained in Chapters 3 and 4, clustering results are
significantly influenced by the choice of suitable parameters. Moreover, the binary
division of a dataset in clusters may not be the best way to encode similarities in
case of a relatively flat similarity distribution. Separately, VSTs and SDEB explain
groups of similar entities by depicting representative samples or sample values.
This works well when the dataset at hand allows an intuitive summarization in
this sense. However, in other cases, the summarization proposed by the attribute-
based projections, which works in terms of representative dimensions, may be
better. It is interesting, thus, to consider a way to unify the two types of sum-
marization. Separately also, projection methods are directly affected by the well-
known curse of dimensionality problem. For very high dimensional datasets, the
resulting projections may not be informative, and therefore searching for reasons,
and visually explaining, why points are close to each other in such projections may
be meaningless. In this direction, it is interesting to consider more advanced con-
fidence metrics that assess the quality of a local explanation, and only show it if
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it can provide a minimal degree of meaningfulness. Finally, for dynamic datasets,
projections need to fight the trade-off between spatial and temporal coherence.
Preserving both types of coherences well in a long and complex sequence of time-
frames may be impossible. As such, it is interesting to consider ways to inform the
user about the quality of both types of coherence preservation, e.g. by extending
the proposals of Martins et al. [118] to dynamic datasets.

7.2 Future work directions

Based on the above discussion, a non-exhaustive list of extensions of the current
research contains the following points:

Data variety: The techniques presented in this thesis are focused on quantitative
multidimensional data. As described in Section 2.1.1, a wide variety of multidi-
mensional data exist, including, among others, categorical and relational data.
Providing means to explore this variety can allow a much wider scope of appli-
cations. In particular, as mentioned earlier, it is interesting to see how to use the
image-and-text summarization options provided for VSTs and SDEB to annotate
groups of similar points in a projection; and conversely, to provide the dimension-
based explanation of projection groups to supernodes in the VST or SDEB. Beyond
this, new summarization mechanisms for different types of data, such as sound
and video, would lead to richer and easier usable depictions of big data.

Data volume: The explanation of multidimensional projections are built at fine-
scale, i.e., we explain the prominent dimensions of all projected points. This can
impose computational limitations for the exploration of projections of hundreds
of thousands, or millions of points, and/or projections of dynamic datasets having
thousands of time steps. As such, we envisage that designing multiscale projection
methods, which would extend the current idea of using landmarks or representa-
tives [95, 168] to several levels of details, possibly using similarity-based cluster-
ing (like done for the VST construction), could make significant gains in handling
large datasets.

Combining techniques: Our work can be summarized in two types of visual
metaphors for showing similarity: trees and projections. Each has its own ad-
vantages and limitations, as discussed earlier. It is thus interesting to see whether
the methods could be combined to keep these advantages and reduce limitations.
For instance, we envisage using projections to place the leaves of a similarity tree
more accurately with respect to their similarities, followed by a constrained lay-
out of the remaining tree nodes, to serve for VST visualization. Conversely, we
envisage augmenting a projection-based display for multidimensional data by a
similarity-tree, to simplify the interpretation of attribute-based views of projec-
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tions.

Evaluation: Although evaluation of our proposed techniques took place by using a
(we believe) sufficiently rich collection of datasets of various provenances, types,
and sizes, end-to-end evaluation of the added value that such techniques bring
in a concrete application was limited. Important aspects such as usability, clarity
on the visual metaphor, and ease of learning of the interactive tools, can only
be accurately measured after performing a proper user evaluation. Additionally,
measuring the delivered insight should involve domain experts using our tools
and techniques to solve concrete problems.

Data analysis domains: Our proposed techniques are focused on the improve-
ment of multidimensional projections and similarity trees to get insight into un-
supervied data analysis, i.e., the most generic form of data analysis. However we
acknowledge that discriminative visualizations of labeled datasets in supervised
settings can be extremely useful. As such, we envisage refining our results for this
more specific context.
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