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A B S T R AC T

Shape processing is a rapidly expanding and challenging field, with applications in
science, engineering, medicine, and the entertainment industry. Shape segmenta-
tion and shape retrieval are two important subfields of shape processing. Segmen-
tation is concerned with the detection of shape parts and patches that obey certain
specific properties. Retrieval aims to efficiently find a set of similar shapes to a
given query shape from a large collection.

Many methods have been proposed for shape segmentation and retrieval, based
on so-called boundary and volumetric representations of the shape. A different
representation is the medial one. For 3D shapes, medial representations use so-
called curve and surface skeletons to compactly encode the shape geometry and/or
topology and allow reasoning about shape properties such as part-whole structure,
genus, articulation, thickness, and symmetry. While curve skeletons have been ex-
tensively used for segmentation and retrieval, surface skeletons are far less present
in this context, mainly due to the difficulty in computing them. However, recent
state-of-the-art methods allow efficient, accurate, and simple computation of sur-
face skeletons, opening the way for their usage.

In this thesis, we investigate how surface skeletons can be efficiently and effec-
tively used to support shape segmentation and retrieval. To this end, we propose
several contributions. First, we define a new concept – the cut space – which allows
extending existing part-based segmentation techniques to use the surface skeleton.
Secondly, we propose a unified part-and-patch segmentation methods using the
cut space. We show how our segmentation methods can handle both boundary and
volumetric representations of 3D shapes. Thirdly, we show how descriptors can be
extracted from the cut space to support efficient and high-quality shape retrieval.
Finally, we propose a novel 3D multiscale skeletonization method that achieves
superior quality as compared to existing state-of-the-art methods in the same class.
We demonstrate all our results by proposing efficient implementations thereof and
comparing our results with a wide range of competitive methods on a comprehen-
sive family of 3D real-world shapes.
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S A M E N VAT T I N G

Vormverwerking is een snel uitbreidend en uitdagend veld met toepassingen in de
wetenschap, engineering, geneeskunde, en de vermaakindustrie. Vormsegmentatie
en vormzoektechnieken zijn twee belangrijke componenten van vormverwerking.
Segmentatie bestudeert het detecteren van vormonderdelen (parts en patches) met
bepaalde eigenschappen. Vormzoektechnieken bestudeert het efficiënt vinden van
vormen die gelijkenissen hebben met een gegeven vraagvorm, gegeven een grote
verzameling vormen om in te zoeken.

Veel methodes bestaan voor vormsegmentatie en vormzoektechnieken, geba-
seerd op zogenaamde rand- en volumerepresentaties van vorm. Een derde repre-
sentatie is de mediale. Voor 3D vormen, mediale representaties gebruiken zoge-
naamde curve- en oppervlakskeletten om de geometrie en/of topologie van vormen
te coderen. Deze representaties stelt men in staat om aspecten van vorm te analyse-
ren zoals deel-geheelstructuur, genus, articulatie, dikte, en symmetrie. Curveske-
letten zijn reeds zeer bekend in segmentatie en vormzoektechnieken. Opervlakske-
letten worden veel minder gebruikt aangezien ze veel moeilijker te berekenen zijn.
Niettenmin kunnen recente methodes oppervlakskeletten snel, accuraat, en eenvou-
dig extraheren. Dit opent nieuwe wegen voor het gebruik van oppervlakskeletten.

In dit proefschrift wordt het gebruik van oppervlakskeletten voor het efficiënt en
effectief ondersteunen van vormsegmentatie en vormzoektechnieken bestudeert,
met de volgende contributies. Allereerst wordt er het concept van snijruimte voor-
gestelt, dat bestaande curveskelet-gebaseerde partsegmentatietechnieken uitbreidt
tot het oppervlakskelet. Een verenigde part-en-patchsegmentatiemethode wordt
vervolgens gepresenteert op basis van de snijruimte. Deze methodes worden toe-
gepast op beide rand- en volumerepresentaties. Ten derde worden vormdescripto-
ren gedefinieerd op basis van de snijruimte en ter ondersteuning van efficiënte en
hoogwaardige vormzoektechnieken. Tenslotte wordt er een nieuwe 3D multischaal
skeletonisatiemethode geïntroduceerd die skeletten van een hogere kwaliteit kan
produceren in vergelijking met bestaande competitieve methodes in dezelfde cate-
gorie. Alle voorgenoemde resultaten worden gedemonstreerd door middel van ef-
ficiënte implementaties en vergelijkingen van hun resultaten met een breeed spec-
trum van competitieve methodes op een brede verzameling van realistische 3D
vormen.
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1I N T RO D U C T I O N

1.1 S H A P E S A N D S H A P E P RO C E S S I N G

The three-dimensional world we live in consists of shapes. These are both natural,
like landscape, plants, animals; and human made, like the wealth of objects that
surround us in our houses. Besides their physical presence, shapes have entered
since long the virtual universe: Three-dimensional (3D) computer games abound,
displaying increasingly complex and realistic renderings of either reality-based
or imaginary worlds. Computer-aided design (CAD) applications allow designers,
architects, and artists to create 3D content. 3D simulation and visualization appli-
cations allow engineers and scientists to create and explore various types of data
embedded in three dimensions [199]. 3D scanning technologies allow the acqui-
sition of content from the physical world to enter into the computer universe, in
the form of CT and MRI scanners [75], laser scanners, and 3D cameras [30]. Last
but not least, we can convert the virtual to the real by using 3D printing technolo-
gies [204].

This wealth of digital shape information has brought with it also the need of ap-
propriate methods for dealing with shapes. In this spectrum, tools and techniques
for shape analysis and processing are particularly important, as follows.

Shape analysis: This class of methods is concerned with extracting quantifiable
information from 3D shapes. The information can be used next either by humans,
e.g. to assess properties of the shapes under study – such as an engineer who
monitors the results of a 3D simulation to gain insight on the simulated phe-
nomenon, or a medical doctor who examines a CT scan for diagnosis purposes.
However, equally important is the use of extracted information from shapes to
drive computer applications that process these shapes further. Examples hereof
are simulations of deformable objects, computer games and vehicle pilot simula-
tors where collisions have to be detected, and tools for the graphics designer which
allow the selection, enhancement, or removal of specific parts of a 3D shape. For
all these applications, we need to extract a range of properties of shape, such as
thickness, curvature, noisiness, topology, symmetry, and duplication. Other types
of shape analysis include finding our how similar two shapes are, or finding the
most similar shapes to a given query shape in a large collection – a process known
also as Content-Based Shape Retrieval (CBSR) [193].
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I N T RO D U C T I O N

Shape processing: This class of methods uses information extracted from shapes
to further change these, to various ends. A well-known example is segmentation,
where an input shape is cut (partitioned) into several smaller-scale, and usually
simpler, shapes [168]. Such shapes can then be in turn analyzed, or processed,
much more efficiently and/or effectively than the global input. Another equally
well-known example is cleaning: Given any acquisition device like a scanner, the
output of the acquisition is typically of limited quality, given the technological
bounds of the acquisition process, but also imperfections of the physical shape
being acquired. For many applications, it is essential to detect, repair, or remove
such imperfections. Other types of shape processing involve simplification (remov-
ing unnecessary detail to extract the shape’s essence and/or compress its digital
representation), refinement (increasing ghe representation resolution to support
further processing that requires this), registration (aligning two or more shapes
to fit each other optimally), and editing (creating new shapes from one or more
existing ones).

As both 3D acquisition devices and application requiring increasingly more
complex shapes have evolved, so has the need for more advanced 3D shape analy-
sis and processing techniques. Exploring new ways to create such techniques, and
in particular shape processing techniques, is the general context of this thesis.

1.2 M E D I A L S H A P E D E S C R I P T O R S

Let us, for a start, define a 3D solid shape Ω as a compact volumetric1 subset
of R3. We next denote the boundary, or interface, separating this shape from the
surrounding space by ∂Ω.

To be able to analyze and process shapes on a computer, we need first and
foremost a way to represent Ω and/or ∂Ω in a digital form. To this end, three main
types of representations are known for 3D shapes [189]:

1.2.1 Boundary representations

Boundary representations focus on the shape’s surface ∂Ω. The most widespread
way to represent ∂Ω in a discrete form is to use a so-called polygon mesh struc-
ture. Essentially, this is a piecewise-linear approximation of ∂Ω based on a set of
polygons (typically, triangles), whose vertices reside on or close to ∂Ω [21].

1 By volumetric, we mean a subset of R3 whose intrinsic dimension is 3. By intrinsic dimension, we
mean here the number of independent variables that are needed to describe the respective subset.
As such, a curved surface (intrinsic dimension 2) and a curve (intrinsic dimension 1) embedded in
R3 are not considered by us as volumetric shapes in the above acception.
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1.2 M E D I A L S H A P E D E S C R I P T O R S

Boundary representations, also called b-reps, have many advantages. First and
foremost, they are relatively simple and compact to store and process on a com-
puter – see the compactness property in [189]. For example, a surface having one
million triangles takes, roughly, 48 megabytes of memory. Given the current mem-
ory sizes of modern computers, this is not a large amount. Secondly, boundary
representations are sufficient for a wide range of applications, including the ren-
dering (drawing) of realistic depictions of Ω, animation, and the design of virtual
universes. Thirdly, this representation is simple to manipulate for both computer
programs and humans (designers). Rendering and manipulating boundary repre-
sentations is also supported very well on modern graphics hardware (GPUs). As
such, the vast majority of shape analysis and processing applications nowadays
use boundary representations.

1.2.2 Volumetric representations

However flexible, b-reps have several limitations. First and foremost, by definition,
they represent only ∂Ω, and not the interior Ω of a shape. For several types of ap-
plication, we need to explicitly store and use internal information. For instance,
volumetric ray tracing, used to create photorealistic renderings of half-translucent
objects, may need to model various parameters that live in Ω rather than on the
surface ∂Ω via techniques called physically-based rendering [133]. Certan visu-
alization use-cases, such as examining CT and MRI scans, need to access all
data stored in the volume Ω, e.g., tissue density, blood flow directions, or tissue
anisotropy [137].

Volume representations solve such issues by effectively sampling the entire
Ω⊂R3. The simplest, and most general, way to do this is to use a uniform sample
grid of voxels xi ∈ Z3, by analogy to the way images are represented by pixels.
Such voxel grids can effectively represent several so-called fields, each which can
encode a different property of the shape. As the most basic level, one can encode
the shape itself by using a so-called phase field φ : Z3→R, where φ takes e.g. pos-
itive values over Ω and negative values elswehere. This way, the shape itself can be
defined as the threshold-set Ω = {x ∈ Z3|φ(x)≥ 0} (see e.g. [83]). The boundary
∂Ω is then captured by the isosurface, or level-set [111], ∂Ω = x ∈ Z3|φ(x) = 0}.
A simplification of the above is provided by so-called binary volumes, which de-
fine φ to be 1 inside Ω, or over the volume’s so-called foregound, and 0 outside of
it, i.e. over the background.

However powerful in representing more information about a shape than b-reps,
volumetric representations also have serious limitations. First, they require (much)
larger amounts of memory and processing power to handle shapes at the same level
of detail as compared to b-reps – for memory, roughly one to two orders of magni-
tude more is needed to capture the same level of detail that a b-rep stores for ∂Ω,
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I N T RO D U C T I O N

as compared to the b-rep itself. Volumes larger than roughly 30003 voxels cannot
be stored in the RAM of typical computers, which makes processing them slow.
Secondly, the fixed-grid position of the voxel centers xi makes it hard to represent
data at various levels of detail (sampling resolution) over different portions of the
shape, an issue that b-reps do not have (for more details, see e.g. [199], Chapter 3).
Finally, rendering shapes as voxel sets does not yield the same quality as rendering
them as b-reps, given that a raw voxel set is only a piecewise constant representa-
tion of the shape Ω, nor do level-sets extracted from them. Figure 1.1 illustrates
this.

a) b) c)

Figure 1.1: A horse model is shown as a b-rep mesh in (a), and has 48K vertices, 97K
triangles. (b) The same model, represented as a binary voxel volume (resolu-
tion 5123 voxels). (c) A level set corresponding to the volume’s foreground-
background interface.

1.2.3 Medial representations

As outlined, boundary representations can be easily extracted from voxel ones,
using isosurfacing techniques (Sec. 1.2.2). Conversely, volumetrix representations
of b-reps can be easily produced by a process known as voxelization [35]. As such,
one could argue that the two above shape representations are sufficient, as they
complement each other, and as we can easily convert from one to the other.

However, several types of shape analysis and manipulation are not easily sup-
ported by either b-reps or voxel models. For example, graphics designers need to
deform 3D shapes to specific postures, e.g. to create new shapes in industrial de-
sign, or to create animations of virtual characters [183]. Doing this by using b-reps
or volume models is possible, but tedious, as it requires the setting and careful ma-
nipulation of many control points. Moreover, this is often not intuitive. Separately,
many applications require matching two or more shapes. In the matching process,
the geometry, topology, and symmetry of the shape should be all talen into ac-
count [193]. Reasoning about topology and symmetry requires more refined shape
representations than b-reps and voxel models. Thirdly, shape metrology applica-
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1.2 M E D I A L S H A P E D E S C R I P T O R S

tions need to compute certain properties of shape, such as local thickness [200]
which can be expensive to perform directly on b-reps and voxel models. Last but
not least, in many applications we need to abstract shapes by keeping their struc-
tural essence, such as reducing a hand to a graph having five branches for its fin-
gers [95].

Medial representations provide a family of powerful tools for shape representa-
tion and manipulation that fills the gap between b-reps and volume models, and
also covers the above use-cases. The first such representation was proposed under
the name of shape skeletons by Blum in 1967 [20]. Given a 2D shape Ω ⊂ R2,
the Blum skeleton is the set of centers of so-called maximally inscribed disks in Ω.
Skeletons have been shown next to capture important properties of a shape, such as
its genus, protrusions, local thickness, and boundary geometry [172]. Separately,
they are as compact as b-reps. Finally, the set of skeleton points xi, each annotated
with its distance to the closest point on ∂Ω, also called the Medial Axis Transform
(MAT) [189], provides a dual representation of shape. That is, given a shape Ω,
we can compute its MAT; and from that MAT we can reconstruct Ω.

Following their success for 2D shape processing and manipulations, skeletons
have next been extended to 3D shapes. Two types of skeletons are known here –
curve and surface skeletons – as follows.

a) b)

Figure 1.2: Examples of curve skeleton (a) and surface skeleton (b) of a 3D elephant shape.
Images generated with the skeletonization method in [83].

Curve skeletons: The first one, and still most used, skeleton type is the curve
skeleton. While a unique formal definition of the curve skeleton does not exist, it
is generally accepted that this is a set of curves which are locally centered within
the shape [39]. Attractive features of the curve skeleton are its ability to capture
the essence of tubular articulated shapes, such as bodies of living creatures, while

5



I N T RO D U C T I O N

being a very simple data structure. Curve skeletons reduce the dimensionality
of a shape from three to one, while keeping important topology, symmetry, and
(up to a certain extent) geometry information. They are also simple and fast to
compute both for b-reps and volume models [178, 179]. As such, curve skele-
tons have been used in many applications, such as virtual path planning in CT
visualization [203], virtual bronchoscopy [131], virtual colonoscopy [202], shape
matching [173], shape segmentation [12], mesh quality improvement [210], shape
metrology [121], shape modeling [6], and shape animation [16].

Surfce skeletons: Surface skeletons are the second skeleton type for 3D shapes.
Simply put, surface skeletons use the same inscribed ball definition proposed by
Blum for 2D shapes [20], but adapted to use 3D balls. They consist of a complex
set of intersecting curved manifolds with boundaries. Compared to curve skeletons,
surface skeletons have several technical advantages. First, they do admit a uniform,
formal, definition, which can be used next to infer various properties. Secondly,
they fully capture all aspects of a 3D shape, including geometry. As such, they
allow defining a 3D MAT, and thus provide a dual representation of 3D shapes
(something that curve skeletons cannot do).

However, due to their complex structure, surface skeletons are much harder to
compute accurately and efficiently, as compared to curve skeletons. Also, analyz-
ing surface skeletons is more complicated, for the same reason. Yet, recent ad-
vances in skeletonization have shown that it is possible to compute very accurate
surface skeletons of complex shapes (b-reps of millions of polygons and voxel vol-
umes of resolutions up to 10003) in seconds on modern computers [82, 83, 112].
Such skeletons can be then further analyzed to extract a wealth of information
needed for supporting the application types outlined earlier [98]. Recent surveys
in 3D skeletonization, including surface skeletons, are given in [156, 189].

Despite such recent progresses in surface skeleton computation, surface skele-
tons are still much less prominent in applications as compared to curve skeletons.
Still, this does not mean that they do not have such potential. A few use-cases
are present in the literature including shape segmentation [97, 107, 142], image-
based shape reconstruction [82], shape classification [98, 144], and shape mod-
eling [206, 207]. However, the overall number and variety of applications that
surface skeletons enable is far inferior to those supported by curve skeletons.

1.3 R E S E A R C H Q U E S T I O N S

Summarizing the above discussion, we find that surface skeletons have unexplored
potential in supporting 3D shape processing applications, which current state-of-
the-art methods allow their computation as easily, efficiently, and accurately as for
the well-known, and frequently used, curve skeletons.

6



1.4 S T RU C T U R E O F T H I S T H E S I S

As such, we are now able to formulate our main research question:

How can we use surface skeletons of 3D shapes to efficiently and effectively sup-
port a range of shape processing applications?

We next refine this research question into several directions:

Scope: In our investigation, we cannot, of course, cover all possible practical
applications of skeletons listed in Sec. 1.2.3. As such, we have to select a few
high-potential ones. We decide to focus our work on applications in shape seg-
mentation and shape retrieval. This choice is motivated by the large prominence of
these applications in earlier skeletonization literature but also by their high prac-
tical relevance. In particular, this allows us to easily compare the advantages that
our surface skeleton-based approaches will provide with respect to many existing
approaches in the same areas, such as based on curve skeletons;

Representation: As outlined in Sec. 1.2, 3D shapes are mainly represented using
b-reps and voxel models. As such, we choose to investigate the usage of surface
skeletons in applications based on both types of representations. Hence, our work
will feature both mesh-based and voxel-based skeletonization methods, and corre-
sponding new techniques.

Theory vs practice: This thesis has several theoretical contributions: The introduc-
tion of the cut space for both b-rep and voxel representations, with applications in
shape segmentation; the definition of shape similarity and shape retrieval based
on this cut space; and the presentation of a novel surface skeletonization algo-
rithm (for details on all above, see Sec. 1.4). However, being focused on shape
processing applications, our work has a practical nature: For all presented theo-
retical developments, we propose algorithms to compute the respective concepts;
present results of these algorithms on real-world shapes; and compare our results,
both qualitatively and quantitatively with established methods.

1.4 S T RU C T U R E O F T H I S T H E S I S

The structure of this thesis is as follows.

Chapter 2 gives an overview of the fields that our work builds upon. After intro-
ducing skeletonization concepts and definitions, we review the main properties of
3D curve and surface skeletons, and discuss recent skeletonization methods, with
a focus on surface skeletons. This helps deciding which such methods we can use
next and, where the case arises, which limitations such methods have that may im-

7



I N T RO D U C T I O N

pact upon our work. Next, we overview applications of 3D skeletons in the areas
of shape segmentation, shape matching, and shape metrology. This allows us to de-
tect unexplored application areas (for surface skeletons), which we will next target.

Chapter 3 presents our first contribution – the skeleton cut space. The cut space
is a novel way to capture geometric information atop the surface skeleton, which
extends the well-known MAT (Sec. 1.2.3). By enriching the surface skeleton
with such information, we show next how part-based shape segmentation can
be efficiently supported. We compare our segmentation method based on the cut
space with other part-based segmentation methods based on curve skeletons. The
comparison shows the added-value of using the surface skeleton for part-based
segmentation.

Chapter 4 extends the cut space computation and its application to part-based
shape segmentation presented in Chapter 3. First, we propose several refinements
in the actual computation of the cut space, which make it more stable for com-
plex shapes. Secondly, we show how more detailed segment information can be
extracted from this cut space, yielding less oversegmentation but also a better
capture of small details. Next, we show how the cut space can be used for other
applications such as shape editing. Finally, we compare the computational perfor-
mance of our new segmentation method with existing methods.

Chapter 5 demonstrates how the cut space introduced in Chapter 3 can be used
to support a different kind of application – shape retrieval. For this, we extract
a shape descriptor from the cut space histogram introduced in Chapter 3 for seg-
mentation purposes. Next, we propose several distance metrics to compare such
descriptors. Finally, we evaluate the retrieval power of our proposed method on
a comprehensive collection of shapes, and compare the aggregated quality of our
method with known shape retrieval methods.

Chapter 6 changes the focus to mesh-based representations. While Chapters 3-5
show how the skeleton cut space and its application can handle voxel models, we
now aim to show how the same cut space can be adapted to handle mesh models.
This raises a number of non-trivial technical issues, which we next solve. Next,
we extend the part-based segmentation abilities of the cut space introduced in
Chapter 3 to also handle patch-based segmentations, and show how we can gen-
erate hybrid part-patch segmentations – a topic, to our knowledge, not addressed
by most skeleton-based segmentation methods known. We demonstrate the added-
value of the new segmentation method by comparing it with existing part and
patch based methods on a wide collection of real-world 3D shapes.
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1.4 S T RU C T U R E O F T H I S T H E S I S

Chapter 7 presents a novel 3D surface skeletonization method. Based on our
practical insights collected during using existing state-of-the-art skeletonization
methods (Chapters 3-5, we found several limitations of such methods which ad-
versely affect their efficient and effective use in such applications. As such, we
argue that a better skeletonization method is of added value in such (and other)
applications. We present here such a method, which is based on a well-known ef-
ficient framework for 2D and 3D image manipulation, the Image Foresting Trans-
form (IFT) [58]. By leveraging precision and computational efficiency properties
of the IFT, our new skeletonization method can achieve superior performance (in
both above-mentioned directions) as compared to a wide range of state-of-the-art
surface skeletonization methods for voxel models. An additional important con-
tribution is that our method computes 3D multiscale skeletons, for which only a
handful of methods currently exist.

Chapter 8 concludes this thesis. We reflect here on our initial goal (Sec. 1.3) and
discuss how well surface skeletons can support the shape processing application
types we focused on. Additionally, we discuss several potentially valuable direc-
tions for future work.

All chapters that introduce contributions in this thesis (Chapters 3 - 7) corre-
spond to respective publications, as outlined in the preamble of the thesis. This
leads, however, to some unavoidable replications in the introducing sections of
the respective chapters, where related work and definitions are presented. While
this is possible to remove, we have preferred to keep the text of these chapters are
close as possible to the respective publications (leading thus to the aforementioned
replication), to ease tracing back our work to published material. Where additional
material, not present in the respective publications, exists, we include this material
in the corresponding chapters.

9





2R E L AT E D W O R K

As outlined in Chapter 1, our main research question regards the design of inno-
vative 3D shape processing methods using surface skeletons. As such, we review
in this chapter related work to both these topics – skeletonization (Sec. 2.1) and
3D shape processing (Sec. 2.2). We end this chapter with a conclusion (Sec. 2.3)
of how the current state-of-the-art in skeletonization allows us to approach our
research question.

2.1 M E D I A L D E S C R I P T O R S

To proceed, let us first introduce some supporting terminology. Given a shape, its
skeletons, also called medial axis, or more general, medial descriptor, is a thin,
low-dimensional structure centered in the shape that captures both the shape’s ge-
ometry and topology. In digital image processing, skeletons have been introduced
by Blum [20] for binary 2D shapes. Since then, they have been extended in several
directions, such as the dimensionality of the shape they are computed from (from
2D to 3D shapes [65, 175]); the representation method used for both the shape
and its skeleton (from volumetric to boundary and point-cloud representations [82,
112]); and the algorithms used to compute the skeleton (for an extensive review,
see [189]). In parallel with these extensions, the range of applications of skeletons
has grown from simple low-level 2D computer vision tasks to shape segmenta-
tion [146, 169], feature detection [98, 144], shape matching [13, 186], path plan-
ning [66, 170], shape metrology [135, 172], information visualization [51, 212],
and image compression [211].

As such, the skeletonization area has become a wide and complex research field.
To better frame and scope our research question (and work we next perform to
address it), we next present an overview of the main concepts (Sec. 2.1.1 and
algorithms (Sec. 2.1.2) related to skeletonization and also to our research question.
For a wider review of 2D skeletonization, we refer the interested reader to [172].
For an equally wide review of 3D skeletonization, we refer to several surveys in
the area [39, 156, 189].

11
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2.1.1 Definitions

Consider a continuous, compact, shape Ω ⊂ Rn. In practice, n ∈ {2,3}, which
corresponds to the typical 2D and 3D shapes used in computer graphics and related
fields. Let next ∂Ω denote the boundary of the shape.

The Euclidean distance transform DT∂Ω : Ω→ R+ of a shape Ω is defined as

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (2.1)

Here, ‖ ·‖ denotes the Euclidean distance in Rn. As such, the distance transform is
often referred to as the Euclidean Distance Transform (EDT). In this thesis, we will
only consider Euclidean distances, so we will omit the qualification ‘Euclidean’ for
brevity. Intuitively, DT∂Ω(x) gives the shortest distance between any point x of the
embedding space Rn and the closest point of the shape’s boundary. Figure 2.1
shows a simple 2D binary shape and its corresponding distance transform. As
visible, the distance transform values monotonically increase from ∂Ω towards
the shape’s interior. The points where DT∂Ω is locally maximal, also called ridges
of the DT∂Ω [172], are of particular importance, as they will define the skeleton of
Ω.

(a) (b)

x

y

DT∂Ω (x,y)
ridges

x

∂Ω

Figure 2.1: Two-dimensional shape (a) and its distance transform shown via isolines and
color coding (a) and a height plot (b). Image adapted from [189].

A formal definition of the skeleton S∂Ω can be given using the distance trans-
form as follows:

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}. (2.2)

Since the skeleton is defined based on the Euclidean distance ‖·‖, it is also often re-
ferred to as an Euclidean skeleton. In other words, S∂Ω is the locus of points inside

12
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the shape who admit at least two different closest-points f1 and f2 on ∂Ω. These
closest points are also called feature points of x [148]. Definition 2.2 is equivalent
to Blum’s original definition of the skeleton as the locus of centers of maximally
inscribed disks in Ω [20]. The feature points are then the contact points of such
maximally inscribed disks with the shape boundary ∂Ω [71].

The contact points define the so-called feature transform FT∂Ω : Ω→P(∂Ω)

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖, (2.3)

where P denotes the power set.
Several other equivalent definitions to Eqn. 2.2 exist. For instance, Kimia et

al. propose a so-called grassfire analogy: Imagine a fire front being started at
the boundary ∂Ω, which next advances inwards in Ω with isotropic speed. The
locations where fire fronts coming from different parts of the boundary meet, de-
fine the skeleton [91]. This definition leads to direct, and simple, ways of com-
puting the skeleton for 2D shapes [198], using e.g. the Fast Marching Method
(FMM) [165] to propagate the fire front. Alternatively, the skeleton can be defined
as the points in Ω where the gradient of the distance transform, ∇DT∂Ω, has a non-
zero divergence [175], or looking for singular points of the higher-order moments
of DT∂Ω [153]. Both above ways are essentially detectors for the aforementioned
ridges of the distance transform graph. Finally, Giblin et al. propose to define the
so-called symmetry set of a shape Ω, defined as the locus of centers of balls which
are bi-tangent to the boundary ∂Ω [72]. The skeleton can be seen as a subset of
the symmetry set, where only inscribed balls in Ω are considered [71]. This defini-
tion is suggestive to the property of skeletons of capturing the local symmetry of
the object boundary by means of lower-dimensional structures. Finally, skeletons
can be defined as subsets of points of the edges of the Voronoi diagram of a (typi-
cally dense) sampling of the boundary ∂Ω [3, 124]. This definition is based on the
Voronoi diagram’s property that places an edge at equal distance from two sites.

2.1.2 Skeletonization methods

Skeletonization methods are algorithms that compute typically approximate ver-
sions of the skeleton S∂Ω implied by Eqn. 2.2 or any equivalent skeleton definition,
as those listed in Sec. 2.1.1. Understanding the different types of skeletonization
algorithms that exist in the literature is essential for an efficient and effective appli-
cation thereof to further problems such as shape processing. As such, we present
next a (necessarily brief) review of the main types of skeletonization methods. For
a recent state-of-the-art survey on 3D skeletonization, we refer to [189].

To achieve such a review, several axes need first to be defined to divide the
search space of existing methods. We use next a taxonomy based on the following

13
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axes: dimensionality of the embedding space Rm, dimensionality of the skeleton,
and type of sampling used to represent both the shape and its skeleton.

2.1.2.1 2D skeletons

Skeletons of 2D shapes can be computed by directly applying the various defi-
nitions listed in Sec. 2.1.1 to a sampled representation of Ω. Two main types of
techniques exist here, based on the representation: Voronoi-based techniques rep-
resent Ω, or more precisely its boundary ∂Ω, by piecewise-linear interpolation,
i.e., as a (closed) polyline. Next, the skeleton can be computed as a subset of the
vertex-set of this polyline, specifically the Voronoi edges which are included in
Ω [9, 124]. It has been shown that the thus computed 2D skeleton converges to the
actual medial axis when the sampling of ∂Ω becomes infinitely dense.

A more popular representation uses a nearest-neighbor sampling of R2, i.e., rep-
resents 2D shapes as digital binary pixel images over Z2, where one color denotes
foreground (points in Ω) and the other color denotes background (points in R2 \Ω,
also denoted as Ω). 2D image-based skeletonization methods are currently the
most used in practice. These can be further classified into field-based methods
and thinning methods. Field-based methods essentially compute a (typically local)
detector function over Ω which indicates the presence of a skeletal pixel at the
current location [53, 153, 175, 198]. Thinning methods simulate the grassfire evo-
lution (Sec. 2.1.1) by iteratively removing pixels from ∂Ω, typically in increasing
distance order to the initial boundary [18, 172]. Removal stops when no further
pixel can be pruned without disconnecting the skeleton. In general, distance-field
methods produce smoother results and can handle shapes having a higher amount
of boundary noise; in contrast, thinning methods are simpler to implement and, in
general, faster.

Figure 2.2 shows the 2D skeleton of a leaf shape, computed by two meth-
ods: the Augmented Fast Marching Method (AFMM) [198] and the advection-
based method in [83]. The color-coding of the computed skeletons outlines another
very important skeletonization feature – skeleton simplification – which deserves
further attention also in the context of our work. Simply put, skeletonization is
not a continuous operation: Small changes in the input shape boundary ∂Ω can
yield disproportionately large change in S∂Ω, by creating so-called spurios liga-
ture branches that correspond to small (convex) perturbations of ∂Ω [189]. Such
perturbations may be side-effects of the sampling process used to create discrete
(polygonal or pixel) representations of Ω, so they are typically only hindering
further analyses. To eliminate such problems, one usually defines a so-called im-
portance metric

ρ : S∂Ω→ R+ (2.4)
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Figure 2.2: Skeletons of a 2D shape computed by two different methods (AFMM [198]
and [83])). From left to right, skeletons are progressively simplified based on
an importance metric. Image from [83].
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so that all spurious branches receive a low importance value. The clean, also called
pruned, skeleton can then be easily computed by upper-thresholding ρ – a process
also known as skeleton regularization [189].

Many skeleton importance metrics have been proposed. Following Reniers et al.,
we distinguish between local and global metrics. Local metrics ρ(x) typically use
only information situated in a small vicinity of the skeleton point x. Such metrics
are the distance-to-boundary or angle between feature vectors [3, 65, 175]. How-
ever simple and fast to compute, local metrics cannot distinguish between locally
similar, but globally different, shape configurations, so their thresholding can inad-
vertently remove important skeleton points, which can ultimately disconnect the
skeleton, changing its topology (see e.g. [145], Fig. 1). Global measures consider
a larger vicinity of x ∈ S∂Ω when computing ρ(x). We are aware of essentially
a single such metric, called the collapsed-boundary metric [53, 83, 124, 198]. In
2D, this metric assigns to a skeletal point x the length of the shortest boundary seg-
ment along ∂Ω delimited by the two feature points x1 and x2 of x. As such, skeletal
points corresponding to noise (small scale) elements on ∂Ω will have low impor-
tance, whereas points corresponding to important shape parts will have a large im-
portance. Figure 2.2 shows two global importance metrics computed respectively
by the AFMM [198] and advection-based [83] methods, by color coding (blue=low
importance, red=high importance). As visible, more central skeleton points have a
higher importance. Hence, by progressively upper-thresholding ρ , we can obtain
progressively simplified skeletons, as the sequences of images in the same row
show. An important additional property of the collapsed boundary metric is that
it is monotonically increasing from the skeleton-branch tips to the skeleton center.
As such, thresholding this metric always never introduces spurious disconnections
in the skeleton. As we shall see in Sec. 2.1.2.2, similar local and global importance
metrics can also be defined for 3D skeletons.

Given that our thesis’ focus is on 3D shape processing, we conclude here our
review of 2D skeletonization methods. As we shall see in the next section, sev-
eral 3D skeletonization methods inherit properties and approaches from the 2D
methods outlined above.

2.1.2.2 3D skeletons

Skeletons of 3D shapes know a slightly more complex taxonomy than 2D skele-
tons. We distinguish here between so-called 3D surface skeletons and 3D curve
skeletons. Both skeleton types and their corresponding computation methods are
overviewed next.

Surface skeletons:
Surface skeletons, also called medial surfaces, are defined following Eqn. 2.2 for
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shapes Ω⊂R3. They consist of a set of intersecting manifold surfaces with bound-
aries – analogously to 2D skeleton which consist of a set of intersecting curves of
finite length. The skeletal manifolds meet, or intersect, along a set of so-called Y-
intersection curves [28, 42, 102]. These are skeletal points that admit three feature
points on ∂Ω. For a more detailed characterization of the skeletal points based on
their number and distribution of feature points, we refer to [71]. Surface skeletons
are also known as 3D medial surfaces.

While the formal definition of surface skeletons is simple (Eqn. 2.2), efficiently
and robustly computing such skeletons from complex, real-world, 3D shapes is
still an open problem. The difficulties are due to the much more complex structure
of such skeletons; the larger variability of noise types in 3D; and the larger size of
sampled datasets required to accurately describe 3D shapes.

Surface skeletonization methods can be further classified based on the shape rep-
resentation method used. As for 2D skeletons, we distinguish here between bound-
ary representations (where shapes Ω are represented by a sampled description of
their boundary ∂Ω, typically as a 3D polygon mesh or 3D oriented point cloud);
and volumetric representations (where shapes Ω are represented by a binary voxel
volume in Z3.

Volumetric surface skeletonization methods are the oldest class. Methods in this
class proceed much as their 2D image counterparts, i.e., by using the distance trans-
form analysis [49, 69, 92, 148, 153, 175]. Such methods can be extended, just as
their 2D counterparts, by the computation of a global importance metric, which
allows a continuous pruning of the surface skeleton [83, 145]. Other methods in-
clude 3D thinning methods [7, 17, 128, 128], which follow the idea of recursively
removing voxels from ∂Ω in a typically distance-to-boundary-driven order. The
main advantage of volumetric surface skeletonization methods is their relative im-
plementation simplicity, which requires only a single type of data structure – a uni-
formly sampled field over Z3. However, such methods require considerably more
memory than boundary-representation methods (discussed next) – typically O(N3)
instead of O(N2) samples for a shape sampled with N samples on each Cartesian
3D axis.

Boundary-representation surface skeletonization methods, also known as mesh
skeletonization methods, use piecewise-linear (polygonal) representation for both
the shape boundary ∂Ω and the skeleton S∂Ω. Moreover, sample positions can be
located anywhere in R3 rather than on a fixed Z3 grid as volumetric methods do.
This allows both a higher precision in approximating the desired shapes, and also
more freedom in non-uniformly distributing sample points to achieve this approx-
imation, e.g., placing more samples where the shape has a higher curvature or spa-
tial variation. As such, these methods are considerably more memory-efficient than
volumetric methods – for the same available memory, they can approximate more
complex shapes or approximate the same shapes more accurately. Finally, this rep-
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resentation allows capturing the ‘infinitesimally thin’ nature of surface skeletons
more faithfully than a voxel representation, where the surface skeleton will always
have a finite thickness (equal to the voxel size).

Boundary-representation surface skeletonization methods are relatively more re-
cent, and less numerous, than volumetric surface skeletonization methods. Notable
methods in this class are the so-called ball shrinking methods [82, 112]. Such meth-
ods explicitly compute the locus of maximally inscribed balls in ∂Ω, creating one
ball per boundary tangent at each surface sample point f1, and finding the sec-
ond point of tangency f2 by iterative optimization. Conceptually, such methods are
quite simple, and admit trivial parallelization. To date, these methods can deliver
the highest-resolution 3D surface skeletons. As shown in [82], such skeletons can
be used to reconstruct very faithful approximations of complex 3D shapes, up to a
level that is visually undistinguishable from polygon-based reconstructions. Other
methods related to this class are the so-called union-of-balls methods [15, 73]. One
important deficit of ball-shrinking methods is that they typically yield a point cloud
approximation of S∂Ω, which has only limited usability for further applications. Re-
constructing the piecewise linear (polygonal) skeletal manifolds from such a point
cloud is quite challenging, given that they can have an arbitrary large number of Y
intersection curves [15, 81, 82, 96]. A recent survey of surface-skeleton reconstruc-
tion methods from skeletal point clouds, an operation also called structuration,
outlines these difficulty in detail [43]. Another issue of boundary-representation
methods is that they cannot directly store the distance transform DT∂Ω (Eqn. 2.2)
for all points in Ω. Indeed, to do this, we need a volumetric sampling of Ω. This
limits the types of skeleton detectors we can use – for instance, it is much harder
to use distance-field-based detectors in a boundary-representation setting.

A different way of computing surface skeletons from boundary (mesh) repre-
sentations uses Voronoi diagrams. This essentially extends the ideas shown earlier
for the computation of 2D skeletons, e.g. in [9, 124]. The key observation is that,
for 3D shapes, Voronoi diagram vertices can be filtered into the more restrictive
Voronoi poles, which yield a sampling of S∂Ω [3, 46]. However, implementing such
methods, including their underlying 3D Voronoi diagram algorithms, so that they
robustly and efficiently handle any kind of non-uniformly-sampled 3D surface, is
highly challenging. Even refined implementations of Voronoi diagrams, such as
those provided in [3, 27], have difficulties to handle such 3D surfaces. Yet, the
advantage of these methods is that they directly produce high-quality polygonal
representations of the medial surface, without any of the aforementioned difficul-
ties of the ball-shrinking methods.

Figure 2.3 shows several examples of 3D surface skeletons computed with var-
ious methods, both volumetric and mesh-based. As visible, surface skeletons for
complex shapes have an intricate structure. Moreover, we see the large amount
of small-scale details on the boundary of surface skeletons created by small-scale

18



2.1 M E D I A L D E S C R I P T O R S

Ju et al.

(BV)
Roerdink et al.

(V)
Siddiqi et al.

(V)
Reniers et al.

(V)
Jalba et al.

(advection)(V)
Jalba et al. 

(GPU)(B)

di
no

dr
ag

on
fe

rt
ili

ty
ro

ck
er

ar
m

ca
st

in
g

ho
rs

e
el

ep
ha

nt
fr

og

Input shapes

Fi
gu

re
2.

3:
E

xa
m

pl
es

of
3D

su
rf

ac
e

sk
el

et
on

iz
at

io
n

m
et

ho
ds

:R
en

ie
rs

et
al

.[
14

5]
;S

id
di

qi
et

al
.[

17
5]

;R
oe

rd
in

k
et

al
.[

14
8]

;J
u

et
al

.[
86

];
Ja

lb
a

et
al

.[
82

];
an

d
Ja

lb
a

et
al

.[
84

].
M

et
ho

ds
ar

e
vo

lu
m

et
ri

c
(V

),
bo

un
da

ry
-b

as
ed

(B
),

or
m

ix
ed

vo
lu

m
et

ri
c

an
d

bo
un

da
ry

-
ba

se
d

(B
V

).
Im

ag
es

ad
ap

te
d

fr
om

[1
89

].

19



R E L AT E D W O R K

details on the shape boundary.

Curve skeletons:
Besides surface skeletons, 3D shapes admit a second type of skeleton: curve skele-
tons. We denote the curve skeleton of a shape Ω next by CS∂Ω. Curve skeletons
are one-dimensional (curvilinear) structures embedded in R3, and locally centered
within ∂Ω. Numerous curve skeletonization methods have been proposed in the lit-
erature, using both volumetric techniques [179] and boundary-representation tech-
niques [178], their number being considerably higher than the number of surface
skeletonization methods in existence. This is explained by two factors. First, com-
puting 3D curve skeletons is considerably simpler than computing 3D surface
skeletons, due to the much simpler structure and topology of the former. Sec-
ondly, mapping the properties of curve skeletons to application tasks [39], such
as segmentation, shape matching, and surface processing is considerably easier
than mapping properties of the more complex surface skeletons to these or other
applications.

However, curve skeletons also have important limitations, as follows.
First and foremost, there is still no universally accepted, formal, definition of

curve skeletons – many ways of defining a 3D curve which is ‘locally centered’
within an arbitrary 3D shape exist [189]. Only few papers propose a formal def-
inition. For instance, several authors define CS∂Ω as the locus of points x ∈ S∂Ω

which admit two different, equal-length, shortest paths γ1 and γ2 on ∂Ω between
the feature points f1 and f2 of x [45, 82, 145]. However, it is not formally shown
what this definition would imply in terms of ‘local centrality’ of CS∂Ω. Another
approach is to define the curve skeleton as the locus of points x ∈ S∂Ω situated at
equal distance from the boundary of the surface skeleton [81]. This boundary can
be defined as

∂S∂Ω = {x ∈ S∂Ω|type(x) = A3}. (2.5)

Here, type() denotes Giblin’s [71] classification of skeletal points into A1
2 points

(located inside the manifolds of S∂Ω); A1
k points on intersection curves of these

manifolds, also called Y-intersection curves [28, 42, 102]; and A3 points, located
on the skeleton boundary S∂Ω, respectively. Giblin’s classification is based on the
so-called order of contact of a maximally inscribed ball centered at x with ∂Ω: A1

2
points have exactly two contact points; A1

k points have exactly k contact points;
and A3 points have an infinity of contact points – more precisely, the contact set
is a circle sector or spherical segment. However mathematically crisp, computing
this skeletal point classification is delicate for sampled (mesh or voxel) shapes,
due to the sparsity of sampling of ∂Ω and the fact that a voxel model cannot cap-
ture the exact Euclidean distances between ∂Ω and S∂Ω. While several heuristics
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are proposed to this end [42, 98, 102], computing the skeletal point classification,
and thus accurately detecting the skeletal boundary, is still very delicate. We will
discuss several ways to alleviate such issues in Chapter 3.

The lack of a formal definition of curve skeletons makes it hard, if not conceptu-
ally impossible, to verify that a given method computes the ‘right’ curve skeleton
(or a suitable approximation thereof), since we do not have a ground truth version
of this curve skeleton. This issue is solved in practice by assessing the computed
curve skeletons by means of structural properties which can be formally assessed,
such as the fact they have to be composed of a set of 1D curves, the fact that they
have to match the topology of the input shape Ω, and the fact that they have to
be included in the surface skeleton S∂Ω (the last inclusion property can only be
used when we have a way to compute the surface skeleton). The ill defined local
centeredness property is assessed either visually (in a qualitative manner) [178],
or by a voting process, i.e. computing the Haussdorff distance between the curve
skeleton to assess and a set of curve skeletons computed by generally accepted
methods (in a quantitative manner) [84, 179].

Secondly, curve skeletons capture less information of a 3D shape than the coun-
terpart surface skeletons. Indeed, as noted earlier, the surface skeleton encodes
the full definition of a 3D shape. More formally, the pair (S∂Ω,DT∂Ω|S∂Ω

), also
called the Medial Axis Transform (MAT∂Ω), is a dual representation of ∂Ω [189].
The pair (x ∈ S∂Ω,DT∂Ω(DT∂Ω)) is also called a medial atom. Indeed, we can
construct the MAT from ∂Ω, as described above; and we can reconstruct Ω from
the MAT as the union of balls of centers x ∈ S∂Ω having as radii DT∂Ω(x) – the
so-called union-of-balls method [26, 73]. Curve skeletons do not permit such a re-
construction, except in the case of objects having everywhere a perfectly circular
cross-section (tubular shapes created by extruding a set of curves). As such, curve
skeletons are mainly used to capture the topology of tubular 3D shapes (e.g., their
number of tunnels and protuberations). As we shall see in Sec. 2.2, this supports
applications such as shape matching and shape segmentation for mainly rounded,
organic, articulated shapes, but does not allow a wider treatment of either more
general shapes or more general shape-processing tasks.

Figure 2.4 shows several examples of 3D curve skeletons computed with vari-
ous methods, both volumetric and mesh-based. Compared to the surface skeletons
of the corresponding shapes (Fig. 2.3, we see indeed that the curve skeletons have
a much simpler structure. However, we also see that the variability of curve skele-
tons for the same shape, computed by different methods, is much higher than the
variability of the corresponding surface skeletons. This is a direct consequence
of the variability in curve-skeleton definitions which has been outlined earlier. Fi-
nally, as for surface skeletons, we see that curve skeletons also have a large amount
of spurious branches, created by small-scale perturbations of the shape boundary
∂Ω.
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2.1.2.3 Skeletonization challenges

As outlined in Chapter 1, our goal is to exploit surface skeletonization methods for
applications in 3D shape processing. Clearly, the success of this endeavor depends
on two factors:

• the suitability of surface skeletons for the types of applications considered;

• the ease of computing high-quality surface skeletons themselves.

The first factor is a conceptual one, which forms the essence of the work described
next in this thesis. The second factor, however, is not, strictly speaking, part of our
quest: Indeed, to be able to see how surface skeletons can support shape processing,
we need in the first place to avail of methods that allow us to easily and efficiently
compute good-quality surface skeletons. If such methods are not appropriately
chosen, then it is hard to test our hypothesis (that surface skeletons can indeed
support shape processing), since the skeletons we work with are suboptimal. We
overview next several quality properties of surface skeletons and skeletonization
methods that are relevant for this question.

The quality of skeletons and skeletonization methods are subtly interrelated
aspects. Indeed, the quality of a computed skeleton S∂Ω depends, first and fore-
most, on the exact definition used for it. As mentioned earlier in Sec. 2.1.1, sev-
eral largely equivalent definitions of surface skeletons exist. However, depending
on how such definitions are exactly transposed into algorithms, differences in the
resulting skeletons can follow. Separately, the quality of a computed skeleton de-
pends on the various approximations used in the respective algorithms, starting
with the representation model used for 3D shapes (volumetric or boundary-based).

Several papers treat the topics of skeleton(ization) quality, most notably being
[39, 156, 178, 179, 189]. Overall, the following quality aspects are largely agreed
upon as being relevant for surface skeletons (most such aspects are also relevant
for curve skeletons; however, we exclude these from our discussion next, since we
are interested in surface skeletons).

1. Homotopy: Following their definition (Eqn. 2.2), surface skeletons should
have the same homotopy as the shapes they come from. This implies that
S∂Ω has to have the same number of connected components, voids (cavi-
ties), and tunnels (loops) as Ω. This property is important for applications
where we use the skeleton to reason about the shape’s topology. Homotopy
preserving can be problematic for both voxel and boundary-based represen-
tations when a too low sampling rate is used.

2. Invariance: Skeletons should be invariant to isometric transforms T applied
to the input shape Ω. More precisely, the transform and the skeletonization

23



R E L AT E D W O R K

operation should be commutative, i.e., MATT (∂Ω) = T (MAT∂Ω). This prop-
erty is important for virtually all applications using skeletons, as it allows
one to flexibly define a shape with respect to its scale, translation, and ro-
tation in the embedding space R3. In particular, this is important for shape
matching applications, where one typically does not care about such trans-
formations [186]. Boundary-representation skeletons are in general invariant
with respect to such transformations, since they use a representation based
on points x ∈ R3, which is accurate up to floating-point precision. Volumet-
ric skeletons are in general affected by such transformations, since they use
a fixed-grid representation, typically aligned with the R3 axes. Indeed, it is
in general impossible to have a binary (voxel) shape stay identical with re-
spect to e.g. rotations. As such, the best volumetric representations can do
is to minimize the effects of transformations to small ranges, typically one
voxel.

3. Thinness: By definition, surface skeletons are infinitesimally thin objects,
as they are manifolds (surfaces) embedded in R3. As such, skeletonization
methods should try to compute skeletons which are as thin as the repre-
sentation method used allows. For boundary-based representations, this is
easy, since surface skeletons are here polygonal meshes [15, 73, 82, 112].
Volumetric representations have several issues here. Indeed, the best such
representations can achieve is to construct a one-voxel-thin skeleton. This
creates problems in areas where several skeletal manifolds meet, where it
is hard to precisely say what one-voxel-thickness means. The problem is
solved typically by applying various types of morphological (thinning) fil-
ters as postprocessing tools on the computed surface skeletons, to remove
possibly spurious voxels from the skeleton [7]. Such filters propose differ-
ent heuristics on how to locally define one-voxel-thickness.

4. Centeredness: By definition, every point x of a surface skeleton has to be
the center of a maximally inscribed ball in ∂Ω (Eqn. 2.2). However, enforc-
ing this property is not trivial, given that we use a sampled representation
of ∂Ω. Boundary-based methods fare relatively well here: They usually en-
force centeredness by testing the distance of skeletal points x to all sample
vertices of a point-cloud representation of ∂Ω [82, 112]. Formally, this al-
lows a very accurate positioning of x with respect to a subset of ∂Ω. Indeed,
one does not usually consider here the piecewise-linear reconstruction of
∂Ω, i.e., one does not verify that the skeletal balls are inscribed with respect
to the polygons that form ∂Ω. This considerably simplifies the implementa-
tion of the skeletonization, but creates MATs whose radii can be larger than
the true ones. A simple solution for this issue is to use a very dense (and
uniform) sampling of ∂Ω. However, this increases computational costs, as
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such skeletons can then easily have hundreds of thousands or even millions
of sample points, even for relatively simple input shapes [82].

The centeredness problem is even more complicated for volumetric repre-
sentations. Indeed, the fixed voxel grid does not usually allow finding voxels
which are exactly at equal distances from two different voxels on the bound-
ary of a digital shape. The problem is illustrated in Fig. 2.5 for a simple
axis-aligned 2D rectangular shape represented on a pixel grid (the same is-
sues occur for 3D voxel shapes). If the rectangle is of even height, there are
no pixels on the grid at equal distance from both the top and bottom edges.
As such, the correct skeleton (shown in th e left image) cannot be approx-
imated well by the digital skeleton (shown in the right image): The digital
skeleton will either have a two-pixel-thickness along its central branch (gray
pixels in Fig. 2.5), or fully miss all pixels on this branch.

computed skeleton pixels missed skeleton pixels
10

 pi
xe

ls

Figure 2.5: Centeredness problems digital skeletons. Image taken from [199].

The problem translates further in the fact that we cannot satisfy the homo-
topy, thinness, and centeredness properties on a volumetric grid. As such,
the existing solutions propose various trade-offs of the above properties. For
instance, one can compute an approximate thick skeleton, by relaxing the
strict distance-equality condition ‖x− f1‖= ‖x− f2‖ in Eqn. 2.2, e.g. intro-
ducing a small tolerance of around the size of one voxel [145]. This method
has been originally proposed for 2D shapes and their distance and feature
transforms [139]. This creates a thick, but homotopic and centered skeleton.
Next, this skeleton can be pruned to become one-voxel-thick and still con-
nected, but necessarily not perfectly centered [7].

Centeredness issues exist also for the computation of the feature transform
FT∂Ω (Eqn. 2.3). If we apply this definition on a voxel grid representation,
we will only find a subset of points of the true FT∂Ω. In turn, this can create
problems when we need the actual number (and/or position) of these feature
points to reason about the skeleton, such as when we want to compute a
global importance metric (Eqn. 2.4). A solution to this problem follows the
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same tolerance idea mentioned earlier – we compute a so-called Extended
Feature Transform (EFT) by relaxing the strict ‘closest point’ condition in
Eqn. 2.3 by a small tolerance of around one voxel. However, the impact of
this tolerance is significantly higher for feature transforms than for comput-
ing skeletons, as it can create a very large number of irrelevant feature points.
Various heuristics are proposed to balance between the number of captured
feature points and the used tolerance [145]. We will investigate this issue
further in Chapter 3, where we will propose our own EFT.

5. Smoothness: The manifolds with boundaries that constitute a surface skele-
ton are known to be piecewise second-order continuous C 2 [134, 172].
Hence, the skeletons computed from approximate (volumetric or boundary-
based) representations should obey this property as well as the representa-
tion allows it. Smoothness is, in theory, important for applications which
assess skeletal manifold differential properties, such as curvature. However,
we are not aware of such applications. More practically, smoothness is im-
portant for getting a good insight when visualizing the extracted skeletons.
For boundary-based representations, visual smoothness can be achieved
relatively easily by e.g. using a fine sampling of the skeleton, followed by
classical normal interpolation and Gouraud or Phong shading [15, 81]. For
volumetric representations, this can be done by using splat-based techniques
to render the extracted voxel skeleton [84]. We will use the latter type of
technique in our applications in the following chapters.

6. Detail resolution and regularization: The detail resolution property is re-
lated to the fact that both shapes and their skeletons are discrete (sampled)
objects. As such, they cannot capture all details of the original continuous
shapes and skeletons they aim to represent. A good-detail resolution method
is defined as a method that manages to capture details (of the shape and
skeleton) in a controlled manner; that is, the user should be able to spec-
ify the scale and/or type of details that should be captured, and the method
should provide parameters that can be set for this to be achieved. This prop-
erty is also known as regularization, as it is often used to eliminate small-
scale noise from the skeleton. While detail resolution and regularization
are sometimes seen as distinct properties [189], we prefer to consider them
jointly, since it is hard to formally distinguish between noise and small-scale
details.

As explained earlier for boundary-based methods, using a denser sampling
of ∂Ω typically creates a denser surface skeleton; within certain conditions,
this sampled skeleton converges to the true continuous skeleton as the sam-
pling density increases [3]. However, obtaining a dense sampling on the so-
called ligature branches, that correspond to small convex bumps on ∂Ω, is
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technically challenging [82]. This issue manifests itself also for volumetric
skeletons: While the entire space in Ω is densely and regularly sampled, this
does not mean that increasing the sampling rate (resolution) will automati-
cally make the computed skeleton converge to the true continuous skeleton.
Indeed, consider the issue of the axis-aligned 2D rectangle shape in Fig. 2.5
discussed earlier: We can increase the grid resolution as much as desired,
this will not capture the central skeletal branch if the shape’s height is still
an even number of pixels.

curve skeleton CS∂Ω

surface skeleton S∂Ω

input surface ∂Ω

object center C∂Ω

low ρ high ρ

boundary

point x

Figure 2.6: Defining 3D skeleton importance following a boundary-collapse principle.
|mage adapted from [84].

As mentioned, regularization is a subset property of detail-resolution, which
is concerned with providing means to allow one to control how the produced
skeleton is influenced by small-scale details present on the input boundary
∂Ω. The by far most important aspect of regularization is eliminating spu-
rious skeleton branches that are caused by small-scale details on ∂Ω. This
serves both eliminating branches which are caused by sampling noise, and
also eliminating branches which are caused by ‘true’ shape details, which
are however irrelevant for the application at hand. Regularization methods
proposed for 2D skeletons (Sec. 2.1.2.1) have also been extended to 3D
skeletons. Local regularization methods are largely identical to their 2D
counterparts, i.e., use local properties such as the distance-to-boundary, an-
gle of feature vectors, or divergence of the distance-transform gradient to
eliminate spurious skeleton points [65, 148, 153, 175, 184]. These methods
have the same limitations as their 2D counterparts, i.e., they cannot distin-
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guish between a locally identical but globally different skeletal configura-
tion. Global regularization methods largely solve this issue. As in 2D, all
such metrics that we are aware of use a ‘collapsed boundary’ metric to assess
how important a skeleton point is. Intuitively, this is equivalent to imagining
a transport (advection) field that moves boundary points x∈ ∂Ω into the sur-
face skeleton following some mass-conservation principle. Skeletal points
which ‘collect’ more boundary points are deemed to be more important.
Figure 2.6 illustrates the idea: Imagine a transport vector field v : Ω→ R3.
Points x on the shape surface ∂Ω are carried by this field until they hit the
surface skeleton S∂Ω. Next, the vector field x carries these points towards
the curve skeleton CS∂Ω which, as outlined in Sec. 2.1.2.2, is typically seen
as a part of the surface skeleton. Finally, after the points reach CS∂Ω, they
are carried along the curve skeleton until they all collapse in a single point,
denoted as the center of the object C∂Ω (this last collapse step makes sense
only for genus 0 object whose surface and curve skeletons have a tree struc-
ture, i.e., no loops). Given this advection process, the importance ρ(x) of a
(curve or suface) skeleton point can be defined as the amount of boundary
points that ‘flow’ through x.
Several methods exist that follow (more or less closely) the above boundary
collapse principle to define global skeletal importance metrics. The first we
know of was proposed by Reniers et al., who define ρ(x∈ S∂Ω to be equal to
the length of the shortest geodesic path γ ⊂ ∂Ω that connects the two feature
points x1 and x2 of x [145]. Note that such geodesic paths were also used ear-
lier by Dey and Sun to define curve skeletons, but not to compute importance
metrics [45]. Both Reniers et al. and Dey and Sun use volumetric representa-
tions to compute such geodesics, by means of shortest-path algorithms such
as Dijkstra’s method [47], whose lengths are accurately computed using var-
ious digital estimators [93]. The metric of Reniers et al. has been recently
extended to boundary-representation (mesh) skeletons [82]. For this, one
needs to design and implement efficient and accurate shortest-path tracing
algorithms on 3D mesh surfaces, which makes such methods quite complex.
A final result in this area was proposed by Jalba et al. [84] for volumetric
skeletons, who compute ρ and v by solving a system of partial differential
equations (PDEs) that simulate a Navier-Stokes like advection of mass from
∂Ω in the field ∇DT∂Ω. This method elegantly generalizes the 2D AFMM
importance metric to both 3D surfaces and curve skeletons, and is also much
faster than reniers08, as no expensive shortest-path computations on ∂Ω are
needed. All above boundary-collapse methods monotonically increase from
the skeleton boundary ∂§∂Ω to its center. In turn, this means that threshold-
ing them by increasing values delivers increasingly simple, but connected,
skeletons. As such, skeletons produced by such methods are sometimes also

28



2.1 M E D I A L D E S C R I P T O R S

called multiscale skeletons – a term first used in [53]. In Chapter 7, we
present a novel method to compute such geodesic paths in an efficient way.

Overall, having a good regularization method is essential to obtaining clean
surface skeletons, which can be next used in applications. In our following
work, we shall use both the volumetric-based boundary collapse metric [84]
and the fast mesh-based shortest-path metric [82] to regularize 3D surface
skeletons. Moreover, in Chapter 7, we shall propose a new way to compute
such a boundary collapse regularization metric, which combines simplicity
and computational efficiency.

7. Reconstruction: As outlined in Sec. 2.1.2.2, the MAT of a 3D shape is a
dual representation, i.e., it allows one to reconstruct the shape Ω. This is
important for the following reason: It formally tells us that no information
is lost when using the MAT to analyze a given shape, as compared to ana-
lyzing the shape directly. Hence, if designing shape analysis or shape pro-
cessing operations using the MAT is easier than doing these operations on
the shape itself, this approach should not have limitations as compared to a
direct shape analysis.

surface garbing surface surfacegarbing garbing

Figure 2.7: Reconstructing a shape from its surface skeleton using texture splatting. Top
row shows a classical surface (polygonal) rendering. Middle row shows the
splatting-based reconstruction from the surface skeleton. Bottom row shows
details. Image taken from [82].
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One well-known such an MAT-based shape processing operation is recon-
structing the shape from its MAT, an operation also known under the name
of garbing [82]. This can be done by simply computing the union-of-balls
of centers x∈ S∂Ω having as radii DT∂Ω(x). Doing this by brute force ‘draw-
ing’ of 3D balls can be expensive for both volumetric and boundary-based
representations. As such, various methods have been proposed to accelerate
the reconstruction. In volumetric space, one can compute the distance trans-
form DTS of the skeleton points x ∈ S∂Ω, by using e.g. the Fast Marching
Method [165] to propagate an inflating front from S∂Ω outwards, and stop
the propagation of each point y of this front when DTS(y) = DT∂Ω(x) [153].
The cost of this method is O(N) for a shape Ω of N voxels. For boundary-
based methods, a view of the shape Ω can be reconstructed from its point-
cloud surface skeleton by splatting a radial depth billboard texture centered
at every skeletal point x, scaled to DT∂Ω(x). Given that the texture drawing is
highly parallelized by the graphics card, this method runs in near-real-time
even for skeletons having hundreds of thousands of points [82]. Figure 2.7
illustrates this method. As visible, splatting-based reconstruction can gener-
ate views of the input shape which are practically indistinguishable from a
classical polygonal rendering of the surface ∂Ω. However, a disavantage of
this method as compared to volumetric reconstruction is that it only creates
views of the 3D shape.

Reconstruction from the skeleton is strongly connected to skeleton regular-
ization. Indeed, by using a (slightly) regularized skeleton in the reconstruc-
tion, one can obtain a shape on whose surface small-scale noise (and details)
have been removed. More formally, all such details are replaced in the recon-
struction by spherical segments. This offers an effective way of smoothing,
or filtering, noise on 3D surfaces. We detail this topic further in Sec. 2.2.

8. Scalability and ease of use: The final properties – scalability and ease of
use – that we discuss here relate to skeletonization methods rather than to
skeletons themselves. Scalability relates to the computational cost required
to compute surface skeletons of 3D shapes. This cost is a function of the
shape’s sampling resolution, and can be expressed in memory requirements,
time needed for the computation, or a mix of both.

Concerning memory, a first salient observation is that boundary-based meth-
ods are substantially more cost-efficient than volumetric methods. Indeed,
for a given shape, having roughly N samples along any spatial axis, one
needs about O(N2) samples (vertices) to represent ∂Ω as a mesh, and about
O(N3) samples (voxels) to represent Ω as a binary volume. For large val-
ues of N, the costs of volumetric representation can become very high. For
example, a volumetrically sampled binary shape Ω at resolution 10243, en-
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coded with one byte per voxel, requires 1 GB RAM. An equivalent mesh
describing ∂Ω, which has roughly 1M triangles, would need about 24 MB
RAM.

Concerning speed, however, the conclusions are more complex. Indeed, the
speed of a skeletonization algorithm depends mainly on the type of algo-
rithm, and much less on whether it uses a volumetric or mesh representation.
For instance, the regularization methods presented in Reniers et al. [145]
and Jalba et al. [82] are quite similar. However, the main reason why the
latter method is faster than the former one is not the fact it uses a boundary
representation, but the high parallelization achieved on the GPU. Another ex-
ample is given by comparing the methods of Reniers et al. [145] and Jalba et
al. [84]. While both methods are volumetric, the latter is considerably faster
(over one order of magnitude) than the former. The main reason for this is
the different approach taken for computing the boundary-collapse regular-
ization metric.

Besides raw performance, however, one has to consider also the ease of
use of the underlying methods. Apart from method-specific implementation
details, volumetric methods are in general much easier to use (and extend)
than mesh-based methods. As already explained, this is due to the much
simpler data structures volumetric methods use – essentially just a number
of voxel volumes. In contrast, mesh-based methods typically use a wide
set of data structures such as point clouds, meshes, and spatial partitioning
schemes for enabling efficient search [15, 73, 82].

Concluding the above analysis, we cannot find overwhelmingly strong advan-
tages for volumetric or mesh-based methods. Each class of methods has its own
advantages and limitations, and briefly outlined above. This is also reflected in
the literature, with the same authors supporting both volumetric methods [84, 179]
and alternatively boundary-based methods [82, 98]. Hence, we will study using
both types of skeletons in our work next. Moreover, in Chapter 7, we will propose
a new 2D and 3D multiscale skeletonization method.

2.2 S H A P E A N A LY S I S A N D P RO C E S S I N G

In computer graphics and computer imaging, shape analysis is (loosely) defined
as the field concerned with detecting and quantifying various properties of shapes.
Such properties are next useful by themselves, e.g., to assess a collection of shapes
from a given perspective; and also to support the construction of further shape pro-
cessing methods that modify a given shape. In this context, 3D shape processing
is defined as the set of operations that alter the properties of a 3D shape represen-
tation, as captured by a computer model. As such, processing can refer to mod-
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ification of the shape’s intrinsic attributes (geometry, topology, color, texture) or
extrinsich attributes (position, orientation, size in the embedding R3 space)[130].
In the context of our work, and more generally in computer graphics, shape pro-
cessing refers mainly to the modification of intrinsic parameters only.

Shape analysis and processing is an extremely wide field, which we do not aim
to survey here. The interested reader can further consult various recent books on
the topic [24, 40, 64]. Rather, given the context of our work, we present next a
brief survey of 3D shape analysis and processing applications where 3D (surface)
skeletons play an important role.

2.2.1 Shape metrology

Shape metrology is an important subclass of shape analysis. Given a shape Ω⊂R3,
metrology proposes a set of measurement operators M(Ω) that aim to quantify var-
ious metric properties of the shape. Such operators can be further classified into
global and local ones. Global operators take as input the shape Ω only, i.e., assess
properties of the entire shape. Examples hereof are measuring the volume |Ω| and
surface area |∂Ω|. Local operators take as input the shape Ω, but also several local
positions xi ∈ Ω that describe the places of interest where measuring should oc-
cur. Examples hereof are geodesic distance, curvature, and local thickness. Local
operators are typically more complex (and interesting) than global ones for shape
processing purposes – our field of interest. Hence, we detail these below.

C U RVAT U R E : Curvature of 3D surfaces ∂Ω can be defined in several ways.
The simplest idea is to reuse the notion of curvature of a 2D planar curve γ ⊂ R2.
For a point x ∈ γ , the curvature κ(x) can be defined as 1/R, where R is the radius
of the largest circle that is tangent to γ at x and approximates γ around x best (the
latter condition is needed since there would be typically two such circles, with
centers located on both sides of γ). Another way to define κ is by locally approx-
imating γ by somr parametric arc-length representation γ(s). Then, the curvature
at s is defined as γ ′′(s).

Given next a smooth surface ∂Ω, a point x ∈ ∂Ω, the normal n of ∂Ω at x, we
can construct a so-called normal section plane π(x) that contains x and is tangent
to n. Following this,

• The normal curvature of ∂Ω at x is then the curvature of the planar curve
∂Ω∩π evaluated at x;

• For a point x, there exists an infinity of planes π(x), which can be thought
to ‘rotate’ along the axis n. The maximal, respectively minimal, normal cur-
vature values computed over this family of planes are called the principal
curvatures κ1 and κ2. The orientations of the plane π for which κ1 and κ2 are
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realized are also called principal curvature directions, e1 and e2 respectively,
and are tangent to ∂Ω at x. The values of κi and ei can be computed using
principal component analysis (PCA) of the so-called curvature tensor of ∂Ω,
and they can be further used to classify x as a planar, convex, concave, or
saddle point[48];

• The Gaussian curvature is the product κ1κ2. It offers a simpler way to char-
acterize the surface at a given point: Positive values indicate so-called lo-
cally convex (or locally concave, depending on the direction we look from)
surfaces, e.g., a sphere; negative values indicate so-called saddle points; and
zero values indicate surfaces such as a plane or a cylinder;

• The mean curvature is simply the mean of the principal curvatures, i.e., (κ1+
κ2)/2. Mean curvature best describes, intuitively, how convex or concave a
shape is. For instance, a cylinder surface has a positive mean curvature, but
a zero Gaussian one.

F E AT U R E S : Curvature analysis is very important for shape processing, as it
allows the detection of features on such surfaces. These are local surface ele-
ments which exhibit properties that distinguish them from the remainder of the
surface, and which allow one to reason about and/or manipulate the shape. For ex-
ample, high (mean) curvature regions indicate features such as edges, creases, or
cusps, which represent salient details, and further allow segmenting the shape into
relevant components (see Sec. 2.2.2 next), or matching various shapes[209] (see
Sec. 2.2.3).

Computing curvature information on digital shapes is delicate, as the operation
involves, by definition, computing second derivatives. As such, discretization res-
olution and noise filtering issues become very important, analogously to those that
affect 3D skeleton computation (see Sec. 2.1.2.3, Regularization). Curvature is
typically estimated by finite differences, which involve considering a few sample
points (mesh vertices or voxels) around the point x of interest. To reduce noise,
i.e. regularize curvature estimation with respect to the sampling resolution, many
methods essentially apply low-pass filtering with a filter φ of finite-support radius
R. Given curvature as a point function κ : ∂Ω→ R+, we thus evaluate the regular-
ized

κreg(x ∈ ∂Ω) = (φ ∗κ)(x), (2.6)

where ∗ denotes signal convolution. Several such regularization schemens ex-
ist, see [117, 120, 195]. Anisotropic diffusion schemes can also be used to
enhance detection of curve-like features, such as edges. For this, a diffusion
(low-pass filtering) process is used, with a filter φ which is essentially stronger
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(has more response) in the principal direction e1 (along which κ is maximum)
than along the orthogonal direction e2 [32, 34]. For a review of the above, we
recommend [196]. However, tuning regularization parameters is delicate: Too
much regularization eliminates discretization issues, but filters out small-scale
features, such as weak(er) and/or dense edges; too little regularization captures
small-cale features, but also noise. We discuss such issues in the context of mesh
segmentation in Chapter 6.

Besides curvature, other mechanisms can be used to detect surface features.
Most importantly in our context, surface skeletons can do that. For 2D shapes,
it is known that the tips (endpoints) of the skeleton S∂Ω (Eqn. 2.2) correspond, via
the feature transform of the skeleton FTS∂Ω

(Eqn. 2.3), to convex points on ∂Ω;
similarly, concave points on ∂Ω correspond to tips of the branches of the skeleton
of the complement shape Ω, i.e. the shape where foreground and background are
inverted as compared to Ω [172]. This is extrapolated to 3D where the boundary
curves ∂S∂Ω correspond, also via FTS∂Ω

, to convex ridges, or edges, of ∂Ω [172].
Hence, if we can robustly detect the boundary of the surface skeleton, and we can
‘backproject’ these to the shape surface, we can find convex ridges of the latter.

Doing the above in practice is not entirely straightforward, since (a) detecting
the boundary of a surface skeleton is not trivial, both for voxel-based representa-
tions [143] and for mesh-based representations [98]; and (b) the skeleton’s feature
transform FTS∂Ω

is a not a one-to-one mapping. Concerning point (b), indeed, for a
sphere Ω, the skeleton S∂Ω is a single point x, and FTS∂Ω

(x) = ∂Ω. Several heuris-
tics have been proposed to simplify the set of points delivered by FTS∂Ω

(x), so as
to obtain one-dimensional features, such as the locations of edges on ∂Ω should be,
for both voxel shapes [142, 144] and mesh shapes [98]. The main added-value of
these detectors is their ability to extract sharp locations of even shallow (rounded)
edges, without having the regularization problems posed by curvature estimation.
Figure 2.8 illustrates this for several such detectors. We further illustrate and refine
such detectors in Chapter 6.

Feature detection is an important part of the more involved shape segmentation
operations. Simply put, segments are either specific types of features, or they are
delimited by features. Shape segmentation is discussed next in Sec. 2.2.2.

G E O D E S I C D I S TA N C E : Given two points x1 ∈ ∂Ω and x2 ∈ ∂Ω, the geodesic
distance is defined as the length ‖γ‖ of the shortest curve γ(x1,x2) ⊂ ∂Ω whose
endpoints are x1 and x2. As such, this type of curve is also called the shortest
path between x1 and x2. Note that, for two such points, there may be more than
one shortest path γ – for example, consider the case of two diametrically op-
posed points on a sphere surface, when there is an infinity of shortest paths be-
tween them, each equal to a half grand circle. However, the length ‖γ(x1,x2)‖
is a unique value. Computing shortest paths between points on a 3D shape sur-
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Figure 2.8: Edge-like feature detection on voxel surfaces with the methods
in [195](a,d), [144](b,e), and [98] (c,f). Red indicates edges; blue indi-
cates quasi-flat areas.

face is important for several applications, e.g., mesh construction, texture coordi-
nate generation, and data visualization [79, 136, 187]. Closer to our interest, such
geodesics are the key ingredient of computing a global regularization metric for
3D skeletons (Sec. 2.1.2.3, Regularization), and also for defining 3D curve skele-
tons (Sec. 2.1.2.2, Curve skeletons). We will use such mesh-based shortest-path
computations when presenting our method to compute mesh shape segmentations
in Chapter 6.

Computing (the length of) shortest paths on discretized versions of ∂Ω special-
izes next according to the discretization type. For piecewise-linear representations
(polygonal mesh surfaces), several such methods are proposed, e.g. tracing stream-
lines from x1 in the gradient of the distance-transform DTx2 : ∂Ω→ R+ (com-
puted using Fast Marching Methods) until they reach x2 [132], further enhanced
with heuristics for speed-vs-accuracy trade-offs[187] and also implemented on the
GPU [82]. Such methods are however quite complex, given the fact that geodesics
need some technical adaptations to be defined on polyhedral surfaces [79, 136].
We used the method in [82] for our mesh shape segmentation in Chapter 6.

For voxel shapes, the method of choice proceeds as follows. First, one repre-
sents the voxelized surface as an adjacency graph G whose nodes are the voxel
centers and edges are the (typically 27-neighbor) adjacency relations. Each edge
has a weight representing its Euclidean length. Next, the Dijkstra algorithm [47]
is used to find the shortest path in G between the two given vertices x1 and x2.
The speed search can be enhanced by using A∗ heuristics [145], where the heuris-
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tic search cost is the length ‖x1−x2‖. In that paper, Reniers et al. also propose a
caching scheme that is meant to further accelerate the computation of many short-
est paths on a surface ∂Ω, by reusing parts of the earlier computed paths rather
than tracing from scratch. However, the scheme is not further detailed, and thus it
is hard to replicate. To ensure accurate length computations on digital voxel sur-
faces, the graph edges can be further weighted by coefficients, following Kiryati
and Szekely’s scheme [93]. In detail, edges of length 1 are weighted to become
0.9016; edges of length

√
2 become 1.289; and edges of length

√
3 become 1.615,

respectively. We have used this scheme in our shortest-path length estimations in
Chapters 3 and 4, and also provided additional speed-ups for the path tracing.

T H I C K N E S S : Measuring the thickness of a shape is important for many ap-
plications such as 3D metrology, where one needs to automatically determine if
manufactured parts fit certain dimension constraints. For instance, in [200], this
is used to determine if shapes created by 3D printing are locally thick enough to
resist the manufacturing process. Estimating shape thickness is also used to com-
pute so-called shape descriptors for the process of 3D shape matching [160], as
discussed separately in Sec. 2.2.3.

Shape thickness is, by definition, a local property, as there is no single thickness
value that can characterize an entire shape, in general. Given a shape Ω and a point
x ∈Ω, one well-known definition of the thickness t(x) is

t(x) = 2 ·max({R|∀x ∈Ω : x ∈ B(p,R)⊂Ω}) (2.7)

that is, the diameter of the largest inscribed ball in Ω that contains x [50]. Evaluat-
ing Eqn. 2.7 can be done by computing the distance transform DTS∂Ω

of the shape,
marking all points y ∈ ∂Ω with the value ε(y =)DTS∂Ω

(s) of the closest skeleton
point s to y, and next setting t(x) to the value ε(y) of the closest surface point y to
any interior point x. Thys yields a thickness estimation for both surface points and
interior points. For this, we however need a very accurate (centered) computation
of the surface skeleton S∂Ω, which, as explained in Sec. 2.1.2.3, can be difficult. A
simpler method uses morphological opening and closing operations to find parts
of Ω which are thinner than a user-given value τ[200]. However, this evaluates
the so-called threshold sets {x ∈ Ω|t(x) ≥ ε} rather than the full thickness signal.
Concluding, surface skeletons are also useful for thickness evaluation. However,
given our limited available time, we did not investigate this issue further.

2.2.2 Shape segmentation

Segmenting a shape Ω means producing a subset of segments Ci ⊂Ω that describe
parts of the shape which are relevant for specific applications. At the highest level,
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thus, shape segmentation enables easier treatment of the shape information: In-
deed, by definition, a segment is smaller than the shape it belongs to. Thus, a
segment is arguably also simpler than the entire shape. As such, analyzing the seg-
ment should be easier (and/or faster) than analyzing the entire shape it comes from.
Shape segmentation can be further classified according to several axes:

B O U N DA RY O R I N T E R I O R : A segmentation can partition either the bound-
ary ∂Ω or the interior (volume) Ω of a shape. In general, volume segmentations
imply also boundary segmentations, as we can create boundary segments C∂Ω

i =
Ω∩CΩ

i by considering boundaries of volume segments CΩ
i which correspond to

the shape boundary. Skeletons an be used to create both types of segmentations.
Interestingly, surface skeletons (of dimension 2) create surface segmentations (seg-
ments have dimension 2) [142] and curve skeletons (of dimension 1) usually create
volume segmentations (segments have dimension 1)[12, 141]. That is, the dimen-
sionality of the segments plus the dimensionality of the skeleton is one larger than
that of the embedding space (R3). Given that, as we explained, volume segmenta-
tions can be converted to surface segmentations; that the latter are more common
in 3D shape processing; and that our focus is on surface skeletons, we focus on
surfacce segmentations in this thesis.

R E P R E S E N TAT I O N : As shapes can be represented either as voxels or meshes,
segmentation methods naturally split into two classes. Typically, volume segmen-
tations require voxel representations; and boundary segmentations require (only)
surface representations. Since we are interested in both types of shape representa-
tions, we explore next both voxel (Chapters 3 and 4) and mesh-based (Chapter 6)
segmentations.

PA RT I T I O N I N G : Non-partitioning segmentations deliver a set of segments
which may either overlap, i.e., ∃i 6= j|Ci ∩C j 6= ∅, or not fully cover the entire
shape, i.e., ∪iCi 6= Ω. An example of non-partitioning segmentation is given by
hierarchical basis functions described in [33]. Although in the respective paper
such overlapping segments are further processed to create non-overlapping ones,
the core of the method is non-partitioning. In ontrast, partitioning segmentations
deliver a set of segments which are non-overlapping, i.e., ∀i 6= j,Ci∩C j =∅, and
fully cover the shape, i.e., ∪iCi = Ω. Partitioning segmentations are, in general,
easier to use and cover more use-cases. As such, we focus only on partitioning
segmentations in this thesis;

S C A L E : Single-scale segmentations deliver a single partitioning {Ci} of a
shape. Multiscale segmentations deliver a set of such partitionings, where each
partition corresponds to a so-called scale. Fine-scale partitionings capture smaller,
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but more detailed, shape parts, and typically have more segments. Coarse-scale
partitionings capture larger, less detailed parts, but have fewer segments. The scale
is typically controlled by user-specified parameters of the process. Multiscale
segmentations are more powerful, as they allow one to control the level-of-detail
to work on. Regularized skeletons are multiscale (see Sec. 2.1.2.3, Multiscale); as
such, they can produce multiscale segmentations[141, 142]. Given this, we focus
next on multiscale segmentations;

PA RT O R PAT C H : Segmentation methods can also be classified according to
the nature of the segments they produce. Part-based methods aim to separate a
shape into its ‘natural’ parts (segments), as perceived e.g. by a human [23]. As
such, these methods are used mainly with organic, natural, shapes such as scans of
body parts, silhouettes, or other articulated shapes. Usually, parts also correspond
to volumes – if we think e.g. of partitioning a human hand, we think of detecting
its fingers and palm and not the surfaces thereof. Patch-based methods aim to sepa-
rate parts of a surface that show little internal variation but large external variation,
such as quasi-flat regions separated by creases. As such, these methods are used
mainly with non-articulated shapes. The emphasis put on flatness (curvature) also
makes such methods applicable to faceted, synthetic, shapes such as engine parts
or other man-made objects. Given that parts are defined based on surface prop-
erties, part-based segmentations fall largely in the class of surface partitioning –
if we think e.g. of partitioning a cube, we think of separating its six faces, and
not cutting it into smaller volumes. Both part-based and patch-based segmentation
methods can be supported by skeletons, see e.g.[141, 142].

We choose next to discuss segmentation methods based on the part vs patch
criterion, as follows.

2.2.2.1 Part-based segmentation

As outlined, parts are typically regions of a shape that a human would distinguish
as different fron their surroundings. Following computer vision work, it has been
seen that a part is a region that ‘sticks out’ of the rump of a shape, representing
a bump, or protrusion. More formally, a part is a high-curvature region of the
shape which is separated, boundary-wise, by a band of low curvature – see the
minima rule in [23, 77, 177]. Many methods exist in this class, as follows (see also
Figs. 2.9, 2.10, and 2.11 for several examples).

Li et al. [103] sweep the curve skeleton of a shape by a series of planes πi
locally orthogonal to the skeleton’s tangent vector at different skeleton points xi,
and compute a series of cuts Γiπi ∩ ∂Ω. When two consecutive cuts have highly
different lengths ‖Gammai‖ and ‖Gammai+1‖, a transition in the structure of the
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shape is thought to take place, so a segment border is identified. However, this
method constrains the segment borders ∂Ci to be planar curves.

a) coarsest scale finest scale

b) feature points core segment final segmentation

c) Reeb graph oversegmentation

pruned Reeb

graph
final

segmentation

Figure 2.9: Part-based segmentation examples. (a) Fuzzy clustering [87]; (b) Feature
points and core extraction [88]; (c) Reeb graphs [201]. See Sec. 2.2.2.1.

Katz et al. [87] segment a surface by bottom-up hierarchical clustering of small
quasi-flat parts. Clustering is driven by a part similarity based on curvature prop-
erties. As such, this delivers parts which are relatively flat and separated by high-
curvature creases. Given the hierarchical process, the result is a multiscale segmen-
tation. They next refine the method to use feature points and core extraction in [88].
Key to this method is a pre-detection of so-called feature points, i.e., salient points
of ∂Ω which should determine different segments, if possible, such as tips of pro-
trusions (which roughly correspond to the endpoints of a 3D curve skeleton of the
shape). The method can also create a multiscale segmentation.

Tierny et al. [201] use Reeb graphs to produce multiscale segmentations [201].
A Reeb graph is essentially a skeleton which, in contrast to the Euclidean skele-
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tons implied by Eqn. 2.2, capture shape topology (branching parts) but not shape
geometry. Next, shape parts are computed to correspond to the Reeb graph edges.

Shapira et al [169] proposed a shape-diameter function (SDF). The SDF is a
local estimation of the shape’s diameter at each boundary point. Note that this is
strongly related to the notion of shape thickness discussed in Sec. 2.2.1. Next, the
boundary ∂Ω is clustered based on similar SDF values. Thus, segments are im-
plicitly defined as similar-thickness regions of ∂Ω. Since thickness is a volumetric
property, this method can be seen as a part-based segmentation method.

Golovinskyi et al. [74] propose randomized cuts for segmentation. Key to this
method is the observation that earlier methods are quite sensitive in terms of the
delivered segmentation, in function of the input shape (or small changes thereof)
and algorithm parameters. As such, they propose to compute a large set of seg-
ment borders, using cuts generated following a variation of [87], or by k-means
clustering. Next, segments are found from this large set of ‘randomized cuts’ by
maximizing the probability that segment borders share the same mesh edges in
∂Ω. However, the brute-force search approach of the method (over the segmenta-
tion space) makes it quite expensive.

A separate class of methods use Euclidean curve skeletons (Sec. 2.1.2.2). The
intuition here is simple: Following the Reeb graph approach [201], one detect the
junction points of a curve skeleton, and uses these to place separating cuts to cre-
ate segment borders. For this, Au et al. use an efficient mesh-based method to
compute the curve skeleton [12]; next, junctions are detected and minima rules,
like in [87], are used to create the separating cuts. Reniers et al. [146] use a sim-
ilar method, but a different way to compute voxel-based curve skeletons, follow-
ing [145]. However, this method suffers from oversegmentation. They alleviate the
problem by proposing a so-called ‘junction rule’, by analogy with the minima rule
discussed above. The junction rule filters out curve-skeleton junctions which do
not encode part-rump boundaries, and reduces oversegmentation signifiantly [141].
Both approaches of Reniers et al. use geodesic curves as cuts (segment borders).
As such, borders are smooth and tight by construction, even for noisy shapes. We
will exploit this idea into our own segmentation work in Chapters 3 and 4. Finally,
Serino et al. refine [141] by further classifying curve-skeleton points into single
points, simple curves, and complex sets. This further reduces oversegmentation
and makes the segmentation also robust to discretization noise [162, 163]. Finally,
Kustra et al. segment 3D mesh shapes by detecting the manifolds of the surface
skeleton and back projecting groups of manifolds that are deemed to belong to
the same segment to the input surfacec ∂Ω [98]. However, this method is quite
complex to implement and contains a significant set of heuristics.

A particular challenge of part-based segmentation methods resides in the am-
biguous definition of what a ‘part’ is. Even for relatively simple objects, such as
the horse in Fig. 2.11, different methods yield quite different results. Moreover, we
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a)

b)

Figure 2.10: Additional part-based segmentation examples. (a) Junction rule [141]; (b)
Method of Serinoet al.[163]. See Sec. 2.2.2.1.

see that skeleton-based methods (Fig. 2.11b-f) yield arguably more natural results.
The result in Fig. 2.11f is produced by our own surface-skeleton-based method,
which we will describe in Chapter 3. Given such results, from an application per-
spective, we can state that part-based segmentation is a still active field of research,
and that skeleton-based segmentations are a competitive approach.

Given our focus on surface skeletons, we see that, although many part-based seg-
mentation methods use curve skeletons and Reeb graphs, a single method exists
which uses surface skeletons [98]. However, this method does not produce patch-
based segmentations, and only handles mesh-based representations. As explained
in Sec. 2.1.2.3 (Reconstruction), only surface skeletons fully encode a shape’s ge-
ometry. As such, using such skeletons is interesting for part-based segmentation.
Additionally, it is interesting to be able to handle voxel shapes too. We show how
this can be done in Chapters 3 and 4.

2.2.2.2 Patch-based shape segmentation

An early method in this class explicitly searches for fitting simple 3D primitive
shapes to the input shape Ω to segment[10, 11]. The key idea is that the structure
of such simple primitives will show up in the final segmentation. For instance,
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a) b) c)

d) e) f)

Figure 2.11: Comparison of six part-based segmentation methods for a horse shape. (a)
[107]. (b) [105]. (c) [10]. (d) [201]. (e) [141]. (f) Our own method described
in Chapter 3. Method (a) does not use skeletons. Methods (b-e) use curve
skeletons. Method (f) uses surface skeletons.

if the shape Ω has sharp edges and admits fitting a cube, then the cube’s sharp
edges will show up as aligned with the actual shape edges in the final segmenta-
tion. The method uses an iterative clustering technique that collapses mesh edges
so as to merge its faces, much like in mesh decimation approaches [68]. The clus-
tering process is driven by a cost function which measures how well we can fit a
primitive (plane, sphere, cylinder) on the existing mesh faces which are neighbors.
Hence, quasi-flat parts of the input shapes are quickly fitted to one of the available
primitives. As illustrated in Fig. 2.12a, the method works well for synthetic shapes
(which admit a decomposition into the set of proposed primitives), but far less well
for natural, irregular, shapes.

Skeletons have also been used for patch-based segmentation. As already men-
tioned, Reniers et al. [142] compute surface skeletons of voxel shapes using the
method in [145] and back-project these to the input surface ∂Ω to find locations
of convex edges. These are then linked to create a partitioning of ∂Ω into patches.
To handle concave edges (dents), the skeleton of the complement shape Ω is com-
puted and processed similarly, and finally the two sets of patches are merged. The
method shows good results, but is quite complex. Moreover, computing the skele-
ton of the complement is quite expensive, since one needs to skeletonize a voxeliza-
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tion of a bounding box encompassing the entire shape Ω. Figure 2.12 illustrates
both [10] and [142].

a)

b)

Figure 2.12: Patch-based segmentation examples. (a) Primitive fitting [10]. (b) Surface-
skeleton method [142]. See Sec. 2.2.2.2.

2.2.3 Shape matching and retrieval

Shape matching is concerned with evaluating the similarity of two shapes. More
formally, given two 3D shapes Ω1 and Ω2 in the space O of all possible 3D shapes,
matching aims at computing a function σ : O×O→R+ so that σ(Ω1,Ω2) reflects
the perceived similarity of Ω1 and Ω2. That is, when a human would say that
two shapes are very similar, σ is high; whereas when one would say that two
shapes are very different, σ is low. Note that the problem can also be formulated
by defining a distance, rather than a similarity, function. In this case, the distance
is the reciprocal of the similarity function. Given the similarity σ , we say that two
shapes Ω1 and Ω2 match well when σ(Ω1,Ω2) is high.

One of the most important applications of shape matching is to support content-
based shape retrieval (CBSR), which can be formulated as follows: Given a col-
lection of shapes C = {Ωi}, and a so-called query shape Ω, find the most similar
shape to Ω in C. This can be generalized to finding the n most similar shapes to Ω.
CBSR aims at providing a search mechanism for 3D shapes similar to Google’s
search mechanism for text and images.

When C is large, and there are many queries, it becomes impractical to evaluate
σ over all pairs (Ω,Ωi)|Ωi ∈C. This is not only due to the collection size, but also
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the typically high cost of computing σ given two complex, high-resolution, shapes.
An important aspect that makes this cost high is that we are not looking only for
exact matches: For instance, if Ω would be the horse model in Fig. 2.12a (right),
all three horses in Fig. 2.10b should yield high similarity scores. More formally,
we are looking for a similarity metric σ which is not sensitive to transformations
that do not (largely) affect the perceived nature of the shape. Such transformations
include rigid ones (scaling, translation, rotation), but also different sampling reso-
lutions, and pose (articulation).

Given the above, a key query for CBSR is the development of efficient and ef-
fective metrics σ . This is typically approached by computing a so-called shape de-
scriptor, which is usually a high-dimensional value, or vector, d(Ω) ∈Rd . Having
such a descriptor reduces σ to computing the distance between two d-dimensional
vectors d(Ω1) and d(Ω2). This can be done very efficiently using various distance
metrics, such as e.g. using Euclidean, cosine, Helinger [160, 160], or Earth Mover
(EMD) [150, 152] distances. As such, the quest is reduced to finding a good de-
scriptor function d.

Shape descriptors can use different types of information, as follows:

Geometry: A first important one is the geometry of the shape, i.e., the set of
sample points {xi} that describe ∂Ω. For instance, Osada et al. [125] proposed
a distribution that captures properties such as angle and distance determined by
random pairs of points on ∂Ω. For keeping rotation invariance, Kazhdan et al. [89]
propose to use spherical harmonics [89], and the further improve this to include
reflective and rotational (axial) symmetry [90]. Thickness measurements are also
used as a descriptor [157].

Histogram descriptors refine the above by capturing the distribution of values
of a geometric metric over a shape. For example, Liu et al [108] propose a direc-
tional histogram that is similar to [157]. This was reently extended by Schmidt et
al. [160] to capture both thickness and so-called depth complexity (number of
intersections of a ray with the shape) as a 2D histogram. This captures, up to a
certain extent, both geometry (thickness) and topology (concavities).

Appearance: When available, information such as lighting, colors, and texture
on ∂Ω can be effectively used. For instance, the DB-VLAT descriptor in [194]
combines dense SIFT descriptors taken from several 2D shape views. Since
SIFT descriptors can capture corners and edges quite well, and such details are a
function of texture and color gradients, DB-VLAT can effectively integrate such
additional sources of information.

Skeletons: As explained, skeletons capture both geometry and topology; if regular-
ized, they are not sensitive to small-scale shape details; and they are by definition
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invariant to affine transformations. As such, they have been used since long for
CBSR. For 2D shapes, Sebastian et al. [161] extend the shock graphs proposed by
Siddiqi et al. [173] and corresponding shock grammar [171] for 2D shape match-
ing. This method can capture geometry well, but has shortcomings in capturing
topology. For 3D shapes, Sundar et al. [186] pioneered (to our knowledge) the use
of use 3D curve skeletons to match shapes. For this, they extract individual skele-
tal branches to construct a graph, and next use graph-matching algorithms to com-
pare such shape graphs. The method is next refined in [37] to use the EMD metric
to compare 3D curve skeletons to match shapes. For 2D shapes, Bai et al. [13]
propose an alternative to [186] by first pruning 2D medial axes to remove irrel-
evant branches (which are expensive for matching) using the DCE method [14],
and and next using paths between skeletal endpoints to construct a graph. While
faster than [186], this method cannot effectively handle shapes having few salient
skeletal endpoints – that is, shapes that are not well described by curve skeeltons.
Moreover, this method has not been extended to 3D.

Summarizing the above, we see that, on the one hand, skeletons have been effec-
tive for constructing descriptors for CBSR. On the other hand, there are only a few
methods that extend to 3D shapes; and, for these, only the simpler curve skeleton
is used. In Chapter 5, we show how we extend the above ideas to use the joint
geometry-and-topology information present in the surface skeleton to construct
effective descriptors for CBSR.

2.3 C O N C L U S I O N

In this chapter, we have reviewed existing results in the area of using 3D skeletons
to support shape processing. From the reviewed material, two conclusions emerge:

1. From a technical perspective, recent state-of-the-art methods have made
both 3D curve and 3D surface skeletons attractive tools for shape analysis
and processing. While older methods had limitations with respect to com-
putational scalability, maximal size of the processed datasets, accuracy, ro-
bustness to noise, and representation type (voxel of mesh), recent methods
have largely removed these issues. As such, we believe that both surface and
curve skeletons are ready to be used in shape processing applications;

2. From an application perspective, however, the prominence of 3D skeletons
is still relatively limited, as compared to other existing techniques. How-
ever, we see that all the application classes we considered – feature extrac-
tion, shape segmentation, and shape matching and retrieval – show a few
promising results based on the usage of skeletons. Separately, we see that
surface skeletons, despite their higher power of capturing shape geometry
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and topolology, are far less frequently used in such applications than the
simpler curve skeletons.

The overall conclusion of the above two observations is that there exists a strong,
and unexplored, case for the added-value of using surface skeletons in supporting
3D shape processing applications. The rest of this thesis is dedicated to exploring
this case in several directions.
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As outlined in Chapter 2, Sec. 2.2.2, surface skeletons have been rarely used so
far for supporting 3D shape segmentation. In this chapter, we take a first step to
explore this gap. For this, we present a new method for part-based segmentation
of voxel shapes that uses medial surfaces to define a segmenting cut at each me-
dial voxel. The cut has several desirable properties – smoothness, tightness, and
orientation with respect to the shape’s local symmetry axis, making it a good seg-
mentation tool. We next analyze the space of all cuts created for a given shape
and detect cuts which are good segment borders. Our method is robust to noise,
pose invariant, independent on the shape geometry and genus, and is simple to
implement. We demonstrate our method on a wide selection of 3D shapes.1

3.1 I N T RO D U C T I O N

Shape segmentation aims to decompose a 3D shape into a set of parts that obey
certain application-related properties, and is used in many contexts such as image
analysis, registration, and 3D modeling [167]. Patch-based segmentation detects
quasi-flat segments whose borders follow local curvature maxima on the shape sur-
face, and is most used for faceted shapes [142]. Part-based segmentation follows a
semantics-oriented approach, aiming to find shape parts that one would intuitively
perceive as being logically distinct, and is used for natural shapes [140].

For a shape Ω ⊂ R3, part-based segmentations (PBS) using partitioning cuts
create a set of cuts c ⊂ ∂Ω that divide the shape boundary ∂Ω into disjoint parts.
Desirable PBS properties, e.g. smoothness, orientation, tightness, and position of
cuts that create segments, can be stated in terms of the cut-set B = {c}. Finding
a good segmentation is thus mapped to finding a cut-set B having such properties,
a hard problem due to the high dimensionality of the cut space.

We present a new way to produce PBS of 3D voxel shapes by skeleton cuts.
First, we construct, at any shape point, a cut that is locally and globally smooth,
tightly wraps around the surface, is self-intersection free, and is locally orthogonal
to the shape’s local symmetry axis. For this, we use the shape’s medial surface.

1 The text of this chapter is based on the paper: Part-based Segmentation by Skeleton Cut Space
Analysis (C. Feng, A. Jalba, A. Telea), Mathematical Morphology and Its Applications to Signal
and Image Processing (Proc. ISMM), eds. J. A. Benediktsson and J. Chanussot and L. Najman and
H. Talbot, Springer LNCS 9082, 2015, pp. 607-618.
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Next, we construct the cut space S ⊂ ∂Ω that contains all such cuts for a given
shape. We extract the cut-set B ⊂ S yielding our PBS by analyzing the global
distribution of cut properties over S . We demonstrate our method on a variety of
3D shapes and compare our results with eight existing PBS methods.

Section 3.2 reviews related work. Section 3.3 presents our method. Section 3.4
illustrates our method on a wide variety of 3D shapes and also compares it with
related methods. Section 3.5 discusses our method. Section 3.6 concludes the chap-
ter.

3.2 R E L AT E D W O R K

As outlined in Sec. 2.2.2, two main shape segmentation types exist [1, 11, 168]:
Patch-based methods segment a shape’s surface into quasi-flat patches bounded
by sharp surface creases, and are suitable for synthetic shapes. Part-based segmen-
tation (PBS), our focus, cuts a shape’s surface into its logical components, useful
for shapes formed of articulated parts, e.g. human bodies. plants, and other natural
structures.

Most PBS methods find segments along what a human would see as logical
shape parts, in two steps: (a) find where to cut a shape to isolate a part; and (b) find
how to build a cut, once its location is set. These steps are addressed in different
ways. As the topology of the shape skeleton or medial axis matches the part-whole
shape structure [172], many methods use medial axes to place cuts. Au et al. use
curve skeletons [12], where each skeleton branch maps to a part. Cuts are built by
optimizing for cut concavity and length via minimal cuts [88]. Golovinskiy et al.
create a large randomized cut-set and find part borders as the cuts on which most
surface edges lie [74]. Shapira et al. note that skeletonization and segmentation are
related, and compute a scalar shape-diameter function (SDF) on the shape surface
to segments as surface faces with similar SDF values [169]. Tierny et al. segment
shapes hierarchically by topological and geometrical analysis of their Reeb graphs,
which are similar to curve skeletons [201]. Chang et al. compute shape medial sur-
faces, separate their manifolds, and back project each manifold on the shape sur-
face to find a segment [28]. Dey and Sun extract curve skeletons as the maxima of
the medial geodesic function (MGF) which encodes the length of the shortest path
between feature points of points in the shape [44], and segment tubular parts as
those which minimize the eccentricity of such paths. Reniers et al. construct a part
for each branch of a shape’s curve skeleton [140]. Part borders correspond to curve-
skeleton junction points, and are created by the shortest paths in [44]. However,
curve skeletons can contain many spurious junctions which change widely when
the shape is slightly perturbed. Reniers et al. alleviate this by heuristics that shift
cut-points along the curve skeleton to optimize for cut stability and planarity [141].
Yet, this method cannot segment shapes of large geometric, but little topological,
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variability, like a pawn chess piece: Its curve skeleton has no junction points, so
[141] cannot separate the pawn’s head, body, and base, although these have differ-
ent thicknesses.

Summarizing, the two elements of a good PBS (where to cut, and how to cut)
are targeted in complement by different methods: Skeleton-based methods con-
struct good partitioning cuts efficiently, e.g. by shortest-paths [44, 141]. Yet, curve
skeletons do not encode enough of the shape geometry. Global search methods
that analyze a wide set of shape cuts offer good ways to select where to parti-
tion [74, 169]. Yet, they do not offer explicit constraints for the cut shapes, and
exhaustive cut space search is expensive. Our method combines the advantages of
the two above classes of methods, while minimizing their limitations.

3.3 M E T H O D

Our method has a simple intuition: Say we want to cut the shape in Fig. 3.1 a close
to points A . . .E. Which properties should these cuts have to yield a ‘natural’ PBS?
In other words: How would a human draw such cuts? Figure 3.1 a shows five un-
desirable cuts: A is noisy, although it crosses a perfectly smooth surface zone; B is
self-intersecting; C and D are too loose (long); and E is unnaturally slanted – a hu-
man asked to cut the shape at that point would arguably do it so across the finger’s
symmetry axis. Figure 3.1 b shows five cuts for the same points, computed with the
method we proposed here. We argue that these cuts are more suitable for PBS than
those in Fig. 3.1 a, as they are (1) tight, (2) locally smooth, (3) self-intersection
free, (4) and locally orthogonal to the shape’s symmetry axis. An additional prop-
erty that cuts should satisfy is (5) being closed curves, so that they divide the
shape’s surface into different parts. We construct such cuts as follows: First, we
compute a simplified medial surface of the input shape (Sec. 3.3.1). For each me-
dial point, we next construct a cut having the above properties (Sec. 3.3.2). This
answers the question “how to cut”. By analyzing the resulting cut space, we next
select a small cut-set that gives us the borders of salient shape-parts (Sec. 3.3.3).
This answers the question “where to cut”.

A

B

C

D

E

a) b)

low

importance

high

importance

c)

Figure 3.1: Possible cuts for part-based segmentation. Suboptimal cuts (a). Cuts created
by our method (b). Medial surface colored by its importance metric (c).
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3.3.1 Skeletonization

The Euclidean distance transform DT∂Ω : Ω→R+ of a shape Ω⊂ Z3 with bound-
ary ∂Ω is

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (3.1)

The medial surface, or surface skeleton, of ∂Ω is defined as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (3.2)

where f1 and f2 are the contact (or feature) points with ∂Ω of the maximally
inscribed ball in Ω centered at x [71, 148]. These define the feature transform
FT∂Ω : Ω→P(∂Ω)

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖. (3.3)

Medial surfaces are sensitive to small-scale noise on Ω, especially when using
voxel-based models. To alleviate this, they can be regularized by a computing a
metric ρ : S∂Ω → R+ such as the medial geodesic function (MGF) which sets
ρ(x) to the length of the shortest path on ∂Ω between the two feature points of
x [44]. As the MGF monotonically increases from the medial surface boundary to
its center, upper thresholding it yields connected and noise-free simplified medial
surfaces (though tunnel preservation requires additional work) [145]. Figure 3.1 c
shows a regularized medial surface using the MGF method in [145].

3.3.2 Cut model

The first step of our PBS is to compute a rich set of cuts, or cut space S , which
all satisfy properties (1-5) listed in Sec. 3.3. To build a cut c ∈S , consider a point
x ∈ S∂Ω. As we shall next see in Sec. 3.3.3, we will create cuts from all skeletal
points x located on the (simplified) surface skeleton S∂Ω, and we will subsequently
discard some of these cuts. However, for now, we concentrate on explaining how
such a single cut c(x) is built, given a skeleton point x.

By definition, x has at least two feature points f1 and f2 on ∂Ω (Eqn. 3.2). Con-
sider, for now, that there are precisely two such points. We first trace the shortest
path γ1 ⊂ ∂Ω between f1 and f2 (Fig. 3.2 a), whose length is the MGF value for
x (Sec. 3.3.1). Next, we find the midpoint m of γ1, i.e. the voxel of γ1 furthest in
arc-length distance from both f1 and f2. We then trace a ray through x and oriented
in the direction x−m, and find the point o where this ray ‘exits’ Ω (Fig. 3.2 b). In-
tuitively, o is on the ‘other side’ of S∂Ω as opposed to m. Finally, we construct the
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two shortest paths on ∂Ω connecting (f1,o) and (f2,o) respectively (Fig. 3.2 c,d).
Our final cut c for point x is given by γ1∪ γ2∪ γ3.

a) construction of γ1
b) ray tracing

c) construction of γ2 d) construction of γ3

e) cut subsets Si
f) subset borders Bi g) final segmentation

f1

γ1

ray

o

f2
f1

f2

f2
f1

o

o

m

γ2 γ3

x

Figure 3.2: Cut construction (a-d) and cut space analysis (e-g) for part-based segmenta-
tion.

While c is piecewise geodesic (so locally smooth), it can be non-smooth at the
three endpoints f1, f2 and o of γi. Also, our construction does not make c as tight
as possible globally. To fix both issues, we perform 5 iterations of a constrained
Laplacian smoothing pass over c, with a kernel size of 10 voxels. We prevent c
leaving the surface, by reprojecting its voxels to their closest points on ∂Ω after
each iteration. This smooths out possible ‘kinks’ at f1, f2 and o, thus making c
globally smooth and tight. If such kinks are very small or inexistent, smoothing
has no effect, as c is globally geodesic. In that case, Laplacian smoothing shifts c’s
points along the surface normal, since c’s acceleration c′′ is normal to the surface,
so reprojection moves the smoothed points back to their original location.

3.3.2.1 Cut properties:

Our cuts meet the desired properties we require for PBS:
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1. tight: Cut parts γi are piecewise-geodesic, thus shortest curves on ∂Ω. Also,
the constrained Laplacian smoothing shortens potential kinks present at the
geodesic endpoints, thus making the entire c wrap tightly around the shape;

2. smooth: Guaranteed by the same properties as for tightness – piecewise
geodesicness and constrained Laplacian smoothing;

3. self-intersection free: c is a geodesic triangle (three geodesics linking three
different points on ∂Ω) whose edges do not intersect except at endpoints;

4. locally orthogonal to the symmetry axis: The cut c(x) surrounds the medial
surface S∂Ω around the skeletal point x, by construction. Hence, it also sur-
rounds the so-called curve skeleton of ∂Ω, which is a 1D structure locally
centered within S∂Ω with respect to its boundary ∂S∂Ω. While we do not
have a formal proof of local orthogonality, we observed in practice that our
construction always creates cuts that are visually orthogonal to the curve
skeleton;

5. closed: The cut c is a closed (Jordan) curve by construction.

3.3.2.2 Implementation:

As explained in Sec. 3.3.1, we use a simplified (regularized) skeleton as a basis
to compute our cuts. In practice, we found that the skeletonization method in [83]
gave good results, in terms of computational speed and ability to regularize a skele-
ton. However, for lower voxel resolutions (typically, under roughly 2003 voxels),
this method can occasionally produce disconnected skeletons. This can be fixed as
follows. First, we detect all connected components of the simplified skeleton, and
select the largest one (in terms of voxel count). Next, we connect all other com-
ponents found to the largest component by adding digital voxel lines (computed
with Bresenham’s algorithm in 3D) between their respective closest voxels, if the
length of such line segments is lower than roughly 4 voxels. This is based on our
observation that the disconnections created by the skeletonization method in [83]
are typically small. This prevents reconnecting spurious components which are lo-
cated far away from each other in the regularized skeletons. All such remaining
spurious components are then discarded. We verified that this heuristic strikes a
good balance between providing a rich and connected skeleton and using various
simplification levels to regularize the skeleton.

To build γ1, we need two feature points f1 and f2. Two issues exist here: (1) Com-
puting the feature transform FT (x) on digital shapes cannot be done via Eqn. 3.3,
given the finite voxel grid resolution [139, 145]. To fix this, we compute the so-
called extended feature transform EFT (x) which finds all closest-points on ∂Ω
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to all 26 neighbors of x, and which is a superset of FT (x) [145]. From this su-
perset, we select exactly two feature points that best represent the symmetric em-
bedding of S∂Ω in Ω. For this, we select the two feature points {f1, f2} ⊂ EFT (x)
that maximize the angle f̂1xf2. We trace the ray used to find o by Bresenham’s
3D line-tracing algorithm on the voxel shape. We compute geodesics by Dijkstra’s
shortest-path algorithm on the connectivity graph of voxels of ∂Ω, using A∗ heuris-
tics to speed the search, and using edge weights that approximate neighbor-voxel
distances by Kiryati’s scheme [93] for better path-length accuracy. Finally, we re-
project Laplacian-smoothed points on the shape surface by using the fast ANN
library for finding nearest-neighbors [122].

f1

o new point o v

a) wrong (non-wrapping) cut b) refinement of point o c) refined (wrapping) cut

f2 f1 f2

Figure 3.3: Refinement of cut construction.

In a few cases, point o found as above lies in such a location with respect to f1
and f2 that the three geodesics γ1, γ2, and γ3 do not form a closed cut wrapping
around the surface skeleton, as intended. Figure 3.3 a shows such a situation. Here,
the direction of the geodesic from f1 to o is the same with the direction of the
geodesic from f1 to f2, or, in other words, the two geodesics share a common por-
tion. In contrast, the geodesics between f2 to o and between f1 and f2 are disjoint,
which is the intended configuration.

We solve this problem by an iterative ray-tracing procedure as follows. When
the situation is encountered (detected by finding of two of the three geodesics
overlap for more than one voxel), we create a new ray passing through the midpoint
v of the segment (x,o) and having the direction f1− f2, if the geodesic from f1 to
o is wrong; if the geodesic from f2 to o is wrong, we do the same, but use the
ray direction f2− f1. The new ray tracing yields a new location for the point o
(see Fig. 3.3 b) which is tested as described above. We repeat the process until
we obtain a wrapping cut (Fig. 3.3 c). The process typically converges after a few
iterations.

We also experimented with a different way to compute cuts, based on planar
slicing. For a skeleton point x, having feature points f1 and f2, consider the case
when x, f1, and f2 are not colinear – that is, the two feature vectors of x form an
angle different from 180 degrees. In such case, the above-mentioned three points
define a unique plane π . A cut γ = ∂Ω∪π can then be defined as the intersection
of the shape’s surface with the plane. In discrete voxel space, computing γ should
be done carefully, so as to avoid disconnections, non-smooth regions, or regions
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where the curve is thicker than one voxel. This can be done by considering two
parallel planes π+ and π− separated by a distance of

√
3, located in both half-

spaces determined by π . The intersection of π+ and π− with ∂Ω thus creates a
band Bπ of voxels of local thickness

√
3 – or, in other words, the intersection of

π+ and π− with the volume Ω creates a thick slice. Figure 3.4a shows (in cyan)
an example of such a thick slice. The thick band may be, at places, thicker than
one voxel, but is guaranteed to be connected. We can next extract our desired
cut γ from Bπ as follows. We trace a shortest path γ1 between f1 and f2 using
Dijkstra’s algorithm over the voxels in Bπ , and mark all voxels in Bπ which are
visited during the shortest-path tracing process as blocked. Next, we trace a second
shortest path γ2 over the non-blocked voxels remaining in Bπ . Given the blocking,
γ2 will connect f1 and f2 so as to form a closed curve, when taken together with γ1.
The final cut is thus γ = γ1∪ γ2. Figure 3.4b shows an example of such a cut.

a) b)

skeleton

point o

Figure 3.4: a) Thick slice (in cyan) created for a skeleton point. b) Planar cut (in yellow)
created by our slicing algorithm.

The slice-based cut method is faster than the geodesic-tracing method described
earlier, as the Dijkstra search for the shortest path must now consider only the thin
band Bπ rather than the entire surface ∂Ω. Also, it generates globally straighter
cuts – the deviation from a globally geodesic curve being equal to the negligible
thickness of the band band Bπ . Such a global geodesic property cannot be guaran-
teed by our earlier geodesic-tracing method, which, as explained in Sec. 3.3.2.1,
generates only piecewise geodesic cuts. However, the slice-based method does not
work when the points f1, f2, and x are colinear. Such cases do occur, consider e.g.
the skeleton of a box shape. A good way to combine the two cut methods is to test,
for each skeleton point x, for the colinearity condition. If this does not hold, we
can use the faster slice-based cut construction; if it does, we revert to the slower,
but more general, three-piece geodesic cut construction.
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3.3.3 Cut space analysis

We can create a cut c(x) for any voxel x of a shape’s medial surface S∂Ω, which
has good properties for PBS. Intuitively, c(x) is a good way to cut the shape at
point x, if we want a cut there. We now must decide where we want to cut to get
a PBS with desired global properties. Let S = {c(x)|x ∈ S∂Ω} be the space of all
cuts created from S∂Ω. Given our cut properties, cuts on the same shape-part share
similar properties e.g. orientation and length. Cuts for different parts have different
properties. Consider our hand model: Finger cuts are short; wrist cuts have average
length; and palm cuts are longest. For a shape consisting of a rump and protruding
parts, cuts for parts are shorter than cuts for the rump.
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(wrist)
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(palm)
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(wrist-palm
separation)

cut length

Figure 3.5: Cut-length histogram for the hand model (Sec. 3.3.3).

We use these insights to partition S in subsets Si so that ∪iSi = S and Si∪
S j 6=i = ∅ by using the histogram of cut lengths over S . Histogram peaks show
large similar-length cuts, so partitioning it by thresholds in the valleys between
peaks gives our desired subsets Si. To find such thresholds robustly, we filter the
histogram by mean shift [36] to ‘sharpen’ the cut-distribution and separate peaks
from valleys more clearly. We define a peak as a histogram value ex‘ceeding λ

times the cut count ‖S ‖, and a valley as a value less than µ = λ/3. Setting λ =
0.01 gave good results for all shapes we tested our method on. Figure 3.5 shows
the cut-length histogram for the hand model. Its three main peaks describe cuts
on the fingers, wrist, and palm; the two valleys give the two thresholds needed to
separate fingers from the palm and the palm from the wrist.

We initially used the average Hausdorff distance between a cut and its neighbor
cuts to classify cuts. However, we observed that this distance does not capture the
length similarity of cuts well enough. We also experimented using the maximum
length ratio between a cut and its neighbor cuts in order to classify cuts. How-
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ever, the results were also not positive. We also tried a third variant to partition the
histogram using Otsu’s method [126]. However, in its original form, this method
only works for histograms having two peaks. Overall, the histogram partitioning
scheme given above produced significantly better results than these two early ex-
periments.

Subsets Si do not (yet) coincide with our desired segments. Indeed, an Si can
contain logically disjoint cuts of similar lengths – e.g. all cuts on the fingers (blue
in Fig. 3.2 e) are in the same subset. Also, S does not fully cover ∂Ω, since we
compute it from the simplified medial surface. This is shown by the gaps between
cuts in Fig. 3.2 d. To fix this, we first define a cut c(x) as being a border Bi of
subset Si if c(x) belongs to a different subset than any of the cuts c(y), where
y are the 26-neighbors of x on S∂Ω. Using this definition, we find the set of cuts
{Bi} that represent the borders of our final segments (Fig. 3.2 f). Note that, if
a cut is marked as border, at least one of its neighbor cuts will be in a different
cut subset, by definition. Hence, that neighbor cut will also be a border, so more
than one border will be produced from a 32 voxel neighborhood. To remove such
duplicates, we keep, for each such neighborhood, the shortest border.

We compute our final segments by finding the connected components of ∂Ω

separated by borders, via a flood-fill algorithm on ∂Ω (Fig. 3.2 g). To this end,
we dilate the border cuts a few voxels, to make sure that the flood-fill will not
‘leak’ between the connected components they aim to separate (see Fig. 3.6a). As
seeds for the flood fill, we use neighbor voxels of the dilated border voxels (see
Fig. 3.6b). Finally, we assign the voxels of the dilated cuts to the resulting segment
in a nearest-neighbor fashion. This way, we obtain an exact partitioning of ∂Ω,
where every voxel is assigned to one and only one segment.

 !"#$% &'#( dilated border

 !!" a) b)
seeds

Figure 3.6: Flood fill for segment detection. a) Dilated border curves, in gray. b) Seed
points close to borders, in blue.
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To visualize the segmentation, we can render the voxel surface ∂Ω color-coded
with segment IDs. However, this would yield a poor quality image, especially at
low voxel resolutions. Moreover, comparing such images with mesh segmentations
would artificially make it look worse, due to the low rendering quality. As such, we
visualize the segmented surface using a splatting technique: For each voxel center
x, we define a round splat, implemented as an OpenGL point primitive with radius
equal to about the size of a voxel in screen space. Next, we estimate the normal
n(x) that the original surface ∂Ω would have at point x. For this, let B(x,R) be a
ball of radius R centered at x, and let X(x) be the set of voxel centers on ∂Ω which
fall within B(x,R). Let ei, 1≤ i≤ 3, be the eigenvectors computed by PCA analy-
sis on the point set X(mathb f x), in increasing order of their eigenvalues λi. Then,
the normal n(x) corresponds to the normalized value e1/‖e1‖. In cases where the
PCA decomposition delivers λ1 = λ2, i.e. the structure of the point set X(x) is
not locally well approximated by a surface, we simply set n(x) to the value of the
normal of the nearest voxel where the PCA analysis yielded a consistent normal.
Finally, having the normal information, we render the OpenGL points using clas-
sical Phong shading. Figure 3.7a shows the result of this rendering method. As we
can see, voxelization artifacts are barely visible. We will use this rendering method
to show our segmentation results next in Sec. 3.4.

As a side observation, we found an interesting connection between the the cut
space and the curve skeleton of a shape. Figure 3.7 shows this. Here, the blue
points represent the centers of all cuts in the cut space of the hand shape, defined
as the average positions of all voxels on each cut. Yellow points show the curve
skeleton of the same shape, as computed by the method in [83]. As visible, along
tubular regions of the shape, such as the fingers and wrist, the two sets of points
coincide quite well. This indicates, implicitly, that our cuts will produce a similar
segmentation to methods that use the curve skeleton to place geodesic-like parti-
tioning borders between segments, e.g, [141].

3.4 R E S U LT S A N D C O M PA R I S O N

We have tested our method on several shapes provided as 3D polygon meshes, vox-
elized by binvox [123] at resolutions up to 4003 voxels. Figure 3.8 compares our
results with [141], the best medial-descriptor voxel PBS method we know. We get
very similar results, but find more fine-grained segments than [141] – see finger and
ear details of the animal models, pig tail, dragon spikes, and microscope lens. Seg-
ment borders are smooth and locally orthogonal to the shape’s symmetry axis, i.e.,
similar to how a human would cut the shape at the respective places. Our method
finds segments of various sizes, ranging from details (dragon’s tail, hound’s ears),
to large parts (limbs of various models). Figure 3.9 a-k compares our method with
eight PBS methods on two shapes [10, 100, 103, 105, 107, 140, 141, 201]. Here,
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Figure 3.7: Relation of the curve skeleton (yellow) of a shape with the centers of the cuts
in its cut space (blue).

Reniers et al. (1) denotes [140], and Reniers et al. (2) denotes [141]. These meth-
ods span from voxel-based to mesh-based, and use various segmentation heuristics
(skeleton, curvature, salience, and topology-based). We argue that our method cre-
ates equally or, in some cases, more plausible PBSs. Since both our method and
[141] use medial descriptors, computed by the same underlying method [145], a
relevant question is how the two methods differ. We use (a) medial surfaces, while
[141] uses curve skeletons; and (b) we find segment borders by analyzing all pos-
sible cuts, while [141] places such borders around the curve-skeleton branch junc-
tions. Fig. 3.9 l-p shows five examples where the public implementation of [141]
fails to segment at all. We find two causes for this: The shape parts in Fig. 3.9 l can-
not be well described by curve-skeleton branches, as they are nearly rotationally
symmetric. As few (if any) such junctions exist, [141] fails. The shape in Fig. 3.9 n
is described by a mix of medial surfaces (base plate) and curve skeletons (tubular
parts). As [141] only uses curve skeletons, data on the base plate is incomplete or
missing. For the shapes in Fig. 3.9 m-p, the many heuristics in [141] to select cuts
centered on the curve-skeleton fail, as they imply that such cuts should be nearly
planar. This does not happen for the above shapes.

We can also produce a multiscale PBS: For this, we simply change the values of
λ and µ used to partition the cut space via its length histogram (Sec. 3.3.3). High λ

values and low µ values yield fewer and more differentiated segments (in terms of
local thickness); closer values of lambda and µ yield a finer-grained segmentation.
Figure 3.9 r shows three such scales for the armadillo shape.

Our method is pose invariant, as illustrated in Fig. 3.9 s. Indeed, our cut space
histogram captures local shape thickness, which does not depend on pose.
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Our method

Reniers et al.

Our method

Reniers et al.

Our method

Reniers et al.

Figure 3.8: Part-based segmentations of our method vs Reniers et al. [141] (Sec. 3.4).

Table 1 shows the time for creating cuts (tcuts), medial surfaces (tskel), cut
space analysis (tspace), our total time (ttotal), and total time for [141] (tReniers), for
our method coded in C++ on an 8-core 3.5 GHz PC. Empty cells (tReniers) show
shapes where [141] failed. As cuts are computed independently, we parallelized
our method by pthreads, getting a speed boost factor of 7, close to the optimal
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value of 8 for our hardware. Compared to [141], on the same hardware, we are
slightly faster in most cases, and can successfully segment all tested shapes.

a) Liu and Zhang b) Lien et al. c) Attene et al. d) Tierny et al. e) Reniers et al. (2) f) Our method

g) Li et al. h) Lee et al. i) Reniers et al. (1) j) Reniers et al. (2) k) Our method 

l) screwdriver m) heptoroid n) engine part o) neptune p) lion

r) multiscale segmentation, three different scales, armadillo model s) pose-invariant segmentation

Figure 3.9: Comparison of our method with eight PBS methods (a-k). Our results for
shapes where Reniers et al. fails (l-p). Multiscale (r) and pose-invariant (s)
segmentations.

3.5 D I S C U S S I O N

We next discuss several aspects of our proposed part-based segmentation method.

Global search: We create a PBS by finding all part-inducing cuts from the medial
surface, and selecting a cut-subset by globally optimizing for part-similarity as
captured by cut lengths. In contrast to purely topological PBS methods [140, 141],
we search a much wider space of possible partitionings; yet, our search space
is much smaller than that of other methods which look for cuts of any possible
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Shapes cuts ‖S ‖ voxels ‖Ω‖ voxel volume tcuts tskel tpart ttotal tReniers

Dragon 2789 283238 400*400*400 50.8 1.90 0.03 52.73 40.26

Hound 1530 245759 300*300*300 23.24 1.51 0.01 24.76 25.1

Hyptoroid 4873 651478 400*400*400 400.5 3.36 0.04 403.90 -

Fertility 1354 199581 300*300*300 20.85 2.02 0.01 22.88 22.89

Gargoyle 488 129420 300*300*300 12.62 3.26 0.005 15.885 69.89

Microscope 1397 307863 300*300*300 44.14 1.58 0.01 45.73 198.02

Lucy 6201 1.04×106 300*300*300 68.01 0.63 0.09 68.73 12.7

Engine part 1501 135416 300*300*300 15.55 0.27 0.01 15.83 -

Frog 41450 1.20×107 300*300*300 808.2 2.48 2.16 812.8 36.93

Screwdriver 1372 306480 300*300*300 13.14 0.60 0.01 13.75 -

Noisydino 1375 194117 300*300*300 14.79 1.19 0.015 16.00 20.2

Cow 1009 143938 256*256*256 8.15 0.96 0.01 9.12 14.34

Neptune 1908 211723 420*185*251 34.7 1.22 0.02 35.94 -

Airplane 741 76700 300*300*300 6.00 0.28 0.08 6.37 -

Bird 476 45638 300*300*300 2.28 0.18 0.003 2.47 7.98

Hand 584 58071 200*84*140 2.15 0.22 0.004 2.37 -

Lion 2181 381968 300*300*300 23.16 1.08 0.02 24.27 -

Horse 884 109555 142*300*251 9.58 1.24 0.008 10.83 -

Pig 959 145215 300*300*300 10.97 1.51 0.01 12.50 22.26

Dog 1241 184805 300*300*300 15.65 1.29 0.02 16.97 18.87

Hippo 838 166932 300*300*300 12.13 2.41 0.01 14.55 25.18

Rhino 1746 403399 300*300*300 25.20 2.15 0.03 27.39 -

Armadillo 2242 436933 300*229*252 47.55 2.67 0.03 50.26 -

Table 1: Shape sizes and segmentation times by our method and Reniers et al. [141].

orientation [74], thereby achieving a good flexibility-performance balance.

Simplicity: In our approach, we can use any medial surface skeletonization
method, e.g. [7, 148, 175], as long as it outputs regularized skeletons. This makes
our method applicable to mesh-based shapes (and their medial surfaces) [82].

Regularization: We use regularized medial surfaces (Sec. 3.3.1) having voxels
with large MGF values, which have far-apart feature points f1 and f2. This ensures
that the ray casting used to compute cuts robustly finds cuts that wrap around the
medial surface (Sec. 3.3.2).

Multiscale: Multiscale PBS occurs at two levels: (1) Simplified medial surfaces
yield cuts only for important shape parts; (2) The cut histogram analysis parame-
ters λ and µ select the level-of-detail where we search for cut-length differences.
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Pose invariance: Our method is pose-invariant [141, 176], as shown by the model
in Fig. 3.9 s (which is also used in [176] to show pose invariance).

Robustness: We robustly segment noisy or detail-rich surfaces, e.g. dragon and
dino (Fig. 3.8) or lion (Fig. 3.9). Segment borders are smooth by construction
(Sec. 3.3.2). Since our segmentation uses a subset of these cuts, and only consid-
ers integral cut properties (length) rather than differential ones (e.g. curvature),
noise and/or small-scale details are robustly handled.

Limitations: Our method’s cost is O(‖S∂Ω‖‖∂Ω‖log‖∂Ω‖). As our method par-
allelizes easily (Sec. 3.4), its practical cost is similar to other skeleton-based PBS
method [140, 141] or cut-based methods [74]. For space constraints, we compare
with only eight related methods. More PBS methods exist, and quantitative metrics
can be further used to measure segmentation quality [110]. Yet, even without such
extra insights, we argue that our goal of showing that surface skeletons have added
value for PBS as opposed to curve skeletons is well defended.

3.6 C O N C L U S I O N S

In this chapter, we have presented a new method for part-based segmentation of
3D voxel shapes by analyzing the entire space of potential partitioning cuts con-
structed by using the shape’s medial surface. To our knowledge, our approach
is the first which uses medial surfaces for part-based segmentation, and thereby
shows the added-value of medial surfaces for segmentation, as opposed to the
well-known use of curve skeletons for the same task. We demonstrate our method
on a wide variety of 3D shapes, and compare it with eight related segmentation
methods.

As an extension of this work, different ways to partition the cut space can be
easily tried, e.g. bottom-up hierarchical clustering or cut similarities based on e.g.
curvature, eccentricity, and orientation. This would lead to an entire family of PBS
methods in a single simple implementation. Our cut-length histogram could be an
effective shape descriptor for retrieval and matching. Finally, implementing our
method for mesh-based shapes on the GPU should lead to large scalability in-
creases, in terms of the resolution of the shapes we can treat, and/or in terms of
computational speed. We discuss the realization of such a mesh-based segmenta-
tion method in Chapter 6.
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In Chapter 3, we have introduced the cut space of a 3D shape as a descriptor that
can be used to produce part-based segmentations of that shape. We have seen there
that the cut space can yield segmentations of articulated shapes of similar, or even
higher, quality as compared to other existing part-based segmentation methods. As
such, the cut space is a promising tool to support part-based segmentation. How-
ever, several aspects of the cut space construction, and the usage of the cut space
in shape segmentation, have not been fully explored. For instance, the actual ro-
bustness of the method in terms of setting its various parameters is still unclear.
Secondly, we have described several heuristics to handle corner-cases in the com-
putation of the cut space. However, such heuristics may not deliver the expected
results in all cases (for all shapes).

In this chapter we present a refinement of the cut space computation method
(and its usage for shape segmentation) introduced in Chapter 3, with the aim of
improving upon the above limitations. Specifically, we replace the histogram seg-
mentation presented there by a more robust, and easier to use, clustering-based
segmentation. This allows us also to produce multiscale segmentations of a shape.
Secondly, we present a detailed analysis of the parameter space of the method,
showing how its behavior can be influenced by different parameter values to obtain
different results. Thirdly, we present ways to improve the computational perfor-
mance, and compare our results with additional methods and on additional shapes.
Finally, we present a new application of the cut space for interactive shape seg-
mentation and editing.1

4.1 I N T RO D U C T I O N

Shape segmentation aims to decompose a 3D shape into a set of parts that obey
certain application-related properties, and is used in many contexts such as im-
age analysis, registration, content-based retrieval, and 3D modeling [167]. Patch-
based segmentation detects quasi-flat segments whose borders follow local cur-
vature maxima on the shape surface, and is most used for faceted shapes [142].
Part-based segmentation follows a semantics-oriented approach, aiming to find

1 The text of this chapter is based on the paper: Improved Part-Based Segmentation of Voxel Shapes
by Skeleton Cut Spaces, Mathematical Morphology – Theory and Applications, vol. 1, De Gruyter,
2016, pp. 60-78.
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shape parts that one would intuitively perceive as being logically distinct, and is
used for natural shapes [140].

For a shape Ω ⊂ R3, part-based segmentations (PBS) using partitioning cuts
create a set of cuts c ⊂ ∂Ω that divide the shape boundary ∂Ω into disjoint parts.
Desirable PBS properties, e.g. smoothness, orientation, tightness, and position of
the cuts that create segments, can be stated in terms of the cut-set B = {c}. Finding
a good segmentation is thus mapped to finding a cut-set B having such properties,
a hard problem due to the high dimensionality of the cut space.

We present a new way to produce PBS of 3D voxel shapes by skeleton cuts.
First, we construct, at any shape point, a cut that is locally and globally smooth,
tightly wraps around the surface, is self-intersection free, and is locally orthogonal
to the shape’s local symmetry axis. For this, we use the shape’s medial surface.
Next, we construct the cut space S ⊂ ∂Ω that contains all such cuts for a given
shape. We extract the cut-set B ⊂ S yielding our PBS by analyzing the global
distribution of cut properties over S . We demonstrate our method on a variety of
3D shapes and compare our results with eight existing PBS methods. Our proposal
shows that medial surfaces can be efficiently and effectively used to construct PBS
segmentations of 3D shapes. This makes this type of skeletal descriptors, which are
so far rarely used in shape-processing applications, more interesting for practical
purposes.

In this chapter, we extend the related segmentation framework proposed in Chap-
ter 3, and published in [60], with the following main contributions:

• We present a clustering-based segmentation technique using the shape cut
space, which works more robustly, and is easier to use, than the earlier
histogram-based technique in [60];

• We present a detailed analysis of the parameter space of the entire pipeline,
which allows us to find good preset values for the method’s free parameters,
and also gives detailed insight in the method’s behavior;

• We present a new application of our cut space segmentation technique for
the interactive, user-driven, segmentation of 3D shapes.

Besides these main contributions, we also present a number of technical im-
provements in terms of computational performance and robustness of the cut con-
struction that make our method competitive in speed and quality with related state-
of-the-art methods.

The structure of this chapter is as follows. Section 4.2 reviews related work.
Section 4.3 presents the basic method and our proposed enhancements. Section 4.4
shows how we can use our method for interactive part-based segmentation of 3D
shapes. Section 4.5 presents the parameter space analysis. Section 4.6 illustrates
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our method on a wide variety of 3D shapes and also compares it with related
methods. Section 4.7 discusses our method. Section 4.8 concludes the chapter.

4.2 R E L AT E D W O R K

Two main segmentation approaches for 3D shapes exist [1, 11, 168]: Patch-based
methods segment a shape’s surface into quasi-flat patches bounded by sharp sur-
face creases, and are suitable for synthetic shapes such as polyhedral models cre-
ated by CAD-CAM applications. Part-based segmentation (PBS), our focus, cuts
a shape’s surface into its logical components. Such methods are suitable for shapes
formed of articulated parts, e.g. human bodies, plants, and other natural structures
that exhibit a part-whole hierarchical structure.

Most PBS methods find segments along what a human would see as logical
shape parts, in two steps: (a) find where to cut a shape to isolate a part; and (b)
find how to build a cut, once its location is set. These steps are addressed in dif-
ferent ways, as follows. Attene et al. segment a shape by fitting primitives from a
predefined library to the shape’s polygonal surface in a minimal-cost way. This ap-
proach works best when reverse-engineering shapes produced by CAD-like mod-
eling, but less well for organic shapes [10]. Lee et al. construct partitioning cuts
on a surface mesh by analyzing local mesh features such as curvature and centric-
ity, using snakes to optimize for cut smoothness [99, 100]. Liu et al. encode the
local similarity of faces in a mesh into an affinity matrix which they next decom-
pose by spectral clustering to yield a segmentation [107]. Many similar clustering
methods exist, such as based on algebraic multigrid clustering of the surface cur-
vature matrix [34], or the fuzzy clustering approach in [87]. In a related way, mesh
models can be segmented by watershed approaches applied to their surface cur-
vature [114, 127]. An important issue of all clustering methods is that it is very
hard to explicitly enforce global properties on the resulting cluster borders, which
ultimately define the segmentation result.

As the topology of the shape skeleton or medial axis matches the part-whole
shape structure [172], many methods use medial axes to place cuts. Au et al. use
curve skeletons [12], where each skeleton branch maps to a part. Cuts are built by
optimizing for cut concavity and length via minimal cuts [88]. Golovinskiy et al.
create a large randomized cut-set and find part borders as the cuts on which most
surface edges lie [74]. Shapira et al. note that skeletonization and segmentation are
related, and compute a scalar shape-diameter function (SDF) on the shape surface
to segments as surface faces with similar SDF values [169]. Their SDF function
is related to approaches which compute histograms of shape thickness for shape
retrieval tasks [109, 160]. Conversely, Lien et al. use shape decomposition to com-
pute progressively refined curve skeletons [105]. Tierny et al. segment shapes hier-
archically by topological and geometrical analysis of their Reeb graphs, which are
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similar to curve skeletons [201]. Chang et al. compute shape medial surfaces, sep-
arate their manifolds, and back project each manifold on the shape surface to find
a segment [28]. A similar segmentation method, using high-resolution point-cloud
skeletons computed on the GPU [82] along the method of Reniers et al. [145], is
proposed in [98]. Similar high-resolution surface and curve skeletons can be com-
puted in voxel space using an advection model [83]. However, such skeletons have
not yet been used for segmentation purposes. Dey and Sun extract curve skeletons
as the maxima of the medial geodesic function (MGF) which encodes the length
of the shortest path between feature points of points in the shape [44], and segment
tubular parts as those which minimize the eccentricity of such paths. Reniers et al.
generalize the MGF metric to extract simplified surface and curve skeletons [145],
and next construct a part for each branch of a shape’s curve skeleton [140]. Part
borders correspond to curve-skeleton junction points, and are created by short-
est paths traced on the shape surface around these junctions [44]. However, curve
skeletons can contain many spurious junctions which change widely when the
shape is slightly perturbed. Reniers et al. alleviate this by heuristics that shift cut-
points along the curve skeleton to optimize for cut stability and planarity [141].
Yet, this method cannot segment shapes of large geometric, but little topological,
variability, like a pawn chess piece: Its curve skeleton has no junction points, so
[141] cannot separate the pawn’s head, body, and base, although these have differ-
ent thicknesses.

Summarizing, the two elements of a good PBS (where to cut, and how to cut)
are targeted in complement by different methods: Skeleton-based methods con-
struct good partitioning-cuts efficiently, e.g. by shortest-paths [44, 141]. Yet, curve
skeletons do not encode enough of the shape geometry. Global search methods
that analyze a wide set of shape cuts offer good ways to select where to parti-
tion [74, 169]. Yet, they do not offer explicit constraints for the cut shapes, and
exhaustive cut space search is expensive. Our method combines the advantages of
the two above classes of methods, while minimizing their limitations.

4.3 M E T H O D

Our method has a simple intuition: Say we want to cut the shape in Fig. 4.1a close
to points A . . .E. Which properties should these cuts have to yield a ‘natural’ PBS?
In other words: How would a human draw such cuts? Figure 4.1 a shows five un-
desirable cuts: A is noisy, although it crosses a perfectly smooth surface zone; B is
self-intersecting; C and D are too loose (long); and E is unnaturally slanted – a hu-
man asked to cut the shape at that point would arguably do it so across the finger’s
symmetry axis. Figure 4.1 b shows five cuts for the same points, computed with
the method in this chapter. We argue that these cuts are more suitable for PBS than
those in Fig. 4.1 a, as they are (1) tight, (2) locally smooth, (3) self-intersection
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free, (4) and locally orthogonal to the shape’s symmetry axis. An additional prop-
erty that cuts should satisfy is (5) being closed curves, so that they divide the
shape’s surface into different parts. Note that these properties follow well-known
perceptual principles that model how humans understand shape and its parts, such
as the minima and short-cut rules [23, 77, 177].

We construct such cuts as follows: First, we compute a simplified medial surface
of the input shape (Sec. 4.3.1). For each medial point, we next construct a cut
having the above properties (Sec. 4.3.2). This answers the question “how to cut”.
By analyzing the resulting cut space, we next select a cut-set that gives us the
borders of salient shape-parts (Sec. 4.3.3). This answers the question “where to
cut”.

A

B

C

D

E

a) b)

low

importance

high

importance

c)

Figure 4.1: Possible cuts for part-based segmentation. Suboptimal cuts (a). Cuts created
by our method (b). Medial surface colored by its importance metric (c).

4.3.1 Skeletonization

For a binary shape Ω ⊂ Z3 with boundary ∂Ω, its Euclidean distance transform
DT∂Ω : Ω→ R+ is

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (4.1)

The medial surface, or surface skeleton, of ∂Ω is next defined as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (4.2)

where f1 and f2 are the contact (or feature) points with ∂Ω of the maximally in-
scribed ball in Ω centered at x [71, 148, 172]. These, in turn, define the so-called
feature transform FT∂Ω : Ω→P(∂Ω)

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖. (4.3)

Medial surfaces are sensitive to small-scale noise on Ω, especially when using
voxel-based models to sample the embedding space. To alleviate this, medial sur-
faces can be regularized by a computing a so-called importance metric ρ : S∂Ω→
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R+, such as the medial geodesic function (MGF), which sets ρ(x) to the length of
the shortest path on ∂Ω between the two feature points of x [44, 145]. As the MGF
monotonically increases from the medial-surface boundary to its center, upper
thresholding it by a minimal importance ρmin yields connected and noise-free sim-
plified medial surfaces (though tunnel preservation requires additional work) [145].
Figure 4.1c shows a regularized medial surface obtained by upper-thresholding the
MGF metric in [145].

4.3.2 Cut model

The first step of our PBS is to compute a rich set of cuts, or cut space S , which
all satisfy properties (1-5) listed in Sec. 4.3. To build a cut c ∈ S , consider a
point x ∈ S∂Ω. Here and in the following, we use for S∂Ω the simplified surface
skeleton of Ω, obtained by upper-thresholding the MGF importance metric by a
given value ρmin. By definition, x has at least two feature points f1 and f2 on ∂Ω

(Eqn. 4.2). Consider, for now, that there are precisely two such points. We first
trace the shortest path γ1 ⊂ ∂Ω between f1 and f2 (Fig. 4.2a), whose length is the
MGF value for x (Sec. 4.3.1). Next, we find the midpoint m of γ1, i.e. the voxel of
γ1 furthest in arc-length distance from both f1 and f2. We then trace a ray through
x and oriented in the direction x−m, and find the point o where this ray ‘exits’
Ω (Fig. 4.2b). Intuitively, o is on the ‘other side’ of S∂Ω as opposed to m. Finally,
we trace the two shortest paths on ∂Ω connecting (f1,o) and (f2,o) respectively
(Fig. 4.2 c,d). Our final cut c for point x is given by γ1∪ γ2∪ γ3.

While c is piecewise geodesic (so locally smooth), it can be non-smooth at the
three endpoints f1, f2 and o of γi. Also, our construction does not globally make c as
tight as possible. To fix both issues, we perform 5 iterations of constrained Lapla-
cian smoothing over c, with a kernel size of 10 voxels. We prevent c leaving the
surface by reprojecting its voxels to their closest points on ∂Ω after each iteration.
This smooths out possible ‘kinks’ at f1, f2 and o, thus making c globally smooth
and tight. If such kinks are very small or inexistent, smoothing has no effect, as c
is globally geodesic. In that case, Laplacian smoothing shifts c’s points along the
surface normal, since c’s acceleration c′′ is normal to the surface, so reprojection
moves the smoothed points back to their original location.

4.3.2.1 Cut properties:

Our cuts meet the desired properties we require for PBS, as follows:

1. Tight: Cut parts γi are piecewise-geodesic, thus shortest curves on ∂Ω. Also,
the constrained Laplacian smoothing shortens potential kinks present at the
geodesic endpoints f1, f2, and o, thus making the entire c wrap tightly around
the shape;
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a) construction of γ1
b) ray tracing

c) construction of γ2 d) construction of γ3

e) cut subsets Si
f) subset borders Bi g) final segmentation
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Figure 4.2: Cut construction (a-d) and cut space analysis (e-g) for part-based segmenta-
tion.

2. Smooth: Smoothness is guaranteed by the same properties as for tightness,
i.e., piecewise geodesicness and constrained Laplacian smoothing;

3. Self-intersection free: c is a geodesic triangle (three geodesics linking three
different points on ∂Ω) whose edges do not intersect except at endpoints, by
definition;

4. Locally orthogonal to the symmetry axis: The cut c(x) surrounds the medial
surface S∂Ω around point x, by construction. Hence, it also surrounds the so-
called curve skeleton of ∂Ω, which is a 1D structure locally centered within
S∂Ω with respect to its boundary ∂S∂Ω. While we do not have a formal proof
of local orthogonality, we observed in practice that our construction always
creates cuts that are visually orthogonal to the curve skeleton;

5. Closed: The cut c is a closed (Jordan) curve by construction.

4.3.2.2 Implementation

Our method requires the efficient and robust computation of regularized medial
surfaces for 3D voxel shapes. For this, we tested the methods in [145] and [83].
As also described in [83], both methods produce very similar medial surfaces, and
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also deliver a skeleton importance metric, required to simplify skeletons to e.g.
eliminate noise or small details. As the method in [83] is on average 10 times
faster, we use this technique to compute our surface skeletons.

To build γ1, we need two feature points f1 and f2 for each medial surface point
x. Two issues exist here: (1) Computing the feature transform FT (x) on digital
shapes cannot be done via Eqn. 4.3, given the finite voxel grid resolution [139,
145]. To fix this, we compute the so-called extended feature transform EFT (x)
which finds all closest-points on ∂Ω to all 26 neighbors of x, and which is a super-
set of FT (x) [145]. From this superset, we select exactly two feature points that
best represent the symmetric embedding of S∂Ω in Ω. For this, we select the two
feature points {f1, f2} ⊂ EFT (x) that maximize the angle f̂1xf2. We trace the ray
used to find o by Bresenham’s 3D line-tracing algorithm on the voxel shape. We
compute geodesics by Dijkstra’s shortest-path algorithm on the connectivity graph
of voxels of ∂Ω, using A∗ heuristics to speed the search, and using edge weights
that approximate neighbor-voxel distances by Kiryati’s scheme [93] for better path-
length accuracy. Finally, we reproject Laplacian-smoothed points on the shape sur-
face by using the fast ANN library for finding nearest-neighbors [122].

f1

o new point o v

a) wrong (non-wrapping) cut b) refinement of point o c) refined (wrapping) cut

f2 f1 f2

Figure 4.3: Refinement of cut construction.

In a few cases, point o found as above does not lie on the opposite side of
S∂Ω with respect to m, so the resulting cut will not wrap around the medial sur-
face (Fig. 4.3 a). When this happens, we trace a ray in direction f1− f2 from the
midpoint v of the current ray, and set o to the voxel where this new ray exits Ω

(Fig. 4.3 b). If the new o still does not yield a wrapping cut, we repeat the refine-
ment (Fig. 4.3 c). This produces cuts wrapping around the medial surface for all
our test shapes within 3 up to 4 refinement steps.

4.3.3 Cut space partitioning

For any voxel x of a shape’s medial surface S∂Ω, we can create a cut c(x) which
has good properties for PBS. Intuitively, c(x) is a good way to cut the shape at
point x, if we want a cut there. We now must decide where we want to cut to get
a PBS with desired global properties. Let S = {c(x)|x ∈ S∂Ω} be the space of all
cuts created from S∂Ω. Given our cut properties, cuts on the same shape-part share
similar properties e.g. position, orientation, and length. Cuts for different parts
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have different properties. Consider our hand model: Finger cuts are short; wrist
cuts have average length; and palm cuts are longest. For a shape having a rump
and protruding parts, cuts for parts are shorter than cuts for the rump. We use these
insights to partition S in subsets Si so that ∪iSi = S and Si ∪S j 6=i = ∅. We
discuss next two ways to achieve this partitioning.

4.3.3.1 Histogram-based partitioning

A first way to do this is to use the histogram of cut lengths over S , as described
in [60]. This works as follows. Histogram peaks show large similar-length cuts, so
partitioning it by thresholds in the valleys between peaks gives our desired subsets
Si. Figure 4.4a shows the cut-length histogram for the hand model. Its three main
peaks describe cuts on the fingers, wrist, and palm; the two valleys give the two
thresholds needed to separate fingers from the palm and the palm from the wrist.
Figure 4.4b shows the final segmentation computed by partitioning the histogram
into the three aforementioned parts.
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Figure 4.4: (a) Cut-length histogram for the hand model. (b) Segmented hand model based
on left histogram (Sec. 4.3.3.1).

An important problem of the histogram-based partitioning is how to find its
valleys robustly and automatically. As visible in Fig. 4.4a, the cut-length histogram
is quite noisy, mainly due to the discrete nature of our cuts which are constructed in
voxel space. Hence, robustly finding these valleys is a delicate process. To decrease
the noise influence, we filter the histogram by mean shift [36]. This has the effect
of ‘sharpening’ the cut-distribution and separate peaks from valleys more clearly.
Following [60], we define a peak as a histogram value exceeding λ times the cut
count ‖S ‖, and a valley as a value less than a fraction µ of λ . Setting λ ' 0.01 and
µ ' λ/3 gives good results for a large range of shapes. However, problems appear
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for shapes having small-scale surface details. Such small details, on the one hand,
cause noise-level variations in the cut lengths; on the other hand, their cut counts
‖S ‖ are low, and thus separated from each other by very shallow, thus hard to
detect, valleys in the histogram. Figure 4.5 shows such an example. Here, ideally,
we would like to segment the limbs, head, and details (fingers, hears, muzzle)
of the armadillo model. The four instances in the figure show different results
obtained for quite similar values of λ and µ . All these results show various degrees
of over- or undersegmentation. A second issue of the histogram-based partitioning
is that it does not offer an intuitive control of the parameters λ and µ: We cannot
easily determine optimal values for them based on the number of segments we
would finally like to obtain.

S1

λ=0.01

μ=0.4λ

S2 S2 S3S1

λ=0.006
μ=0.25λ

λ=0.006
μ=0.3λ

S2S1

λ=0.006

μ=0.6λ

S4S1 S5

S2 S3

Figure 4.5: Subsets and corresponding segmentations obtained for different values of λ

and µ (Sec. 4.3.3.1).

4.3.3.2 Clustering-based partitioning

To alleviate the aforementioned problems of histogram-based partitioning, we pro-
pose to partition the cut space S using a clustering approach. We first define a
dissimilarity function δ : S ×S → R+ as

δ (c1 ∈S ,c2 ∈S ) = α‖l(c1)− l(c2)‖+β‖x(c1)−x(c2)‖, (4.4)

where, for a cut c, l(c) denotes the cut length and x(c) denotes the location of
the skeleton-point from which c was generated, respectively (see Fig. 4.2); and
α ∈ [0,1] and β ∈ [0,1] are weight factors for the length, respectively distance,
components of δ . To allow for a meaningful comparison between cut-lengths and
cut-positions, we first normalize all cut lengths to the range [0,1] and the voxel
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shape to the range [0,1]3, respectively. The function δ will thus take low values for
cuts which are similar in length and close to each other, and high values for cuts
of different lengths and/or located far away over ∂Ω. Next, we use hierarchical
bottom-up agglomerative clustering to iteratively group all cuts in S , represented
by the distance matrix given by δ . During this process, the most similar two cut-
clusters, as determined by a so-called linkage function, are iteratively merged in
a new cluster, until a single cluster containing all cuts is obtained. This creates a
binary tree, or dendrogram, D. Full algorithm details, including a public implemen-
tation, are available at [78]. Cutting D at a desired level from its root next gives us
a set of nodes, which are precisely our partitions Si.

Compared to the histogram-based partitioning, the clustering-based method is
significantly more robust with respect to noisy cuts, as it has no thresholds or sim-
ilar parameters. The only end-user parameter it requires is the number N of parts
to create, which determines the level where to cut the dendrogram D. Compared
to the parameters λ and µ of the histogram-based method, specifying the desired
number of parts N is much simpler and more intuitive. As such, this is the method
of choice for constructing the partitions Si which we will use in the remainder of
this paper.

4.3.3.3 Segment border construction

Subsets Si do not (yet) coincide with our desired segments. Indeed, an Si can
contain logically disjoint cuts of similar lengths – e.g. all cuts on the fingers (blue
in Fig. 4.2 e) are in the same subset. Also, S does not fully cover ∂Ω, since we
compute it from the simplified medial surface (Sec. 4.3.2).This is shown by the
gaps between cuts in Fig. 4.2 d. To fix this, the method in [60] proposes to define
a cut c(x) as being a border Bi of subset Si if c(x) belongs to a different subset
than any of the cuts c(y), where y are the 26-neighbors of x on S∂Ω. Using this
definition, we can find the set of cuts {Bi} that represent the borders of our final
segments (Fig. 4.2 f). Note that, if a cut is marked as border, at least one of its
neighbor cuts will be in a different cut subset, by definition. Hence, that neighbor
cut will also be a border, so more than one border will be produced from a 3×
3× 3 voxel neighborhood. To remove such duplicates, we keep, for each such
neighborhood, the shortest border.

While this method finds borders located close to areas where different partitions
Si meet, it has problems for parts which meet along so-called ligature skeleton
branches [172]. To explain this, consider the situation sketched in Fig. 4.6a. The
skeleton S∂Ω consists here of three branches that correspond to the three shape
parts that meet at the central junction point. Consider now the vertical branch that
describes the thinner (red) part. The first part of this branch corresponds to so-
called regular skeleton points, which have a one-to-one mapping with the shape
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b) c)

regular points

ligature points

a)

∂Ω

S∂Ω

part 1

part 2

ligature branch

final border
between
parts 1 and 2

ligature-cut area

Figure 4.6: (a) Border construction problems for ligature regions. Part borders computed
by (b) the original method in [60] and (c) our new ligature-sensitive method
(Sec. 4.3.3.3).

surface ∂Ω via the feature transform FT∂Ω. The second part of this branch contains
ligature points (blue), which have a many-to-one mapping to ∂Ω, as also indicated
by the black feature vectors in the drawing. Ligature points do also generate cuts
in our cut space, like regular points. However, as compared to regular cuts, such as
the red and green ones drawn in the figure, ligature cuts are far less stable – they
can fall anywhere in the blue surface area indicated in the figure. Separately, note
that our desired red and green segments will meet precisely in this ligature area, so
their separating border, when computed by the method in [60], can fall anywhere
in this area.

We propose next a way to fix this problem. Consider two parts S1 and S2 which
are adjacent, i.e., have at least two neighbor cuts in the sense described earlier in
this section, e.g. the green and red parts in Fig. 4.6a. Let l1 and l2 be the average cut-
lengths over S1 and S2 respectively. We next decide that the border B separating
S1 from S2 should come from the part Si that has the smaller average-length li.
This heuristic models the idea that we want to cut the smaller part S1 as precisely
as possible from the larger adjoining part S2. To find the exact location of this
border, we proceed as follows. Let S1 be the part having the smaller average-
length, i.e., l1 < l2. We next collect all cuts P = {ci} ⊂S1 whose lengths l(ci) are
smaller than l1+a ·σ1, where σ1 is the cut-length standard deviation over S1, and
a is a constant set to 1.2 for all tested shapes. The set P skips the potential ligature-
cuts in S1, which are longer than regular cuts. From this candidate border-set P,
we next select the border B as being the cut which is geometrically closest to S2,
i.e. cuts S2 as closely as possible with respect to S2. This also favors creating
short borders, in line with requirement 1 (Sec. 4.3.2.1). For the shape in Fig. 4.6a,
this yields the border B indicated in the drawing, which is outside the ligature area
and is short. Figure 4.6 compares our new variance-based borders with the ones
produced by the original method in [60] for a shape having many ligature regions
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(e.g. palm-hand, arm-torso, and ears-head junctions). As visible, the new borders
separate the perceived shape segments better than the original ones, and are also
shorter, while producing the same overall segmentation (number and location of
parts).

a) original improved

d) original improved

b) original improved c) original improved

e) original improved

f) original improved

non-smooth
borders

undersegmentation

Figure 4.7: Comparison of original border construction [60] and improved ligature-
sensitive method (Sec. 4.3.3.3).

Once the part borders Bi are determined, we compute the final segments by
finding the connected components of ∂Ω separated by these borders, via a simple
flood-fill algorithm on ∂Ω, and visualize these segments, for illustration, by color-
ing them so that adjacent segments get different colors (see Fig. 4.4b and following
figures in the paper).
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4.3.3.4 Final results

Figure 4.7 shows several examples where we compare our improved segmenta-
tion pipeline (using clustering-based partitioning of the cut space and ligature-
sensitive border creation) with the original segmentation results in [60] (which
use histogram-based partitioning and the ligature-agnostic border creation). For
shapes (a,b,e) the new method removes the severe undersegmentation effects of
the old method which are due to the difficulty of finding appropriate histogram
thresholds λ and µ . For shapes (c,d), the new method removes the border instabil-
ity due to skeleton ligature points, and creates tighter and better oriented segment
borders. Image (f) shows that the new method detects more small-scale details and
also creates smoother segment borders (see markers in figure). Additionally, im-
ages (b,d,e) show that our method can handle shapes of genus larger than zero, i.e.,
having tunnels.

4.4 I N T E R AC T I V E S E G M E N TAT I O N F O R S H A P E E D I T I N G

While useful, fully automated segmentation is not a solution in many contexts.
Consider, for instance, the task of editing a 3D shape to e.g. enhance, deform, or
remove certain features. The main time-consuming part here is accurately selecting
the shape parts to process. This is typically done by interactive selection tools such
as 2D or 3D bounding boxes or lasso tools [116, 213]. While such tools are quite
efficient in a 2D setting, selecting details from complex 3D shapes still requires
considerable user effort [34, 208, 213].

We present next a method to assist the process of efficiently selecting parts of
a 3D shape using our cut space model. The key idea is simple: Given a 3D shape,
the user can select any salient protruding part thereof by simply clicking on it in a
2D rendering of the shape. Next, once such a part is selected in 3D, the user can
decide how to process the part, e.g., deform, remove, or paint it.

a) click to select x2D b) compute cut c(xS) c) slide cut upstream  
    along skeleton 

d) stop sliding when cut

    stretches over 30% 

e) final cut delivers the

    part segmentation

clicked point xSmedial surface S
∂Ωinput surface ∂Ω cut’s sliding direction final cut

Figure 4.8: Interactive segmentation pipeline, starting from clicking a surface point (a)
until obtaining the surrounding part (e).
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Our proposal works as follows (see Fig. 4.8). Given a 3D rendering of the input
shape Ω, the user clicks on a surface point x2D thereof, in a classical 2D rendering
of Ω (Fig. 4.8a). We next determine the corresponding 3D point x3D ∈ ∂Ω. Thirdly,
we find the closest surface-skeleton point xS ∈ S∂Ω to x3D, using the inverse of
the feature transform FT of ∂Ω, and construct the corresponding cut c(x3D), fol-
lowing the method outlined in Sec. 4.3.2 (Fig. 4.8b). This cut represents a way
to ‘slice’ the input shape based on the clicked location x2D. Assuming the user
clicked anywhere on a shape detail, this does not yet give us the entire shape detail
containing the point x3D. To segment this detail from the rest of the shape, we pro-
ceed as follows. Let ρ(xS) be the MGF importance of the skeleton point xS ∈ S∂Ω

(Sec. 4.3.1). We then move xS along the medial surface S∂Ω upstream, with a
distance of one voxel, in strictly increasing order of the medial-surface importance
ρ(xS) (Fig. 4.8c). Since the importance ρ increases monotonically from the medial-
surface boundary to its center [83, 145], the point xS moves strictly ‘upstream’
along the medial surface S∂Ω, towards the center of the skeleton S∂Ω, which is the
point of maximal importance [83, 145]. We stop this motion when the cut-length
‖c(xS)‖ for the current skeleton point xS increases over 30% as compared to the
previous skeleton point in this upstream motion process. Practically, this stops the
upstream motion of xS once the sliding cut reaches the location where a part joins
the main shape rump (Fig. 4.8d). Note that this location precisely corresponds to
a large negative-curvature loop on the shape surface, which in turn is exactly the
definition of the minima rules proposed by many researchers to segment protrud-
ing parts from a shape [23, 77, 88, 177]. When this event is detected, we use the
current cut c(xS) to separate the clicked shape part from the rump (Fig. 4.8e). Next,
any shape-processing operations can be applied on this separated part, as desired
by the user.

Figure 4.9 shows a simple example of such editing. Here, the user clicked three
times, once inside each detail marked in blue in Fig. 4.9a, top-row. Using our part-
selection procedure described earlier, we automatically select the three clicked
parts, i.e., the dragon’s horn, tail, and hind leg spike. Next, we apply a simple
erasing operation (for illustration purposes) to remove the selected details. Other
shape-editing operations can be applied with the same ease, as desired. The final
result is shown in Fig. 4.9b, top row. For comparison, Fig. 4.9 bottom-row shows
the selection and editing operations performed by the related method of Clarenz et
al. [34]. Our method achieves the same results, while being significantly simpler.
Indeed, Clarenz et al. need to compute a differential surface classifier, encode it
into a matrix, feed the matrix to an algebraic multigrid method that decomposes
the matrix into a multiscale representation, select a suitable multiscale level, and
threshold the basis functions representing the classifier on that level to find the
clicked segment (for full details, we refer to [34]). In contrast, we only need to
compute the shape’s medial surface, select a point on it, and slide the cut generated
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a) selection of parts b) edited model

Figure 4.9: (a) Model with selected parts in blue. (b) Model with deleted parts. Bottom
row: Method of Clarenz et al. [34]. Top row: our method.
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by this point upstream the medial surface until its length increases by a desired
threshold. Our interactive part selection method works in real-time as, upon a user
click, we only need to compute a few tens of cuts from consecutive medial-surface
points.

4.5 PA R A M E T E R A N A LY S I S

Our proposed segmentation pipeline involves several parameter values. For the
method to be practically usable, end users need to understand (a) how these pa-
rameters affect the segmentation results, and (b) what are good preset values
for them. In this section, we explore our method’s parameter space and thereby
address the above understanding goals. For this, we vary every parameter over
its allowable range while keeping all other parameters at their preset values, and
analyze the resulting segmentation results. The complete set of parameters of our
method is listed in Tab. 2 and discussed next.

Description Introduced in Allowed values Good preset

Skeleton simplification Sec. 4.3.2 ρmin ∈ (0,1) ρmin = 0.01

Cut dissimilarity δ Eqn. 4.4
{length–only (β = 0),
length–and–position (β > 0)} length–only

Linkage choice Sec. 4.3.3.2 {single,centroid, f ull,average} average

Input resolution Sec. 4.1 ‖Ω‖> 0 ‖Ω‖> 2003

Number of desired parts Sec. 4.3.3.2 N ∈ N>0 task-dependent

Table 2: Complete set of method parameters with optimal preset values.

Simplification level: We use a simplified surface skeleton S∂Ω so as to avoid cre-
ating cuts from irrelevant spurious skeleton branches. Besides this, simplification
allows removing skeleton details corresponding to small shape parts, to produce
coarser segmentations. Thirdly, using simplified skeletons reduces computation
time, as our method needs to create one cut per skeleton voxel. We empirically
found that a skeleton simplification level of ρmin = 0.01‖∂Ω‖ gives optimal re-
sults in terms of removing noise but keeping small shape details, and use this
value as default for ρmin. This result is in line with the independent observation
that the same simplification level yields noise-free skeletons that capture all sig-
nificant details of a 3D shape [145]. Additionally, simplified skeletons have voxels
with large importance values, which in turn implies far-apart feature points f1 and
f2 (see definition of the MGF importance metric in [44, 145]). This ensures that the
ray casting used to compute cuts robustly finds cuts that wrap around the medial
surface (Sec. 4.3.2). Figure 4.10 shows the effects of varying the simplification
level ρmin for the armadillo shape: Low ρmin values capture finer-scale shape parts,
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while higher values produce coarser segmentations.

ρmin=0.005 ρmin=0.01

ρmin=0.5

ρmin=0.1

ρmin=0.25

ρmin=0.05

Figure 4.10: Segmentation results as function of skeleton simplification level ρmin.

Linkage choice: Hierarchical bottom-up clustering works by iteratively merging
the two most similar cut-clusters. To compute the similarity of two clusters S1
and S2, a so-called linkage function is used [78]. Well-known variants hereof are
single linkage (the minimum of all pairwise distances between cuts in S1 and S2);
full linkage (the maximum of all pairwise distances between cuts in S1 and S2);
average linkage (the average of all pairwise distances between cuts in S1 and S2);
and centroid linkage (distance between the averages of cuts in S1 and S2). We
tested all four linkage strategies for the shapes presented in this paper. An example
is shown in Fig. 4.11. Single linkage yields no segmentation, since border-cuts are
shared by adjoining segments, so the single linkage of such segments is zero. Cen-
troid linkage typically produces a visible degree of undersegmentation, as the cut
averaging acts like a low-pass filter eliminating the effect of small shape details.
Full linkage, in contrast, yields a small amount of oversegmentation, due to the
maximum function involved in its computation. Finally, average linkage yields, in
all tested cases, a balanced segmentation. As such, we set average linkage as the
default value for our pipeline.

Dissimilarity function: As explained in Sec. 4.3.3.2, we construct partitions by
clustering by comparing cuts based on their length only or length-and-position, as
determined by the ratio of the parameters α and β in Eqn. 4.4. To test the effect
of these parameters, we fix α = 1 (since we always want to compare cut lengths),
vary β between 0 and 1, and analyze the produced segmentations. Figure 4.12
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a) single linkage b) centroid linkage c) average linkage d) full linkage

Figure 4.11: Segmentation results as function of the linkage method used in hierarchical
clustering.

shows several results. For testing, we use here a shape exhibiting both thick and
very thin parts and also having several elongated parts, so that both components
of the dissimilarity function δ become important (Eqn. 4.4). We see that, when
we use a non-zero importance β for the cut position (Fig. 4.12b), we obtain an
oversegmentation of the length-only result: Long tubular-like parts, such as the
trident shaft, torso, or limbs, are split into shorter segments. Also, we see a slight
undersegmentation of details which only slightly differ in terms of local thickness,
such as the bulge at the basis of the trident fork (Fig. 4.12a). Increasing β further
yields an undersegmentation of the length-only result (Fig. 4.12c), as close cuts
will be grouped in the same segment, regardless of their length – see e.g. the
grouping of the trident spikes or fingers in the same segment. If oversegmentation
of long tubular parts is not desired, then setting δ to length-only (β = 0) is a good
default value. This is the value used for all examples in this paper except Fig. 4.12.

a) α=1, β=0 b) α=1, β=0.5 c) α=1, β=1

undersegmentation
of small parts

undersegmentation
of small parts

oversegmentation
of tubular parts

Figure 4.12: Segmentation results as function of the dissimilarity function δ . (a) Length-
only. (b,c) Length-and-position.
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Resolution: As our entire pipeline works in voxel space, the sampling resolution,
or number of voxels used to represent our input shape, its skeleton, and the cut
space, is an important parameter to examine. Figure 4.13 shows the segmentation
results for four different resolutions. Overall, we see that the same segments are
detected in all four cases, which tells that our method is robust with respect to
sampling resolution. This is due to the fact that, once the used resolution is fine
enough to capture skeletal details corresponding to small shape parts, then seg-
ments for those parts will be detected. Separately, we notice however an effect
of the resolution in terms of smoothness of the produced cuts (see marked cut on
the armadillo torso in Fig. 4.13). Low resolutions produce less smooth cuts, since
the extended feature transform EFT of the input shape becomes inaccurate (see
Sec. 4.3.2.2), and thus the feature-points used in our cut construction get noisy.
As the resolution increases, so does the accuracy of our EFT in approximating
the true FT , and thus the cuts become smoother and more orthogonal to the local
symmetry axis of the shape. Combining the previous observations, we noticed, in
practice, that a resolution of 4003 voxels is sufficient to capture all salient shape
segments and also produce smooth and well-oriented cuts.

a) 200 x 200 x 200 b) 300 x 300 x 300 c) 400 x 400 x 400 d) 500 x 500 x 500

Figure 4.13: Segmentation results as function of the voxel resolution of the input shape.

Number of desired parts: The last parameter of our pipeline determines the num-
ber of desired parts to be produced by segmentation (value N, Sec. 4.3.3.2). This is
the single free parameter of our method. Its setting depends largely on the specific
application context, e.g., what is the scale of details that we consider relevant and
thus want to segment separately; and what is the amount of noise that is present
on the input shape, which we do not want to yield separate segments. As such, we
leave the setting of N to the end user. Segmentations for different N values can
be created interactively, since the most expensive part of our pipeline, skeleton
computation and cut creation, needs to be done only once for a given shape (see
Sec. 4.6, Tab. 3 next). Figure 4.14 shows three settings for N for two different
models which have a clear part-whole structure. As visible, increasing N produces
more detailed segmentations, in a multiscale fashion.
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Figure 4.14: Segmentation results for different numbers of desired parts (increasing from
left to right).

4.6 R E S U LT S A N D C O M PA R I S O N

To start with, Fig. 4.15 presents several results of our method on a set of simple
shapes. As visible, the produced segmentations are plausible, and, we argue, in
line with what other part-based segmentation methods deliver (and also what a
user would expect from these shapes).

To further evaluate our method, we consider several more complex shapes. We
have tested our method on over 70 shapes provided as 3D polygon meshes, from
the well-known shape repositories [2, 115], which we voxelized by binvox [123]
at resolutions between 1003 and 5003 voxels. Results and comparison with related
methods are discussed next.

Medial PBS methods: We first compare our results with [141], the best voxel-
based PBS method that we are aware of which also uses medial descriptors for
segmentation. We get very similar results, but find more fine-grained segments
than [141] – see finger and ear details of the animal models, pig tail, dragon spikes,
and microscope lens. Segment borders are smooth and locally orthogonal to the
shape’s symmetry axis, i.e., similar to how a human would cut the shape at the
respective places (Sec. 4.3). Our method finds segments of various sizes, ranging
from details (dragon’s tail, hound’s ears), to large parts (limbs of various models).
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Figure 4.15: Results of our method on a set of simple shapes.84
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Our method

Reniers et al.

Our method

Reniers et al.

Our method

Reniers et al.

Figure 4.16: Part-based segmentations of our method vs Reniers et al. [141] (Sec. 4.6).
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General PBS methods: We next compare our method with a larger class of
general-purpose PBS methods (Fig. 4.17 a-k). The considered methods are [10,
100, 103, 105, 107, 140, 141, 201]. Here, Reniers et al. (1) denotes [140], and
Reniers et al. (2) denotes [141]. These methods span from voxel-based to mesh-
based, and use various segmentation heuristics (skeleton, curvature, salience, and
topology-based). We argue that our method creates equally or, in some cases,
more plausible PBSs. Since both our method and [141] use medial descriptors,
computed by the same underlying method [145], a relevant question is how the
two methods differ. We use (a) medial surfaces, while [141] uses curve skeletons;
and (b) we find segment borders by analyzing all possible cuts, while [141] places
such borders around the curve-skeleton branch junctions. Fig. 4.17 l-p shows five
examples where the public implementation of [141] fails to segment at all. We
find two causes for this: The shape parts in Fig. 4.17 l cannot be well described
by curve-skeleton branches, as they are nearly rotationally symmetric. As few (if
any) such junctions exist, [141] fails. The shape in Fig. 4.17 n is described by a
mix of medial surfaces (base plate) and curve skeletons (tubular parts). As [141]
only uses curve skeletons, data on the base plate is incomplete or missing. For the
shapes in Fig. 4.17 m-p, the many heuristics in [141] to select cuts centered on the
curve-skeleton fail, as they imply that such cuts should be nearly planar. This does
not happen for the above shapes.

Multiscale: As described in Sec. 4.5, we can produce a multiscale segmentation
by simply changing the number N of desired parts. This is a much simpler way to
specify the desired level-of-detail than the earlier proposal in [60], where one had
to simultaneously control two parameters λ and µ to yield the same result (see
Sec. 4.3.3.1). Figure 4.17 r shows three such scales for the armadillo shape.

Invariance: Our method is pose invariant, as shown in Fig. 4.17 s. Indeed, our cut
space essentially captures local shape thickness, which does not depend on pose.
Additionally, as the cut clustering essentially depends on the relative difference
in cut lengths and positions, and not on their absolute values, our method is also
scale, translation, and rotation invariant.

Performance: Table 3 shows the time for creating cuts (tcuts), medial surfaces
(tskel), cut space analysis (tspace), the total time of the original method in [60]
(ttotal), and total time for [141] (tReniers), for our method coded in C++ on an 8-core
3.5 GHz PC. As cuts are computed independently, we parallelized our method by
pthreads, getting a speed boost factor of 7, close to the optimal value of 8 for our
hardware. As visible, the original method [60] is slightly faster than [141]. We
observe that most of the time is spent in the cut computation (tcuts vs ttotal). As
such, we optimized the A∗ method used to trace geodesics for cut construction
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(Sec. 4.3.2.2), by using a fast priority queue implementation. The performance
yielded by this optimization (Tab. 3, toptim) is now significantly higher than the
original method (ttotal) and also much higher then [141]. Finally, we note that our
method could successfully segment all tested shapes, while [141] failed on several
shapes (Tab. 3, empty cells in column tReniers).

a) Liu and Zhang b) Lien et al. c) Attene et al. d) Tierny et al. e) Reniers et al. (2) f) Our method

g) Li et al. h) Lee et al. i) Reniers et al. (1) j) Reniers et al. (2) k) Our method 

l) screwdriver m) heptoroid n) engine part o) airplane p) lion

r) multiscale segmentation, three different scales, armadillo model s) pose-invariant segmentation

) i l

Figure 4.17: Comparison of our method with eight PBS methods (a-k). Our results for
shapes where Reniers et al. fails (l-p). Multiscale (r) and pose-invariant (s)
segmentations.

4.7 D I S C U S S I O N

We next discuss several aspects of our proposed part-based segmentation method.

Global search: We create a PBS by finding all part-inducing cuts from the medial
surface, and selecting a cut-subset by globally optimizing for part-similarity as
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Shapes cuts ‖S ‖ voxels ‖Ω‖ voxel volume tcuts tskel tpart ttotal toptim tReniers

Dragon 2789 283238 400*400*400 50.8 1.90 0.03 52.73 9.19 40.26

Hound 1530 245759 300*300*300 23.24 1.51 0.01 24.76 6.39 25.1

Hyptoroid 4873 651478 400*400*400 400.5 3.36 0.04 403.90 47.5 -

Fertility 1354 199581 300*300*300 20.85 2.02 0.01 22.88 4.83 22.89

Gargoyle 488 129420 300*300*300 12.62 3.26 0.005 15.885 7.28 69.89

Microscope 1397 307863 300*300*300 44.14 1.58 0.01 45.73 8.12 198.02

Lucy 6201 1.04×106 300*300*300 68.01 0.63 0.09 68.73 12.7 52.65

Engine part 1501 135416 300*300*300 15.55 0.27 0.01 15.83 1.50 -

Screwdriver 1372 306480 300*300*300 13.14 0.60 0.01 13.75 4.48 -

Noisydino 1375 194117 300*300*300 14.79 1.19 0.015 16.00 3.72 20.2

Cow 1009 143938 256*256*256 8.15 0.96 0.01 9.12 2.41 14.34

Neptune 1908 211723 420*185*251 34.7 1.22 0.02 35.94 22.67 -

Airplane 741 76700 300*300*300 6.00 0.28 0.08 6.37 0.91 -

Bird 476 45638 300*300*300 2.28 0.18 0.003 2.47 0.40 7.98

Hand 584 58071 200*84*140 2.15 0.22 0.004 2.37 0.51 -

Lion 2181 381968 300*300*300 23.16 1.08 0.02 24.27 6.58 -

Horse 884 109555 142*300*251 9.58 1.24 0.008 10.83 2.56 -

Pig 959 145215 300*300*300 10.97 1.51 0.01 12.50 3.01 22.26

Dog 1241 184805 300*300*300 15.65 1.29 0.02 16.97 3.63 18.87

Hippo 838 166932 300*300*300 12.13 2.41 0.01 14.55 4.40 25.18

Rhino 1746 403399 300*300*300 25.20 2.15 0.03 27.39 7.57 -

Armadillo 2242 436933 300*229*252 47.55 2.67 0.03 50.26 12.21 -

Table 3: Shape sizes and segmentation times (in seconds) for [60], our optimized method,
and Reniers et al. [141].
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captured by cut lengths and/or positions. In contrast to purely topological PBS
methods [140, 141], we search a much wider space of possible partitionings; yet,
our search space is much smaller than that of other methods which look for cuts
of any possible orientation [74], thereby achieving a good flexibility-performance
balance. This is also visible if we compare our running times (Tab. 3, toptim) with
those reported in [74]: We process voxel shapes having tens up to hundreds of
thousands of surface voxels (‖∂Ω‖) in under 10 seconds; on similar hardware,
[74] processes meshes having only 4000 triangles in 4 minutes on average.

Simplicity: In our approach, we can use any medial surface skeletonization
method, e.g. [7, 83, 145, 148, 175], as long as it outputs regularized skeletons.
This makes our method directly applicable to mesh-based shapes, which allow
fast medial-surface extraction [82], without the additional cost of voxelization.

Multiscale: Multiscale PBS occurs at two levels: (1) Simplified medial surfaces
yield cuts only for important shape parts; (2) The user can specify the number of
parts to be extracted from the shape.

Invariance: Our method is scale, translation, rotation, and pose invariant [141,
176], as shown by the model in Fig. 4.17 s (which is also used in [176] to show
pose invariance). Note that pose-invariance is not guaranteed by default by other
cut space segmentation methods, e.g. [74]. Figure 4.18 shows additional results
computed by our method which illustrate the pose invariance we can obtain. As
visible, in general, the method produces very similar segmentations for the same
shape under different poses. However, certain detail differences exist. While un-
desired, such differences are not larger than other methods which claim pose
invariance [141, 176].

Robustness: We robustly segment noisy or detail-rich surfaces, e.g. dragon and
dino (Fig. 4.16) or lion (Fig. 4.17). Segment borders are smooth by construction
(Sec. 4.3.2). Since our segmentation uses a subset of these cuts, and only considers
integral cut properties (length, position) rather than differential ones (e.g. curva-
ture), noise and/or small-scale details are robustly handled. Moreover, we avoid
constructing segment borders from unstable cuts created from ligature skeletal
points (Sec. 4.3.3.3).

Limitations: Our method’s cost is O(‖S∂Ω‖‖∂Ω‖log‖∂Ω‖). As our method paral-
lelizes easily (Sec. 4.6), its practical cost is much lower than other skeleton-based
PBS methods [140, 141] or cut-based methods [74]. For space constraints, we com-
pare with only eight related PBS methods. More PBS methods exist, and quantita-
tive metrics can be further used to measure segmentation quality [110]. Yet, even
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Figure 4.18: Results of our method illustrating the achieved pose invariance.
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without such extra insights, we argue that our goal of showing that surface skele-
tons have added both theoretical and practical value for PBS, as opposed to the
well-known use of curve skeletons for PBS, is well defended.

4.8 C O N C L U S I O N S

In this chapter, we have presented a refinemen of the method introduced in Chap-
ter 3 for part-based segmentation of 3D voxel shapes. Both the original method and
its refinement presented here work by analyzing the entire space of potential par-
titioning cuts constructed by using the shape’s medial surface. To our knowledge,
our approach is the first which uses medial surfaces for part-based segmentation,
and thereby shows the added-value of medial surfaces for segmentation, as op-
posed to the well-known use of curve skeletons for the same task. We demonstrate
our method on a wide variety of 3D shapes, and compare it with eight related
segmentation methods. Our method can produce similar segmentations with less
computational effort, and has a single intuitive end-user parameter to set – the
number of desired segments. Compared to the original method in Chapter 3, we
present various algorithmic improvements, most notably a new way to partition the
cut space histogram using hierarchical clustering. Additionally, we discuss the pa-
rameters of our method in detail, and present both quantitative performance results
and qualitative comparison results with other related methods.

Different ways to partition the cut space can be easily tried, e.g. cut similarities
based on e.g. curvature, eccentricity, and orientation. This would lead to an entire
family of PBS methods in a single simple implementation. Separately, cut-length-
and-position histograms computed by our method could be an effective shape de-
scriptor for retrieval and matching [160]. Separately, as already mentioned in the
conclusion of Chapter 3, improvements of performance and/or scalability in model
size could be obtained by adapting our cut space method to work on mesh repre-
sentations. This aspect is discussed separately in Chapter 6.
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Chapters 3 and 4 have introduced the cut space descriptor and have shown its ap-
plications to the construction of part-based segmentations of 3D voxel shapes. In
this chapter, we stay within the context of voxel shapes, but switch to a differ-
ent application: shape matching and retrieval. Two-dimensional medial axes and
three-dimensional curve skeletons have been long used for shape retrieval tasks.
In contrast, and despite their ability to fully capture shape geometry and topology,
three-dimensional surface skeletons have seen much less usage in this context. We
present here a framework for shape matching and retrieval based on such surface
skeletons. To this end, we employ the cut space generated from the surface skele-
ton, which has desirable invariance properties with respect to shape size, rotation,
translation, pose, and noise, as described in Chapters 3 and 4. Next, we extract a
histogram-based descriptor from this cut space, and discuss three different metrics
to compare such histograms for shape retrieval. We illustrate our proposal by show-
ing our descriptor’s effectiveness in shape retrieval using a known shape-database
benchmark.1

5.1 I N T RO D U C T I O N

The increase in computational resources and scanning technologies has made large
collections of 3D shapes readily available. With this increase has come the demand
for methods and techniques for searching for specific shapes in such databases [67,
158]. Within this field, content-based shape retrieval (CBSR) focuses on efficiently
finding the most similar shapes to a given example shape from a given shape col-
lection. Many classes of CBSR methods exist, based on various techniques, such
as parametric templates [70], descriptor-based methods [193], and skeleton-based
methods [186, 205].

Among the above, skeleton-based methods have the important advantage as
being able to compare shapes at a high level, and based not only on their ge-
ometry, but also, specifically, their topology. This supports CBSR applications
where the search is driven by global shape properties, such as structure and topol-
ogy [37, 186], in addition to the more commonly used local geometry and texture

1 The text in this chapter is based on the paper: A descriptor for voxel shapes based on the skele-
ton cut space (C. Feng and A. Jalba and A. Telea), Proc. Eurographics Workshop on 3D Object
Retrieval (3DOR), eds. A. Ferreira and A. Giachetti and D. Giorgi, Eurographics, 2016.
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properties. Classical medial axes (in 2D) and curve skeletons (in 3D) have proven
here to be efficient and effective descriptors [161, 186]. In the 3D case, however,
curve skeletons can capture well shape topology, and partially geometry, only for
locally quasi-tubular shapes [39]. In contrast, surface skeletons capture well both
topology and geometry for any 3D shape [85]. However, to our knowledge, such
skeletons have not yet been used for CBSR.

We present in this chapter a shape descriptor that uses surface skeletons of 3D
voxel shapes for CBSR. From these skeletons, we construct a so-called cut space
that describes the local shape thickness properties in a multiscale way, i.e., ig-
nores small details which are less relevant for CBSR, but captures the actual shape
thickness well. We next reduce this cut space to a histogram descriptor that effi-
ciently and effectively captures thickness properties, and is also invariant to iso-
metric shape transformations, pose, noise, and sampling resolution. We next study
two existing metrics, and propose two new metrics, to compare such histograms
for CBSR. We demonstrate our proposal by applying it to a well-known 3D shape
benchmark database. Summarizing, the main contribution of this chapter is show-
ing that surface skeletons have the potential to be efficient and effective instru-
ments for constructing compact thickness-descriptors that, next, perform well for
CBSR applications.

This chapter is structured as follows: Section 5.2 reviews related work, with
a focus on skeleton-based CBSR. Section 5.3 presents our method. Section 5.4
illustrates our method on a variety of 3D shapes. Section 5.5 discusses our method.
Section 5.6 concludes the chapter.

5.2 R E L AT E D W O R K

Many methods have been proposed for CBSR [193]. Most such methods use a
two-step approach:

1. First, a so-called descriptor is computed from a shape, aiming to compactly
capture the relevant shape properties for the search process, and also to be
resistant to shape changes deemed as irrelevant for the same context, such
as isometric transformations and noise [89].

2. Next, the best-match for the given descriptor is searched for in a database of
shapes, which is organized (indexed) so as to speed up the search process;

Our focus in this work is on both above steps, i.e., descriptor computation and
descriptor comparison. To this end, we next extend the discussion on shape re-
trieval from Sec. 2.2.3 to review in more detail typical descriptors used in CBSR.
Next, we focus on skeletal descriptors, which are central, and specific, to our
method.
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Shape descriptors for CBSR: Osada et al. [125] describe a shape by a distribution
capturing its geometric properties such as angle, distance, and volume between
random point-pairs on the shape surface. Kazhdan et al. [89] propose a method to
create a descriptor which is rotation invariant, based on spherical harmonics. The
descriptor is further refined in [90] to capture a shape’s reflective and rotational
symmetry. However, no exact accuracy result is provided, except for a stated 15%
improvement in precision-recall plots as compared to PCA alignment of models
prior to retrieval. The spherical extent function (SEF) measures the thickness of
a shape along rays passing through its origin [157]. While simple, this descriptor
does not work well for thin and entangled shapes.

Liu et al [108] propose the directional histogram model (DHM) that is very sim-
ilar in spirit with, and also shares the limitations of, the SEF. Recently, Schmidt
et al. [159] extended the DHM to a two-dimensional descriptor combining shape
thickness and depth complexity (number of intersections of a ray with the shape),
thereby capturing both shape geometry and topology. Both above methods, how-
ever, require thousands of 2D views of the shape to be rendered and analyzed,
which becomes expensive even when using GPU acceleration.

Jain and Zhang [80] propose to represent each shape by the eigenvectors of
a certain affinity matrix constructed such that normalization against rigid-body
transformations, uniform scaling and bending is achieved. They also show that the
retrieval performance of the light-field [29] and spherical-harmonic [89] descrip-
tors is improved by 5 . . .10% when applied on the proposed spectral embedding.
Other state-of-the-art methods include covariance [188] and diffusion [25, 59, 185]
-based descriptors.

Apart from the above descriptors that use only shape geometry, other descrip-
tors use additional data such as texture and lighting. For instance, the DB-VLAT
descriptor proposed in [194] combines dense SIFT descriptors taken from several
2D shape views. While showing very good precision and recall, this descriptor
requires careful prior shape alignment, and appears to be very computationally
intensive. More importantly, texture and/or lighting data is not always available,
such as in the case of raw 3D voxel shapes.

Finally, machine learning techniques such as the bag-of-features and deep
neural networks (DNNs) have also been used to learn shape descriptors, thus
improving their retrieval performance, see, e.g., [59, 104] and references therein.
However, training DNNs can be challenging, as this requires numerous examples
to learn from.

Medial descriptors: Skeletons, also known as medial axes, were introduced by
Blum for the 2D case [20]. For the 2D case, medial axes jointly capture a shape’s
geometry and topology by the so-called medial axis transform, which is an exact
dual representation of a shape as compared to a standard boundary representation
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(see also Sec. 5.3.1). Siddiqi et al. [174] define the shock graph extracted from the
shock grammar [171] and match such graphs to find similar 2D shapes. However,
while this method can effectively capture topology, it is less good in capturing ge-
ometry, and was not extended to 3D shapes. Sebastian et al. [161] also use shock
graphs to recognize shapes, based on a relatively expensive edit-type distance met-
ric (minimum amount of changes needed to modify a shock graph into another
one, e.g., Levenshtein distance [101]). However, this method can only handle 2D
shapes. Similarly, Xie et al. compare shapes by segmenting them using their skele-
tons’ junctions and performing a part-by-part matching [205]. As [13], this method
can only handle 2D shapes.

In 3D, the by far most used medial descriptors are curve skeletons, which es-
sentially capture a shape’s local circular symmetry, and are relatively easy to com-
pute [39, 179]. Curve skeletons have been introduced in Sec. 2.1.2.2. Given their
aforementioned properties, several methods have used curve skeletons for CBSR.
Sundar et al. [186] use 3D curve skeletons to match shapes by extracting individual
skeletal branches to construct a graph, and next using graph-matching algorithms
to compare such shape graphs. However, this method is quite complex and compu-
tationally expensive. The method is next refined in [37] to use the Earth Mover’s
Distance (EMD) technique to compare 3D curve skeletons to match shapes [151].
For 2D shapes, Xiang et al. [13] propose an alternative to [186] by first pruning
2D medial axes to remove irrelevant branches (expensive for matching) using the
DCE method [14], and next using paths between skeletal endpoints to construct a
graph. While faster than [186], the method cannot effectively handle shapes having
few salient skeletal endpoints, i.e., shapes which are not well described by curve
skeletons, and, as mentioned, can only treat 2D shapes.

Apart from curve skeletons, 3D shapes admit also surface skeletons, which
fully capture their geometry and topology regardless of the shape type and are ef-
fectively dual representations of shape boundary descriptions [179, 189]. Surface
skeletons have been introduced in Sec. 2.1.2.2.

However, efficiently computing surface skeletons for complex 3D shapes has
been considerably harder than computing curve skeletons, due to the higher com-
plexity of such descriptors, but also to their well-known sensitivity to small per-
turbations of the shape surface. Recent algorithms have changed this, allowing
the near-real-time computation of surface skeletons both from mesh-based mod-
els [85] and voxel-based models [84]. Key to their usability, such methods also
regularize the produced surface skeletons by efficiently computing so-called multi-
scale importance metrics, which ensure that only large surface details will generate
skeletal branches [45, 145].

Summarizing the above, 3D curve skeletons have proved to be useful and effi-
cient descriptors for CBSR, but are limited to mainly tubular shapes. Surface skele-
tons overcome the descriptive power of curve skeletons for any 3D shape type, but
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have only recently shown to be efficiently and robustly computable for complex
3D shapes. As such, the main aim of this chapter is to show that recent advances
in 3D surface skeleton computation make these descriptors more efficient, more
effective, and simpler to implement tools for CBSR than the well-known curve
skeletons used for the same task.

5.3 M E T H O D

We next explain our CBSR descriptor proposal. Section 5.3.1 outlines relevant
skeleton definitions. Section 5.3.2 outlines the construction of the so-called
‘cut space’ which we use next to build our histogram-based shape descriptors
(Sec. 5.3.3). Finally, Section 5.3.4 shows how such histogram descriptors can be
efficiently and effectively compared. Figure 5.1 illustrates the proposed CBSR
pipeline.

query shape shape databasesha

descriptor
extraction

descriptor
extraction

descriptor database

shape descriptor

descriptor
comparison

retrieved shapes, ranked by similarity

Figure 5.1: Proposed CBSR pipeline. Our focus is the descriptor extraction and compari-
son (marked in bold).

5.3.1 3D Skeletonization

Let the Euclidean distance transform DT∂Ω : Ω→ R+ of a binary voxel shape
Ω⊂ Z3 with boundary ∂Ω be denoted by

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (5.1)
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The medial surface, or surface skeleton, of ∂Ω is next defined as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (5.2)

where f1 and f2 are the contact, or feature, points with ∂Ω of the maximally
inscribed ball in Ω centered at x [71, 148]. These define the feature transform
FT∂Ω : Ω→P(∂Ω)

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖. (5.3)

The medial surface implied by Eqn. 5.2 consists of a complex set of 2D mani-
folds embedded in 3D. Their direct computation, following Eqn. 5.2, is sensitive
to small-scale noise on ∂Ω, especially when using voxel-based discretizations of
Ω. To alleviate this, S∂Ω can be regularized by a computing a metric ρ : S∂Ω→R+

such as the medial geodesic function (MGF) which sets ρ(x) to the length of the
shortest path on ∂Ω between the two feature points of x [45]. As the MGF mono-
tonically increases from the medial surface boundary to its center, upper threshold-
ing it always yields connected and noise-free simplified medial surfaces [85, 145].
A similar regularization metric, which is faster to compute than the MGF, is pro-
posed in [84] based on a mass advection process from ∂Ω onto S∂Ω. In our work
next, we will use the regularized surface skeletons produced by [84].

5.3.2 Cut space construction

The first step of our method is to construct a so-called cut space from the surface
skeleton S∂Ω, following the process proposed in [61] (see Fig. 5.2a-e, for a hand
model): For each point x ∈ S∂Ω, we construct a closed curve C(x) ⊂ ∂Ω as the
union γ1 ∪ γ2 ∪ γ3, where γ1 is the shortest path on ∂Ω between the two feature
points f1 and f2 of x (Fig. 5.2a); and γ2 and γ3 are the shortest-paths on ∂Ω between
o, the opposite point on ∂Ω of the midpoint m of γ1 with respect to x, and f1 and
f2, respectively ((Fig. 5.2b-d). For full implementation details, we refer to [61] and
also to Chapter 3 where the cut space is introduced in detail.

5.3.3 Cut thickness histogram

Key to our shape descriptor idea is that the length ‖C(x)‖ of a cut C(x) is a good lo-
cal descriptor of the shape’s properties around point x. We argue this by following
the analysis in [61]: The cut-space CS =

⋃
x∈S∂Ω

C(x) captures, locally, the shape’s
symmetry and thickness in an effective and natural way. That is, CS contains all
cuts which are locally smooth, tight-wrapping around ∂Ω, and oriented orthogo-
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nal to Ω’s local symmetry axis. As these cuts have proven to be good for shape
segmentation [61], we argue that they are also good for describing local shape
thickness. Fig. 5.2e shows the cut space CS for our hand model, colored to empha-
size the difference between short and long cuts. For all implementation details of
the construction of CS, we refer further to [61].

As mentioned in [61], CS contains a small number of cuts which are not or-
thogonal to the local symmetry axis, or curve skeleton, of Ω. Upon closer exami-
nation, we noticed that these correspond to very short geodesics γ1, i.e., skeleton
points x whose two feature points f1 and f2 are very close on ∂Ω. The presence of
such cuts unnecessarily perturbs the computation of H(Ω). This problem is well
known in 3D skeletonization: Skeleton points having small feature-vector angles
tend to be very unstable [65]. Hence, we remove from CS all cuts C(x) for which
‖γ1‖/‖C(x)‖< 0.4, an empirically determined value which gave good results in all
our tests. The resulting regularized cut-space CSr is next used to robustly compute
our shape descriptor. Note that using the angle of feature vectors x− f1 and x− f2
can also be used instead. We have found the geodesic length criterion to be better
in removing skeleton points for which unreliable cuts can be computed. The differ-
ence makes, indees, sense: The angle criterion quantifies how reliable a skeleton
point is; the geodesic length criterion quantifies how reliable the cut-construction
algorithm, and thus its produced cuts, are. Since we are interested ultimately in
stable cuts, we use the latter criterion.

We stress that the local shape-thickness estimation ‖C(x)‖ adapts itself to both
the shape orientation (C is orthogonal to Ω’s local symmetry axis, or curve skele-
ton, of Ω) and the shape’s local geometry (C is piecewise geodesic by construc-
tion, thus smooth). This is in high contrast to [108, 159], who estimate the lo-
cal shape thickness in arbitrary directions, i.e., regardless of the shape’s curve-
skeleton orientation. The above papers recognize that this can yield significant
thickness-estimation noise. Indeed, formally, just one single direction (orthogonal
to Ω’s curve-skeleton) yields the ‘true’ shape thickness, as this thickness value is
unique.

Given our cut space CSr, we next build a histogram H(Ω) of all cut lengths
{‖C(x)‖|∀C ∈ CSr}. Since S∂Ω is rotation and translation invariant with respect
to Ω, so is CSr, and thus so is H(Ω). To achieve scaling invariance, we normalize
the cut lengths by their median value over CSr. This essentially makes cut lengths
relative to the shape size, and thus makes next H(Ω) invariant to the scale (size)
of Ω. To make H independent on the number of cuts (which depends in turn on
the voxelization resolution of Ω and S∂Ω), we normalize the bin-values H(Ω)i by
the total cut count ‖CSr‖. Using B = 20 bins H(Ω)i, 1 ≤ i ≤ B, for constructing
H(Ω) proved to be a very good balance between accuracy and level-of-detail. Note
that the histogram normalization is not necessary for the shape segmentation ap-
plications of the cut space (Chapters 3, 4). Indeed, for segmentation we are only
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interested to cluster similar cuts for a single given shape. For matching, we are
interested in comparing two or more shapes, so normalization of histograms is
needed.

a) construction of γ1 b) finding opposite point

c) construction of γ2 d) construction of γ3

e) cut space CS f) regularized
   cut space CS r 

f1

γ1

o

f2
f1

f2

f2
f1

o

o

m

γ2 γ3

x

Figure 5.2: Construction of the regularized cut space CSr.

5.3.4 Shape matching distances

Given two shapes Ω1 and Ω2 and their respective histograms H(Ω1) and H(Ω2),
denoted next H1 and H2 for brevity, we compare these by using a distance function
d(H1,H2) ∈ [0,1]. To this end, we studied four such distances, as follows.

Hellinger distance: We first consider the simple Hellinger distance dH(H1,H2) =

∑
B
i=1

(√
H i

1−
√

H i
2

)2
. Although dH is not an optimal metric to compare shapes, as

we will also show next, it has been used in previous CBSR applications [159, 193],
so we include it here for completeness. Upon close examination, we noticed that
dH causes false negatives, i.e., high distance values between two visually very
similar shapes. Figure 5.3 shows such an example, where dH = 0.575 for two quite
similar shapes. We found similar problems when using other simple histogram-
distances, such as the L1 norm, Chi-square, and correlation metrics.

This problem can be understood if we consider the coarse nature of our cut-
space: CSr contains at most as many cuts as the size ‖S∂Ω‖ of the surface skeleton,
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which is bounded by the voxelization-resolution of our input shapes Ω, and next
reduced by regularization of CS to CSr. In practice, for a shape voxelized at 3003

resolution, CSr contains a few thousand cuts. In contrast, the thickness estimation
in [159] uses 500K thickness samples, which is over three orders of mangitude
more. Similar high sampling resolutions are used in [108, 157]. While super-
sampling alleviates the false-negative problem, it is also very expensive. Hence,
one key challenge for our method is how to increase the robustness of comparing
histograms without increasing the voxelization resolution, and thus cost, of our
pipeline. Apart from reducing computational costs, this will also allow using our
method on coarsely-sampled shapes.

a) compared shapes Ωi

b) compared cut spaces CSi

c) compared cut histograms H(Ωi)

Figure 5.3: Two similar shapes and their cut-spaces and histograms.

EMD: Another popular way to compare histograms is the Earth Movers Distance
(EMD) [151]. When comparing two histograms, this metric treats one histogram
H1 as mass and the second one H2 as a container. The least amount of mass re-
quired to be moved from H1 to H2 to make the two histograms identical gives the
distance dEMD(H1,H2). The EMD distance is known to be, in general, a robust
way to compare two histograms [152]. In our case, dEMD creates fewer false neg-
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atives than dH , but still too many of them. A similar effect has been reported for
CBSR by [159].

Median value separation: Studying the above-mentioned false negatives, we
noted that they are mainly caused by small differences in the location (cut-length)
of the largest peaks (longest bars H i) in the two compared histograms. These cor-
respond to slightly different thickness-distributions of the two compared shapes
Ω1 and Ω2. To alleviate this, we work as follows: For a shape Ω, we compute
its median cut-length value m, and use it to divide its histogram H into two sub-
histograms H l and Hr which contain cuts shorter or equal than, respectively larger
than, m. For H l , we list bars in decreasing cut-thickness order; for Hr, bars are
listed in increasing thickness order. Both histograms H l and Hr use, together, the
same fixed number of bins B as the original H. When comparing two shapes Ω1
and Ω2, we pad H l

1 and Hr
1 with zero-size bins to the right so as to match the

corresponding sizes of their counterparts H l
2 and Hr

2 . Note that right-padding is
made possible by the reordering of bars in H l mentioned above. Finally, we use
the EMD metric to compare the corresponding histogram-pairs, yielding the dis-
tance metric dMV (H1,H2) =

1
2 [dEMD(H l

1,H
l
2)+dEMD(Hr

2,H
r
2)]. Figure 5.7 middle

shows this for the shapes, for which we get dMV = 0.281, which reflects much
better their visual similarity than dEMD and dH studied before.

Multilevel distance: As outlined above, small changes in the locations of tall
bars in cut-space histograms can create large undesired distance differences. The
median-value distance dMV partially fixes this by effectively ‘aligning’ two his-
tograms along their median values. We next refine this fix to also consider gaps
in a histogram. These are near-empty bins separating blocks of non-empty bars
(see Fig. 5.5), and correspond to cut sizes appearing rarely in a shape. Since a gap
is, by definition, surrounded by two blocks of non-empty bars, it corresponds to
shape zones showing rapid local-thickness transitions, such as joints between parts.
Gaps were used in [61] to segment shapes along these joints. In contrast, we use
gaps to compare shapes more robustly, as follows. First, we define gaps gi in a his-
togram H as bars H i containing less than τ‖CS‖ of the total number of cuts, where
τ = 0.01 has given good results for all our experiments. Gaps effectively partition
H into several bin-blocks Bi, each being defined by two consecutive gaps (gi

l ,g
i
r)

to its left, respectively right. Given two such histograms H1 and H2, we compare
their block-sets B1 = {Bi

1} and B2 = {Bi
2} using dMV on block-pairs in B1 and B2

whose center distance |gi
l +gi

r|/2 is less than β = 3B/20 bars, which corresponds
to three bars for our preset B = 20 number of bars in a histogram. Note that the
complexity of this comparison is O(β ·max(|B1|, |B2|)), i.e., basically linear in the
number of blocks, since a block in, say, B1 only gets compared worst-case with 2β

other blocks in B2.
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Figure 5.4: Median value separation histogram-distance dMV .

Denoting the set of such matching blocks by BP⊂B1×B2, we get our multilevel
distance metric dML(H1,H2) = ∑(Bi,B j)∈BP dMV (Bi,B j). Figure 5.5 shows this idea
for our two plier shapes (Fig. 5.3), whose histograms show one gap each, and thus
have been cut into two blocks. Intuitively, we see that block-detection ‘aligns’ two
histograms independently from the longest-bar alignment provided by dMV . For
our plier shapes, we obtain dML = 0.0321, which reflects the (very high) visual
similarity of the two shapes better than all metrics considered so far.

5.4 I M P L E M E N TAT I O N A N D R E S U LT S

We implemented our shape descriptor using the 3D skeletonization algorithm
in [84], which is one of the fastest, most robust, exact, and easy to use methods
to extract regularized 3D-multiscale surface-skeletons in existence. Cut spaces
CS were built following the method in [61], described in Chapter 3. To test our
proposed descriptor, we chose to use the McGill 3D Shape Benchmark [115],

103



VOX E L S H A P E R E T R I E VA L B Y T H E S K E L E T O N C U T S PAC E

B1
1

B2
1B1

2
B2
2

gap gap

H1 H2

Figure 5.5: Multilevel histogram-distance dML.

which is well-known in the shape retrieval and computer vision community. The
database contains 309 shapes, grouped into 13 semantic classes. Each class con-
tains objects having various scales, poses, and articulations (see Fig. 5.6 for a
sample subset). Since both [84] and [61] are voxel-based methods, we voxelized
all our test shapes to resolutions ranging between 2003 and 5003 voxels, using
binvox [123]. Our entire pipeline, written in C++, was executed on 3.5 GHz Linux
PC.

Table 4 shows the performance of our cut-space-based descriptor using the three
distance metrics in Sec. 5.3.4. To test retrieval accuracy for the used database, we
used two methods:

Fine grained: Given a shape Ω ∈ D from a database D, we compute the query’s
precision for a query-size Q= 10, i.e., find the most similar 10 other shapes Ωi ∈D
according to d(H(Ω),H(Ωi)), and count how many of these are in the same class
as D.

Coarse grained: We apply the same procedure as above, but merge classes having
structurally similar objects into three so-called superclasses: limbed objects (hu-
mans, hands, dinosaurs, four-limbs, teddies); highly articulated objects (spiders,
ants, octopuses, spectacles); and low-articulated objects (fishes, dolphins).

We applied both above tests to all 309 shapes in the database and then averaged
the results per shape-class. Table4 shows the results. Figure 5.7 gives more de-
tailed insights, showing the six most-similar shapes retrieved for a query shape for
the distance metrics dML, dEMV , and dMV . The Hellinger distance dH was left out
as it yielded significantly poorer results. From these data, we see that dML gives
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Ants Dinosaurs

Dolphins Fishes

Four limbs Hands

Humans Octopusses

Pliers Snakes

Spectacles Spiders

Teddies

Figure 5.6: Example shapes from the used benchmark [115].

the visually best results, followed by dMV and next by dEMD.

Noise robustness: To test the robustness of our descriptor to noise, we created a
database where noise was added to the shapes in [115], in the form of Gaussian
bumps of two heights (small – 3% of the shape diameter Φ(Ω), and large – 6%
of Φ(Ω)); and two standard deviations (small – 4% of Φ(Ω), and large – 8% of
Φ(Ω)). Noise bumps were Poisson distributed over ∂Ω. We next queried for a
clean shape, and observed that we got both noised versions thereof and clean ver-
sions of shapes in the same class as the top-hits (Fig. 5.8 top row). We also queried
the four types of noised shapes corresponding to the clean shape Ω, and noticed
that we got, in three cases, three of the noised variants of Ω, and in the fourth case
all four variants (Fig. 5.8, bottom 4 rows). In all cases, the clean shape appeared
in the top-six most similar retrieved shapes. This shows that our descriptor is both
robust to noise (it retrieves the correct same-class shapes and does not introduce

105



VOX E L S H A P E R E T R I E VA L B Y T H E S K E L E T O N C U T S PAC E
Q

u
e

ry
 s

h
a

p
e

0
1

0
2

0
3

0
4

0
5

0
6

0
1

0
2

0
3

0
4

0
5

0
6

0
1

0
2

0
3

0
4

0
5

0
6

Figure
5.7:E

xam
ples

of
shape

retrieval
results

for
the

distance
m

etrics
d

E
M

D
(left),d

M
V

(m
iddle),and

d
M

L
(right).For

each
distance

m
etric,shapes

are
listed

from
leftto

rightin
increasing

distance
order.A

ctualdistance
values

are
indicated

underthe
retrieved

shapes.

106



5.5 D I S C U S S I O N

Classes Class dEMD dEMD dMV dMV dML dML

sizes (fine) (coarse) (fine) (coarse) (fine) (coarse)

humans 29 0.807 0.945 0.755 0.831 0.776 0.941

hands 20 0.345 0.7 0.36 0.6 0.435 0.81

four limbs 31 0.494 0.813 0.439 0.771 0.442 0.858

dinosaurs 18 0.439 0.844 0.389 0.828 0.339 0.878

spiders 31 0.787 0.900 0.777 0.974 0.797 0.939

ants 30 0.793 0.837 0.62 0.877 0.737 0.803

octopus 25 0.608 0.852 0.652 0.828 0.66 0.956

fishes 23 0.517 0.709 0.522 0.704 0.674 0.791

dolphins 12 0.4 0.683 0.467 0.642 0.442 0.642

pliers 20 0.92 0.92 1 1 0.87 0.87

teddy 20 0.72 0.72 0.775 0.775 0.885 0.885

spectacles 25 0.292 0.292 0.34 0.34 0.432 0.432

snakes 25 1 1 0.684 0.684 0.624 0.624

Table 4: Shape retrieval results with three for the distance metrics dMV , dEMD, and dML.

false-positives because of noise); and also sensitive to shape (it retrieves most of
the noised versions of the input shape).

5.5 D I S C U S S I O N

We nest discuss several relevant aspects of our proposed descriptor.

Robustness: The proposed descriptor is rotation, translation, scaling, pose, noise,
and voxelization-resolution invariant. This is guaranteed by the corresponding
properties of the underlying skeleton cut-space and histogram normalization
(Sec. 5.3.3). Note that, while these properties hold by construction in the con-
tinuous space R3, they are preserved in the voxel space Z3 only as well as the
underlying skeletonization method can manage to do so. The method we use here
achieves very good results in this respect, as discussed in detail in [84]. Note also
that, to ensure similar properties, other CBSR methods require more complex
techniques, such as spherical harmonics [89, 90, 108, 157] or delicate, and time-
consuming, manual model alignment [194].

Comparison: Our evaluation, while limited, is in line with several related papers.
Osada [125] uses a database of 133 models grouped in 25 classes. For evaluating
the performance of their method, they measure the query precision, and the per-
centage of all queries where the top match was from the queried shape’s class, and
obtain values of 30%, respectively 70%. In comparison, our corresponding values
are of 70% (for the dML metric), respectively 100% (all metrics) (see Tab. 4). Fur-
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Figure 5.8: Retrieval robustness in presence of noise. Shapes marked ‘N’ contain
artificially-added noise.
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thermore, the spectral descriptors of Jain and Zhang [80] yield 70 . . .75% precision
performance and outperform both the light-field [29] and spherical-harmonic [89],
whose precision is 68% and 60%, respectively. On the same dataset, other query-
precision results include 49% – shape-distributions [125], 45% – covariance [188]
and 50% – diffusion [59], as reported in [59, 104]. When comparing the above
figures with ours, we should stress that the obtained insights are, of course, limited
by the fact that we use different databases. This is due to the lack of access to
the above-mentioned implementations (so we couldn’t use them on our database)
and the difficulty and cost to convert the databases used in the above papers, when
these were publicly accessible, to our voxel representation (so we couldn’t easily
use our implementation on these databases).

The skeleton-based descriptor used by [161] was tested on two databases (99
shapes, 9 classes; and 144 shapes, 8 classes). Its accuracy, measured by the so-
called first tier (precision with the query size equal to the class size of the queried
shape), yielding a value of 97% on average – in our case, the corresponding aver-
age value is of 80%. However, we note that [161] can only treat 2D shapes, which
are known to be much easier to match than 3D shapes. Similarly, the skeleton-
based path similarity matching method in [13] shows quite good retrieval results,
with an average precision of 95% for a query size of 10 shapes, but is also lim-
ited to 2D shapes. Sundar [186] tested their 3D curve-skeleton-based descriptor
on a database of 100 shapes. However, while a few retrieval results are shown,
no statistics are provided. Cornea et al. compared their 3D curve-skeleton-based
descriptor on a 1000 shape database [37]. They report a first-tier value of 17% and
nearest-neighbor value of 71%. While both [37] and our method use the EMD to
compare shape descriptors, [37] uses the entire curve-skeleton as descriptor, while
we use the cut-space thickness-histogram. The latter is significantly more invariant
to irrelevant shape changes than the former, which explains, at least partially, our
better results.

Efficiency and ease of use: The proposed descriptor can be computed automat-
ically, with no user parameters needed to be set or tuned. For a shape Ω, its
computation complexity is O(‖S∂Ω‖D), where D = maxx∈Ω DT∂Ω(x) indicates
the maximal shape thickness and ‖S∂Ω‖ the number of voxels of the shape’s sur-
face skeleton. In practice, this allows computing our descriptor in subsecond times
on shapes up to a few hundred voxels cubed on the platform indicated in Sec. 5.4.
Significant speed-ups could be easily achieved, if desired, by trivially parallelizing
the cut space computation on the CPU or GPU, if desired.

Limitations: As outlined earlier, our descriptor essentially captures the local
shape thickness only. As such, its discriminative power is lower, in general, than
more advanced descriptors, in general. However, for a fair comparison, one should
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relate our proposal chiefly to other thickness-based descriptors in CBSR (or, more
generally, descriptors with the same small size, in our case, B = 20 values). In-
deed, comparing descriptors of highly different sizes can be perceived as unfair,
since different descriptors have different complexities like time, memory. Sepa-
rately, our proposal can be directly used to replace other less accurate thickness
descriptors known in the literature, e.g. [108, 159]. A second limitation relates
to the benchmark we used [115], which contains mainly locally-tubular shapes.
For a better insight, more varied shapes should be added to such a benchmark, a
task which we consider for future work. Finally, besides precision values, CBSR
benchmarks also typically use nearest-neighbor and first-tier values [37, 161].
These metrics can be easily added in future evaluations of our proposed descriptor.

5.6 C O N C L U S I O N S

In this chapter, we have presented a new method for characterizing 3D shapes via
a thickness-histogram descriptor. Our descriptor captures the local thickness of a
3D shape in an accurate and computationally-savvy way, by using the 3D surface-
skeleton of a shape to construct a regularized space of smooth cuts which are
tight around the shape, and also optimally oriented across the local shape curve-
skeleton to capture the shape’s local thickness. We next studied four histogram-
distance metrics to compare such descriptors, and showed that two such novel
metrics achieve shape matches which reflect the visual similarity of 3D shapes in
better ways than classical histogram-comparison metrics used in the literature. Our
method is simple to implement, automatic, and robust to shape variations such as
pose, scale, rotation, noise, and voxelization resolution.

It is interesting to compare now the features of the cut space that support both
shape segmentation (Chapters 3, 4) and shape matching (this Chapter). By doing
this, we can highlight even better the added-value of this descriptor. We distil the
following key aspects:

Invariance: The cut space is by construction invariant to scale, translation, rota-
tion (up to inevitable small-scale variations caused by using a fixed voxel grid),
and largely invariant to noise and pose (articulation). All these properties are
actually inherited from the corresponding properties of surface skeletons. Note
that such properties are not evident for curve skeletons. Indeed, as explained in
Sec. 2.1.2.2, surface skeletons do have a unique formal description from which
their properties can be inferred and quantified subject to sampling (Eqn. 2.2).
Curve skeletons do not admit such a unique formal definition. As such, it is much
harder to reason about their invariance properties.
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Histograms: We use histograms of cut space metrics, such as length, to support
both shape segmentation and shape matching. Yet, one important difference ex-
ists: For shape segmentation, we use both position and cut-length information;
for shape matching, we are only interested in the cut lengths (the actual positions
of cuts, which we needed to explicitly find segment borders in segmentation, are
irrelevant for shape matching).

Segmentation-matching link: The fact that cut spaces can support both segmen-
tation and matching is not fortuitous. After all, what determines where a shape’s
segments end, are variations in the cut space; and the way a shape can be split
into segments tells something about how similar it is to other shapes. At a high
level, this analogy is present in many skeleton-based segmentation methods (see
Sec. 5.2). The difference between those methods and ours is that we do not explic-
itly segment a shape to match it.

Future work directions consider the integration of additional shape processing
results in our cut histograms, such as the cut shape, eccentricity, and orientation,
as well as more detailed testing our descriptor on larger shape benchmarks, and its
(easy) integration with other existing shape descriptors in the literature.
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In the previous three chapters, we have explored the use of the skeleton cut space
to support segmentation and matching of voxel-based shapes. However, as noted
in several instances, voxel-based methods have some significant limitations. First
and foremost, they need large amounts of memory to accurately represent fine-
detail shapes, since they use uniform sampling. Secondly, the fixed-grid positions
of voxel centers limits the accuracy of various operations that one can perform on
such representations (as opposed to using an ideal continuous shape representa-
tion). At the same instances, we mentioned the interest of exploring the extrapo-
lation of the cut space concept and methods related to it to other types of shape
representation.

This chapter covers the last above-mentioned point. We propose here a defini-
tion of the skeleton cut space for mesh-based shape representations (b-reps). Next,
we explain how such a cut space can be computed, using suitable skeletonization
methods for mesh shapes. Thirdly, we demonstrate that a mesh-based cut space
can be used equally well as a voxel-based cut space to support shape segmenta-
tion. We support this by comparing segmentations of mesh-based and voxel-based
shapes using the cut space, and also comparing these with third-party segmenta-
tion methods. Finally, we propose a way to extend the part-based segmentation
idea introduced in Chapters 3 and 4 to include patch-based segmentation.1

6.1 I N T RO D U C T I O N

Shape segmentation is an important problem in many application domains such as
computer-aided design, computer graphics, scientific visualization, and medical
imaging. Informally put, shape segmentation aims at partitioning a given shape
into several components, or segments, that capture application-specific part-whole
relations as well as possible. Segmentation enables several shape processing and
shape analysis tasks such as editing and content creation, identifying important
features that occur in a large dataset, and shape matching, retrieval, and registra-
tion [11, 168]. Segmentation methods can be roughly classified into part-based

1 The text of this chapter is based on the paper: Unified part-Patch Segmentation of Mesh Shapes
using Surface Skeletons (J. Koehoorn, C. Feng, J. Kustra, A. Jalba, A. Telea), Skeletonization:
Theory, Methods, and Applications, Chapter 2, eds. P. K. Saha, G. Borgefors, and G. S. di Baja,
Elsevier, 2016
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methods, which aim to split articulated shapes into the components that would be
perceived as naturally distinct by humans [141]; and patch-based methods, which
aim to find quasi-flat components separated by edges on synthetic, faceted, mod-
els [145].

Shapes are typically encoded following a boundary representation or a volume
representation. Boundary (explicit) representations capture the surface that parti-
tions the shape interior from the surrounding exterior space, using various sam-
pling and reconstruction schemes, e.g. polygonal meshes or point clouds [21]. Vol-
ume (implicit) representations, such as voxel models, store a densely-sampled la-
beling of the space in which shapes are embedded, marking points as interior vs
exterior [19]. Both representations have their advantages and limitations: Voxel
volumes are easy to create and manipulate, but can be very expensive when high
resolution is needed; surface meshes can efficiently model high-resolution shapes,
but mainly support operations focusing on the shape’s surface, rather than its vol-
umetric structure.

Skeletal representations are a third way to represent shapes. Informally put,
skeletons jointly capture the geometry, symmetry, and topology of a shape in com-
pact ways. 3D shapes admit two types of skeletons: Surface skeletons are the lo-
cus of centers of maximally-inscribed spheres in the shape, and as such capture
geometry, symmetry, and topology. They generalize to 3D the well-known con-
cept of a 2D symmetry axis [20]. Curve skeletons are one-dimensional structures
locally centered in the shape which mainly capture a shape’s part-whole structure.
Skeletons combine the compactness of boundary representations with the ability to
model and reason about volumetric properties. Additionally, they provide explicit
and efficient access to a shape’s symmetry structure and part-whole properties.
As such, skeletal representations are a valuable tool to design shape segmentation
methods [189].

Many skeleton-based segmentation methods have been proposed [189]. How-
ever, most of these methods use only the topological information encoded by curve
skeletons. As such, they target mostly part-based segmentation of organic, articu-
lated, shapes. Producing patch-based segmentations of faceted, synthetic, shapes,
or more generally mixed part-patch segmentations of shapes that fall between the
two categories (articulated, faceted) is rarely handled [28, 98, 145].

Recently, surface skeletons have been used to produce part-based segmentations
of 3D shapes, as described by us in Chapters 3 and 4 (see also [60, 63]). Key to this
idea is the construction of a so-called cut space containing a large number of well-
designed cuts that partition the shape in ways similar to how a human would cut it.
By analyzing this space, a small number of cuts is retained to yield the final shape
segmentation. While the method was shown to deliver good results, it has several
limitations. First, it only produces part-based segmentations, although it uses the
surface skeleton which fully describes any type of shape (articulated or faceted).
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Secondly, it only handles voxel representations, and as such is very expensive, or
even prohibitive to use, for high-resolution models.

In this chapter, we extend the skeleton cut space segmentation proposal in [63]
with the following main contributions:

• Mixed segmentations: We show how to compute part-based, patch-based,
and mixed part-patch segmentations that cover a wide range of 3D shapes,
using only surface skeletons; as such, we show that surface skeletons are
effective tools for handling complex 3D shape segmentation problems;

• Mesh models: We propose a fully mesh-based implementation of our
method that can efficiently handle very large, high-resolution, mesh models
with low computational and memory costs; as such, we show that surface
skeletons are efficient tools for handling complex 3D shape segmentation
problems.

The goals of this chapter are twofold: On the practical side, we show how we can
improve on existing part and patch based segmentation methods. On the theoretical
side, we show that 3D surface skeletons, so far used only rarely in practice, can
effectively and efficiently be used to support such applications.

The remainder of this chapter is structured as follows. Section 6.2 reviews re-
lated work in part-based and patch-based shape segmentation, with a focus on
skeleton-based methods. It also introduces the cut space idea in [63]. Section 6.3
details our method, explaining the changes and enhancements proposed to the orig-
inal cut space segmentation. Section 6.4 presents several results of our method and
compares these with related skeleton-based segmentation methods. Section 6.5 dis-
cusses our proposal. Section 6.6 concludes the chapter.

6.2 R E L AT E D W O R K

Given that our focus is skeleton-based segmentation methods, we proceed by intro-
ducing necessary background on skeletonization (Sec. 6.2.1). Next, we overview
several part- and patch-based skeleton-based segmentation methods, outlining
their advantages and limitations (Sec. 6.2.2).

6.2.1 Skeletonization

To define skeletons, we first introduce the Euclidean distance transform DT∂Ω :
Ω→R+ that associates to every point in a shape Ω⊂R3 the distance to the closest
boundary point

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖, (6.1)
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where ‖ · ‖ denotes Euclidean distance. The so-called medial surface, or surface
skeleton, S∂Ω ⊂Ω is next defined as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (6.2)

In the following, we use for simplicity S to refer to S∂Ω when the shape to be
skeletonized is implicitly clear from the context. In Eqn. 6.2, f1 and f2 are two
of the contact points with ∂Ω of the maximally inscribed sphere in Ω centered at
x and of radius DT (x). Such points are also known as feature points [148, 189],
while the vectors fi− x are known as spoke vectors [172]. These definitions are
captured by the so-called feature transform

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖ (6.3)

which associates to any point inside the shape all its feature points on the shape
boundary.

Surface skeletons of 3D shapes implied by the definition in Eqn. 6.2 consist of
a set manifolds with boundaries, or skeletal sheets, that meet along so-called Y-
intersection curves [42]. The pair (S∂Ω,DT∂Ω|S∂Ω) is called the medial axis trans-
form (MAT) of Ω [172]. The MAT can be used to fully reconstruct a shape, e.g.
by computing the union of balls centered at points on S∂Ω and having as radii the
values of DT∂Ω at the respective points. As such, the MAT provides a third type of
shape representation, along boundary and volumetric ones.

Skeleton points can be classified by the order of tangency of their maximally in-
scribed spheres with ∂Ω [71]. This classification enables several applications such
as robust edge detection on 3D surfaces [98, 144], finding Y-intersection curves
for patch-based segmentation [102, 142], and surface reconstruction from point
clouds [28]. Until recently, surface skeletons have been hard to compute for large
and complex shapes [145, 148]. Recent methods significantly alleviated such is-
sues for both voxel [7, 83] and mesh [82, 112] representations.

Besides surface skeletons, 3D shapes admit also curve skeletons. These are
generically defined as one-dimensional (curve) structures which are locally cen-
tered within the shape [39, 189]. Their lower dimensionality implies a simpler
structure (branches meeting at junctions), which makes them easier to use for part-
based segmentation [12, 44, 141, 169]. Also, curve skeletons are easier to compute
for large and complex 3D shapes as compared to surface skeletons, both for mesh
representations [12, 191] and voxel representations [7, 83]. However, in contrast to
the MAT, curve skeletons do not fully represent shapes, except when these have
locally circular symmetry. In the following, we will focus exclusively on surface
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skeletons, as the use or curve skeletons in shape segmentation is well covered in
the literature (see also Sec. 6.2.2.1).

Skeletons are well-known to be unstable to small-scale noise on the input shape
surface ∂Ω [172, 189]. As such, several so-called regularization methods have
been proposed. Local methods use information such as the angle between fea-
ture vectors [65, 148], distance transform values, or divergence of the distance
transform’s gradient [175] to prune skeletal points caused by noise. Global mea-
sures approximate the amount of boundary that ‘collapses’ to, or corresponds to,
a skeletal point. This approximation can be done by computing the length of the
geodesic path between the feature points of a skeleton point (the so-called medial
geodesic function or MGF [44, 82, 145]) or by explicitly simulating the advection
of mass from ∂Ω onto S along the gradient of the distance transform [83]. Im-
portant skeleton points are next defined to correspond to larger parts of the input
boundary. Thresholding global importance measures can deliver a so-called multi-
scale skeleton, which reflects the input shape at a user-chosen level of detail [189].

6.2.2 Shape Segmentation

Let Ω ∈ R3 be a three-dimensional shape with boundary ∂Ω. Segmenting Ω typ-
ically amounts to computing a so-called partition C of Ω into components Ci, so
that∪iCi =Ω and Ci∩C j =∅, ∀i, j, i 6= j. In other words, the set C = {Ci} consists
of disjoint components that fully cover Ω. We next denote the borders of these seg-
ments by ∂Ci. Such borders are closed, non-intersecting, tight, and smooth curves
embedded in R3 (see Sec. 3.3.2.1).

As mentioned in Sec. 6.1, segmentation methods can be classified into part-
based and patch-based. The difference between the two classes amounts to dif-
ferent constraints put on the segments Ci. Regardless of the method type, however,
segmentation can be seen as a combination of two key decisions: (1) finding where
to cut a shape, or where to place the segment borders ∂Ci; and (2) finding how to
cut, or which properties the segment borders should respect. We next discuss part-
and patch-based segmentation methods using skeletons from this perspective. In
the following, we denote by Cpart

i segments resulting from a part-based segmen-
tation C part , and by Cpatch

i segments resulting from a patch-based segmentation
C patch. The notations C and Ci are used for the unified part-patch segmentation,
and respectively its segments, that we aim to compute. For additional details on
part-based and patch-based segmentation, we refer to Sec. 2.2.2.

6.2.2.1 Part-Based Segmentation

As already stated, most part-based segmentations focus on natural articulated
shapes, such as humanoids, animals, plants, or other objects showing a clear part-

117



U N I F I E D PA RT- PAT C H S E G M E N TAT I O N O F M E S H S H A P E S

whole hierarchical structure. Parts are typically defined as elongated regions of a
shape that significantly ‘stick out’ of the shape’s rump. Such parts are separated
from the rump by a negative curvature region, a principle also known as the ‘min-
ima rule’ in cognitive theory [23, 77]. Such parts are easily detectable using curve
skeletons, as they correspond roughly one-to-one to the curve skeleton terminal
branches [38]. Separately from the above heuristic that tells where to place cuts,
part-based segmentation methods exploit other perceptual principles to constrain
the cut shapes, such as the ‘short cut rule’, that states that a cut should be as short
(and wiggle free) as possible [177]. Lee et al. segment mesh models using the
minima rule and optimizing for short cuts using snake models [99]. Additionally,
a ‘part salience rule’, which captures how much a part sticks out of the shape’s
rump, can be used to limit oversegmentation [100].

Several part-based segmentation methods use curve skeletons in their design. Li
et al. sweep the curve skeleton with a plane to cut the shape, and keep those cuts
which have important geometric and topological changes that indicate a part join-
ing the shape’s rump [103]. Au et al. compute curve skeletons by iteratively con-
tracting 3D meshes [12]. This enables them to backproject each skeletal point to
one or several surface points. Hence, segmenting the curve skeleton into separate
branches, and next backprojecting each branch, enables part-based segmentation.
Along the same line, Reniers et al. first define curve skeletons as those points in
Ω having at least two equal shortest-paths between their feature points [145], and
then use closed loops (cuts) formed by such shortest paths placed at the curve-
skeleton junctions to segment a shape [146]. Using shortest paths (geodesics) to
construct cuts guarantees that these obey the desirable short cut rule. The method
was refined to discard cuts that are far from planar, which reduces unneeded over-
segmentation [141]. Serino et al. refine this idea by detecting three kinds of skeletal
parts (simple curves, complex sets, and single points) which, by back-projection
to the input shape, partition it in parts that protrude from a rump (called simple
regions and bumps) and the rump itself (called a kernel) [162]. In comparison to
[141], this method can yield better segment boundaries and suffers less from over-
segmentation. The method in [162] was subsequently refined to use a computa-
tionally efficient and simple to implement curve-skeleton extraction based on the
selection of a small number of centers of maximally inscribed balls (so-called an-
chor points) that guide an iterative voxel removal, or thinning, process. Apart from
shape segmentation, this method can be also used in other contexts where a 3D
curve skeleton is required. The problem of oversegmentation due to the potentially
large number of curve-skeleton junctions, which lead to skeleton branches that do
not map to salient shape parts, also discussed in [141], is elegantly addressed in
[163] by so-called ‘zones of influence’, which compare the local shape thickness
at junctions with inter-junction distances.
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Separately, part-based segmentation and skeletonization have been shown to
be related operations, which allows computing the latter from the former [105].
Conversely, Shapira et al. note the same relationship, but use it to segment a
shape by computing a shape-diameter function (SDF) based on the boundary-to-
curve-skeleton distance and finding cuts in places where the SDF has sharp varia-
tions [169]. Finally, Tierny et al. analyze the Reeb graphs computed for scalar func-
tions defined on the shape surface to yield a hierarchical shape segmentation [201].
While Reeb graphs are not identical to Euclidean (curve) skeletons, they share their
ability to capture topology, and thus such methods can be seen as skeleton-based
segmentation techniques.

Overall, curve skeletons have established themselves as good descriptors for pro-
ducing part-based segmentations for articulated shapes whose parts have a (near)
tubular local geometry. Multiscale or hierarchical segmentations can also be easily
obtained by considering the curve skeleton’s hierarchical structure, or by prun-
ing less important curve skeleton branches [146]. Since curve skeletons are locally
centered in a shape, they yield largely pose-invariant segmentations. Finally, curve
skeletons are easy and fast to compute for both voxel and mesh representations
(Sec. 6.2.1).

Recently, surface skeletons of voxel models have also been used for part-based
segmentation [60]. The key idea is to construct a cut space C S = {ci} that con-
tains a large set of cuts that have suitable properties to act as segment boundaries.
This solves the problem of how to cut. Next, a subset of these cuts is selected to
become segment borders, thereby solving the problem of where to cut. Cut spaces
are constructed by building closed loops formed by shortest paths on ∂Ω between
the two feature points of each surface skeleton point. Next, cuts that represent suit-
able segment boundaries are found by analyzing a histogram of the cut lengths [60]
or, alternatively, clustering cuts in terms of length [63]. Related methods of analyz-
ing cut spaces for segmenting shapes have also been proposed, though not using
skeletons to construct the cuts, e.g., [74, 87].

6.2.2.2 Patch-Based Segmentation

In contrast to part-based methods, patch-based segmentation methods focus
mainly on synthetic, faceted, objects such as those produced by CAD applica-
tions. A segment, or patch, is here defined as a region of the shape surface that is
relatively flat and is separated from it surroundings by a high-curvature area, such
as edges or creases. Like for part-based segmentation, patch boundaries should
usually be wiggle free; however, they need not be tight.

Most patch-based methods work directly on the shape surface by unsuper-
vised clustering, or grouping, mesh facets found to be similar [34, 107, 114, 127].
While such methods can produce very good results, they generally are parameter-
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sensitive. Closer to our interest, surface skeletons have been used for patch-based
segmentation. The first such method we are aware of backprojects the (voxel-
based) surface skeleton boundaries to the input surface, using the inverse feature
transform (Eqn. 6.3) to yield segment boundaries [142]. A different approach is
to segment the surface skeleton manifolds using Giblin’s skeletal point classifica-
tion [71] and backproject these to the input surface [28]. All such methods produce
good patch segmentations even for shapes having soft edges. Such methods re-
quire high-throughput skeletonization tools, as well as the delicate analysis of the
resulting surface skeletons to detect boundaries and isolate manifolds.

A simpler patch-based segmentation method using surface skeletons was re-
cently presented in [98]. Briefly put, this method implements the same strategy as
[142], i.e., finding segment borders by backprojecting the boundary of the surface
skeleton. However, in contrast to [142], this method handles point-cloud skele-
tons; and it has a much simpler implementation than [28]. We will use this method
further in our unified segmentation pipeline (Sec. 6.3.8.1), and refer to it as the
skeleton boundary backprojection (SBB) method.

Other methods: Outside the class of skeleton-based methods, many other meth-
ods exist for shape segmentation. Given our focus on using skeletons for this task,
these methods are of a lesser interest. For a general survey on 3D shape segmenta-
tion, we refer the interested reader to [11, 168].

6.2.3 Summary of challenges

Summarizing the above discussion on skeleton-based segmentation methods, we
identify the following requirements and challenges. A good method of this kind
should

1. be able to efficiently and directly handle high-resolution mesh models, since
computing skeletons of high-resolution voxel models is prohibitive in terms
of memory and time;

2. guarantee smoothness of the resulting segment borders;

3. be able to produce patch-based, part-based, and mixed-type segmentations,
thereby handling all types of shapes.

No existing skeleton-based segmentation method complies with all the above, to
our knowlege. In the remainder of this chapter, we propose such a method based
on a complete re-casting of the cut space idea in [63] (Chapters 3, 4) to use mesh
models and to handle patch, part, and mixed segmentations.
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6.3 M E T H O D

6.3.1 Preliminaries

To start with, we briefly outline the idea of the cut space part-based segmentation
in [60, 63], which we next refer to as the ‘voxel cut space segmentation’ (VCS) (see
also Fig. 6.1 top). Given a voxel shape Ω ⊂ Z3, its surface skeleton S is first com-
puted, using the method in [83]. Next, a simplified skeleton Sτ is extracted from
S by removing voxels having an importance lower than a small predefined value
τ . These are essentially voxels close to the boundary ∂S that correspond to small-
scale details on the surface ∂Ω (Fig. 6.1b, top). This regularization makes sure that
cuts (to be computed next) are only created from stable, important, skeleton parts.
In this step, for each voxel x ∈ Sτ , a cut c(x) ∈ ∂Ω is computed by tracing three
shortest paths γ1,γ2,γ3 on ∂Ω between the feature points f1 and f2 of x (γ1), f1 and
m (γ2), and f2 and m (γ3), where m is the reflection on ∂Ω of γ1’s midpoint with
respect to x – see red curve in Fig. 6.1c, top. Cuts are piecewise-geodesic (thus,
smooth and tightly wrapping around Ω), closed, and locally orthogonal to the ob-
ject’s symmetry axis (see again Fig. 6.1c, top). These properties ensure that cuts
form good candidates for segment boundaries. The cut space C S = {c(x)|x∈ Sτ}
is next partitioned into several cut-sets Ki containing similar-length cuts, using ei-
ther an analysis of the cut-length histogram [60] or hierarchical clustering [63]
(Fig. 6.1d, top). Next, the borders ∂Cpart

i of the segments are computed by search-
ing for cuts that separate the cut-sets Ki (Fig. 6.1e, top). Finally, the actual seg-
ments Cpart

i are computed by searching for connected components on ∂Ω sepa-
rated by the borders ∂Cpart

i (Fig. 6.1f, top). For full implementation details, we
refer to [60, 63], and also to Chapters 3 and 4, respectively.

In the remainder of this section, we outline how we adapt the above voxel-based
pipeline to work on mesh-based shapes admitting a point-cloud skeleton, and also
handle mixed part-patch segmentations. Sections 6.3.2 – 6.3.7 describe our part-
based pipeline (steps in Fig. 6.1b-g, bottom). Section 6.3.8 describes the patch-
based pipeline and how this is unified with the part-based one (Fig. 6.1h-l, bottom).

6.3.2 Regularized Surface Skeleton Computation

Step 1 of our proposed method parallels step 1 of VCS: We compute a simplified
surface skeleton of the input shape. However, we have to skeletonize mesh shapes
rather than voxel volumes. For this, we use the technique in [82], which is, to our
knowledge, the fastest method to compute surface skeletons of mesh shapes to
date. This method outputs a point cloud representation of the skeleton S. Also, per
skeleton point, the method computes two feature points, i.e., f1 and f2 in Eqn. 6.2.
In contrast, the voxel skeletonization method in [83] used by VCS outputs a voxel-
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Figure 6.1: Top: Cut-space segmentation pipeline from [60, 63]. Bottom: Our proposed
pipeline.
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based skeleton. As we shall see, point-cloud skeleton representations introduce
several challenges to be addressed.

a) MGF metric b) collapse metric

c) cuts from skeleton regularized by MGF metric d) cuts from skeleton regularized by angle metric 

good cut good cut

spurious cut spurious cut

τ α

e) skeleton Sτ regularized by MGF metric, τ=0.01 f ) skeleton Sα regularized by angle metric, α=120°f ) skeleton S regularized by angle metric, α=120f) skeleton S regularized by angle metric, α=120°
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Figure 6.2: (a,b) Comparison of MGF and collapse importance metrics. (c) Thresholding
the MGF metric keeps skeleton points that generate spurious cuts. (d) Thresh-
olding the angle metric allows robustly separating good from spurious cuts. All
models are color-coded by the respective importance metrics.

Similar to VCS, we want to regularize S∂Ω to avoid creating cuts from unimpor-
tant skeletal points that are caused by small-scale noise on ∂Ω. At first sight, we
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could use for this the MGF importance metric delivered by the underlying skele-
tonization method [82] (see also Sec. 6.2.1). The rationale for this would be that
the MGF metric is analogous to the collapse metric provided by [83] and used by
VCS.

However, upon careful examination, we note several issues. If we compare the
MGF and collapse metrics for the same shape (Figs. 6.2a,b), we see that they are
similar, except for points close to the shape’s curve skeleton, where the collapse
metric attains much higher values than over the surrounding surface skeleton (red
curves in Fig. 6.2b). Hence, thresholding the collapse metric, as done in VCS,
eliminates noisy skeleton-points and also preserves the important curve-skeleton
points, which capture the shape part-whole structure (Sec. 6.2.2.1). In contrast,
thresholding the MGF metric eliminates noise, but also all skeleton points in thin
shape areas, which is undesired. Figure 6.2c illustrates this: At the current thresh-
old level, the shown surface skeleton contains both important points (such as the
one generating the well-oriented red cut), but also unimportant points (such as
the one generating the green cut). If we thresholded the MGF metric with values
larger than the one corresponding to the green cut, i.e. around the value τ shown
in the color legend, we would loose about 70% of the entire skeleton, including
the complete legs and ears of the horse model. Even a very conservative setting
of the threshold τ = 0.01 immediately eliminates detail parts such as the ears (see
Fig. 6.2e). Hence, we cannot use the MGF metric to reliably keep skeletal points
that correspond to small shape parts and in the same time eliminate spurious skele-
ton points that generate badly oriented cuts.

To solve this problem, we note that surface-skeleton points close to the curve-
skeleton have large angles between their feature vectors [145]. Separately, skeleton
points created by small-scale noise on the input surface have low MGF values,
thus close feature vectors. Hence, we regularize the point-cloud skeleton using the
angle between the feature vectors f1 and f2 of a skeletal point, which is a well-
known local importance metric [65, 148]. We define the simplified skeleton as

Sα = {x ∈ S|∠(f1, f2)> α} (6.4)

where α = 120◦ is a fixed preset that delivered good results for all our tested
shapes. Figure 6.2d shows the result: The angle metric consistenly gets high values
close to the curve-skeleton branches of all shape parts (rump, legs, muzzle, ears),
and gets low values close to the noisy boundary of the surface skeleton. Hence,
if we threshold the surface skeleton above the value α indicated in the figure,
we robustly eliminate spurious cuts like the green one, and keep cuts that wrap
around the shape’s local symmetry axis (curve skeleton), like the red one. The
resulting simplified skeleton Sα is shown in Fig. 6.2f. Note that this skeleton is
not connected, first because it is just a point cloud, and next due to the removal of
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low-importance points. However, this does not pose any problem further on, as we
use it only to construct our segmentation cuts.

The proposed angle-based regularization of the surface skeleton is simple to
implement (involves a dot product of the normalized feature vectors). Additionally,
it eliminates the need to compute the MGF metric for surface skeletons, which is
the most expensive part of the skeletonization method for mesh shapes in [82].

6.3.3 Cut-Space Computation

Step 2 of our method computes the cut space C S α = {c(x)|x ∈ Sα} from the reg-
ularized skeleton Sα . To construct cuts, we cannot use the VCS approach, which
employs Dijkstra’s algorithm to connect the feature points f1 and f2 of a skeleton
point x by three shortest paths in the adjacency graph implied by the voxel sur-
face ∂Ω (see again Fig. 6.1c and related explanation). If we did so, e.g. by using
the adjacency graph implied by the surface mesh vertices and triangle edges, we
would obtain heavily zig-zagging cuts, which would be useless for our task of
inferring segment borders. To create cuts, we propose here to use the geodesic-
tracing technique introduced in [82] for the different purpose of evaluating the
MGF skeleton-importance metric (see discussion in Sec. 6.3.2).

In detail, we proceed as follows. A straightest geodesic (SG) γS : R+→ ∂Ω, rep-
resented as a parameterized curve, is defined as the unique solution of the initial-
value problem γS(0) = p,γ ′S(0) = v, with p∈ ∂Ω being a point on the shape bound-
ary having tangent vector v ∈ Tp, where Tp is the plane tangent to ∂Ω at p. Jalba et
al [82] proposed an extension to define shortest-and-straightest geodesics (SSGs)
γse between two points s ∈ ∂Ω,e ∈ ∂Ω to be an accurate approximation of the
SG from s to e. SSGs are computed by tracing multiple straightest geodesics over
tangent vectors vi ∈ Ts, and then selecting the one with shortest length ‖γS,i‖, i.e.

γS,i(0) = s, γ
′
S,i(0) = vi

γS,i(‖γS,i‖) = e
γse = argmin

i
‖γS,i‖ (6.5)

For computing the MGF metric, Jalba et al computed the SSG between feature
points f1 and f2 of each skeleton point x∈ S. For our purpose of computing shortest
cuts, however, we require the geodesic to start and end in f1 and pass f2 somewhere
in-between. As such, we redefine γS,i as

γS,i(0) = f1, ∃t ∈ R+ : γS,i(t) = f2, γS,i(‖γS,i‖) = f1. (6.6)

To compute γse using Eqns 6.5 and 6.6, we proceed similarly to [82]: For each
skeleton point x ∈ S, we trace M = 30 straightest geodesics γS,i,1 ≤ i ≤ M, with
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starting directions vi uniformly distributed in Ts, and retain finally the one with
minimal length. For each direction vi, we compute γS,i by intersecting the mesh
∂Ω with the plane with normal ni = f1× vi that passes through s. In contrast to
[82], we continue tracing until having found an intersection with both f2 and finally
arrive back at f1. Finally, we gather all such SSGs to construct the cut space

C S α = {γf1f2 |(f1, f2) ∈ FT∂Ω|Sα
}, (6.7)

i.e., all cuts generated by points of the simplified skeleton Sα .

6.3.4 Cut-Space Partitioning

In step 3, we identify how to partition the cut space C S α into cut-sets that corre-
spond to the shape’s segments. We employ a similar approach to the VCS method,
i.e. use a histogram of cut lengths, in which peaks indicate many cuts with similar
lengths, which likely belong to similar shape parts. With this assumption, we can
find valleys separating the histogram’s peaks (Sec. 6.3.4.1), which in turn provide
us with length thresholds to partition C S α (Sec. 6.3.4.2).

6.3.4.1 Histogram Valley Detection

To automatically and robustly detect histogram peaks and valleys, we need to ana-
lyze the histogram’s bins and their interrelationships. For this, VCS first searches
for a bin high enough to be considered as peak, then continues searching for the
next bin smaller than a certain quantity which is considered a valley. While this
method does give an indication of where peaks and valleys are located, it suffers
from not finding the smallest valley because of the greedy search for valleys. More-
over, what one would consider a valley depends on the neighboring bins. Hence,
we propose to make the search for valleys take into account their surroundings in
the histogram.

To do this, we proceed as follows (see also Fig. 6.3). First, we use the mean shift
algorithm [36] on the histogram bin heights, to sharpen the differences between
peaks and valleys. Next, we start scanning the histogram bins, left to right, for a
peak that contains at least λp = Hpeak · ‖C S α‖ cuts. When found, we remember
its height hp, and continue scanning and updating hp as long as higher peaks are
found. In the same time, we search also for valleys, i.e. bins having fewer than
λv = Hdecrease ·hp cuts. This way, a valley’s detection depends on the height of the
peak (hp) it follows. Just as for peak detection, when a bin having fewer than λv
cuts is found, we remember its height hv, and continue scanning and updating hv as
long as lower peaks are found. If, during this valley-scan, we find a bin taller than
λp, we have found a new peak. We have now two peaks and a valley of height hv in-
between. We store the valley’s height θ0 = hv and continue scanning the histogram
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Figure 6.3: Histogram of cut-lengths of a horse shape from which two thresholds have
been detected. The cuts in range [0,0.06) represent the horse’s legs, range
[0.06,0.1) corresponds with the neck and longer cuts correspond with the
torso.

as above. After scanning the entire histogram this way, we obtain a set of valley
heights Θ = {θi}. These will deliver our thresholds used to partition the cut space,
as explained next in Sec. 6.3.4.2.

We established that good parameter choices are Hpeak = 0.01 and Hdecrease =
0.25, such that a peak should represent at least 1% of all cuts and a valley is
smaller than a quarter of its accompanying peak.

6.3.4.2 Histogram-based Cut Space Partitioning

Using the set of valley thresholds Θ, we can now partition C S α . This can be
done in linear time in the cut space size ‖C S α‖, by iterating over histogram bins
left-to-right and assigning all cuts between two consecutive thresholds θi,θi+1 to
the cut-set Ki.

As for the VCS method, a cut-set Ki does not necessarily represent a compact
shape segment, but could contain several such segments – for example, the five
fingers of a hand have similar thickness, so they end in the same cut-set. To sepa-
rate segments from cut-sets, we partition each cut-set into connected components,
based on the connectivity of the skeleton points that generate the cuts. This was
trivial to accomplish for VCS, given the explicit connectivity of skeleton voxels.
In our case, the skeleton is an unorganized point-cloud lacking connectivity, as
explained in Sec. 6.3.2. To address this, we define connectivity of skeletal points
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in terms of the neighborhood relation NS(x) of a skeleton point x ∈ S to other
skeleton points within a distance r from x as

NS(x) = {y ∈ S | y 6= x∧‖x−y‖< r} (6.8)

where setting r to 1% of the diameter of ∂Ω gives good results, following similar
approaches in e.g. [82, 98].

The result of the cut space partitioning is a labeling Lα : Sα → N, which asso-
ciates to each point in the simplified skeleton (or, alternatively, each cut in C S α )
an integer ID that tells the segment Cpart

i ⊂ C part these are part of. Given the
nature of the neighborhood relation NS and the imprecise nature of determining
the thresholds in Θ, the labeling can be unstable for cuts whose skeleton points
are very close to each other. To eliminate such variations, we apply a mode filter
over all label values for points in the same neighborhood NS(x), i.e., we assign to
Lα(x) the most frequently occurring label over NS(x).

6.3.5 Partitioning the Full Surface Skeleton

The labeling L computed as outcome of the cut space partitioning (Sec. 6.3.4.2)
is not our final desired result, i.e., the segmentation C part of ∂Ω. Indeed, L only
assigns segment IDs to a subset Sα of the entire surface skeleton S. To obtain the
final part-based segmentation C part , we proceed in two steps. First, we extend the
labeling Lα from the simplified skeleton Sα to a labeling L of the full surface
skeleton S. This is described in this section. Next, we project the full labeling L
from S to the shape boundary ∂Ω. This is described in Sec. 6.3.6.

N A I V E S O L U T I O N : To interpolate Lα over the entire point-cloud skeleton
S, one could use several strategies. A simple (but naive) one is to use a nearest-
neighbor scheme where L (x∈ S\Sα) =Lα(argminy∈Sα

‖x−y‖). This approach
has several problems, as follows. First, using the R3 Euclidean distance metric
to determine nearest neighbors will not work for non-convex shapes which have
non-convex surface skeletons. Figure 6.4b illustrates this for a dog model, shown
in Fig. 6.4a. Here, colored points are labeled points in Sα , and gray points are
points to be labeled in S \ Sα . The marked (red) point x, which is located on the
neck skeleton, is closer to point x1 (on the dog’s ear) than to x2 (on the neck
skeleton), so it will wrongly get x1’s label, i.e., be assigned as part of the ear. A
second problem of this nearest-neighbor interpolation is that labels will always
meet halfway between labeled points in Sα . This causes problems at junctions of
parts having widely different thicknesses. Figure 6.4c illustrates this. We see here
a detail of the dog model having two label values over Sα – dark blue for rump
points, and cyan for points in the legs. The area where the two label values would
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meet, when using the simple nearest-neighbor interpolation, is shown in red, and it
is actually the border of a generalized Voronoi diagram having all blue, respective
cyan, points as two sites. This partition is undesirable, as it would assign a large
part of the rump skeleton to the segments corresponding to the legs. The desirable
leg-rump partition is shown by the blue line in Fig. 6.4c.

desirable
partition

actual
partition

a) input shape b) concave parts problem c) part-rump problem

x x
1

x
2
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c

d) concave parts solution e) part-rump solution

Figure 6.4: Label interpolation over the full skeleton. (a) Input shape. (b,c) Problems
caused by naive nearest-neighbors interpolation. (d,e) Effective solution using
the distance transform of the skeleton points.

E F F E C T I V E S O L U T I O N : To correct the first problem, one way would be to
consider geodesic distance along the S manifold rather than Euclidean distance in
R3. Doing so is however not possible for skeletons represented as point clouds;
and reconstructing smooth manifolds from such skeletons is a highly complex and
expensive process [96]. Also, this would not correct the second problem. We pro-
pose next a much simpler and faster solution that addresses both problems. Key to
this idea is the observation that the local shape thickness around a skeletal point
should determine how far a label should be propagated. This local thickness is
precisely represented by the distance transform DT∂Ω values on S. Hence, for a
labeled point x ∈ Sα , we search all its neighbors y in a ball of radius DT∂Ω(x)
and, if DT∂Ω(y) < DT∂Ω(x), assign L (y)← L (x). The last distance condition
is required to have labels of skeleton points in thick regions dominate those of
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nearby skeleton points in thin regions, and also to ensure that the labeling does not
depend on the order of visiting of the skeleton points. Finally, the (few) skeleton
points that are still unlabeled after this operation are assigned the label of their
nearest neighbor. Figures 6.4d,e show the results of our proposal. As visible, both
concave-part and part-rump problems mentioned earlier are now solved as desired.

6.3.6 Partition Projection to Surface

Having now a part labeling defined on all skeleton points, we map, or project, this
labeling from S to ∂Ω. For this, the original VCS proposal proceeds as follows. All
cuts are tested for being borders of the final part segments Cpart

i . A cut c(x) from a
cut-set Ki is deemed to be a border candidate if at least one of the 26-neighbors of
the skeleton voxel x has a cut that belongs to a different cut-set K j, j 6= i. Next, a
single border is picked from a set of border candidates that separates two cut-sets
Ki and K j, based on heuristics involving the cut length.

In our context, there are several issues with using this method to project the la-
beling from the skeleton to the surface, as follows. First, our point-cloud skeleton
does not admit a direct equivalent of the 26-neighbors relationship used for voxel
shapes. The nearest-neighbor relation NS (Eqn. 6.8) is too coarse to capture such
fine details. Much more critically, though, is the fact that our cuts are planar SSGs,
while the ones used by VCS consist of three geodesic curves, not necessarily lo-
cated in a plane (see Sec. 6.3.3). As such, VCS cuts have a much larger freedom
to model flexible segment boundaries than our cuts. However, despite their flexi-
bility, the VCS cuts are still constrained by their construction process to consist
of three geodesic curves (see Sec. 6.3.1). While this appears to handle quite well
part-based segmentation, it is arguably too rigid for producing good patch-based
and mixed segmentations, which are our ultimate goal.

We propose a different way of projecting the segmentation information from the
skeleton to the shape surface, that addresses all above issues, as follows. For each
skeleton point x ∈ S having label L (x), we assign the label to all closest surface
points to x, i.e., set L (y ∈ FT∂Ω(x)←L (x). Note that this may not assign labels
to boundary points in convex surface regions, since the skeletonization algorithm
we use [82] only computes two feature points per skeleton point, rather than the
full feature transform (Sec. 6.3.2). We compensate this by assigning labels to all
yet unlabeled surface points by simple nearest-neighbor interpolation. Finally, we
derive the part segments Cpart

i ⊂ ∂Ω as the connected-components on ∂Ω that have
the same label values.
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6.3.7 Part-based Partition Refinement

The previous step delivered a partition ∪iC
part
i = ∂Ω of the input surface into

segments. The final step of our part-based segmentation pipeline takes this parti-
tion and refines it to yield the final part-based segmentation. Three operations are
performed in this refinement, as follows.

Segment validation: First, segments Cpart
i are checked as to their validity, in terms

of what a human observer would qualify as being a ‘part’ or not. Recalling the
assumptions of part-based segmentation [60, 63, 74, 141], we see that actual parts
in a good part-based segmentation should be covered well by their associated cuts
in the cut space. Intuitively put, if we cut through a part with tight cuts orthogonal
to the shape’s local symmetry axis, the cuts should stay in the part. Conversely,
segments whose cuts cover far more than the segment itself, do not coincide with
what is typically perceived as a part. To measure this coverage, let K(Cpart

i ) = {c∈
C S |c∩Cpart

i 6= ∅} be the set of cuts in our cut space that intersects segments
Cpart

i . We then define the coverage of Cpart
i by cuts as

ν(Cpart
i ) =

‖{c ∈ K(Cpart
i ) | c\Cpart

i =∅}‖
‖K(Cpart

i )‖
, (6.9)

i.e. the fraction of cuts passing through a part that are fully confined to that part.
High values of ν indicate segments which are well-covered by their cuts, and thus
which are plausible parts. We keep these in the final segmentation. Lower values
of ν – below an empirically determined threshold of 0.8 – indicate poor part prop-
erties. We remove such segments from the final result by merging them with one
of their neighbor segments on ∂Ω.

b) cut space CS colored

by segment labels

a) segments to validate c) part-based

segmentation

d) patch-based

segmentation

Figure 6.5: Part validation for a box shape. The produced segments (a) are validated by
computing their cut-coverages (b). This results in a trivial part-based segmenta-
tion (c), which finally determines that a patch-based segmentation will handle
this shape (d).
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The coverage test effectively filters most, but not all, segments which are not
part-like. A salient exception are corners of faceted objects, such as the box in
Fig. 6.5a. These segments are covered by cuts which nearly all stay inside them,
as shown by the cut space of the shape colored by the labels of the respective cuts
(Fig. 6.5b). Hence, such segments will not be marked as invalid. A similar problem
(without a solution) was highlighted by the curve-skeleton-based part segmenta-
tion technique in [141]. To discard such segments, we use a second heuristic: Parts
should ‘stick out’ of the shape as much as possible [100], or in other words they
should have as many points with opposite normals. To test this, we compute angles
between all surface normals to points in a segment Cpart

i , and require that the me-
dian of these angles be at least 90°. For the box shape, this invalidates the corner
segments, yielding a single segment for the entire shape in terms of part-based seg-
mentation (Fig. 6.5c). As such, the patch-based segmentation of the same shape,
which we next discuss in Sec. 6.3.8 gets full freedom to process the shape, leading
to the expected result (Fig. 6.5d).

For completeness, we should note that our part validation heuristic is not the
only possible one. For instance, Serino et al. propose a so-called ‘visibility crite-
rion’ [162], which aims to detect whether a peripheral part, far from the object’s
main rump, actively contributes to a meaningful segmentation. This heuristic uses
only the curve skeleton in its computation in a voxel-based setting. As our pipeline
only uses the surface skeleton, and computing the curve skeleton of mesh-based
shapes is more complex when considering the technique in [82] which forms
the backbone of our approach, the possibility of integrating this criterion in our
framework is a topic of further investigation.

Segment border smoothing: Recall that segments Cpart
i on ∂Ω are essentially

back-projections of skeleton fragments sharing the same label values via the fea-
ture transform (Sec. 6.3.6). In the ideal continuous case, equivalent to an infinitely
dense sampling of a smooth ∂Ω, and a similar sampling of S, the segments would
have smooth, continuous, borders. However, real-world meshes have a limited and
often highly non-uniform sampling resolution. The used skeletonization method
[82] essentially copies this sampling resolution to S. More critically, this method
only uses the mesh vertices of ∂Ω as feature points for estimating the feature
transform (Eqn. 6.3). As such, backprojecting labeled skeleton points to ∂Ω does
not result in smooth segment borders. Figure 6.6a shows this for a densely, and
uniformly, sampled hand model of 197K vertices. As visible, segment borders
exhibit problematic small-scale fractal-like noise. We solve this issue by comput-
ing smooth segment borders as follows. First, we create borders ∂Cpart

i of the
segments Cpart

i by connecting the midpoints of surface triangle-cell edges whose
vertices have different labels (thus fall in different segments). Next, we apply
classical Laplacian smoothing [196] to remove small-scale wiggles along these
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boundaries. After each smoothing pass (10 in total), we reproject the smoothed
boundary ∂Cpart

i to ∂Ω, since unconstrained 3D smoothing makes the bound-
ary curve leave the shape’s surface. The overall effect is identical to performing
Laplacian smoothing constrained on the surface ∂Ω. As the smoothed segment
border moves on ∂Ω, we update the labels of the vertices to ensure consistency.
Figure 6.6b shows the result: The smoothed boundaries stay roughly in the same
position as the initial ones, but are considerably tighter and smoother, thus similar
in terms of desirable requirements to the original piecewise-geodesic boundaries
of the VCS method. Finally, we draw these smooth boundaries as thick 3D tubes,
for ease of perception (Fig. 6.6c).

a) raw segments Ci
part

b) smoothed segments Ci
part

c) segment borders ∂Ci
part

Figure 6.6: Computing part-segment borders. (a) Raw borders produced by skeleton-
labeling backprojection. (b) Borders after Laplacian smoothing. (c) Visually
emphasized borders.

Visual representation: Our segmentation C part describes parts on ∂Ω in terms of
vertices having the same label. For all practical purposes, such as visualization or
further geometric processing, we need a cell-based description. For this, we split
the triangle cells in ∂Ω in a Voronoi-like fashion to interpolate, in nearest-neighbor
sense, the categorical vertex label values.

6.3.8 Unified (Part and Patch) Segmentation

So far, we described how to produce part-based segmentations C part of mesh
shapes. However, as outlined already in Sec. 6.1, our goal is to segment any shape,
thus propose a way to combine part-based and patch-based segmentations in a flex-
ible way. We present here a way to combine the two segmentation types in a new
segmentation model, which we refer to as unified (part-and-patch) segmentation
C . We first introduce the patch-based segmentation method we use (Sec. 6.3.8.1).
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Next, we discuss the desirable properties of a good unification method, and possi-
ble strategies to implement it (Sec. 6.3.8.2). Finally, the unification technique we
propose is presented in Sec. 6.3.8.3.

6.3.8.1 Patch-type Segmentation using Surface Skeletons

For patch-based segmentation, we use the skeleton boundary backprojection
(SBB) method of Kustra et al. [98], which has several desirable properties in
our context. First, this method treats high-resolution mesh shapes, which is our
application target. Secondly, the method is also based on surface skeletons, which
matches our toplevel goal of showing how such skeletons can effectively support
shape segmentation. Thirdly, the method uses the same skeletonization technique
[167] as our part-based segmentation, which makes the technical combination of
part and patch segmentation easy. We next briefly explain this method and also
outline its limitations relevant to our unified segmentation goal.

As all other patch segmentation methods, Kustra et al. define patches Cpatch
i

implicitly by requiring that borders separating them should occur in high surface-
curvature areas. To do this, they proceed as follows. First, the point-cloud surface
skeleton S of the input shape Ω is computed using the technique in [167]. Next,
points on the boundary ∂S of the surface skeleton, or so-called A3 points [71], are
detected as those skeletal points whose image on ∂Ω, via the feature transform,
contains a single compact cluster. However, as noted earlier in this paper, the un-
derlying skeletonization method [167] does not compute the full feature transform,
but only two feature points per skeleton point. Kustra et al. note that computing
the exact (full) feature transform is sensitive, so they propose instead a so-called
extended feature transform

FT τ

∂Ω
(x ∈ S) = {f ∈ ∂Ω|‖x− f‖ ≤ DT∂Ω(x)+ τ} (6.10)

which gathers, for each skeletal point x, all boundary points within a range
DT∂Ω(x)+ τ , where τ is a small positive value. The extended feature transform
provides a conservative approximation of the actual feature transform (Eqn. 6.3),
and can be readily used to detect ∂S as outlined above. Similar conservative ap-
proximations of the feature transform are also proposed by the VCS method for
voxel shapes [60, 63].

After the skeleton boundary is detected, the method projects ∂S to the shape
surface via the extended feature transform, i.e., compute the set

Φ = {f ∈ FT τ

∂Ω
(x) | x ∈ ∂S} (6.11)

which conservatively captures convex edges on ∂Ω. Patches Cpatch
i are now easily

found as the connected components of ∂Ω \Φ. Finally, points in Φ get assigned
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to the closest established patch, thereby completing the patch-based segmentation
C patch of ∂Ω.

Figure 6.7(top row) shows the results of the patch-based segmentation method
described above on two shapes (fandisk and horse). For fandisk, which has clear
and salient edges, a very good patch segmentation is produced (Fig. 6.7a). The
horse shape has much softer and fuzzier edges, and as such yields a poor patch-
type segmentation (Fig. 6.7b). This can be explained as follows: Finding a reliable
set Φ that captures edges on the surface ∂Ω requires computing stable A3 points
to detect the skeleton boundary ∂S (Eqn. 6.11). However, the heuristic described
earlier of finding A3 points via the extended feature transform fails for cylinder-
like parts of a shape, as discussed in [98]. While fine-tuning various parameters of
the method of Kustra et al. sometimes improves results, patch-type segmentation
does not work well for shape regions having too soft edges. In contrast, using our
part-based segmentation method described in Secs. 6.3.2 – 6.3.7 yields very good
results for tubular, soft-edged, shapes like horse (Fig. 6.7d). Conversely, part-based
segmentation produces a poor result for the faceted shapes like fandisk (Fig. 6.7c).
In this case, no part is identified, which is correct, given the part-validation criteria
outlined in Sec. 6.3.7. Hence, to obtain the best segmentation results for all shape
types, including those that have a mix of faceted and tubular parts, a unification of
part- and patch-based segmentation is needed. Such a method is proposed next.

6.3.8.2 Unification Desirable Properties

Before designing a part-patch unification strategy, we must define its desirable
properties. Based on our experience, we outline the following key properties:

1. hybrid: the strategy should handle shapes admitting a full part-based seg-
mentation, shapes admitting a full patch-based segmentation, and also
shapes admitting a mix of the two segmentation types in various areas;

2. intuitive: the unified segmentation should make sense according to human
perception – that is, the produced parts, respectively patches, should visu-
ally make sense with respect to the part and patch properties established in
Secs. 6.2.2.1 and 6.2.2.2;

3. balanced: unified segmentations should not be over-segmented due to incor-
porating both segment types;

The simplest unification approach would be to compute separate part-based and
patch-based segmentations and then choose the result that maximizes the respec-
tive quality properties of the two segmentations. However, this solution cannot
handle shapes that require a hybrid segmentation. An alternative is to compute the
two segmentation types separately, but then mix their results in terms of selecting
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c) d)

Faceted shape (fandisk) Tubular shape (horse)
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Figure 6.7: Two typical patch-type and part-type shapes, segmented by patch-based and
part-based segmentation.

the optimal segments with respect to both local quality criteria (that decide which
type of segmentation best fits a region of the shape) and global criteria (the user’s
preference for part- or patch-based segmentations). This approach can satisfy all
above-mentioned requirements. As such, we choose this way next, as follows. For
part-based segmentation C part , we use our pipeline presented in Secs. 6.3.2 – 6.3.7.
For patch-based segmentation C patch, we use the method discussed in Sec. 6.3.8.1.
Our unification method is discussed next.

6.3.8.3 Unification Method

As outlined in Sec. 6.3.8.2, our approach to a unified segmentation is to compute
both part- and patch-based segmentations of the shape, and next decide which of
the produced segments are valid in terms of specific part and patch requirements.
Valid segments are kept and finally merged to yield the unified segmentation. The
process is detailed next.

PA RT VA L I DAT I O N : For part-based segmentation, we use the segment vali-
dation procedure described in Sec. 6.3.7, which consists of the cut-coverage and
angle-coverage criteria. As such, part-based segmentation will only produce valid
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part-segments Cpart
i , in areas where such segments can be computed. When and

where valid segments cannot be computed, the shape will be left unsegmented.

PAT C H VA L I DAT I O N : For patch-based segmentation, the method of Kustra
et al. does not provide patch validation. Hence, this method may oversegment the
shape or produce otherwise suboptimal patches, such as shown by the example in
Fig. 6.7b. Merging such suboptimal patches with otherwise good parts will yield an
overall poor unified segmentation. We address this by proposing a patch validation
scheme, similar in spirit to the part validation discussed earlier.

As already outlined, a good (valid) patch Cpatch
i should have its borders in high-

curvature regions of the input surface ∂Ω. Several methods exist for computing
curvature on mesh surfaces, such as using the curvature tensor [120, 195]; using
moment analysis [34]; or estimating the shape thickness over the surface-skeleton
boundary [98]. The first two methods are quite sensitive in terms of setting the
scale at which edges are detected, as also noted in [98]. The last method, which
is also used to detect patch borders in the segmentation technique described in
Sec. 6.3.8.1, does not have this problem, but captures also soft edges, leading to
issues such as the oversegmentation in Fig. 6.7b.

For our patch-segmentation context, we need to compute segment borders that
follow as precisely as possible salient edges on ∂Ω. We propose a simple but
effective edge detector for this, as follows. Let V = {(x,n(x))} be the vertices,
and their normals, of the surface mesh ∂Ω, and let E = {(x,y) | x ∈ V,y ∈ V} be
the mesh edges. For a mesh point x ∈V , denote by

NV (x) = {y ∈V |‖x−y‖< r} (6.12)

the nearest neighbors of x in the mesh within a radius r. Next, let

∂NV (x) = {y ∈V \NV (x) |(x,y) ∈ E } (6.13)

be the boundary of the neighborhood NV (x). We approximate the curvature κ(x)
of the surface at point x by the mean-angle of all point combinations in ∂NV (x),
i.e.

κ(x) = mean{∠(n(y),n(z)) |(y,z 6= y)⊂ ∂NV (x)×∂NV (x)} . (6.14)

where × denotes Cartesian product.
Figure 6.8 shows our curvature estimator κ for two shapes. As visible, κ cap-

tures all zones where salient edges exist, both for the fandisk model, which exhibits
clear edges, and for the frontal bone model, which has much noisier edges. Here,
the neighborhood size r (Eqn. 6.12) is set to roughly 2 to 5% of the diameter of
∂Ω. This setting has given good results for all other tested shapes.
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a) fandisk b) frontal bone

Figure 6.8: Proposed curvature detector κ for two shapes. Red indicates quasi-flat areas.
Yellow and green indicate edges.

Using the curvature field κ we can now find and remove invalid patches. For this,
we consider each border fragment Bi j that separates partches Cpatch

i and Cpatch j,
which is defined as

Bi j =
{

x ∈Cpatch
i

∣∣∣∃y ∈Cpatch
j ,(x,y) ∈ E

}
∪{

x ∈Cpatch
j

∣∣∣∃x ∈Cpatch
i ,(x,y) ∈ E

}
. (6.15)

For each such border fragment, we compute the median curvature κ̂(Bi j) over all
its vertices x ∈Bi j. If κ̂(Bi j) is larger than a threshold β = π/4, determined em-
pirically for our studied models, then Bi j is a valid (good) boundary of our patch-
based segmentation, so we keep it. If not, then we erase Bi j from the segmentation,
i.e., merge patches Cpatch

i and Cpatch
j . To ensure a deterministic patch-validation re-

sult, we process patch border segments Bi j in increasing order of κ̂(Bi j).

M E R G I N G S E G M E N TAT I O N S : After removing invalid patches, we have both
a validated part-based (C part) and patch-based (C patch) segmentation. We now
construct the unified segmentation C by merging C part and C patch as follows. We
first initialize C with C part , i.e., keep all part segments which have been already
validated (see Sec. 6.3.8.3). Next, we merge in C the patches Cpatch

i . This essen-
tially refines, or subdivides, those parts which have been found to consist of several
patches in C patch.

Let us explain how the unified segmentation yields the desirable results for the
shapes in Fig. 6.7. For the fandisk shape, C patch contains patches having very high
curvature along their borders (Fig. 6.7a). Hence, all borders shown in the figure
will be validated and kept as shown. In contrast, its C part contains a single single
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part (Fig. 6.7c). The merging process outlined above will split this single part
into precisely the patches of C patch. Hence, the unified result will be identical to
C patch, as desired. For the horse shape, C patch contains patches having (very) low
curvature values along their borders (Fig. 6.7b). As such, all these patches will
be invalidated, yielding C patch = ∅. Hence, the merging process will keep C part

unchanged. This is the desired result, since C part for this shape is of good quality
(Fig. 6.7d).

6.4 R E S U LT S

We next present several segmentation results obtained with our unified method.
We start by comparing part-based segmentations. Figure 6.9 compares our

method with the original voxel-based cut space segmentation (VCS) in [63]. As
visible, our results are very similar in terms of position, smoothness, and tightness
of the delivered segments. We also see that our method succeeds in cases where
VCS visibly undersegments the shape (tool, mask). Small-scale details may differ
between the two segmentations, such as for the rhino model where VCS under-
segments the toes, while our method undersegments the horn and ears. In this
particular case (rhino), the VCS segmentation is likely better, as separating the
larger horns and ear details should be more important than separating the smaller
toes. These variations are explainable by the two different parameter settings of
the two methods.

Figure 6.10 shows the added-value of the unified segmentation for a set of
shapes having relatively soft (shallow) edges. We see how the unified segmentation
(bottom row) refines the already-discussed part-based segmentation (top row) by
splitting segments along lines of high curvature, e.g. the edge of the bird’s wing or
of the scapular bone. This allows getting a mix of parts, which capture the shape’s
topology, and faces, or patches, which capture the shape’s geometry. The unified
segmentation can thus be seen as a refinement of the part-based segmentation.

Figure 6.11 compares our unified segmentation with the SBB method of Kustra
et al. [98], which is also using surface skeletons to produce patch-based segmen-
tations of 3D shapes. The figure contains the anatomic shapes used as benchmark
in [98]. These are quite challenging to segment, as they have complex geometries,
a mix of sharp and soft tortuous edges, and consist of both parts and patches. As
visible, our method is able to find all patch-like segments that the SBB method can.
However, our method generates visibly smoother segment borders, which also bet-
ter follow the shape’s edges, even in the case of very complex geometries such as
frontal bone and gyrus. We also see that SBB places two segment borders in areas
where no apparent patch or part transition occurs (scapula and spleen, marked de-
tails). In contrast, our unified method does not allow such borders to exist, due to
its part and patch validation steps (Secs. 6.3.7 and 6.3.8.3).
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Figure 6.10: Soft-edged shapes segmented by part and unified techniques with our method.

6.5 D I S C U S S I O N

We next discuss several aspects of our unified segmentation method.

C O M PA R I S O N : Section 6.4 has compared our method with the two main re-
lated methods which use surface skeletons to segment shapes (VCS, [63] and SBB,
[98]). It is also interesting to compare our method with the larger class of shape
segmentation techniques out there. While it is impossible to do so in the same
detail as provided in Sec. 6.4, Figure 6.12 shows a qualitative comparison of our
method with seven well-known part-based segmentation methods. Images (a-d)
correspond to methods that do not use skeletons. Images (e-f) correspond to meth-
ods that use either curve or surface skeletons. For an overview of these methods,
we refer to Sec. 6.2.2.1.

The most salient observation on Fig. 6.12 is that skeleton-based methods tend, in
general, to provide more ‘natural’ part-based segmentations than the other studied
methods, in terms of positioning and smoothness of the segments’ borders. This is
due to the inherent ability of skeletons to model a shape’s local axis of symmetry,
across which segment borders can be fit. In contrast, non-skeleton-based methods
cannot ensure this proper border orientation. Secondly, we see that the cut space
based methods (Fig. 6.12g,h) do not oversegment. This observation is also con-
firmed by all other earlier examples showing our method (Figs. 6.9, 6.10, 6.11).
This is due to two design elements in our method: (1) the cut space partitioning
ensures that similar-length cuts will never yield different parts (Sec. 6.3.4); and (2)
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Figure 6.11: Anatomic shapes segmented by the SBB method of Kustra et al. [98] and our
unified method.
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Figure 6.12: Comparison of eight part-based segmentation methods. (a) Liu and Zhang
[107]; (b) Attene et al. [10]; (c) Clarenz et al. [34]; (d) Tierny et al. [201]; (e)
Lien et al. [105]; (f) Reniers et al. [141]; (g) Feng et al. [63]; (h) our method.

the part and patch validations ensure that superfluous parts and patches are auto-
matically removed (Secs. 6.3.7, 6.3.8.3). This is in contrast to several of the other
methods depicted here (Fig. 6.12b-e). All in all, the above observations strongly
plead for the added-value of skeletons for shape segmentation.

The fact that there is quite some variation in the segmentations produced by
different methods and, implicitly, in their perceived quality, should however be
interpreted with care. The comparison presented here, as is far from exhaustive,
cannot thus be used to derive generalizing value judgments of one method vs an-
other. For instance, the examples in Fig. 6.12e,f show that curve-skeleton-based
methods can sometimes oversegment (see horse legs, Fig. 6.12e) and sometimes
undersegment (see horse nech and rump, Fig. 6.12f). The fact that surface-skeleton-
based methods do not show such artifacts (Fig. 6.12g,h) should not be interpreted
as pointing to a general superiority of such methods as opposed to curve-skeleton-
based methods. The main conclusion from this comparison is limited to showing
that segmentation methods using surface skeletons are an interesting and viable
alternative for part based shape segmentation.

U N I F I C AT I O N : If we study the state-of-the-art in shape segmentation methods
[11, 168], we see that most such methods are, implicitly or explicitly, focused on
handling either part-based or patch-based segmentations, but rarely both. This is
easy to explain, as we have seen that the criteria defining (good) parts and patches
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are very different, as the two have different natures. Indeed, parts are inherently
volumetrically described; while patches are best described on the shape’s surface
[141, 142]. As such, one typically needs to know in practice what is the nature
of shapes one wants to segment, in order to choose the best segmentation method
for that task; or else, one needs to manually run several such methods and hope
that one of them will be optimal for the shapes at hand. Our unified segmentation
proposed here shows that one can use a single descriptor – surface skeletons – to
automatically compute and combine both segmentation types. This allows users
to simply ‘drop’ their shapes in the tool and let it choose the optimal mix of parts
and patches to segment with.

P E R F O R M A N C E : Table 5 shows the performance of our unified method, im-
plemented in single-threaded C++, on an Intel Core i7 3.8 GHz PC with 32GB
RAM. The tested shapes vary considerably in terms of mesh resolution (‖∂Ω‖)
and mesh-sampling uniformity, and also in terms of the number of cuts we com-
pute (‖C S α‖). We next see that the total cost is dominated by the cut space com-
putation. At first sight, the overall cost appears to be quite high. To better assess
this cost, we compute the throughput of our method

Tuni f ied =
1

1000
|∂Ω‖ · ‖C S α‖

tcuts
(6.16)

i.e. the number of cuts, for a given resolution of the mesh (in thousands of vertices),
that the method can deliver per second. Using the mesh resolution in Eqn. 6.16
accounts for the fact that the cut computation cost is proportional with the mesh
resolution. Table 6 shows the throughput TVCS for the original voxel-based VCS
method. Here, ‖∂Ω‖ denotes the number of voxels on the shape surface. The
ratio of the average TVCS to the average Tuni f ied is 2.32, i.e., the VCS method is
2.32 times faster than ours. However, the original VCS method does use CPU
parallelism (8 threads) to compute cuts, while our method is purely sequential.
Parallelizing our cut computation is very easy, as cuts are traced completely inde-
pendently. This makes our method potentially over 3 times faster than the VCS
method. Further using GPU parallelism to compute the cuts, following the tech-
nique originally proposed by [82] for computing surface-skeleton importance,
would make our method significantly faster than the VCS method, which lends
itself far less to GPU parallelization. Interestingly, we see that the relative through-
put of our method as compared to VCS increases significantly for shapes where
many cuts are used, e.g. scapula and heptoroid – for the second shape, our method
has an even higher throughput than VCS. Memory-wise, our method needs to
store only the input mesh, point-cloud skeleton, and two feature points per skele-
ton point, its memory cost being O(‖∂Ω‖). In contrast, VCS needs to store four
full densely-sampled volumes, yielding a memory cost of O(‖∂Ω‖3/2) (for details,
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see the underlying skeletonization method [83]). All in all, we see that our method
scales far better than VCS with respect to shape size.

Shape ‖∂Ω‖ ‖C S α‖ tskel tcuts tpatch tunif Tunified

Horse 49,749 7,453 5.6 63.2 5.2 6.4 5866

Hound 16,158 364 0.7 5.1 2.0 2.7 1153

Cow 137,862 16,447 23.0 242.3 10.9 63.0 9357

Bird 47,184 26,485 6.3 262.0 5.3 14.1 4769

Pig 4,800 756 0.2 2.0 0.6 0.6 1814

Vertebra 22,789 7,779 0.2 57.4 2.4 2.2 3088

Scapula 117,432 83,340 17.3 2325.7 11.0 26.6 4208

Heptoroid 79,056 63,876 5.0 539.1 6.3 5.8 9367

Kidney 30,389 9,986 6.5 177.7 4.0 27.0 1707

Hand 49,546 2,815 7.3 47.9 4.2 11.1 2911

Table 5: Performance of the proposed unified segmentation method.

Shape ‖∂Ω‖ ‖C S ‖ tskel tcuts TVCS

Horse 109555 884 1.24 9.58 10109

Hound 245759 1530 1.51 23.24 16179

Cow 143938 1009 0.96 8.15 17820

Bird 45638 476 0.18 2.28 9527

Pig 145215 959 1.51 10.97 12694

Vertebra 68632 683 0.37 8.56 5472

Scapula 285854 4329 30.0 301.3 4106

Heptoroid 651478 4873 3.36 400.5 7926

Kidney 31874 403 0.16 3.91 3278

Hand 58071 584 0.22 2.15 15773

Table 6: Performance of the VCS part-based segmentation method of Feng et al. [63].

I M P L E M E N TAT I O N : While at first sight complex, our unified method requires
only a few ingredients to be implemented – the point-cloud skeletonization method
for mesh models in [82], which delivers surface skeletons, distance transforms,
and feature transforms; and a way to find the nearest-neighbors in a point cloud
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(Eqns. 6.8 and 6.12). The former is provided by the respective algorithm, and the
latter is readily available via the ANN package [122].

L I M I TAT I O N S : While delivering good-quality segmentations of complex
shapes, our unified method still has several limitations, as follows. First and
foremost, its quality essentially depends on the underlying qualities of the parts
and patches delivered by its two branches (Sec. 6.3). While the part and patch
validation steps we introduce considerably help delivering good quality parts and
patches, the overall result still depends on the possibility of independently find-
ing good parts and patches on a shape. There are, obviously, cases when this
assumption does not hold. In such cases, designing a new ‘joint segment’ model
able to capture the full continuum between parts and patches is desirable, and is a
challenge for future work.

Secondly, our unified method is technically more complex than other part-based
and patch-based segmentation methods taken separately. Indeed, it comprises a
full part-based segmentation pipeline (7 steps, Secs. 6.3.2–6.3.7), a full patch-
based segmentation pipeline (Sec. 6.3.8.1), and a unification pipeline (two steps,
Sec. 6.3.8.3). However, this is justified by the fact that our method is, to our knowl-
edge, the only existing one that can handle mixed part-patch based segmentations
with good results.

The comparisons of our method with related segmentation methods [10, 34, 60,
63, 98, 105, 107, 141, 201] is, of course, not covering the entire spectrum of seg-
mentation methods out there. This would be highly challenging, if not impossible,
to do given the available space and the availability of implementations of such
methods. More effort (from the entire shape segmentation community) is required
here. Yet, we argue that our main point – showing that our method can leverage
surface skeletons to generate part-patch based segmentations than other tools in
the same class – has been well defended by the presented results.

6.6 C O N C L U S I O N

In this chapter, we have presented a novel method to create segmentations of 3D
mesh shapes. In contrast to most existing segmentation methods out there, we
show that it is possible to design a single method that effectively handles tubular
(articulated) shapes, faceted shapes, and shapes containing a mix of the two. On
a more fundamental level, we show that surface skeletons are an effective tool to
support complex segmentation tasks. Thereby, we strengthen the existing evidence
that this type of medial descriptors, so far sparsely used in actual applications, are
effective tools with practical added value. We support our claims by comparing our
method with the most relevant part-based and patch-based segmentation methods
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using 3D skeletons, on a collection of shapes ranging from purely faceted to purely
tubular.

In particular, this chapter shows that the usage of the cut space to segment voxel
shapes (Chapters 3 and 4) can be extended to handle mesh-based shape represen-
tations. As such, the cut space can be deemed to be representation independent
(at least with respect to voxel and mesh representations). On the one hand, this is
obviously good news that supports the added-vale of the cut space concept. On
the other hand, the implementation of the cut space computation and processing
of its results to perform segmentation for meshes, as shown in this chapter, is sig-
nificantly more complex from a technical and implementation perspective than its
voxel-based counterpart. As such, voxel-based surface skeletons, and their usage,
should not be directly discarded in favor of using mesh-based representations. We
discuss the particular aspect of this issue regarding the accurate and efficient com-
putation of surface skeletons for voxel models (the principal disadvantage of these
models as compared to mesh models) in Chapter 7.

Future work can handle several directions. First and foremost, the current results
show that it is possible to create hybrid part-patch segmentations using a single de-
scriptor type (surface skeletons). As such, it is interesting to explore refinements of
the presented part and patch detection and merging heuristics, to design methods
where users can control the resulting segmentation more easily and intuitively. Sec-
ondly, low-hanging fruits include the GPU acceleration of all steps of the proposed
pipeline, to yield a single method able to compete, speed-wise, with current state-
of-the-art segmentation methods. Thirdly, we expect that the mesh-based cut space
presented here can be translated to handle shape matching and retrieval along the
techniques presented for voxel models in Chapter 5.
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As illustrated by all Chapters so far, surface skeletons have multiple applications
in supporting shape analysis and processing. However, as the same Chapters also
illustrate, efficiently computing such accurate multiscale skeletons is hard. For
voxel models, there are only a handful of multiscale surface skeletonization meth-
ods available [82, 145]. Both these methods have limitations. As outlined, [145]
is reasonably accurate but very slow. In contrast, [83] is reasonably fast but not
too accurate. In more detail, our experience with [83] in computing simplified sur-
face skeletons for shape matching (Chapters 3, 4) has shown that this method can
sometimes yield disconnected and/or noisy skeletons, which in turn require appli-
cations using them to devise various ad-hoc regularization heuristics. For mesh
models, we have fast and accurate methods, e.g., [82]. However, this method is
highly complex; more critically, processing the point-cloud skeletons it delivers is
significantly more complex than processing voxel-based skeletons (compare the
same segmentation method using the two skeleton types presented in Chapters 3
and 6).

As such, we argue that voxel-based surface skeletons have not yet reached their
full potential. If we were able to compute a highly accurate voxel-based multiscale
surface skeleton, in a computationally scalable way, and using a simple implemen-
tation, such skeletons could strongly compete with mesh-based ones. This chapter
addresses precisely this task. We present here a new method based on the Image
Foresting Transform [53, 58] framework, which achieves such results for medial
axes of 2D shapes and for surface skeletons of 3D shapes. Our approach relies on
simple and efficient algorithms, faster than several methods based on the same im-
portance metric, simpler than such other methods, far less sensitive to numerical
noise than state-of-the-art in this area [83]. In the same time, our method attains
similar quality of centeredness, smoothness, thinness, and ease to simplify the
skeleton. These conclusions are substantiated with a comparative analysis of our
method’s results on a wide set of 2D and 3D real-word shapes against its multiscale
counterparts.1

1 This chapter is based on the following publication: Multiscale 2D medial axes and 3D surface
skeletons by the image foresting transform (A. Falc ao, C. Feng, A. Telea), Skeletonization: The-
ory, Methods, and Applications, Chapter 4, eds. P. K. Saha, G. Borgefors and G. Sanniti di Baja,
Elsevier, 2016.

149



M U LT I S C A L E S K E L E T O N S B Y T H E I M AG E F O R E S T I N G T R A N S F O R M

7.1 O U T L I N E

Medial descriptors, or skeletons, are used in many applications such as path plan-
ning, shape retrieval and matching, computer animation, medical visualization,
and shape processing [172, 189]. In two dimensions, such descriptors are typically
called medial axes. Three-dimensional shapes admit two types of skeletons: Sur-
face skeletons are sets of manifolds with boundaries that meet along a set of so-
called Y-intersection curves [28, 42, 102]; curve skeletons are 1D structures locally
centered in the shape [37].

A fundamental, and well-known, problem of skeleton computation is that skele-
tons are inherently unstable to small perturbations of the input shape [189]. This
leads to the appearance of so-called spurious branches, which have little or no
application value, and considerably complicate the analysis and usage of skele-
tons. To alleviate this, various simplification methods have been proposed to elimi-
nate such branches. In this context, multiscale methods are particularly interesting.
They compute a so-called importance metric for skeletal points, which encodes
the scale of the shape details, and next offer a continuous way for simplifying
skeletons by simply thresholding that metric.

Several robust, simple to implement, and efficient methods exist for computing
2D multiscale skeletons, e.g., [58, 124, 198]. For surface skeletons, the situation is
very different: Only a few such methods exist, and these are either computation-
ally expensive [45, 138, 145], complex [82], or sensitive to numerical discretiza-
tion [84].

In this chapter, we address the joint problem of computing multiscale 2D medial
axes and 3D surface skeletons by a new method. For this, we cast the problem of
computing the importance metrics proposed in [58, 124, 198] (for 2D skeletons)
and in [82, 145] (for 3D skeletons) as the search for an optimal path forest using
the Image Foresting Transform framework [54]. In 2D, the skeletons are one-pixel-
wide and connected in all scales for genus-0 shapes. In 3D, the surface skeletons
are one-voxel-wide and can be connected in all scales for genus-0 shapes if the
curve skeleton points are detected [82, 145], which we do not address here. Next,
we provide simple and efficient algorithms to compute these metrics for both 2D
and 3D binary images. Compared to 3D techniques that use the same multiscale
importance metric, our method is faster [45, 138, 145] or alternatively consider-
ably simpler to implement [82]. Compared to other 3D multiscale techniques, our
method is far less sensitive to numerical noise [84]. Compared to all above tech-
niques, our method yields the same quality level in terms of centeredness, smooth-
ness, thinness, and ease to simplify the skeleton.

This chapter is structured as follows. In Section 7.2, we overview multiscale
skeletonization solutions and challenges. Section 7.3 introduces the Image Forest-
ing Transform and its adaptations required for multiscale skeletonization. Sec-
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tion 7.3.3 details our multiscale skeletonization algorithms for 2D and 3D shapes.
Section 7.4 compares our method with its multiscale competitors on a wide set of
2D and 3D real-world shapes. Section 7.6 concludes the chapter, summarizing our
main contributions and outlining directions for future work.

7.2 R E L AT E D W O R K

In this section, we provide the basic definitions related to skeletonization and dis-
cuss skeleton regularization based on local and global measures.

7.2.1 Definitions

Given a shape Ω⊂Rd , d ∈ {2,3} with boundary ∂Ω, we first define its Euclidean
distance transform DT : Rd → R+ as

DT (x ∈Ω) = min
y∈∂Ω

‖x−y‖. (7.1)

The Euclidean skeleton of Ω is next defined as

S = {x ∈Ω|∃f1,f2 ∈ ∂Ω,f1 6= f2,‖x−f1‖= ‖x−f2‖= DT (x)} (7.2)

where f1 and f2 are the contact points with ∂Ω of the maximally inscribed ball in
Ω centered at x [71, 145], also called feature points of x [148], where the feature
transform FT : Rd →P(∂Ω) is defined as

FT (x ∈Ω) = argmin
y∈∂Ω

‖x−y‖. (7.3)

The vectors f− x are called spoke vectors [181]. By definition (Eqn. 7.2), for any
x /∈ S, FT (x) yields a single point, i.e., |FT (x)|= 1; while for any x∈ S, |FT (x)| ≥
2. In practice, computing FT can be quite expensive and/or complicated due to its
multi-valued nature. As such, many applications, see e.g. [145, 148], use the so-
called single-value feature transform F : Rd → ∂Ω, defined as

F(x ∈Ω) = y ∈ ∂Ω so that ‖x−y‖= DT (x). (7.4)

For d = 2, S is a set of curves which meet at the so-called skeleton junction
points [58]. For d = 3, S is a set of manifolds with boundaries which meet along
a set of so-called Y-intersection curves [28, 42, 102]. The pair MAT = (S,DT ) de-
fines the medial axis transform (MAT) of Ω, which is a dual representation of Ω,
i.e. allows reconstructing the shape ΩS,DT =

⋃
x∈S BDT (x)(x) as the union of balls

BDT (x)(x) centered at x ∈ S and with radii DT (x).
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Except when it is explicitly mentioned, we consider only the case where Ω\∂Ω

and ∂Ω have the same number of components.

7.2.2 Skeleton Regularization

In practice, skeletons are extracted from discretized (sampled) versions of Ω, using
either an implicit (boundary mesh) representation [15, 82, 124, 190] or an explicit
(volumetric) representation [45, 58, 145, 198]. In this chapter, we focus on the
latter case. Here, the d-dimensional space is discretized in a uniform grid of so-
called spels (space elements) having integer coordinates, i.e., pixels for d = 2 and
voxels for d = 3. Due to this discretization, solving Eqn. 7.2 on Zd rather than Rd

yields skeletons that are not perfectly centered, not necessarily one-spel-thin, and
not necessarily homotopic to the input shape. Discretization also causes skeletons
to have a large amount of spurious manifolds (branches). Formally, this means that
skeletonization is not a Cauchy or Lipschitz continuous operation with respect to
the Hausdorff distance between two shapes, but a semi-continuous operation [189].
Informally put: Small variations of a shape can cause arbitrarily large variations of
its skeleton.

To achieve Cauchy or Lipschitz continuity, desirable for most practical appli-
cations (which should not be sensitive to discretization issues), a regularization
process is typically used. For this, one defines a so-called importance metric
ρ : Ω→ R+, whose upper thresholding by some desired value τ > 0 removes,
or prunes, branches caused by small-scale details or noise on ∂Ω [42, 166]. The
regularized skeleton is defined as Sτ = {x ∈ S|ρ(x)≥ τ}. We distinguish between
local and global importance measures, in line with [15, 82, 84, 145], as follows.

skeleton S

boundary ∂Ω

Figure 7.1: Problems of local regularization. For the shown shape, all local regularization
metrics will yield the same values for points p and q. However, p is globally
more important for the shape description than q. Image from [145].

152



7.2 R E L AT E D W O R K

Local measures essentially consider, for a skeletal point x∈ S, only a small neigh-
borhood of x to compute ρ(x). The main advantage of these measures is that they
are simple to implement and fast to compute. Local measures include the angle
between the feature points and distance-to-boundary [3, 65, 148, 184], divergence
metrics [22, 175], first-order moments [153], and detecting the multi-valued points
of ∇D [181, 182]. Local measures are, also, historically speaking, the first skele-
ton regularization techniques having been proposed. Good surveys of local meth-
ods are given in [172, 189]. However, local measures have a fundamental issue:
They cannot discriminate between locally-identical, yet globally-different, shape
contexts. Figure 7.1 illustrates this for a synthetic case: For the 2D shape with
boundary ∂Ω, the central skeletal point p is, clearly, more important to the shape
description than the peripheral point q that corresponds to the right local protru-
sion. However, any local importance metric will rank p as important as q, since
their surroundings, including the placement of their feature points (shown in the
figure) are identical. Similar situations can be easily found for 3D shapes.

Given the above, thresholding local measures can (and typically will) discon-
nect skeletons. Reconnection needs extra work [113, 134, 175, 184], and makes
skeleton pruning less intuitive and harder to implement [166]. Without this kind
of work, no local measure can yield connected skeletons for all shapes. Note
that this is a fundamental issue related to the local nature of these metrics – see
also the discussion in [84]. Secondly, local metrics do not support the notion of
a multiscale skeleton: Such skeletons Sτ should ensure a continuous simplifica-
tion (in the Cauchy or Lipschitz sense mentioned above) of the input shape Ω in
terms of its reconstruction ΩSτ ,DT as a function of the simplification parameter
τ [124, 189]. As such, while local measures can be ‘fixed’ by reconnection work
to yield connected skeletons, they still cannot provide an intuitive and easy-to-use
way to simplify skeletons according to a user-prescribed threshold τ .

Global measures monotonically increase as one walks along S from the skele-
ton boundary ∂S inwards, towards points increasingly further away from ∂S. For
genus-0 shapes, such measures can be informally thought of as giving the removal
order of skeletal points in a homotopy-preserving erosion process that starts at
∂S and ends when the entire skeleton has been eroded away. Given this property,
thresholding them always yields connected skeletons which also capture shape
details at a user-given scale. For shapes with genus greater than 0, like having
holes (in 2D) or cavities (in 3D), simple suitable postprocessing of the importance
metric guarantees the joint connectivity and multiscale properties. For 2D shapes,
a well-known global measure is the so-called boundary-collapse metric used to
extract multiscale 2D skeletons, and proposed by various authors in different con-
texts [58, 124, 197, 198]. For 3D shapes, the union-of-balls (UoB) approximation
uses morphological dilation and erosion to define the scale of shape details cap-
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tured by the regularized skeleton [15, 73]. Dey and Sun propose as regularization
metric the medial geodesic function (MGF), equal to the length of the shortest-
path between feature points [45, 138], and use this metric to compute regularized
3D curve skeletons. Reniers et al. [145] extend the MGF for both surface and curve
skeletons using geodesic lengths and surface areas between geodesics, respectively.
A fast GPU implementation of this extended MGF for meshed shapes is given
in [82].
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Figure 7.2: Multiscale collapse metric for 2D shapes (a) and 3D shapes (b).

The 3D MGF and its 2D boundary-collapse metric counterpart have an intu-
itive geometric meaning: They assign to a skeleton point x ∈ S the amount of
shape boundary that corresponds, or ‘collapses’ to, x by some kind of advective
boundary-to-skeleton transport. As such, skeleton points x with low importance
values correspond to small-scale shape details or noise; points x with large im-
portance values correspond to large-scale shape parts. Figure 7.2 illustrates the
boundary-collapse principle for both 2D medial axes (a) and 3D medial surfaces
(b). In both cases, for a skeletal point x, the importance is equal to the length of
the shortest-path γx that goes on ∂Ω between the feature points fx

1 and fx
2. This al-

lows an intuitive and controllable skeleton simplification: Thresholding the MGF
by a value τ eliminates all skeleton points which encode less than τ boundary
length or area units. Since all above-mentioned collapse metrics monotonically in-
crease from the skeleton boundary ∂S to its center, thresholding them delivers a set
of nested skeleton approximations, also called a multiscale skeleton. Importantly,
these progressively simplified skeletons correspond, via the MAT (Sec. 7.2.1), to
progressively simplified versions of Ω. More precisely, for all above collapse met-
rics, the reconstruction of a shape Ω from its simplified skeleton Sτ yields a shape
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where all details of Ω of size smaller than τ have been replaced by circle arcs (in
2D) or spherical caps (in 3D) [82, 145, 198].

The idea of a mass collapse process from ∂Ω to S was also used by other works
to define multiscale skeletons. Couprie [41] proposed a discrete framework for
computing 2D skeletons and 3D curve skeletons by a guided thinning process
which, for the 2D case, yields very similar results to [58, 198]. However, 3D sur-
face skeletons are not covered by this approach. Torsello et al. propose a conser-
vative mass advection ∂Ω onto S to define ρ in 2D [8], which was next extended
to 3D [149]. However, the numerical computation of this process is affected by
serious stability issues. Recently, Jalba et al. extended this advection model to
compute multiscale 2D skeletons and 3D surface and curve skeletons in a uni-
fied formulation [84]. While this method delivers convincing results, it still suffers
from numerical stability problems, and it is also relatively complex to implement.

Summarizing the above, we argue that multiscale regularization metrics are net
superior, both in theory and practice, to local regularization metrics. However, as
outlined, and discussed next in more detail in Sec. 7.3.1, multiscale regularization
is far from being simple and cheap. Our proposal, presented next, aims at solving
these problems.

7.3 P RO P O S E D M E T H O D

To compute multiscale 2D and 3D skeletons of binary shapes efficiently and
robustly, we propose next to use the Image Foresting Transform (IFT) method-
ology [54]. We start, in Sec. 7.3.1, by introducing our general idea, which de-
tails the strengths and weaknesses of the MGF and advection-based regulariza-
tion techniques introduced above in Sec. 7.2.2. Next, we detail the use of the
IFT to compute skeletons that combine the identified strengths of these two ap-
proaches (Sec. 7.3.2). Our final proposed skeletonization algorithms are detailed
in Sec. 7.3.3.

7.3.1 Multiscale regularization – strengths and weaknesses

If we analyze all multiscale skeletonization methods surveyed in Sec. 7.2 [8, 58,
82, 84, 124, 145, 149, 197, 198], we notice that their various importance-metric
definitions can be all explained, at a high level, by introducing a vector field v :
Ω→Rd , as follows: If we imagine that the input shape’s surface ∂Ω is covered by
uniformly-distributed mass with density ρ(x ∈ ∂Ω) = 1, then all above methods
explain the importance ρ(x ∈ Ω) of a spel x as the amount of mass transported,
or advected, by v from ∂Ω to x. This observation was also made in [83, 145].
Studying the properties of v brings several insights into multiscale regularization,
as follows.
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First, we note that the importance values of non-skeletal spels x /∈ S should be
low and nearly locally constant, so that upper-thresholding ρ by this value allows
one to reliably separate S. All above-mentioned methods define ρ(x /∈ S) to be
equal to the importance of the single feature point of x, i.e., ρ(x /∈ S) = ρ(FT (x)).
This property is realized if we define v=∇DT for all x /∈ S, as it is well known that
gradient lines of the distance transform only intersect at skeletal points [22, 175].

To fully define the multiscale importance ρ over Ω in terms of an advection
process, what remains to be done is thus to define v on S. Studying the above-
mentioned multiscale methods, and considering for now the case of connected
genus-0 shapes, we see here that all such methods aim to define a field ρ which
monotonically increases from ∂S to its center, or root r ∈ S. As explained earlier,
this allows easily computing multiscale skeletons Sτ by simply upper-thresholding
ρ with desired values τ . In advection terms, this is equivalent to defining a field v
which transports mass along S from its boundary ∂S to r, along paths that finally
meet at r. For d = 2, mass flows from ∂Ω to the one-dimensional medial axis S,
then along the branches of S to its center r. For d = 3, mass flows from ∂Ω to the
two-dimensional surface-skeleton S, then along S towards its local center (which
is the curve skeleton of Ω), and then along the curve-skeleton branches towards
the center r thereof.

The different multiscale importance listed above can be explained in terms
of different definitions of v over S, as follows. In 2D, and for genus-0 shapes,
all surveyed methods essentially reduce to defining v as being locally tangent
to S and pointing towards the root of the skeleton (which is, in this case, a
tree) [58, 124, 197, 198]. In 3D, explaining multiscale importance in terms of
a field v defined on S is more complicated. We distinguish here two classes of
methods, as follows.

MGF methods: For genus-0 shapes, MGF-based methods do not actually give a
formal definition of v, but compute ρ(x ∈ S) as the length of the longest shortest-
path on ∂Ω between any two feature points f and g of x, i.e.

ρ(x ∈ S) = max
f∈FT (x),g∈FT (x)

GL(f,g) (7.5)

where GL(x,y) is the length of the shortest path on ∂Ω between two points x∈ ∂Ω

and y ∈ ∂Ω. This is based on the empirical observation that Eqn. 7.5 defines a
field ρ which smoothly and monotonically increases from ∂S to its center [45, 145].
This allows one to compute regularized surface skeletons even for noisy and com-
plex 3D shapes. Another advantage of the MGF is that it makes simplification
intuitive to understand – thresholding ρ at a value τ eliminates all spels from S
where the local thickness of the shape is larger than τ . However, a formal justifica-
tion of the MGF in terms of an advection process on S has not yet been given. A
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second limitation of the MGF model is that is becomes very expensive to compute
for large 3D shapes, where one needs to trace (at least one) shortest-path on ∂Ω

for each point x∈ S, so its cost is O(|S| · |∂Ω|log|∂Ω|). Using GPU techniques can
accelerate this process [82], but also massively complicates the implementation of
the method. This is illustrated by our own usage of the method in [82] in Chapter 6.

Advection methods: Aiming to solve the above issues with the MGF, Jalba et
al. define v on S as the result of a mass-conserving advection model, with topo-
logical constraints used to ensure skeleton homotopy with the input shape [84]. In
contrast to the MGF, computation of all types of skeletons (2D medial axes, 3D
surface skeletons, and 3D curve skeletons) is now fully captured by a single unified
advection model. Also, the method in [84] is considerably faster than MGF tech-
niques, its cost being O(|Ω|), and is also simpler to implement. However, setting
the simplification threshold τ is now less intuitive than for MGF techniques, as this
value does not have an immediate geometric interpretation. Also, all 3D advection
methods we are aware of [8, 84, 149], suffer various amounts of from numerical
diffusion, which means that the computed importance ρ will deliver regularized
skeletons Sτ having jagged boundaries. This is reflected by the various heuristics
we needed to introduce in Chapters 3, 4, and 5 to reliably use skeletons computed
with this method for practical applications in shape segmentation and matching.

The method that we propose in the next section aims to combine the strengths,
and limit the disadvantages, of the MGF and advection methods outlined above. In
detail: We use an incremental, advection-like, computation of the intuitive MGF
metric, which makes our method considerably faster than existing MGF methods.
We provide an implementation which is simple and does not suffer from numeri-
cal diffusion issues. Our proposal delivers smooth-boundary regularized, centered,
one-spel-thin, multiscale skeletons, of the same overall quality as skeletons deliv-
ered by existing state-of-the-art methods.

7.3.2 Image Foresting Transform

The Image Foresting Transform (IFT) interprets d-dimensional images as graphs
and reduces image operators to the computation of an optimum-path forest fol-
lowed by a local processing of its attributes. In essence, the IFT is Dijkstra’s
shortest-path algorithm modified to use multiple sources and more general con-
nectivity (path-value) functions. In our context, the IFT will propagate, from ∂Ω

to x ∈ Ω \ ∂Ω, both the feature points FT (x) and the advection field v(x). Fig-
ure 7.3 shows in yellow the spels s with undefined ∇DT (x). These are the leaves
of the optimum-path forest whose paths follow the direction of v.

In order to design an image operator based on the IFT, one needs to specify
which image elements (points, edges, regions) are the nodes of the graph, an ad-
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Figure 7.3: A polygon Ω with orange boundary ∂Ω, its distance transform D (gray values),
a plausible skeleton S (cyan), the root point r (red), the points with undefined
∇D(s) (yellow), and magenta lines connecting a given spel s with its feature
points in ∂Ω.

jacency relation between them, and a connectivity function that assigns a value
(e.g., strength, cost, distance) to any path in the graph. This methodology has been
successfully used for boundary-based [52, 56, 118], region-based [54, 119], and
hybrid image segmentation [31, 180]; connected filtering [57]; shape representa-
tion and description [5, 58, 154, 155]; and unsupervised [147], semi-supervised [4],
and supervised data classification[129]. In this section, we show how the IFT can
be adapted to propagate the single-point feature transform F(x)∈ ∂Ω,∀x∈Ω\∂Ω

(Eqn. 7.4) and also to compute the length GL(x,y) of the shortest-path on ∂Ω be-
tween two feature points x,y ∈ ∂Ω.

Graph definition: In the discrete space, the shape Ω is provided as a binary image
I = (I, I), where I ⊂ Zd is the image domain and each spel x ∈ I has a value
I(x) ∈ {0,1}. For instance, Ω ⊂ I may be the set of spels with value 1 and its
complement Ω = I \Ω be defined by the spels with value 0. The image I can be
interpreted as a graph whose nodes are the spels in I and arcs are defined by the
adjacency relation AI,δ ,

AI,δ = {(x,y) ∈ I× I | ‖x−y‖ ≤ δ} (7.6)

for a given value δ ∈ R+. Let also AI,δ (x) be the set of spels adjacent to a spel x.
The shape boundary ∂Ω is then defined by

∂Ω = {x ∈Ω|Ω∩AI,1(x) 6= /0} (7.7)
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In order to compute the single-point feature transform F and the length GL(f,g) of
shortest paths between point-pairs (f,g) ∈ ∂Ω× ∂Ω, we constrain the adjacency
relation AI,δ to its subsets AΩ,δ and A∂Ω,δ , defined as

AΩ,δ = {(x,y) ∈Ω×Ω | ‖x−y‖ ≤ δ}, (7.8)
A∂Ω,δ = {(x,y) ∈ ∂Ω×∂Ω | ‖x−y‖ ≤ δ}, (7.9)

respectively. Given the above, we are next interested in the graphs (Ω,AΩ,δ ) and
(∂Ω,A∂Ω,δ ) which describe the shape’s interior and boundary, respectively.

For the graph (Ω,AΩ,δ ), let a path πt be a spel-sequence 〈x1,x2, . . . ,xn = t〉with
terminal spel t, such that (xi,xi+1) ∈ AΩ,δ , 1≤ i < n. Let Π

(
Ω,AΩ,δ

)
be the set of

all paths in (Ω,AΩ,δ ). A pair of spels is called connected in (Ω,AΩ,δ ) when there
exists a path in Π

(
Ω,AΩ,δ

)
between them. A connected component in (Ω,AΩ,δ )

is a subgraph, maximal for the inclusion, therein all pairs of spels are connected.
The same definitions apply to the graph (∂Ω,A∂Ω,δ ).

We next assume, with no generality loss, that the interior Ω \ ∂Ω of Ω defines
a single connected component in (Ω,AΩ,1). When this is not the case, we sim-
ply treat each such connected component separately to yield a separate skeleton.
To eliminate cases where Ω and Ω \ ∂Ω have different numbers of components,
i.e., the removal of ∂Ω would disconnect the shape, one can preprocess Ω by e.g.
morphological dilation with the distance of the size of one spel.

Objects with holes (in 2D) can be easily treated by merging the internal skele-
tons derived from each component in (∂Ω,A

∂Ω,
√

d) into a single one through the
skeleton by influence zones (SKIZ) [58]. We will illustrate that for the 2D case,
but since our examples of 3D objects do not present cavities, we will assume for
simplicity (in 3D) that ∂Ω has a single connected component in (∂Ω,A

∂Ω,
√

d).
Note also that the algorithm we next propose to compute the so-called interior
skeleton of Ω can be also used to compute the so-called external skeleton of the
complement Ω. For presentation simplicity, we focus here on the interior skeleton.

Distance and feature transforms: Using the graph (Ω,A
Ω,
√

d), we can propagate
from ∂Ω the distance value DT (x) to every interior spel x ∈ Ω\∂Ω by using the
connectivity function

ψedt(〈t〉) =

{
0 if t ∈ ∂Ω, and
+∞ otherwise.

ψedt(πs · 〈s, t〉) = ‖s−F(s)‖, (7.10)
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where F(s) ∈ ∂Ω is the single-point feature transform of s (Eqn. 7.4) and πs · 〈s, t〉
is the extension of the path πs by the arc (s, t) ∈ A

Ω,
√

d . The Euclidean distance
transform DT thus becomes

DT (t ∈Ω) = min
∀πt∈Π

(
Ω,A

Ω,
√

d

){ψedt(πt)}. (7.11)

Besides propagating the distance transform DT , the IFT method also propagates
the closest point F(x) ∈ ∂Ω to any x ∈ Ω. This yields the single-point feature
transform F for all spels in Ω, which we will heavily use, as outlined next.

MGF importance: To compute ρ (Eqn. 7.5), we need the complete feature trans-
form FT . As explained in Sec. 7.2.1, computing FT is difficult, especially for
discrete-grid representations. In practice, this is often replaced by computing a
so-called extended single-point feature transform FText [145] defined as

FText(s) = {F(t) ∈ ∂Ω | t ∈ AΩ,1(s)}, (7.12)

which gathers the single-point feature transforms F(t) of all adjacent spels t ∈
AΩ,1(s). We have also defined a particular type of EFT in Section 3.3.2.2.

Having FText , we can now immediately write a simpler version of Eqn. 7.5 as

ρ(s ∈Ω\∂Ω) = max
f=F(s),g∈FText (s)

{GL(f,g)}. (7.13)

This simplification applies to multiscale planar and surface skeletons, leading to
less shortest-path length computations, but Eqn. 7.5 is still important if one desires
to merge 3D multiscale curve and surface skeletons, because the union of geodesic
paths between all pairs of feature points of a spel s on the curve skeleton draws
in ∂Ω a closed contour, splitting ∂Ω into two parts such that the geodesic surface
area between them can be used as importance ρ(s) [145].

To evaluate Eqn. 7.13, we compute the shortest-path length GL from f = F(s)
to g ∈ FText(s) on the boundary-graph (∂Ω,A

∂Ω,
√

d) by using the connectivity
function ψgeo defined as

ψgeo(〈w〉) =

{
0 if w = f, and
+∞ otherwise,

ψgeo(πw · 〈w,h〉) = ψgeo(πw)+‖h−w‖+‖g−h‖, (7.14)
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where the term ‖g−h‖ is the A∗ heuristic optimization [76] used to reach g faster.
Summarizing, we compute the shortest-path length GL(f,g) as

GL(f,g) = min
πg∈Π

(
Ω,A

Ω,
√

d

){ψgeo(πg)}. (7.15)

It is important to note that the IFT propagation for ψedt can also output an optimum-
path forest P, i.e., a map that assigns a so-called predecessor s = P(t)∈Ω to every
spel t ∈ Ω \ ∂Ω, and a marker P(t) = nil 6∈ Ω to spels t ∈ ∂Ω, respectively [54].
This defines a vector field v(t) = t−P(t) for every interior spel t∈Ω\∂Ω. The for-
est P provides the direction of v for non-skeletal spels. The skeleton S is contained
in the set of P’s leaves (yellow lines in Figure 7.3). The vector field v describes
how all information computed by the IFT – that is, DT , F , and ρ – is iteratively
propagated, or advected, from ∂Ω to all spels in the shape’s interior Ω\∂Ω. This
fundamentally links the MGF importance model and the advection importance
model. As explained in Secs. 7.2 and 7.3.1, these two importance models are typ-
ically used independently in the literature. The only work which we are aware of
where an MGF model is linked with an advection model is [41]. However, our
work here stands apart from [41] in terms of algorithmic model, and also by the
fact that for the 3D case we compute multiscale surface skeletons (and not curve
skeletons, while [41] approaches precisely the opposite).

Summarizing the above: To compute ρ (Eqn. 7.13), we need to compute the
single-point distance transform F and the shortest-path length between feature
points in the extended feature transform FText . The algorithms for both above op-
erations are described next in Secs. 7.3.2.1 and 7.3.3, respectively.

7.3.2.1 Single-point feature transform

The single-point feature transform F is computed by the same algorithm used for
computing the Euclidean distance transform DT , but returns F rather than DT . The
full algorithm we use for computing F is listed below. It also returns ∂Ω, which we
next need to compute shortest-paths between feature points, and a component label
map Lc : s ∈ Ω→ λ (s) ∈ {1,2, . . . ,c}, that assigns a subsequent integer number
to each component of ∂Ω in (∂Ω,A

∂Ω,
√

d) and its closest spels in Ω. The map Lc
is used for SKIZ computation in 2D. Indeed, the component label propagation to
every spel s ∈ Ω \ ∂Ω is not needed, but it helps to illustrate the location of the
SKIZ (Sec. 7.3.3).

Algorithm 1. – Single-Point Feature Transform
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Input: An object Ω in dimension d represented on a uniform Zd grid.
Output: The single-point feature transform F , object boundary ∂Ω, and component

label map Lc.
Auxiliary: Priority queue Q, distance transform DT , and variable tmp ∈ R.

1. Compute ∂Ω of Ω by Eqn. 7.7.
2. For each s ∈Ω\∂Ω, DT (s)←+∞.
3. For each s ∈ ∂Ω, do
4. DT (s)← 0; F(s)← s; Lc(s)← λ (s) ∈ {1,2, . . . ,c}, according to
5. its component in (∂Ω,A

∂Ω,
√

d); and insert s in Q.
6. While Q 6= /0, do
7. Remove s from Q, where DT (s) is minimal over Q.
8. For each t ∈ A

Ω,
√

d(s), such that DT (t)> DT (s), do
9. tmp←‖t−F(s)‖2.
10. If tmp < DT (t), then
11. DT (t)← tmp; F(t)← F(s); Lc(t)← Lc(s).
12. If DT (t) 6=+∞ then
13. Update position of t in Q.
14. Else
15. Insert t in Q.
16. Return (F,∂Ω,Lc)

Lines 1-5 essentially extract the object boundary ∂Ω, initialize the trivial-path
values of Eqn. 7.10 in DT (s) for all s ∈ Ω, set F(s) for s ∈ ∂Ω, assign a distinct
integer to each component of ∂Ω in (∂Ω,A

∂Ω,
√

d), and insert s∈ ∂Ω in the priority
queue Q. The main loop in Lines 6-15 propagates to every spel t ∈ Ω \ ∂Ω its
single-point feature F(t) ∈ ∂Ω in a non-decreasing order of distance values DT (t)
between t and ∂Ω. In Line 7, when a spel s is removed from Q, DT (s) stores the
closest squared distance between s and ∂Ω, F(s) stores its single-point feature,
and Lc(s) indicates its closest component in (∂Ω,A

∂Ω,
√

d). The loop in Lines 8-15
evaluates if s can offer a lower squared distance value ‖t−F(s)‖2 (value of an
extended path πs · 〈s, t〉 in Eqn. 7.10) to the current value assigned to an adjacent
spel t in DT (t) (Lines 9-10). If this is the case, then Line 11 updates distance,
single-point feature of t with respect to ∂Ω, its closest component in (∂Ω,A

∂Ω,
√

d),
and Lines 12-15 update the status of t in Q.

Note that the use of the squared Euclidean distance ‖t−F(s)‖2 in Line 9 al-
lows to implement Q by bucket sorting [52], since all distances are integers on
a pixel/voxel grid representation. As such, Algorithm 1 has average complexity
O(|Ω|).

7.3.2.2 Shortest-path length computation

As mentioned earlier in Sec. 7.3.1, computing the multiscale regularization met-
ric ρ for d = 3 heavily depends, cost-wise, on the rapid computation of shortest-
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path lengths on ∂Ω between single-point features. Accelerating these shortest-path
computations is key to accelerating multiscale 3D skeletonization. To achieve this,
we maintain, for each f ∈ ∂Ω, a set C (f) = {s ∈ Ω \ ∂Ω|F(s) = f}. We use C to
incrementally compute all shortest-path lengths between f and other single-point
features g 6= f,g ∈ ∂Ω, as follows: The IFT algorithm returns GL(f,g) whenever g
is reached; for any h ∈ ∂Ω for which GL(f,h)≤ GL(f,g), we return immediately
the already computed path-length GL(f,h); and thus only continue computation for
points h ∈ ∂Ω where GL(f,h)≥GL(f,g). To do the above, we store the computed
shortest-path lengths GL(f,g) (Eqn. 7.15) between a given feature point f ∈ ∂Ω

and all other spels g∈ ∂Ω into a map Lf : ∂Ω→R+,Lf(g) = GL(f,g). The compu-
tation of the shortest-path length between a given spel f ∈ ∂Ω and all other spels
g ∈ ∂Ω is presented in Algorithm 4, Sec. 7.3.3.

For d = 2, the problem is trivial, since ∂Ω may consist of closed one-dimensional
contours: For an arbitrary spel f0 in each contour C ⊂ ∂Ω, we first compute in
Lf(g) the path length from f0 to each spel g ∈C while circumscribing C from f0 in
a single orientation (clockwise or anticlockwise). Now, for any two spels f,g ∈C,
let ∆(f,g) = |Lf(g)−Lf(f)|. The geodesic length GL(f,g) between f and g is then
given by

GL(f,g) = min{|C|−∆(f,g),∆(f,g)}, (7.16)

where |C| is the perimeter-length of the contour C. However, for the purpose of
finding one-spel-wide skeletons by Eqn 7.13, we can drop the absolute difference
and redefine ∆(f,g) = Lf(g)−Lf(f) for f = F(s) and g ∈ FText(s) on the boundary-
graph (∂Ω,A

∂Ω,
√

d).
The next section presents the IFT-based multiscale skeletonization algorithms

for d = 2 and d = 3, respectively.

7.3.3 Multiscale skeletonization – putting it all together

The complete 2D multiscale skeletonization algorithm is presented below.

Algorithm 2. – Multiscale skeleton computation in 2D

Input: An object Ω in dimension d = 2.
Output: Multiscale skeleton importance ρ .
Auxiliary: Boundary ∂Ω with perimeter-length |∂Ω|; path length map Lf; single-point

feature transform F ; component label map Lc; variable tmp ∈ R.

1. (F,∂Ω,Lc)← Algorithm1(Ω).
2. For each component C ∈ (∂Ω,A

∂Ω,
√

d) do
3. Select an arbitrary point f0 ∈C.
4. For each g ∈C found by circumscribing C from f0 do
5. Lf(g)← path length from f0 to g on C.
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6. For each s ∈Ω\∂Ω do
7. ρ(s)← 0.
8. Compute FText(s) by Eqn. 7.12.
9. For each g ∈ FText(s) do
10. If Lc(g)> Lc(F(s)) then set ρ(s)←+∞ and return to 6.
11. tmp← Lf(g)−Lf(F(s)).
12. If tmp > |∂Ω|− tmp then tmp← |∂Ω|− tmp.
13. If tmp > ρ(s) then ρ(s)← tmp.
14. Return ρ .

Line 1 finds the object boundary ∂Ω, the single-point feature transform F , and
the component label map Lc by Algorithm 1. The remaining lines follow the proce-
dure described in Sec. 7.3.2.2 for d = 2. Lines 2-5 compute in Lf(g) the path length
from an arbitrary spel f0 ∈C, selected for each component C ∈ (∂Ω,A

∂Ω,
√

d), to
every spel g∈C, while circumscribing the contour C. The main loop in Lines 6-13
computes for each spel s ∈ Ω\∂Ω the shortest-path length by Eqn. 7.16 between
point feature F(s) and each g ∈ FText(s) (Lines 11-12), and use them to update
the MGF ρ(s) in Line 13, as proposed in Eqn. 7.13. The SKIZ is detected when-
ever a point feature g ∈ FText(s) comes from a distinct component than F(s). For
one-pixel-wide connected SKIZ, s is selected as belonging to the SKIZ whenever
Lc(g) > Lc(F(s)). In this case, ρ(s) is set to the maximum possible value and
the algorithm returns to Line 6 (see example in Fig. 7.4). It should be clear that
Algorithm 2 has complexity O(|Ω|).

A comment regarding the multiscale skeleton homotopy with the input shape
is needed here. As visible from Fig. 7.4, the importance ρ has now a different
variation across S than for genus-0 shapes (see e.g. Fig. 7.5). Clearly, for suffi-
ciently high thresholds, the skeleton in Fig. 7.4 will get disconnected, i.e., the
three loops surrounding the holes in Ω will get separated from the central skeletal
branch. Note that this also happens when using all other definitions of the same
importance metric proposed by [58, 124, 198]. The root of the problem is that
the collapsed-boundary importance metric used in all above works (and ours too)
makes sense, in a multiscale way, only for genus-0 shapes whose skeleton is a tree.
In other words: We know how to gradually simplify a tree (by removing its leafs),
but we do not know how to do the same for a graph having loops. Issues here are
how to assign an importance value to a loop (based on which geometric and/or
topological criterion); and should the simplification of a loop remove it all at once,
or should it allow its gradual disconnection. All these are (valid) questions which,
however, go beyond our scope here.

For completeness, we note that disconnection of 2D non-genus-0 figures during
simplification can be easily achieved, if this is a key issue. To do this, one can
simply postprocess the computed skeleton S: Trace all shortest paths in S linking
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each pair of loop-components in S, and assign spels along a value +∞. This will
only allow next the multiscale simplification of the tree parts of S.

Figure 7.4: (a) A 2D object Ω with three holes. (b) The component label map Lc as com-
puted by Algorithm 1. (c) The color-coded multiscale skeleton ρ of Ω, using
the rainbow color map. The SKIZ is shown in red since its spels are assigned
to the maximum importance in ρ . (d) A connected one-pixel-wide skeleton for
a given scale of ρ , with its terminal points shown in blue.

Essentially, Algorithm 2 is identical to the methods presented in [58, 124, 198].
As such, its main added-value is of theoretical nature – showing that 2D multiscale
skeletonization can be easily cast in the IFT framework.

The situation in 3D (d = 3) is however very different: Here, our proposed multi-
scale skeletonization is both conceptually similar to the 2D case, and very compu-
tationally efficient. This is in stark contrast with existing methods which are either
similar in 2D and 3D, but quite complex and do not provide an explicit defini-
tion of the regularization metric [84]; or existing methods which provide strongly
related metrics in 2D [58, 124, 198] and 3D [45, 145], but show a massive perfor-
mance drop in the 3D case. The algorithm listed next shows our 3D multiscale
skeletonization method. In contrast to the 2D proposal (Algorithm 2), we now use
the efficient incremental shortest-path computation proposed in Algorithm 4.
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Algorithm 3. – Multiscale skeleton computation in 3D

Input: An object Ω in dimension d = 3.
Output: Multiscale skeleton importance ρ .
Auxiliary: Priority queue Q; list V of boundary points that have been inserted in Q; A∗

path-cost map G; boundary ∂Ω; sets C (s),∀s ∈ ∂Ω; shortest-path length
map Lf; single-point feature transform F .

1. (F,∂Ω)← Algorithm1(Ω).
2. For each s ∈Ω\∂Ω do
3. Insert s in C (F(s)).
4. For each f ∈ ∂Ω do
5. Lf(f)←+∞; G(f)←+∞.
6. Q← /0; V ← /0.
7. For each f ∈ ∂Ω do
8. Lf(f)← 0; G(f)← 0; insert f in Q; insert f in V .
9. While there exists s ∈ C (f) do
10. Remove s from C (f).
11. ρ(s)← 0; compute FText(s) by Eqn. 7.12.
12. For each g ∈ FText(s) do
13. Lf(g)← Algorithm4(∂Ω,g,Q,V ,G,Lf).
14. If Lf(g)> ρ(s) then ρ(s)← Lf(g).
15. For each g ∈ V
16. Lf(g)←+∞; G(g)←+∞.
17. Q← /0; V ← /0.
18. Return ρ .

Line 1 finds the object boundary ∂Ω and the single-point feature transform F
by Algorithm 1. We are not interested in Lc, since Algorithm 3 assumes that ∂Ω

is a single surface. Lines 2-3 compute the sets C (f) = {s ∈Ω\∂Ω|F(s) = f} that
speed up shortest-path length computations, as described in Sec. 7.3.2.2 for d = 3.
Note that G stores the A∗ path costs, while Lf stores the desired path lengths, in
Algorithm 4. The shortest-path lengths from each boundary point f ∈ ∂Ω to other
boundary points g ∈ ∂Ω are incrementally computed in Algorithm 4 (Eqn. 7.15).
Therefore, the trivial-path value initialization of ψgeo (Eqn. 7.14) must be per-
formed outside Algorithm 4 (Lines 4-5 before the main loop of Lines 7-17, and
Lines 15-16 and 8 to restart computation for every initial boundary point f ∈ ∂Ω).
Lines 4-5 execute for the entire boundary ∂Ω, so the purpose of set V is to revisit
only the boundary points used in Algorithm 4, when reinitializing Lf and G. Line
8 initializes the priority queue Q and set V with one initial boundary point f for
Algorithm 4. The loop of Lines 9-14 computes the 3D MGF ρ(s) by Eqn. 7.13 for
each spel s whose the single-point feature is the current point f ∈ ∂Ω. Line 10 re-
moves a spel s from C (f), Line 11 initializes ρ(s) and finds FText(s) by Eqn. 7.12.
For each point feature g ∈ FText(s), Line 13 finds GL(f,g) (Eqn. 7.15) and stores
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it in Lf(g), and Line 14 updates ρ(s) according to Eqn. 7.13. Algorithm 4 is pre-
sented next.

Algorithm 4. – Incremental shortest-path length computation

Input: Boundary ∂Ω; terminal node g ∈ ∂Ω; priority queue Q; boundary points
V that have been inserted in Q; A∗ cost map G; shortest-path-length map
Lf.

Output: Shortest-path length Lf(g) at the terminal node with respect to the current
starting node f chosen in Algorithm 3.

Auxiliary: Variable tmp ∈ R.

1. If Lf(g) 6=+∞ then return Lf(g).
2. While Q 6= /0 do
3. Remove w from Q, where G(w) is minimal over Q.
4. If w = g then return Lf(g).
5. For each h ∈ A

∂Ω,
√

d(w) so that G(h)> G(w) do
6. tmp← Lf(w)+‖h−w‖+‖g−h‖.
7. If tmp < G(h) then
8. G(h)← tmp; Lf(h)← Lf(w)+‖h−w‖.
9. If G(h) 6=+∞ then
10. Update position of h in Q.
11. Else
12. Insert h in Q and in V .

Line 1 halts computation whenever the shortest-path length from f to g on ∂Ω

has already been computed in a previous execution of Algorithm 4. The main loop
of Lines 2-12 computes the shortest-path length to every boundary point w ∈ ∂Ω

in a non-decreasing order of the cost values in G, until it finds the terminal point
g in Line 4. In Line 3, when a point w ∈ ∂Ω is removed from Q, G(w) stores
the minimum A∗ path cost and Lf(w) stores the shortest-path length from f to w
on ∂Ω, which may be used for early termination in Line 1 in a next execution of
Algorithm 4. The loop in Lines 5-12 evaluates if w can offer a lower path cost
Lf(w)+‖h−w‖+‖g−h‖ (value of an extended path πw · 〈w,h〉 in Eqn. 7.14) to
the current value assigned to an adjacent point h ∈ ∂Ω (Lines 6-7). If this is the
case, then Lines 8-12 update G(h), L f (h), and the status of h in Q, accordingly.

The complexity of Algorithm 3 would be O(|Ω\∂Ω||∂Ω| log |∂Ω|) with a naive
implementation of shortest-path length computation. In practice, however, Algo-
rithm 4 finishes in Lines 1 or 4 much earlier than visiting all boundary points. This
makes a considerable reduction in the processing time of Algorithm 3, as we will
see next.
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Figure 7.5: Our multiscale 2D skeletons (IFT) compared with AFMM and AS.
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7.4 C O M PA R AT I V E A N A LY S I S

We next present and discuss our results as compared to other state-of-the-art mul-
tiscale skeletonization methods, as follows.

7.4.1 2D medial axes

We first consider medial axes of 2D objects. Here, we compare our IFT method
with its two main competitors – the augmented fast-marching method (AFMM) [198]
(basically identical to [58, 124]) and the more recent advection-based method (AS)
in [84]. We compared the above three methods on a set of over 30 2D shapes, taken
from relevant papers in the field [22, 124, 175, 198]. Figure 7.5 shows three such
shapes, with their progressively simplified skeletons. It is clearly visible that all
three methods yield nearly identical skeletons, both in terms of location and im-
portance values. In other words, our IFT-based method can compute multiscale 2D
skeletons which are nearly identical to existing methods. As visible, our method
handles complex, noisy, variable-scale shapes with the same ease as the other two
analyzed methods.

7.4.2 3D medial surfaces

7.4.2.1 Global comparison

For 3D shapes, we compared our IFT-based methods with two classes of compet-
ing techniques. First, and most interesting, we considered all techniques that we
are aware of that produce multiscale skeletons, in the sense described in Sec. 7.2.2.
These are the multiscale MGF-based method in [145] (MS); the advection-based
method in [84] (AS); and the multiscale ball-shrinking method that implements
the MGF metric in [145] for mesh models [82] (MBS). Secondly, to illustrate
the advantage of multiscale regularization, we compare our method with three lo-
cal regularization, non-multiscale, methods: Hamilton-Jacobi skeletons (HJ [175]),
the Integer Medial Axis (IMA [148]), and Iterative Thinning Process (ITP [86]).
We have chosen these methods as they are well-known in the 3D skeletonization
arena, are relatively efficient, produce good-quality 3D surface skeletons, and have
public implementations.

Figure 7.6 shows the results of the above-mentioned comparisons for 7 shapes,
processed by 7 skeletonization methods. The multiscale skeletons computed by
MS and AS are color-coded to reflect the importance metric, using a rainbow col-
ormap, just as in Fig. 7.5. Multiscale skeletons computed by MBS are not impor-
tance color-coded in Fig. 7.6 – the MBS importance is discussed separately in
more detail in Sec. 7.4.2.2.
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Figure 7.6: Global comparison of our 3D skeletonization method (IFT) with three multi-
scale skeletonization methods (MS, AS, MBS) and with three additional non-
multiscale methods (HJ, IMA, ITP). See Sec. 7.4.2.1.
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Quality-wise, our 3D surface skeletons are voxel-thin, centered within the shape
(within the margin allowed by the voxel resolution), and have the same number of
connected components and loops as the input shape, by construction. These are
key properties, required by any skeletonization method [37]. For example, IMA
yields centered and voxel-thin skeletons, but these can get disconnected when sim-
plified too much, as this method essentially uses the local angle-and-distance based
simplification criterion of the θ -SMA method of Foskey et al. [65]. Note that the
disconnection implied above is not due to the existence of loops in the skeleton
– IMA can easily disconnect also skeletons of genus-0 shapes. This does not hap-
pen with our method. Conversely, HJ yields connected skeletons, but for this the
method uses a thinning process ordered by the divergence of the distance trans-
form’s gradient which must explicitly check to preserve homotopy [175]. The ITP
method computes skeletons which are voxel-thin and homotopic to the input shape,
but not well centered in the shape, as seen by the various zig-zag branches of the
dragon model (Fig. 7.6, bottom row).

The sensitivity of the skeletons shown in Fig. 7.6 to noise or small-scale details
on the input shape surface varies quite a lot. As known, local regularization meth-
ods such as HJ, IMA, and ITP are more noise-sensitive than global regularization
methods such as MS, AS, and MBS [189]. Our method (IFT) falls in the latter class
of global methods, so it is less sensitive to noise and produces smoother surface
skeletons, as visible in Fig. 7.6, fourth row from bottom.

7.4.2.2 Detailed comparison

To gain more insight, we next compare our IFT method with several methods we
are aware of that compute multiscale 3D surface skeletons (AS, MS, and MBS).
The first two methods (AS, MS) are voxel-based, while the last one (MBS) is
mesh-based. Figures 7.7 and 7.8 show results for a selected set of shapes. Since
all above-mentioned methods produce multiscale skeletons, we regularized these
by removing very low importance (spurious) skeleton points to yield comparably
simplified skeletons. Several observations can be made when studying the com-
pared methods, as follows.

Regularization: Figures 7.7 and 7.8 show that IFT delivers 3D surface skeletons
which are, geometrically speaking, very similar to the ones produced by AS, MS,
and MBS. This, in itself, is a good indication of quality of IFT. Indeed, surface-
skeletonization methods should deliver similar results, given that they all aim to
approximate the same surface skeleton definition (Eqn. 7.2). Secondly, we see that
the IFT delivers the same degree of small-scale noise removal to create smooth and
clean skeletal manifolds as AS, MS, and MBS, so it can be used for robust skeleton
regularization. The IFT regularization is as easy to use as the one proposed by the
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Figure 7.7: Detailed comparison of 3D surface skeletons computed by our method (IFT)
and other multiscale methods (MS, AS, and MBS). See Sec. 7.4.2.2.
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Figure 7.8: Additional examples of 3D multiscale skeletons computed by our method
(IFT) and other multiscale methods (MS, AS, and MBS). See Sec. 7.4.2.2.
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other methods – the setting of a single importance thresholding parameter τ . Note
that this is far simpler than the regularization proposed by local methods, e.g. HJ,
IMA, or ITP, which require the careful setting of one or several parameters to
obtain comparable results.

A more subtle insight regards the gradient of the importance metric ρ from the
skeleton boundary ∂S to its center, visible in Figs. 7.7 and 7.8 in terms of the
blue-to-red color change. All tested methods (IFT, AS, MS, MBF) yield a ρ that
increases monotonically from ∂S to the center of S. Separately, we see that ρ for
IFT, MBS, and MS is not just increasing from ∂S to the center of S, but has a
very similar gradient. This implies that our method (IFT) delivers an importance
metric ρ which is very similar to the ones delivered by MS and MBS. Since MS
and MBS compute the medial geodesic function (MGF) metric, it follows that
IFT also computes a very similar metric. This is indeed the expected outcome
given the IFT algorithm (see Sec. 7.3.3). In contrast, the gradient of ρ delivered by
AS is quite different. This is explained by the fact that AS is the only multiscale
skeletonization method in the studied set that does not explicitly use the MGF
metric.

Dataset |Ω| MS [145] AS [84] IFT |∂Ω|mesh MBS [82]

bird 445690 64.21 13.86 8.64 46866 18.69

hand 776869 62.94 2.07 4.36 49374 15.5

cow 6343478 177.80 39.86 17.73 181823 96.54

pig 5496145 181.95 34.84 23.89 225282 142.02

gargoyle 6614154 566.52 25.66 79.43 25002 7.54

scapula 2394694 1717.37 29.99 609.33 116930 102.57

dragon 7017452 322.81 39.3 32.86 100250 49.01

neptune 2870546 322.75 47.25 68.72 28052 5.85

armadillo 1854858 45.43 7.2 4.25 172952 104.65

fertility 1264132 99.62 6.15 8.46 24994 6.15

sacrum 12637931 2015.59 39.83 417.54 204710 213.49

Table 7: Timings (seconds) for the compared surface skeletonization methods.

Connectivity: IFT, AS, and MS deliver a compact surface skeleton, while MBS
delivers only a disconnected point cloud. This makes IFT (and AS and MS) more
interesting than MBS for practical applications where one requires a compact
surface skeleton. Indeed, point-cloud skeletons require complex post-processing
methods for reconstructing a compact representation [82, 96]. Voxel skeletons do
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not have this problem.

Scalability: We implemented all tested methods in C++ and run them on an In-
tel 3.5 GHz 8-core 32MB RAM PC. The methods MBS, AS, and MS use CPU
multithreading parallelization, as described in the respective papers. No GPU par-
allelization was used for MBS. Our method (IFT) is purely serial. Table 7 shows
the timings for the compared methods for the shapes depicted in Figs. 7.7 and 7.8.
Column |Ω| gives the number of foreground voxels of the tested models with MS,
AS, and IFT. For MBS, the comparable metric – number of sample points of the
input mesh – is given in column |∂Ω|mesh.

When testing scalability on large voxel volumes, we found that the MS imple-
mentation from [145] encountered problems: For the scapula shape (Fig. 7.7, bot-
tom row), MS could not handle the 5123 voxel resolution of our model, so we re-
duced the resolution to 3703. At this resolution, the shape shows visible holes, due
to the very thin wall thickness (a few voxels). In contrast, IFT and AS (which are
both voxel-based methods) could handle 5123 voxel volumes without problems.

Performance-wise, Table 7 shows that IFT is roughly 3 to 10 times faster than
MS, which is the only voxel-based method which implements the same MGF im-
portance metric. This is an important result, as it tells us that the IFT algorithm
produces significant speed-ups for the geodesic length evaluation, which was one
of its main goals. Compared to AS, IFT is faster on some models, but consider-
ably slower on the sacrum and scapula models. This is explained by the fact that
the complexity of AS is roughly O(K|∂Ω| log |∂Ω|), where K is maxx∈Ω DT (x),
i.e. the shape thickness. In contrast, the complexity of MS is roughly O(L|∂Ω|),
where K is the average geodesic-path length between two feature points on ∂Ω.
For large and locally-tubular shapes, such as cow or pig, IFT is thus faster. For
relatively thin and large-surface shapes, such as scapula and sacrum, the geodesic
computation cost becomes very high, so IFT is slower than AS. However, as out-
lined earlier, this extra price of IFT delivers a higher-quality regularization in terms
of smoothness of the importance metric. We note a similar effect when comparing
IFT with MBS – for locally tubular shapes, IFT is faster than MBS, especially
when the latter considers high-resolution mesh models. For locally thin and large-
surface shapes, IFT becomes slower than MBS. Again, this extra price of IFT is
counterbalanced by the higher-quality regularization metric it delivers, and also
by the fact that IFT delivers connected skeletons, whereas MBS delivers only a
skeletal point-cloud. All in all, we argue that the performance of IFT compares fa-
vorably with methods using the same importance metric (MS) but also with other
multiscale skeletonization methods (AS, MBS). This is especially salient when
considering that we implemented IFT as a purely serial algorithm, while MS, AS,
and MBS all use CPU-side 8-core multithreading parallelization.
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7.5 E X T E N S I O N S

As discussed so far, the IFT-based method we proposed can compute skeletons of
planar 2D shapes and surface skeletons of volumetric 3D shapes by using the same
formulation. Given this ability of our method to generalize between 2D and 3D, it
is interesting to see whether the generalization can be pushed further.

One possible direction for generalization is to consider the computation of curve
skeletons. As introduced in Sec. 2.1.2.2, these are one-dimensional curvilinear
structures which are locally centered within a 3D shape. Related to the shortest-
path concept used in the IFT skeletons, several authors define the curve skeleton of
a shape Ω as the locus of points x in Ω which admit two equal-length, but different,
shortest paths γ1 and γ2 between two feature points f1 and f2 of x [45, 82, 145]. Mul-
tiscale skeletons can be next defined for genus 0 shapes atop this curve-skeleton
definition by assigning to each curve skeleton point x an importance equal to the
area of the smallest surface component on ∂Ω delimited by the closed shortest-
path ring formed by γ1 and γ2 [82, 145]. Given that our IFT method efficiently com-
putes such shortest paths, it is thus attractive to consider its extension to compute
such multiscale curve skeletons. Although we believe this should be efficiently
possible, we have not explored this avenue further. One current blocker is finding
a way to efficiently compute the area of the above-mentioned surface components.
In [145], this is done by performing a flood fill on ∂Ω after each ring γ1 ∪ γ2 has
been computed for each curve skeleton point x. This, however, as the authors also
note, is quite slow, roughly O(|∂Ω|2). We believe that our IFT algorithm should be
modifiable in a way that such areas can be computed incrementally, much as we
compute shortest paths incrementally. However, a complication here is that short-
est paths γi between feature points corresponding to different curve skeleton points
xi may partially overlap on ∂Ω, more specifically in saddle areas of ∂Ω. As such, a
scheme is needed to acount for such overlaps, so that one does not count the same
voxels on ∂Ω multiple times when evaluating areas. Given the above difficulties,
we have not pursued this extension direction further.

Another equally (or even more) interesting direction is to consider the compu-
tation of skeletons of curved surfaces. In detail: consider a curved manifold with
boundaries Ω embedded in R3, such as e.g. a twisted sheet of paper. Since this
shape has a boundary ∂Ω, we could define a skeleton for it by adapting definition
used for 2D planar-shape skeletons and 3D surface skeletons, following Eqn. ??,
which we repeat below for reading convenience:

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}.

The key difference with the 2D planar case and the 3D volumetric case is that we
cannot use the Euclidean 2D, respectively 3D, distance to define ‖ · ‖ in Eqn. ??.
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However, we can use the geodesic distance δ : Ω×Ω→ R+ which, given two
points x1 and x2 located on the curved surface Ω, sets δ (x1,x2) to the length of
the shortest path γ ⊂ Ω that connects x1 and x2. Accordingly, we define a feature
point f ∈ ∂Ω of a point x ∈Ω as a point for which the distance δ (f,x) is minimal.
This yields a definition of the skeleton of the curved surface Ω as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,δ (x, f1) = δ (x, f2) = DT∂Ω(x)}. (7.17)

Here, DT∂Ω : Ω→ R+ is, by analogy with Eqn. 2.2, the distance transform of
the curved boundary ∂Ω, i.e.

DT∂Ω(x ∈Ω) = min
y∈∂Ω

δ (x,y). (7.18)

Equations 7.17 and 7.18 give us a complete framework for curved surface skele-
tonization. We call the resulting skeletons curved skeletons, to distinguish them
from all other skeleton types we discussed so far (skeletons of 2D planar shapes,
surface skeletons of 3D shapes, and curve skeletons of 3D shapes).

If we study the properties implied by Equations 7.17 and 7.18, we see that they
are very similar to those inferred by their classical counterparts (Equations 2.2
and 2.1, respectively): The distance transform is zero on ∂Ω and monotonically
increases as one advances further in the shape from its boundary. Skeletons are
located at the points where DT∂Ω is locally maximal. The gradient ∇DT∂Ω points
away from the boundary ∂Ω into the shape. Moreover, the classical Blum defini-
tion of skeletons as loci of maximally inscribed disks holds also for our curved
skeleton case – the only difference now is that such a disk is a curved one, living
on a curved surface.

Given the above, it is thus interesting to study how such curved skeletons can
be computed so that they satisfy the desirable properties known for their classical
counterparts (see Sec. 2.1.2.3). To this end, we propose next a computation method
for curve skeletons using a voxel shape representation, and discuss its results and
properties.

Surface definition: To proceed, we need a way to define curved surfaces Ω. Since
we work with voxel models, we designed, for experimentation purposes, a simple
way to achieve this. Given a volumetric shape Ωvol , we compute its intersection
with a cylinder whose spatial orientation and radius can be interactively controlled
by the user. This allows quickly defining a rich family of 3D curved surfaces as the
part of the boundary ∂Ωvol which is located inside the cylinder. Figure 7.9 shows
an example. Here, we slice a hand model with a cylinder whose axis is oriented
roughly orthogonally to the palm’s surface. As expected, we get a curved surface
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consisting of two disk-like components (only one is visible in the figure, the other
one is located on the invisible part of the hand).

Boundary definition: To apply Equations 7.17 and 7.18, we next need a way to
define the boundary ∂Ω of our curved surface. Several so-called template-based
detectors could be used to this end to find the voxels of Ω which meet specific
properties that make them part of the boundary [164]. We have tried several such
detectors, but none has shown to deliver a connected, voxel-thin, boundary. As
such, we propose a new boundary detector, as follows: A voxel x ∈Ω of a curved
voxel surface Ω is part of the boundary if one cannot construct a closed voxel-loop
that does not pass through x and resides in the 26-neighbors of x located on Ω.
This detector finds, in general, connected boundaries ∂Ω for the connected com-
ponents of Ω. However, sometimes small gaps of a size of a few voxels appear on
the boundary, as certain voxels are incorrectly classified as interior. To patch these,
we connect boundary voxels at both sides of the gap by tracing shortest paths over
Ω between them. This method delivers good, pixel-thin, and connected boundaries
for the large majority of shapes we have tested (although, some gaps can still exist
in corner cases). As an example, Figure 7.9c shows the boundary of the disk-like
surface in Fig. 7.9b.

a) b) c)

Figure 7.9: Construction of curved surfaces. a) Typical volumetric shape. b) Intersection
of the shape surface with a cylinder yields a curved surface. c) Boundary of
the curved surface.

Skeletonization: Having a boundary ∂Ω of our curved shape, we can now com-
pute its curved skeleton. For this, we proceed as follows. For each point x ∈ Ω,
we trace the shortest path to the closest boundary point f ∈ ∂Ω, which is a fea-
ture point of x, by definition. This can be easily done using Dijkstra’s algorithm.
Next, we repeat the procedure to find all feature points fi of the 26-neighbors xi
of x which are located in Ω. We then set the importance ρ(x) to the length of
the shortest path along ∂Ω formed by all pairs (fi, f j). Note that this is essentially
a generalization of the Augmented Fast Marching Method (AFMM) used earlier
to compute skeletons of 2D planar shapes [198]. However, our approach has an
important added value for the context of curved surfaces: If we were to compute
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ρ as in the AFMM, we would need to construct a labeling of all voxels along ρ

in arc-length-distance from some starting voxel on ∂Ω. This is doable only for
boundaries which have the same topology as a non-intersecting loop. However, in
general, curved surfaces can have a more complex boundary topology – think, for
instance, of the curved surface that is the surface skeleton of a 3D shape. For a
box, for instance, this boundary is formed by six loops, one for each face of the
box. Our importance computation can handle such cases, while the simple AFMM
labeling scheme cannot.

The importance field ρ over all voxels in Ω defines the multiscale curved skele-
ton of Ω. That is, we an extract a curved skeleton of Ω at a given scale τ by
thresholding, i.e.,

Sτ

∂Ω
= {x ∈Ω|ρ(x)≥ τ}. (7.19)

Note that this is in perfect analogy with the way multiscale 2D skeletons are com-
puted by thresholding other importance metrics (Sec. 2.1.2.1).

Figure 7.10 shows curved skeletons for several curved surfaces obtaining by the
above-mentioned slicing procedure from two 3D volumes. As visible, the curved
skeletons share the same properties as classical 2D planar skeletons: They are con-
nected, voxel-thin, locally centered in the shape, and capture the topology of the
shape. Concerning the last point, indeed, if we look at Fig. 7.10b, we see that the
boundary ∂Ω consists of two disconnected components – a large loop surround-
ing an isolated point. As such, the corresponding curved skeleton has a loop thar
surrounds the isolated boundary point. However, for curved surfaces, the situation
is more subtle than for 2D planar shapes: The fact that the boundary ∂Ω consists
of several disconnected components does not mean the skeleton will always have
loops. The example in Fig. 7.10f shows this. Here, the curved surface is a cylinder-
like shape (without caps), having two rings as boundary. The curved skeleton of
this shape consists of a single ring.

Figure 7.11 shows several additional aspects. Image (b) in that figure shows the
actual importance field ρ computed for the shape in image (a), color coded using a
rainbow colormap. Low values (blue) show points of zero importance, which have
a single feature point on ∂Ω. By definition, these are non-skeletal points. Warmer
colors show skeletal points. As visible, the importance increases gradually from
the tips of the skeleton branches to its center. However, we also see four salient
red branches that extend all the way to the shape’s boundary. When thresholding
this skeleton, these branches remain, as shown in image (c). Upon examination,
we found that these high-importance spurious branches are caused by very small
disconnections along the voxel boundary ∂Ω. These are, in turn, due to the imper-
fection of our boundary detector discussed above.
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a) b) c)

d) e) f)

Figure 7.10: Two examples (cube, hand) showing six curved surfaces and their skeletons.
The boundary of each curved surface, respectively its curved skeleton, are
shown.

Concluding, we have shown an extension of the concept of skeletons (and re-
lated concepts such as feature points and distance transforms) for curved surfaces
embedded in R3. Such curved skeletons can be defined analogously to their clas-
sical 2D and 3D counterparts, and can be computed in a multiscale way using
shortest-path tracing. Since the IFT delivers a general framework for efficiently
computing such shortest paths, the curved skeletonization problem can be cast in
this framework, yielding thus a unification of the computation of 2D planar skele-
tons, skeletons of curved surfaces, and 3D surface skeletons of volumetric shapes.
However, to compute curved skeletons, we need a robust way to detect the bound-
ary of a curved voxel surface. Although we have proposed such a detector, its
robustness is not sufficient to treat all types of curved surfaces.

This experiment opens some interesting avenues. First, if the aforementioned
detector of boundaries of curved surfaces were available, we could immediately
use our curved skeleton computation to treat more complex surfaces, such as sur-
face skeletons. Computing ‘skeletons of surface skeletons’ is a highly interesting
matter. As shown in [81], such structures are very similar to classical curve skele-
tons of 3D shapes. As such, and since our curved skeleton definition is a formal
one and also analogous to the definition of surface skeletons, such a ‘skeleton of
surface skeleton’ approach could lead to a formal definition of curve skeletons.
Moreover, since a single definition (and computational framework) is used, this
could yield a ‘grand unification’ of all skeleton types known in the literature. How-
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a) b) c)

Figure 7.11: Multiscale curved skeleton importance. a) Input curved surface. b) Multiscale
skeleton colored by importance metric. c) Thresholded skeleton.

ever, examining this topic is a subject for future work, as we still do not have a
reliable boundary detector.

The question of foundary detection can be generalized beyond the finding of
boundaries of curved surfaces. Following the above recursive idea for skeleton
definitions, we can think of a recursive way to define the boundary of a shape.
Starting with a 3D volumetric shape, we can find first its interior voxels. For this,
we can e.g. use a template-based detector (the choice of which we do not comment
further on, as this is not the point we are making here). By removing these interior
voxels, we are left with a definition of the surface ∂Ω, or a two-dimensional shape.
Next, we can repeat the process, by finding voxels interior to ∂Ω. By removing
these, we are left now with the boundary of the shape-boundary, or ∂∂Ω, which
contains one-dimensional structures, such as curves. By repeating the process, we
find ∂∂∂Ω, which contains the tips of these curves, or a zero-dimensional set
of isolated voxels. In this process, lower-dimensional structures are the boundary
of higher-dimensional structures. Figure 7.12 illustrates this recursive boundary
detection for several 3D shapes.

The above idea of recursive boundary definition and detection is just an early
experiment, and has to be further refined and tested. However, we believe it has
several useful properties. First and foremost, the fact that we can generalize skele-
tonization as a recursive operation (as discussed above) strongly suggest that we
could, and should, do the same for boundary detection. This would yield a uniform,
and arguably easier to understand and use, framework for dealing with shapes
of different dimensionalities. Separately, detecting boundaries of different dimen-
sions is a required tool for practical application of skeletonization. Indeed, if we
voxelize a general 3D shape, we will typically obtain a mix of volumes, surfaces,
and curves (see e.g. the hull, sails, and respectively masts of the ship model in
Fig. 7.12). As such, we cannot use a single type of skeleton to fully encode such
a shape: For instance, for the volumetric part, surface skeletons have to be used;
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Figure 7.12: Recursive boundary detection. Three-dimensional voxels Ω are red. Two-
dimensional voxels ∂Ω are blue. One dimensional (∂Ω) and zero-
dimensional ( ∂Ω) voxels are green.

while for the curved-surface parts, the curved surface skeletons proposed in this
section can be used. Interestingly enough, this issue has not been highlighted in the
largest part of all skeletonization papers that we are aware of (except Tagliasacchi
et al. [192] who introduce the concept of meso-skeletons which combine classi-
cal 3D curve and surface skeletons). Yet, being able to separate parts of a shape
having different dimensionalities is critical for practical skeletonization, as most
skeletonization methods in existence assume a certain dimensionality of the input
to be able to process it correctly.

7.6 C O N C L U S I O N

In this chapter, we have presented a novel way of computing multiscale 2D me-
dial axes and 3D surface skeletons of image, respectively voxel datasets. For this,
we cast the problem of computing the medial geodesic function (MGF) regulariza-
tion metric, known for its ability to deliver high-quality multiscale skeletons, in
the computation of optimal path forests with the Image Foresting Transform (IFT)
framework. We show that the delivered 2D and 3D skeletons compare very favor-
ably from the perspective of similarity and regularization with several other known
multiscale skeletonization methods. Our IFT-based implementation is very simple
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and delivers good performance. To our knowledge, our method is the second one
that can compute both 2D and 3D multiscale medial skeletons with a unified for-
mulation, aside [84].

This result is important in several contexts, as follows. First, for the work in
this thesis, the desirable properties of IFT surface skeletons as compared to state-
of-the-art methods (smoothness of importance metric, implementation simplicity,
speed) make them strong competitors for those produced by the the method we
used in Chapters 3 - 5, i.e., [83]. However, we agree that the ultimate proof –
showing that IFT skeletons can solve many of the regularization problems inherent
to [83] for shape segmentation and shape matching – is not yet present (given our
limited available time to work on this thesis). Yet, there is no single aspect of
IFT that suggests that it would not reduce such problems, if and when used in
practice. Secondly, in a broader context, the IFT is a serious competitor for all
other multiscale surface-skeletonization methods out there. As such, we believe
that its use in practice can improve any application relying on surface skeletons,
beyond segmentation and matching. Finally, we introduced the concept of curved
skeletons which generalize 2D planar skeletons to curved surfaces embedded in
3D. Curved skeletons can be computed using the same path-tracing mechanisms
that the IFT proposes for computing 3D surface skeletons.

Several extensions of this work are possible. Performance-wise, extending IFT
to use multithreaded parallelization has the potential to make this method the
fastest (and most accurate) multiscale skeletonization technique for 2D skeletons
and 3D surface skeletons on the CPU in existence. Application-wise, the IFT
framework allows one to easily change the cost function, thereby enabling one
to design a whole family of multiscale regularization metrics, beyond the MGF
metric. Such metrics could, in turn, support various types of applications, such
as feature-sensitive regularization. Finally, an interesting extension regards the
computation of multiscale 3D curve skeletons, following e.g. the detection criteria
in [45, 145]; and the refinement of the curved skeleton concept introduced in this
chapter.
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We conclude our work by revisiting the main research question (and derived sub-
questions) stated in Chapter 1, Sec. 1.3:

How can we use surface skeletons of 3D shapes to efficiently and effectively sup-
port a range of shape processing applications?

In the following, we overview and discuss our main research results. Section 8.1
lists these, with a discussion focusing on the main technical contributions of each
result. Section 8.2 discusses all our work from the general perspective of appli-
cation requirements, such as genericity, scalability, and ease of use. Section 8.3
concludes with an outline of potential future work directions.

8.1 T E C H N I C A L C O N T R I B U T I O N S

Our main contributions can be organized along two directions: the skeleton cut
space, and multiscale skeletonization, as follows.

8.1.1 Skeleton cut space

The key contribution of this thesis is the introduction of the skeleton cut space
(Chapter 3). The skeleton cut space is a new ‘refined feature’ of the surface skele-
ton, in the sense introduced by Kustra et al. [98]. That is, it occupies the same rela-
tion to the surface skeleton S∂Ω as the feature points given by the feature transform
FT∂Ω (Eqn 2.3), the skeleton boundary ∂§∂Ω (Eqn. 2.5), the skeleton importance
metric ρ (Eqn. 2.4), and the geodesic paths between feature points (γ , Sec. 2.1.2.3).

Briefly put, the cut space enriches the relation between a surface skeleton S∂Ω

and the shape Ω it comes from by adding, for each skeletal point x, a cut γ ⊂ ∂Ω

that is tight (piecewise geodesic), smooth, closed, intersection-free, and locally
orthogonal to the shape’s symmetry axis or curve skeleton. Such cuts effectively
generalize the closed cuts proposed by Dey and Sun [45] and Reniers et al. [145]
in the sense of (a) being computed from the surface, rather than the curve, skeleton;
(b) being locally smooth; and (c) being used for novel purposes (segmentation and
shape matching). Intuitively, the cut space answers the question “given a surface
skeleton point x, how can I best cut the shape around this point?".

185



C O N C L U S I O N

The cut space (set of all cuts having the above-mentioned properties) is an im-
portant separate concept. It allows one to analyze all cuts that the surface skeleton
proposes for a given shape. In this sense, it is analogous to the randomized cuts
idea of Golovinskyi et al. [74], i.e., proposes a conservative set of all possible ways
we can cut a shape, given certain cut properties. We argue that our cut space is more
suited for applications such as segmentation and matching, as the constraints we
put on our cuts are a superset of those in [74]. For instance, the method in [74]
does not require cuts to be locally orthogonal on the shape’s symmetry axis. This
yields a large number of spurious, uninteresting, cuts which our cut space suffers
far less from.

The above-mentioned properties of the cut space make it next an effective tool
for shape processing applications. We demonstrate this by three kinds of applica-
tions, as follows.

Segmentation: First, we show how the cut space can be used to efficiently and
effectively produce part-based (Chapters 3 and 4) and mixed part-and-patch based
segmentations (Chapter 6) of voxel and mesh shapes. In particular, the unified
part-and-patch segmentation is novel, as most skeleton-based segmentation meth-
ods that we are aware of handle well only one segmentation type (part or patch).
For this, we propose several types of analyses of the cut space, based on its
length histogram as well as on cut clustering. Effectively, this moves the seg-
mentation problem from analyzing either the input surface (as in classical mesh
segmentations) or the skeleton (as in ‘pure’ skeleton-based segmentation meth-
ods [12, 141, 142]) to the analysis of the intermediate cut space concept. The main
advantage hereof is decoupling the computation of the skeleton from the actual
segmentation procedure. Hence, we can easily use our cut space methods with any
kind of skeleton structure that can deliver such a cut space. In turn, such skeletons
can be computed by independent methods, e.g., the voxel-based method in [83],
the GPU mesh-based method in [82], or our own multiscale voxel-based method
in Chapter 7. We believe this to be an important contribution, as it separates tech-
nical concerns on the design (and validation) of skeletonization and segmentation,
which are often mixed in current papers.

Matching and retrieval: Our second application regards 3D shape matching and
segmentation (Chapter 5). Our main contribution in this area is showing how
surface skeletons can be used to this end, in contrast to the vast majority of re-
lated literature where only curve skeletons are used. For this, we propose a new
shape dscriptor based on the cut space introduced in Chapter 3 which captures
local shape characteristics in a more global way than existing methods. In detail,
we estimate the local characteristics by the length of a cut, which captures more
information than e.g. using the distance-to-boundary field. Our descriptor also has
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good characteristics, such as scale, rotation, and translation invariance, and (up
to large extents) pose invariance. Based on this descriptor, we propose a simple
shape retrieval method, for which we test four different distance functions, two
of each (the Median Value Separation and the Multilevel Distance) are novel. We
compare this method qualitatively and in terms of several global precision metrics
with several well-known retrieval techniques. Separately, we demonstrate that our
method is robust to shape noise. The results show that our method can compete
very well with other state-of-the-art retrieval methods. From a technical perspec-
tive, this brings the second evidence to our hypothesis that surface skeletons are
useful tools for supporting shape processing applications.

Editing: Our third and last application shows that the cut space can be used to
effectively support shape editing operations. Key to the effectiveness of such oper-
ations are tools that allow a simple selection of the shape details to edit. In line with
earlier work [33], we show that the cut space allows one to select features such as
protruding parts from a shape by a single click. The aforementioned properties of
our cuts also make them ideal as selection boundaries, i.e., plausible ways to sep-
arate a selected part from the rest of the shape (much like in shape segmentation).
We should note that this use-case is much less elaborated than those for shape seg-
mentation and/or shape matching. However, we believe that the idea behind the
usage of the cut space to support interactive shape editing is straightforward, and
as such it supports this type of use-case withour the need for further proof.

8.1.2 Multiscale surface skeletons

Our second main contribution is the proposal of a novel method for computing
multiscale surface skeletons of voxel shapes (Chapter 7). As explained there, the
motivation for this work resides in the various limitations we have found when us-
ing existing comparable state-of-the-art methods in our earlier work on computing
cut spaces. These stem, first and foremost, from the fact that there are only very
few methods able to compute multiscale surface skeletons. Moreover, several such
methods listed in the literature are not available and/or easily replicable. Yet, other
remaining methods are prohibitively slow [145].

This analysis left us with only two methods [82, 83] that meet the required
characteristics for their practical usage in computing cut spaces – they are easy
to use, they can handle large datasets (shapes) in a matter of seconds, they com-
pute an importance metric allowing the continuous progressive regularization and
simplification of surface skeletons, and they produce skeletons which are centered,
connected, complete, thin, and invariant to isometric transformations (as described
in [179]). However, practical usage of the methods in [82, 83] in our shape segmen-
tation work (Chapters 3,4, and 6) showed that these methods also have limitations.
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Specifically, the voxel-based method in [82] often produces simplified skeletons
which are noisy; and the mesh-based method in [82] is highly complex and re-
quires a very dense sampling of the input ∂Ω.

We proposed to improve on the above limitations by focusing on voxel-based
surface skeletons. Chapter 7 presents a new method for computing such skeletons
using the Image Foresting Transform (IFT) [58]. Several properties of the IFT al-
low us to derive our skeletonization method in a principled way, and also to control
the quality of the resulting skeletons. The examples shown in Sec. 7.4 show that
our method produces skeletons showing a much smoother variation of the mul-
tiscale importance metric from the boundary ∂Ω inwards as all other multiscale
skeletonization methods that we could compare it with, which include all earlier
mentioned methods. As such, using our method gives better (smoother, less noisy)
skeletons that can be used in any application, beyond shape segmentation and
matching. From a technical viewpoint, our work extends the so far small family of
multiscale surface skeletonization methods [82, 83, 145] with a fourth method. Ad-
ditionally, our method handles 2D shapes in an identical way to 3D shapes. To our
knowledge, a single other method exists that does this [82]. Finally, experimental
evaluation shows that our method has competitive running times as compared to
the other tested methods, and also has a simple implementation (see pseudocode
in Sec. 7.3).

Separated from the above, we introduced the concept of curved skeletons which
generalize 2D planar skeletons to curved surfaces embedded in 3D. We showed
how curved skeletons can be compued by the same path-tracing mechanisms that
the IFT uses to extract 3D surface skeletons. Although the curved skeleton concept
is only in an easy phase, it shows potential in being extended to robustly and
efficiently describe such curved shapes.

8.2 A P P L I C AT I O N - D R I V E N R E Q U I R E M E N T S

We next briefly outline the aspects of our work which address practical applica-
tions.

Representation: We have demonstrated the application of cut space techniques to
both voxel-based and mesh-based methods. Specifically, we demonstrated shape
segmentation for both representation types (Chapters 3, 4, 6); and shape editing,
retrieval, and skeletonization for voxel models (Chapters 4, 5, 7). The relatively
limited presence of mesh-based applications is purely due to the limited time avail-
able for this research. From the material in Chapter 6, it is clear that the cut space
concept, including processing thereof in terms of length histograms, is perfectly
doable for mesh shapes. As such, extending the retrieval work in Chapter 5 to
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handle mesh shapes is an easy task.

Practicality: We have validated all our proposals by actual implementations
of the methods (segmentation, editing, retrieval, skeletonization) and evaluation
thereof on a wide range of real-world shapes, including natural and man-made
shapes, shapes having different poses and articulations, shapes of different genii,
sampling resolutions, and both smooth and noisy shapes. Evaluation was done
both qualitatively, in terms of comparing our results visually with those produced
by competitive related methods; and qualitatively, in terms of comparing e.g.
computational performance and accuracy with these methods. For all methods,
parameters are presented and discussed in detail to support replicability. As such,
we believe our results to be on a maturity level comparable to other good results in
the related literature. Additionally, we believe our methods to be usable and useful
in practice.

Generality: Our methods have not addressed a specific subtype (family) of shapes;
nor have our applications. That is, we do not have prior constraints on the shapes
we handle. The cut space concept is generic, in the sense that its construction
and properties are identical for any input shape. Of course, the results shown for
various applications (e.g. shape matching and shape segmentation) differ in terms
of quality among the tested shapes. However, this is not due to explicit design
decisions in the underlying methods. This is a consequence of the fact that sur-
face skeletons capture the information in all types of 3D shapes equally well – in
contrast to curve skeletons, which, as explained effectively capture locally tubular
shapes but are not highly meaningful for other shapes.

8.2.1 Usability

We proposed a part-based segmentation method, and we used this method in prac-
tical dataset. In our first approach, the whole computation time of one segmenta-
tion result is dozens second. After optimization, our computation time is speed-up.
In table3, I did not count feature transform and distance transform computation
time. The computation of feature transform is not optimized, and I use a simpli-
fied surface skeleton for segmentation. Any way, the computation time of feature
transform is usually less than ten seconds. And the computation time of Euclidean
transform is in few seconds. So the whole segmentation process of one segmen-
tation is in a reasonably quick speed. Besides, in theory, the whole segmentation
process is built step by step. And in a computational way, more engineering work
should be done for segmentation. So parameters in theory and practical are im-
portant for use. In histogram based segmentation process, we can make a visual
histogram for users to get desired segmentation results. In clustering based method,
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I fixed almost all parameters , and leave one parameter for hierarchical clustering.
Of course, if there are more complicated shapes, parameter setting should be dis-
cussed. But in this thesis, I only use one parameter for hierarchical clustering.

8.3 F U T U R E W O R K

Summarizing the above, we believe to have defended well our initial hypothesis
that surface skeletons are useful and usable instruments that can effectively and
efficiently support various shape processing applications. This, and the specific
results shown in this thesis, opens several potential directions for future work, as
follows.

Cut space: The cut space proposed in Chapter 3 can be extended in several di-
rections. So far, although we compute detailed cuts, we use their actual geometric
information only for drawing borders of segments. For analyzing the cut space, e.g.
to actually compute the segments or for shape matching, we use only the cut length
and cut center information. A wealth of other cut features can be easily extracted
and used to improve the description power of the cut space, e.g., cut eccentricity,
local orientation, or even information on the shape boundary along the cut, e.g.
texture or colors. This would lead to a whole family of richer high-dimensional
descriptors which have a higher chance of capturing relevant shape aspects. In
turn, this can arguably lead to better segmentation and shape retrieval, but can
also support new application areas, such as shape compression, simplification,
abstraction, and modeling.

Applications: At a more detailed level, the applications discussed in this thesis
can be further refined. For instance, for shape matching, more refined distance
functions to compare two histogram-based descriptors can be thought of. One
interesting idea in this respect is to weigh the importance of different shape parts
differently. For instance, for a matching application where one knows that certain
shape features, like protrusions or specific user-indicated shape parts, have a high
importance, this information can be incorporated in the cut space and resulting
histograms. Next, refined distance metrics can be designed to favor similarity over
the high-importance parts. This would lead to a new family of interest-driven re-
trieval methods, where users can steer the search process by adding various types
of information they are looking for.

Skeletonization: The multiscale method presented in Chapter 7 satisfies very well
all functional and non-functional requirements that 3D surface skeletonization
methods have, but has (still) limited scalability. This can be increased along two
directions. First, computational speed can be massively increased by using CPU or
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GPU parallelization, as several of the underlying IFT operations are independent
on each other. Separately, but of equal or even higher importance, the maximal
size of voxel models that the method could treat can be increased, by using sparse
storage schemes. This last point is of great interest, since most (if not all) voxel-
based skeletonization methods in existence are limited by the need to store one
or several full volumes in memory, which makes them practically applicable only
up to sizes of a few thousand voxel cubed. Using such storage schemes would
drastically reduce the memory need, making our method competitive, in terms of
resolution of shapes it can treat, with advanced mesh-based methods such as [82].
Combined with the aforementioned parallelization, this could lead to the 3D sur-
face skeletonization method that all applications could next directly use.
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[16] I. Baran and J. Popović. Automatic rigging and animation of 3D characters.
ACM TOG, 26(3):72(1–8), 2007.

[17] G. Bertrand. A parallel thinning algorithm for medial surfaces. Pattern
Recogn Lett, 16(9):979–986, 1995.

[18] G. Bertrand and M. Couprie. Two-dimensional parallel thinning algorithms
based on critical kernels. J Math Imaging Vis, 31(35):35–56, 2008.

[19] J. Bloomenthal, C. Bajaj, J. Blinn, M. P. Cani, A. Rockwood, B. Wyvill, and
G. Wyvill. Introduction to Implicit Surfaces. Morgan Kaufmann, 1997.

[20] H. Blum. A transformation for extracting new descriptors of shape. Models
for the perception of speech and visual form. MIT Press, 1967.

[21] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. Polygon Mesh
Processing. A K Peters, 2010.

[22] S. Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven automatic centerline
extraction. Medical Image Analysis, 9(3):209–221, 2005.

[23] M. Braunstein, D. Hoffman, and A. Saidpour. Parts of visual objects: and
experimental test of the minima rule. Perception, 18:817–826, 1989.

[24] M. Breuss, A. Bruckstein, and P. Maragos. Innovations for Shape Analysis:
Models and Algorithms. Springer, 2013.

[25] A. M. Bronstein, M. M. Bronstein, R. Kimmel, M. Mahmoudi, and
G. Sapiro. A Gromov-Hausdorff framework with diffusion geometry for
topologically-robust non-rigid shape matching. IJCV, 89(2-3):266–286,
2010.

[26] F. Cazals, H. Kanhere, and S. Loriot. Computing the volume of a union of
balls: A certified algorithm. ACM Trans. Math. Softw., 38(1):1–20, 2011.

[27] CGAL. 3D Voronoi diagram computation. In CGAL User and Reference
Manual. CGAL Editorial Board, 4.6.2 edition, 2015. URL http://doc.
cgal.org.

194

http://doc.cgal.org
http://doc.cgal.org


B I B L I O G R A P H Y

[28] M. Chang, F. Leymarie, and B. Kimia. Surface reconstruction from point
clouds by transforming the medial scaffold. CVIU, 113(11):1130–1146,
2009.

[29] D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung. On visual similarity
based 3D model retrieval. CGF, 22(3):223–232, 2003.

[30] L. Chen, H. Wei, and J. Ferryman. A survey of human motion analysis using
depth imagery. Pattern Recognition Letters, 34(15):1995–2006, 2013.

[31] K. Ciesielski, P. Miranda, A. Falcão, and J. Udupa. Joint graph cut and
relative fuzzy connectedness image segmentation algorithm. Medical Image
Analysis, 17(8):1046–1057, 2013.

[32] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in
surface processing. In Proc. IEEE Visualization, pages 232–230, 2000.

[33] U. Clarenz, M. Griebel, M. Rumpf, M. A. Schweitzer, and A. Telea. Feature
sensitive multiscale editing on surfaces. Visual Computer, 20(5):329–343,
2004.

[34] U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local
classification for surfaces based on moment analysis. IEEE TVCG, 10(5):
516–524, 2004.

[35] D. Cohen-Or and A. Kaufman. Fundamentals of surface voxelization.
Graphical Models and Image Processing, 57(6):453–461, 1995.

[36] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE TPAMI, 24(5):603–619, 2002.

[37] N. Cornea, M. Demirci, D. Silver, A. Shoukofandeh, S. Dickinson, and
P. Kantor. 3D object retrieval using many-to-many matching of curve skele-
tons. In Proc. IEEE SMI, pages 147–152, 2005.

[38] N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian. Computing hier-
archical curve-skeletons of 3D objects. Visual Computer, 21(11):945–955,
2005.

[39] N. D. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applications,
and algorithms. IEEE TVCG, 13(3):87–95, 2007.

[40] L. F. D. Costa and R. M. Cesar. Shape Analysis and Classification: Theory
and Practice. CRC Press, 2000.

195



B I B L I O G R A P H Y

[41] M. Couprie. Topological maps and robust hierarchical Euclidean skeletons
in cubical complexes. CVIU, 117(4):355–369, 2013.

[42] J. Damon. Global medial structure of regions in R3. Geometry and Topol-
ogy, 10:2385–2429, 2006.

[43] T. Delame, J. Kustra, and A. Telea. Structuring 3D medial skeletons: A
comparative study. In Proc. Vision, Modeling, and Visualization (VMV).
Eurographics, 2016.

[44] T. Dey and J. Sun. Defining and computing curve-skeletons with the medial
geodesic function. In Proc. SGP, pages 143–152, 2006.

[45] T. Dey and J. Sun. Defining and computing curve-skeletons with the medial
geodesic function. In Proc. SGP, pages 143–152, 2006.

[46] T. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex.
Comp. Aided Design, 36(2):195–202, 2004.

[47] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, pages 269–271, 1959.

[48] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice
Hall, 1976.

[49] M. van Dortmont, H. van de Wetering, and A. Telea. Skeletonization and
distance transforms of 3D volumes using graphics hardware. In Proc. DGCI,
pages 617–629. Springer, 2006.

[50] R. Dougherty and K. Kunzelmann. Computing local thickness of 3D
structures with ImageJ. In Proc. Microscopy & Microanalysis Meet-
ing, Ft. Lauderdale, Florida, Aug. 5-9, 2009, 2007. www.optinav.com/
LocalThicknessEd.pdf.

[51] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, and A. Telea. Skeleton-
based edge bundles for graph visualization. IEEE TVCG, 17(2):2364 –
2373, 2011.

[52] A. X. Falcão, J. K. Udupa, and F. K. Miyazawa. An ultra-fast user-steered
image segmentation paradigm: live wire on the fly. IEEE Transactions on
Medical Imaging, 19(1):55–62, 2000.

[53] A. X. Falcão, J. Stolfi, and R. A. Lotufo. The image foresting transform:
Theory, algorithms, and applications. IEEE TPAMI, 26(1):19–29, 2004.

196

www.optinav.com/LocalThicknessEd.pdf
www.optinav.com/LocalThicknessEd.pdf


B I B L I O G R A P H Y

[54] A. X. Falcão, J. Stolfi, and R. A. Lotufo. The image foresting transform:
theory, algorithms, and applications. IEEE TPAMI, 26(1):19–29, 2004.

[55] A. X. Falcão, C. Feng, J. Kustra, and A. Telea. Multiscale 2D medial axes
and 3D surface skeletons by the image foresting transform. In P. K. Saha,
G. Borgefors, and G. S. di Baja, editors, Skeletonization: Theory, Methods,
and Applications, chapter 4. Elsevier Limited Press, 2016.

[56] A. Falcão and J. Udupa. A 3D generalization of user-steered live-wire seg-
mentation. Medical Image Analysis, 4(4):389–402, 2000.

[57] A. Falcão, B. da Cunha, and R. Lotufo. Design of connected operators using
the image foresting transform. In Proc. SPIE, volume 4322, pages 468–479,
2001. DOI 10.1117/12.431120.

[58] A. Falcão, L. da F. Costa, and B. da Cunha. Multiscale skeletons by im-
age foresting transform and its applications to neuromorphometry. Pattern
Recognition, 35(7):1571–1582, 2002.

[59] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and E. Wong. 3D deep
shape descriptor. In Proc. IEEE CVPR, pages 2319–2328, 2015.

[60] C. Feng, A. Jalba, and A. Telea. Part-based segmentation by skeleton cut
space analysis. In Mathematical Morphology and Its Applications to Signal
and Image Processing (Proc. ISMM), pages 607–618. Springer LNCS 9082,
2015.

[61] C. Feng, A. Jalba, and A. Telea. Part-based segmentation by skeleton cut
space analysis. In Proc. ISMM, pages 324–336, 2015.

[62] C. Feng, A. Jalba, and A. Telea. A descriptor for voxel shapes based on the
skeleton cut space. In Proc. Eurographics Workshop on 3D Object Retrieval
(3DOR). Eurographics, 2016.

[63] C. Feng, A. Jalba, and A. Telea. Improved part-based segmentation of voxel
shapes by skeleton cut spaces. Mathematical Morphology – Theory and
Applications, 1:60–78, 2016.

[64] L. de Floriani and M. Spagnuolo. Shape Analysis and Structuring. Springer,
2008.

[65] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified
medial axis. Proc. ACM Symp. Solid Modeling, pages 96–107, 2003.

197

http://dx.doi.org/10.1117/12.431120


B I B L I O G R A P H Y

[66] W. R. Franklin, V. Akman, and C. Verrilli. Voronoi diagrams with barriers
and on polyhedra for minimal path planning. Visual Computer, 1:133–150,
1985.

[67] T. Funkhouser, O. Min, M. Kazhdan, and J. Chen. A search engine for 3D
models. ACM TOG, 2(1):83–105, 2003.

[68] M. Garland, A. Willmott, and P. S. Heckbert. Hierarchical face clustering
on polygonal surfaces. In Proc. I3D, pages 49–58, 2001.

[69] Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete Eu-
clidean distance maps. IEEE TPAMI, 18:1055–1066, 1996.

[70] R. Getto and D. Fellner. 3D object retrieval with parametric templates. In
Proc. 3DOR, 2015.

[71] P. Giblin and B. Kimia. A formal classification of 3D medial axis points
and their local geometry. IEEE TPAMI, 26(2):238–251, 2004.

[72] P. J. Giblin and S. A. Brassett. Local symmetry of plane curves. American
Mathematical Monthly, 92:689–707, December 1985.

[73] J. Giesen, B. Miklos, M. Pauly, and C. Wormser. The scale axis transform.
In Proc. SGP, pages 106–115, 2009.

[74] A. Golovinskiy and T. Funkhouser. Randomized cuts for 3D mesh analysis.
ACM TOG, 27(5):454–463, 2008.

[75] J. R. Haaga, D. Boll, V. S. Dogra, M. Forsting, R. C. Gilkeson, K. H. Ha, and
M. Sundaram. CT and MRI of the Whole Body. Mosby, 2008.

[76] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[77] D. Hoffman and W. Richards. Parts of recognition. Cognition, 18:65–96,
1984.

[78] M. J. J. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open source clustering
software. Bioinformatics, 19:1453–1454, 2004. Software available at http:
//bonsai.hgc.jp/~mdehoon/software/cluster.

[79] I. Hotz and H. Hagen. Visualizing geodesics. In Proc. IEEE Visualization,
pages 311–318, 2000.

[80] V. Jain and H. Zhang. A spectral approach to shape-based retrieval of artic-
ulated 3D models. Comput. Aided Des., 39(5):398–407, 2007.

198

http://bonsai.hgc.jp/~mdehoon/software/cluster
http://bonsai.hgc.jp/~mdehoon/software/cluster


B I B L I O G R A P H Y

[81] A. Jalba and A. Telea. Computing curve skeletons from medial surfaces
of 3D shapes. In Proc. Theory & Practice of Computer Graphics (TPCG),
pages 99–106. Eurographics, 2012.

[82] A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletonization of large
3D models on the GPU. IEEE TPAMI, 35(6):1495–1508, 2013.

[83] A. Jalba, A. Sobiecki, and A. Telea. An unified multiscale frame-
work for planar, surface, and curve skeletonization. IEEE TPAMI, 2015.
DOI:10.1109/TPAMI.2015.2414420.

[84] A. Jalba, A. Sobiecki, and A. Telea. An unified multiscale framework
for planar, surface, and curve skeletonization. IEEE TPAMI, 38(1):30–45,
2016.

[85] A. C. Jalba, J. Kustra, and A. Telea. Surface and curve skeletonization of
large 3D models on the GPU. IEEE TPAMI, 35(6):1495–1508, 2013.

[86] T. Ju, M. Baker, and W. Chiu. Computing a family of skeletons of volumet-
ric models for shape description. Comput. Aided Design, 39(5):352–360,
2007.

[87] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM TOG, 22(3):954–961, 2003.

[88] S. Katz, G. Leifman, and A. Tal. Mesh segmentation using feature point
and core extraction. Visual Comput, 21(8):649–658, 2005.

[89] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spher-
ical harmonic representation of 3D shape descriptors. In Proc. SGP, pages
156–164. Eurographics, 2003.

[90] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symmetry descriptors
and 3D shape matching. In Proc. SGP, pages 46–54, 2004.

[91] B. Kimia, A. Tannenbaum, and S. Zucker. Shapes, shocks, and deforma-
tions I: the components of two-dimensional shape and the reaction-diffusion
space. IJCV, 15(3):189–224, 1995.

[92] R. Kimmel, D. Shaked, N. Kiryati, and A. Bruckstein. Skeletonization via
Distance Maps and Level Sets. CVIU, 62(3):382–391, 1995.

[93] N. Kiryati and G. Szekely. Estimating shortest paths and minimal dis-
tances on digitized three-dimensional surfaces. Pattern Recognition, 26:
1623–1637, 1993.

199



B I B L I O G R A P H Y

[94] J. Koehoorn, C. Feng, J. Kustra, A. Jalba, and A. Telea. Unified part-
patch segmentation of mesh shapes using surface skeletons. In P. K. Saha,
G. Borgefors, and G. S. di Baja, editors, Skeletonization: Theory, Methods,
and Applications, chapter 2. Elsevier Limited Press, 2016.

[95] W. Kropatsch, N. Artner, Y. Haximusha, and X. Jiang. Graph-based repre-
sentations in pattern recognition. Springer, 2013.

[96] J. Kustra, A. Jalba, and A. Telea. Robust segmentation of multiple inter-
secting manifolds from unoriented noisy point clouds. CGF, 33(1):73–87,
2014.

[97] J. Kustra, A. Jalba, and A. Telea. Shape segmentation using medial point
clouds with applications to dental cast analysis. In Proc. VISAPP, pages
169–172, 2014.

[98] J. Kustra, A. Jalba, and A. Telea. Computing refined skele-
tal features from medial point clouds. Patt Recog Lett, 2015.
DOI:10.1016/j.patrec.2015.05.007.

[99] Y. Lee, S. Lee, A. Shamir, and D. Cohen-Or. Intelligent mesh scissoring
using 3D snakes. In Proc. IEEE Pacific Graphics, pages 279–287, 2004.

[100] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H. P. Seidel. Mesh scissoring
with minima rule and part salience. CAGD, 22:444–465, 2005.

[101] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[102] F. Leymarie and B. Kimia. The medial scaffold of 3D unorganized point
clouds. IEEE TVCG, 29(2):313–330, 2007.

[103] X. Li, T. Woon, T. Tan, and Z. Huang. Decomposing polygon meshes for
interactive applications. In Proc. I3D, pages 35–42, 2001.

[104] Z. Lian, A. Godil, and X. Sun. Visual similarity based 3D shape retrieval
using Bag-of-Features. In Proc. SMI, pages 25–36, 2010.

[105] J. Lien, J. Keyser, and N. Amato. Simultaneous shape decomposition and
skeletonization. In Proc. ACM SPM, pages 219–228, 2005.

[106] L. Liu, E. Chambers, D. Letscher, and T. Ju. A simple and robust thinning
algorithm on cell complexes. CGF, 29(7):2253–2260, 2010.

[107] R. Liu and H. Zhang. Segmentation of 3D meshes through spectral cluster-
ing. In Proc. Pacific Graphics, pages 298–305, 2004.

200



B I B L I O G R A P H Y

[108] X. Liu, S. B. Kang, and H. Y. Shum. Directional histogram model for three-
dimensional shape similarity. In Proc. IEEE CVPR, pages 813–820, 2003.

[109] Y. Liu, J. Pu, H. Zha, W. Liu, and Y. Uehara. Thickness histogram and statis-
tical harmonic representation for 3D model retrieval. In Proc. 3D Data Pro-
cessing, Visualization and Transmission (3DPVT), pages 896–903, 2004.

[110] Z. Liu, S. Tang, S. Bu, and H. Zhang. New evaluation metrics for mesh
segmentation. Computers & Graphics, 37(6):553–564, 2013.

[111] W. E. Losensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proc. ACM SIGGRAPH, pages 163–169,
1987.

[112] J. Ma, S. Bae, and S. Choi. 3D medial axis point approximation using
nearest neighbors and the normal field. Visual Computer, 28(1):7–19, 2012.

[113] G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Image and
Vision Computing, 16(5):317–327, 1998.

[114] A. Mangan and R. Whitaker. Partitioning 3D surface meshes using water-
shed segmentation. IEEE TVCG, 5(4):308–321, 1999.

[115] McGill University. McGill 3D Shape Benchmark, 2015. http://www.cim.
mcgill.ca/~shape/benchMark.

[116] MeshLab Consortium. MeshLab geometry processing tool, 2015. meshlab.
sourceforge.net.

[117] M. Meyer, M. Desbrun, P. Schröder, and A. Barr. Discrete differential-
geometry operators for triangulated 2D manifolds. In Proc. VisMath.
Springer, 2002.

[118] P. A. V. Miranda, A. X. Falcão, and T. V. Spina. Riverbed: A novel user-
steered image segmentation method based on optimum boundary tracking.
IEEE Transactions on Image Processing, 21(6):3042–3052, 2012.

[119] P. de Miranda, A. Falcão, and J. Udupa. Synergistic arc-weight estimation
for interactive image segmentation using graphs. Computer Vision and Im-
age Understanding, 114(1):85 – 99, 2010. ISSN 1077-3142.

[120] H. Moreton and C. Séquin. Functional optimization for fair surface design.
In Proc. ACM SIGGRAPH, pages 167–176, 1992.

[121] M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno, and J. Rossignac.
Plumber: a method for a multi-scale decomposition of 3D shapes into tubu-
lar primitives and bodies. In Proc. ACM SMA, pages 339–344, 2004.

201

http://www.cim.mcgill.ca/~shape/benchMark
http://www.cim.mcgill.ca/~shape/benchMark
meshlab.sourceforge.net
meshlab.sourceforge.net


B I B L I O G R A P H Y

[122] D. Mount and S. Arya. Approximate nearest-neighbor search, 2015. www.
cs.umd.edu/~mount/ANN.

[123] F. Nooruddin and G. Turk. Simplification and repair of polygonal models
using volumetric techniques. IEEE TVCG, 9(2), 2003.

[124] R. L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Patt Recog,
(28):343–359, 1995.

[125] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions.
ACM TOG, 21(4):807–832, 2002.

[126] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Trans. Sys., Man. Cyber., 9(1):62–66, 1979.

[127] D. Page, A. Koschan, and M. Abidi. Perception-based 3D triangle mesh
segmentation using fast marching watersheds. In Proc. IEEE CVPR, pages
27–32, 2003.

[128] K. Palagyi and A. Kuba. Directional 3D thinning using 8 subiterations. In
Proc. DGCI, volume 1568, pages 325–336, 1999.

[129] J. Papa, A. Falcão, V. de Albuquerque, and J. Tavares. Efficient supervised
optimum-path forest classification for large datasets. Pattern Recognition,
45(1):512 – 520, 2012.

[130] N. Pears, P. Bunting, and Y. Liu. 3D Imaging, Analysis and Applications.
Springer, 2012.

[131] D. Perchet, C. Fetita, and F. Preteux. Advanced navigation tools for virtual
bronchoscopy. In Proc. SPIE Image Processing, pages 147–158, 2004.

[132] G. Peyre and L. Cohen. Geodesic computations for fast and accurate sur-
face remeshing and parameterization. In Progress in Nonlinear Differen-
tial Equations and Their Applications, volume 63, pages 151–171. Springer
LNCS, 2005. www.ceremade.dauphine.fr/~peyre.

[133] M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering – From
theory to implementation. Morgan Kaufmann, 3 edition, 2016.

[134] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker. Multiscale medial
loci and their properties. IJCV, 55(2-3):155–179, 2003.

[135] S. M. Pizer, C. A. Burbeck, J. M. Coggins, D. S. Fritsch, and B. S. Morse.
Object shape before boundary shape: Scale-space medial axis, 1992. Techni-
cal Report TR92-025, MEdical Image Display Group, Department of Com-
puter Science, University of North Carolina, Chapel Hill.

202

www.cs.umd.edu/~mount/ANN
www.cs.umd.edu/~mount/ANN
www.ceremade.dauphine.fr/~peyre


B I B L I O G R A P H Y

[136] K. Polthier and M. Schmies. Straightest geodesics on polyhedral surfaces.
In Proc. ACM SIGGRAPH Courses, pages 30–38, 2006.

[137] B. Preim and D. Bartz. Visualization in Medicine: Theory, Algorithms, and
Applications. Morgan Kaufmann, 2007.

[138] S. Prohaska and H. C. Hege. Fast visualization of plane-like structures in
voxel data. In Proc. IEEE Visualization, pages 29–36, 2002.

[139] D. Reniers and A. Telea. Tolerance-based feature transforms. In Advances
in Computer Graphics and Computer Vision, pages 187–200. Springer,
2007.

[140] D. Reniers and A. Telea. Hierarchical part-type segmentation using voxel-
based curve skeletons. Visual Comput, 24(6):383–395, 2008.

[141] D. Reniers and A. Telea. Part-type segmentation of articulated voxel-shapes
using the junction rule. CGF, 27(7):1845–1852, 2008.

[142] D. Reniers and A. Telea. Patch-type segmentation of voxel shapes using
simplified surface skeletons. CGF, 27(7):1837–1844, 2008.

[143] D. Reniers and A. Telea. Segmenting simplified surface skeletons. In Proc.
DGCI, pages 132–140, 2008.

[144] D. Reniers, A. Jalba, and A. Telea. Robust classification and analysis of
anatomical surfaces using 3D skeletons. In Proc. VCBM, pages 61–68. Eu-
rographics, 2008.

[145] D. Reniers, J. J. van Wijk, and A. Telea. Computing multiscale skeletons
of genus 0 objects using a global importance measure. IEEE TVCG, 14(2):
355–368, 2008.

[146] D. Reniers and A. C. Telea. Skeleton-based hierarchical shape segmentation.
In Proc. IEEE SMA, pages 179–188, 2007.

[147] L. Rocha, F. Cappabianco, and A. Falcão. Data clustering as an optimum-
path forest problem with applications in image analysis. International Jour-
nal of Imaging Systems and Technology, 19(2):50–68, 2009.

[148] J. Roerdink and W. Hesselink. Euclidean skeletons of digital image and vol-
ume data in linear time by the integer medial axis transform. IEEE TPAMI,
30(12):2204–2217, 2008.

[149] L. Rossi and A. Torsello. An adaptive hierarchical approach to the extrac-
tion of high resolution medial surfaces. In Proc. 3DIMPVT, pages 371–378,
2012.

203



B I B L I O G R A P H Y

[150] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with
applications to image databases. In Proc. IEEE ICCV, pages 59–66, 1998.

[151] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with
applications to image databases. In Proc. IEEE ICCV, pages 59–66, 1998.

[152] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a
metric for image retrieval. IJCV, 40(2):99–121, 2000.

[153] M. Rumpf and A. Telea. A continuous skeletonization method based on
level sets. In Proc. VisSym, pages 151–158, 2002.

[154] R. da S. Torres and A. Falcão. Contour salience descriptors for effective
image retrieval and analysis. Image and Vision Computing, 25(1):3 – 13,
2007.

[155] R. da S. Torres, A. Falcão, and L. da F. Costa. A graph-based approach for
multiscale shape analysis. Pattern Recognition, 37(6):1163–1174, 2004.

[156] P. K. Saha, G. Borgefors, and G. S. di Baja. A survey on skeletonization
algorithms and their applications. Patt Recog Lett, 76(1):3–12, 2015.

[157] D. Saupe and D. Vranic. 3D model retrieval with spherical harmonics and
moments. In Proc. DAGM, pages 392–397. Springer, 2001.

[158] S.Berchtold and H.-P.Kriegel. S3: Similarity search in CAD database sys-
tems. In In ACM SIGMOD, pages 564–567, 1997.

[159] W. Schmidt, J. Sotomayor, A. Telea, C. Silva, and J. Comba. A 3D shape
descriptor based on depth complexity and thickness histograms. In Proc.
SIBGRAPI, pages 433–440, 2015.

[160] W. Schmitt, J. Sotomayor, A. Telea, C. Silva, and J. Comba. A 3D shape
descriptor based on depth complexity and thickness histograms. In Proc.
IEEE SIBGRAPI, pages 261–267, 2015.

[161] T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes by editing shock
graphs. IEEE TPAMI, 26(5):550–571, 2004.

[162] L. Serino, G. S. di Baja, and C. Arcelli. Using the skeleton for 3D object
decomposition. In Proc. SCIA, pages 447–456. Springer LNCS, 2011.

[163] L. Serino, C. Arcelli, and G. S. di Baja. From skeleton branches to object
parts. CVIU, (129):42–51, 2014.

[164] J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
1983.

204



B I B L I O G R A P H Y

[165] J. A. Sethian. A fast marching level set method for monotonically advancing
fronts. In Proceedings of the National Academy of Sciences of the United
Stated of America, volume 93 number 4, pages 1591–1595, Febrary 1996.

[166] D. Shaked and A. Bruckstein. Pruning medial axes. CVIU, 69(2):156–169,
1998.

[167] A. Shamir. A formulation of boundary mesh segmentation. In Proc. 3DPVT,
2004.

[168] A. Shamir. A survey on mesh segmentation techniques. CGF, 27(8):1539–
1556, 2008.

[169] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and
skeletonisation using the shape diameter function. Visual Comput, 24(4):
249–259, 2008.

[170] K. G. Shin and R. D. Throne. Robot path planning using geodesic and
straight line segments with Voronoi diagrams, 1986. Technical Report RSD-
TR-27-86, University of Michigan, Ann Arbor.

[171] K. Siddiqi and B. B. Kimia. A shock grammar for recognition. In Proc.
IEEE CVPR, pages 507–513, 1996.

[172] K. Siddiqi and S. Pizer. Medial representations: mathematics, algorithms
and applications. Springer, 2008.

[173] K. Siddiqi, A. Shoukofandeh, S. Dickinson, and S. Zucker. Shock graphs
and shape matching. IJCV, 35(1):13–32, 1999.

[174] K. Siddiqi, A. Shoukofandeh, S. Dickinson, and S. W. Zucker. Shock graphs
and shape matching. IJCV, 35(1):13–32, 1999.

[175] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-Jacobi
skeletons. IJCV, 48(3):215–231, 2002.

[176] K. Siddiqi, J. Zhang, D. Macrini, A. Shoukofandeh, and S. Dickinson. Re-
trieving articulated 3D models using medial surfaces. Mach. Vis. Appl., 19:
261–275, 2008.

[177] M. Singh, G. Seyranian, and D. Hoffman. Parsing silhouettes: The short-cut
rule. Perception & Psychophysics, 4(61):636–660, 1999.

[178] A. Sobiecki, H. Yasan, A. Jalba, and A. Telea. Qualitative comparison of
contraction-based curve skeletonization methods. In Proc. ISMM, pages
425–439. Springer, 2013.

205



B I B L I O G R A P H Y

[179] A. Sobiecki, A. Jalba, and A. Telea. Comparison of curve and surface
skeletonization methods for voxel shapes. Pattern Recogn Lett, 47:147–156,
2014.

[180] T. Spina, P. de Miranda, and A. Falcão. Hybrid approaches for interactive
image segmentation using the live markers paradigm. IEEE Transactions
on Image Processing, 23(12):5756–5769, 2014.

[181] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci and bound-
ary differential geometry. In Proc. IEEE 3DIM, pages 87–95, 2009.

[182] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci for 3D
shape representation. CVIU, 115(5):695–706, 2011.

[183] D. Storti, G. Turkiyyah, M. Ganter, C. Lim, and D. Stal. Skeleton-based
modeling operations on solids. In Proc. ACM SMA, pages 141–154, 1997.

[184] A. Sud, M. Foskey, and D. Manocha. Homotopy-preserving medial axis
simplification. In Proc. SPM, pages 103–110, 2005.

[185] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informa-
tive multi-scale signature based on heat diffusion. CGF, 29(5):1383–1392,
2009.

[186] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape
matching and retrieval. In Proc. ACM SMI, pages 130–137, 2003.

[187] V. Surazhsky, T. Surazshky, D. Kirsanov, S. Gortler, and H. Hoppe. Fast
exact and approximate geodesics on meshes. In Proc. ACM SIGGRAPH,
pages 130–138, 2005.

[188] H. Tabia and H. Laga. Covariance-based descriptors for efficient 3D shape
matching, retrieval, and classification. IEEE Transactions on Multimedia,
17(9):1591–1603, 2015.

[189] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea. 3D
skeletons: A state-of-the-art report. CGF, 2016. DOI:10.1111/cgf.12865.

[190] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton extraction
from incomplete point cloud. ACM Transactions on Graphics, 28(71):1–10,
2009.

[191] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang. Skeletonization by
mean curvature flow. In Proc. Symp. Geom. Proc., pages 342–350, 2012.

206



B I B L I O G R A P H Y

[192] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang. Mean curvature
skeletons. CGF, 31(5):1735–1744, 2012.

[193] J. W. Tangelder and R. Veltkamp. A survey of content based 3D shape
retrieval methods. Multimed Tools Appl, 39(3):441–471, 2008.

[194] A. Tatsuma, H. Koyanagi, and M. Aono. A large-scale shape benchmark
for 3D object retrieval: Toyohasi shape benchmark. In Proc. APISPA ASC,
pages 1–10, 2012.

[195] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Proc. ICCV, pages 902–907, 1995.

[196] G. Taubin. Geometric signal processing on polygonal meshes. In Proc.
Eurographics – STARs. Eurographics Association, 2000.

[197] A. Telea. Feature preserving smoothing of shapes using saliency skeletons.
In Visualization and Mathematics. Springer, 2011.

[198] A. Telea and J. van Wijk. An augmented fast marching method for comput-
ing skeletons and centerlines. In Proc. EG/IEEE VisSym, 2002.

[199] A. C. Telea. Data Visualization: Principles and practice. CRC Press, 2014.
2nd edition.

[200] A. Telea and A. Jalba. Voxel-based assessment of printability of 3D shapes.
In Proc. ISMM. Springer, 2011.

[201] J. Tierny, J. Vandeborre, and M. Daoudi. Topology driven 3D mesh hierar-
chical segmentation. In Proc. SMI, pages 215–220, 2007.

[202] A. Vilanova, R. Wegenkittl, A. Konig, and E. Gröller. Nonlinear virtual
colon unfolding. In Proc. IEEE Visualization, 2001.

[203] M. Wan, F. Dachille, and A. Kaufman. Distance-field based skeletons for
virtual navigation. In Proc. IEEE Visualization, pages 246–253, 2001.

[204] K. V. Wong and A. Hernandez. A review of additive manufacturing. SRN
Mechanical Engineering, 22, 2012. DOI doi:10.5402/2012/208760.

[205] J. Xie, P. Heng, and M. Shah. Shape matching and modeling using skeletal
context. Patt Recog, 41:1756–1767, 2008.

[206] S. Yoshizawa, A. Belyaev, and H. Seidel. Free-form skeleton-driven mesh
deformations. In Proc. ACM SMA, pages 247–253, 2003.

207

http://dx.doi.org/doi:10.5402/2012/208760


B I B L I O G R A P H Y

[207] S. Yoshizawa, A. Belyaev, and H. Seidel. Skeleton-based variational mesh
deformations. CGF, 26(3):255–264, 2007.

[208] L. Yu, K. Efstathiou, P. Isenberg, and T. Isenberg. Efficient structure-aware
selection techniques for 3D point cloud visualizations with 2DOF input.
IEEE TVCG, 18(12):2245–2254, 2012.

[209] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature de-
tection and description with applications to mesh matching. In Proc. IEEE
CVPR, pages 373–380, 2009.

[210] Q. Zhou, T. Ju, and S. Hu. Topology repair of solid models using skeletons.
IEEE TVCG, 27(3):675–685, 2007.

[211] M. van der Zwan, Y. Meiburg, and A. Telea. A dense medial descriptor for
image analysis. In Proc. VISAPP, pages 133–140, Los Alamitos, CA:, 2013.
IEEE Press.

[212] M. van der Zwan, V. Codreanu, and A. Telea. CUBu: Universal real-time
bundling for large graphs. IEEE TVCG, 22(12):2550–2563, 2016.

[213] M. Zwicker, M. Pauly, and O. K. M. Gross. Pointshop 3D: an interactive
system for point-based surface editing. In Proc. ACM SIGGRAPH, pages
322–329, 2002.

208



AC K N OW L E D G M E N T S

It is now time to close my PhD journey. And this should be done by showing due
appreciation to those who helped me.

First of all, I should thank Alex Telea, my main supervisor. I still remember that
I sent a lot of emails to Alex for pursuing this PhD project before I started this
journey. Alex helped me to have this chance. Besides, Alex has broad knoledge
in the medial representation and related fields, which he shared widely with me.
Additionally, as an expert in the field, Alex showed me many possible research
directions and had many deep discussions with me.

I should also thank my co-supervisor, Andrei Jalba. Although we did not discuss
a lot, I do strongly value, above all, his sharing of valuable code bases that helped
me with my work. Also, I thank Andrei for helping me with my research and my
papers directly and indirectly.

I think I should thank Harry Blum, the ‘creator’ of medial descriptors. Although
I don’t know Blum personally, for obvious reasons, it is based on his work that I
did mine.

During the various conferences I attended (ISMM, 3DOR, Eurographics, Euro-
Vis), I had deep discussions with related researchers. These discussions help me a
lot in my research. As such, I want to acknowledge this help.

I enjoyed my lunch time with the SVCG members, during which we had a lot
of interesting talks. In particular, prof. Jos Roerdink, the group leader of SVCG,
gave me some inspiring ideas which were helpful for my research. Matthew van
der Zwan, thank your for your opinions and your perspective. I should also thank
Jasper van der Gronde. You helped me a lot with the starting period of my research.

To all secretaries in our institute, especially Esmee Elshof, Janieta de Jong-
Schulkebir, Desiree Hansen, Ineke Schelhaas, and Lineke Koops, I value your help
in all administrative work. Henk Broer, professor in our institute, you helped me
to relax from high pressure with your laughing. To all members of our institute: I
think you helped me directly or indirectly, and I thank all of you.

In the city of Groningen, I played football almost every week for a long time.
With all members in our team, we enjoyed quite a lot joyful time. Here I thank you
all your company.

209



B I B L I O G R A P H Y

I want to thank many people who appear in my daily life, but to whom I did not
manage to usually talk.

I want to thank Wu Yingqiu for her support in many aspects.

I need to thank my family, my baba Feng Guoan, my mama Fang Aiguo, and
my sister Feng Fang. Without your support, I would not have been able to write
one single word of this thesis. You provided me with the full financial support for
pursuing my PhD project, even by borrowing money. I love you deeply.

210



C O L O P H O N

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s semi-
nal book on typography “The Elements of Typographic Style”. classicthesis is
available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a col-
lection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of June 27, 2017 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/



	Abstract
	Samenvatting
	Publications
	Dedication

	Contents
	1 Introduction
	1.1 Shapes and shape processing
	1.2 Medial shape descriptors
	1.2.1 Boundary representations
	1.2.2 Volumetric representations
	1.2.3 Medial representations

	1.3 Research Questions
	1.4 Structure of this thesis

	2 Related Work
	2.1 Medial descriptors
	2.1.1 Definitions
	2.1.2 Skeletonization methods

	2.2 Shape analysis and processing
	2.2.1 Shape metrology
	2.2.2 Shape segmentation
	2.2.3 Shape matching and retrieval

	2.3 Conclusion

	3 Part-Based Segmentation by Skeleton Cut Space Analysis
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Skeletonization
	3.3.2 Cut model
	3.3.3 Cut space analysis

	3.4 Results and Comparison
	3.5 Discussion
	3.6 Conclusions

	4 Improved Part-Based Segmentation of Voxel Shapes
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Skeletonization
	4.3.2 Cut model
	4.3.3 Cut space partitioning

	4.4 Interactive segmentation for shape editing
	4.5 Parameter analysis
	4.6 Results and Comparison
	4.7 Discussion
	4.8 Conclusions

	5 Voxel shape retrieval by the skeleton cut space
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 3D Skeletonization
	5.3.2 Cut space construction
	5.3.3 Cut thickness histogram
	5.3.4 Shape matching distances

	5.4 Implementation and results
	5.5 Discussion
	5.6 Conclusions

	6 Unified Part-Patch Segmentation of Mesh Shapes
	6.1 Introduction
	6.2 Related Work
	6.2.1 Skeletonization
	6.2.2 Shape Segmentation
	6.2.3 Summary of challenges

	6.3 Method
	6.3.1 Preliminaries
	6.3.2 Regularized Surface Skeleton Computation
	6.3.3 Cut-Space Computation
	6.3.4 Cut-Space Partitioning
	6.3.5 Partitioning the Full Surface Skeleton
	6.3.6 Partition Projection to Surface
	6.3.7 Part-based Partition Refinement
	6.3.8 Unified (Part and Patch) Segmentation

	6.4 Results
	6.5 Discussion
	6.6 Conclusion

	7 Multiscale skeletons by the image foresting transform
	7.1 Outline
	7.2 Related work
	7.2.1 Definitions
	7.2.2 Skeleton Regularization

	7.3 Proposed Method
	7.3.1 Multiscale regularization – strengths and weaknesses
	7.3.2 Image Foresting Transform
	7.3.3 Multiscale skeletonization – putting it all together

	7.4 Comparative analysis
	7.4.1 2D medial axes
	7.4.2 3D medial surfaces

	7.5 Extensions
	7.6 Conclusion

	8 Conclusion
	8.1 Technical contributions
	8.1.1 Skeleton cut space
	8.1.2 Multiscale surface skeletons

	8.2 Application-driven requirements
	8.2.1 Usability

	8.3 Future work

	Bibliography
	Acknowledgments

	Colophon

