
Skeletonization and Segmentation

of Binary Voxel Shapes

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op

donderdag 12 februari 2009 om 16.00 uur

door

Dennie Reniers

geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. A.C. Telea

en

prof.dr.ir. J.J. van Wijk

A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-1496-0

Eerste promotor:

prof.dr.ir. A.C. Telea (Rijksuniversiteit Groningen)

Tweede promotor:

prof.dr.ir. J.J. van Wijk (Technische Universiteit Eindhoven)

Kerncommissie:

prof.dr. K. Siddiqi (McGill University, Canada)

dr. R.C. Veltkamp (Universiteit Utrecht)

prof.dr. M.T. de Berg (Technische Universiteit Eindhoven)

Advanced School for Computing and Imaging

The work in this thesis was supported by NWO (Netherlands Organization for Scientific

Research) under grant number 612.065.414.

The work in this thesis has been carried out in the research school ASCI (Advanced

School for Computing and Imaging). ASCI dissertation series number: 173.

c©2008 D. Reniers. All rights reserved. Reproduction in whole or in part is allowed only

with the written consent of the copyright owner.

Typeset in LATEX.

Printed by Eindhoven University Press.

Cover design by D. Reniers

Contents

Preface v

1 Introduction 1

1.1 Objective . 2

1.2 Outline . 3

2 Skeletonization 7

2.1 Shape representations . 7

2.2 Skeleton definitions . 9

2.3 Properties . 12

2.3.1 Blum skeleton properties . 13

2.3.2 Curve skeleton properties . 16

2.4 Skeletonization approaches . 19

2.5 Skeletonization techniques . 20

2.5.1 Thinning . 20

2.5.2 Voronoi-diagram . 21

2.5.3 Distance field . 22

2.5.4 General field . 23

2.5.5 Other techniques and hybrid approaches 24

2.6 Pruning methods . 24

3 Tolerance-based Feature Transforms 31

3.1 Distance and feature transforms . 31

3.2 Fast Marching Method (FMM) . 34

3.3 AFMM Star . 36

3.4 Fast Marching TFT . 37

3.5 ε-Vector Distance Transform . 38

3.6 Euclidean TFT . 40

3.7 Graph-search TFT . 40

3.8 Comparison . 41

3.9 Conclusion . 44

ii CONTENTS

4 Computing Multiscale Curve and Surface Skeletons 47

4.1 Introduction . 47

4.2 The 2D boundary-distance measure . 48

4.3 Extending the boundary-distance measure to 3D 49

4.4 The collapse measure as an advection model 53

4.5 Algorithm . 54

4.5.1 Algorithm details . 54

4.5.2 Non-generic cases . 57

4.5.3 Handling shapes with tunnels 59

4.5.4 Optimizations . 60

4.6 Results . 62

4.7 Discussion . 65

4.7.1 Properties . 65

4.7.2 Comparison with other methods 70

4.8 Conclusion . 72

5 Segmenting Simplified Surface Skeletons 73

5.1 Introduction . 73

5.2 Skeleton structure and segment definition 74

5.3 The simplified Y-network . 75

5.3.1 Computing the Y-network . 76

5.3.2 Y-network Decomposition . 77

5.4 Skeleton segmentation . 78

5.5 Results and discussion . 80

5.6 Conclusion . 82

6 Part-type Shape Segmentation 85

6.1 Introduction . 85

6.2 Related work . 88

6.3 Preliminaries . 90

6.3.1 Skeleton computation optimization 90

6.3.2 Robust junction detection . 91

6.4 Cut point selection . 92

6.4.1 Geodesicness measure . 95

6.4.2 Selecting candidate cut points 96

6.4.3 Junction-type detection . 97

6.4.4 Higher-order junctions . 99

6.4.5 The branch-cut scheme and its relation to ligatures 101

6.4.6 Algorithm details . 102

6.5 Segmentation . 103

6.6 Results and discussion . 105

6.6.1 Evaluation . 105

6.6.2 Comparison . 110

6.7 Conclusion . 112

CONTENTS iii

7 Patch-type Shape Segmentation 113

7.1 Introduction . 113

7.2 Related work . 114

7.2.1 Cortical surface classification 114

7.2.2 Patch-type segmentation . 115

7.3 Skeleton-based surface classifier . 115

7.3.1 Results . 119

7.4 Segmentation method . 119

7.4.1 Exterior skeleton . 120

7.4.2 Normal-sensitive edge erosion 121

7.4.3 Handling corners . 122

7.5 Results and discussion . 123

7.5.1 Comparison . 126

7.6 Conclusion . 127

8 Conclusions 129

8.1 Contributions . 129

8.2 Future work . 131

Bibliography 133

Summary 145

Samenvatting 147

List of publications 149

Curriculum Vitae 151

iv CONTENTS

Preface

This dissertation is the result of research that I conducted between January 2005 and

December 2008 in the Visualization research group of the Technische Universiteit Eind-

hoven. I am pleased to have the opportunity to thank a number of people that made this

work possible.

I owe my sincere gratitude to Alexandru Telea, my supervisor and first promotor. I

did not consider pursuing a PhD until my Master’s project, which he also supervised.

Due to our pleasant collaboration from which I learned quite a lot, I became convinced

that becoming a doctoral student would be the right thing to do for me. Indeed, I can

say it has greatly increased my knowledge and professional skills. Alex, thank you for

our interesting discussions and the freedom you gave me in conducting my research. You

made these four years a pleasant experience.

I am further grateful to Jack van Wijk, my second promotor. Our monthly discussions

were insightful, and he continuously encouraged me to take a more formal and scientific

stance. I would also like to thank Prof. Jan de Graaf from the department of mathematics

for our discussions on some of my conjectures. His mathematical rigor was inspiring. I

am greatly indebted to the Netherlands Organisation for Scientific Research (NWO) for

funding my PhD project (grant number 612.065.414). I thank Prof. Kaleem Siddiqi, Prof.

Mark de Berg, and Dr. Remco Veltkamp for taking part in the core doctoral committee and

Prof. Deborah Silver and Prof. Jos Roerdink for participating in the extended committee.

Our Visualization group provides a great atmosphere to do research in. In particular, I

would like to thank my fellow doctoral students Frank van Ham, Hannes Pretorius, Lucian

Voinea, Danny Holten, Koray Duhbaci, Yedendra Shrinivasan, Jing Li, Niels Willems, and

Romain Bourqui. They enabled me to take my mind of research from time to time, by

discussing political and economical affairs, and more trivial topics. Furthermore, I would

like to thank the senior researchers of our group, Huub van de Wetering, Kees Huizing,

and Michel Westenberg. In particular, I thank Andrei Jalba for our fruitful collaboration

in the last part of my work.

On a personal level, I would like to thank my parents and sister for their love and

support over the years, my friends for providing distractions outside of the office, and

Michelle for her unconditional love and ability to light up my mood when needed.

Dennie Reniers

December 2008

vi CONTENTS

Chapter 1

Introduction

Many computer science disciplines deal with representations of two-dimensional (2D) or

three-dimensional (3D) geometric objects, called shapes. These shapes are often charac-

terized by their geometry only: color and texture do not play any role. Shapes can be

represented in various ways. In computer-aided design (CAD) for example, engineers

often manipulate shapes by means of their boundary. The boundary is represented as a

polygonal mesh, consisting of vertices, edges, and faces. In medical imaging, shapes

are not created manually, but are produced automatically from real-world objects by an

acquisition device, such as an MRI-scanner. These shapes are often represented by ele-

ments that enumerate their interior, called volume elements, or voxels. Scanners usually

associate with each voxel a grayscale value that represents material density or some other

measure. A binary voxel shape is a shape representation that views the world as black and

white: it distinguishes between interior and exterior voxels only.

A voxel shape is a low-level description of the shape that represents every detail.

These details are not necessary for a high-level understanding of the shape. In order to

abstract from the shape, various shape descriptors have been proposed. In 1967, Blum

introduced the skeleton, which transforms a shape into another one that is of a lower

dimensionality than the shape it describes: a 1D and 2D structure for 2D and 3D shapes,

respectively. The skeleton of a 2D shape can be seen as the stick-figure representation

Figure 1.1: Example skeletons of (a) a 2D shape and (b) a 3D shape. (c) The curve

skeleton. (d) An example shape segmentation.

2 Chapter 1. Introduction

of that shape. It is centered within the shape and captures the symmetry of the object: it

can be considered as a curved and branching axis of symmetry. Instead of analyzing the

shape directly, an algorithm may analyze its skeleton and so reduce the dimensionality

of the problem. Skeletonization is still a topic of ongoing research for three reasons.

First, computing the skeleton in an exact manner has turned out to be a difficult and

computationally expensive problem, especially for 3D shapes. Second, according to its

formal definition, the skeleton is notoriously sensitive to boundary noise, which one can

address in various ways. Because of the first two reasons, most methods compute an

approximation of the skeleton. Third, new skeleton-like structures have been proposed to

alleviate some of the shortcomings of the Blum skeleton. In particular, the curve skeleton

presents a truly compact 1D structure for 3D shapes. Figure 1.1 depicts the skeleton of a

2D hand shape, and the Blum and curve skeleton for a 3D hand shape.

At a very high level, shapes can be understood as consisting of distinct parts. The 3D

hand shape in Figure 1.1 can be considered to consist of five fingers and the palm. Clearly,

humans are very good at understanding and recognizing shapes. For a fantasy object

one can often identify the different parts, even if they have no apparent functionality.

This indicates that the identification of parts can in many cases be done by considering

only the shape itself: no contextual information or a priori knowledge is required. In

computer science, shape segmentation is the task of identifying the logical parts of a

shape. Logical parts might correspond to patches having certain geometric properties,

such as quasi-flatness. Alternatively, they might correspond to the meaningful parts of

a shape, using principles from cognition and vision. Both segmentation types are still

active research topics. One of the challenges is to create methods that are robust to noise

and treat the shape in a multiscale fashion, something that humans naturally do. By scale,

we mean one of the measurable dimensions of the shape, such as circumference, area,

or volume. Fine scales correspond to shape details, such as bumps or wriggles, whereas

coarse scales give the overall shape features, such as the fingers of a hand. We argue

that it is beneficial to approach the problem of shape segmentation by using skeletons,

as they already provide a high-level description of the shape. Looking at Figure 1.1(c)

for example, the structure of the curve skeleton seems to reflect the part structure of the

shape: each part has a corresponding curve-skeleton branch. The problem is then how to

extract this part structure from the curve skeleton and map it to the surface, so that we

obtain a shape segmentation as shown in Figure 1.1(d).

1.1 Objective

The research question that we address in this thesis is twofold:

• How can we efficiently compute curve and surface skeletons of binary voxel shapes

so that they can be used effectively as shape descriptors in various applications?

• How can we use these skeletons to create different types of shape segmentations

that benefit from the desirable properties of the skeleton?

An important requirement for the effective use of skeletons as shape descriptors is ro-

bustness to boundary noise. By creating a multiscale skeleton representation this problem

1.2 Outline 3

is handled automatically as boundary noise can be considered as small scale boundary

features. Our aim is thus to develop a skeletonization method that produces both multi-

scale curve and surface skeletons. The shape segmentation methods are based on these

multiscale skeletons and conveniently inherit the robustness and multiscale properties.

The techniques we develop all work on digital shapes, called binary voxel shapes

in 3D. Digital shapes are commonly used in the medical imaging and discrete geometry

fields, and have already been used in many existing skeletonization methods, most notably

in the class of thinning methods. Skeletonization and segmentation of binary voxel shapes

brings its own difficulties. The resolution of the data is typically low, the data contains

discretization artifacts, often contains noise, and surface normals are not readily available.

Therefore, we use integral operations rather than differential operations when possible, as

integral operations are more robust for voxelized and noisy shapes. It is important to note

that our developed methods are not limited to voxel shapes. Most if not all of the algo-

rithmic elements in our techniques have their counterparts in other shape representations.

In any case, there are algorithms to convert between any two shape representations.

All our methods are straightforward to implement and are presented with full pseu-

docode. We show that our methods work robustly and produce good results on practical

real world examples, including ones containing large amounts of surface noise.

1.2 Outline

The remainder of this thesis is structured as follows. For each chapter we indicate the

related publications.

In Chapter 2, we detail on skeleton definitions and their desirable properties. Skele-

tons are well-defined mathematical objects, but they are difficult to compute exactly ac-

cording to their formal definition. Therefore, most approaches satisfy a subset of the

desirable properties that are desired by the intended application. In addition, applica-

tions may require additional properties that standard skeletons do not exhibit. We give an

overview of these properties and requirements. We give special attention to the robust-

ness and multiscale requirements, as we consider them fundamental in their effective use

as shape descriptors.

Chapters 3-7 contain the main contributions of this dissertation. In Chapter 3 we

concentrate on skeletonization of 2D shapes. We first improve upon an existing skele-

tonization method, the Augmented Fast-marching Method, for 2D shapes. Then, we

detail on the computation of the Tolerance-based Feature Transform (TFT), which can

be used to alleviate discretization artifacts in skeletonization, or to obtain new multiscale

shape descriptors [67]. We present and discuss four TFT algorithms and quantitatively

and qualitatively compare them on efficiency and the accuracy of the results. This work

was first published in [113].

In Chapter 4, we concentrate on 3D shapes and develop a new method to compute

robust and multiscale curve and surface skeletons in a unified manner. To achieve this,

we define and compute a novel importance measure, called the collapse measure, which

assigns to each skeleton point its importance in representing the original shape. The col-

lapse measure we present could be considered a non-trivial extension of the potential

4 Chapter 1. Introduction

residual of Ogniewicz and Ilg [94] from 2D to 3D. A characterizing property of the col-

lapse measure is that it is based on global properties of the shape, in contrast to the local

nature of many existing measures. As a result, the collapse measure has a notion of spatial

scale, which reflects a natural way in which shape details are perceived according to their

geometric dimension, and a robust skeleton, or simplified skeleton, is obtained by simply

thresholding the collapse measure. We compare the quality of our simplified skeletons

with existing approaches and give several applications. Part of this work was published

in [115].

In Chapter 5, we use the definition of our collapse measure to produce a partitioning of

our simplified surface skeletons into their respective sheets: the 2D surface components of

which the surface skeleton consists. To partition the skeleton, we first have to compute the

sheet intersection curves. We show this is not possible by using simple local topological

operations and present a solution. This work was published in [112].

In Chapters 6 and 7 we zoom in on one particular application of our multiscale skele-

tons, namely 3D shape segmentation. In Chapter 6 we use the simplified curve skeleton

to compute part-type segmentations, which divide the shape into high-level, meaningful,

segments. We associate with each curve-skeleton point a potential part-cut: a border be-

tween parts. The curve-skeleton junctions indicate where part cuts should be placed. The

part cuts induce a segmentation of the shape into meaningful segments. The segments in-

herit the robustness to noise from the curve skeleton. The part cuts are piecewise geodesic,

resulting in smooth, non-jaggy segment borders, and the segmentations are pose-invariant.

This work was published in [109] and [110].

In Chapter 7, we use the simplified surface skeleton to compute a surface classifier

on the boundary, which presents a robust alternative to classical curvature-based classi-

fiers. Based on this detector we present a patch-type segmentation, which, in contrast

to the part-type segmentations, consists of low-level, quasi-flat patches. This work was

published in [107] and [111].

In Chapter 8 we summarize our findings and present conclusions. We also give sug-

gestions for future work. Figure 1.2 illustrates the chapters and their results, their inter-

dependencies, and suggested reading order.

A list of publications related to this work can be found in the appendix.

1.2 Outline 5

Figure 1.2: The chapters, their results, and their interdependencies.

6 Chapter 1. Introduction

Chapter 2

Skeletonization

This chapter discusses skeletons and skeletonization approaches. We list the most im-

portant skeleton properties, and additional requirements that their applications may have.

Many of the properties and skeletonization techniques have been identified and discussed

by Cornea [23], especially with regard to curve skeletons. This chapter adds some new

properties and also discusses surface skeleton properties. We further detail on the no-

tion of importance measures, and we explain how a suitable importance measure ensures

skeletons possessing many desirable properties.

2.1 Shape representations

A geometrical object or shape Ω is a bounded, connected n-dimensional open set of R
n.

Its boundary ∂Ω is a connected, orientable, finite, and closed surface. In this work, we

restrict ourselves to two and three-dimensional shapes (n ∈ {2, 3}). As the boundary is

connected, this definition does not allow shapes with cavities, which are regions exterior

to the shape that are fully enclosed by interior regions. In 3D, shapes with tunnels are

allowed. The number of tunnels in a shape is called its genus.

Computer algorithms that work on shapes need to use a particular shape representa-

tion in order to represent shapes using a finite amount of data. Analytical shape represen-

tations have the advantage that they represent shapes exactly. However, it is difficult to

design algorithms for them, as the mathematics can become complex when higher-order

functions are involved, and the resulting algorithms are generally time consuming. In

discrete shape representations, the shape is represented by a finite set of simple elements,

such as points, line segments, and/or planar faces.

A gray-scale image is a n-dimensional array in which each element has a value be-

tween 0 and 1. In 2D, elements are called pixels, whereas in 3D, elements are called

voxels. A gray-scale image can be obtained by sampling a real object, using e.g. a digital

camera, or it can be obtained by sampling a virtual geometrical object. The resolution

of the array determines the accuracy with which the original object can be represented.

Each element in the array is associated with a lattice point in Z
n. Hence, in the rest of this

8 Chapter 2. Skeletonization

thesis “points” may also denote pixels and voxels, depending on the context. An element

in a binary image has either value 0 or 1. The binary image represents a digital shape Ω:

the 1-values are considered the interior of the shape, whereas the 0-values can be con-

sidered the exterior. A binary image can easily be obtained from a gray-scale image by

image segmentation (not to be confused with shape segmentation). The most basic image

segmentation clamps the values in a gray-scale image to 0 and 1, with respect to a certain

threshold, but more sophisticated image-segmentation methods are used in practice [29].

A 3D binary image consists of volume elements, called voxels. The set of interior voxels

is called a voxel shape.

The study of topological properties of binary images is called digital topology [66],

from which we repeat a small number of concepts here. In the 2D lattice, two (distinct)

points are said to be 8-adjacent when each of their two coordinates differs by at most 1,

and are 4-adjacent when precisely one coordinate does. In the 3D lattice, two points

are 26-adjacent when each of their three coordinates differs by at most 1, and 6-adjacent

when precisely one coordinate does. An n-path between two points is a list of n-adjacent

points connecting those points. A set of points is said to be n-connected when there

is an n-path between each two of them. In this work, a 2D shape Ω is a 4-connected

subset of Z
2, whereas a 3D shape is a 6-connected subset of Z

3. We only consider binary

images for which the interior and exterior voxels are two connected sets of voxels. In

3D, this excludes shapes with cavities, but it does not exclude shapes with tunnels. The

boundary ∂Ω of a digital shape is defined as those interior points in Ω that are adjacent

to an exterior point. The boundary neighborhood of a boundary point consists of all 26-

adjacent points in ∂Ω. Note that the cardinality of such a boundary neighborhood may

vary from point to point.

In this thesis we use digital shapes to build our skeletonization and segmentation meth-

ods on. Other common representations of 3D shapes include unorganized point sets,

which are typically produced by a range scanner, and polyhedral meshes, typically pro-

duced by CAD software. These are boundary representations: they enumerate elements

of the shape surface rather than its volume. We argue that a volumetric representation is

more natural than a boundary representation in the context of 3D skeletonization, because

the skeleton is defined to lie inside the shape’s volume. Using voxel shapes, we can con-

veniently represent and enumerate the volume elements, boundary elements, and skele-

ton elements uniformly by using the same voxel representation, yielding straightforward

methods and implementations. Indeed, a large class of existing skeletonization methods

act on voxel shapes, namely the thinning methods [68]. We would like to mention that

other representations can be used as input to our algorithms when they are voxelized as

a pre-processing step (e.g. using binvox [84]). Finally, our method does not contain any

operations that are conceptually limited to voxel shapes, so that they can be adapted to

other shape representations, such as polyhedral models.

We consider a digital shape to be the discretized version of a corresponding continu-

ous shape. In order to give geometrical and topological guarantees on the skeletonization

and segmentation results, we assume that the digital shape captures all the important ge-

ometrical and topological properties of the original shape. This assumption is not always

trivial to satisfy. If the original shape has very thin parts, or some other small-scale de-

tails such as bumps or wriggles, the sampling grid resolution and position must be chosen

2.2 Skeleton definitions 9

carefully in order to capture these parts. We do not concern ourselves here with these

sampling problems and assume a good approximation by the voxel shape. Shapes should

have a minimum thickness that is larger than the maximum distance between adjacent

lattice points (
√

3 in 3D), so that the shape interior is always a connected set of voxels.

A shape descriptor represents the shape at a high level of abstraction. Instead of

representing the original shape as accurately as possible, a shape descriptor extracts the

essence or important features of the shape from the perspective of the application at hand.

Good shape descriptors are discriminative: they assign different descriptions to different

shapes. Quantitative shape descriptors strongly abstract from the shape by reducing it to

one or more scalar values [29]. Simple examples include the volume, perimeter, or eccen-

tricity of the shape. They are useful when shapes need to be compared to each other with

respect to the most distinguishing features. In contrast, geometric shape-descriptors are

fine abstractions that reduce the shape to a simplified or canonical representation, which

is still a geometrical structure. Some geometric descriptors even allow the (approximate)

reconstruction of the shape they describe, something quantitative descriptors do not allow.

An example is the skeleton, which is discussed in the next section.

2.2 Skeleton definitions

Skeletons are geometric shape-descriptors. Their main features are that they are cen-

tered within the shape, and capture the topology and geometry of the shape in a compact

manner. Although skeletons and related concepts have been known in mathematics for

hundreds of years [70], they have gained interest in computer science since 1967 when de-

fined by Blum [13] for the purpose of biological applications. They have since then been

adopted by many fields in computer science, such as computer-aided design, visualiza-

tion, computer graphics, and medical analysis. For example, skeletons are used in surface

smoothing [118], volumetric animation [42], and feature-based visualization [104]. The

skeleton can also be used to design objects in CAD applications [141]: one first creates

a skeleton to specify the essential form, after which it is “inflated” to give the object its

substance. An overview of the history and applications of skeletons is given by Ley-

marie [70].

Skeletonization The process of computing skeletons is called skeletonization. Concep-

tually, skeletonization can be seen as a function Sn,m that assigns to an n-dimensional

shape Ω embedded in an R
n space, generically a set of m-dimensional components, that

are embedded in the same space R
n. By generically, we mean that for some shapes the

components may be of a lower dimension than m. In this work, we restrict n to at most 3.

We further make the restriction that n > m, which is a natural one, as it ensures that the

skeleton is an abstraction from the shape. The larger the difference n−m, the higher the

abstracting power of the skeleton. In the following, we discuss two skeleton types: the

Blum skeleton Sn,n−1 and the curve skeleton S3,1.

Blum skeleton The Blum skeleton Sn,n−1, simply denoted S as it can be considered

the standard skeleton definition, reduces the original n-dimensional shape by just one di-

10 Chapter 2. Skeletonization

Figure 2.1: Feature points a, b of a skeleton point p.

mension. We next give a formal definition of the Blum skeleton for a continuous shape Ω.

We particularize the skeleton definition and related results to digital shapes in later chap-

ters. The Blum skeleton S of object Ω with boundary ∂Ω is defined as those points p in

Ω that have at least two boundary points a, b at minimum distance of p:

S = Sn,n−1(Ω) =
{

p ∈ Ω
∣

∣

∣
∃a, b ∈ ∂Ω, a 6= b, ‖p− a‖ = ‖p− b‖ = D(p)

}

, (2.1)

where D : Ω→ R+ is the distance transform, assigning to each object point the minimum

distance to the boundary:

D(p) = min
k∈∂Ω

‖p− k‖ . (2.2)

In both equations, ‖·‖ denotes the Euclidean distance. In the past, approximate Euclidean

distances have often been used, such as chamfer distances [117]. However, these have

largely been made obsolete by efficient distance transforms [26]. Another reason to use

alternative distance functions is to obtain different types of skeletons [129]. In this work,

we confine ourselves to the common Euclidean distance. The points a, b at minimum

distance from a skeleton point p are called feature points [50] of p (see Figure 2.1). Other

names found in the literature are anchor points or contact points [97]. We call the vectors

~pa and ~pb feature vectors. A well-known property of the feature vectors is that they

are normal to the shape boundary [97]. The distance between the skeleton point and its

feature points can be stored together with skeleton. Because it allows reconstruction of

the original shape from the skeleton [43], such a structure is called the skeleton or medial

axis transform (MAT). One important property of the skeleton transform is its uniqueness:

each shape has a unique skeleton transform.

Other names for the Blum skeleton are symmetry set, cut locus, and conflict set. Al-

ternative names for 2D skeletons are medial axis and centerline. A single centerline is

a single non-branching curve, useful as a camera path in virtual navigation [12]. These

alternative names emphasize the centeredness property of the skeleton, but “skeleton”

emphasizes the more general fact that it is a minimal representation of the shape. Hence,

in the context of this thesis we prefer the name skeleton. Sometimes a small distinction

is made between the skeleton and medial axis, differing only in the inclusion of the set of

skeleton-branch endpoints. In this work, we make no such distinction.

2.2 Skeleton definitions 11

Alternative skeleton definitions to the equidistant-point formulation from Eq. 2.1 ex-

ist [86]. Although these definitions are all essentially equivalent, they have resulted in

different skeletonization approaches. One formulation defines the skeleton of a 2D shape

as the locus of centers of maximally inscribed discs. A disc is maximally inscribed if it is

completely inside the shape and is not fully included in another inscribed disc. Such a disc

touches the shape boundary at two points: the feature points. In limit cases, the inscribed

disc has more than two contact points. For a 3D shape, discs are simply replaced by balls.

Another formulation of the skeleton uses the grass-fire analogy. Imagine a fire lighted on

the shape boundary and the fire front moving at unit speed inward, in normal direction of

the front. Then, the skeleton is defined as those points where the fire front meets itself.

The arrival time of the front is equal to the inscribed disc radius. Finally, the skeleton can

also be (equivalently) defined as the singularities in the distance-to-boundary field.

In case of a 2D shape, the skeleton S2,1 is a connected set of curves, which we call

branches (see Figure 1.1(a)). The branches intersect in points called junctions. When the

shape contains no holes, the skeleton is a tree. When the shape has holes, the skeleton

is a graph, containing a loop for each hole in the shape. By the symmetry-curvature

duality theorem [71], skeleton branches terminate at points of convex curvature maxima.

Consequently, in case Ω is a circle, the skeleton reduces to a point: it contains no branches.

For 3D shapes, the skeleton S3,2 is a connected set of 2D manifolds for the larger part,

but might also contain 1D curves for cylindrical parts of the shape. Hence, the skeleton

of a 3D shape is also known as medial surface, or surface skeleton as we refer to it. The

surface skeleton is shown for a hand shape in Figure 1.1(b). As can be seen, the surface

skeleton has a 2D structure inside the palm of the hand, but degenerates to curves for the

cylindrical fingers.

Skeleton points can be classified by the number of contact points that the inscribed

disc/ball has with the boundary [15, 46], or in other words, by the cardinality of their

feature-point set. As can be seen in Eq. 2.1, each skeleton point has at least two feature

points. In 2D, a skeleton point is generically a junction, an interior branch point, or a

branch endpoint. Branch points have two feature points (point p in Figure 2.1), junc-

tions have three or more (point q in Figure 2.1). The inscribed disc of an endpoint may

partly coincide with the boundary, so that the feature points form one contiguous set.

Non-generic cases are for example a junction having four feature points. These reduce to

generic cases by a small local perturbation of the boundary. In 3D, the surface skeleton

consists of manifolds, called sheets. Analogous to the 2D case, a surface-skeleton point is

either an interior sheet point having two feature points, a sheet-intersection point having

three, or a point on the skeleton rim having a contiguous set of feature points. Addition-

ally, in 3D there might be points that have three sheet intersection curves coming together,

but unlike the other three point types, these are isolated cases: they do not form connected

structures.

Curve skeleton The curve skeleton, denoted C, is a one-dimensional skeleton S3,1 of a

3D shape. The curve skeleton is a connected set of curves and can be seen as a stick-figure

representation of the shape. Figure 1.1(c) depicts an example curve skeleton for the hand

shape. Like the 2D skeleton S2,1, curve-skeleton branches tends to terminate at convex

curvature maxima of the boundary. Curve skeletons do not have a widely accepted formal

12 Chapter 2. Skeletonization

definition. One of the main reasons for this lies in the difficulty to formally quantify a

desirable property of the curve skeleton, namely that it should be locally centered with

respect to the shape. For tubular shapes, this is easy to define and compute, but this be-

comes less clear for arbitrary shapes. Curve skeleton definitions usually share many of

the surface skeleton properties, with the key difference that the curve skeleton consists of

1D curves instead of 2D surface components. Curve skeletons have a wide range of ap-

plications. In shape segmentation, the curve skeleton is very useful for extracting the part

structure from a shape. In Chapter 6 we present such a segmentation approach. In virtual

navigation, the curve skeleton is used to navigate the camera along a one-dimensional path

that is centered within the shape, such as in virtual colonoscopy [12]. In shape matching

and retrieval, the curve skeletons can be used as thin representations so that matching

shapes can be more accurate than when using quantitative shape-descriptors, and they

enable partial matching [132]. Cornea provides an extensive survey on curve-skeleton

applications [24].

Finally, we mention some other geometric shape-descriptors related to skeletons.

Skeletons are normally computed on binary images, but some methods compute skele-

tons directly from a gray-scale image, without requiring an image-segmentation step

first [143, 96]. Related to the curve skeleton is the Reeb graph: a 1D structure encod-

ing geometrical and topological properties of 3D shapes [125, 51]. It is constructed by

following the evolution of the level sets of a real-valued function defined on the object

boundary. The function should be chosen carefully to obtain a Reeb graph that is suit-

able for the application at hand. Finally, there are shape descriptors that capture more

global symmetries than the skeleton does, such as planar symmetries [98]. The skeleton,

in contrast, captures local point symmetries. The shock scaffold is a reduced-dimension

summary of the skeleton [70]. It is the graph structure defined as the singularities in a

flow on the skeleton, coinciding with the sheet intersection curves.

2.3 Properties

In this section we focus on the most important properties of Blum skeletons and curve

skeletons, as they have been identified in literature. We also include properties of the

skeletonization process itself, which can be equally important in practical applications.

We distinguish between intrinsic properties, which follow from the formal skeleton def-

inition, and extrinsic properties, which are required by the subsequent application that

uses the skeleton as input. Some extrinsic properties may conflict with the intrinsic ones,

and applications may establish extrinsic properties at the expense of one or more of the in-

trinsic ones. Strictly speaking, such methods do not compute the skeleton according to its

formal definition, but as they produce similar results, it is useful to consider them as skele-

tonization methods for the sake of discussion and comparison. We give special attention

to the conflicting instability property and the robustness requirement, as our skeletoniza-

tion method we present in Chapter 4 is designed with this requirement in mind.

In Section 2.3.1 we discuss the properties of the Blum skeleton. In Section 2.3.2 we

discuss the curve skeleton properties, which are related.

2.3 Properties 13

2.3.1 Blum skeleton properties

The following intrinsic properties of the Blum skeleton S follow from its formal defini-

tion (Eq. 2.1):

Topology preserving The skeleton is homotopic to the shape it describes. Only recently

this was proved rigorously for all dimensions [74]. Because a shape (in our case)

consists of a single connected component, homotopy implies that the skeleton con-

sists of a single connected component. Naturally, the holes in the skeleton map

one-to-one with holes in the shape. Homotopy should follow automatically from

the skeletonization process itself, and should ideally not have to be ensured by some

post-processing step.

Geometry preserving The skeleton captures the geometry of the shape. In the strong

sense, this property dictates that the original object can be reconstructed from the

skeleton [92]. The object boundary is formed by the envelope surface of the in-

scribed discs/balls with the stored radius. Note that homotopy is not required for

reconstruction. In Figure 2.2, the shape consisting of two overlapping circles can

be reconstructed from the two skeleton endpoints. The skeleton part that is needed

for topology preservation is called a ligature. August et al. [9] argue that ligatures

are the “glue” that connects the non-ligature parts, which represent the “substance”

of the shape, and that a stable description of the shape can be given by the non-

ligatures. If exact reconstruction is not required, a weak interpretation of geometry

preservation entails that the skeleton captures all the important features of the shape.

Figure 2.2: Topology versus geometry preservation.

Centered The skeleton is locally centered within the shape. Centeredness is needed for

exact reconstruction.

Thin The skeleton is a thin representation of the original shape, that is, it has one dimen-

sion less than the original object. For digital shapes this property usually means that

the skeleton should be at most one lattice point thick: the thinnest structure possible

in a digital shape. We do not concern us with defining thickness formally, which

is non-trivial for skeletons of 3D shapes and at points where skeleton branches or

sheets meet.

It is often said that the thinness property conflicts with reconstructability [92]. For

example, discretized balls centered at the 1-voxel thick skeleton of a box of uneven

14 Chapter 2. Skeletonization

Figure 2.3: Skeleton of a noise-free rectangle (a), rectangle with hole (b), rectangle with

bump (c), and rectangle with dent (d).

height do not touch the boundary in two places. Instead of requiring thinness every-

where, one could also require that the skeleton is 1-voxel thick when this does not

conflict with the reconstructability property. Alternatively, one can allow that the

reconstructed shape is, at each point, at most one voxel distance from the original

shape.

Transformation invariant Skeletons are obviously invariant to isometric transforma-

tions of the shape, as these do not change the geometry and topology of the shape.

Typically, this property is only violated by the shape discretization or any discretiza-

tion steps in the skeletonization algorithm. For example, when the skeleton is com-

puted by finding the singularities in the distance field, the skeleton is only invariant

to transformation if exact Euclidean distances are used.

Unstable A undesirable property of the skeleton is that it is very unstable under noise

in the shape. Formally stated, when we view skeletonization as a function Sn,m,

it is non-continuous according to the Cauchy definition of continuity. An arbitrary

small perturbation ε of the shape Ω, caused by noise for instance, might result in

a large difference δ in the skeleton S(Ω). Indeed, strong geometry-preservation

dictates that all object features are preserved, even non-essential features such as

noise. From another point of view, it can be argued that the underlying cause of the

sensitivity to noise is that the skeleton does not have a one-to-one correspondence

with the boundary [59]. A single point on the boundary can generate many skeleton

points, forming ligatures. Thus, changing a single boundary point can cause many

axis points to change, creating the instability. In addition to noise, shape discretiza-

tion may introduce instability in the skeleton. For example, the skeleton of a perfect

circle is a single point, but the skeleton of a discretized disc does not consist of a

single point because of the discretization inaccuracies.

We can distinguish between “salt-and-pepper” and boundary noise. Salt-and-

pepper noise is a term used in image processing, referring to randomly occurring

black and white pixels in an image. In digital shapes, this notion can be seen

as random points that are removed from the shape. This type of noise typically

changes the topology (the number of holes) of the shape: a single point removed

from the shape interior causes a cavity and thereby a change in genus. Boundary

noise is a less intrusive form of noise, in which only the boundary is affected

by displacing boundary elements inward or outward along the boundary normal,

2.3 Properties 15

Figure 2.4: An example multiscale skeleton.

creating bumps and dents. The maximum distance from which an element can

deviate from its true position determines the noise level. In general, this operation

does not change the topology, except when it causes the boundary to self-intersect.

Figure 2.3 shows the skeleton for a rectangle (a), the effect of salt-and-pepper

noise (b), and boundary noise (c,d). In Figure 2.3(b), the rectangle contains a

small hole due to salt-and-pepper noise. The resulting skeleton differs greatly from

the skeleton of the non-noisy rectangle, and in fact has a different structure. A

bump on the boundary causes a spurious branch in the skeleton (Figure 2.3(c)). A

dent causes two spurious branches, because the dent causes two convex corners

(Figure 2.3(d)).

The extrinsic properties result from requirements by the particular application. The

following is an overview of the most common requirements.

Robustness The skeleton should be robust to noise and discretization artifacts. When a

skeleton contains too many spurious parts, it is impractical to handle in any sub-

sequent application. Moreover, these spurious branches represent insignificant fea-

tures to which applications should be tolerant. Hence, practically all applications

require robustness. The robustness requirement conflicts directly with the intrinsic

property that the skeleton is unstable, and with the strong geometry-preservation

property.

Consider Figure 2.3. It can be seen that by removing branches from the skeleton

after it has been computed, which is called pruning, we cannot make the skeleton

robust to the hole in the rectangle in (b). Thus, pruning cannot make the skele-

ton robust to salt-and-pepper noise. However, pruning could remove the spurious

branches caused by boundary noise in (c) and (d). In this thesis, we assume that

any noise in the shape does not affect its topology. In particular, we assume that the

object does not contain salt-and-pepper noise, and boundary noise does not make

the boundary self-intersect. The former is a reasonable assumption because salt-

and-pepper noise can be easily eliminated by standard image processing operations

such as dilation and erosion [29]. In Section 2.6 we discuss pruning methods in

detail.

Multiscale representation Real objects exhibit different structures at different scales.

For example, a person can be seen as a body with four limbs at a coarse scale,

whereas at finer scales, the fingers and toes can be seen. At an even finer scale,

hairs can be distinguished. The skeleton, being a shape descriptor, should account

16 Chapter 2. Skeletonization

for the multiscale nature of shapes [93]. Hence, it is desirable that a skeletonization

method produces a family of increasingly detailed skeletons. Such a family could

either be a finite or infinite set of skeletons, from which the user can select the

skeleton at the desired scale. The multiscale requirement, linked to the above-

mentioned notion of scale in which we consider the size of geometric features, is

related to the robustness requirement in the sense that if the skeleton is multiscale,

it can also be made robust. Indeed, noise can be considered as small-scale boundary

features, that are only represented in the finest scales of the skeleton scale-space.

Skeletons can further be hierarchical, meaning that each coarse-scale skeleton is

fully included in skeletons at finer scales. Hierarchical skeletons have as advantage

that the correspondence between different scales follows automatically. Figure 2.4

depicts an example multiscale (and hierarchical) skeleton representation.

Efficient to compute The skeleton should be efficient to compute in terms of time and

memory consumption. This is especially important for applications that require

real-time skeleton computation, such as CAD applications. For shape retrieval, the

skeletons of the shapes in the database can be precomputed, making efficiency less

important. It has turned out that computing high-quality skeletons is a time con-

suming process, especially for 3D shapes. Some methods trade quality for speed,

essentially computing skeleton approximations.

Easy to implement For practitioners, ease of implementation of a skeletonization

method can be a reason to prefer it above others. It leads to quicker results and

makes the method more useful in practice. An implementation of a complex

skeletonization method might be offered as a black box by its designers, but such

an approach makes it difficult to port, tune, or improve upon it. Ease of implemen-

tation is an important requirement, given that the vast majority of state-of-the-art

skeletonization methods in existence are very complex and hard to replicate from

research papers, and thus largely out of reach for the intended audience, the

practitioners.

2.3.2 Curve skeleton properties

Recall that the curve skeleton is a 1D structure describing a 3D shape. It is conceptu-

ally related to the surface skeleton, and as such borrows many of its properties, but also

adds some. As stated, all curve skeleton properties can be considered extrinsic because

the curve skeleton does not have a widely-accepted formal definition. Nevertheless, we

consider the properties that are related to the intrinsic surface skeleton properties also as

intrinsic. We indicate the differences of the curve skeleton properties with those of the

surface skeleton.

Thin Like the surface skeleton, the curve skeleton should be thin. The key difference

here is that the curve skeleton should be of a lower dimension than the surface

skeleton, namely 1D instead of 2D. Again, for voxel representations, this property

might mean that curve skeletons should be at most one voxel thick. In this case,

2.3 Properties 17

junctions in its branching structure can easily be detected by a local topological

analysis in a small neighborhood of the junction.

Topology preserving The curve skeleton should preserve the topology of the original

shape. At the very least, the curve skeleton should be connected. Furthermore, for

each tunnel in the shape there should be corresponding curve-skeleton loop around

the tunnel. Naturally, a cavity in the shape cannot be represented as a cavity in the

curve skeleton, as there is no cavity notion for curves. One could require that there

is at least one curve-skeleton loop around the cavity [23], which seems unnatural as

the location of such a curve would be rather arbitrary. In this work, we avoid these

difficulties by ignoring shapes with cavities.

Geometry preserving The curve skeleton preserves geometry to a lesser extent than the

surface skeleton. Reconstruction of the original object from the curve skeleton is

in general not possible when storing only the inscribed ball radius. Whereas the

surface skeleton transform can be considered a lossless compression of the shape,

the curve skeleton is “lossy”. As far as we know, no attempts have been made to

allow reconstruction of the original shape using the curve skeleton by storing extra

information. Another approach would be to construct curve skeletons with a large

number of branches: the more branches, the more faithful the reconstruction. How-

ever, this would defeat the purpose of the curve skeleton as a high-level abstraction

of the shape.

Concerning weak geometry-preservation, the curve skeleton is required to reach

into all the salient parts of the shape and to terminate at prominent points of the

shape boundary. Prominent points are locally convex points with two large principal

curvatures of equal sign, i.e., elliptical points. Usually, the curve skeleton is not

constructed explicitly in this manner, but this follows implicitly from the particular

curve-skeleton algorithm.

Centered The curve skeleton should somehow be centered within the shape. Being a

one-dimensional structure, the centeredness property allows methods a lot of free-

dom in placing the curve skeleton. Telea and Vilanova construct a curve skele-

ton that is centered with respect to axis-aligned cross-sections of the shape [137].

Cornea proposes that a curve-skeleton point p should be centered with respect to

the cross-section of the boundary with the plane that is normal to the curve skeleton

at p [23]. It seems natural to (partly) inherit the centeredness of the curve skeleton

from the surface skeleton, by restricting the curve skeleton to some subset of the

surface skeleton. Indeed, Dey and Sun define the curve skeleton as the 1D subset of

surface skeleton that is in the middle of the surface according to a “medial geodesic

function” [36]. However, it can be argued that a relaxed sense of centeredness is

sometimes desired, as the sensitivity of the surface skeleton to noise affects the

curve skeleton [23].

Applications may have additional requirements to the aforementioned intrinsic prop-

erties. Like surface skeletons, curve skeletons should ideally be robust to noise, provide a

multiscale or hierarchical representation, and have a low cost of computation. Addition-

ally, the following properties can be defined:

18 Chapter 2. Skeletonization

Skeleton-to-boundary mapping For many applications, the curve-skeletonization pro-

cess should provide a skeleton-to-boundary mapping. Each interior, non-junction

point on the curve skeleton should map to a simple closed curve on the bound-

ary. A curve-skeleton segment then maps to a contiguous area delimited by the

two curves corresponding to the segment endpoints. The mapping can be done as

a post-processing step, as is done by Brunner [19], but the mapping is more mean-

ingful if the curve skeleton definition intrinsically provides it. This correspondence

between skeleton and object is important in animation for instance, where posing

the skeleton, or control skeleton, is used to animate the object.

Given the weak geometry-preservation of the curve skeleton and the skeleton-to-

boundary mapping, we should be able to deduce the part structure of the shape from

the skeleton. “Component-wise differentiation” is the property that the logical parts

of the object have a one-to-one correspondence with the logical components of the

curve skeleton [23]. Cornea et al. suggest that using the curve skeleton branches

that are delimited by junctions give the logical parts of the shape [25]. However, this

may not always deliver intuitive results. In Chapter 6 we present a better method

for extracting the part structure from the curve skeleton.

Junction detection It can be argued [23] that methods that compute curve-skeleton junc-

tions before or during skeletonization, produce better junctions than methods that

compute them afterwards. In the former case, the junctions can be considered more

meaningful as they are intrinsic to the curve skeleton definition, rather than a by-

product.

Visibility The visibility property prescribes that each boundary point is visible from a

curve-skeleton point: each skeleton point can be connected by a straight line that

is completely inside the object [23]. This is important in virtual colonoscopy [55]

for instance, in which the camera is navigated along the curve skeleton: the doctor

should be able to easily inspect all areas of the colon.

Smoothness The curve skeleton should be smooth. Usually, the curves should be visually

smooth, meaning that the curves have a continuous second-order derivative. This

too is important in virtual endoscopy, to ensure that the camera moves smoothly,

allowing easy inspection. Note that smoothness can also be achieved by a post-

processing step and need not be intrinsic to the skeletonization process itself. The

smoothness property may conflict with the centeredness property for some shapes.

Uniform Approaches that compute both the surface and curve skeleton should treat them

in a uniform manner. Both skeletons should share the same set of properties, if ap-

plicable. For example, both the curve and surface skeletons should have a (related)

multiscale representation. As opposed to methods combining curve and surface

skeletons in an ad-hoc manner, a uniform definition and computation of both skele-

tons is preferable.

Inclusion For curve skeletons it might be desirable that they are fully included in the sur-

face skeleton, C ⊆ S, motivated by the fact that curve skeletons can be considered

2.4 Skeletonization approaches 19

a limit case of surface skeletons for objects with local circular symmetry (e.g. a

tube).

2.4 Skeletonization approaches

As stated in Section 2.3, an important requirement on both surface and curve skeletons

is that they should be robust to noise to be useful in practice. Hence, skeletonization

approaches usually take special precautions to ensure robustness of the skeleton. There

are two main options [122] (see Figure 2.5):

• Simplification of the input shape, typically by smoothing.

• Simplification of the skeleton, called pruning.

Some approaches might use both simplification options (e.g. [130]), but most typically use

one. Skeletonization approaches that use none of the options inevitably deliver unstable

skeletons.

Simplification of the input shape rids the shape of noisy features so that no skeleton

branch will be generated for them. A common approach is to smooth the shape, for ex-

ample using the geometric heat equation. As additional advantage, multiscale skeletons

can be obtained by varying the smoothing parameter. However, it has been shown that

smoothing may introduce new skeleton structures [10]. Another problem is that in case

the skeletonization method works on digitized images, pruning may still be needed after-

ward because the discretization itself causes spurious branches. We concentrate solely on

pruning methods in this thesis.

Figure 2.5: Schematic overview of the skeletonization process.

Simplification of the full skeleton S is called pruning. We denote the pruned skeleton

Sτ , where τ indicates the pruning degree. The pruned skeleton is a subset of the skeleton.

The quality of the pruned skeleton Sτ thus depends on the full skeleton S. In some

algorithms, pruning is done while computing the skeleton, whereas in others, pruning is

done after computing the full skeleton.

A large number of skeletonization approaches have been developed in the past. Sev-

eral criteria can be used to characterize them:

• Dimensionality Methods work on 2D or 3D shapes, or both. The skeleton produced

is embedded in the same space as the input shape. Higher-dimensional skeletoniza-

tion approaches are rare and we do not consider them here.

20 Chapter 2. Skeletonization

• Skeleton type In 3D, methods may output either a surface skeleton, a curve skele-

ton or both. Methods that output a curve skeleton sometimes do this by taking the

curve skeleton as a subset of the surface skeleton (e.g. [16, 36]), so these methods

can be considered to compute both. Other methods output a curve skeleton directly

(e.g. [78, 25]), without computing a surface skeleton first.

• Input shape representation Methods commonly work on either a boundary point

sampling or a digital shape. Less common are methods that work directly on poly-

hedral shapes (e.g. [40, 130]) or spline-gons (2D shapes whose boundary is a closed

spline, e.g. [121]). Although shape representations can be converted into each other,

an approach can be characterized by the representation it naturally works on.

• Output shape representation Methods may output the (simplified) skeleton as a

digital shape, a polyhedral representation, or consisting of a set of smooth curves

(e.g. [121]). For methods working on digital shapes the output representation is

usually equivalent to the input representation, but this is not necessarily the case.

In [25] for example, the input is a voxel shape, whereas the output is a curve skele-

ton consisting of smooth curves.

• Properties of the output The produced skeletons may differ in the intrinsic and

extrinsic properties they possess. We give some examples. Whereas most meth-

ods output connected (topology-preserving) skeletons, others do not (e.g. [40, 43]).

Most methods take precautions to deliver robust skeletons, at least to some degree,

but others do not (e.g. [16]). Some methods focus on producing smooth curve

skeletons [1, 25], at the expense of centeredness.

• Pruning method The particular pruning method used also characterizes an ap-

proach. In Section 2.6 we discuss pruning methods in detail.

• Techniques used in skeleton computation Techniques employed in the skele-

tonization process are also considered characteristic. Common techniques used

in skeletonization are: thinning, Voronoi diagram, distance field, and general field.

We discuss these techniques in the next section.

2.5 Skeletonization techniques

In this section we discuss some techniques commonly found in skeletonization algo-

rithms. For each technique we mention some idiosyncratic methods.

2.5.1 Thinning

Thinning, also called erosion or boundary peeling, is a process aimed at producing thin

versions of digital shapes while maintaining their topology. It relies on concepts from

digital topology and as such works on digital shapes [66]. By essentially simulating the

fire front propagation in the grass-fire skeletonization formulation, the resulting thin struc-

tures are similar to skeletons. Thinning methods exist for both curve and surface skele-

tons. Simple points are iteratively removed from the set of object points Ω, where a simple

2.5 Skeletonization techniques 21

point is a lattice point whose removal does not change the topology of the shape [116].

Simple points are always located on the boundary of the object: removal of a point in

the middle of the shape introduces a hole and violates homotopy. Removal of a simple

point typically introduces new simple points. After removing all simple points, a thin

version of the shape remains. Because simple points can be characterized locally, using

so-called templates, which are small voxel blocks, thinning is an efficient process in terms

of computation time and memory requirements.

Clearly, the order in which simple points are removed plays an important role in the

final result, especially with respect to the rotational-invariance and centeredness of the

result. Standard thinning methods typically do not produce centered results (e.g. [16]).

Parallel methods aim at resolving this issue, by considering multiple points at once for

removal instead of one by one. Another approach is to use the distance transform as the

order in which the simple points are considered for removal [102].

Using only the notion of simple points, thinning methods would only preserve the

topology of a shape and discard the geometrical information. All shapes without holes

would be reduced to a single point, which is clearly an undesired result. To ensure geom-

etry preservation, endpoints are identified that are on the tips of the significant skeleton

parts. Endpoints will never be removed in the thinning process as to maintain the shape’s

essential geometry. Clearly, the precise manner of endpoint classification is important to

the quality of the result. Unfortunately, characterizing endpoints cannot be done com-

pletely locally: from a local point of view, a bump on the boundary might be due to noise

or might be a feature. Hence, although thinning methods itself are a purely local, their

speed advantage is diminished when they are used for skeletonization purposes.

Note that in thinning methods, the feature points of a skeleton point are typically

not stored in the thinning process. Therefore, it is difficult to prune the skeleton based

on the feature points, and pruning has to be done based on properties of the skeleton

itself, such as branch length (as in e.g. [18]). Svensson and Sanniti di Baja compute the

curve skeleton using thinning [131], obtaining first the surface skeleton and then the curve

skeleton. Their pruning step considers the branches, which are separated by junctions,

one at a time and start with the peripheral branches to maintain homotopy. Branches are

removed based on the ratio between the number of significant voxels and the total number

of branch voxels. A voxel is considered significant if it is on a sheet intersection curve.

Lam et al. [68] provide a comprehensive survey on skeletonization methods by thin-

ning.

2.5.2 Voronoi-diagram

Voronoi-based skeletonization methods [95, 6, 4, 37] use the Voronoi diagram to compute

Blum skeletons. A Voronoi diagram is a decomposition of the space into cells based on

sites, in such a way that each point in the cell is closest to its cell’s site rather than to

any other site. In skeletonization, boundary points or edges are used as sites. As cell

borders (Voronoi edges) are equidistant to two sites, the relation with skeletons becomes

clear: the skeleton is some subset of the edges in the Voronoi diagram. Voronoi edges

that fall outside the shape are discarded. Points are usually used as sites, as it makes the

Voronoi-diagram computation much simpler by using only intersections of half-spaces.

22 Chapter 2. Skeletonization

If a polyhedral input is used, the boundary needs to be sampled first. A problem of

using points as sites is that, because an edge is generated between each two boundary

points, a lot of edges need to be removed or pruned. The more sampling points, the more

spurious branches the skeleton contains, which may look counter-intuitive at first sight,

but becomes clear if we follow the Voronoi-diagram definition. Pruning methods for

Voronoi techniques not only need to deal with boundary noise, but also needs to deal with

these false edges. Methods that use higher-order Voronoi diagrams, which include not

only points but also faces as sites, do not have the problem of false edges (e.g. [27, 130]).

In general, computing the Voronoi diagram is a computationally and memory inten-

sive process, especially for large numbers of 3D sites. Exact arithmetic must be used

to prevent approximation errors and degenerate cases can occur. Finally, the resulting

structure can be complex to handle and might need to be faired first [52].

2.5.3 Distance field

The skeleton can be defined as the singularities in the Euclidean distance-to-boundary

field, i.e., the distance transform. Singularities are the points where the field is non-

differentiable. When the distance field is seen as a height map, the singularities can

be seen as the mountain ridges and peaks. Niblack et al. [92] detect the local maxima

and saddle points in the distance transform. The local maxima are connected to each

other by uphill climbing in the distance transform, forming a connected skeleton. Wright

and Fallside [144] apply a roof-profile detector from image processing on the distance

transform. The filter size can be increased to detect the skeleton of large-scale features.

The points are linked by an edge following scheme.

Ge and Fitzpatrick [45] identify problems with methods that detect the centers of

maximal discs (CMDs) on exact Euclidean distance maps. The authors argue that the

discrepancy between continuous and discrete inscribed discs gives problems, and provide

a solution with a more accurate, but more costlier, CMD detection. The original object

can be exactly reconstructed from these CMDs, however they are not guaranteed to form

a connected skeleton, because of the discretized nature of the distance transform. Again,

a steepest ascent method is used to connect CMDs and to produce homotopic skeletons.

Dimitrov et al. [39] measure the average outward flux of the gradient vector field of

the Euclidean distance function. The limiting behavior of the average outward flux of this

vector field through the boundary of a shrinking region is different for skeleton points than

for non-skeleton points. This property lies at the heart of the Hamilton-Jacobi skeletoniza-

tion algorithm [127]. Later, this work was extended to compute surface skeletons [17].

Thinning is used to assure connectedness of the result. Dimitrov et al. further show that

the feature angle and skeleton-point type are related to the average outward flux under

shrinking circular regions [39].

Schirmacher et al. [119] simulate the grass-fire model in continuous space to compute

surface skeletons. The vertices of a polyhedral shape are propagated inward in its normal

direction, that is, along the gradient of the distance transform. A vertex stops moving

when it hits another part of the boundary. Vertices that come within a certain distance of

each other are merged so that the shrunken boundary can directly be used as the skeleton

output.

2.5 Skeletonization techniques 23

Telea and Van Wijk [136] compute the distance field of a 2D shape by simulating

the front evolution using the fast marching method [120]. The key to this method is to

integrate the observation that skeleton points are generated by the collapse of compact

boundary segments during the front evolution. The 2D skeleton is detected by setting a

threshold on the detected segment length. This algorithm has been extended to compute

curve skeletons by slicing the object boundary along three orthogonal axes and running

the 2D algorithm on each slice [137].

Gagvani et al. [43] present a “volume thinning” method for 3D shapes, based on

detecting maxima in the (non-Euclidean) distance transform. This method favors recon-

struction over connectivity of the skeleton. By relaxing the reconstruction criterion, skele-

tons of varying density can be obtained.

An important challenge of most field-based methods is their inherent reliance on

detecting singularities of the computed field. First, such singularities typically involve

higher-order derivatives, which can be unstable to compute on coarse-sampled images.

Smoothing methods can be used to alleviate instabilities, but this has the undesired effect

of removing details and also blurring the exact skeleton location. Moreover, the value of

singularity detectors such as divergence is very weak over some skeletal configurations,

when propagating fronts meet under very obtuse angles. This leads to delicate threshold-

ing schemes which risk to yield thick and/or disconnected skeletons.

2.5.4 General field

For curve-skeletonization methods, the problem of the distance field is that it is not dis-

criminative enough to obtain a 1D structure. For instance, the distance field of a box has

the same values over the center surface-skeleton sheet. More general fields can be defined

to resolve this. Another reason to use general fields is to obtain smoother skeletons: the

distance field is not smooth near the skeleton by definition.

Ahuja and Chuang [1] define a repulsive force field inside the 2D shape, as if the shape

boundary is charged with an electric charge. Particles are injected at certain seed points

of the boundary and are followed. Cornea et al. [25] use a potential field for voxel shapes

to compute multiscale curve skeletons with a fixed number of hierarchy levels. At the

coarsest scale, the core skeleton is constructed by finding the critical points in the field,

and are connected by integrating path lines over the vector field. Second, points of low-

divergence are used as seeds to add new skeleton segments. At the finest scale, boundary

points of high curvature are detected and are used as seeds to construct curve-skeleton

segments. A desirable property of potential-field methods is that the resulting skeletons

are much smoother because of the averaging effect that the field has. However, due to

the nature of the field many boundary points affect a single object point, which may put

the skeleton off-center. Another drawback is that seed points must be carefully chosen to

obtain accurate, noise-free skeletons.

Ma et al. [78] center radial basis functions on vertices of a polyhedral input to cre-

ate a smooth distance field inside the shape. A gradient descent algorithm is applied to

each boundary vertex to locate the local maxima in the field. The local maxima are then

connected by employing an active contour model to compute a curve skeleton of the 3D

shape.

24 Chapter 2. Skeletonization

Zhou and Toga [146] find the curve skeleton of a voxel shape by computing the dis-

tances to a single seed point, for which usually a cusp is chosen. Points with similar

distances are clustered, and replaced by a single point centered within the cluster, deter-

mined by the standard distance transform.

Hassouna and Farag [49] present a wave propagation method. The key idea of this

method is to propagate wave fronts with different speeds from a seed curve-skeleton point.

The first front propagates with a moderate speed to capture the object topology, while the

second one propagates much faster at central points such that curve skeleton intersects the

fronts at those points of maximum positive curvature.

2.5.5 Other techniques and hybrid approaches

The above mentioned techniques present a general classification of techniques and is by

no means exhaustive. Other techniques have also been used. Shaked and Bruckstein [121]

construct the medial axis from a smooth 2D shape by placing skeleton endpoints by an-

alyzing boundary curvature, that is, according to the symmetry-curvature duality theo-

rem [71], and tracing out the skeleton by solving first order differential equations. Kim-

mel et al. [64] present a similar method using this theorem. Li et al. [72] use a curve-

skeletonization method which contracts edges in the input mesh, in order of their Eu-

clidean length. The resulting curve-skeleton branches are disconnected and are connected

in a post-processing step.

Methods might also combine techniques. For example, Bouix et al. [17] use a

divergence-based operator to detect singularities in the distance transform, after which

thinning is used to obtain a connected surface skeleton. Dey and Sun [36] give a formal

definition for the curve skeleton computed by means of the medial geodesic function that

is defined on the surface skeleton. This function is low near the periphery of the surface

skeleton and increases toward the center. The function mimicks a distance function and is

used to define the curve skeleton as the local maximum ridge of that function. The authors

first compute a surface skeleton using a Voronoi-based method [37]. The medial geodesic

function is computed on the edges of the skeleton mesh. A divergence-based measure,

similar to [126], is used to detect the singularities of this function. The surface-skeleton

mesh is eroded by collapsing mesh faces, edges, and vertices until a 1D connected

structure remains.

2.6 Pruning methods

Pruning methods aim to make skeletons robust to noise. They output a pruned skeleton

Sτ , with some pruning parameter τ , of a noisy shape Ωτ , with noise parameter τ . The

pruned skeleton Sτ should be similar to the skeleton S of the original non-noisy shape Ω
(see Figure 2.6). Ideally, there exists a pruning function such that Sτ (Ωτ) = S(Ω) for

all shapes and for all noise functions. Unfortunately this is not possible, because pruning

is restricted to removing spurious branches from the skeleton and is not able to relocate

the skeleton [140]. For example, the dent in the rectangle boundary in Figure 2.3(d) also

causes a dent in the skeleton. Pruning can remove the spurious branches due to the dent,

2.6 Pruning methods 25

but will leave the dent in the skeleton intact. Hence, pruning can be used to produce

skeletons that are topologically equivalent to the skeleton of the original non-noisy shape,

that is, having the same branching structure.

Figure 2.6: Schematic overview of pruning

Most pruning methods combine an importance measure with a pruning strategy [122].

The importance measure assigns to each skeleton point its significance in representing the

shape. Small values should correspond to skeleton points that represent small-scale object

details, whereas large values correspond to points that represent the main structure of the

object. The pruning strategy is then used to remove skeleton points with a preference

for the least important points, while maintaining the desirable properties of the skeleton.

Such a strategy often incorporates a user parameter to specify the degree of pruning. We

can identify four desirable pruning requirements:

• Topology preserving The pruning method should not disconnect the skeleton, in

order to fulfill the skeleton homotopy property.

• Weak geometry-preservation Clearly, the original object cannot be fully recon-

structed from the pruned skeleton: skeleton parts representing noise are removed.

However, the pruned skeleton should still represent the important features of the

shape. Note that the other intrinsic properties cannot be violated by the pruning

method, as pruning only removes skeleton points. Therefore, the pruned skeleton

is as centered, thin, and transformation invariant as the original.

• Continuous Pruning methods should be continuous, or stable: a small change in

the pruning parameter should result in a small change in the resulting skeleton.

Otherwise, the method is not very intuitive to use. Furthermore, a pruning method

should have as few parameters as possible, and their effect upon which points get

removed should be intuitive.

• Generic The pruning method should be as general as possible. It should apply to

all kinds of shapes, and it should not be limited to any particular dimension, shape

topology, or shape representation.

• Efficient The pruning method should be computationally efficient. Ideally, the

pruning strategy has linear complexity in the number of skeleton points.

26 Chapter 2. Skeletonization

Figure 2.7: Illustrations of three importance measures: the local Euclidean-distance and

feature-angle measures, and the global boundary-distance measure.

Common importance measures Various importance measures have been proposed

in the past for both 2D and 3D skeletons. A frequently used importance measures is

the feature-angle measure, which is proportional to the angle that the feature vectors

make [14]. The smaller the angle, the less important the point is in representing the

shape. The angle is proportional to the velocity with which the skeleton points emerge

in the grass-fire model [122]. Indeed, when two meeting fire fronts are parallel, the fea-

ture angle attains its maximum of 180 degrees, and the skeleton unfolds with infinite

speed. Blum and Nagel proposed the boundary-axis ratio [15], defined as the limiting

ratio of boundary length to skeleton length, computed at each skeleton element. An-

other importance measure is the radius measure, using the radius of the inscribed disc

as importance [32], which assumes that the skeleton inside small shape features has a

relatively small distance to the boundary. The radius of the inscribed disc associated

with a boundary point is also called the local feature size [3]. A related measure is the

Euclidean-distance importance measure, which looks at the Euclidean distance between

feature points [80]. It can also be useful to combine measures to strengthen them [80]. The

maximal-thickness measure is defined as the maximal thickness of the erosion implied by

the difference in the reconstructed shapes of the pruned and non-pruned skeleton [5]. An-

other measure is the flux measure introduced by Siddiqi et al. [126], which measures the

average outward flux of the distance-field gradient on the boundary of a shrinking region

(see Section 2.5.3). The boundary-distance measure was first introduced by Ogniewicz

and Ilg [94] as the so-called “potential residual”. The boundary-distance measure assigns

to each point p the (minimum) distance along the boundary between the feature points

of p. It thus measures the length of the boundary segment that “collapses” or folds onto

the skeleton point. Skeleton points corresponding to small-scale boundary features have

a small collapse, whereas points “deep inside” the object have a large collapse.

Figure 2.7 illustrates a selection of the mentioned importance measures.

Whereas some of the above-mentioned measures use only local information, others

incorporate more global information. Local measures use only object properties from a

small, limited vicinity of every object point. The feature angle, radius, and Euclidean-

distance measures are local. They are incapable of distinguishing between locally iden-

tical configurations, such as those sketched in Figures 2.8. The pruning strategy must be

used to enforce connectivity of the skeleton, and make sure that point q is removed be-

2.6 Pruning methods 27

Figure 2.8: A 2D shape and its skeleton. Points p, q ∈ S and their feature points pa, pb

and qa, qb respectively have locally identical configurations. Globally however, p is con-

sidered more important than q.

Figure 2.9: Surface skeleton (right) of the Stanford bunny (left) using the feature-angle

measure (image from [40]).

fore point p. Global measures are not restricted to local information and can differentiate,

in principle, between the two situations. The maximal thickness and boundary-distance

measures are examples of global measures. In Figure 2.7, points p, and q both receive the

same importance from the Euclidean-distance and feature-angle measures, but not from

the boundary-distance measure. The only drawback of global measures is that they are

more expensive to compute than local measures.

Pruning strategies Let ρ : Ω → R+ denote an importance measure. One of the sim-

plest pruning strategies is the thresholding strategy, which simply puts a threshold τ on ρ.

A pruned or simplified skeleton Sτ is obtained by only keeping the points in the skeleton

for which ρ > τ :

Sτ (Ω) =
{

p ∈ S(Ω)
∣

∣

∣
ρ(p) > τ

}

. (2.3)

When ρ is a local measure, such as the feature angle, Sτ will often contain disconnected

parts. Hence, the thresholding strategy is sometimes called naive. Careful tweaking of τ
may yield a connected skeleton, but this is not possible in general, and is undesirable as

it puts a burden on the user. Figure 2.9 shows a surface skeleton of the Stanford bunny

pruned using the feature angle [40]. Although the threshold was carefully chosen, the

skeleton is still rather noisy and also contains holes, which should not be there as the

bunny consists of a single connected component.

28 Chapter 2. Skeletonization

Figure 2.10: (a) A shape and its unpruned skeleton. (b) Pruned branch length in relation

to threshold τ . The pruning method used is Euclidean feature-distance ρ in combination

with an erosion strategy. This pruning method is not continuous.

To enforce the homotopy of the skeleton, an erosion strategy can be used on the skele-

ton. Points whose importance ρ is above the threshold τ are never removed by the erosion

process. Points below the threshold are only removed if their removal is topologically

invariant. Although thinning is a form of erosion, erosion is used here in the broader

sense of removing skeleton elements while maintaining homotopy, and is not restricted

to using digital topology. Thinning as an erosion strategy is for example used by Bouix

and Siddiqi [17] to obtain connected curve and surface skeletons using the flux measure.

Sud et al. [130] use the feature-angle measure in combination with an erosion step on the

Voronoi-based skeleton. Erosion adds a computational cost, but the overhead is small as

erosion is an efficient process. A more important drawback of an erosion strategy is that

it makes the pruning non-continuous: a small change in the threshold might result in a

significant change in the skeleton. This is illustrated in Figure 2.10, where the feature-

distance measure ρ for a shape has two local maxima that differ only slightly, but are far

apart on the branch.

Shaked and Bruckstein [122] propose the rate pruning strategy to assure the homo-

topy and continuity requirements. In rate pruning, pruning starts simultaneously from the

medial axis endpoints and continues inwards along the medial axes. Instead of using the

importance of skeleton points directly, the importance measure is merely used as a cue for

the pruning speed. A high importance indicates slow pruning, whereas low importance

indicates fast pruning. By taking the derivate of a measure along the 1D skeleton, one

can go from the thresholding strategy to the rate pruning strategy. The authors formulate

existing importance measures in the new strategy to unify discussion and facilitate com-

parison of measures. Rate pruning does not satisfy the genericity requirement on pruning

methods, as it cannot be readily extended to 3D: the direction along which to prune is not

clear as the skeleton of 3D shapes consists of 2D manifolds.

Monotonic importance measures To assure a continuous pruning method, without re-

sorting to the non-generic rate pruning strategy, one could design an importance mea-

sure that is monotonically ascending. Such a measure has only a single local maximum

(namely the global maximum), which could be considered the center of the skeleton

2.6 Pruning methods 29

and thus of the object, and has no local minima (except at the skeleton endpoints). A

monotonic importance measure in combination with the thresholding strategy is topology-

preserving by construction. Additionally, such a pruning method will usually be continu-

ous: the measure ρ can only contain plateaus, but these are generally small compared to

the distance between local maxima of ρ in Figure 2.10(b). Another important advantage

is that a monotonic measure that incorporates global criteria basically provides a multi-

scale skeleton representation. This multiscale representation is furthermore hierarchical,

because pruning only removes points. Ogniewicz and Kübler [95] have observed that the

monotonic boundary-distance measure gives rise to a skeleton scale-space. By progres-

sively increasing τ , the noisy skeleton parts corresponding to noisy boundary features,

which could also be considered small-scale features, are removed first. For higher values

of τ , simplified skeletons are obtained that only represent features of at least size τ .

Unfortunately, although the thresholding strategy can also be applied in 3D, the

boundary-distance measure cannot be readily extended to 3D in such a way that it is

monotonically ascending. In Chapter 4 we detail on this problem and present a global

importance measure, called the collapse measure, that copies the desirable properties of

the boundary-distance measure to 3D shapes. Key to the definition of this measure is the

incorporation of the curve skeleton, in addition to the surface skeleton.

30 Chapter 2. Skeletonization

Chapter 3

Tolerance-based Feature

Transforms

Feature and distance transforms are important elements in many skeletonization methods.

The definition of the skeleton (Eq. 2.1) relies on the identification of different boundary

points located at exactly the same distance from the skeleton in order to produce con-

nected, centered, and pixel-thin skeletons. As an extension to the normal feature trans-

form, the Tolerance-based Feature Transform can be used to compute exact distance trans-

forms [90], as a compact descriptor of shapes at different spatial scales [67], or to alleviate

the effects of discretization in skeletonization. In this chapter, we compare four simple-

to-implement methods for computing TFTs on binary images. Of these methods, the Fast

Marching TFT and Euclidean TFT are new. We quantitatively and qualitatively compare

all algorithms on speed and accuracy of both distance and feature results. Our analysis

can be used beyond the application in skeletonization to help practitioners in the field

to choose the right method for given accuracy and performance constraints. Although

this chapter deals with 2D images, the presented algorithms can be straightforwardly ex-

tended to voxel shapes. A second goal of this chapter is to gain understanding of the

accuracy limitations of an existing 2D skeletonization method, the AFMM [136]. This

method combines the known Fast Marching Method for computing DTs together with the

boundary-distance measure for computing robust and multiscale skeletons of 2D shapes.

As we generalize the AFMM to compute 3D skeletons in Chapter 4, it is important to

understand (and correct) its accuracy limitations.

3.1 Distance and feature transforms

A distance transform (DT) computes, for each point p of an object Ω, the distance D(p) =
minq∈∂Ω ‖p− q‖ to the nearest boundary-point q, called a feature point of p. Figure 3.1

shows an example distance transform.

The feature transform (FT), also known as the nearest-neighbor transform [26], as-

32 Chapter 3. Tolerance-based Feature Transforms

Figure 3.1: The distance transform of an object. The pixel intensity denotes distance to

the object boundary.

signs to each object point p ∈ Ω the feature set F (p):

F (p ∈ Ω) =
{

q ∈ ∂Ω
∣

∣

∣
‖q − p‖ = D(p)

}

, (3.1)

where ‖q − p‖ is the Euclidean distance between p and q. A simple FT computes only

one feature per pixel, which is sufficient for some applications. We define the tolerance-

based FT (TFT) as a map that assigns to each pixel all the feature points within a certain

distance from the nearest feature:

Fε(p ∈ Ω) =
{

q ∈ δΩ
∣

∣

∣
‖q − p‖ ≤ D(p) + ε

}

, (3.2)

where ε is a user-defined tolerance. One use of the TFT is to compute exact Euclidean

DTs, as first observed by Mullikin [90] (see also Section 3.5). A second use of the TFT

is to alleviate discretization artifacts in the normal feature transform for the purpose of

skeleton computation. Figure 3.2(a) shows the medial axis endpoint for a continuous

shape. The inscribed disc touches the boundary in a half-circle. In the discrete case in

Figure 3.2(b), the four feature voxels in F are not a connected set. Using the TFT with

an ε of 1 in Figure 3.2(c), the feature voxels of the endpoint correctly forms the discrete

equivalent of a half-circle.

Figure 3.3 shows the TFT for an object computed using four different tolerances ε.

The pixel intensity denotes the feature set size |Fε|. The feature sets of four selected

pixels are shown using white line segments. For ε = 0, it can be seen that pixel p has only

one feature because the horizontal rectangle is of even height. Using a tolerance ε ≥ 1,

the feature set Fε(p) contains features from both sides of the rectangle.

Kovács et al. [67] introduced the Dε-function, which is essentially equivalent to what

we call TFT here. They argue that local maxima of Dε are most important as they contain

large amounts of boundary information, and together provide a compact medial descriptor.

Furthermore, by varying ε shapes can be described at different spatial scales. They discuss

the Dε function in the context of human perception, but do not detail on efficient and

accurate computation of the function, as we do this in chapter.

Overall, both DTs and FTs are used as a component in many applications from many

different domains [26], ranging from image processing, pattern recognition, and shape

3.1 Distance and feature transforms 33

Figure 3.2: (a) Feature points in R
2 form a connected set. (b) Feature points in Z

2 form a

disconnected set. (c) Tolerance-based feature points in Z
2 form a connected set again.

Figure 3.3: The TFT of an object using four different tolerances ε = 0, 1
2

√
2, 1,

√
2.

representation and modeling, to path planning, computer animation, skeletonization, and

optimization algorithms.

DT and FT algorithms can be classified by the order in which they process the im-

age pixels. Raster scanning algorithms (e.g., [31]) sequentially process pixels in scan-

line order, needing multiple passes in which pixels are assigned new minimum distances.

Ordered propagation methods (e.g., [103]) reduce the number of distance computations

needed by updating only pixels in a contour set, which propagates from the object bound-

ary δΩ inwards. Ordered propagation methods accommodate (distance-based) stopping

criteria easier than raster scanning ones, thus being more efficient for some applica-

tions. A well-known class of ordered propagation methods are level set and Fast March-

ing Methods (FMM) [120], which evolve the contour δΩ under normal speed (see Sec-

tion 3.2). Although the FMM does not compute an exact Euclidean DT, the speed function

it uses can be locally varied to compute more complex DTs, e.g., anisotropic, weighted,

Manhattan, or position-dependent ones [120, 129]. Recent FMM extensions compute an

FT [136, 137]. However, this is only a simple FT, and can be quite inaccurate in many

cases. Applications using this feature set, such as skeletonization, can deliver wrong re-

sults, as pointed out by Strzodka and Telea [129].

As the above outlines, DT and FT methods have many, often subtle, trade-offs, which

are not obvious to many practitioners in the field. In this chapter, we discuss several com-

34 Chapter 3. Tolerance-based Feature Transforms

petitive DT, FT, and TFT methods. Some of these methods extend existing ones, while

others are new. We quantitatively and qualitatively compare the results of all methods

with the exact TFT computed by brute force, and discuss the computational advantages

and limitations of every method. The goal of our analysis is to provide a quantitative,

practical guideline for choosing the “right” DT or (T)FT method to best match real-world

application requirements, such as precision, performance, completeness, and implemen-

tation complexity. Such a method can form the basic building block for further 2D and

3D skeletonization methods, and other image processing methods.

This rest of this chapter is structured as follows. In Section 3.2 we discuss the FMM

and we detail on its inaccuracies. In Section 3.3, we modify the existing Augmented

Fast Marching Method (AFMM) to yield exact simple FTs, and illustrate its use by skele-

tonization applications. In Section 3.4, we extend this idea to compute TFTs by adding a

distance-to-feature tolerance. In Section 3.5, we analyze Mullikin’s raster scanning DT,

and get insight into how to set our TFT tolerance to compute exact DTs. In Section 3.6,

we present a novel method, called ETFT, based on a propagation order different from the

FMM. In Section 3.7, we compare our new ETFT with the related graph-search method of

Lotufo et al. [77], and also extend the latter to compute TFTs. Finally, we quantitatively

compare all of the above methods (Sec. 3.8) and come to a conclusion (Sec. 3.9).

3.2 Fast Marching Method (FMM)

Level set methods are an Eulerian approach for tracking contours evolving in time. The

fast marching method (FMM) [120] treats the special case of contours with constant sign

speed functions. The arrival time T : R
2 → R+ of the contour at a point p is given by the

solution of ‖∇T‖V = 1 with T = 0 for the initial contour δΩ. With a unit speed function

V , we obtain the Eikonal equation:

‖∇T‖ = 1 , (3.3)

whose solution is the Euclidean DT of δΩ. The FMM efficiently computes T using the

idea that T (p) depends only on the T values of p’s neighbors N(p) for which T (N(p)) <
T (p). The FMM builds T from the smallest computed T values by maintaining the pixels

in the evolving contour, or narrow band, sorted on T . Pixels are split into three types, or

in other words, can have three different flags: known pixels pK have an already computed

T ; temporary pixels (pT) have a T subject to update; and unknown pixels (pU) have not yet

been assigned a T value. Invariant is T (pK) ≤ T (pT) ≤ T (pU). Initially, all pixels on δΩ
are known to have T = 0 and their neighbors are set to temporary. Next, the temporary

pixel p with smallest T becomes known (as its T cannot be influenced by other pixels), its

unknown neighbors NU(p) become temporary, and their T values are updated based on

their own known neighbors, until all pixels become known. Figure 3.4 depicts an iteration

of the FMM. For a contour of length B = |δΩ| and area N = |Ω| pixels, the FMM needs

O(N log B) steps, because it visits each object pixel once, and keeping the narrow band

sorted on T in each iteration needs O(log B) steps.

The DT computed by the FMM is not exact. Errors occur due to the approximation

of the gradient ∇T , usually of first or second order, the former being the most common.

3.2 Fast Marching Method (FMM) 35

Table 3.1: Differences between (approximate) FMM and exact Euclidean distances D
(%e: ratio of erroneous pixels to object pixels; max e: maximum error; ē: average error).

image img.size max D %e max e ē
bird 238×370 49.82 89% 0.679 0.142

leaf 410×444 70.63 84% 1.013 0.290

dent 464×397 134.06 15% 1.210 0.082

Figure 3.4: An iteration in the fast marching method.

Moreover, the errors are accumulated during the propagation. Sethian briefly treats the

FMM accuracy [120, Sec. 12.3], but no comments are made on the implications for

real-world applications. Figure 3.5 and Table 3.1 show differences between the FMM

and the exact DT for some typical shapes. High errors (bright areas in Figure 3.5) seem

to “diffuse” or spread away from boundary concavities. Indeed, a temporary point at a

narrow band concavity has just one known neighbor NK, so its distance is updated from

a single known T (NK) value. A point at a narrow band convexity has several known

neighbors, so its distance T is updated using more information. The maximal DT error

can easily exceed 1 pixel (cf. Table 3.1), and can become arbitrarily large (depending on

the image size). As we shall see in the next section, such errors can easily lead to incorrect

skeletons when the FMM is used in skeletonization.

36 Chapter 3. Tolerance-based Feature Transforms

Figure 3.5: Differences between the (approximate) FMM distance and the exact Euclidean

distances for the ‘bird’, ‘leaf’, and ‘dent’ images. Black indicates no error, white indicates

the maximum error. See Table 3.1 for the exact values.

3.3 AFMM Star

The Augmented FMM (AFMM) [136] computes one feature per pixel by propagating an

arc-length parameterization U of the initial boundary δΩ together with FMM’s distance

value T . U(p) basically identifies a feature point F (p). When a narrow band pixel p is

made known and its unknown direct 4-neighbors a ∈ NU

4 (p) are added to the narrow band,

U(a) is set to U(p). After propagation has completed, for all points q where U varies with

at least τ over N4(q), a segment of at least length τ from the original boundary collapses.

Hence, the above point set {q} represents a (pruned) skeleton of Ω with τ as the pruning

parameter. This is precisely the boundary-distance measure as described in Section 2.6.

AFMM’s complexity remains the same as for the FMM, namely O(N log B), where

N is the number of object pixels and B the boundary size, because it adds just the propa-

gation of one extra value U . Similar methods exist for digital images [29] and for polyg-

onal contours [95], respectively.

However efficient and effective for computing simple FTs and 2D skeletons, the

AFMM has several accuracy problems when computing U , as can be easily seen from

the resulting skeletons. Errors show up as skeleton branches having the wrong angle, are

too thick, or are disconnected (e.g., Figure 3.6 left). Such errors occur when a skeleton

branch emerges from a convex shape part delimited by two sharp concavities such as the

leaf’s stem. The angle of the continuing branch, which is a ligature, is incorrect. The

reason is that the value U(a) is determined by only one pixel p ∈ N4(a), namely the p
that is first made known.

We propose to solve this problem as follows. For a point a that is made temporary, we

set F (a) (or equivalently U(a)) to the closest feature among the neighbor’s feature sets,

i.e.:

F (a) = arg min
q∈F (NK,T

8
(a))

‖q − a‖ . (3.4)

This method, which we call AFMM Star, solves AFMM’s inaccuracy problems, i.e.,

yields a reliable simple FT method and subsequently a correct 2D skeletonization method.

3.4 Fast Marching TFT 37

Figure 3.6: AFMM skeletonization errors (left). AFMM Star skeletonization (right).

We observe that AFMM Star computes robust, thin, and connected skeletons for arbitrar-

ily complex noisy 2D boundaries (e.g., Figure 3.6 right).

One remaining problem is that we use the numerically inexact FMM DT (cf. Sec. 3.2).

For practical applications, e.g. skeletonization, incorrect skeleton points will occur only

where the FMM DT error exceeds 1 pixel. From Table 3.1, we see that this happens only

at a very few pixels of relatively large objects. This gives a quantitative estimate of the

AFMM Star limitations.

3.4 Fast Marching TFT

The AFMM Star is a simple FT, i.e., it computes just one feature per point. However, some

applications, such as angle-based skeletonization [40] require all features to be found.

Moreover, tolerance-based FTs are desired for the reasons outlined in Section 3.1.

We now propose the novel Fast Marching Tolerance-based Feature Transform

(FMTFT) which computes for each pixel p a feature set Fε whose size depends on

a user-defined distance tolerance ε, as defined in Eq. 3.2. The pseudocode is shown

in Figure 3.7. The distances Df are computed using the FMM [120]. The func-

tion fmmdistance (line 15) is based on the arrival times of the known neighbors

of a (see [136] for an implementation of this function). We initialize the feature set

F (p) = {q ∈ δΩ
∣

∣ ‖q − p‖ ≤ ε} for all p ∈ δΩ. When the distance of a point a is

updated during the FMM evolution, we simultaneously construct a candidate feature set

C (line 16):

C(a) =
⋃

q∈N
K,T

s (a)∪{a}

F (q) , (3.5)

where s is the neighborhood size. Next, let the distance D(a) = minq∈C(a) ‖q − a‖.
D(a) is more accurate than the FMM distance Df(a), because it is computed directly

38 Chapter 3. Tolerance-based Feature Transforms

1: for each p ∈ Ω ∪ Ω̄ do

2: if p ∈ Ω̄ then

3: flag(p)← K, Df(p)← 0
4: else if p ∈ δΩ then

5: flag(p)← T, Df(p)← 0, F (p)← {q ∈ δΩ
∣

∣ ‖q − p‖ ≤ ε}
6: else if p ∈ Ω ∧ p /∈ δΩ then

7: flag(p)← U, Df(p)←∞
8: end if

9: end for

10: while ∃qflag(q) = T do

11: p← arg min
q:flag(q)=T

Df(q)

12: flag(p)← K

13: for each a ∈ NU,T
4 (p) do

14: flag(a)← T

15: Df(a)← fmmdistance(a, NK

4 (a))
16: C ←

⋃

q∈N
K,T

s (a)∪{a}
(F (q))

17: D(a)← minq∈C ‖q − a‖
18: F (a)← {q ∈ C

∣

∣ ‖q − a‖ ≤ D(a) + ε}
19: end for

20: end while

Figure 3.7: Fast Marching TFT (FMTFT).

as the distance from a to its nearest feature, while Df is computed incrementally by a

first-order approximation of the gradient. Df is used only to determine the propagation

order (line 11), as for the AFMM Star (Sec. 3.3). The tolerance-based feature set F (a) is

constructed by trimming C in line 18:

Fε(a)←
{

q ∈ C
∣

∣

∣
‖q − a‖ ≤ D(a) + ε

}

. (3.6)

Thus, this algorithm assumes that the feature set of a pixel a can be determined from

the feature sets of a’s neighbors. Statement 3.6 also occurs in all other to-be-discussed

methods (line 30 in Figure 3.8, line 17 in Figure 3.10, and line 16 in Figure 3.11).

The accuracy of D is influenced by the neighborhood size s and the tolerance ε. D
can be made more accurate by increasing s. In general however, D cannot be made exact

no matter the choice of s. This is because the Voronoi regions of feature pixels are not

always 4 or 8-connected sets on a discrete grid [26]. In contrast, ε can be set so that all

distance errors are eliminated. This was also observed by Mullikin, in a related context,

as detailed in the next section.

3.5 ε-Vector Distance Transform

Mullikin presents a scan-based algorithm for computing exact Euclidean DTs [90]. He

first identifies pixel arrangements for which Danielsson’s scan-based vector distance

transform (VDT) with 4-neighborhoods [31] yields inexact distances. The problem of the

VDT is that it stores only one feature. In Figure 3.9, the VDT computes that F (q) = {a}
and F (r) = {b}. For p, one of the nearest features from its 4-neighbors is taken. Thus

3.5 ε-Vector Distance Transform 39

1: for each p ∈ δΩ do

2: F (p)← {q ∈ δΩ
∣

∣ ‖q − p‖ ≤ ε}
3: end for

4: for y from 0 to N − 1 do

5: for x from 0 to M − 1 do

6: update((x,y), (x-1,y-1)) if s = 8
7: update((x,y), (x,y-1))

8: update((x,y), (x+1, y-1)) if s = 8
9: update((x,y), (x-1, y))

10: end for

11: for x from M − 1 downto 0 do

12: update((x,y), (x+1,y))

13: end for

14: end for

15: for y from N − 1 downto 0 do

16: for x from 0 to M − 1 do

17: update((x,y), (x-1, y+1)) if s = 8
18: update((x,y), (x, y-1))

19: update((x,y), (x+1, y+1)) if s = 8
20: update((x,y), (x-1, y))

21: end for

22: for x from M − 1 downto 0 do

23: update((x,y), (x+1,y))

24: end for

25: end for

26: procedure update(a,b)

27: if a, b ∈ Ω then

28: C ← F (a) ∪ F (b)
29: D(a)← minq∈C ‖q − a‖
30: F (a)← {q ∈ C

∣

∣ ‖q − a‖ ≤ D(a) + ε}
31: end if

32: end procedure

Figure 3.8: ε-Vector Distance Transform (εVDT). The image has dimensions M ×N .

F (p) ∈ F (q) ∪ F (r) = {a, b}, while the actual nearest feature is F (p) = {c}. This situ-

ation occurs when there are three object pixels a, b, c so that ‖ ~aq‖ < ‖~cq‖, ‖~br‖ < ‖~cr‖,
‖~cp‖ < ‖ ~ap‖, and ‖~cp‖ < ‖~bp‖, i.e., when the hatched area contains a grid point.

Mullikin proposes, in his εVDT, to store all nearest features, and additionally all features

at a distance within a certain tolerance ε. Essentially, εVDT computes tolerance-based

feature sets as defined in Eq. 3.2. Mullikin shows that an exact distance transform is

obtained when ε ≥
√

D/D, where D is the number of spatial dimensions. This result

can also be used for the other TFT methods discussed in this chapter.

The εVDT computes tolerance-based feature sets only as a means to compute exact

DTs. Mullikin does not detail on the accuracy of the feature sets themselves [90]. More-

over, he uses only 4-neighborhoods as these are sufficient for exact Euclidean distances.

We extended εVDT to also use 8-neighborhoods (see pseudocode in Figure 3.8). These

are useful for improving the feature set accuracy, as shown in Table 3.2. The pseudocode

can be found in Figure 3.8. The εVDT is compared to the other methods in Section 3.8.

Besides the fact that the εVDT uses a scan-based approach, another conceptual differ-

ence with the FMTFT is that it uses a write formalism instead of a read formalism [142].

40 Chapter 3. Tolerance-based Feature Transforms

Figure 3.9: Points a, b, and c are boundary points. Point p, q, r are object points.

Whereas in the FMTFT the candidate feature set C of a pixel a is constructed by reading

from all neighboring pixels (line 16 in Figure 3.7), the εVDT writes information from a

single neighbor to a (line 28 in Figure 3.8).

3.6 Euclidean TFT

The FMTFT visits points in the order of the inaccurate FMM distances (Sec. 3.4). Al-

though this keeps the original FMM advantage of using different speed functions (if so

desired), an erroneous propagation order potentially influences the distance and feature

set accuracy (Sec. 3.1). The idea comes thus naturally to design an ordered propagation

FT which visits the points in order of the accurately computed distances. We present the

pseudocode of this new method, called Euclidean TFT, in Figure 3.10. The neighborhood

size s (line 15) and tolerance ε (line 17) have the same meaning as for the FMTFT and

εVDT discussed above. The initialization is the same as for the FMTFT, it also uses a

read formalism, and the propagation is still in the order of increasing distances. How-

ever, where the FMTFT propagates in the order of Df (Figure 3.7, line 11), the ETFT

propagates on the more accurate distances D (Figure 3.10, line 11).

We found out that the above exact-distance propagation order yielded a comparable

speed and accuracy, posing no advantage over the FMM order. Thus, we made the follow-

ing change. Whereas the FMTFT updates all pixels a ∈ NU,T (p) (Figure 3.7, line 13),

the ETFT was made to update only pixels a ∈ NU (p) (Figure 3.10, line 13). Now the

ETFT updates pixels only once, trading accuracy for speed (see Table 3.2).

3.7 Graph-search TFT

The FMTFT and ETFT resemble the graph-search approach of Lotufo et al. [77]. How-

ever, the graph-search method uses a write formalism, and propagates only one feature

per pixel, i.e., it is a simple FT. We extended Lotufo’s algorithm to a TFT, so that it

can be readily compared to the FMTFT, εVDT, and ETFT methods. Figure 3.11 gives the

3.8 Comparison 41

1: for each p ∈ Ω ∪ Ω̄ do

2: if p ∈ Ω̄ then

3: flag(p)← K, D(p)← 0
4: else if p ∈ δΩ then

5: flag(p)← T, D(p)← 0, F (p)← {q ∈ δΩ
∣

∣ ‖q − p‖ ≤ ε}
6: else if p ∈ Ω ∧ p /∈ δΩ then

7: flag(p)← U, D(p)←∞
8: end if

9: end for

10: while ∃qflag(q) = T do

11: p← arg min
q:flag(q)=T

D(q)

12: flag(p)← K

13: for each a ∈ NU

4 (p) do

14: flag(a)← T

15: C ←
⋃

q∈N
K,T

s (a)∪{a}
(F (q))

16: D(a)← minq∈C ‖q − a‖
17: F (a)← {q ∈ C

∣

∣ ‖q − a‖ ≤ D(a) + ε}
18: end for

19: end while

Figure 3.10: The Euclidean TFT algorithm (ETFT).

pseudocode for this extension, called the Graph-search TFT (GTFT). Now the differences

between the ETFT and GTFT methods become visible. While GTFT uses only the flags T

and K and updates all neighboring pixels a of p flagged as T (Figure 3.11, line 13), ETFT

also uses the flag U and only updates these pixels (Figure 3.10, line 13). Since there are

in general less pixels flagged U in ETFT than T in GTFT, ETFT updates less pixels per

iteration. However, the update of a pixel in ETFT involves more work as all neighbors of

a are used (Figure 3.10, line 15), whereas in GTFT only p is used (Figure 3.11, line 14).

The running time differences are detailed in the next section.

3.8 Comparison

There are several differences between the four presented algorithms. The first is that

εVDT is not an ordered-propagation approach and as such does not use flags, unlike

the others. Second, a distinction can be made between the use of read versus write for-

malisms [142]. The FMTFT, ETFT, and εVDT all use the read formalism. The features of

a are determined by reading the neighbors of a. This mimics a convolution. The GTFT on

the other hand uses a write formalism. The feature set of a is a combination of the feature

sets of a and p. The third difference lies in the number of times pixels can be updated. In

the FMTFT and GTFT, narrow-band pixels may be updated multiple times. In the εVDT,

each pixel is also updated more than once. In the ETFT, however, each pixel gets its

value only once because only unknown points are written to. The differences between the

ordered-propagation approaches are illustrated in Figure 3.12.

Unlike DT methods, the computational complexity of (T)FT methods depends on the

feature set sizes and is therefore strongly input dependent. For example, the center of

a circle is a worst case, as its feature set contains all boundary points. The feature set

42 Chapter 3. Tolerance-based Feature Transforms

1: for each p ∈ Ω ∪ Ω̄ do

2: if p ∈ Ω̄ then

3: flag(p)← K, D(p)← 0
4: else if p ∈ δΩ then

5: flag(p)← T, D(p)← 0, F (p)← {q ∈ δΩ
∣

∣ ‖q − p‖ ≤ ε}
6: else if p ∈ Ω ∧ p /∈ δΩ then

7: flag(p)← T, D(p)←∞
8: end if

9: end for

10: while ∃qflag(q) = T do

11: p← arg min
q:flag(q)=T

D(q)

12: flag(p)← K

13: for each a ∈ NT

s (p) do

14: C ← F (a) ∪ F (p)
15: D(a)← minq∈C ‖q − a‖
16: F (a)← {q ∈ C

∣

∣ ‖q − a‖ ≤ D(a) + ε}
17: end for

18: end while

Figure 3.11: The Graph-search TFT algorithm (GTFT).

Figure 3.12: The differences between the various algorithms.

size for points inside convex object regions increases with distance to boundary. When

updating a pixel p, the whole candidate feature set for p must be inspected. For N image

pixels, and B boundary pixels, this poses a worst case of O(N(B + log B)) for the three

propagation-based methods and O(NB) for εVDT. Luckily, average real-world images

are far from this worst case. It is difficult to mathematically characterize the average input

image. Nevertheless, to give more insight into real-world running times, we empirically

compare all discussed TFT methods on speed and accuracy of both distances and feature

sets. We use images that are often used as typical input for image processing algorithms

(e.g. [126, 9]).

We implemented all methods and ran them on a Pentium IV 3GHz with 1 GB RAM.

Some design decisions had to be made here. For the propagation-based methods (FMTFT,

ETFT, GTFT) we used a priority queue to efficiently find the temporary pixel at mini-

mum distance to the boundary. Feature sets are stored as STL multimaps [91] containing

(distance,feature) pairs, so that merging two feature sets takes O(n log n) time (as we

must avoid duplicates), while trimming the candidate set takes O(log n). To prevent

3.8 Comparison 43

Figure 3.13: Locations of feature errors for the leaf image, ε =
√

2. From left to right:

FMTFT8, εVDT8, GTFT8, and ETFT8. The boundary and erroneous pixels are thickened

for better display.

floating point precision problems when performing the statement in Eq. 3.6, it is needed

to evaluate ‖q − p‖ ≤ D(p) + ε + φ instead, where φ is larger than the minimum rep-

resentable difference between two floating point numbers. However, φ must be chosen

smaller than

∣

∣

∣

1
2 minp,q,r∈Ω ‖ ~pq‖ − ‖ ~pr‖

∣

∣

∣
: half of the minimum difference between two

distances that can occur on the grid. Alternatively, integer arithmetic can be used when

the equations were rewritten. In our experiments, the use of φ improved the accuracy by

two orders of magnitude.

Table 3.2 compares the distances Dm and feature sets Fm produced by the methods

m to the exact distances De and features F e, calculated using a brute-force approach.

The table shows measurements on the ‘leaf’ image, and cumulative measurements on

10 different images. The considered methods are the FMM, FMTFT, GTFT, εVDT, and

ETFT. We do not consider the AFMM Star, as it is a simple FT and thus superseded by the

more general FTs. For all methods, except the FMM, we ran the 4 and 8 neighborhood

variants, and used 4 different tolerances: 0, 1
2

√
2, 1, and

√
2. For the FMM, we used

only the first-order distance gradient approximation (as mentioned in Sec. 3.2), which

needs just the 4-neighborhood. The variants are denoted as, e.g., FMTFT4 ε0 for the Fast

Marching TFT using a 4-neighborhood and zero tolerance.

Table 3.2 shows that the distance errors decrease by increasing either the neighbor-

hood size s or the tolerance ε. As previously noted, increasing the neighborhood size does

not always eliminate all errors. Indeed, all methods produce one error for the leaf image

with s = 8 and ε = 0. As predicted, using ε = 1
2

√
2 eliminates all errors for all methods;

higher tolerances are not useful for computing exact distances. Finally, our novel method

ETFT4 ε 1
2

√
2 is the fastest of all considered methods.

We next examine the accuracy of the computed feature sets. We compare feature sets

by comparing the average relative differences between a method’s features and the exact

(brute-force method) features, denoted in column “ēr”. Let the relative error er of a pixel

p be er(p) =
∣

∣

∣

|F m(p)|−|F e(p)|
|F e(p)|

∣

∣

∣
, then, ēr is the average of er over all pixels p ∈ Ω. The

tolerance ε is not only a means to compute exact distances, but is also a user parameter

for computing feature sets. Unlike for distances, relaxing the tolerance ε increases the

errors for feature sets. Indeed, it is more difficult to identify all features that are within

44 Chapter 3. Tolerance-based Feature Transforms

Figure 3.14: Timings and relative error (er) of the 8-neighborhood variants for the ‘leaf’

image.

D(p) + ε for higher ε. For ε > 0, none of the considered methods deliver the complete

feature set as determined by the brute force application of Eq. 3.2, although some have

only a few erroneous pixels. From Table 3.2, we see that the 8-neighborhood variants

have the best accuracy (< 0.1%). Of these, ETFT8 is the fastest (see also Figure 3.14).

For applications needing maximum accuracy, εVDT8 is the method of choice. Although

εVDT8 has a better complexity, it is probably slower because of the hidden constant: the

image is scanned twice. Finally, we illustrate the locations of the pixels with erroneous

feature sets for the leaf image in Figure 3.13.

3.9 Conclusion

In this chapter, we both analyzed and extended several distance and feature transform

methods for binary images. Our goal was to provide a guide for practitioners in the field

for choosing the best method that meets application-specific accuracy, speed, and output

completeness criteria, with an eye on the application of distance and feature transforms

in skeletonization methods. First, we perfected the existing simple FT method AFMM to

deliver more accurate results (AFMM Star, Sec. 3.3). We next extended this method to

a new tolerance-based feature transform, FMTFT, that allows e.g. overcoming undesired

sampling effects when computing skeletons (Sec. 3.4). Next, we discussed three other

easy-to-implement TFT methods: the existing εVDT (Sec. 3.5), the new ETFT (Sec. 3.6),

3.9 Conclusion 45

Table 3.2: In each row: distances Dm and feature sets Fm of method m are com-

pared to the exact distances De and features F e. Left table: method comparison for

the ‘leaf’ image. Right table: cumulative comparison of 10 different images. For dis-

tances (D), we show: the number of erroneous pixels (#e), maximum distance error

(max e = maxp |Dm(p) − De(p)|), and average distance error ē. For features (F) we

show: the number of pixels for which feature counts are different (#e), and the average

relative error “ēr” (see text). Timings are denoted in seconds in column t.

Dm F m Dm F m

method m #e max e ē #e ēr t Σ#e Σ#e Σēr Σt
FMM 29381 1.01 0.25 170 0.182% 0.31 147938 1202 0.306% 1.47

FMTFT4 ε0 18 0.19 0.00 320 0.309% 0.31 674 2792 0.576% 1.58

εVDT4 ε0 22 0.19 0.00 218 0.147% 0.13 685 1889 0.304% 0.64

GTFT4 ε0 22 0.19 0.00 218 0.147% 0.28 685 1891 0.304% 1.28

ETFT4 ε0 18 0.19 0.00 317 0.304% 0.13 674 2779 0.573% 0.61

FMTFT8 ε0 1 0.04 0.00 1 0.001% 0.44 144 267 0.072% 2.09

εVDT8 ε0 1 0.04 0.00 1 0.001% 0.16 145 217 0.054% 0.89

GTFT8 ε0 1 0.04 0.00 1 0.001% 0.44 145 217 0.054% 2.11

ETFT8 ε0 1 0.04 0.00 1 0.001% 0.16 144 267 0.072% 0.83

FMTFT4 ε 1

2

√
2 0 0.00 0.00 12428 8.452% 0.50 0 35828 3.888% 3.31

εVDT4 ε 1

2

√
2 0 0.00 0.00 540 0.125% 0.31 0 2285 0.093% 2.60

GTFT4 ε 1

2

√
2 0 0.00 0.00 31835 23.120% 0.31 0 128672 21.655% 1.89

ETFT4 ε 1

2

√
2 0 0.00 0.00 26914 16.744% 0.19 0 146949 17.137% 1.19

FMTFT8 ε 1

2

√
2 0 0.00 0.00 34 0.006% 0.73 0 412 0.010% 5.16

εVDT8 ε 1

2

√
2 0 0.00 0.00 34 0.006% 0.45 0 392 0.009% 3.86

GTFT8 ε 1

2

√
2 0 0.00 0.00 34 0.006% 0.61 0 392 0.009% 3.59

ETFT8 ε 1

2

√
2 0 0.00 0.00 34 0.006% 0.31 0 410 0.010% 2.20

FMTFT4 ε1 0 0.00 0.00 7674 3.879% 0.66 0 23854 1.835% 4.39

εVDT4 ε1 0 0.00 0.00 162 0.025% 0.42 0 415 0.023% 3.42

GTFT4 ε1 0 0.00 0.00 22306 11.805% 0.41 0 107543 13.522% 2.53

ETFT4 ε1 0 0.00 0.00 15916 7.763% 0.25 0 89708 8.963% 1.76

FMTFT8 ε1 0 0.00 0.00 44 0.007% 0.94 0 151 0.004% 6.63

εVDT8 ε1 0 0.00 0.00 32 0.004% 0.63 0 89 0.002% 5.24

GTFT8 ε1 0 0.00 0.00 250 0.084% 0.69 0 1611 0.164% 4.36

ETFT8 ε1 0 0.00 0.00 284 0.089% 0.39 0 1404 0.129% 2.81

FMTFT4 ε
√

2 0 0.00 0.00 17654 8.083% 0.75 0 59747 4.562% 5.27

εVDT4 ε
√

2 0 0.00 0.00 142 0.018% 0.55 0 286 0.015% 4.77

GTFT4 ε
√

2 0 0.00 0.00 36718 19.525% 0.42 0 169396 20.611% 2.64

ETFT4 ε
√

2 0 0.00 0.00 29446 14.286% 0.30 0 152655 14.830% 1.98

FMTFT8 ε
√

2 0 0.00 0.00 43 0.010% 1.13 0 165 0.005% 8.39

εVDT8 ε
√

2 0 0.00 0.00 16 0.002% 0.81 0 27 0.000% 6.81

GTFT8 ε
√

2 0 0.00 0.00 273 0.077% 0.78 0 1105 0.124% 5.25

ETFT8 ε
√

2 0 0.00 0.00 279 0.080% 0.47 0 1130 0.157% 3.58

46 Chapter 3. Tolerance-based Feature Transforms

and the GTFT extension of Lotufo’s graph-searching method (Sec. 3.7).

For computing exact distances, ETFT4 ε 1
2

√
2 is the fastest of the considered meth-

ods. Although there are other, faster, exact DT methods, e.g., [82], the ETFT4 ε 1
2

√
2 can

accommodate early distance-based termination and has a simple implementation (cf. Fig-

ure 3.10). For computing feature sets, all methods produce fairly accurate results (< 0.1%
errors) for tolerances even up to

√
2. εVDT8 is the most accurate, while ETFT8 is the

fastest. Finally, FMTFT8 is still useful, as it is the only considered method that can handle

different speed functions.

Chapter 4

Computing Multiscale Curve and

Surface Skeletons

As indicated in Section 2.6, the boundary-distance importance measure, introduced by

Ogniewicz and Ilg [94], provides many desirable properties for the computation of 2D

skeletons, such as robustness and connectedness of the skeletons, and it additionally pro-

vides a multiscale description of shapes. Its only shortcoming is that there is no immediate

extension to 3D. In this chapter we propose the collapse measure, which generalizes the

boundary-distance measure to 3D, inheriting its desirable properties.

4.1 Introduction

In this chapter we develop a skeletonization approach that computes multiscale curve

and surface skeletons in a unified manner, by combining a global and monotonically-

ascending importance measure with a simple thresholding strategy, controlled using a

single user parameter. Our computed skeletons possess many of the desirable properties

as discussed in Section 2.3. The monotonicity of the importance measure is guaranteed

by combining the straightforward generalization of the boundary-distance measure with

a new measure on the curve skeleton. The monotonicity ensures connectedness of the

skeleton and intuitiveness of the pruning. The global nature of the measure provides ro-

bust skeletons, and by increasing the pruning parameter further, progressively simplified

skeletons are obtained, providing a multiscale shape-descriptor. Another nice property

is that the particular curve skeleton definition that we use facilitates shape segmentation,

which is discussed in Chapter 6. We present a voxel-based implementation of our method.

Because our measure is of a global nature, it is more costly to compute than purely lo-

cal measures (see Chapter 2 for a comparison between local and global measures). We

provide several optimizations to alleviate this. We demonstrate the algorithm on several

real-world examples and suggest applications.

The structure of this chapter is as follows. In Section 4.2 we recall the 2D boundary-

distance measure and present it as an advection process. In Section 4.3 we present our

48 Chapter 4. Computing Multiscale Curve and Surface Skeletons

collapse measure for continuous shapes, ignoring the non-generic cases. This contin-

uous model motivates our voxel-based algorithm and is presented in Section 4.5.1. In

Section 4.5.2 we discuss how our method handles the non-generic cases. Section 4.5.3

discusses how to handle shapes with tunnels, and Section 4.5.4 presents optimizations.

Section 4.6 presents results of our algorithm. Section 4.7 discusses how our method ful-

fills the desirable skeleton properties, and compares it with existing methods. Section 4.8

concludes this chapter.

4.2 The 2D boundary-distance measure

Let us recall the boundary-distance measure, first introduced by Ogniewicz and Ilg [94],

and also used by the AFMM (Chapter 3.3). For each skeleton point, which generically

has two feature points, the measure is defined as the length of the shorter boundary-curve

component delimited by these two feature points. Note that we assume that the shape

has no holes. In case of a hole, there are two boundary components and the two feature

points of skeleton-loop points lie on either component. A workaround for this has been

presented [136], but we do not consider it here.

The boundary-distance measure is monotonic, where monotonicity means that the

measure has only a single local maximum on the skeleton. This property can be seen to

hold as follows. Feature vectors never intersect by definition. If they would intersect,

the intersection point would be a skeleton point itself according to definition Eq. 2.1.

Assuming a genus 0 shape, the feature points of a skeleton point p must always both be

included in the connected boundary-component induced by the feature points of another

skeleton point q. This inclusive relationship ensures the monotonicity of the boundary-

distance measure ρ. We call the single local maximum the root, as the skeleton of a genus

0 shape is a tree. Interestingly, the root could be considered the 0D skeleton S2,0 ∈ S2,1.

Figure 4.1: The boundary-distance measure seen as an advection process. A rectangle

shape Ω, its skeleton S, the root R, a skeleton point p, and p’s feature points a, b. The

collapse of p is formed by the origins of the trajectories (red) through p.

The boundary-distance measure can be seen in the light of an advection model, as

follows. The skeleton of Ω can be defined as those points where the distance transform D
is non-differentiable. Governed by the eikonal equation, the trajectory of each boundary

4.3 Extending the boundary-distance measure to 3D 49

point follows the gradient field ∇D and ends at the skeleton S, where ∇D is undefined.

We can define a flow vector field V that extends∇D to the skeleton, such that trajectories

do not end at S. This is illustrated in Figure 4.1. On non-skeleton points, V is equal to

the distance field gradient V = ∇D. On S, V advects boundary points toward a unique

sink, the root R. The measure ρ for a point p can be defined as the number of particles

that flow through p, which for the skeleton points is equivalent to the boundary-distance

measure.

4.3 Extending the boundary-distance measure to 3D

We now present an extension of the boundary-distance measure to 3D. We present the

model for continuous shapes first, and apply it to digital shapes in Section 4.5.

When extending the measure ρ to a 3D shape Ω with a 2D boundary ∂Ω, we face

the problem that there are still only two feature points per skeleton point, but two fea-

ture points do not split the boundary surface into two connected components. However,

there is a straightforward generalization possible, as was also observed by Costa [28] and

Prohaska and Hege [100]. We interpret the length of the smaller boundary-component in

2D as the shortest distance between the feature points along the boundary, which can be

readily extended to the 3D shape as the shortest geodesic on the 2D boundary. Recall the

definition of the feature transform F : Ω→ P(∂Ω) (Eq. 3.1):

F (p ∈ Ω) =
{

q ∈ ∂Ω
∣

∣ ‖p− q‖ = D(p)
}

, (4.1)

where ‖ ·‖ denotes Euclidean distance and D is the Euclidean distance-to-boundary func-

tion. We assume for now exactly two feature points for each point p. Let ρS : S → R+ de-

note the importance measure which assigns to each surface-skeleton point p the shortest-

geodesic length between the two feature points a, b ∈ F (p):

ρS(p ∈ S) = length(γ(a, b)), (4.2)

where γ(a, b) is the shortest geodesic on ∂Ω between a and b, and length(·) denotes curve

length. For some skeleton points the shortest geodesic between a and b will not be unique,

in which case we assume γ takes one of them. This does not matter for the definition of

ρS as these geodesics are necessarily of equal minimum length.

Intuitively, it can be seen that ρS is small on the skeleton rims, and ρS becomes larger

when further away from the rim. A surface-skeleton point which has both its feature

points on small-scale features of the boundary will receive a small importance, as these

feature points cannot be far apart on the boundary. Otherwise, the shape feature would not

be considered small. For skeleton points which have their feature points far apart geodesi-

cally, the shortest geodesic connecting them must pass multiple small-scale features or a

single large-scale feature, so that they can be considered more important. From another

point of view, ρS quantifies how different the two feature points a, b are, which relaxes

the requirement that a 6= b in the skeleton definition of Eq. 2.1 by putting a threshold on

ρS .

Note that the importance is measured in terms of curve length along the boundary both

for 2D and 3D shapes. There is obviously also a difference: in 2D the feature points of a

50 Chapter 4. Computing Multiscale Curve and Surface Skeletons

(a) 2D dumbbell shape. ρ(p) > ρ(q) > ρ(r). (b) 3D dumbbell shape ρS(p) = ρS(r) < ρS(q).

Figure 4.2: Extending the boundary-distance measure.

skeleton point p divide the boundary into two connected components. The importance of

a point p is expressed as the size of the smaller component, and the unit of the measure has

the same dimension as the boundary. This distance happens to coincide with the shortest

path along the boundary between the two feature points. In 3D however, we take the

length of the shortest geodesic and the measure is of a different dimensionality than the

boundary itself.

Due to this dissimilarity, the problem of the proposed measure ρS is that it is not

monotonic. Again, by monotonicity we mean that the skeleton has only a single local

maximum on S, called the root. Consider Figure 4.2(a), showing a dumbbell shape,

comprised of two discs and a connection between them. In the 2D case, the boundary-

distance measure clearly yields a monotonic ρ such that ρ(r) < ρ(q) < ρ(p). Imagine the

3D shape obtained by revolving the 2D shape around its horizontal axis. By construction,

the surface skeleton is a 1D structure, so that it could also be considered the curve skeleton

of the shape. Due to the rotational symmetry, each (curve and surface) skeleton point has

a contiguous ring of feature points. This is not a stable situation: slightly stretching the

shape along an axis other than the horizontal one, reduces the number of feature points to

two diametrically opposed feature points along the non-stretched axis, which is a stable

situation. Let us assume such an infinitesimal stretching. Then it can be seen that the

monotonicity of ρS is violated, because we have that ρS(p) = ρS(r) < ρS(q) in our 3D

shape (Figure 4.2(b)). Indeed, this extension of the boundary-distance measure cannot

distinguish between point p and r, as the boundary has locally similar configurations. In

2D, ρ can be considered a global measure, as it considers all of the boundary-curve points,

but in 3D ρS can be considered a quasi-global approach: it considers a large part of, but

not the whole boundary surface.

In order to obtain a truly global and monotonic measure, we need to define a different

measure. The key idea is to split the boundary into two components, as we did with the

2D boundary-distance measure, and next define the measure as a surface area, rather than

a curve length. In our (slightly stretched) 3D dumbbell, due to symmetry considerations,

the two feature points of a skeleton point p admit two shortest geodesics (necessarily of

equal length), together forming a ring around the object. Let Γ be the set of shortest

4.3 Extending the boundary-distance measure to 3D 51

geodesics associated with a point p:

Γ(p) =
⋃

a,b∈F (p)

γ(a, b) . (4.3)

A simple closed curve Γ is also called a Jordan curve. The Jordan curve theorem dictates

that a Jordan curve splits the boundary into two connected components (if the shape has

no tunnels). We take the area of the smaller boundary component as our new measure ρC .

Let C(p) denote the set of connected components in ∂Ω induced by the Jordan curve Γ
of p, i.e., the component set of p. Curve-skeleton points generate at least two boundary

components. Our new measure ρC is defined as:

ρC(p ∈ C) = area(∂Ω)−max
c∈C

area(c) . (4.4)

We take the inverse of the largest component area in order to handle non-generic cases in

which |C| ≥ 3, as we see in Section 4.5.2. Now, it can be seen that this new measure has

the desired monotonicity for the three points on the dumbbell shape: ρC(r) < ρC(q) <
ρC(p). We later discuss the monotonicity of ρC for all shapes.

Curve skeleton definition We constructed our 3D dumbbell shape in such a manner

that the curve skeleton coincides with the surface skeleton and its location is known due

to symmetry considerations. We did not yet define the curve skeleton, we only defined a

measure on it. Our new measure can only be defined if the two feature points of the curve

skeleton admit two shortest geodesics. Therefore, we now define the curve skeleton C as

those points that admit a Jordan curve:

p ∈ C ⇔ |Γ| ≥ 2 . (4.5)

Notice the connection with the definition of the Blum skeleton (Eq. 2.1). The curve

skeleton is defined here in terms of feature points that are connected with each other

using two shortest geodesics: the curved-surface equivalent of straight lines. Points on

the Blum skeleton are connected to the boundary by straight lines of minimum length.

It is not obvious that Eq. 4.5 yields a connected curve skeleton for all possible shapes.

However, it seems reasonable to assume, as follows. Curves evolve continuously over

the shape surface when subjected to a continuous deformation. The surface skeleton also

deforms continuously under the same deformation. From these two assumptions, we

conjecture that a curve on S on which each point admits two shortest geodesics between

its feature points, evolves continuously over S. We argue that because our dumbbell shape

with connected curve skeleton is homotopic to any other genus 0 shape, the curve skeleton

of any genus 0 shape is connected.

Dey and Sun [36] independently presented a very similar curve skeleton definition,

namely as the singularities of ρS , which they call the medial geodesic function. They con-

jecture that the singularities correspond to those points that admit two shortest geodesics.

They prove that the singularities of the function consist of curves and/or isolated points

and enforce connectedness of the extracted curve skeleton by applying an erosion opera-

tion to the surface skeleton in order of the medial geodesic function. However, we have

52 Chapter 4. Computing Multiscale Curve and Surface Skeletons

observed in practice that our computed curve skeletons are connected without any en-

forced connectivity step (see the results in Section 4.6). Other differences between both

methods are discussed in Section 4.7.2.

In order to prove that ρC is monotonic for all shapes one has to prove that the compo-

nent sets C have an inclusive relation, that is, any two components c ∈ C(p), d ∈ C(q)
for two points p, q ∈ C cannot partly overlap:

c ∩ d ∈ {∅, c, d} . (4.6)

In other words, the Jordan curves associated with the curve-skeleton points never intersect

(although they can partly coincide). This proof can be roughly sketched as follows. Take

two curve-skeleton points p, q ∈ C. Take that subset Cpq ⊂ C that is between p and q.

Because the skeleton is homotopy equivalent to the boundary [74], the skeleton can be

continuously deformed into the boundary. A simple curve that lies completely inside one

skeleton sheet can be continuously deformed into two simple curves on the boundary, one

on each side of the shape. The feature points F (Cpq) thus generate two curves l,m on

∂Ω. Each shortest geodesic γ ∈ Γ(Cpq) has one endpoint on l and the other endpoint on

m. Such a geodesic γ does not intersect l or m in any other point as it would no longer

be the shortest geodesic. Now, if a shortest geodesic γp ∈ Γ(p) intersects γq ∈ Γ(q),
it needs to have (a multiple of) two intersection points. Although such an intersection

might be possible, we have never observed this in our example shapes. In any case,

non-intersecting Jordan curves are still guaranteed in this situation by taking the same

shortest path between the intersection points for both Jordan curves Γ(p) and Γ(q). A

more thorough proof of the inclusiveness property of components would also need to

consider parts of the curve skeleton that do not lie within one sheet.

Collapse measure We now combine our new global measure ρC with the quasi-global

measure ρS to come to a monotonic measure for the whole skeleton. For points on the

curve skeleton we use the curve-skeleton measure ρC , whereas we use the measure ρS
for other surface-skeleton points S \ C. We obtain our new global importance measure

ρ : S → R+ for 3D shapes, called the collapse measure:

ρ(p ∈ Ω) =

{

ρC(p) if p ∈ C
ρS(p) if p ∈ Ω \ C (4.7)

Formally, the measures ρS and ρC cannot be combined because they are of a different

dimensionality. The first expresses curve length, whereas the second expresses an area.

By combining them, we essentially interpret ρS as an area, obtained by letting the short-

est geodesics have a 1-unit width. Indeed, in our voxel-based setting, presented in Sec-

tion 4.5, this is completely natural as curves are computed as voxel chains, and thus have

a 1-voxel width.

To prove that ρ is monotonic we have to prove that for each point p there exists a path

to the root R on S such that ρ is monotonically ascending along the path. We showed

that this is true for the curve-skeleton points (Eq. 4.6). Remains to show this is true for

the other surface-skeleton points. For each surface-skeleton point p, there should be a

path toward a curve-skeleton point q along which ρS is ascending. Suppose that no such

4.4 The collapse measure as an advection model 53

path exist. This means that a point p trying to reach q is stuck in a local maximum of ρS .

But all local maxima are curve-skeleton points [36], as all singularities have to admit two

shortest geodesics. Finally, when a path reaches the surface skeleton and continues along

the curve skeleton, it should hold at the point of transition q ∈ C that ρC(q) ≥ ρS(q).
This is obvious when we think of the surface area ρC for a point q as the summation of the

Jordan curves of the smaller part of the curve skeleton delimited by q, which necessarily

includes the curve Γ(q) that generates the area.

Simplified skeleton After we have computed ρ for all points in the object Ω, we obtain a

simplified skeleton Sτ by simply applying the thresholding strategy. To uniformly handle

objects of different sizes, we normalize ρ by dividing it by the total object surface area:

Sτ (Ω) =

{

p ∈ Ω
∣

∣

∣

ρ(p)

area(∂Ω)
> τ

}

, (4.8)

where τ is the desired simplification level. Note that we do not need to perform any

post-processing step as our simplified skeletons are connected by default, as the collapse

measure ρ is monotonic. If only the simplified curve skeleton is desired, denoted Cτ , one

applies the same thresholding strategy to ρC on C. Likewise, only the simplified surface

skeleton can be computed by applying the thresholding strategy to ρS . Unlike Cτ , these

simplified surface skeletons, in which the curve skeleton does not play a role, are not

guaranteed to be connected, especially for higher values of τ .

As we already mentioned, ρ is essentially of a higher dimensionality on the curve

skeleton C than on the remainder of the surface skeleton S \ C. Whereas ρC on C (1D)

denotes a collapsed area (2D), ρS on S (2D) denotes a curve length (1D). This means that,

when we increase τ , the surface skeleton typically disappears completely even before the

curve skeleton starts to get simplified. This is desirable in applications where the curve

skeleton is considered more important. However, in other applications, this behavior may

not be desired, as we show in Section 4.7. For such applications, we can “equalize” ρ
by reducing the dimensionality of ρC from an area to a length by taking its square root.

We denote the equalized skeleton by S ′τ . In contrast to Sτ , the equalized skeleton gets

simplified uniformly both in its curve and in its surface components when τ is increased.

Note that this is just one of the possible ways to equalize ρ. Other options leading to other

applications are open to further study.

4.4 The collapse measure as an advection model

As explained in Section 4.2, the 2D boundary-distance measure can be seen to result

from an advection process. A vector field can be defined inside the object in such a

way that the measure is equivalent to the advected mass through the point. It would be

nice if our collapse measure ρ can also be seen to result from some advection process.

In fact, we conjectured this in earlier work [115]. The idea was that the points flowing

through a surface-skeleton point p are precisely the points coming from its associated

shortest geodesic. The feature points of p flow through p directly by means of the distance-

field gradient ∇D, the other points on the geodesic are feature points of their respective

54 Chapter 4. Computing Multiscale Curve and Surface Skeletons

skeleton points and are advected through p by defining the flow field V on S appropriately.

On the curve skeleton, V is simply defined as tangent to it toward the global root, which

can be considered the 0D skeleton S3,0. We can see the definition of ρC as the result of

an advection process, as V can be unambiguously defined on the curve skeleton, namely

in direction of the root.

To make such a definition of V on S possible, we should have the following. If we

take the shortest geodesic γ associated with a curve-skeleton point p and take a point a
on γ, where a is the feature point of q ∈ S, it should hold that the involute b of a (the

other feature point of q) also lies on γ. Otherwise, V cannot be defined on V: a should

be advected through p but b should not. Although this is true for some simple objects,

like a box, we have found that the conjecture does not hold for more complex objects. We

conclude that, although the measure ρC can be seen to result from an advection model,

the combined measure ρ cannot.

4.5 Algorithm

This section presents a voxel-based algorithm which implements the method described in

Section 4.3. A strong point of our algorithm is that it works on the object and boundary

voxels only and not on any derived structures. In particular, there is no need to com-

pute S first: all object voxels are processed independently. This also makes a parallel

implementation straightforward.

Section 4.5.1 discusses the implementation into more detail. Section 4.5.2 shows

how the algorithm deals with the non-generic cases, something we have ignored thus far.

Section 4.5.3 shows how we handle shapes with tunnels. Finally, in Section 4.5.4 we

present some techniques that are not essential for the skeleton computation, but are used

to speed-up the computation.

4.5.1 Algorithm details

Our algorithm works on a binary voxel shape Ω as described in Section 2.1. Let Ω be

the set of interior voxels, and let ∂Ω be the set of boundary voxels. A boundary voxel-

graph is defined in which the boundary voxels are nodes and two nodes are connected by

an edge when their voxels are 26-adjacent. The pseudocode of the algorithm is shown

in Figure 4.3, and the algorithm is illustrated in Figure 4.5. It consists of four stages:

computing the (extended) feature transform, the shortest geodesics, the collapse measure,

and finally the simplified skeleton. We discuss the stages in order.

First, we have to compute the feature transform F for the voxel shape. For this we

use the 3D extension of Danielsson’s algorithm [31], which is a raster-scanning approach.

Although the method is not exact, this is not a problem, as the detection of the curve

skeleton does not rely on the exact position of feature points. There are two problems

with simply using the feature transform F thus obtained. The first problem is that, while

surface skeleton points always have at least two feature points in R
3, this is not neces-

sarily so in discrete (Z3) space. In a box of even height for example, no voxels on the

center surface-skeleton sheet have two feature voxels (Figure 4.4(a)). Second, even if for

4.5 Algorithm 55

1: compute feature transform F on Ω
2: for each object voxel p ∈ Ω do

3: F ← ⋃

x,y,z∈{0,1} F (px + x, py + y, pz + z)

4: Γ← ⋃

a6=b∈F shortestpath(a, b)
5: if Γ contains a Jordan curve then {curve skeleton voxel}
6: C ← {connected components in ∂Ω \ Γ}
7: ρ(p)← area(∂Ω)−max

c∈C
area(c)

8: C ← C ∪ {p}
9: else {surface skeleton or non-skeleton voxel}

10: ρ(p)← max
γ∈Γ

length(γ)

11: end if

12: ρ(p)← ρ(p)
area(∂Ω)

13: end for

14: Sτ = {p ∈ Ω | ρ(p) > τ}

Figure 4.3: Pseudocode of the complete skeletonization algorithm.

Figure 4.4: Problems of the discrete feature transform for skeletonization. The cross-

section of a 3D box is shown. Feature points shown as crosses, shortest paths as magenta

curves. The surface skeleton cannot be detected in p: p has only one feature point (a). The

curve skeleton cannot be detected in q: q has only one shortest path (b). Both skeletons

can be detected in r when using the extended feature transform (c).

all surface-skeleton points two feature points are obtained, we might find only one short-

est path for intended curve-skeleton voxels because of the discretization (Figure 4.4(b)).

Although we could use a tolerance-based feature transform (Chapter 3) to solve these

discretization issues, we prefer the following solution as it yields less feature points. We

introduce the extended feature transform F . The extended feature set F (p) is obtained by

merging the feature set of p with the feature sets in a 2×2×2 neighborhood that includes

p (Figure 4.3, line 3):

F (p) =
⋃

x,y,z∈{0,1}
F (px + x, py + y, pz + z) (4.9)

Figure 4.4(c) shows that using F we obtain (at least) two shortest paths for curve-skeleton

voxels that form a loop.

56 Chapter 4. Computing Multiscale Curve and Surface Skeletons

In the second stage of our algorithm, we have to compute the shortest paths between

feature points (Figure 4.3, line 4). The shortest path is used as the discrete-space approx-

imation to the shortest geodesics and is computed as a 26-connected path in the boundary

graph, using Dijkstra’s algorithm [38]. One can estimate the length of the original short-

est geodesics, which the shortest path approximates, by summing the Euclidean distances

between adjacent voxels in the path, yielding the weights 1,
√

2, and
√

3 for the three

adjacency relations. We use the length estimator of Kiryati and Székely [65] instead, who

suggest using the experimentally obtained weights of 0.9016, 1.289, and 1.615, as they

generally better approximate curve lengths on digitized surfaces. We compute Γ as the set

of all the shortest paths between all feature points in F (p) (Eq. 4.3). Although it seems

computationally expensive to compute all shortest paths between all feature points, F is

typically small (≤ 8), and most paths are between neighboring voxels so that Dijkstra’s

algorithm terminates quickly. Typically, two shortest paths of considerable size need to be

computed for surface-skeleton voxels, and four for curve-skeleton voxels. Furthermore,

we cache shortest paths to prevent computing the same shortest path twice. We detail on

the caching scheme in Section 4.5.4.

In the third stage, we have to classify the object point p as being a curve-skeleton

point or not. In our continuous model, a point p is on the curve skeleton C when it admits

two shortest geodesics (Eq. 4.5). However, because of the extended feature transform, the

shortest-path set Γ contains numerous shortest paths even for non-curve-skeleton points,

thus we have to use a different detector. Because the voxels in the shortest-path set

Γ form the discrete equivalent of a continuous Jordan curve, we could use the Jordan

curve theorem to detect curve-skeleton points as points whose Jordan curve divides the

boundary graph into at least two connected components. We took this approach in earlier

work [115]. However, this has as disadvantage that it does not work for shapes with tun-

nels, and that computing connected components is a relatively slow process that should

be avoided if possible. Therefore, we opt for a different approach. The voxels occupied

by the discrete Jordan curve, consisting of several shortest paths, do usually not form a

nice one-voxel thick ring. Instead, the ring might be thick at some places and contain

small holes. Therefore, we slightly dilate the voxels in Γ on ∂Ω so that we obtain a thick

surface-band Γ′ centered at the noisy ring. The dilation is performed by adding points

to Γ′ that are within a short distance of Γ in the boundary graph (again using Dijkstra’s

algorithm and the length estimator). Next, we determine the number of connected bor-

der segments that Γ′ has. If two or more segments are found, p is concluded to be a

curve-skeleton point. Empirical studies on an extensive family of real-world 3D shapes

show that a fixed (geodesic) dilation distance of 5 voxel lengths is enough to obtain two

connected boundaries if Γ is the discrete representation of a Jordan curve. When three

or more boundaries for Γ′ are found, p can be considered a curve-skeleton junction (we

use this in our part-type segmentation method that we present in Chapter 6). If we detect

the point as a curve-skeleton point, we add it to the set of curve-skeleton points C (Fig-

ure 4.3, line 8). Even though we cannot compute the collapse measure ρC on the C-loops

for shapes with tunnels, as C has only 1 component on these C-loops, it is possible to

compute the curve skeleton C. The Jordan curve detection by counting the border seg-

ments of the dilation Γ′ assumes that the dilation does not change the topology of the

ring. Therefore, our method does not support shapes with small tunnels, as a small tunnel

4.5 Algorithm 57

may provide a way to connect the two boundaries of the dilated path-set. Such tunnels

could be removed by standard morphological operations for example.

After classification of p, we assign as importance to the curve-skeleton point the area

of the smaller connected components in the boundary graph induced by Γ(p). Although

regular curve-skeleton points admit exactly two components, |C| = 2, for curve-skeleton

junctions holds |C| ≥ 3. Another reason why C might have more than two components

is that a discrete Jordan curve consists of at least four shortest paths which might have

(small) holes. Although such a shortest-path set does divide the surface into two compo-

nents like the Jordan curve does, it may have small openings between the shortest paths

themselves. Because of these two cases, we combine the areas of all the components

except the largest (Figure 4.3, line 12). Although we could use a more accurate and so-

phisticated area estimator to measure the component’s size, we simply take the number

of voxels in the component as the area, as we found this yields good results in practice.

If the object point is not on the curve skeleton, we assign the maximum shortest-path

length in Γ (Eq. 4.7, and Figure 4.3, line 10). Note that we assign this length also to

non-surface-skeleton points. In this manner, we treat all object points equally. The non-

surface-skeleton points will be simplified before the surface-skeleton points for small val-

ues of τ . Experimental evidence suggests that using a τ of 5 (voxel lengths) discards all

object points and delivers the full (non-simplified) surface skeleton.

Finally, after computing the importance ρ for each object-point p, we produce a sim-

plified skeleton by keeping only points for which ρ(p) > τ . In order to compute the

equalized skeleton S ′τ , the algorithm is slightly modified by taking the square root of ρ on

C (Figure 4.3, line 7), and normalizing by
√

area(∂Ω) (Figure 4.3, line 12).

4.5.2 Non-generic cases

Our model from Section 4.3 assumed the generic case of a skeleton point having exactly

two feature points and admitting one or two shortest geodesics between them. An example

of such a generic curve-skeleton point is shown in Figure 4.6(a). However, our algorithm

from the previous section can also deal with the non-generic cases, as explained in this

section. We can distinguish two cases:

• Skeleton points having three or more feature points.

• Skeleton points having three or more shortest geodesics between their two feature

points.

We begin explaining the first case. Recall that surface skeletons consist of manifolds

with boundaries, called sheets and that sheets intersect in curves (Sec. 2.2). Points on

these curves have more than two feature points. Figure 4.6(b) shows such a configuration

in a box with a vertical ridge. The selected curve-skeleton point lies on the intersection

curve of three sheets and thus has three feature voxels. This is a limit case. A point lying

on one sheet has one pair of feature points, but a point lying on the intersection of three

sheets has three pairs of feature points. Each feature pair shares each of its two feature

points with an other pair, yielding three distinct feature points. No two feature points

among these three admit two shortest geodesics between them, so that the curve skeleton

58 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Figure 4.5: Illustration of our skeletonization algorithm. Four points p, q, r, s are selected.

(a) The extended feature sets F . (b) The shortest-path sets Γ, resulting in ρS shown in (g).

(c) The dilated path sets Γ′. (d) The connected border segments of the dilated path-sets.

(e) Point r and s are marked as curve-skeleton voxels, as we count at least two border

segments for them. (f) We compute the component set C for each curve-skeleton voxel,

resulting in measure ρC shown in (i). (h) The combined measure ρ.

Figure 4.6: (a) Generic case. (b-d) Non-generic cases. The curve skeletons are shown

with a rainbow color map encoding the collapse measure ρ. In each image, the shortest

path set for a selected curve skeleton voxel is shown in magenta. Feature voxels are shown

as spheres and are connected to the selected voxel using line segments.

4.5 Algorithm 59

cannot be detected using this criterion. However, our algorithm combines all shortest

geodesics, so that we now obtain a (discrete) Jordan curve that splits the object surface

into two components, correctly detecting the curve-skeleton point. Another example of a

point having three or more feature points is that of a curve-skeleton point whose inscribed

ball has a finite contact with the boundary. This yields a continuum of feature points,

which in voxel space results in a limited number of feature voxels. Combining the shortest

paths between all feature voxels again resolves the issue as it creates a Jordan curve that

splits the object surface into two components. An example of this situation in a cylinder

shape is shown Figure 4.6(c).

Combining all shortest geodesics might result in slightly wrong component sets in

the uncommon occasion that a curve-skeleton point lies on the intersection curve of more

than three sheets. In this case, not every two feature points and the associated shortest

geodesic between them correspond to a sheet. For example, in the case of an extruded

cross, one has four intersecting sheets and the intersection line coincides with the curve

skeleton. There are 4 feature points, resulting in six shortest geodesics, where there should

be 4. The resulting shortest-path set Γ contains some shortest paths that do not lie on the

Jordan curve in the continuous case. The collapse measure might differ slightly from what

it should be, violating monotonicity. However, we did not find this to be a detectable issue

in any real-world example (see Sec. 4.6).

The second non-generic case is that of a point p ∈ C having three or more shortest

geodesics between its two feature points, which happens at junction points of the curve

skeleton (Figure 4.6(d)). This is a limit case, since each curve-skeleton point next to the

junction does admit two shortest geodesics. The difference with the generic case is that

we obtain more than two connected components in case of a junction point. The algorithm

deals with this by always taking the area of ∂Ω\c as the value of ρ(p) (Figure 4.3, line 7),

where c is the largest component in C.

4.5.3 Handling shapes with tunnels

So far, we have assumed that Ω has no tunnels, so that the curve skeleton C is a tree.

The reason for this is that Jordan curve theorem does not hold everywhere for shapes

with tunnels: it only holds for curve-skeleton points that are not on a curve-skeleton loop.

These loop points have shortest geodesics that go from one side of the shape to the other

side through at least one tunnel. Fortunately, we can detect the problematic C-loop points:

these are points in C whose component set C has cardinality 1. We would like to assign an

importance to these loop points so that we can also create simplified skeletons for shapes

with tunnels. In assigning an importance the most important constraint is that ρC should

be monotonic. Imagine a curve skeleton with a single loop with multiple C-branches

connected to it (Figure 4.7). Each branch endpoint that lies on the loop has a valid ρC
assigned to it. The easiest way to create a monotonic ρC is to assign to all loop points the

same value, namely the maximum ρC value among the branch endpoints. It makes sense

to assign the same value to all loop points: why should one loop point be preferred over

the others? When simplifying the skeleton by increasing τ , all C-branches but the most

important one are removed first, after which the whole loop is completely removed.

When we see ρC as the result of an advection process, the loops also present a problem.

60 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Figure 4.7: A curve-skeleton loop with three branches. Shortest-path sets are shown for

the branch endpoints. The flow of mass toward the root is indicated by arrows.

From each curve-skeleton point there should be a path that ends in a unique sink (the root).

When the advected particle encounters a loop, it is not clear which direction should be

taken. Our solution means that the particle makes a full tour on the loop before it leaves

to the branch containing the root. Another way to look at it is that the particle takes both

routes. Choosing a particular direction over the other one leads to different solutions,

resulting in non-uniform values of ρC on the loop. For example, in Figure 4.7 one might

want to guide the mass through the thick part of the loop, as it could be considered more

important than the thin part. The result would be that when increasing τ , the loop is first

opened (somewhere) on the thin part. The choice of the opening is rather arbitrary and

it can be hard to generalize this idea to multiple loops. Although these alternatives are

interesting, we have not pursued this direction and leave it as future work.

4.5.4 Optimizations

Our algorithm considers all object voxels and computes multiple shortest paths for each

of them. The global nature of the importance measure makes it slow to compute when

compared to local approaches (e.g., the feature-angle measure). To improve the execution

time, we have implemented several optimizations.

First, instead of using the regular Dijkstra’s algorithm, we use A* graph-search al-

gorithm [48]. When using Dijkstra’s algorithm to compute a shortest path between two

nodes (voxels) a and b in the boundary voxel-graph, the shortest paths are found between

a and every intermediate node c, in the order of path length from a to c. The algorithm

stops when b is reached. The A* algorithm modifies Dijkstra’s algorithm by improving

the order in which nodes are visited based on a heuristic function h, in such a way that

point b is likely to be found earlier. Instead of using just the length of the path ac as

the cost function for determining the order of points, A* takes as cost function the path

length from a to c plus the heuristic function h, estimating the distance from c to b. In

our case, in which the graph represents the boundary of a geometrical object, we use the

Euclidean distance between c and b as h. The Euclidean distance is a lower bound for the

shortest-path length, and thus makes for a suitable heuristic.

Second, we cache all shortest paths computed to prevent computing the same shortest

path twice. The main reason for caching is that we compute the shortest paths between all

feature points in the extended feature set. By construction, the feature sets of neighboring

points have some feature points in common. We store for each pair of feature points the

4.5 Algorithm 61

length of the shortest path and the voxels it occupies. The size of the cache is a user

parameter and presents a trade-off between speed and memory usage. In our experiments

a cache size of 50 MB was used, storing a maximum of 13 million voxels, enough to

store the paths for the shapes shown in this chapter, which presents a speed-up factor of

3 to 4 approximately. For the resolutions we used (see Section 4.6), larger cache sizes

do not improve speed significantly. We have considered using the cached shortest paths

to speed up Dijkstra’s algorithm itself. If in Dijkstra’s algorithm we encounter a point c
for which the shortest path to the target point b is already known, we are done. However,

it is rare that the shortest path has already been computed to the target feature point,

as feature points are seldom shared between skeleton points, besides those due to the

extended feature transform.

Third, we create a spatial subdivision scheme on the boundary graph to speed-up the

connected component computations necessary for computing ρC . Computing the sizes

of the connected components C induced by the shortest-path set Γ for a point p in a

naive manner requires us to visit each boundary point. Doing this for each curve-skeleton

point implies a heavy computational burden. To alleviate this, we create, after having

constructed the boundary graph, a (simple) spatial subdivision on the boundary graph in

the form of a tree-data structure. Each node in the tree represents and stores a compact

area (set of voxels) on ∂Ω, that is completely included in its parent node’s area. The

top node in the tree covers the whole boundary. The 8 child nodes of a parent node are

constructed by dividing 8 seed nodes evenly over the node, which are then grown so that

they cover the whole of the parent area. Our experiments indicated that the placement

does not need to be optimal to obtain a good speed-up. The subdivision process is done

recursively until there is a leaf node for each voxel. After the subdivision, for each node

the neighboring nodes at the same level are determined. Querying the data structure with

a shortest-path set Γ as input and the induced components sets as output works as follows.

First, all nodes in the tree that cover Γ are marked. For this purpose, both Γ and the node

area are represented as sorted lists so that intersections can be computed efficiently. The

idea is that the tree prevents us from visiting all boundary voxels as we can consider large

areas of the boundary at once, by means of their representative nodes. Only for nodes that

intersect Γ we need to traverse down the tree. After all nodes occupied by Γ are marked,

the connected component labeling begins. We label nodes breadth-first. The idea is that

nodes marked as covering Γ are never labeled. When a marked node is tried to be labeled,

the algorithm traverses down the tree and recursively labels the children instead. When

possible, that is, when the parent node is not marked, the algorithm traverses up the tree

as far as possible and continues labeling. Finally, the tree is traversed from the top and the

connected components are output in the form of sets of labeled nodes. The area (number

of voxels) of an output component is computed by summing the voxel set sizes of the

nodes.

Due to the spatial subdivision scheme, our algorithm gains in speed because not every

voxel needs to be visited when finding connected components. Only in the vicinity of Γ
is the tree traversed down to the lowest level. The complexity is improved from O(b) to

O(log b), where b is the number of boundary voxels. For the complexity of the complete

algorithm, see Section 4.7.1.

The speed-ups obtained using these techniques are indicated for two shapes in Ta-

62 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Table 4.1: Table with optimization measurements. Timings are wall-clock times, in sec-

onds.

shape without any with caching with A* with subdivision with all

Hand256 773 545 510 96 60

Rockerarm256 1877 1161 1148 1336 170

Table 4.2: Table with measurements. See the text for details.

shape dim |Ω| |∂Ω| #paths #comp. paths t comp. t mem total t

Bird512 262x132x488 717k 95k 750k 73k 126s 59s 303M 196s

Cow256 78x146x244 549k 44k 357k 47k 9s 14s 125M 28s

Cow384 115x217x366 1,904k 102k 811k 151k 32s 102s 319M 148s

Cow512 154x289x488 4,575k 183k 1,441k 345k 75s 302s 592M 411s

Dino512 159x453x487 3,218k 177k 1,413k 231k 61s 156s 590M 246s

Dragon512 214x336x488 5,656k 320k 2,664k 491k 152s 254s 747M 475s

Hand512 488x205x342 3,137k 167k 1,348k 211k 132s 171s 570M 332s

Homer512 162x488x276 3,947k 191k 1,517k 324k 62s 207s 561M 299s

Horse512 488x421x228 4,900k 214k 1,698k 349k 117s 289s 716M 449s

Plane 217x304x98 545k 110k 912k 71k 257s 57s 306M 323s

Mobile384 366x224x348 1,211k 175k 1,418k 123k 71s 83s 482M 171s

Octopus384 366x259x335 610k 76k 680k 64k 16s 24s 321M 54s

Rockerarm256 246x126x76 528k 67k 541k 58k 68s 31s 176M 105s

Rockerarm384 366x188x112 1,860k 154k 1,197k 156k 301s 142s 399M 461s

ble 4.1. Clearly, the spatial subdivision delivers the largest speed-up, as it is an improve-

ment of the algorithm complexity, whereas the other two are not. On the other hand, this

latter optimization is only used on the curve skeleton, whereas the other two also speed

up the surface skeleton computation.

4.6 Results

We have implemented our algorithm in C++. Our software can be downloaded at http:

//www.win.tue.nl/∼dreniers. We ran our software on a Pentium 4, 3GHZ with 1GB of

RAM. As input we used several complex polygonal meshes [2], voxelized using bin-

vox [84] for various resolutions. We used object resolutions ranging up to 5123 voxels.

For each object the resolution that we used is appended to the object’s name. Various mea-

surements are shown in Table 4.2. Column “dim” indicates the dimension of the object.

Columns “|Ω|” and “|∂Ω|” indicate the number of boundary and object voxels respec-

tively. Columns “#paths” indicate the number of computed shortest paths, and “#comp.”

indicates how many times the connected components are computed (Figure 4.3, line 6),

whereas “paths t” and “comp. t” show the total wall-clock time for both. The last column

shows the total wall-clock time for the whole algorithm to complete. As can be seen, our

multiscale skeletons can be computed within 10 minutes for all objects. Note that setting

the user parameter τ to obtain skeletons simplified to different degrees can be done in

real-time. Column “mem” shows the peak memory usage, which is below 800 MB for the

objects we considered. We did not optimize for memory usage: it could be reduced easily

4.6 Results 63

Figure 4.8: Simplified skeletons Sτ of the Dragon, Mobile, and Cow objects at four

thresholds τ . The importance measure is visualized using a rainbow color map.

Figure 4.9: Simplified equalized skeletons S ′τ for the Bird object.

Figure 4.10: The non-simplified curve skeleton C for several objects.

64 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Figure 4.11: The importance measure ρC for several shapes, visualized using a rainbow

color map. For the Hand and Horse objects we show the areas (magenta) associated with

several selected curve-skeleton voxels (white). The line segments indicate feature voxels

of the selected voxels.

τ=12 τ=25 τ=50

Figure 4.12: Simplified surface skeletons of a human brain for three simplification levels.

by not storing intermediate results as we do now. All results shown have been rendered

using a raytracer [99] for better display. The voxel surfaces are rendered using implicit

surfaces.

Figures 4.8 shows the simplified skeletons Sτ of three objects as computed by our

algorithm, with the indicated settings of τ . The importance measure is visualized using a

rainbow color map, mapping 0 to blue (i.e., unimportant skeleton points) and 1 to red (i.e.,

central, important skeleton points). We observe that the non-generic cases in the Mobile

object, such as the cylinder and extruded star, are handled well. The surface skeleton is

mainly blue because its importance measure is significantly smaller than that of the curve

skeleton, as explained in Section 4.3. In order to highlight the variation of ρ on S \ C
we can better use the equalized skeleton S ′τ . Figure 4.9 shows S ′τ for the Bird object.

4.7 Discussion 65

It is interesting to see how Sτ and S ′τ progress differently when increasing τ . With S ′τ ,

the surface and curve skeleton are simplified more simultaneously, especially near the

periphery of the skeleton. This can be useful for some applications, as explained in the

next section.

Figure 4.11 shows the curve skeleton and associated collapse measure ρC in isolation

for various objects. We observe that the extracted curve skeletons reach into fine structures

like the tentacle tips of the Octopus object and the Dinopet’s fingers, are centered with

respect to the object surface, and exhibit very little wiggle noise. Figure 4.10 shows

several non-simplified curve skeletons C. We observe some unimportant disconnected

parts in the curve skeletons, the reason for which is explained in Section 4.7.1. Note

again that these results are obtained without any thinning or other post-processing step

enforcing connectivity.

Finally, Figure 4.12 shows the simplified surface skeletons for a human brain, ob-

tained by segmenting a 3D grayscale image obtained using an MRI scanner. The brain

has a complex folding surface, which can be problematic for skeletonization methods as

the resulting skeletons are very complex. The curve skeleton is not shown as it is not

meaningful for shapes like these that do not have a clear part structure. Because the brain

is convex from a global point of view, the simplified surface skeleton is still connected.

As can be seen, our method is able to produce the structurally complex surface skeleton

of the brain with no problems.

More results of our method are available online [106], including animations of Sτ ’s

progression.

4.7 Discussion

Because curve and surface skeletonization methods differ in the precise skeleton defini-

tion that they use, the object representation they work on, and the applications they target,

they are usually evaluated and compared by their skeleton properties as discussed in Sec-

tion 2.3. In Section 4.7.1 we discuss how our approach satisfies these desirable properties.

In Section 4.7.2, we compare our approach to some other approaches by visual inspec-

tion of the results, and discuss how several key aspects of our approach relate to other

approaches.

4.7.1 Properties

The curve and surface skeletons are invariant under isometric transformations modulo the

voxel discretization. The importance measure is slightly affected by object rotations be-

cause the shortest-path length computation by using Dijkstra’s algorithm is. Alternatively,

more accurate methods for computing shortest paths could be used [63]. Both skeletons

are up to two voxels thick due to the use of the extended feature transform; a simple post-

processing step could be added to make it one voxel thin, if desired. The surface skeleton

is centered, as far as the discretization allows it, because it is defined as those points hav-

ing at least two feature points. The curve skeleton is centered on the surface skeleton with

respect to the importance measure ρS , and is thus also centered within the object.

66 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Figure 4.13: The skeletons can be made robust by increasing the threshold τ .

Figure 4.14: (a,b) Unstable surface and curve skeleton under ripple noise. (c,d) Robust

skeletons.

Figure 4.15: (a) Illustration of insignificant disconnections in non-simplified curve skele-

ton C of the Dino shape. (b) Selected voxel is detected as C-voxel. (c) Selected voxel not

classified as C-voxel. Associated feature voxels indicated by line segments. Shortest-path

set Γ shown in magenta. Border segments of dilated path set Γ′ shown as red and green.

4.7 Discussion 67

Because the collapse measure ρ is monotonically ascending, the simplified skeletons

Sτ are in principle connected by default. No special homotopy-preserving provisions are

needed to ensure this, unlike e.g. [127, 137, 36], due to the global nature of the collapse

measure. Nevertheless, we observe in Figure 4.10 that the computed curve skeletons may

have some insignificant parts that are not connected to the main part. These disconnec-

tions of curve-skeleton parts are caused by the way in which we detect the curve skeleton,

in combination with inaccuracies in feature point and shortest path computation due to the

discretization. This is illustrated in Figure 4.15. Figure 4.15(b) shows a selected voxel

which has been correctly identified as a curve skeleton voxel: we count two connected

components in the boundary of the dilated path set Γ′. However, in Figure 4.15(c) we se-

lected a nearby voxel that has not been detected as a curve-skeleton voxel, and which has

a slightly different configuration of feature voxels. This configuration happens to generate

more shortest paths, which causes the smaller area to be filled by the dilation, resulting in

only one boundary component: the voxel is incorrectly classified as a non-curve skeleton

voxel, causing a disconnection. These disconnections are not problematic because they

have a low importance ρC : the area bounded by the red border segment in Figure 4.15(b)

bounds only a small area and does not represent a significant feature. The disconnected

parts can be safely removed from C if desired, and disappear anyway when raising the

threshold τ , as can be seen in Figure 4.11.

The simplification, or pruning, is continuous for the vast majority of shapes. That is,

small changes in τ result in small changes in Sτ . The continuity can be ascribed to the

fact that the shortest geodesic of a point q ∈ S evolves smoothly over S, so that ρS is con-

tinuous. The Jordan curves in general evolve smoothly over C except at curve-skeleton

junctions, so that ρC is continuous on C and only contains jumps at C-junctions. The

simplified skeletons can be considered a multiscale shape descriptor, because ρ is mono-

tonically ascending on S \ C. Surface-skeleton points whose feature points are separated

by large boundary features are assigned a higher importance than points whose feature

points are separated by small features. Likewise, curve-skeleton points that represent ar-

eas containing small boundary features receive a lower importance than curve-skeleton

points representing areas containing large features. Our multiscale representation is hier-

archical because ρ represents a continuous hierarchy of nested skeletons in which each

Sτ represents a separate level.

Our approach satisfies the two additional desirable properties we proposed in Sec-

tion 2.3 for methods that compute both curve and surface skeletons. First, the curve

skeleton is included in the surface skeleton, because the curve skeleton is considered as a

special case of the surface skeleton, namely as those points having more than one shortest

geodesic. Second, our importance measure treats the non-skeleton, surface and curve-

skeleton points in a uniform manner: each object point is processed independently and

receives an importance given by a geometric quantity computed on the surface boundary.

Our approach has only a single parameter τ ; no other hacks or settings are needed.

The meaning of the importance ρ which is thresholded by τ is quite simple and intuitive:

for a given skeleton point p, ρ(p) represents the fraction of the object’s boundary which

is represented by that point.

The robustness property requires the curve and surface skeletons of a noisy surface

to be close to that of the corresponding smooth surface. We can achieve this behavior

68 Chapter 4. Computing Multiscale Curve and Surface Skeletons

by setting τ such that skeleton parts due to noise are pruned. Figure 4.13 shows the

Dino object with and without boundary noise, obtained by randomly displacing points a

distance of around 5% of the object radius in boundary-normal direction, and its skeleton

for two thresholds τ . As expected, we observe that S ′τ of the noisy Dino (b) is much

noisier than S ′τ of the Dino without noise (a) for small values of τ : τ < 0.05. The

skeleton of the noisy Dino can be made robust (d) by increasing τ . At τ = 0.1, the

structure of the simplified skeleton of the noisy Dino (d) is comparable to the skeleton

of the non-noisy Dino (c). The importance measures on both are also very similar as

indicated by the colors. In the above, we used the simplified equalized skeleton S ′τ . If we

use the non-equalized skeleton Sτ , the spurious branches of the curve skeleton remain,

until τ is so high that the surface skeleton is completely removed. Figure 4.14 illustrates

robustness to a different kind of noise consisting of ripples or waves on the boundary

surface, for both surface and curve skeletons.

Our definition of the collapse measure ρ provides us with a natural skeleton-to-

boundary mapping. Surface skeleton points map to curves on the object surface, whereas

curve-skeleton points map to compact areas. Figure 4.11 shows the skeleton-to-boundary

mapping for several curve-skeleton points for the Hand and Horse objects. We observe

that the components correspond to meaningful parts of the boundary, such as the legs or

ears of the horse and fingers of the hand. The skeleton-to-boundary mapping can be used

in various applications, e.g., for selection purposes in geometric modeling applications.

Another application of the skeleton-to-boundary mapping is shape segmentation. The

component sets associated with the curve skeleton branches coming together in a junction

provide us with meaningful components: distinct, logical object parts. Combining the

meaningful components that are associated with all curve skeleton junctions yields a

shape segmentation having desirable properties, as follows. Because the skeleton-to-

boundary mapping is based on shortest geodesics, the borders between segments are

smooth, minimally twisting, and robust to noise. Two novel 3D shape-segmentation

methods based on our simplified curve skeleton are presented in detail in Chapter 6.

A nice feature of our method is that curve-skeleton junction detection is performed

during the skeletonization process itself. As our curve skeleton is not everywhere one

voxel thick, detecting the junctions as a post-processing step is non-trivial. More impor-

tantly, it can be argued that junctions that are detected during skeletonization bear more

significance than those extracted afterwards [23]. In the former case, they are intrinsic

to the curve skeleton definition, whereas in the latter case, the junctions are merely a

by-product and are as good as the curve skeleton itself.

The original object, or a simplified version thereof, can be reconstructed from the sur-

face skeleton by placing at each voxel its maximally inscribed ball. In general, a faithful

shape reconstruction from the curve skeleton is not possible by using only balls. One sim-

ple application of our simplified skeletons is that of surface smoothing. By reconstructing

a surface from the simplified skeleton Sτ for a small τ value, small-scale surface noise

is replaced by sphere segments. For the purpose of surface smoothing, the simplified

equalized skeleton S ′τ is used, so that the spurious curve and surface skeleton parts due to

the noise near the boundary are simplified together. Figure 4.16(a) shows two examples.

Of course, τ cannot be too high, otherwise the reconstruction becomes too inaccurate, or

“spherified”. Reducing noise in this manner works best at thick object parts, such that the

4.7 Discussion 69

(a) Surface smoothing of the Box and Dino objects. (b) Noise removal for two interconnected balls. The

interconnection is not broken.

Figure 4.16: Surface smoothing by reconstruction from S ′τ .

inscribed balls of such parts are large in comparison to the inscribed balls in the perturba-

tions. Indeed, noise on thin parts can be considered as object features, more so than noise

on thick parts. Noise on the thin parts, namely the ridges of the box and the neck of the

Dino, is less reduced than the thick parts. A nice feature of using the collapse measure

is that the reconstructed object cannot become disconnected due to the skeleton simpli-

fication, because the simplified skeleton is always connected. In contrast, if we would

simplify the Dino in Figure 4.16(a) using only the collapse measure as defined on S \ C,

the neck would become disconnected. This is emphasized in Figure 4.16(b) showing a

noisy Dumbbell shape, consisting of two interconnected balls. Although the interconnec-

tion and the noise are of similar scale, the noise is removed, but the interconnection is not

broken.

The monotonicity of the collapse measure comes at a price. Our measure is not so

efficient to compute as purely local importance measures, due to the global operations in-

volved. Computing the feature transform takes O(n) [90], where n = |Ω|. Computing the

set of shortest paths for an object voxel using Dijkstra (or A*) takes O(b log b) in the worst

case, where b = |∂Ω| ≈ log n. The worst case is when the boundary is a sphere, as the

shortest-path algorithm visits practically all boundary voxels for diametrically-opposed

feature voxels. However, shortest paths are not computed between arbitrary boundary

voxels, but always between associated feature-voxels, so that for objects that consist of

distinct parts, the algorithm visits only a small subset of the boundary voxels. Com-

puting the component set using our spatial subdivision scheme for an object voxel takes

O(log b). In total, the worst case of our algorithm is O(n(b log b)), but practical cases

are far below this limit. Table 4.2 shows the relation between n, b, and the running times

for several practical objects. In particular, we note that the speed of our implementa-

tion compares favorably to Dey and Sun’s method [36], which is one of the most recent

curve-skeletonization methods, and is similar to our method. On a comparable machine,

their approach took half an hour to compute a curve skeleton for the Rockerarm. Our

70 Chapter 4. Computing Multiscale Curve and Surface Skeletons

Figure 4.17: Curve skeletons of the Plane produced using four methods (images

from [24]), compared with the result of our method.

approach took under 10 minutes, using a voxel resolution of 3843 for a full curve and

surface skeleton hierarchy, while observing that the complexity of the curve skeleton is

comparable (compare Figure 4.11 and [36, Figure 5]). Our approach is faster than the

potential-field method of Cornea et al. [25], which reportedly takes up to half an hour for

voxel resolutions in the order of 2003 on a comparable PC.

When discussing our method, we should stress the fact that our approach is, to our

knowledge, the only one in existence that generalizes a global importance measure for 2D

shapes, namely the boundary-distance measure, to 3D. This measure is the cornerstone

of our method, as it guarantees the satisfaction of all the desirable properties considered,

similar to its analogous 2D counterpart, the AFMM. Furthermore, we like to note that our

method readily allows a parallel implementation. Each object point is treated indepen-

dently (see the pseudocode in Figure 4.3). Only the feature transform that we compute

initially is an inherently sequential process, and we do not need a post-processing step,

such as a thinning or erosion step. In light of the current developments in microprocessor

technology toward multicore systems, parallelizable algorithms are becoming more and

more important.

Finally, our method is straightforward to implement, thanks to its voxel-based na-

ture. The full pseudocode of our method is given in Figure 4.3. As can be seen, the

most “complex” elements are the feature transform, Dijkstra’s shortest-path algorithm,

and connected-component computation. If the optimizations as discussed in Section 4.5.4

are desired, a caching scheme, a spatial-subdivision scheme, and a slight modification of

Dijkstra’s algorithm need to be implemented.

4.7.2 Comparison with other methods

Cornea et al. [24] made a comparison between four curve-skeletonization methods: a

basic thinning, distance field, geometric, and potential-field method. In Figure 4.17, we

visually compare the results of these four methods for the Plane shape (image from [24]),

with the result of our method (right-most image). We observe that our method produces

superior results. The price that we pay is that our method is slower than the first three

methods mentioned, although it is of the same order as the potential-field method.

We would further like to compare the surface skeleton produced by our global im-

portance measure with the skeleton resulting from a purely local measure. Consider Fig-

ure 4.18. The left two images show the surface skeleton Sτ of the Cow object computed

by our method. The right two images (taken from [137]) show the surface skeleton result-

ing from the moment-based measure from Rumpf and Telea [118], which is essentially a

4.7 Discussion 71

Figure 4.18: A comparison between the surface skeleton produced by using our global

measure (left) and a typical local measure (right).

field-based detector for the singularities of the shape’s distance transform. The threshold

used for the latter images was carefully chosen such that the skeleton is both connected

and noise free. We chose τ for our method such that the skeletons are most similar. Yet,

we observe that our skeleton at this comparable simplification level is able to capture

more details, such as the horizontal skeleton sheets and the skeleton in the udder and tail.

This can be explained by the fact that local measures cannot distinguish between these

fine structures and noise, and will eliminate them together, whereas global measures can.

Our skeleton is connected regardless the setting of τ .

Prohaska and Hege [100] have also used the shortest-path length between feature

points to detect and simplify surface skeletons, using the same idea as Costa [28], who

extended the boundary-distance measure to 3D. However, as these methods do not detect

the curve skeleton, they have to use a thinning method to ensure homotopy of the result. In

contrast, our collapse measure ensures connectedness of the result while using the simple

and intuitive thresholding strategy.

Dey and Sun [36] defined the curve skeleton as the singularities in the shortest-path

length measure on the surface skeleton. There are some important differences with our

method (which we developed independently from theirs). Most importantly, we produce

multiscale curve and surface skeletons, while their approach does not. Second, their ap-

proach is more of a hybrid method, in which first the surface skeleton is computed with

a Voronoi-based method. The medial geodesic function measure is then computed, after

which a local flux measure [127] is used to find the curve skeleton on the derived sur-

face skeleton structure. Because this latter measure is local, an erosion strategy is used to

enforce connectedness. The sampling resolution must be high enough to accurately com-

pute the involved divergence. In contrast, our approach computes a monotonic measure

for both the curve and surface skeleton. The measure can be computed independently

on a point-by-point fashion, making our algorithm simple and allowing parallel process-

ing. Furthermore, all our computations are based on a non-derived structure, namely the

object surface, whereas Dey and Sun need to compute a non-simplified surface skeleton

first. This allows us to use a voxel representation, requiring simple data structures and

algorithms, keeping our algorithm straightforward and efficient. A second advantage of

using only non-derived structures and integral quantities, such as curve length and com-

72 Chapter 4. Computing Multiscale Curve and Surface Skeletons

ponent areas, is that our approach is very robust, even for coarsely sampled shapes.

Finally, let us mention that we have opted for a voxel-based approach for its ease

of implementation. A disadvantage of this is that polyhedral models first need to be

voxelized. The resulting skeletons are influenced by the grid’s orientation, causing a slight

loss of rotation invariance, and the grid’s resolution, which may cause a loss of detail for

objects containing small features. Methods acting directly on continuous geometrical

data do not have this orientation issue (of course, they do have discretization issues).

However, we would like to indicate that the definition of our global importance measure is

not limited to discrete space. As long as the key ingredients of this measure are available,

namely, computation of the feature points, shortest geodesics, and connected components,

our approach can be adapted to other shape representations.

4.8 Conclusion

We have presented the collapse measure, a novel importance measure that enables the ro-

bust computation of multiscale curve and surface skeletons of 3D shapes. To our knowl-

edge, this is the first truly global 3D importance measure that can be used to obtain both

surface and curve skeleton hierarchies in a uniform manner. Our measure is constructed

by extending the existing boundary-distance measure to 3D. The surface skeleton and

curve skeleton are computed independently. On the surface skeleton the importance is

expressed as curve length, whereas on the curve skeleton it is expressed as the area of a

boundary component, which gives the measure an intuitive geometric meaning, and al-

lows us to reason about it and deduce several properties of interest. We have proposed a

practical algorithm that is straightforward to implement using a small set of robust oper-

ations. It does not need any post-processing steps to preserve topology. We have shown

that our algorithm delivers good results on a wide range of real-world, complex objects.

Chapter 5

Segmenting Simplified Surface

Skeletons

In this chapter we present a method to extract the structure of the simplified surface skele-

tons that we presented in the previous chapter. Our goal is to find the sheet intersec-

tion curves that partition the surface skeleton into its constituent sheets. These surface-

skeleton segmentations can be used in several applications, such as shape analysis and

matching tasks.

5.1 Introduction

Our goal in this chapter is to develop an algorithm for partitioning the simplified skeletons

of binary voxel shapes into disjoint segments. As indicated in Section 2.2, the surface

skeleton consists of a set of 2D surfaces, called sheets. A sheet boundary consists of 1D

curves which are either part of the surface-skeleton boundary, or curves where at least

three sheets intersect. Given this property, the sheet intersection curves are also called Y-

curves [30]. Our aim is to robustly partition the surface skeleton into its constituent sheets.

Being based on our simplified surface skeletons, we inherit robustness and multiscale

properties of the partitioning. Figure 5.1 depicts a result of our method.

To give just one of many examples in which skeleton segmentations can be used,

Siddiqi et al. [128] use them as a step in their 3D shape retrieval pipeline. They build a

graph on the skeleton segments and use a graph-matching algorithm to do shape retrieval.

As the authors indicate, the specific skeletonization method they use is not robust to very

noisy shapes. We argue that our method can be used to resolve this issue.

It seems natural to use existing segmentation approaches for discrete surfaces based

on digital topology. An example is the well-known template-based method of Malandain

et al. [79]. However, we found that these methods produce undesirable results on our sim-

plified skeletons. A naive segmentation using such local methods yields a different num-

ber of segments than it would for the non-simplified skeleton, which is undesirable: the

segmentations should be noise-invariant. To correctly segment our simplified skeletons,

74 Chapter 5. Segmenting Simplified Surface Skeletons

Figure 5.1: Segmenting the simplified surface skeleton of a noisy anvil. Non-simplified

skeleton (left), simplified skeleton (middle), segmentation (right).

we consider both the simplified and non-simplified skeleton, denoted Sτ and Sυ . Addi-

tionally, we consider not only the skeleton itself for detecting Y-curve points, but also its

relation to the shape boundary by means of the feature transform and shortest geodesics.

The idea is to use the feature-set cardinality to classify Y-curves. Although this works in

the continuous case, it does not translate directly to discrete cases. We present a solution

that uses the same ingredients as our skeletonization method from Chapter 4. This makes

our approach more robust than local methods for complex skeletons. Our segmentation

method can handle shapes with large amounts of noise on the boundary, without hav-

ing to prune the segmentation afterwards. Besides the segmentation itself, the simplified

Y-network is also a useful result of our approach, which can be used in shape analysis

tasks.

The outline of this chapter is as follows. Section 5.2 details on the structure of surface

skeleton and the definition of the surface-skeleton segmentation. Section 5.3 presents

our method for computing the simplified Y-network Yτ , at simplification level τ , and the

decomposition of Yτ into its constituent Y-curves. In Section 5.4, we extend Yτ using

information from a non-simplified Y-network Yυ to correctly and robustly segment the

simplified skeleton Sτ at level of detail τ . Section 5.5 presents and discusses results.

Section 5.6 concludes this chapter.

5.2 Skeleton structure and segment definition

Let Ω be a 3D shape with boundary ∂Ω, let D be the distance transform (Eq. 2.2), let F be

the feature transform (Eq. 3.1). Similar to Eq. 2.1, the surface skeleton S can be defined

as those object points having at least two feature points:

S(Ω) =
{

p ∈ Ω
∣

∣

∣
|F (p)| ≥ 2

}

. (5.1)

It is well known that the skeleton of a 3D shape consists of manifolds, called sheets,

that meet in curves, called Y-curves [30]. A sheet boundary consists of Y-curves and/or

skeleton boundary curves. In addition to the above sheet boundary curves, a 3D skeleton

can also contain isolated curves in some degenerate cases, such as a cylinder. We assume

for the time being that the skeleton contains no such degeneracies. The set of Y-curves is

called the Y-network, denoted Y = {y1, ..., yn}. In the following, a skeleton segment is

equivalent to a sheet. For example, Figure 5.2 shows the skeleton of a box, containing 12

5.3 The simplified Y-network 75

Figure 5.2: Skeleton structure of a box. Point p is a sheet point having two feature points

p1, p2, point q is a Y-curve point having three feature points q1, q2, q3.

skeleton boundary curves (dotted lines), and a Y-network containing 12 Y-curves (thick

lines), yielding 13 sheets, or segments. For illustration, segment A is bounded by Y-

curves y1...y4, whereas B is bounded by Y-curves y4, y5, y6 and skeleton boundary curve

e1.

Skeleton points can be classified by the number of feature points they have [46]. A

skeleton boundary-curve point has an infinite number of feature points in the continuous

case, because the inscribed ball at such a point has a contiguous arc of contact points with

∂Ω. A sheet point p has exactly two feature points, |F (p)| = 2. Finally, a Y-curve point

q, where three sheets meet, has three feature points, |F (q)| = 3. Each sheet contributes

two feature points, but each feature point is shared with one of the two other sheets.

Figure 5.2 illustrates such a sheet point p and Y-curve point q and their respective feature

points (crosses).

Within a sheet, the associated feature points evolve smoothly over the object boundary.

That is, for a point p + ∆p close to p, the feature points F (p + ∆p) neighbor the feature

points F (p) of p. The reason for this is as follows. Take two interior sheet-points p
and q that are at a small distance ε. By definition, each point has two feature points

F (p) = {pa, pb}, F (q) = {qa, qb}, where pa and qa are corresponding, i.e., are at the

same side of the sheet. Let the distance ε between p and q go to 0 and assume that the

feature points do not evolve smoothly. Then we have that the distance δ between (at least)

one of the two corresponding feature pairs, e.g., pa and qa, cannot go to 0. This means

that we have one skeleton point p = q which has three feature points pa, qa and pb = qb,

which means that p cannot be an interior-sheet point, leading to a contradiction.

5.3 The simplified Y-network

In this section, we show how we extend our work on simplified skeletons from Chapter 4

to compute the simplified Y-network, on which our skeleton segmentation is based.

76 Chapter 5. Segmenting Simplified Surface Skeletons

5.3.1 Computing the Y-network

In order to find the Y-network of a simplified skeleton Sτ we must check if a voxel is

on a Y-curve or not. In the continuous R
3 space, a Y-curve point has (at least) three

feature points: |F | ≥ 3 (Sec. 5.2). However, as indicated in Section 4.5 we have to use

the extended feature transform F in Z
3 (Eq. 4.9). In this extended feature transform,

many object voxels will have at least three feature voxels, not just the Y-curve voxels.

For example, F (p) in Figure 5.3(a) contains 4 feature voxels p1...p4 and F (q) contains 6

voxels: q1..q6. If we naively use the cardinality of F to detect the Y-curves, then both p
and q would be selected, which is wrong for p. To solve this problem, we group each two

feature points that have a small geodesic distance (shortest-path length) on the boundary.

More formally, we define an equivalence relation a ∼ b on F :

a ∼ b⇔ length(γ(a, b)) < τ , (5.2)

where τ is the same threshold that we used to create simplified skeletons (Eq. 4.8). This

relation gives rise to a number equivalence classes. We now replace F by the so-called

simplified feature transform F τ , defined as a set of class representatives following Eq. 5.2,

that is, a subset of F containing one point from each equivalence class. Which particular

point we choose in a class is not important, as we are only interested in the cardinality

of F τ . However, to be consistent we choose those points that admit the largest geodesic

distances.

Using the simplified feature transform F τ , we can rephrase the definition of the sim-

plified surface skeleton Sτ (compare Eq. 5.1):

Sτ (Ω) =
{

p ∈ Ω
∣

∣

∣
|F τ (p)| ≥ 2

}

. (5.3)

In Sτ all sheet points p that have a shortest path between their two feature points that is

shorter than τ , or in other words, that have a lower importance than τ , are pruned. Note

that in this chapter, Sτ denotes the simplified surface skeleton only, and does not include

the curve skeleton as was the case in Chapter 4.

Now, the simplified Y-network is straightforwardly defined as:

Yτ =
{

p ∈ Ω
∣

∣

∣
|F τ (p)| ≥ 3

}

, (5.4)

which is a subset of Sτ . For a Y-curve point q, where three sheets meet in q’s neigh-

borhood, this means that if one of the sheets in its neighborhood is pruned because its

importance is lower than τ , the point is not considered a Y-curve point in Yτ . It is impor-

tant to note that the simplified Y-network is not simply a post-processing of the simplified

skeleton. Instead, the Y-network is computed directly out of the shape, using the integral

quantity of geodesic distance on the object boundary. This is more stable than extracting

the Y-curves from the voxelized skeleton using templates for instance, in analogy with the

junction-detection property of the curve-skeleton (see Section 2.3.2), and also offers the

same natural scale parameter as for skeleton computation.

Figure 5.3 shows a non-axis aligned box with its simplified network Yτ , τ = 10.

Like in the continuous case, the discrete Y-network forms a connected structure. Three

5.3 The simplified Y-network 77

(a) The feature transform F . (b) The simplified feature transform F τ .

Figure 5.3: A (non-axis aligned) box with its detected network Yτ=10. Three selected

points p, q, r: a sheet point p, a Y-curve point q, and a Y-curve intersection r.

points p, q, r are selected: a sheet point p, a Y-curve point q, and a Y-curve intersection

point r. Their feature voxels are connected to the corresponding points by line segments.

Figure 5.3(a) shows the non-simplified feature transform F for the selected points, while

Figure 5.3(b) shows the simplified feature transform F τ . We see the merit of F τ : p and

q can be classified as a sheet and a Y-curve voxel respectively based on the cardinality

|F τ |, but not on |F |. For point q for instance, F τ gives us exactly three feature points

q1, q2, q3, i.e., the representatives of the classes {q1, q2}, {q3, q4}, {q5, q6}.

5.3.2 Y-network Decomposition

Although Eq. 5.4 enables the detection of the Y-network voxels, it does not provide us

with the structure of the Y-network as a collection of Y-curves. This section presents how

to compute such a decomposition.

To decompose the network Yτ into its n Y-curves {y1, ..., yn}, we define two points

p, q ∈ Yτ to be on the same Y-curve when there is no junction in the Y-network between

them. For illustration, Figure 5.4(a) sketches (part) of a Y-network. Let p, q be two points

on Yτ , each one having three feature points, with the indices p1, p2, p3 and q1, q2, q3

chosen in such a way that they “correspond”, that is, the sum of the geodesic distances
∑

i length(γ(pi, qi)) is minimal. Suppose now there is a junction j between p, q, due to

a Y-curve ya as shown (dotted) in the figure. Such a Y-curve ya results from a sheet A
with a local importance higher than τ , otherwise ya would have been pruned and would

not be present in Yτ . Thus, we can detect whether there is a junction j between p and q
by looking at the geodesic distance between the feature points of p and q. Because the

feature points evolve smoothly within a skeletal sheet, we argue that if there is a Y-curve

ya between p, q due to sheet A, the geodesic distance between the feature points p2 and

q2 must be larger than τ , because A’s importance is at least τ . Generalizing, two points

p, q ∈ Yτ belong to the same Y-curve y if and only if all three geodesic distances between

78 Chapter 5. Segmenting Simplified Surface Skeletons

(a) Two points p, q on a Y-network. (b) The detected Y-curves of a box.

Figure 5.4: Y-network decomposition into Y-curves.

each pair of feature points (pi, qi) are smaller than τ :

p, q ∈ y ∈ Yτ ⇔ ∀i∈{1,2,3} length(γ(pi, qi)) ≤ τ . (5.5)

One remark is due. Voxels where several Y-curves come together have more than

three feature points (see e.g. Figure 5.3(b), point r). To handle these cases, Eq. 5.5 is

applied for all subsets of both p and q, having 3 feature points.

One might ask why we do not just detect the Y-curve junctions and use these to sep-

arate the Y-curves, which is more trivial. The first reason is that our approach is of sub-

voxel precision: a single voxel may contain multiple Y-curves. Second, our method does

not use a topological analysis of the Y-network voxels and is thus more accurate in cases

where Y-curves meet under small angles. Figure 5.4(b) shows the segmentation of the

Y-network of a box obtained using Eq. 5.5. The Y-curves are distinctively colored.

5.4 Skeleton segmentation

Although it seems natural to use the simplified network Yτ to segment the skeleton Sτ , this

can sometimes deliver undesired results. Figure 5.5(a) shows the segmentation produced

for the skeleton Sτ (τ = 10) of a twisted box. We expect 13 segments, similar to the

skeleton segmentation of a non-deformed box (Figure 5.2). Yet, for the deformed box

some segments get merged inadvertently. For example, the skeleton sheets A, B and D
are incorrectly merged, whereas they should be distinct segments as for a non-deformed

box.

Figure 5.5(b) is a schematic close-up of the situation. The problem is that the Y-

curve y ∈ Yτ does not extend all the way to the skeleton boundary. The missing part is

indicated by the dotted line. A narrow tunnel connects the areas A and B on the skeleton

manifold, so that they end up in the same segment. The reason that y is too short is that

sheet C is simplified for lower values of τ than A and B at the dotted line segment. The

5.4 Skeleton segmentation 79

(a) Sheets A, B and D are wrongly in the

same segment.

(b) Close-up of (a).

Figure 5.5: Segmented simplified skeleton of the Deformed Box using Yτ .

cardinality of the simplified feature transform for these points is 2, so that point q, for

example, is not detected as a Y-curve point by Eq. 5.4. In other words, only two sheets

are found to come together at q in the simplified skeleton, namely A and B. For the same

reason, other surface segmentation approaches based on local topology, e.g. [79], would

fail segmenting this simplified skeleton. A second reason why the connected component

approach would fail is that our skeletons are up two voxels thick, if we refrain from any

post-processing like thinning.

We solve the issue by noticing that curve y in Figure 5.5(b) would be longer for less

simplified skeletons. For non-simplified skeletons, we would not have the problem at

all. Hence, to segment a skeleton Sτ we use a less simplified Y-network Yυ, υ < τ ,

which contains longer, extended, versions of the Y-curves which ended prematurely in

Yτ . However, we must be careful to only extend Y-curves from Yτ , and not to incorporate

any Y-curves that only occur in Yυ. Hence, we only consider those Y-curves y ∈ Yυ for

which there is at least one point p ∈ y in Yτ . We call this set the extension of Yτ using

Yυ, denoted as Yτ,υ:

Yτ,υ =
{

y ∈ Yυ

∣

∣ ∃p∈y p ∈ Yτ

}

. (5.6)

Finally, we compute the decomposition of Yτ,υ into its respective Y-curves by taking both

scales τ and υ into account and adapting Eq. 5.5 accordingly:

p, q ∈ y ∈ Yτ,υ ⇔ ∀i∈{1,2,3}length(γ(pi, qi)) ≤
{

τ if p ∈ Yτ ∧ q ∈ Yτ

υ otherwise.
(5.7)

As the value of υ we use 5 voxel lengths, which represents the non-simplified skeleton as

explained in Section 4.5.1.

After computing Yτ,υ we can segment Sτ as follows. We consider the skeleton Sτ as

a 26-connected graph of voxels, from which we remove the voxels occupied by Yτ,υ, and

then determine the connected components in the remaining skeleton graph using a flood-

fill for instance. As Sτ can be up to two voxels thick and the Y-network is only one voxel

thick, we first dilate the Y-network by 1 voxel in each 26-direction, before removing them

80 Chapter 5. Segmenting Simplified Surface Skeletons

(a) Yυ , υ = 5 (b) Yτ , τ = 10 (c) Yτ,υ (d) segmentation

Figure 5.6: Correctly segmenting the simplified skeleton of a deformed box. (a) Non-

simplified Y-network Yυ. (b) Simplified Y-network Yτ . (c) Extension of Yτ using Yυ. (d)

Correct segmentation.

from the skeleton graph. Hereafter we erode the dilated Y-network so that these voxels

are also part of a segment. Clearly, many other alternative implementations for finding

the segments are possible once we have a robust and complete Y-network.

Figure 5.6 shows Yυ, Yτ , Yτ,υ (decomposed in its Y-curves), and the segmentation

based on Yτ,υ respectively, which is a correct segmentation of the deformed box skeleton

as opposed to Figure 5.5(a).

5.5 Results and discussion

We have tested our method on shapes of varying complexity and amount of boundary

noise. As input objects we used 3D triangle meshes, voxelized using binvox [84] in

various resolutions ranging up to two million object voxels. For all images, the original

object mesh representation is rendered instead of its voxel representation for nicer display.

Figure 5.7 shows a selection of the results. For each object, τ is chosen based on

the noise level of the object, and we show both the extended simplified network Yτ,υ ,

decomposed into its Y-curves (top image), and the segmentation of the simplified skeleton

(bottom image) using Yτ,υ. In Figures 5.7(a) and 5.7(e), we added 5-10% boundary noise

to show the robustness of our approach.

We highlight some of the results. For the Noisybox, we see that our method correctly

detects 13 segments and 12 Y-curves. For the Dinosaur and Noisydino, the four legs and

feet are all assigned different segments. Our method correctly segments the skeleton of

the Dodecahedron (Figure 5.7(f)). This is a difficult skeleton to segment as it contains

degeneracies, in the sense that each Y-curve actually separates five sheets instead of the

usual three. Finally, Figure 5.8 shows both the Y-network and the segmentation for a

human brain (the skeletons are shown in Figure 4.12). The images illustrate that our

method produces accurate results for such complex surfaces and corresponding skeletons.

Table 5.1 shows timing measurements performed on a Pentium IV 3 GHz, with 1

GB of RAM for all objects in this chapter. Columns “dim”, “|Ω|”, and |∂Ω| denote the

grid resolution, and the number of object and boundary voxels respectively. Columns

“S time” and “segm. time” denote the wall-clock time for computing the skeleton and

5.5 Results and discussion 81

(a) Noisybox, τ = 20 (b) ET, τ = 10 (c) Rockerarm, τ = 10

(d) Dino, τ = 16 (e) Noisydino, τ=16 (f) Dodecahedron, τ=10

Figure 5.7: Y-network decomposition (top), Sτ segmentation (bottom).

Figure 5.8: Y-network and Sτ -segmentation for a human brain.

82 Chapter 5. Segmenting Simplified Surface Skeletons

Table 5.1: Timing measurements

Object dim |Ω| |∂Ω| S time (s) segm. time (s)

Deformed Box 65x64x124 247k 24k 21 11

Dodecahedron 124x124x124 945k 39k 48 17

ET 125x78x173 1.045k 93k 304 37

Noisydino 99x325x365 1.128k 100k 62 33

Rockerarm 366x188x112 2.000k 151k 470 62

segmentation respectively. Computation of the segmentation is non-optimized, as the

skeleton computation times are dominating anyhow.

5.6 Conclusion

We have presented a voxel-based approach for robustly segmenting simplified skeletons

of 3D shapes, based on the simplified feature transform and simplified Y-network. The

Y-network is also decomposed into its respective Y-curves. It could be argued that the

simplified Y-network is more useful in certain shape analysis or retrieval tasks than the

segmentation itself, because the Y-curves change more continuously under shape defor-

mations than the segmentation does.

Our entire method relies upon the choice of a single parameter τ , which controls

the simplification of the skeleton, but not the segmentation itself, thereby yielding a

fully autonomous segmentation method. One limitation of our current implementation

is that cylindrical object-parts having degenerate curve skeletons may locally result in

over-segmentation, because the feature points do not evolve smoothly there. Second, the

two-voxel thickness of the skeletons might yield undesirable topological changes in the

skeleton for too complex objects, when compared to thin skeletons. Again, this is not a

major problem, as standard thinning methods can be used to get a one-voxel thin skeleton.

We have considered using our robust skeleton segmentations to produce robust patch-

type segmentations. The idea was to project the segmentation of the skeleton to the shape

surface by means of the feature points. The feature points of each skeleton segment then

produces two segments on the surface: one on each side of the segment. A straightforward

application of this idea clearly results in over-segmentation. For example, a box has

13 skeleton segments, yielding 26 surface segments, necessitating some merging step

afterwards. We did not explore this further. Instead, in Chapter 7 we present a more

straightforward patch-type segmentation method based on simplified surface skeletons

that is not based on the partitioning presented here.

In future work, it would be interesting to investigate whether the skeleton partition-

ing can be used to “unprune” the skeleton. Although simplified skeletons are robust to

noise when setting τ appropriately, the simplification not only prunes the noisy skeleton

parts, but also removes parts of the skeleton representing features of the shape. In fact,

this is why in Figure 4.16(a) the reconstructed box is not only rid from noise, but is also

smoothed on its edges. A skeleton partitioning of the box’s simplified skeleton contains

only the essential segments. It seems interesting to try to unprune the simplified skeleton

5.6 Conclusion 83

by adding voxels from the non-simplified skeleton that are in the extension of these es-

sential segments. Reconstructing the box from such an unpruned skeleton would enable

edge-preserving denoising.

84 Chapter 5. Segmenting Simplified Surface Skeletons

Chapter 6

Part-type Shape Segmentation

In this chapter and the next one we deal with the problem of 3D shape segmentation.

Shape segmentation (also called partitioning or decomposition) is the task of dividing

the shape surface into disjoint, compact subsets, called segments. We base the segmen-

tation solely on the geometry of the shape and not on any secondary attributes such as

texture and color. Segmentation applications include shape analysis, shape matching,

medical imaging, collision detection, and other geometric processing methods employing

divide-and-conquer strategies. One can distinguish between patch-type and part-type seg-

mentations [123], both having their own merits. The former type is a geometry-oriented

abstraction of the shape, whereas the latter is a high-level, semantically-oriented abstrac-

tion that agrees more with how a human would understand the part structure of a shape.

The difference is illustrated in Figure 6.1. Whereas a typical part-type method produces

two segments, one for each box-part of the shape, a patch-type method typically finds

quasi-flat patches that are separated by high-curvature creases, in this case the faces of

the boxes. In this chapter we focus on part-type methods, whereas in Chapter 7 we focus

on the problem of patch-type segmentation.

6.1 Introduction

Part-type segmentation is the more loosely defined task of decomposing a 3D shape into

its meaningful components, namely those that a human being would intuitively perceive

as the distinct, logical parts of the shape. These methods often rely on cognition principles

and the quality of their results is inherently subjective [8]. Part-type segmentations are

most suitable for articulated shapes, that is, consisting of clear, distinct parts, such as

animals, humans, plants, and other natural shapes, and less suitable for faceted or blob-

like shapes. In this chapter, we present a part-type segmentation framework that uses the

curve skeleton as computed in Chapter 4.

Our part-type segmentation method aims to assign a segment to each meaningful part

of a shape. We consider shapes to be the union of several simpler shapes: the parts of the

shape. Although it is rather subjective what exactly constitutes a meaningful part, we can

86 Chapter 6. Part-type Shape Segmentation

Figure 6.1: Part-type (left) versus patch-type segmentation (right) of a shape consisting

of two boxes.

formulate the following requirements on a segmentation:

• Each segment should be a connected boundary component.

• The shape should not be under-segmented. This implies that each segment should

be simple: it should not contain any bifurcations.

• The shape should not be over-segmented. This implies that each part should be

assigned at most one segment.

• Segment borders should be tight. Each segment should contain the whole part and

nothing more.

• Segment borders should be as smooth as the shape allows.

Segmentation methods commonly employ the minima rule [53], which is the notion

that when two separate shapes interpenetrate, they do so along negative minima of prin-

cipal curvatures, that is, in a concave crease. When such a crease forms a closed loop, it

can be considered a part cut, separating the two parts. When it does not form a closed

loop, one has to decide whether it should be closed to form a part cut, and if so, how.

It holds further that the more concave the crease is, the more salient the part cut is [54].

In case of our example in Figure 6.1, the part cut formed by the border between the two

interpenetrating boxes is indeed formed by a concave contour, indicated by the magenta

curve. Methods can put the minima rule to use by explicitly placing part cuts at these

concave creases (e.g. [69]), or in an implicit way, by clustering surface elements based on

geodesic and angular distances, which essentially models the minima rule (e.g. [61]).

Other segmentation methods use the curve skeleton to identify parts. As indicated in

Section 2.3, a well-known property of the curve skeleton is that it “allows for component-

wise differentiation”. In other words, it can be used to infer the shape’s part structure.

Indeed, segments should be simple, they should not contain bifurcations, and curve skele-

tons represent bifurcations explicitly in the form of junctions. We therefore base our seg-

mentation framework on the following notion: when two (simple) shapes interpenetrate,

their respective curve skeletons join, resulting in a new junction in the curve skeleton lo-

cated near the intersection. We call this the junction rule, in analogy with the minima rule.

Figure 6.2 illustrates both the minima rule and the junction rule for two interpenetrating

6.1 Introduction 87

Figure 6.2: (a) An interpenetration of two ellipsoids. (b) The minima rule finds the con-

cave crease (magenta curve). (c) The junction rule finds the curve-skeleton junction.

ellipsoids. Whereas the minima rule is boundary-based, as it uses surface curvature, the

junction rule is interior-based, as it uses information about both the shape boundary and

its interior by means of the curve skeleton. By basically using more information, the

junction rule can lead to more robust algorithms, especially for noisy and low-resolution

shapes, for which curvature information is problematic to compute robustly. The junction

rule is also more suitable for voxel shapes, for which the boundary normal is not readily

available. Another advantage of the junction rule is that it is not ambiguous: a junction in

the curve skeleton can be clearly defined and detected. In the minima rule, on the other

hand, a concave crease can be anywhere between shallow and deep, varying along the

crease, and the curvature might even vanish for certain shapes. This happens for example

when the smaller box in Figure 6.1 is slightly moved to the left so that its left-hand face

aligns with the left-hand face of the larger box. Deciding which creases are salient enough

and how they should be closed is a subtle process, which we avoid by using the junction

rule.

An important difference between both rules is that whereas the minima rule provides

the part cut explicitly as the concave crease, the junction rule only signals the event of

part interpenetration, but does not say anything about the location of the part cut. How-

ever, recall that our particular curve skeleton definition (Eq. 4.5) associates with each

curve-skeleton point a simple closed curve, i.e., a Jordan curve, on the shape surface.

Each Jordan curve (locally) divides the surface into two connected components and thus

presents a candidate part cut. In curve-skeleton junctions, where multiple branches come

together, the Jordan curves of the different branches are combined, dividing the boundary

into more than two components.

In this chapter we present a framework for segmenting articulated voxel shapes based

on the junction rule. Figure 6.3 illustrates our framework, which consists of three stages.

In the first stage the curve skeleton is computed as described in Chapter 4, using the op-

timization that we present in Section 6.3.1. In the second stage, cut points on the curve

skeleton are selected. Cut points are cut-generating points: points whose associated Jor-

dan curves make for suitable part cuts. We developed two schemes to automatically select

cut points. The first and most straightforward one is to select the curve-skeleton junctions

directly, called the junction-cut scheme. However, whereas this method yields good re-

sults for some shapes, it leads to unexpected results for others. The reason is that a curve-

88 Chapter 6. Part-type Shape Segmentation

Figure 6.3: An overview of our framework.

skeleton junction merely signals the interpenetration of parts, but the junction itself does

not give the optimal placement for the part cuts, nor does it indicate the correct number of

part cuts that should be generated. In the second scheme, called the branch-cut scheme,

we search, starting from the junctions, along the curve-skeleton branches for more suit-

able locations than the junctions themselves, based on a so-called “geodesicness” measure

of the Jordan curve. As a third option, the cut points can be chosen manually if one de-

sires to manually fine-tune the segmentation. In the third and last stage of our framework,

a segmentation is produced from the selected cut points. Here, we have developed two

options that lead to different segmentation types: we produce either a hierarchical or a

“flat” segmentation.

Our framework satisfies all the above-mentioned segmentation requirements. In par-

ticular, a strong feature of our framework is that it produces smooth part cuts, because they

are piecewise geodesic by construction. Furthermore, the saliency of the parts is guaran-

teed by the curve-skeletonization stage, in which the curve skeleton is simplified using

our intuitive collapse measure ρC (Eq. 4.4), so that only significant curve-skeleton points

are retained. This makes our method robust to boundary noise. Finally, the segmentations

are pose-invariant, that is, the segmentations do not change (significantly) under different

poses of the shape.

The outline of this chapter is as follows. In the next section we discuss related work on

part-type segmentation. In Section 6.3 we present an optimization of the curve skeleton

computation, when compared to the algorithm from Chapter 4, and detail on the robust

detection of junctions, a necessary component of our method. Section 6.4 details on the

cut point selection. In Section 6.5 we use the cut points to create a segmentation. Sec-

tion 6.6 presents results and a discussion. We evaluate the method according to criteria

identified in literature and we compare our method to the relevant state-of-the-art meth-

ods. Section 6.7 concludes this chapter.

6.2 Related work

Part-type segmentation methods can be classified in various ways. One is by the type

of information that they use: we distinguish between boundary-based and interior-based

methods. Our approach is interior-based. In an overview of the major shape segmentation

techniques, Shamir [123] identifies the following approaches: region growing, hierarchi-

6.2 Related work 89

cal clustering, iterative clustering, spectral clustering, and other approaches. This classifi-

cation shows the current emphasis on boundary-based methods, and the relation of shape

segmentation to clustering.

Boundary-based methods typically use the minima rule. Katz and Tal [61] define a

distance matrix on the mesh faces, and then produce a fuzzy clustering of the faces. In a

fuzzy clustering, a single face can belong to multiple clusters, to each with a certain prob-

ability, together summing to 1. The distance function used is a combination of geodesic

and angular distances and essentially models the minima rule. After clustering, the fuzzy

part cuts are refined by a graph min-cut algorithm, to ensure that they are smooth and

non-jaggy. Liu and Zhang [75] use the same distance matrix to construct an affinity ma-

trix on which spectral clustering is performed. The eigenvectors of the affinity matrix are

used to aid K-means clustering. The algorithm is simpler than Katz and Tal’s [61], but is

reported to have problems when the intended part cut passes a featureless region. Katz

et al. [60] first extract prominent points of the shape, based on their geodesic distances,

to ensure pose-invariance of the segmentation. Here, prominent points are typically the

tips of parts, such as the fingers of a hand. Each segment is made to represent at least one

feature point. Additionally to these segments, a core segment is extracted by a spherical

mirroring operation. Lee et. al. [69] employ the minima rule explicitly to find the concave

creases. As these might not be closed, they are closed to form a loop. Several measures

are defined to guide the closing, as simply taking the shortest path between the endpoints

does usually not give satisfying results. The most salient loops are then chosen, and a

snake-based approach moves the loops to more suitable locations, forming part cuts. It

is interesting to note that when closing the partial creases, the authors use a “centric-

ity” measure to ensure that the loops are perpendicular to the curve skeleton, something

that users are found to be interested in. This suggests that the boundary-based minima

rule alone does not lead to the best results, but that interior-based skeletal information is

essential.

Manual segmentation methods also exist. Funkhouser et al. [41] for example provide

a manual scissoring method, that is made “intelligent” by guiding the user. The user

paints a stroke on the mesh, after which the stroke is closed automatically by computing

the shortest paths between endpoints. After this, the part cut can be manually refined by

over-drawing strokes.

Interior-based methods consider the shape volume in addition to its surface. Mortara

et al. [88] propose a multi-resolution approach, that blows a spherical bubble at each

mesh vertex and studies how the intersection of that bubble with the surface evolves.

They analyze both the curvature of a vertex over variable-size neighborhoods, and the

topology of the surface in that neighborhood. Vertices are classified into specific feature

types, such as tips, pits, and joints. Mortara et al. [89] specialize this approach to partition

a shape into generic body and tubular parts. Dey et al. [35] perform a segmentation

by determining the stable manifolds of the maxima in a flow function that extends the

distance-to-boundary function. Because this inevitably causes over-segmentation, as there

might be many maxima due to noise, the segments are merged in a subsequent step.

Another way to consider the shape’s interior is by means of a skeletal structure, such

as the curve skeleton. Our approach belongs to this category. The characterizing compo-

nents of these approaches are the particular curve skeleton definition that they use, how

90 Chapter 6. Part-type Shape Segmentation

events on the curve skeleton are detected, and how these events are mapped to meaningful

part cuts. Li et al. [72] compute a curve skeleton using edge contraction. As the curve

skeleton computed in this manner is not connected by default, it is made connected by

inserting branches. Then, a plane is swept along the branches, starting from the leaf ver-

tices. The cross sections are analyzed to signal events based on the sudden changes in

cross section perimeter and/or a change in its topology. These events are then mapped to

the boundary by the same planar cross sections. Cornea et al. [25] use force-following

of boundary particles in a potential-field inside the shape to compute the curve skeleton.

As a possible application of their skeletonization technique, they present a shape seg-

mentation, by projecting skeleton segments that are delimited by junctions back to the

boundary using the particle trajectories. Lien et at. [73] observe that segmentation and

curve-skeletonization share similar properties and propose a method that does both si-

multaneously. First, a simple approximate convex decomposition is made, in which each

component has a maximum concavity that is less than a tunable threshold. Then, a simple

skeleton is extracted for each component. If for a component the quality of the skeleton

is not sufficient, the algorithm recursively decomposes and skeletonizes the component.

Brunner [19] presents a method that voxelizes a triangle mesh, and its curve skeleton is

computed by a thinning approach. Since the association of curve-skeleton voxels with

the boundary is lost during thinning, it is reconstructed by associating each triangle with

the closest curve-skeleton voxel. The individual curve-skeleton branches, delimited by

junctions, are mapped to the boundary as final segments.

Instead of the curve skeleton, one can also use Reeb graphs [51], produced from the

iso-contours of a suitable mapping function on the surface. Tierny et al. [139] define the

mapping function as the curvature-constrained geodesic-distance to the closest feature

points, detected as the extrema of another geodesic-based function. A subset of the con-

tours is selected based on their topological and geometric evolution, and are used as part

cuts.

A comparative study of five recent part-type methods is given by Attene et al. [8]. In

Section 6.6.2 we compare the results of our method with those of several of the above-

mentioned methods.

6.3 Preliminaries

In Section 6.3.1 we present an optimization in our curve skeleton computation by using

the fact that we do not need to compute the surface skeleton to do part-type segmentation,

resulting in a considerable speed-up. In Section 6.3.2 we detail on the robust detection of

curve-skeleton junctions, a necessary step in order to apply the junction rule.

6.3.1 Skeleton computation optimization

In Chapter 4 we have established that the curve skeleton C (Eq. 4.5) that we compute

is homotopic to the shape. Assuming the shape consists of a single connected compo-

nent, the curve skeleton is connected. The connectivity of the curve skeleton allows us

to make the following optimization to the algorithm if only the curve skeleton is needed

6.3 Preliminaries 91

instead of the complete surface skeleton, as is the case here. Instead of processing all

object voxels, we stop when we have detected the first curve-skeleton voxel p, called the

seed voxel. From there, we consider the 26-adjacent voxels of p, and iteratively continue

the curve skeleton detection only for those neighbors classified as curve-skeleton vox-

els. Because there may be some small parts of the curve skeleton that are disconnected

from the main part, due to discretization inaccuracies (see Section 4.7.1), we search for

a new seed voxel if the number of curve-skeleton voxels detected so far is smaller than a

threshold, which we set to an empirically determined value of 1% of the object volume

(evaluated as voxel count) for all shapes shown in this chapter. This simple modification

of the algorithm means that we no longer have to visit all object voxels, but only a 1D sub-

set. This improves the worst-case time complexity of the algorithm from O(n(b log b)) to

O(3
√

n(b log b)), giving speed-ups up to a factor 10 as compared to the full skeleton com-

putation presented in Chapter 4. For example, the time needed for computing the curve

skeletons for the Horse384 and Armadillo256 objects from Figure 4.10 goes down from

200 and 86 seconds to 25 and 9 seconds respectively (timings without initialization).

6.3.2 Robust junction detection

In Section 4.3 we explained how the shortest-path set Γ(p) associated with each object

voxel p is used to detect curve-skeleton voxels. Recall that we dilated the voxels in the

path set slightly so that we obtain a thick set of voxels Γ′ on the object surface (Sec-

tion 4.5). We determine the border voxels of the set, and count the number of connected

border segments. In case we count two segments, we detect a regular curve-skeleton

point, as Γ represents a Jordan curve. In case of three or more segments, we detect a

curve-skeleton junction. Basically, we use the genus of Γ′ to classify the curve-skeleton

points as either junction or regular.

However, the genus of Γ′(p) is a conservative criterion for detecting junctions. The

computed genus may be higher than in the original object, due to boundary noise or

discretization artifacts. This is problematic if we want to use the detected junctions for

segmentation. In spirit of the collapse measure, we resolve this by discarding junctions

that have small components in their component set C, as they likely result from noise. One

could simply filter out small components in C(p) and count the remaining components:

if at least three components remain, point p is a junction. However, junctions on C-loops

cannot be detected in this manner, as these junctions generate only two components.

The solution is to associate each connected border segment of the dilated path-set

Γ′(p) with the component in C(p) it bounds, and then filter and count the border seg-

ments instead of the components. Concisely put, a point p is a junction if and only if its

dilated path-set Γ′ has at least three connected border segments, that bound large enough

components. We denote the set of robust junctions Jτ :

Jτ =
{

p ∈ J0

∣

∣

∣
|Γ′

τ (p)| ≥ 3
}

, (6.1)

where J0 is the set of conservatively detected junctions from Section 4.5, and Γ′
τ (p) are

92 Chapter 6. Part-type Shape Segmentation

Figure 6.4: Conservative junctions J0 (a,c). Robust junctions Jτ (b,d). Junctions repre-

sented by black balls.

the “pruned” border segments in the dilated path-set Γ′(p):

Γ′
τ (p) =

{

b ∈ Γ′(p)
∣

∣

∣
c ∈ C(p) ∧ b ⊆ ∂c⇒ area(c)

area(∂Ω)
> τ

}

, (6.2)

where b is a connected border segment from Γ′(p) and ∂c is the border of component

c on ∂Ω. Although related to the computation of ρC , we do not have to compute ρC to

compute Jτ : we only have to compute the component sets for the conservative junctions

J0. Equivalent to the computation of Cτ , the simplification level τ is a user parameter

used to distinguish between small-scale noise and signal. The parameter must be set

experimentally. We use a fixed value of τ = 0.001, that is, 0.1% of the total surface area,

for all the non-noisy shapes shown in this chapter. For the noisy shapes we used a fixed

value of τ = 5%.

Figure 6.4 shows the effect of using Eq. 6.1. Figures 6.4(a) and (c) show the noisy

Dino and Genus1 objects with conservatively detected junctions J0 depicted as black

balls. Figures 6.4(b) and (d) show the robust junctions computed by Eq. 6.1.

6.4 Cut point selection

After the simplified curve skeleton has been computed, one can use multiple ways to select

cut points on the curve skeleton. One option is to let users select cut points manually.

Because the curve skeleton is a 1D structure, and every curve-skeleton point has a valid

6.4 Cut point selection 93

Figure 6.5: (a) The curve skeleton of an artificial shape consisting of a chamfered box

and three attached tubes. The curve skeleton has a 2-junction j, a 1-junction k, and a 0-

junction m. (b) Candidate cut points based on σ (encoded by color map). (c) Final branch

cut points after junction-type detection. (d) Segmentation using junction cut points yields

undesirable results. (e) Segmentation using the branch cut points yield correct results.

part cut associated with it by means of its Jordan curve, manual selection is an easy

and intuitive process. Nevertheless, fully automatic segmentation is preferred for most

applications. We have developed two automatic schemes, both based on the junction rule.

The first scheme is called the junction-cut scheme. This method simply chooses the curve-

skeleton junctions directly as the cut points. The shortest-path sets Γ of the junctions are

then used to create either a flat or hierarchical segmentation (see Section 6.5). Several

junction-cut segmentations obtained using this approach are shown in Figure 6.16.

Although the junction-cut scheme produces satisfying results for some shapes, it de-

livers non-intuitive results for some others. Consider Figure 6.5(d). We observe the fol-

lowing problems:

• Over-segmentation. We constructed the shape as consisting of a chamfered box

with three tubes. We thus expect to find four parts, but we find seven instead. In

other words, some part cuts are invalid.

• Non-tight part cuts. Although the bottom-left tube is given its own segment, the

part cut does not split off the tube tightly.

• Non-smooth part cuts. Some of the part cuts are not smooth. The part cut of the

bottom-left tube for example has a 90 degrees corner on top of the box. Non-tight

and/or non-smooth part cuts are inaccurate.

We next explain why the junctions are suitable for signaling the interpenetration of

parts, but why they are not optimal as cut-generating points. For the sake of discussion,

we assume the generic case of junctions having exactly three emanating branches. In

94 Chapter 6. Part-type Shape Segmentation

Figure 6.6: Schematic overview of the four junction types and their desirable part cuts

(magenta line-segments). An n-junction (n = {0, 1, 2, 3}) generates n + 1 parts using n
part cuts. Curve skeletons are blue.

non-generic cases junctions may have more branches. Our algorithm, presented in the

following sections, can also handle these cases.

First, by using junctions as cut points, three part cuts per junction are generated, be-

cause three branches come together in a junction. However, on actual shapes we may find

that junctions either indicate the intersection of 4, 3, or 2 parts, or do not indicate a part

cut at all. Let an n-junction be a junction for which n part cuts should be generated, that

is, it represents the intersection of n + 1 parts. Figure 6.6 schematically shows how one

would intuitively place part cuts for four different junction types. Each of the four shapes

gives rise to a different number of part cuts. We have observed that 1-junctions occur

most frequently in real-world shapes, whereas 3-junctions are uncommon (one example

is the junction in the body of the Crab shape in Figure 6.19). Figure 6.6(d) shows a 0-

junction: it does not represent a valid part cut at all. The junction results from the fact

that the skeleton extends into the two corners of the rectangle. Although the shape could

be interpreted as consisting of three interpenetrating parts, namely as the two corners and

the rectangle’s rump, this is non-intuitive and no part cuts should be generated.

Considering that a continuous deformation exists between each two of these shapes,

it is clear that the junction type is inherently subjective. For example, if the disc of Fig-

ure 6.6(a) becomes smaller and smaller, the situation transforms, suddenly, at some point,

into that of Figure 6.6(b). As another example, when we increase the width of the smaller

part in Figure 6.6(c), the situation gradually changes into that of Figure 6.6(b). Note that

we do not consider here the continuity, or visual conductance [59], of branches to distin-

guish parts, and only their relative sizes. The two examples indicate that part-type shape

segmentation can be considered a subjective task [8]. To summarize, to segment using the

junction rule, we should be able to differentiate between the different junction types.

The second issue with using junctions as cut points is that the path sets of the junctions

are ill suited as part cuts as they do not split off parts tightly and smoothly. Figure 6.5(b)

illustrates this using a chamfered box with three attached tubes. The path set of junc-

tion j (Figure 6.5(a)) does not split off the two tubes accurately: each tube contains a

6.4 Cut point selection 95

Figure 6.7: The geodesicness measure computed for a curve-skeleton point p with feature

points a, b and Jordan curve Γ(p) = {γ1(a, b), γ2(a, b)}. (a) High geodesicness (σ ≈ 1).

(b) Medium geodesicness (σ ≈ 0.5).

large part of the chamfered box, and the segment borders exhibit a number of curvature

discontinuities.

We propose the branch-cut scheme to resolve these issues. An example branch-cut

segmentation is shown in Figure 6.5(e), which correctly finds the box and the three tubes,

tightly split off. The branch-cut scheme first finds the set of accurate (tight and smooth)

part cuts for each junction, and then uses junction-type detection to select the subset

of valid part cuts. In Section 6.4.1, we define the geodesicness measure, which guides

the selection of accurate part cuts, which is explained in Section 6.4.2. In Section 6.4.3

we describe the selection of a valid subset of the cut points by means of junction-type

detection.

6.4.1 Geodesicness measure

Recall from Section 4.3 that the Jordan curve Γ(p) that is associated with each reg-

ular (non-junction) curve-skeleton point p consists of two shortest geodesics Γ(p) =
{γ1(a, b), γ2(a, b)} between p’s feature points a, b. Because the piecewise geodesic Jor-

dan curves are used as part cuts, the borders are smooth for the larger part, a desirable

property for any segmentation method. However, this property does not need to hold at

the two feature points F (p) where the two geodesics might meet under an angle. We next

introduce the geodesicness measure σ : C → [0..1] on the curve skeleton which measures

the degree to which the total Jordan curve Γ(p) is geodesic.

A geodesic is the curved-space generalization of a straight line. Thus, our measure σ
should be 1.0 if and only if the two geodesics meet at an angle of 180 degrees in both

feature points. In that case the whole Jordan curve is a geodesic. Using differential

geometry, we can project Γ(p) in a small neighborhood of the feature point a onto the

surface tangent plane at a, to determine the angle that the two geodesics make, and then

do the same for b. However, for low-resolution voxel shapes and shapes that are noisy,

a relatively large neighborhood must be taken, in which case the projection may not be

accurate.

We take a more robust approach instead. Let c be the midpoint of one geodesic

96 Chapter 6. Part-type Shape Segmentation

γ1(a, b), and d of the other γ2(a, b) (see Figure. 6.7(a)). We compute the shortest geodesic

γ(c, d). If γ(c, d) is a subset of Γ, it follows that Γ is a shortest geodesic between c, d.

Furthermore, it can be seen that the more γ(c, d) deviates from Γ, the more Γ deviates

from a geodesic at the feature points. This deviation can be measured by the surface

area spanned by the geodesic triangle acd, or, in terms of difference in length, which we

choose because it is more easily computed:

σ(p ∈ C) =
length(γ(c, d))

length(γ(c, a)) + length(γ(a, d))
. (6.3)

This is a dimensionless measure attaining values between 0 and 1, the latter indicating

a geodesic Jordan curve. The case of junctions, in which Γ consists of multiple Jordan

curves, is handled by computing the minimum σ among Jordan curves.

We have assumed that curve-skeleton points have two feature points. However, when

the curve skeleton coincides with a sheet intersection curve, a point p ∈ C has (at least)

three feature points, resulting in more than two shortest geodesics. To handle these cases,

we compute the measure σ by taking the minimum value of σ computed between each

pair of geodesics.

6.4.2 Selecting candidate cut points

We use the robust junctions Jτ as computed in Section 6.3 to search for cut points whose

Jordan curves make for accurate part cuts, based on the geodesicness measure σ as defined

in Section 6.4.1. Higher values of σ indicate a smooth Jordan curve and thus a good

candidate for cut point placement. Figure 6.5(c) depicts σ on C. Looking at the branches

emanating from the junctions into the tubes, we see that σ is low at the junction itself

and reaches a maximum inside the tubes. We thus proceed as follows. Starting from a

junction j ∈ Jτ , we search along the C-branches emanating from j for the first point q
which has a sufficiently high value of σ. The search for q on a branch stops when another

junction or the end of the branch is reached. In practice, σ does not reach the maximum

of 1.0 inside each protrusion that can be considered a part, so we tolerate lower values:

Tσ < σ. Extensive experimental study suggests that setting the threshold Tσ to 0.8 gives

good results. For some branches, the very first (regular) point of the branch might have

high enough σ to be marked as a cut point (e.g., point m1 in Figure 6.5(b)). For other

branches, we might find no such point: no point generates a suitable part cut (see, e.g.,

the other branches emanating from m).

To summarize, we obtain for each junction j a set of candidate cut points Q, whose

cardinality is at most the number of branches at j. For branches whose measure σ stays

low until the end we find no cut points, so that |Q| is lower than the number of branches.

Figure 6.8 schematically shows the detected candidate cut points {qi} that we would

detect in this manner for the four different junction types. We observe that although

the detected part cuts are tight and smooth (i.e., straight lines in this 2D projection), not

all cut points make for valid part cuts, and some cut points should be removed from

Q. In Figure 6.8(a), all cut points are valid: no points should be removed from Q. In

Figure 6.8(b), point q2 should be removed, in Figure 6.8(c), points q2 and q3 should

be removed. In Figure 6.8(d) the only candidate cut point q1 that was found should be

6.4 Cut point selection 97

Figure 6.8: Four junction types (a,b,c,d). The Jordan curves Γ(qi) for the candidate cut

points qi are shown as magenta line-segments. Valid part cuts shown as thick magenta

lines, invalid ones are dashed. Shortest-path sets of the junctions are shown using gray,

dashed line-segments Γ(j).

removed. To remove these invalid cut points, we have to perform junction-type detection,

as explained in the next section.

6.4.3 Junction-type detection

After finding accurate cut points, we perform junction-type detection to select the valid

cut points among them. Hereto, we make the assumption that each intersection of parts

involves one body part, which is the “largest” intersecting part, and several limb parts,

which are the “smaller” parts. In Figure 6.8(a) for example, there is one disc-shaped body

and three limbs. In Figure 6.8(c), there is one body and one limb, for which q1 is the part

cut. We thus want to distinguish the body part from the limb parts by their sizes. We can

express the size of a part in at least two ways: by means of the part’s surface area, or by

means of its circumference at the point of intersection. The problem with the former is

that it is a non-local property, possibly giving non-intuitive results. For example, the limb

due to q2 in Figure 6.8(a) can have a smaller or a larger surface area than the disc-like

part depending on what the hidden right-hand part of the shape looks like. The part that

is considered the body would thus depend on what the hidden part looks like, which is

clearly undesirable. A better, more local criterion is the circumference of the limb at the

intersection.

We further notice that the junction can be considered to lie inside the body, and never

in one of the limbs: the body is represented by two branches emanating from the junction,

while the limb has one (consider Figure 6.2(c) for example). Hence, our idea is to compare

the circumference of the limb at the part cut, which we measure by the length of the Jordan

curve Γ(qi) of cut point qi, with the circumference of the body, given by the maximum

length among the Jordan curves in Γ(j) of the junction j. Note that although typically

length(Γ(qi)) = 2ρS , this does not hold for non-generic cases in which q has three feature

points. Let ϑj denote the “part-cut similarity” of a point q ∈ C with respect to the junction

98 Chapter 6. Part-type Shape Segmentation

1: compute curve skeleton C
2: compute robust junctions Jτ

3: merge all junctions j, k ∈ Jτ for which ‖j − k‖ < D(j) + D(k)
4: compute geodesicness σ on C
5: cut points P ← ∅
6: for each junction j ∈ Jτ do

7: {Find candidate cut points Q(j):}
8: for each branch b emanating from j do

9: find first p ∈ b: σ(p) > Tσ ∧ ϑj(p) < Tϑ, abort when p ∈ Jτ

10: follow b backward from p while σ(p) > Tσ

11: if point p found then

12: Q← Q ∪ {p}
13: else

14: find first p ∈ b: σ(p) > Tσ , abort when p ∈ Jτ

15: if point p found then

16: Q← Q ∪ {p}
17: end if

18: end if

19: end for

20: {Remove invalid cut points from Q(j):}
21: sort points in Q = {q1..qn} by descending similarity ϑ
22: if ϑ(q1) < Tϑ then {j is a 3-junction}
23: {all cut points are valid}
24: else if ϑ(qn) > Tϑ then {j is a 2-junction}
25: Q = Q \ arg max

q∈Q

ρC(q)

26: else

27: Q = Q \ {q1}
28: if ϑ(q2)− ϑ(q3) > 0.2 then

29: Q = Q \ {q2}
30: end if

31: end if

32: P = P ∪Q
33: end for

Figure 6.9: Pseudocode of the branch-cut scheme.

j ∈ Jτ that generated q:

ϑj(q) = 1.0− length(Γ(j))− length(Γ(q))

length(Γ(j))
. (6.4)

We clamp values of ϑ to 1.0. The basic idea is that if the similarity ϑ(q) is high enough,

that is, higher than the threshold Tϑ, candidate q should be removed. We have fixed Tϑ to

0.6 for all shapes shown in this chapter.

By removing invalid cut points, we essentially merge those candidate limbs with the

6.4 Cut point selection 99

body that are considered part of the body. In doing so, we have to make sure that we

do not merge more than two limbs with the body: no part should contain a bifurcation,

otherwise it is considered to consist of multiple parts. Indeed, using the ϑ-criterion we

would remove all three cut points in Figure 6.8(b), because all three intersecting parts

have a similar circumference. A second constraint is that limbs to be merged should really

stand out from the other limbs in terms of the part cuts. Otherwise, a small perturbation of

the shape might result in different limbs being merged, making the segmentation unstable.

We incorporate these considerations in our algorithm, whose pseudocode is shown in

Figure 6.9. The invalid cut point removal starts at line 20. The cut points are first ordered

on descending values of ϑ. Note that it is possible that junctions generate only one or two

candidate cut points (e.g., junction m in Figure 6.5). To have a minimum of three ϑ-values

per junction, we repeat the lowest value. Now, based on the ϑ-values, we remove zero,

one, or two cut points, as follows.

First, we check whether we are dealing with a 3-junction, by seeing whether all ϑ-

values are below the threshold Tϑ (line 22). If this is the case, all cut points are valid.

If this is not the case, we check if we are dealing with an obvious 2-junction, by seeing

whether all ϑ-values are above the threshold Tϑ. If this is the case, we have to remove

one cut point. However, as all ϑ-values are above the threshold, they can all be considered

similar and removing the point with the highest ϑ can be considered an arbitrary choice.

As we cannot distinguish between cut points by means of their ϑ-values, we remove the

cut point that admits the largest surface area ρC (line 25). Finally, if some of the ϑ-

values are above and some are below the threshold, we might be dealing with a 2, 1, or

a 0-junction and proceed as follows. In any case, the cut point that has the highest ϑ is

considered invalid and should be removed (line 27). Then, we also remove the second cut

point (q2) if it stands out from the next one (q3) by requiring that the difference between

their ϑ-values is large enough (line 28). In this manner either one or two cut points are

removed. Note that the case of 0-junctions are partly handled by the candidate cut point

selection: a 0-junction would obtain less than three candidate cut points (|Q| < 3). In

this manner, removing up to two cut points can result in no cut points being left, correctly

indicating a 0-junction.

Figure 6.10 shows for the Hand and Noisy Dino shapes, the curve skeletons C, junc-

tions Jτ , the geodesicness measure σ encoded as a color map on C, the candidate cut

points, and the final part cuts.

6.4.4 Higher-order junctions

We restricted our discussion to junctions having exactly three emanating branches, but

our approach also works for junctions having more than three branches, called high-order

junctions. For these junctions of order 4 or more, the assumption of multiple limbs in-

tersecting with a single body is still valid. However, we have to take into account the

instability of higher-order junctions. Consider Figure 6.11, which shows a 4-branch junc-

tion that is not stable: an insignificant change in the shape (the non-alignment of the two

vertical limbs) causes the 4-branch junction (a) to transform into two 3-branch junctions

(b). Depending on the specific values of ϑ, this might affect the junction-type detection

and result in a different number of final cut points, because our algorithm considers the

100 Chapter 6. Part-type Shape Segmentation

Figure 6.10: Part cuts (magenta loops) for the Hand (a) and Noisy Dino shape (b). Curve

skeletons C with rainbow color-map encoding σ (red=1, blue=0), junctions Jτ (black

balls), candidate cut points (colored balls).

Figure 6.11: (a) A 4-branch junction j that generates four candidate cut points. (b) A

similar shape produces two 3-branch junctions j and k, each generating two cut points.

merging of up to two limbs per junction with the body.

We resolve the issue by “stabilizing” the junctions before searching for candidate cut

points. We do this by merging each two junctions j, k ∈ Jτ that are within a distance of

D(j)+D(k) from each other (where D is the radius of the inscribed ball). From then on,

the two junctions j and k are considered as one when iterating over Jτ . Furthermore, we

make sure that the C-voxels between j and k cannot be marked as cut points. This solves

the instability of the junctions with respect to small change in body/limb configurations.

It also makes the occurrence of higher-order junctions much more common. An example

of the result of this merging step can be seen in Figure 6.13(a), in which all the junctions

in the hand are merged.

6.4 Cut point selection 101

Figure 6.12: (a) Growth of a limb causes a skeleton ligature. (b) Detecting cut points

by skipping ligatures. (c) Limitation of the junction rule. All figures can be seen as 2D

shapes or cross sections of 3D shapes.

6.4.5 The branch-cut scheme and its relation to ligatures

In this section we try to understand the branch-cut scheme in relation to curve-skeleton

ligatures [15]. In doing so, we give a limitation of our approach as we presented it thus

far, and present a refinement to overcome it.

For 2D shapes, the junction rule and minima rule are related, as follows. It is well

known that the minima of boundary curvature, i.e., concave corners, correspond to skele-

ton ligatures. Ligatures are formed by the many-to-one relations in which a small bound-

ary segment maps to a large skeleton segment (see also Figure 2.2). August et al. [9] have

related ligatures to the growing of limbs from a main body, and consider them the unsta-

ble parts of the skeleton. We observed that if ligatures arise through such a growing of

a limb, they are usually connected to the skeleton of the main body by a junction, which

resulted in the formulation of the junction rule. It is important to note however that not

all ligatures generate a junction.

Our branch-cut scheme uses the idea that the growing of a limb causes the formation

of a ligature that is connected to the rest of the skeleton by a junction. By skipping points

on the curve skeleton with low geodesicness, we basically skip the ligatures. This is

illustrated in Figure 6.12(a), which can be seen as a 2D shape consisting of an ellipse body

with a limb that has grown from it. The ligature is indicated by the dashed line segment.

In 2D, when tracing the ligature from the junction j, the ligature ends when the feature

points make an angle that is approaching 180 degrees. Indeed, the feature-angle measure

used in many existing pruning methods (see Section 2.6) is based on the observation that

the stable, non-ligature, parts of the skeleton are formed by these near 180 degree angles.

Using this criterion we find candidate cut points a, b, and c (see Figure 6.12(b)). However,

point a and b do not present the growing of limbs. In 2D, we can remove these invalid cut

points by the fact that their inscribed disc is of similar size to the junction’s disc, whereas

the disc of point c is much smaller than the other discs.

Our branch-cut scheme is analogous to the above-mentioned idea for 2D shapes. We

now view the shapes in Figure 6.12 as the cross sections of their respective 3D shapes.

In 3D, the Blum skeleton is replaced by the curve skeleton, and the feature points are

replaced by Jordan curves. Our branch-cut scheme skips the ligatures by skipping curve-

skeleton points whose Jordan curves have low geodesicness. Indeed, looking at the feature

angle does not work in 3D: we have to consider all points that the part cut comprises. An

102 Chapter 6. Part-type Shape Segmentation

Figure 6.13: Finding the correct cut point q for the thumb. (a) Junction j and its shortest-

path set. (b) First accurate cut point p for which σ(p) > Tσ can be considered invalid. (c)

Modification of algorithm finds first point q for which σ(p) > Tσ ∧ ϑ(p) < Tϑ, and does

make for a valid and accurate part cut (cut points for fingers also shown).

example for which it would not work is for the ligature going to the thumb of the hand

shape in Figure 6.10(a): all feature points on the ligature admit a large angle. After

finding the candidate cut points, we removed the invalid cut points by comparing the

part cut length of the candidate with its corresponding junction, which is similar to the

comparing of inscribed disc radii in 2D.

In Figure 6.12(c) we see a limitation of the junction rule. In uncommon situations,

limbs may grow in such a way that the ligature lies in the extension of the skeleton. In this

case, no new junction is formed, and we do not detect this part. One way to resolve this

issue is to detect ligatures directly without using the junction rule. However, we do not

want to do this by looking at boundary curvature, as was done by August et al. [9], because

this is unstable for noisy and coarse voxel shapes. Furthermore, we face the problem of

determining of how many points of the Jordan curve need to lie on a concavity for a

curve-skeleton point to be flagged as ligature. We leave the idea of detecting ligatures of

the curve skeleton explicitly to place cut points as future work.

Nevertheless, to alleviate this (uncommon) problem sketched in Figure 6.12(c), we

introduce the following modification to our algorithm (see Figure 6.9). First, we find on

a branch b the first cut point p for which σ(p) > Tσ and for which ϑ(p) < Tϑ (line 9).

Then, we walk back along b while σ(p) > Tσ (line 10). If we find no point for which

σ(p) > Tσ and ϑ(p) < Tϑ, then we resort to the old method of taking the first point for

which σ(p) > Tσ (line 14).

The above modification ensures for example the correct segmentation of the Hand

shape in Figure 6.13. When looking at the branch associated with the thumb emanating

from junction j, we see that the very first point p satisfies the high geodesicness criterion

(see Figure 6.13(b)). As this point has a high similarity ϑj , the candidate cut point is

considered invalid and will be removed subsequently, incorrectly merging the thumb with

the palm. Using the presented modification, when searching for the first point that satisfies

both σ > Tσ and ϑ < Tϑ, we find cut point q, which correctly splits off the thumb

(Figure 6.13(c)).

6.4.6 Algorithm details

We now discuss some non-essential details of the algorithm.

6.5 Segmentation 103

As explained in the previous sections, we search along branches emanating from junc-

tions to look for candidate cut points. We stated in Section 4.7.1 that the curve skeleton

can be up to two voxels thick. Walking along the thick curve skeleton is not straightfor-

ward as each voxel has more than two adjacent voxels. Although it is possible to apply

a thinning operation first, we proceed differently. When we walk along the branches in

Cτ emanating from a junction j ∈ Jτ , we perform a Dijkstra distance propagation on the

curve-skeleton voxels until we reach another junction or the endpoint of a branch. For

each C-endpoint or other junction, we trace back to j so that we obtain a path on each

branch that emanates from j.

After determining valid cut points, it might be that two cut points, although they come

from different junctions, basically represent the same part cut. In a segmentation, these

two cut points might create a thin “sliver” segment. We detect this situation by checking

for each two cut points that come from different junctions whether their shortest-path sets

Γ touch. If they do, even if by one voxel, we remove one of the two cut points. Without

this modification, a sliver segment would for example be generated between the ant’s head

and body in Figure 6.19.

6.5 Segmentation

In the previous section we discussed the selection of cut points. This section details

on how we obtain either a flat or hierarchical shape-segmentation from the cut points,

selected using the junction-cut scheme, the branch-cut scheme, or manually.

The most straightforward segmentation approach is the flat segmentation. The

shortest-path sets Γ (Eq. 4.3) of the cut points are used directly as part cuts, to divide

the shape boundary into connected components. The segmentation is called flat because

it is non-hierarchical: it can be considered the finest level in the hierarchy. In order to

produce a hierarchical segmentation, we consider the component sets C of the cut points.

We can distinguish between foreground and background components. In a component set

C consisting of k components C1..k, the largest component Ck is called the background

component, the remaining ones are called foreground components. The foreground com-

ponents are those that one would consider meaningful and intuitively associate with the

cut point. The background component is merely the remaining surface. In Figure 4.5(f)

for example, the background components are the blue components. Furthermore, we can

also consider the combined foreground components as a meaningful component. We

denote this compound component by C ′(p) = ∪1≤i<k Ci(p).

Let FG be the set of foreground components of all cut points combined. The segmen-

tation should be based on FG, but the components in FG are not disjoint. We now present

an algorithm for creating a flat segmentation from FG consisting of disjoint segments, at

a certain scale τ . By creating segmentations for all the available scales, a hierarchy of

segmentations is obtained. The pseudocode of the hierarchical segmentation is shown in

Figure 6.14.

To create a segmentation at scale τ we consider all components f ∈ FG in ascending

order of their area (line 5), but only those components that are larger than the specified

scale τ (line 6). The potential segment s is computed as the set difference between f

104 Chapter 6. Part-type Shape Segmentation

1: FG← {Ci(p) | p is a cut point ∧ 1 ≤ i < k} ∪ {C ′(p) | p is a cut point}
2: FG← FG ∪ {∂Ω}
3: procedure computeSegmentationAtScale(τ)

4: S ← ∅
5: for each f ∈ FG in ascending order of area(f) do

6: if 1
area(∂Ω)area(f) ≥ τ then

7: s← f \ S
8: if f ∩ S 6= ∅ ⇒ area(s) > 0.1 · area(f ∩ S) then

9: S ← S ∪ s
10: label s as a segment at hierarchy level τ
11: end if

12: end if

13: end for

14: end procedure

15: procedure computeHierarchy()

16: for each fi, fi+1 in FG in ascending order of area(fi) do

17: if area(fi+1)− area(fi) > 0.1 · area(fi) then

18: computeS(1
area(∂Ω)area(fi))

19: end if

20: end for

21: end procedure

Figure 6.14: Pseudocode for computing an hierarchical segmentation.

and the voxels that the existing segments occupy, denoted S: s = f \ S (line 7). Before

labeling the potential segment s, we check whether f overlaps any existing segments. If

not, s is added without restriction. If f overlaps, we only add s if it contributes enough to

the segmentation, that is, if it adds at least 10% of the area that it overlaps (line 8). This

is to prevent tiny segments due to different junctions having similar components among

their component sets. This occurs for example when using the junction-cut approach, due

to the fact that junctions computed by the algorithm in Section 4.5 may consist of multiple

voxels, having almost the same component sets. After processing all components in FG,

the object surface might not be fully covered, because the background components have

been left out in the segmentation. Therefore, we add to FG the whole boundary as the

largest component (line 2), which ends up as a single segment filling up the remaining

part.

In order to compute a hierarchical segmentation consisting of fine to coarse levels

(line 15), we simply consider all components from FG in ascending order of area, and

produce a segmentation for each of those areas. To limit the number of generated hierar-

chy levels, in our implementation we only compute a hierarchy if two consecutive areas

differ by at least 10% from the smaller area fi (line 17). The different segmentations pro-

duced at the various scales actually form a hierarchy, because every segment is included in

a segment from a coarser scale, due to the inclusiveness of the component sets (Eq. 4.6).

It is important to note that the flat segmentation may differ from the finest level in

6.6 Results and discussion 105

Figure 6.15: (a) Junction cut points and their shortest path-sets. (b) Flat segmentation. (c)

Finest level of the hierarchical segmentation.

the hierarchical segmentation. Conceptually, the difference between the two approaches

is that within the flat segmentation, the connected components are determined for all the

part cuts at once, whereas for the hierarchical segmentation, the connected components

are computed per cut point, and are later combined. This might result in different seg-

mentations in the case of shapes with tunnels. This is illustrated in Figure 6.15. Whereas

the flat segmentation splits the tunnel into two, the hierarchical segmentation leaves the

tunnel intact.

6.6 Results and discussion

We implemented our framework in C++ and ran it on a Pentium 4, 3GHZ with 1GB of

RAM. As input we used several polygonal meshes voxelized using binvox [84], for vari-

ous resolutions ranging up to 3843 voxels. We used shapes from the McGill Shape Bench-

mark [145], the AIM@SHAPE Database [2], and the Princeton Shape Benchmark [124].

We used both organic (having smooth edges) and geometric shapes (having sharp edges).

All segmentations are shown with a minimum coloring scheme applied and smooth iso-

surfaces have been computed from the voxel output and are rendered using a raytracer [99]

for clearer display.

Figures 6.16, 6.17, and 6.18 all show junction-cut segmentations. Figure 6.16 shows

for four objects the simplified curve skeleton Cτ and robust junctions Jτ , both with τ =
0.01, and three selected levels from the hierarchical segmentation. Figure 6.17 shows the

segmentations of the Tree object for all levels. Figure 6.18 shows for several objects the

segmentation at the finest scale.

Results of the branch-cut scheme are shown in Figure 6.19 using a flat segmentation.

Most segmentations here can be colored using only two colors, indicating that part cuts

usually do not touch (and never intersect).

6.6.1 Evaluation

We evaluate our framework using the criteria proposed by Attene et al. [8].

The correctness of part-type segmentations is inherently subjective [8]. Our method

does not target a particular application, but instead claims that it finds logical parts. We

assess the correctness of our method visually. As can be seen from the examples in Fig-

ures 6.18 and 6.19, our framework handles organic, geometric, noisy shapes, and shapes

106 Chapter 6. Part-type Shape Segmentation

Figure 6.16: Simplified curve skeletons Cτ with detected junctions (first column), and

three levels of the junction-cut hierarchical segmentation (other columns).

Figure 6.17: All levels of the junction-cut hierarchical segmentation for a tree shape.

Figure 6.18: Junction-cut segmentations.

6.6 Results and discussion 107

Figure 6.19: Branch-cut segmentations.

with tunnels. We further observe that our segmentation framework is able to extract fine

details, such as the toes and fingers of the Armadillo and Dinopet objects in Figure 6.19,

provided the grid resolution is high enough and the curve skeleton has not been simplified

too much by the user.

As expected, the branch-cut scheme produces better results than the junction-cut one.

The latter produces exactly three parts for each junction, whereas the former produces

between 0 to 4 segments per junction, distinguishing between junction types. Also, some

junctions do not signal the interpenetration of parts at all. Note that this does not invalidate

the junction rule: the junction rule says that an interpenetration implies a junction, not vice

versa. The saliency of the part cuts is guaranteed, because the simplified curve skeleton Cτ
contains only significant branches, guaranteed by the scale parameter τ .

As can be seen in Figure 6.19, the branch-cut segmentations all agree with intu-

ition and do not suffer from over-segmentation. They do not suffer from severe under-

segmentation in the sense that there are no parts that contain bifurcations. However, some

shapes could be considered under-segmented, such as the dinopet, for which the head and

neck are both assigned to the same segment.

The part cuts that our method produces have several desirable properties. They are

found directly as the Jordan curves associated with the cut points. They are closed by

default (unlike e.g. [69]), and no refinement of part cuts is necessary (unlike e.g. [61]),

keeping the algorithm straightforward to implement and intuitive to use. Furthermore, the

part cuts are inherently smooth, as the Jordan curves are piecewise geodesic by construc-

tion. The branch-cut scheme produces even smoother cuts, as the cut points are placed at

points with a high total geodesicness, measured by our geodesicness measure σ.

The framework is able to produce hierarchical segmentations, in which each seg-

ment is fully included in another segment at a coarser scale, as shown in Figure 6.16.

The framework can also be considered multiscale through the use of the user parame-

ter τ [115], which controls the simplification of the curve skeleton. The user parameter

is intuitive as it thresholds the importance measure ρC which has a geometric meaning: it

assigns to a point the smaller surface area induced by the Jordan curve at the point.

108 Chapter 6. Part-type Shape Segmentation

Figure 6.20: Pose-invariance of the branch-cut segmentations.

Following from the multiscale property is the robustness to noise. This robustness is

guaranteed by the robust junction detection, and by the robustness of the geodesicness

measure σ. Figures 6.10(b) and 6.19 show that the Dinosaur shape is correctly segmented

under presence of boundary noise. Another example is given by the noisy Sea mine in

the bottom right in Figure 6.19. Segmentation methods using surface curvature, e.g.,

those based on the minima rule, might have problems here, as the curvatures change

considerably under these boundary perturbations.

The segmentations are pose-invariant. That is, the number and location of segments

do not change under different poses of the same shape. The reason is that the structure

of the underlying curve skeleton does not change significantly under deformations of the

shape. The branch-cut scheme is more pose-invariant than the junction-cut scheme: even

if a junction is introduced by a deformation, it will not immediately result in extra part

cuts because the geodesicness measure σ on this new C-branch has a low value. Only if

the new limb part really protrudes, σ reaches a high enough value.

We evaluated the pose-invariance of our approach on the McGill Shape Bench-

mark [145]. The shapes in this database are divided into two groups. The first group

contains 10 classes of articulated shapes: ants, crabs, hands, humans, octopuses, pliers,

snakes, spectacles, spiders, and teddy bears. Each class consists of up to 30 poses of

the same shape. In contrast, the second group contains classes containing different

shapes and may vary in their number of parts. To test the pose-invariance, we ran our

method on the first group. Figure 6.20 shows three selected shapes from each of the 8

interesting classes (the snakes and spectacles all consist of one part). We observe that

pose-invariance is slightly violated for the teddy and crab classes. For some of the teddy

shapes, the head and body are merged, because the neck is too thick in comparison with

the head, and does not form a contraction. For the crab class, some of the scissors are

split into three segments, whereas others are not, depending on how protruding they are.

Nevertheless, the pose-invariance can be considered satisfying overall.

The asymptotic complexity of our method is dominated by the curve skeleton com-

6.6 Results and discussion 109

Table 6.1: Table with measurements. Times in seconds. See the text for details.

object dim |Ω| |∂Ω| init C hier. branch ρ

Armadillo 188x245x207 905k 80k 23 8.6 41 83 7.5

Dinopet 334x366x180 1,810k 136k 49 15 54 90 40

Hand 366x154x257 1,300k 94k 36 30 21 40 5.6

Horse 366x316x171 2,038k 119k 48 25 34 63 10

Noisydino 125x346x365 1,421k 114k 41 16 19 69 14

Plane 217x304x98 545k 110k 20 53 21 58 39

Octopus 366x259x335 1,860k 154k 53 14 9.5 40 11

Figure 6.21: (a) Manually selected cut points, and (b) resulting segmentation. (c) Seg-

mentation in two halves.

putation. Due to the optimization presented in Section 6.3.1 we do not have to process

all object voxels, as we did in Chapter 4 in order to compute the full surface skeleton.

Table 6.1 shows performance measurements on our framework for several objects that are

shown in this chapter. Columns “object”, “dim”, “|Ω|”, “|∂Ω|” denote object name, voxel-

grid dimensions, number of object voxels, and number of boundary voxels respectively.

Column “init” denotes the time needed for initialization, including loading the object

and computing the spatial-subdivision datastructure needed for efficient computation of

component sets (Section 4.5.4). Column “C” denotes the time in seconds to compute the

non-simplified curve skeleton C using the speed-up from Section 6.3.1. Column “hier.”

denotes the time for computing all levels in the hierarchical junction-cut segmentation.

This time strongly depends on the number of levels generated, and is non-optimized.

Column “branch” denotes the time for computing a branch-cut segmentation. Column

“ρ” denotes the time required to compute ρ on C, that is, to obtain simplified curve skele-

tons. Note that ρ is not needed for computing the segmentation: only the curve skeleton

C and robust junctions Jτ are needed. The time needed to compute the robust junctions

Jτ is not shown as it is negligible: up to 5 seconds for the considered objects.

Only a single control parameter is needed: the curve-skeleton simplification thresh-

old τ , which we discussed in Chapter 4. The branch-cut point placement has two internal

parameters: Tσ for the minimum geodesicness of a cut point and Tϑ for distinguishing

between body and limbs. We have experimentally determined appropriate settings for

these parameters and kept these fixed for the shapes shown in this chapter.

As mentioned, our segmentation framework also supports manual selection of cut

110 Chapter 6. Part-type Shape Segmentation

Figure 6.22: Some limitations of the branch-cut segmentation. (a) Some of the fins are

not segmented because they are too tapered. (b) Part cuts are not as smooth as they could

be for the wings.

points. In Figure 6.21(a), we manually selected three such points on each tentacle of the

Octopus. The resulting segmentation containing three segments per tentacle is shown in

Figure 6.21(b). Another interesting possibility is to pick the root of the curve skeleton

as a cut point. The root R is defined as that curve-skeleton point for which ρ reaches its

maximum (Section 4.3). In case R is a non-junction point, ρ(R) is half the object-surface

area. A segmentation based on the root thus divides the object in two in a natural manner,

as exemplified in Figure 6.21(c) for the H-shape. In future work, this special case could

be easily extended to segmenting the object in n equally sized segments, where n is a user

parameter.

Finally, we discuss limitations of our approach. By using the curve skeleton and

associated Jordan curves, each presenting a potential part cut, we have essentially reduced

the problem of segmentation from 2D to 1D. However, this also causes some limitations.

In case a part is strongly tapered, we may obtain a low σ all along the respective C-branch,

and we might not find a cut point. In practice, if a part is indeed so strongly tapered that σ
does not become higher than our fixed threshold for the whole C-branch, then it must

be a small part, and failing to segment it is not a serious problem. This is illustrated in

Figure 6.22(a): the less protruding fins of the fish are not segmented. A second limitation

is that we have to choose part cuts from a limited set such that they are smooth, but beyond

that we cannot enforce complete smoothness. As a result, the part cuts for the wings of

the plane in Figure 6.22(b) are sub-optimal. Another limitation is demonstrated by the

plane: its rump is divided into two parts, which is undesirable from a semantic point of

view. It might be possible to resolve this issue by including additional criteria, such as

visual conductance, which we leave for future work.

Although our method works on voxel shapes, we argue that it can be adapted to poly-

hedral shapes as well. Computation of the curve skeleton and associated Jordan curves

is available for meshes [36]. However, because the implementation is non-trivial and

not available to us, we have chosen for our own voxel-based implementation. The other

two steps, computing the geodesicness measure and placing the part cuts, are also not

inherently voxel-based.

6.6.2 Comparison

We now briefly compare the results of our method to several other state-of-the-art shape

segmentation methods by visual inspection of the results. Figure 6.23 shows the Homer

6.6 Results and discussion 111

Figure 6.23: Visual comparison of segmentations for the Homer shape. Methods from

left to right: [61], [60], [89], [7], and our branch-cut segmentation.

Figure 6.24: Visual comparison of segmentations for the Hand shape. Methods from

left to right: [72], [75], [19], [69], our junction-cut segmentation, and our branch-cut

segmentation.

Figure 6.25: Visual comparison of segmentations for the Horse shape. Methods from left

to right: [75], [73], [7], [139], and our branch-cut segmentation.

112 Chapter 6. Part-type Shape Segmentation

shape segmented using four existing methods, named Katz and Tal ’03 [61], Katz et

al. ’05 [60], Plumber [89], and HFP [7] (images from [8]) and our own branch-cut ap-

proach as the rightmost image. We notice that our method captures fine features as the

fingers and the nose, whereas the other methods do not. Our method segments only the

two largest toes, as the other toes are not separated from each other by the exterior vol-

ume. We further observe that our method, like [89], does not label the head as a separate

segment. The reason for this is that the neck does not have a (significantly) smaller cir-

cumference than the body. Hence, our method considers the body and head belonging to

the same part. Finally, our segment borders for the legs are tight and smooth, whereas the

other methods can be seen to have some problems for these areas.

In Figure 6.24 we compare our junction-cut and branch-cut segmentations for the

Hand shape with yet four other methods: Li et al. [72], Liu and Zhang [75], Brunner

and Brunnett [19], and Lee et al. [69] (images from the respective papers). Two of these

methods [72, 19] also use the curve skeleton. We observe that our branch-cut segmenta-

tion tightly splits off the fingers and thumb, whereas our junction-cut method and the other

two skeleton-based methods do not. The reason for this is that these methods incorrectly

assume that each junction indicates three intersecting parts. The other skeleton-based

methods and the minima-rule based method of Lee et al. [69] all generate a part cut on the

palm itself, whereas our branch-cut approach keeps the entire palm within one segment.

Finally, Figure 6.25 compares results on the Horse shape.

6.7 Conclusion

In this chapter, we presented a part-type segmentation framework based on our simplified

curve skeletons. Hereto we introduced the junction rule, which is the notion that the curve

skeleton can be used to infer the shape’s part structure by means of its junctions. We argue

that the interior-based junction rule has as advantage over the boundary-based minima-

rule that it leads to more robust results, especially for shapes with noisy boundaries and

for voxel shapes. Due to the simplification of the curve skeleton, only salient parts are

found. Furthermore, the junction rule avoids some of the subtleties that the minima rule

has.

Part cuts are found by detecting cut points on the curve skeleton according to the junc-

tion rule. We have presented two automatic cut point selection schemes. The junction-cut

scheme is most straightforward as it selects the junctions of the curve skeleton directly.

The branch-cut scheme remedies over-segmentation by differentiating between junction

types, and improves the tightness and smoothness of the part cuts by using our novel

geodesicness measure. Final part cuts are selected by considering the body/limb relation-

ships of the intersecting parts. Our framework is conceptually straightforward, and the

resulting segmentations have several desirable properties, such as smooth part cuts and

pose-invariance.

Chapter 7

Patch-type Shape Segmentation

In the previous chapter we used the simplified curve skeleton to extract a shape’s high-

level part structure (Figure 6.1(a)). In this chapter, we use the simplified surface skeleton

to create patch-type segmentations. Patches are quasi-flat areas separated from each other

by relatively high-curvature creases. We first define a skeleton-based surface-classifier

on the shape boundary that separates convex creases from quasi-flat areas. By using

this classifier on both the skeleton of the shape interior and the skeleton of the shape

exterior, we find convex and concave creases that combined divide the shape into patch-

type segments (Figure 6.1(b)).

7.1 Introduction

Detecting features such as ridges and valleys in datasets such as 2D grayscale images

and 3D CT and MRI volumetric scans, is an important and active area of research. Fea-

tures such as edges and corners must be classified in a robust way in order to enable

further analyses on such datasets, like edge-preserving denoising or robust partitioning of

areas bounded by such edges. The so-called local classification of surfaces, in particu-

lar the separation of highly curved ridges from low curvature areas, is also an important

prerequisite in numerous surface processing applications such as surface matching and

feature-preserving simplification.

Traditionally, most surface classifiers used in practice employ one or another variation

of ridge detection based on higher-order surface derivatives, such as gradients, curvature,

or moments. Although a wealth of such methods exist, curvature estimation on noisy

voxel surfaces is an inherently delicate process. Many such methods trade off the pre-

cision of ridge detection for stability, by using different types of filtering over (small)

neighborhoods.

As indicated in Chapter 2, curvature is intimately connected to skeletons. This relation

is explicitly expressed in the symmetry-curvature duality theorem [71], which states that

skeleton branches terminate at convex curvature extrema, and can also be seen in the

correspondence of skeleton ligatures to concave corners [15, 9]. The duality has not often

114 Chapter 7. Patch-type Shape Segmentation

been used for ridge detection or surface classification on 3D shapes, which we believe is

due to the infamously unstable nature of 3D skeletons, the difficulty of computing them,

and the lack of an appropriate scale notion.

This chapter consists of two parts. First, we use our simplified surface skeletons to

define a multiscale surface classifier that separates convex ridges or edges from smooth

regions. We illustrate our method on the classification of anatomical surfaces, with a

focus on cortical surfaces, that is, surfaces of brains, and compare our method with a

classical curvature-based classifier. Second, we use our classifier to detect both convex

and concave edges, to come to a patch-type segmentation of the shape. By computing the

surface skeleton of the shape exterior, concave edges can also be detected. The convex

and concave edges combined partition the boundary into disjoint segments, which present

a patch-type segmentation of the shape.

This chapter is structured as follows. In Section 7.2 we overview related work in the

area of surface classification and patch-type segmentation. In Section 7.3 we present our

skeleton-based classifier and its results. In Section 7.4 we present the related patch-type

segmentation method. In Section 7.5 we present and discuss the segmentation results.

Section 7.6 concludes the chapter.

7.2 Related work

We first discuss related work on surface classifiers, with an emphasis on cortical classifi-

cation. Then, we discuss existing work in patch-type segmentation.

7.2.1 Cortical surface classification

The canonical quantity for edge detection on surfaces is the curvature tensor. Differ-

ent methods exist for its evaluation on discrete surfaces, such as shown by Moreton and

Séquin [87], Clarenz et al. [21], and Desbrun et al. [34]. Besides curvature, surface classi-

fiers can be based on related integral quantities, such as moments [22]. Globally speaking,

all such methods use a local surface classification, and thereby trade edge detection accu-

racy for stability via some built-in smoothing.

Extracting cortical surface features, such as sulci and gyri, from MR brain volumes

is focus of extensive work. Such features are used in studies of inter-subject gyral and

sulcal variability [47] or to identify structural and functional patterns in Alzheimer pa-

tients [138].

Many methods for sulci extraction use the surface’s (mean) curvature. Sulcal fundi

are defined as crest lines of extremal curvature. Similar approaches can be used for gyral

structures. Such methods are semi-automatic, requiring the user to define two or more

points on a sulcus, which are then connected by optimizing a curvature-based cost. Sev-

eral such approaches exist, using weighted geodesics [11], dynamic programming [62],

fast marching [83] and 3D curve-tracking [105]. Evaluating curvature extrema involves

higher-order derivatives, so these methods can be quite unstable on highly convoluted cor-

tical surfaces coming as limited resolution voxel scans. Cachia et al. [20] alleviate such

7.3 Skeleton-based surface classifier 115

problems using a scale-space of the underlying curvature signal, thereby trading precision

for stability.

To overcome stability problems, other methods find sulcal fundi by locally maximiz-

ing the distance from the cortical surface to a bounding hull around it. The methods of

Goualher et al. [47] and Lohmann [76] find fundi as the deepest boundaries of surfaces

obtained by subtracting the white and gray matter from the bounding hull. Combining

curvature and distance-based criteria leads to more stable, but significantly more complex

to implement, methods [57, 58, 134, 133].

7.2.2 Patch-type segmentation

We now briefly overview some of the patch-type segmentation methods that relate to our

approach. Garland et al. [44] perform a hierarchical clustering of the mesh faces to pro-

duce a patch-type segmentation consisting of planar segments. Clarenz et al. [22] perform

a fuzzy multiscale segmentation of a 3D shape, based on surface curvature. However, this

method often generates noisy edges in low-curvature regions. Mangan and Whitaker [81]

partition a surface into patches of similar curvature using a watershed algorithm that uses

curvature as its height function. Zuckerberger et al. [147] give an improved watershed

method and give numerous segmentation applications. Provot et al. [101] segment voxel

shapes by detecting discrete planes with variable width.

Although uncommon, using skeletons to detect features is not new. Hisada et al. [52]

use the skeleton in combination with denoising and filtering techniques to detect salient

shape features. However, their technique works on polyhedral shapes and they do not

produce patch-type segmentations. Related to our approach is the local feature size [3],

which is defined as the Euclidean distance from a boundary point to the skeleton. In

contrast, our classifier (Section 7.3) is quasi-global as it integrates information from a

large part of the boundary, by using shortest paths on the boundary, and as such can

distinguish between locally similar, but globally different boundary configurations.

All in all, existing patch-type segmentation methods for voxel shapes cannot handle

both boundary noise and soft edges, something that we address in this chapter.

7.3 Skeleton-based surface classifier

To define the surface classifier we only consider the surface skeleton S and do not consider

the curve skeleton C. Recall that we compute the simplified surface skeleton, which we

denote Sτ , by applying a simple thresholding strategy to the importance measure ρS . This

measure is computed on each skeleton point by taking the maximum length of the shortest

paths between the feature points. In the rest of this chapter, the word “skeleton” refers to

the surface skeleton.

Key to our approach is an extension of the symmetry-curvature duality theorem [71]

to 3D, which states that the skeleton terminates at maxima of convex curvature. In 2D, this

means that the skeleton terminates at convex corners, while in 3D, this means that skeleton

sheets terminate at convex edges. Whereas for sharp edges the skeleton terminates exactly

at the edges, for smooth edges the skeleton terminates at some distance from the edge (see

116 Chapter 7. Patch-type Shape Segmentation

Figure 7.1: (a) Skeleton endpoints terminate at curvature maxima, i.e., corners. For

smooth corners, they terminate at some distance from the boundary. (b) Simplified skele-

tons generate gaps (dashed curves) of width τ in the feature collection (thick curves).

Figure 7.2: (a) Non-simplified skeleton. (b) Simplified skeleton at scale τn. (c) Simplified

skeleton at scale τn + τe. Thick lines are feature collections V .

Figure 7.1(a)). Normally, it is problematic to use this duality to detect edges as skeletons

are unstable due to boundary noise and as such may contain spurious parts that terminate

at insignificant edges. We address this issue by using our simplified surface skeletons.

The key idea of our approach is simple: by increasing the simplification level τ , we

prune the skeleton Sτ near its rims first, because ρS is lowest near the rims. Because the

skeleton reaches into the edges of the surface, we remove the skeleton parts whose feature

points lie on and near these edges. In this fashion, we can detect edges by the absence

of feature points. By using the skeleton and associated feature points, suitably pruned to

remove noise effects, we can robustly detect such edges, without any discrete curvature

computation.

Let V be the set of feature points corresponding to the simplified skeleton Sτ . We call

this set the feature collection of Sτ :

V (Sτ) =
⋃

p∈Sτ

F τ (p) . (7.1)

We use here the simplified feature set F τ (see Section 5.3), so that we always obtain

precisely two feature points in F τ , even for skeleton rim points that have a contiguous set

of feature points. This is important, as we would otherwise not detect a gap in the feature

collection for these rim points.

By increasing the threshold τ on the importance measure ρS , gaps will appear in the

7.3 Skeleton-based surface classifier 117

feature collection V on and near convex edges of the shape surface. We detect such gaps

and use them to detect the edges. However, one complication is that the parameter τ is

also used to prune spurious skeleton parts that are due to boundary noise or discretization

artifacts. Setting τ to the noise level τn opens V on the edges, but also on noisy parts,

which we do not want to detect as edges. Therefore, we have to increase τ further to τn +
τe: the feature collection V is opened further on edges, but not on boundary noise. This is

illustrated in Figure 7.2, for the sake of clarity in 2D. In Figure 7.2(a), the non-simplified

skeleton S0 of a box with a small-scale noise bump is shown. The feature collection (thick

lines) covers the whole boundary. When τ is set to the noise level τn (Figure 7.2(b)), the

openings in V on the convex bump and near the non-noisy convex corners have the same

size, so that we cannot differentiate between the two situations. By further increasing

τ to τn + τe (Figure 7.2(c)), V is further opened on the corners, but not on the bump.

The term τe controls the minimum detected edge width and should be chosen as small as

possible, to ensure thin edges, but at the same time large enough to account for the small

inaccuracies in the feature point locations caused by the discretization. We verified that

a conservative setting of τe = 4 gives good results on a wide range of objects, including

3D brain surfaces but also several other 3D synthetic and organic shapes as shown in

Section 7.5.

Thus, our classifier D on the boundary surface is defined as the geodesic distance to

the nearest point in the feature collection V :

D(p ∈ ∂Ω) = min
v∈V

length(γ(p, v)) , (7.2)

where γ(a, b) is the shortest geodesic between a, b on the object boundary ∂Ω computed

as in Chapter 4, by using Dijkstra’s algorithm on the boundary graph. Points at a distance

of at least τn/2 from a feature point in V are considered edge points E:

E(Ω) =
{

q ∈ ∂Ω
∣

∣

∣
D(q) > τn/2

}

. (7.3)

The edge-width parameter τe controls the minimum width of the detected edges, but

not the maximum. In case of smooth, round parts of the shape, the openings in V and

thus the edges might become thicker than τe. The importance measure ρS varies quickly

for the skeleton representing the round part, so that in the discrete case, V may be opened

at the round part by a slight increase of τ . This is as expected, since it is not possible

to specify the exact location of an edge over smooth parts having no curvature variation.

Note that in the continuous case, there would not be a gap in the feature collection at

all on the curved part, because the skeleton endpoint has the half-circle as feature points.

However, as we use the simplified feature set F τ , we do not have this problem in the

discrete case, as only the two feature points are kept that are furthest apart.

118 Chapter 7. Patch-type Shape Segmentation

Figure 7.3: Brain surface classification for different skeleton simplification levels τ . Top:

simplified skeletons. Bottom: the corresponding surface classifier D.

Figure 7.4: Brain surface classification using a smoothed curvature estimator (blue=low

curvature, red=high curvature), with increasing diffusion times.

Figure 7.5: Surface classification of the hip dataset

7.4 Segmentation method 119

7.3.1 Results

We illustrate our classifier D on a brain cortex surface, computed from an MRI scan

of 2563 voxels resolution. Figure 7.4 shows the curvature-based classifier proposed by

Taubin [135] applied to the brain surface. To reduce small-scale noise artifacts we apply

the diffusion (heat) equation geodesically to the cortical surface. To take into account the

fact that the underlying grid is irregular, we use the approach of Desbrun et al. [33], equiv-

alent to anisotropic diffusion on regular grids. The three different images in Figure 7.4

correspond to increasingly longer diffusion times t, which are equivalent to increasingly

larger Gaussian filters [22].

Figure 7.3 shows our skeleton-based classifier, computed using three progressively

simplified skeletons. The simplification levels τ are chosen so that they match the sizes

of the Gaussian filters that describe the curvature smoothing in Figure 7.4. We notice

several things. First, the simplification level τ for the skeleton-based classifier has a very

similar effect as the Gaussian filtering, or smoothing time, for the curvature classifier:

small values yield sharper (but potentially noisier) edges, larger values yield smoother,

but thicker, edges. However, we also see that the skeleton-based classifier separates the

convex gyral edges (curvature maxima) from the quasi-flat and concave regions quite

sharply, even at low simplification levels, whereas the curvature-based classifier produces

results where the separation is less clear. The skeleton-based classifier is also able to

produce noise-free results directly in voxel space (Figure 7.3 top), whereas the curvature

classifier used here (and other similar ones) need to construct a local polygonal, or local

tangent-plane, approximation of the voxel data.

Figure 7.5 illustrates our 3D skeleton and surface classifier on a hip dataset, to demon-

strate the applicability of our method for different datasets besides cortical surfaces, in-

cluding shapes with tunnels. Just as for the brain dataset, we see the clear separation of

convex edges from non-convex regions.

As already mentioned, there is a strong connection between skeletons and convex

shape features. Hence, our skeleton-based surface classifier shares several properties with

curvature-based classifiers: sharp edges are detected more precisely than soft edges; there

is an analogy between Gaussian filtering of the curvature signal and geodesic-distance-

based simplification of the skeleton, whereby the Gaussian filter size and the skeleton

importance threshold both act as scale parameters.

However, there are also important differences. Our skeleton-based classifier uses only

integral computations, and is hence inherently more robust than derivative-based curva-

ture methods. Also, the skeleton classifier can be seen as a quasi-global operator, since our

importance measure gathers information that may come from a large part of the surface.

In contrast, curvature estimators are strongly local, as they only analyze a small neigh-

borhood at each surface point. Together, these facts explain the difference in robustness

of the considered classifiers.

7.4 Segmentation method

In the previous section we detailed on the computation of our skeleton-based classifier. In

this section, we use the classifier to create a patch-type segmentation. An overview of the

120 Chapter 7. Patch-type Shape Segmentation

Figure 7.6: Overview of our approach. (a) Interior and (b) exterior skeletons, rainbow

color-map encodes importance measure. (c) Simplified interior and (d) exterior skeletons.

(e,f) Gaps in feature points. (g) Convex edges. (h) Concave edges. (i) Combined edges.

(j) Connected components. (k) Final segmentation.

Figure 7.7: Exterior skeleton Sτ (Ω̄) of ex-

terior volume bounded by ∂Ω̄, two skele-

ton points p, q ∈ Sτ (Ω̄), and their feature

points F (p), F (q).

Figure 7.8: Normal computation

approach is shown in Figure 7.6.

7.4.1 Exterior skeleton

As explained, we use the simplified skeleton of the shape interior Ω, denoted Sτ (Ω), to

detect convex shape edges E(Ω), and the skeleton of the shape exterior Ω̄, denoted Sτ (Ω̄),
to find the concave edges E(Ω̄).

Computation of the exterior skeleton Sτ (Ω̄) is slightly different from the computation

of Sτ (Ω), as follows. The exterior volume Ω̄ is enclosed in a bounding box around the

entire shape. The voxels on the surface of this box form an additional boundary ∂Ω̄

7.4 Segmentation method 121

which is disjoint from the object boundary ∂Ω. Exterior voxels have feature voxels on

both ∂Ω and ∂Ω̄. Because these two boundaries are not connected, no shortest path can

be computed between two voxels on either boundary. We assign to these voxels an infinite

importance (ρS=∞), so that they will never be simplified regardless the setting of τ . This

is the desired behavior: the exterior skeleton should only be simplified for concave edges,

not for any other parts. Note that in Figure 7.6(d), the exterior skeleton is not shown

for the sake of clarity. A cross-section of the exterior skeleton of that object is shown in

Figure 7.7. Voxels in Ω̄ that have all their feature voxels on ∂Ω are processed in the same

manner as interior voxels. Point p is a point having both feature points on ∂Ω, whereas

point q has one feature point on ∂Ω and one on ∂Ω̄. Point q will never be simplified,

regardless the setting of τ .

7.4.2 Normal-sensitive edge erosion

After detecting the convex and concave edges, the combined edge E divide the boundary

into connected components (Figure 7.6(j)). These components have gaps between them

of at least width τe. To fill these gaps, we dilate the components onto the gaps, thereby

eroding the edges E. We do not perform an erosion ordered on geodesic distance on

the boundary, as this may not always place the final segment borders exactly at the high-

curvature creases, even if these are available. Instead, we do a so-called normal-sensitive

erosion of the edges. For this, we need to compute a normal on every boundary point

first. Estimating the normals of a noisy voxel surface using standard approaches typically

smooths normals everywhere, not only on the noisy parts. These smoothed normals affect

the erosion quality, so more sophisticated normal estimators are needed [85]. Fortunately,

the simplified surface skeleton, which we have already computed, can effectively be used

to compute non-smoothed boundary normals.

It is well known that the feature vectors, which point from a skeleton point p ∈ S to

its feature points q ∈ F (p) are normal to the boundary ∂Ω [97]. Hence, we use q−p
‖q−p‖

as our normals. This is shown in Figure 7.8 in 2D for illustrative purposes. By using our

robust simplified skeleton Sτ , which does not contain any spurious parts due to noise, the

resulting normals are also robust to noise. Normals may be ambiguous at a few boundary

points in the case of skeleton ligatures, e.g. point s in Figure 7.8: multiple skeleton points

have point s as feature point. In such cases, we use the normal of the skeleton point that

has the largest angle between its two feature vectors, which is point t in case of s.

However, the feature collection of the simplified surface skeleton does not completely

cover the shape surface, and hence the normals are not available everywhere. For each

boundary point r for which the normal is not availabe, we get the nearest known point

q and get its associated skeleton point p. The normal of r is then the feature vector at p
whose dot product with r − p is maximal, which is qa−p

‖qa−p‖ in case of Figure 7.8. The

erosion of the edges is then performed in the order of most similar normals, that is, each

voxel e in the set of edge voxels E is assigned to the component of the non-edge voxel

p that admits the minimum-cost path between p and e in the boundary graph, where the

cost between two adjacent voxels is given by their normal difference.

122 Chapter 7. Patch-type Shape Segmentation

Figure 7.9: Cross-section of a sharp (left) and blunt edge (right). Inscribed ball centered

at a point p has feature points pa and pb and radius rp. Feature pairs pa, pb and qa, qb both

are at geodesic distance τ from each other. The sharp edge has a smaller inscribed ball

than the blunt edge (rp < rq).

Figure 7.10: Handling corners. The detected edges E (a). Connected components have

thin connections (b). Splitting components (c). Final segmentation after edge erosion (d).

7.4.3 Handling corners

Although Eq. 7.3 is well suited to detect the shape edges, problems occur at corners,

where edges of different strength come together. The reason is that for the same setting

of τ , blunt edges have larger inscribed balls than sharp edges (see Figure 7.9). At corners

where a sharp and blunt edge come together, only the smallest ball fits inside the shape.

Hence, the feature collection will contain feature points on both sides of the sharp edge,

making the blunt edge undetected near the corner.

Figure 7.10 illustrates this for the two stacked boxes from Figure 7.6, but now skewed.

Figure 7.10(a) shows the set of detected edge voxels E, which has disconnections near

some of the corners. The resulting segmentation in Figure 7.10(b) shows thin connections

between components. Clearly, this is an under-segmentation. A straightforward solution

is to dilate the edges E so that these connections between components disappear. The

edge erosion step (Section 7.4.2) will then remove the dilated edges. Let Hε be the set of

points at a geodesic distance of at least ε of the detected edge voxels E, so that H0 = ∂Ω\
E. For high enough ε there will be no thin connections left in the connected component

7.5 Results and discussion 123

Figure 7.11: Segmentations of several shapes. The detected edges are shown for the

Turbine and Fandisk shapes.

of Hε. However, for high values of ε some of the smaller connected components in Hε

may be completely removed, or some of the components in H0 may inadvertently be split

into multiple components. We proceed as follows. Starting with ε = 0, we iteratively

increase ε with small increments, and consider the connected components in Hε. We

check whether a component in a level Hi is split into multiple components in level Hj (i <
j). In that case, we let the component split only if the resulting components are not too

small and have a different orientation (using the normals as computed in Section 7.4.2).

The first constraint is to prevent small components from completely disappearing in the

final segmentation. The second is to prevent components with thin parts from being split

up into multiple segments. Figure 7.10(c) shows the result after splitting of components,

whereas Figure 7.10(d) shows the final segmentation after edge erosion. Note that the

presented solution for handling corners is not necessarily the only and best one, but gives

satisfactory results in practice.

7.5 Results and discussion

We have implemented our patch-type segmentation algorithm in C++ and ran it on an

Intel Core 2 Extreme 3 GHz (using 1 CPU), with 2 GB of RAM.

We now present results of the patch-type segmentation method. We used shapes from

the INRIA Gamma database [56]. The shapes have resolutions ranging up to 3003 voxels.

Figure 7.11 shows the resulting segmentations for several shapes. Most segments are

placed as expected and no over-segmentations are produced. The segments are quasi-

flat: smooth areas separated by relatively high curvature creases. Note that on the tips of

the wing no segments are placed because the resolution in the tips is too limited for the

skeleton to reach into. We further observe that sharp and straight borders are produced

for soft edges, such as in the Gear and Bird shapes.

Our segmentation approach has several desirable properties, as follows. First, we can

detect very soft and vanishing edges, because we detect edges as gaps in the feature col-

lection. These gaps arise when we threshold the skeleton’s importance measure ρS , which

124 Chapter 7. Patch-type Shape Segmentation

Figure 7.12: (a,c) Detected edges and (b,d) segmentations of a smooth H-shape and

smooth X-shape respectively.

Figure 7.13: Segmentation of two noisy shapes. (a) Non-simplified skeleton S0(Ω). (b)

Simplified skeleton Sτ=15(Ω). (c) Resulting segmentation. (d) Segmentation of noisy

Sea mine.

represents geodesic distance between feature points. For both smooth and sharp edges,

setting a threshold of τ ensures gaps of at least width τ . Figure 7.12 shows the detected

edges and the resulting segmentations of a smooth H-shape consisting of ellipsoids and

a smooth X-shape consisting of two bent boxes with vanishing edges. We observe no

spurious segments for both cases. For the H-shape, each ellipsoid is split in two. The

vanishing edges of the X-shape are detected well, and sharp, straight, segment borders

are generated for them by the edge erosion step.

Second, our method is capable of handling shapes with boundary noise, because it

uses the simplified skeleton. We assume the noise to be uniform, so that the scale param-

eter τ can be set to such a value that the skeleton does not contain any spurious parts due

to noise. Figure 7.13(c,d) shows the segmentation of the noisy Tap threads and Sea mine

shapes respectively. For the Tap threads shape, both the non-simplified (Figure 7.13(a))

skeleton, and the simplified skeleton (Figure 7.13(b)) that is used in the segmentation

are shown. These noisy shapes would be difficult to handle using traditional curvature-

based segmentation approaches (see Section 7.5.1). Nevertheless, we should state that

7.5 Results and discussion 125

Figure 7.14: Multiscale segmentations of the Sea mine. Left column: interior and exte-

rior skeletons. Middle column: corresponding increasingly coarse segmentations. Right

column: comparison to HFP segmentations [7].

Figure 7.15: Results of HFP (compare with Figure 7.12(b) and Figure 7.13(c)).

for very noisy objects the feature collections become too sparse, potentially resulting in

over-segmentation.

Third, multiscale segmentations can be created by increasing the scale parameter τ
beyond the noise level. In Figure 7.14, a Sea mine shape, consisting of a polyhedron with

126 Chapter 7. Patch-type Shape Segmentation

Table 7.1: Timing measurements. Columns show in order: shape name, its dimensions,

time to compute interior and exterior skeleton in seconds, time for segmentation in sec-

onds, and memory usage in megabytes.

shape dim int S t ext S t segm t mem

Fandisk 295x177x276 187 233 30 1080

Sea mine 203x204x176 21 115 29 640

X-shape 119x174x296 35 101 16 450

attached boxes, is simplified at three different simplification levels (τ=12,25,50). Interior

and exterior skeletons are shown in the left column (a rainbow color-map encodes the

importance measure). The resulting segmentations are shown in the right column. At level

τ=12, all patches of the Sea mine are identified. At τ=25, only the interior skeleton center

sheets remain inside each box, producing two segments for each attached box. As we can

see here, a property of our approach is that the borders between coarse-scale segments not

necessarily lie on curvature creases of the surface. Indeed, when we would reconstruct the

original object from this simplified skeleton by placing the inscribed balls on the skeleton

points, the reconstructed shape would be a smoothed version of the original shape. Each

box becomes similar to an ellipsoid, of which the segmentation consists of two halves as

we have seen in the H-shape example (Figure 7.12(b)).

Table 7.1 show indicative running times for a few of the shapes shown in this chapter.

Computation of the skeletons takes the larger part of the time due to the large number of

shortest path computations involved, needed for computing the importance measure ρS .

Computing the exterior skeleton takes the longest, as the number of exterior voxels is typ-

ically much larger than the number of interior voxels. The time needed for detecting the

edges and performing the segmentation is comparatively small, as it has time complexity

order O(b log b) for computing the geodesic distances used by our classifier.

Despite our method’s advantages, a few limitations exist. First, patches should be

completely bordered by convex and/or concave creases in order to be identified as seg-

ments, so our method is more suitable for geometric than for organic shapes, for which

a part-type segmentation would be better choice. Second, for parts of the object that are

thin, we might not detect blunt edges. As indicated in Section 7.4.3, inscribed balls for

weak edges require larger radii than for sharp edges. Unfortunately, thin parts of the ob-

ject do not allow inscribed balls with a high radius, and thus we might not detect edges in

such cases.

7.5.1 Comparison

We compare results of our method with those of Hierarchical Fitting Primitives, a state-of-

the-art segmentation method of Attene et al. [7] for which the software is available on the

internet. HFP clusters faces hierarchically in a greedy manner by fitting plane, sphere, and

cylinder primitives. A binary tree of clusters is built in 10 seconds, after which the desired

number of segments can be selected by the user. For each shape, we selected the number

of clusters in HFP such that it is equal to the number of segments our method has pro-

7.6 Conclusion 127

duced. In our method the number of segments cannot be controlled directly, but follows

from the chosen skeleton simplification level. For shapes that only have strong creases,

HFP delivers equivalent results at the finer scales. However, Figure 7.15 shows HFP’s

clustering for the H-shape, which has soft edges, and the Tap threads, which has bound-

ary noise. For the H-shape, our method splits each of the ellipsoids into two symmetrical

halves corresponding to the skeleton sheet’s top and bottom sides (Figure 7.12(b)). HFP’s

clusters on the other hand do not reflect the symmetry of the shape at all. For the Tap

threads, HFP produces an erroneous segment border on the top due to the boundary noise.

Our method suffers less from the noise (Figure 7.13(c)) as the simplified skeleton is un-

affected by it. These examples indicate that using skeletal information can be beneficial

in patch-type shape segmentation.

We have also compared our multiscale segmentations with those of HFP (see Fig-

ure 7.14, rightmost column). One difference is that our multiscale segmentations are not

hierarchical: a segment at a fine scale need not lie completely in a segment at a coarser

scale. HFP on the other hand always produces hierarchical segmentations. We further

observe that whereas HFP always places segment borders at high-curvature creases, our

method does not necessarily do that for higher simplification levels, as we explained in

the previous section.

7.6 Conclusion

In this chapter we argued that 3D skeletons, which are often seen as unreliable and un-

stable, can be used to perform basic image-processing operations. As an example of such

an operation, we showed that robust, multi-scale skeletonization of the cortical surface

provides a robust and effective means for the classification of voxel-based surfaces into

highly convex (ridge) regions and non-convex areas. We showed that skeleton-based clas-

sifiers are less sensitive to discretization noise, due to their integral-based construction, as

compared to curvature-based classifiers which use derivatives. We illustrate our method

on different voxel datasets obtained from medical imaging scans.

Furthermore, we have presented a new way of robustly detecting the edges of 3D

voxel shapes and creating patch-type segmentations. We use the simplified skeleton for

detecting the edges, instead of using curvature information explicitly, which makes our

method robust for voxelized, noisy, and low-resolution shapes. A single user-parameter is

used to allow the user to specify the amount of boundary noise. This parameter is intuitive,

as it measures geodesic length, and can also be used to create multiscale segmentations.

In these simplified segmentations, segment borders are not necessarily placed at shape

creases. Finally, sharp segment borders are generated for soft and vanishing edges.

Future work involves the actual utilization of our classifier for concrete medical imag-

ing applications, such as the extraction of sulcal fundi curves, as well as a more rigorous

mathematical analysis of the connection between our classifier and curvature metrics.

128 Chapter 7. Patch-type Shape Segmentation

Chapter 8

Conclusions

In the preceding chapters we have presented novel methods for skeletonization and shape

segmentation. In this chapter, we sum the contributions of our work and give recommen-

dations for future work.

8.1 Contributions

The research question posed in Chapter 1 was comprised of two parts. The first part asked

how we can efficiently compute curve and surface skeletons of binary voxel shapes so that

they can be used effectively as shape descriptors in various applications. By investigating

the literature, we identified the properties that skeletons should fulfill to make them effec-

tive as shape descriptors. We found that robustness to noise and ability for a multiscale

representation of the shape in particular are essential. One way to obtain these proper-

ties is to use a pruning method that combine a global importance measure with a simple

pruning strategy. In Chapter 3, we analyzed and improved such an approach that com-

bines the boundary-distance measure with a simple thresholding strategy for 2D shapes.

We also presented and compared four algorithms for computing Tolerance-based Fea-

ture Transforms. In Chapter 4, we contributed a skeletonization method for binary voxel

shapes that computes curve and surface skeletons that can be made robust by setting a sin-

gle, intuitive user parameter to specify the amount of boundary noise. Furthermore, this

parameter provides a multiscale representation. It does not need to be tweaked, as the sim-

plified skeletons are connected by default. Underpinning our skeletons is a novel global

importance measure, called the collapse measure, which basically extends the boundary-

distance measure to 3D shapes. It is a combination of a quasi-global measure defined on

the surface skeleton and a global measure on the curve skeleton. In Chapter 5, we con-

tributed a method to partition our simplified surface skeletons into their respective sheets.

We believe that these partitionings will prove to be beneficial in various applications, such

as shape analysis and retrieval tasks.

The second part of our research question was how we can use skeletons to create dif-

ferent types of shape segmentations that benefit from the desirable skeleton properties. We

130 Chapter 8. Conclusions

presented two novel skeleton-based methods for the segmentation of binary voxel shapes.

Using our simplified curve skeletons, we contributed a novel semantically-oriented part-

type segmentation method in Chapter 6. Using our simplified surface skeletons, we con-

tributed a novel geometrically-oriented patch-type segmentation in Chapter 7. Both seg-

mentation types benefit from the robustness of our simplified skeletons, but also from

other desirable skeleton properties.

Our part-type segmentation method uses the curve skeleton to extract the part structure

of the shape. Hereto, we formulated the junction rule. In combination with junction-

type detection, we are able to identify the simple intersecting parts of which a complex

shape is comprised. Intrinsic to our curve skeleton definition is the skeleton-to-boundary

mapping: each curve-skeleton point has an associated Jordan curve on the shape surface

which presents a potential part cut. Part-type segmentation thus boils down to selecting

points on the curve skeleton that generate accurate part cuts. The resulting segmentations

consist by construction of parts that are simple, i.e., they do not contain bifurcations, and

parts that have tight and smooth borders. Finally, pose-invariance follows from the use of

curve skeletons, and noise robustness follows from the use of simplified curve skeletons.

Our patch-type segmentation method uses the simplified surface skeleton to define a

surface classifier. We use a generalization of the symmetry-curvature duality to 3D, in

combination with the observation that our skeletons are simplified near the rims first, to

detect curvature maxima of the shape surface. By combining the classifier of both interior

and exterior skeleton, we detect convex and concave edges, that combined divide the

shape surface into quasi-flat patches. Due to the use of simplified skeletons, our method

produces clear segment borders for soft and vanishing edges, is robust to noise, and can

produce multiscale segmentations.

All of our algorithms work on binary voxel shapes, which bring their own problems.

When obtained using a scanning device, they are typically of low to medium resolu-

tion because of scanning hardware restrictions. Moreover, voxel shapes can be noisy

due to scanning inaccuracies. Finally, the surface normal is not naturally available in

voxel shapes. Computing the normal is difficult to do accurately for low resolution and

noisy shapes, and effectively leads to a further reduction in voxel-shape resolution due

to the large filter sizes involved. The unreliability of normal information under bound-

ary noisy does not only hold for voxel shapes, but for all shape representations. Hence,

we chose to use integral quantities in both our skeletonization and segmentation methods,

namely distances, shortest-path lengths, and areas, rather than differential quantities, such

as distance-field gradients and surface curvature.

In our skeletonization method, voxel shapes proved to be convenient from an imple-

mentation point of view, as they provide a regular, volumetric sampling of the shape. The

curve skeleton, surface skeleton, and object are nested structures of different dimensions,

that we can all three represent uniformly as voxel sets. It is important to note that most

elements in our algorithms are not limited to voxel shapes. Shortest paths and areas can

also be computed on meshes. In any case, our shape segmentation methods can easily be

used to segment meshes by mapping the voxel result back onto the original mesh.

8.2 Future work 131

8.2 Future work

Our work opens up various possibilities for further research.

In this work, we focused on 2D and 3D shapes. In future work, it would be interesting

to see if our skeletonization approach can be extended to 4D or even higher dimensional

shapes. In addition to the curve and surface skeleton, a new “volumetric skeleton” would

have to be defined for 4D shapes. The importance measure on the curve skeleton would

then measure a volume, on the surface skeleton it would measure an area, and on the

volumetric skeleton it would measure curve length. These higher-dimensional simplified

skeletons could for example be used to analyze higher-dimensional scientific data, such

as time-dependent data.

By increasing the simplification level, our simplified skeletons are pruned for the noisy

features, which is desired, but are also pruned partly for the non-noisy features. In fact,

this property lies at the basis of our patch-type segmentation method. However, for some

applications this behavior might not be desired. In the case of skeleton-based surface-

smoothing, which we did in Section 4.7.1, it is desirable to fully preserve the skeleton

parts that represent feature edges. In this manner, the edges of the reconstructed shape are

not smoothed in the process, effectively yielding edge-preserving denoising. To achieve

this, one possibility might be to modify our importance measure in such a way that sharp

non-noisy edges gain more importance. Another promising direction is to “unprune” the

skeleton by using our skeleton partitioning, as we suggested in Section 5.6.

We typically see shapes as a volume with a clear tangible surface, and in this work we

made no exception by considering binary voxel shapes only. In medical imaging, how-

ever, one often deals with gray-scale 3D images. To compute a skeleton using our method,

we first have to extract a binary voxel shape by an image segmentation process, as we did

for the brain shape (Figure 4.12). However, manually choosing the right segmentation

level can be a subtle and time consuming process. It might be interesting to compute our

simplified skeletons for all iso-surfaces in the image, to produce a multiscale representa-

tion having two dimensions: the simplification level and the iso-value. Reconstruction of

the gray-scale image from this bi-dimensional representation might lead to novel image

segmentation, smoothing, and compression techniques.

Finally, an interesting direction for further research is shape retrieval. We have con-

tributed three robust geometric shape-descriptors that could all be used for this purpose:

the simplified skeleton and its partitioning, the part-type shape segmentation, and the

patch-type shape segmentation. It would be interesting to investigate whether one of

them, or a combination, can contribute to the existing work on shape matching and re-

trieval.

132 Chapter 8. Conclusions

Bibliography

[1] AHUJA, N., AND CHUANG, J. Shape representation using a generalized potential

field model. IEEE Transactions on Pattern Analysis and Machine Intelligence 19,

2 (1997), 169–176.

[2] AIM@SHAPE repository. http://shapes.aim-at-shape.net.

[3] AMENTA, N., BERN, M., AND KAMVYSSELIS, M. A new voronoi-based surface

reconstruction algorithm. In Proceedings of the 25th Annual Conference on Com-

puter Graphics and Interactive Techniques (SIGGRAPH) (1998), pp. 415–421.

[4] AMENTA, N., CHOI, S., AND KOLLURI, R. K. The power crust. In Proceedings

of the sixth ACM symposium on Solid Modeling and Applications (SMA) (2001),

pp. 249–266.

[5] ARCELLI, C., AND SANNITI DI BAJA, G. Euclidean skeleton via centre-of-

maximal-disc extraction. Image and Vision Computing 11, 3 (1993), 163–173.

[6] ATTALI, D., AND MONTANVERT, A. Computing and simplifying 2D and 3D

continuous skeletons. Computer Vision and Image Understanding 67, 3 (1997),

261–273.

[7] ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. Hierarchical mesh seg-

mentation based on fitting primitives. The Visual Computer 22, 3 (2006), 181–193.

[8] ATTENE, M., KATZ, S., MORTARA, M., PATANÉ, G., SPAGNUOLO, M., AND

TAL, A. Mesh segmentation - a comparative study. In Proceedings of the IEEE In-

ternational Conference on Shape Modeling and Applications (SMI) (2006), pp. 7–

19.

[9] AUGUST, J., SIDDIQI, K., AND ZUCKER, S. W. Ligature instabilities in the

perceptual organization of shape. Computer Vision and Image Understanding 76,

3 (1999), 231–243.

[10] AUGUST, J., TANNENBAUM, A., AND ZUCKER, S. W. On the evolution of the

skeleton. In Proceedings of the Seventh International Conference on Computer

Vision (ICCV) (1999), pp. 315–322.

134 BIBLIOGRAPHY

[11] BARTESAGHI, A., AND SAPIRO, G. A system for the generation of curves on 3D

brain images. Human Brain Mapping 14, 1 (2001), 1–15.

[12] BITTER, I., SATO, M., BENDER, M., MCDONNELL, K. T., KAUFMAN, A., AND

WAN, M. Ceasar: a smooth, accurate and robust centerline extraction algorithm.

In Proceedings of the conference on Visualization (VIS) (2000), pp. 45–52.

[13] BLUM, H. A transformation for extracting new descriptors of shape. In Models

for the Perception of Speech and Visual Form (1967), W. Wathen-Dunn, Ed., MIT

Press, pp. 362–380.

[14] BLUM, H. Biological shape and visual science. Journal of Theoretical Biology 38

(1973), 205–287.

[15] BLUM, H., AND NAGEL, R. N. Shape description using weighted symmetric axis

features. Pattern Recognition 10, 3 (1978), 167–180.

[16] BORGEFORS, G., SANNITI DI BAJA, G., AND SVENSSON, S. Decomposing dig-

ital 3D shapes using a multiresolution structure. In Proceedings of the 14th confer-

ence on Discrete Geometry for Computer Imagery (DGCI’99) (1999), vol. 1568 of

Lecture Notes on Computer Science, Springer Berlin / Heidelberg, pp. 19–30.

[17] BOUIX, S., AND SIDDIQI, K. Divergence-based medial surfaces. In Proceed-

ings of the 6th European Conference on Computer Vision - Part I (ECCV) (2000),

Springer-Verlag, pp. 603–618.

[18] BOUIX, S., SIDDIQI, K., AND TANNENBAUM, A. Flux driven automatic center-

line extraction. Medical Image Analysis 9, 3 (2005), 209–221.

[19] BRUNNER, D., AND BRUNNETT, G. Mesh segmentation using the object skeleton

graph. In Proceedings of the 7th IASTED International Conference on Computer

Graphics and Imaging (2004), ACTA Press, pp. 48–55.

[20] CACHIA, A., MANGIN, J.-F., RIVIÈRE, D., KHERIF, F., BODDAERT, N., AN-

DRADE, A., PAPADOPOULOS-ORFANOS, D., POLINE, J.-B., BLOCH, I., ZIL-

BOVICIUS, M., SONIGO, P., BRUNELLE, F., AND RGIS, J. A primal sketch of

the cortex mean curvature: a morphogenesis based approach to study the variabil-

ity of the folding patterns. IEEE Transactions on Medical Imaging 22, 6 (2003),

754–765.

[21] CLARENZ, U., DIEWALD, U., AND RUMPF, M. Anisotropic diffusion in surface

processing. In Proceedings of IEEE Visualization (2000), pp. 397–405.

[22] CLARENZ, U., GRIEBEL, M., SCHWEITZER, M. A., AND TELEA, A. Feature

sensitive multiscale editing on surfaces. The Visual Computer 20, 5 (2004), 329–

343.

[23] CORNEA, N. D. Curve-skeletons: properties, computation and applications. PhD

thesis, Rutgers, The State University of New Jersey, 2007.

BIBLIOGRAPHY 135

[24] CORNEA, N. D., SILVER, D., AND MIN, P. Curve-skeleton properties, applica-

tions and algorithms. IEEE Transactions on Visualization and Computer Graphics

13, 3 (2007), 530–548.

[25] CORNEA, N. D., SILVER, D., YUAN, X., AND BALASUBRAMANIAN, R. Com-

puting hierarchical curve-skeletons of 3D objects. The Visual Computer 21, 11

(2005), 945–955.

[26] CUISENAIRE, O. Distance transformations: fast algorithms and applications to

medical image processing. PhD thesis, Université catholique de Louvain, Belgium,

1999.

[27] CULVER, T., KEYSER, J., AND MANOCHA, D. Exact computation of the medial

axis of a polyhedron. Computer Aided Geom. Des. 21, 1 (2004), 65–98.

[28] DA COSTA, L. F. Multidimensional scale space shape analysis. In Proceedings of

the International Workshop on SyntheticNatural Hybrid Coding and Three Dimen-

sional Imaging (Santorini, Greece, 1999), pp. 214–217.

[29] DA COSTA, L. F., AND CESAR, JR, R. M. Shape analysis and classification. CRC

Press, 2001.

[30] DAMON, J. Global medial structure of regions in R3. Geometry and Topology 10

(2006), 2385–2429.

[31] DANIELSSON, P.-E. Euclidean distance mapping. In Computer Graphics and

Image Processing (1980), vol. 14, pp. 227–248.

[32] DAVIES, E., AND PLUMMER, A. Thinning algorithms: A critique and a new

methodology. Pattern Recognition 14 (1981), 53–56.

[33] DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. Implicit fair-

ing of irregular meshes using diffusion and curvature flow. In Proceedings ACM

SIGGRAPH (1999), ACM Press/Addison-Wesley Publishing Co., pp. 317–324.

[34] DESBRUN, M., MEYER, M., SCHROEDER, P., AND BARR, A. Anisotropic

feature-preserving denoising of height fields and bivariate data. In Proceedings

of Graphics Interface (2000), pp. 145–152.

[35] DEY, T. K., GIESEN, J., AND GOSWAMI, S. Shape segmentation and matching

with flow discretization. In Proceedings Workshop on Algorithms and Data Struc-

tures (2003), vol. 2748 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 25–36.

[36] DEY, T. K., AND SUN, J. Defining and computing curve-skeletons with medial

geodesic function. In Proceedings of Eurographics Symposium on Geometry Pro-

cessing (2006), pp. 143–152.

136 BIBLIOGRAPHY

[37] DEY, T. K., AND ZHAO, W. Approximate medial axis as a voronoi subcomplex. In

Proceedings of the seventh ACM symposium on Solid Modeling and Applications

(SMA) (Saarbrücken, Germany, 2002), pp. 356–366.

[38] DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische

Mathematik, 1 (1959), 269–271.

[39] DIMITROV, P., DAMON, J. N., AND SIDDIQI, K. Flux invariants for shape. In

Proc. of Computer Vision and Pattern Recognition (CVPR) (2003), pp. 835–841.

[40] FOSKEY, M., LIN, M., AND MANOCHA, D. Efficient computation of a simpli-

fied medial axis. In Proceedings of the 8th Symposium on Solid Modeling and

Applications (SMA) (2003), ACM Press, pp. 96–107.

[41] FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W., TAL,

A., RUSINKIEWICZ, S., AND DOBKIN, D. Modeling by example. ACM Transac-

tions on Graphics 23, 3 (2004), 652–663.

[42] GAGVANI, N., KENCHAMMANA-HOSEKOTE, D., AND SILVER, D. Volume ani-

mation using the skeleton tree. In Proceedings of the IEEE Symposium on Volume

Visualization (1998), ACM, pp. 47–53.

[43] GAGVANI, N., AND SILVER, D. Parameter-controlled volume thinning. CVGIP:

Graphical Models and Image Processing 61, 3 (1999), 149–164.

[44] GARLAND, M., WILLMOTT, A., AND HECKBERT, P. Hierarchical face clustering

on polygonal surfaces. In Proceedings of the ACM Symposium on Interactive 3D

Graphics (2001), pp. 49–58.

[45] GE, Y., AND FITZPATRICK, J. M. On the generation of skeletons from discrete

euclidean distance maps. IEEE Transactions on Pattern Analysis and Machine

Intelligence 18, 11 (1996), 1055–1066.

[46] GIBLIN, P., AND KIMIA, B. B. A formal classification of 3D medial axis points

and their local geometry. IEEE Transactions on Pattern Analysis and Machine

Intelligence 26, 2 (2004), 238–251.

[47] GOUALHER, G., PROCYK, E., COLLINS, D., VENUGOPAL, R., BARILLOT, C.,

AND EVANS, A. Automated extraction and variability analysis of sulcal neu-

roanatomy. IEEE Transactions on Medical Imaging 18, 3 (1999), 206–217.

[48] HART, P. E., NILSSON, N. J., AND RAPHAEL, B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics 4, 2 (1968), 100–107.

[49] HASSOUNA, M. S., AND FARAG, A. A. Robust centerline extraction framework

using level sets. In Proceedings of the Conference on Computer Vision and Pattern

Recognition (CVPR) (2005), IEEE Computer Society, pp. 458–465.

BIBLIOGRAPHY 137

[50] HESSELINK, W. H., VISSER, M., AND ROERDINK, J. B. T. M. Euclidean skele-

tons of 3D data sets in linear time by the integer medial axis transform. In Pro-

ceedings of the 7th international symposium on Mathematical Morphology (2005),

Springer, pp. 259–268.

[51] HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. Topology

matching for fully automatic similarity estimation of 3D shapes. In Proceedings

of the 28th annual conference on Computer graphics and interactive techniques

(2001), ACM Press, pp. 203–212.

[52] HISADA, M., BELYAEV, A. G., AND KUNII, T. L. A skeleton-based approach

for detection of perceptually salient features on polygonal surfaces. Computer

Graphics Forum 21, 4 (2001), 689–700.

[53] HOFFMAN, D. D., RICHARDS, W., PENTL, A., RUBIN, J., AND SCHEUHAM-

MER, J. Parts of recognition. Cognition 18 (1984), 65–96.

[54] HOFFMAN, D. D., AND SINGH, M. Salience of visual parts. Cognition 63, 1

(1997), 29–78.

[55] HONG, L., MURAKI, S., KAUFMAN, A., BARTZ, D., AND HE, T. Virtual voy-

age: interactive navigation in the human colon. In Proceedings of the 24th an-

nual conference on Computer Graphics and Interactive Techniques (SIGGRAPH)

(1997), pp. 27–34.

[56] INRIA Gamma 3D meshes research database. http://www-c.inria.fr/gamma/

download/download.php.

[57] KAO, C. Y., HOFER, M., SAPIRO, G., STERN, J., REHM, K., AND ROTTEN-

BERG, D. A. A geometric method for automatic extraction of sulcal fundi. IEEE

Transactions on Medical Imaging 26, 4 (2007), 530–540.

[58] KAO, C.-Y., HOFER, M., SAPIRO, G., STERN, J., AND ROTTENBERG, D. A. A

geometric method for automatic extraction of sulcal fundi. IEEE Transactions on

Medical Imaging 26, 4 (2006), 530–540.

[59] KATZ, R. A., AND PIZER, S. M. Untangling the blum medial axis transform.

International Journal of Computer Vision 55, 2-3 (2003), 139–153.

[60] KATZ, S., LEIFMAN, G., AND TAL, A. Mesh segmentation using feature point

and core extraction. The Visual Computer 21 (2005), 649–658.

[61] KATZ, S., AND TAL, A. Hierarchical mesh decomposition using fuzzy clustering

and cuts. ACM Transactions on Graphics 22, 3 (2003), 954–961.

[62] KHANEJA, N., MILLER, M., AND GRENANDER, U. Dynamic programming gen-

eration of curves on brain surfaces. Pattern Analysis and Machine Intelligence 20,

11 (1998), 1260–1265.

138 BIBLIOGRAPHY

[63] KIMMEL, R., AMIR, A., AND BRUCKSTEIN, A. M. Finding shortest paths on

surfaces using level sets propagation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 17, 6 (1995), 635–640.

[64] KIMMEL, R., SHAKED, D., KIRYATI, N., AND BRUCKSTEIN, A. M. Skele-

tonization via distance maps and level sets. Computer Vision and Image Under-

standing 62, 3 (1995), 382–391.

[65] KIRYATI, N., AND SZÉKELY, G. Estimating shortest paths and minimal distances

on digitized three-dimensional surfaces. Pattern Recognition 26 (1993), 1623–

1637.

[66] KONG, T. Y., AND ROSENFELD, A. Digital topology: Introduction and survey.

Computer Vision, Graphics, and Image Processing 48 (1989), 357–393.

[67] KOVÁCS, I., FEHÉR, A., AND JULESZ, B. Medial-point description of shape: a

representation for action coding and its psychophysical correlates. Vision Research

38 (1998), 2323–2333.

[68] LAM, L., LEE, S.-W., AND SUEN, C. Y. Thinning methodologies-a comprehen-

sive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14,

9 (1992), 869–885.

[69] LEE, Y., LEE, S., SHAMIR, A., COHEN-OR, D., AND SEIDEL, H. P. Mesh

scissoring with minima rule and part salience. Computer Aided Geometric Design

22 (2005), 444–465.

[70] LEYMARIE, F. F. 3D Shape Representation via Shock Flows. PhD thesis, Brown

University, 2002.

[71] LEYTON, M. Symmetry-curvature duality. Computer Vision, Graphics, and Image

Processing 38 (1987), 327–341.

[72] LI, X., WOON, T. W., TAN, T. S., AND HUANG, Z. Decomposing polygon

meshes for interactive applications. In Proceedings of the 2001 Symposium on

Interactive 3D Graphics (2001), pp. 35–42.

[73] LIEN, J.-M., KEYSER, J., AND AMATO, N. M. Simultaneous shape decompo-

sition and skeletonization. In Proceedings of the ACM Symposium on Solid and

Physical Modeling (SPM) (2005), pp. 219–228.

[74] LIEUTIER, A. Any open bounded subset of R
n has the same homotopy type as its

medial axis. Computer-Aided Design 36, 11 (2004), 1029–1046.

[75] LIU, R., AND ZHANG, H. Segmentation of 3D meshes through spectral clustering.

In Proceedings of the 12th Pacific Conference on Computer Graphics and Applica-

tions (Pacific Graphics) (Washington, DC, USA, 2004), IEEE Computer Society,

pp. 298–305.

BIBLIOGRAPHY 139

[76] LOHMANN, G. Extracting line representations of sulcal and gyral patterns in MR

images of the human brain. IEEE Transactions on Medical Imaging 17, 6 (1998),

1040–1048.

[77] LOTUFO, T. A., FALCAO, A. A., AND ZAMPIROLLI, F. A. Fast euclidean dis-

tance transform using a graph-search algorithm. In Proceedings of the 13th Brazil-

ian Symposium on Computer Graphics and Image Processing (2000), pp. 269–275.

[78] MA, W.-C., WU, F.-C., AND OUHYOUNG, M. Skeleton extraction of 3D objects

with radial basis functions. In Proceedings of the Shape Modeling International

(SMI) (2003), p. 207.

[79] MALANDAIN, G., BERTRAND, G., AND AYACHE, N. Topological segmentation

of discrete surfaces. International Journal of Computer Vision 10, 2 (1993), 183–

197.

[80] MALANDAIN, G., AND FERNÁNDEZ-VIDAL, S. Euclidean skeletons. Image and

Vision Computing 16, 5 (1998), 317–327.

[81] MANGAN, A. P., AND WHITAKER, R. T. Partitioning 3D surface meshes us-

ing watershed segmentation. IEEE Transactions on Visualization and Computer

Graphics 5, 4 (1999), 308–321.

[82] MEIJSTER, A., ROERDINK, J. B. T. M., AND HESSELINK, W. H. A general

algorithm for computing distance transforms in linear time. In Mathematical Mor-

phology and its Applications to Image and Signal Processing (2000), J. Goutsias,

L. Vincent, and D. Bloomberg, Eds., Kluwer, pp. 331–340.

[83] MÉMOLI, F., SAPIRO, G., AND THOMPSON, P. Implicit brain imaging. Neuroim-

age 23, 1 (2004), 179–188.

[84] MIN, P. Binvox: a 3D mesh voxelizer, http://www.google.com/search?q=binvox.

[85] MOLLER, T., MACHIRAJU, R., MUELLER, K., AND YAGEL, R. A comparison

of normal estimation schemes. In IEEE Visualization (1997), pp. 19–26.

[86] MONTANARI, U. A method for obtaining skeletons using a quasi-euclidean dis-

tance. Journal of the ACM 15, 4 (1968), 600–624.

[87] MORETON, H., AND SÉQUIN, C. Functional optimization for fair surface design.

In Proceedings of the Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH) (1992), ACM, pp. 167–176.

[88] MORTARA, M., PATANÉ, G., SPAGNUOLO, M., FALCIDIENO, B., AND

ROSSIGNAC, J. Blowing bubbles for multi-scale analysis and decomposition of

triangle meshes. Algorithmica 38, 1 (2003), 227–248.

[89] MORTARA, M., PATANÉ, G., SPAGNUOLO, M., FALCIDIENO, B., AND

ROSSIGNAC, J. Plumber: a multiscale decomposition of 3D shapes into tubular

primitives and bodies. In Proceedings of the ACM symposium on Solid Modeling

and Applications (SMA) (2004), pp. 339–344.

140 BIBLIOGRAPHY

[90] MULLIKIN, J. C. The vector distance transform in two and three dimensions.

Graphical Models and Image Processing 54, 6 (1992), 526–535.

[91] MUSSER, D. R., AND SAINI, S. STL tutorial and reference guide: C++ program-

ming with the standard template library. Addison-Wesley Professional Computing

Series, 1996.

[92] NIBLACK, C. W., GIBBONS, P. B., AND CAPSON, D. W. Generating skeletons

and centerlines from the distance transform. Graphical Models and Image Pro-

cessing 54, 5 (1992), 420–437.

[93] OGNIEWICZ, R. L. Skeleton-space: a multiscale shape description combining

region and boundary information. In Proceedings of Computer Vision and Pattern

Recognition (CVPR) (1994), p. 746751.

[94] OGNIEWICZ, R. L., AND ILG, M. Voronoi skeletons: theory and applications. In

Proc. of Computer Vision and Pattern Recognition (1992), pp. 63–69.

[95] OGNIEWICZ, R. L., AND KÜBLER, O. Hierarchic voronoi skeletons. Pattern

Recognition 28, 3 (1995), 343–359.

[96] PIZER, S. M., EBERLY, D., AND FRITSCH, D. S. Zoom-invariant vision of figural

shape: the mathematics of cores. Computer Vision and Image Understanding 69,

1 (1998), 55–71.

[97] PIZER, S. M., SIDDIQI, K., SZÉKELY, G., DAMON, J. N., AND ZUCKER, S. W.

Multiscale medial loci and their properties. International Journal of Computer

Vision 55, 2-3 (2003), 155–179.

[98] PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ, S., AND

FUNKHOUSER, T. A planar-reflective symmetry transform for 3D shapes. ACM

Transactions on Graphics (Proceedings of SIGGRAPH) 25, 3 (2006).

[99] Persistence of Vision Raytracer, http://www.povray.org.

[100] PROHASKA, S., AND HEGE, H.-C. Fast visualization of plane-like structures in

voxel data. In Proceedings of IEEE Visualization (2002), pp. 29–36.

[101] PROVOT, L., AND DEBLED-RENNESSON, I. Segmentation of noisy discrete sur-

faces. In Proceedings of the 12th International Workshop on Combinatorial Work-

shop (IWCIA) (2008), vol. 4958 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 160–171.

[102] PUDNEY, C. Distance-ordered homotopic thinning: A skeletonization algoritm

for 3D digital images. Computer Vision and Image Understanding 72, 3 (1998),

404–413.

[103] RAGNEMALM, I. Neighborhoods for distance transformations using ordered prop-

agation. CVGIP: Image Understanding 56, 3 (1992), 399–409.

BIBLIOGRAPHY 141

[104] REINDERS, F. Feature-based Visualization of Time-dependent Data. PhD thesis,

Technische Universiteit Delft, 2001.

[105] RENAULT, C., DESVIGNES, M., AND REVENU, M. 3D curves tracking and its ap-

plication to cortical sulci detection. In Proceedings of the International Conference

on Image Processing (2000), pp. 491–494.

[106] RENIERS, D. Personal website, http://www.win.tue.nl/∼dreniers.

[107] RENIERS, D., JALBA, A., AND TELEA, A. Robust classification and analysis of

anatomical surfaces using 3D skeletons. In Proceedings of the first Eurographics

Workshop on Visual Computing for Biomedicine (VCBM) (Delft, The Netherlands,

2008), pp. 61–68.

[108] RENIERS, D., AND TELEA, A. Skeleton-based hierarchical shape segmentation.

In Proceedings of the IEEE International Conference on Shape Modeling and Ap-

plications (SMI) (Lyon, France, 2007), pp. 179–188.

[109] RENIERS, D., AND TELEA, A. Hierarchical part-type segmentation using voxel-

based curve skeletons. The Visual Computer 24, 6 (2008), 383–395.

[110] RENIERS, D., AND TELEA, A. Part-type segmentation of articulated voxel-shapes

using the junction rule. Computer Graphics Forum (Proceedings of Pacific Graph-

ics 2008) 27, 7 (2008), 1845–1852.

[111] RENIERS, D., AND TELEA, A. Patch-type segmentation of voxel shapes using

simplified surface skeletons. Computer Graphics Forum (Proceedings of Pacific

Graphics 2008) 27, 7 (2008), 1837–1844.

[112] RENIERS, D., AND TELEA, A. Segmenting simplified surface skeletons. In

Proceedings of conference on Discrete Geometry for Computer Imagery (DGCI)

(Lyon, France, 2008), vol. 4992 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 262–274.

[113] RENIERS, D., AND TELEA, A. Tolerance-based feature transforms. In Ad-

vances in Computer Graphics and Computer Vision (2008), vol. 4, Springer

Berlin/Heidelberg, pp. 187–200.

[114] RENIERS, D., AND TELEA, A. C. Quantitative comparison of tolerance-based fea-

ture transforms. In Proceedings of the First International Conference on Computer

Vision Theory and Applications (VISAPP) (Setúbal, Portugal, 2006), INSTICC

Press, pp. 107–114.

[115] RENIERS, D., VAN WIJK, J. J., AND TELEA, A. Computing multiscale curve

and surface skeletons of genus 0 shapes using a global importance measure. IEEE

Transactions on Visualization and Computer Graphics 14, 2 (2008), 355–368.

[116] ROSENFELD, A. Connectivity in digital pictures. Journal of the ACM 17, 1 (1970),

146–160.

142 BIBLIOGRAPHY

[117] ROSENFELD, A., AND KAK, A. C. Digital Picture Processing. Academic Press,

New York, USA, 1976.

[118] RUMPF, M., AND TELEA, A. A continuous skeletonization method based on level

sets. In Proceedings of the symposium on Data Visualisation (2002), Eurographics

Association, pp. 151–158.

[119] SCHIRMACHER, H., ZÖCKLER, M., STALLING, D., AND HEGE, H.-C. Bound-

ary surface shrinking - a continuous approach to 3D center line extraction. In Pro-

ceedings of conference on Image and Multidimensional Digital Signal Processing

(1998), B. Girod, H. Niemann, and H.-P. Seidel, Eds., pp. 25–28.

[120] SETHIAN, J. A. Level set methods and fast marching methods, 2nd ed. Cambridge

University Press, 1999.

[121] SHAKED, D., AND BRUCKSTEIN, A. M. The curve axis. Computer Vision and

Image Understanding 63, 2 (1996), 367–379.

[122] SHAKED, D., AND BRUCKSTEIN, A. M. Pruning medial axes. Computer Vision

and Image Understanding 69, 2 (1998), 156–169.

[123] SHAMIR, A. A formulation of boundary mesh segmentation. In Proceedings of

the 3D Data Processing, Visualization, and Transmission, 2nd International Sym-

posium (3DPVT) (2004), pp. 82–89.

[124] SHILANE, P., MIN, P., KAZHDAN, M., AND FUNKHOUSER, T. The Princeton

shape benchmark. In Proceedings of the IEEE International Conference on Shape

Modeling and Applications (SMI) (2004), pp. 167–178.

[125] SHINAGAWA, Y., KUNII, T., AND KERGOSIEN, Y.-L. Surface coding based on

Morse theory. Computer Graphics and Applications 11, 5 (1991), 66–78.

[126] SIDDIQI, K., BOUIX, S., TANNENBAUM, A., AND ZUCKER, S. W. The

hamilton-jacobi skeleton. In Proceedings of the International Conference on Com-

puter Vision (ICCV) (1999), pp. 828–834.

[127] SIDDIQI, K., BOUIX, S., TANNENBAUM, A., AND ZUCKER, S. W. Hamilton-

jacobi skeletons. International Journal of Computer Vision 48, 3 (2002), 215–231.

[128] SIDDIQI, K., ZHANG, J., MACRINI, D., SHOKOUFANDEH, A., BOUIX, S., AND

DICKINSON, S. Retrieving articulated 3D models using medial surfaces. Machine

Vision and Applications 19, 4 (2008), 261–275.

[129] STRZODKA, R., AND TELEA, A. Generalized distance transforms and skeletons in

graphics hardware. In Proceedings of EG/IEEE TCVG Symposium on Visualization

(VisSym) (2004), pp. 221–230.

[130] SUD, A., FOSKEY, M., AND MANOCHA, D. Homotopy-preserving medial axis

simplification. In Proceedings of the ACM Symposium on Solid and Physical mod-

eling (SPM) (2005), pp. 39–50.

BIBLIOGRAPHY 143

[131] SVENSSON, S., AND SANNITI DI BAJA, G. Simplifying curve skeletons in volume

images. Computer Vision and Image Understanding 90, 3 (2003), 242–257.

[132] TANGELDER, J. W. H., AND VELTKAMP, R. C. A survey of content based 3d

shape retrieval methods. In Proceedings of the International Conference on Shape

Modeling and Applications (SMI) (2004), pp. 145–156.

[133] TAO, X., HAN, X., RETTMANN, M. E., PRINCE, J. L., AND DAVATZIKOS, C.

Statistical study on cortical sulci of human brains. In Proceedings of the 17th

International Conference on Information Processing in Medical Imaging (IPMI)

(London, UK, 2001), Springer-Verlag, pp. 475–487.

[134] TAO, X., PRINCE, J., AND DAVATZIKOS, C. Using a statistical shape model to

extract sulcal curves on the outer cortex of the human brain. IEEE Transactions on

Medical Imaging 21, 5 (2002), 513–524.

[135] TAUBIN, G. Estimating the tensor of curvature of a surface from a polyhedral

approximation. In Proceedings of the Fifth International Conference on Computer

Vision (ICCV) (1995), IEEE Computer Society, pp. 902–9907.

[136] TELEA, A., AND VAN WIJK, J. J. An augmented fast marching method for com-

puting skeletons and centerlines. In Proceedings of the Symposium on Data Visu-

alisation (VisSym) (2002), pp. 251–259.

[137] TELEA, A., AND VILANOVA, A. A robust level-set algorithm for centerline ex-

traction. In Proceedings of the Symposium on Data Visualisation (VisSym) (2003),

pp. 185–194.

[138] THOMPSON, P. M., HAYASHI, K. M., SOWELL, E. R., GOGTAY, N., GIEDD,

J. N., RAPOPORT, J. L., DE ZUBICARAY, G. I., JANKE, A. L., ROSE, S. E.,

SEMPLE, J., DODDRELL, D. M., WANG, Y., VAN ERP, T. G., CANNON, T. D.,

AND TOGA, A. W. Mapping cortical change in alzheimer’s disease, brain devel-

opment, and schizophrenia. Neuroimage 23 Suppl 1 (2004), 2–18.

[139] TIERNY, J., VANDEBORRE, J.-P., AND DAOUDI, M. Topology driven 3D mesh

hierarchical segmentation. In Proceedings of the IEEE International Conference

on Shape Modeling and Applications (SMI) (2007), pp. 215–220.

[140] VAN EEDE, M., MACRINI, D., TELEA, A., SMINCHISESCU, C., AND DICKIN-

SON, S. S. Canonical skeletons for shape matching. In Proceedings of the 18th

International Conference on Pattern Recognition (ICPR) (2006), IEEE Computer

Society, pp. 64–69.

[141] VERMEER, P. J. Medial axis transform to boundary representation conversion.

PhD thesis, Purdue University, West Lafayette, IN, USA, 1994.

[142] VERWER, B. J. H., VERBEEK, P. W., AND DEKKER, S. T. An efficient uni-

form cost algorithm applied to distance transforms. IEEE Transactions on Pattern

Analysis and Machine Intelligence 11, 4 (2003), 425–429.

144 BIBLIOGRAPHY

[143] WAND, S., ROSENFELD, A., AND WANG, A. Y. Medial axis transformation for

grayscale pictures. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 4, 4 (1982), 419–422.

[144] WRIGHT, M. W., AND FALLSIDE, F. Skeletonisation as model-based feature

detection. Communications, Speech and Vision, IEE Proceedings I 140, 1 (1993),

7–11.

[145] ZHANG, J., SIDDIQI, K., MACRINI, D., SHOKOUFANDEH, A., AND DICKIN-

SON, S. Retrieving articulated 3-D models using medial surfaces and their graph

spectra. In Proceedings of the International Workshop On Energy Minimization

Methods in Computer Vision and Pattern Recognition (2005), pp. 285–300.

[146] ZHOU, Y., AND TOGA, A. Efficient skeletonization of volumetric objects. IEEE

Transactions on Visualization and Computer Graphics 5, 3 (1999), 196–209.

[147] ZUCKERBERGER, E., TAL, A., AND SHLAFMAN, S. Polyhedral surface decom-

position with applications. Computers & Graphics 26, 5 (2002), 733–743.

Summary

Skeletons are geometrical shape-descriptors that are of a lower dimensionality than the

shape they describe. They are centered within the shape, capture the shape’s symme-

try, and describe the topology and articulation of the shape in a compact manner. These

qualities make skeletonization a desirable pre-processing step in a variety of applications

ranging from shape segmentation and retrieval, to pose estimation and motion planning.

The skeleton was formally defined by Blum in 1967. For 2D shapes, the skeleton is a set

of curves. Extending the definition to 3D shapes, the skeleton is a set of surface compo-

nents and curves, and is called surface skeleton. Because a 1D structure is more compact

and more suitable for some applications such as motion planning, alternative skeleton

definitions have been proposed that yield 1D structures, known as curve skeletons.

There are still a number of unsolved problems for the computation of both curve

and surface skeletons, as follows. First, skeletons are expensive to compute accurately,

especially in 3D. Second, skeletons are sensitive to discretization artifacts and noise on the

shape boundary, resulting in many spurious skeleton parts. Skeletonization methods need

to ensure that the produced skeletons are robust to noise, so that they can be effectively

used in subsequent applications.

In the first part of this thesis, we focus on efficiently computing skeletons that are

robust to noise. We first investigate the computation of Tolerance-based Feature Trans-

forms, that help in solving a number of discretization problems and enable the robust

computation of skeletons of 2D shapes. We then present a new method for computing

simplified curve skeletons and surface skeletons for 3D shapes. We define a global impor-

tance measure, which yields simplified skeletons when thresholding this measure using

a single, intuitive user parameter. Finally, we extract the simplified skeleton structure by

identifying its constituent surface components.

In the second part of the thesis, we use our simplified skeletons to develop two new

3D shape segmentation methods. First, we present a method for creating semantically-

oriented segmentations of articulated shapes using the curve skeleton. These segments

capture the logical parts of the shape, such as the fingers of a hand. The segmentations are

robust to boundary noise, are pose-invariant, and have smooth segment borders. Second,

we present a geometrically-oriented segmentation method, using a surface-skeleton-based

surface classifier. These segmentations are most suitable for faceted shapes.

Although the methods presented in this thesis work on binary voxel shapes, many of

the ideas and heuristics apply to other shape representations as well.

146 Chapter . Summary

Samenvatting

Skeletten zijn geometrische objectbeschrijvingen, die van een lagere dimensionaliteit zijn

dan het object dat zij beschrijven. Ze zijn gecentreerd in het object, vangen de symmetrie

van het object, en beschrijven de topologie en de articulatie van het object op een com-

pacte manier. Deze kwaliteiten maken skeletonizatie een gewenste stap in een groot aantal

applicaties, variërend van object segmentatie en object retrieval, tot posebepaling en be-

wegingsplanning. Het skelet werd formeel gedefinieerd door Blum in 1967. Het skelet

van een twee-dimensionaal (2D) object bestaat uit curves. Wanneer de definitie wordt uit-

gebreid naar 3D objecten, is het skelet een 2D structuur bestaande uit gekromde vlakken

en curves, en wordt surface-skelet genoemd. Omdat een 1D structuur compacter is en

meer geschikt voor bepaalde applicaties zoals bewegingsplanning, zijn er alternatieve

skeletdefinities voorgesteld die resulteren in 1D structuren genaamd curve-skeletten.

Er zijn nog steeds een aantal onopgeloste problemen bij het berekenen van curve- en

surface-skeletten. Ten eerste kost het veel tijd om skeletten accuraat te berekenen, met

name voor 3D objecten. Verder zijn skeletten erg gevoelig voor discretizatiefouten en

ruis in het object, wat resulteert in overbodige delen in het skelet. Skeletonizatiemeth-

odes dienen te zorgen dat de skeletten robuust zijn onder ruis, zodat ze effectief gebruikt

kunnen worden in latere applicaties.

In het eerste deel van dit proefschrift leggen we ons toe op het efficiënt berekenen van

skeletten die robuust zijn onder ruis. We onderzoeken tolerantiegebaseerde feature trans-

forms, die een aantal discretizatieproblemen oplost en het mogelijk maakt om skeletten

van 2D objecten robuust te berekenen. Vervolgens presenteren we een nieuwe meth-

ode om gesimplificeerde curve- en surface-skeletten van 3D objecten te berekenen. We

definiëren een globale belangmaat welke resulteert in gesimplificeerde skeletten door

middel van een enkele en intuı̈tieve gebruikersparameter. Ten slotte extraheren we de

structuur van het gesimplificeerde skelet door zijn afzonderlijke gekromde vlakken te

identificeren.

In het tweede deel van dit proefschrift gebruiken we onze gesimplificeerde skeletten

om twee nieuwe 3D object segmentaties te ontwikkelen. Eerst presenteren we een meth-

ode om semantiekgeoriëntieerde segmentaties van gearticuleerde objecten te berekenen

met behulp van het curve-skelet. Deze segmenten representeren de logische delen van het

object, zoals de vingers van een hand. De segmentaties zijn robuust onder ruis en invariant

onder verschillende poses van het object, en de randen tussen segmenten zijn glad. Daarna

presenteren we een geometriegeoriënteerde segmentatie methode, die gebruik maakt van

een oppervlakteclassificatie gebaseerd op het surface-skelet. Deze segmentaties zijn het

148 Chapter . Samenvatting

meest geschikt voor gefaceteerde objecten.

Alhoewel de methodes die we presenteren in dit proefschrift op voxelobjecten werken,

kunnen de ideeën en heuristieken ook gebruikt worden voor andere objectrepresentaties.

List of publications

The following publications are related to this work:

• RENIERS, D., AND TELEA, A. Quantitative comparison of tolerance-based fea-

ture transforms. In Proceedings of the first International Conference on Computer

Vision Theory and Applications (VISAPP), pp. 107-114, 2006. February 25-28,

Setúbal, Portugal. INSTICC Press. (Chapter 3)

• RENIERS, D., AND TELEA, A. Tolerance-based feature transforms, Advances in

Computer Graphics and Computer Vision, Volume 4, 187-200, 2008. Springer.

(Chapter 3)

• RENIERS, D., AND VAN WIJK, J.J., AND TELEA, A. Computing Multiscale

Curve and Surface Skeletons of Genus 0 Shapes Using a Global Importance Mea-

sure, IEEE Transactions on Visualization and Computer Graphics, 14(2), 355-368,

2008. (Chapter 4)

• RENIERS, D., AND TELEA, A. Segmenting Simplified Surface Skeletons. Lecture

Notes in Computer Science, vol. 4992, 262-274, 2008. Springer. (Proceedings of

the Conference on Discrete Geometry for Computer Imagery (DGCI), April 16-18,

Lyon, France, 2008). (Chapter 5)

• RENIERS, D., AND TELEA, A. Skeleton-based Hierarchical Shape Segmentation.

In Proceedings of the IEEE International Conference on Shape Modeling and Ap-

plications (SMI), pp. 179-188, 2007. June 13-15, Lyon, France. IEEE Computer

Society Press. (Chapter 6)

• RENIERS, D., AND TELEA, A. Hierarchical part-type segmentation using voxel-

based curve skeletons, The Visual Computer 24(6), 383-395, 2008. Springer

Berlin/Heidelberg. (Chapter 6)

• RENIERS, D., AND TELEA, A. Part-type segmentation of articulated voxel-shapes

using the junction rule. Computer Graphics Forum 27(7), 1845-1852, 2008. Black-

well publishing. (Proceedings of the Pacific Conference on Computer Graphics and

Applications, October 8-10, Tokyo, Japan). (Chapter 6)

150 Chapter . List of publications

• RENIERS, D., AND TELEA, A. Patch-type segmentation of voxel shapes using

simplified surface skeletons. Computer Graphics Forum 27(7), 1837-1844, 2008.

Blackwell publishing. (Proceedings of the Pacific Conference on Computer Graph-

ics and Applications, October 8-10, Tokyo, Japan). (Chapter 7)

• RENIERS, D., JALBA, A., AND TELEA, A. Robust classification and analysis of

anatomical surfaces using 3D skeletons. In Proceedings of the first Eurographics

Workshop on Visual Computing for Biomedicine (VCBM), pp. 61-68, October 6-7,

Delft, The Netherlands, 2008. (Chapter 7)

Curriculum Vitae

Dennie Reniers was born on the 5th of December 1980 in Breda, The Netherlands. He

completed his secondary education at the Mencia de Mendoza Lyceum in Breda. From

1999, he studied computer science at the Department of Mathematics and Computer Sci-

ence at the Technische Universiteit Eindhoven. He received his Master’s degree in 2004,

with honors. His Master’s thesis was titled ”Multi-scale extreme simplification and ren-

dering of point sets”.

In January 2005, he started on an NWO funded PhD project at the same university un-

der the supervision of Alexandru Telea. For this research, he developed new skeletoniza-

tion and shape segmentation techniques. This led to a number of articles in international

conference proceedings and journals, and his PhD dissertation in December 2008.

As of February 2009, he will start working at Solid Source, a small start-up in software

quality assessment based in Eindhoven.

Index

C, see component set

Γ, see shortest-geodesic set

F , see extended feature transform

F , see feature transform

γ, see shortest geodesic

ρC , see importance measure on the curve

skeleton

ρS , see importance measure on the surface

skeleton

σ, see geodesicness measure

advection model, 48, 53

AFMM, 34

AFMM Star, 36

boundary noise, 14

boundary-distance importance measure,

26, 48

branch, 11

branch-cut scheme, 95

caching, 60

candidate cut points, 96

centeredness, 13, 17

centerline, see skeleton

collapse measure, 52

component, 51

component set, 51

connected component, 51

connectedness, 67

contact point, see feature point

curve skeleton definition, 51

cut point, 87

Dijkstra’s algorithm, 56, 60

dilated shortest-path set, 56

distance field, 22

distance transform, 10

edge, 117

equalized skeleton, 53

erosion strategy, 28

Euclidean-distance measure, 26

extended feature transform, 55

exterior skeleton, 120

extrinsic properties, 17

fast marching method, 33

feature collection, 116

feature point, 10

feature transform, 32

feature vector, 10

feature-angle importance measure, 26

flag, 34

flat segmentation, 103

flux importance measure, 26

FMM, see fast marching method

FT, see feature transform

general field, 23

genus, 7

geodesic, 49

geodesicness measure, 95

geometry preservation, 13, 17

global measure, 27

hierarchical segmentation, 103

image, 7

importance measure, 25

on the curve skeleton, 51

on the surface skeleton, 49

inaccurate part-cut, 93

inclusiveness of components, 52

INDEX 153

intrinsic properties, 16

invalid part-cut, 93

Jordan curve, 51

junction, 11

junction detection, 18, 57

junction order, 99

junction rule, 86

junction type, 94

junction-cut scheme, 93

junction-type detection, 97

length estimator, 56

ligature, 13, 101

local measure, 26

medial axis, see skeleton

minima rule, 86

monotonic importance measure, 28

multiscale, 15, 67

noise, 14

object, see shape

part-cut similarity, 97

part-type segmentation, 86

partitioning

of surface skeleton, 73

patch, 113

patch-type segmentation, 120

potential field, see general field

pruning, 19

pruning method, 24

pruning requirements, 25

pruning strategy, 25

rate pruning strategy, 28

reconstruction, 68

Reeb graph, 12

robustness, 15, 67

salt-and-pepper noise, 14

shape, 7

shape descriptor, 9

sheet, 11, 74

sheet boundary, 73

sheet intersection curve, see Y-curve

shortest geodesic, 49

shortest path, 56

shortest-geodesic set, 51

shortest-path set, see shortest-geodesic set

simple feature transform, 32

simplification level, 53

simplified feature transform, 76

simplified skeleton, 53

simplified surface skeleton, 76

simplified Y-network, 76

skeleton

Blum skeleton, 10

curve skeleton, 11

extrinsic properties, 12, 15

intrinsic properties, 12

requirements, 12

surface skeleton, 11

transform, 10

skeleton-point classification, 11

skeleton-to-boundary mapping, 18, 68

skeletonization, 9

skeletonization approaches, 19

skeletonization techniques, 20

spatial subdivision, 61

surface classifier, 117

surface smoothing, 68

symmetry-curvature duality, 11, 115

TFT, see tolerance-based feature transform

thinness, 13, 16

thinning, 20

thresholding strategy, 27

tolerance-based feature transform, 32

topology preservation, 13, 17

tunnel, 7, 60

unstable, 14

Voronoi diagram, 21

voxel shape, 8

Y-curve, 74

Y-network, 74

	Contents
	Preface
	1. Introduction
	2. Skeletonization
	3. Tolerance-based feature transforms
	4. Computing multiscale curve and surface skeletons
	5. Segmenting simplified surface skeletons
	6. Part-type shape segmentation
	7. Patch-type shape segmentation
	8. Conclusions
	Bibliography
	Summary
	Samenvatting
	List of publications
	Curriculum Vitae

