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Chapter 1

Introduction

Today, software engineering is a full-grown industry, with many processes, methods, and tools in
place. As a consequence hereof, the lifecycle of a software product, consisting of phases such as
requirements analysis, architecting, design, development, testing, releasing, and maintenance,

is very long, complicated, and expensive. Various analyses estimate that over 80% of the entire
lifecycle costs of a software product are in maintenance, and that 50% of this cost relates to
program comprehension [68, 164].

Software maintenance (SM) refers to the modification of a software product after delivery to

correct faults, to improve performance or other attributes, or to adapt the product to a changed
environment [52]. Maintenance can be further classified into four main sub categories i.e., pre-
ventivemaintenance, corrective maintenance, adaptive maintenance and perfective maintenance

[127].

To reduce a part of the maintenance costs, several things can be done. A non-exhaustive
list hereof includes reducing development, testing and architecting costs; using better, more
effective programmers; using more cost-effective process management methodologies such as

agile or lean development [106]; and reducing the cost of comprehension. From this palette of
instruments, we focus in this dissertation is on the cost reduction process via better program
comprehension techniques.

There are many ways to support program comprehension. To be able to reason about them, we
have to understand why comprehension is difficult in the first place. A set of causes are involved
here: Software is large, complex, abstract, changes in time, and involves many people in its
construction. All these aspects, both taken individually and even more so in their interplay,

make comprehension difficult. To support better, more effective ways to understand large,
complex, abstract, and changing programs, several types of techniques have been proposed.
Examples hereof source code and dynamic behavior analyses, formal methods, quality metrics,
reverse engineering techniques, and visualization techniques. In this thesis, we will examine the

last type of technique: Software visualization (SoftVis).

In brief, software visualization supports program comprehension by making the abstract con-
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crete; reducing the scale of an entire software (sub)system to one or more compact images;

and making the dynamics of software, e.g., its behavior and also its changes in time, visible in
space. To this end, software visualization maps the many attributes of a software system, such
as structure, behavior, and evolution attributes, to visual elements, such as shape, position, spa-
tial order, color, size, texture, and animated behavior. As such, software visualization reduces

the exploration of a large, abstract, complex and changing software system to the hopefully
intuitive task of visual exploration and navigation of an image.

Specific program comprehension tasks are assisted by specific visualization techniques, which are

in turn implemented by specific visualization tools. A comprehension-related visualization tool
is therefore ‘effective’when, at the end of the day, it helps actual users (software engineers) to
accomplish their comprehension-related tasks, e.g., perform their maintenance activities, better
[69]. A visualization tool is ‘efficient’when it enables its users to perform their maintenance

within a desired time frame.

Hence, the efficiency and effectiveness of visualization tools that support program comprehen-
sion are intimately related to a specific test of tasks. To identify whether a given visualization

tool is indeed efficient and/or effective, or to build such a new tool, there is a need to identify
the requirements that such tools are to satisfy [64, 79, 117, 120]. Furthermore, we need to be
able to easily quantify whether a given tool, or set of tools, does indeed satisfy this identified
set of requirements.

1.1 Background

Many visualization tools have been produced, to support many activities which are part of
the maintenance process. Originally promoted within research and academic environments,

such tools have, in the last years, been increasingly developed and advertised by commercial
sources. However, the actual effectiveness of a given software visualization tool, or even of the
software visualization discipline at large, is still debated in the software industry. It is not yet
clear which aspects of one or more visualization tools are perceived as truly useful by industry

practitioners, and which not. Considerably more software visualization tools are developed by
researchers than the number which gets actually used, on a wide scale, by industry developers.
Several complementary reasons for this situation may be named, including limited support and

advertising, limited user awareness to the benefits of visualization, and lack of appropriate
training. In this thesis, we however focus on a different class of reasons: We argue that there
exists a disconnect between the actual needs of the industrial users and the actual features
provided by software visualization tools.

To assess the effectiveness of visualization tools, or the lack thereof, researchers have conducted
user studies. However, on the wide scale of all software visualization tools in existence, such
studies are not frequent. Moreover, many of them are specific to a task, user group, and

tool. This makes it difficult to extrapolate from these studies to the entire field in order to
get a better understanding of the above-mentioned disconnect between users and tools. In the
end, this situation affects both the tool users, as they are offered tools which are perceived as
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suboptimal from their perspective, but also the tool builders, as they may design tools which

are not addressing the core requirements of actual users.

We cannot expect to do an exhaustive study of all tools and all needs. What we hope, however, is
that there are consistent ’aspects’ in the way that industrial users perceive software visualization
tools in general. In particular, we are interested in understanding the process of early adoption1,

i.e. the phase in which users discover new, potentially useful, SoftVis tools, and the criteria
they use to determine, after very short usage periods, whether a tool has usefulness potential
or not.

After a tool successfully passes the early adoption phase, however, it does not mean that the
tool will indeed be useful. The tool assessment enters a second phase, where users look at more
fine-grained details, having concrete tasks and specific requirements in mind. To understand
this process further, we decided to zoom in on a subset of maintenance activities (and related

SoftVis tools), namely corrective maintenance. Corrective maintenance (CM) is a branch of
software maintenance that deals with correcting errors in software so as to ensure that the
software operates in the ways it was designed to [135]. CM is an intensive activity that involves

many sub-activities. These include, but are not limited to, checking for problematic areas in
source code; correcting the problems identified; and carrying out regression tests to ensure that
the correction has not created further problems within the software.

In order to carry out CM tasks successfully, maintainers need a clear understanding of the

software system under maintenance [148]. This is crucial as failure to understand the various
dependencies and interactions within code can lead to the introduction of new errors after
carrying out a CM task [54]. Many aids can be used in order to gain such knowledge of a
software system. System documentation is, or should be, usually the first option. Unfortunately,

software documentation is frequently inadequate or missing altogether, which leads to confusion
for the maintainer that relies on it [59, 54].

In a recent study on documentation practice during corrective maintenance, it was found that

only 16% of the organizations studied update their software system documents at all granu-
larity levels, while only 21% provide their employees with guidelines on how to write system
documentation [59]. It would therefore be risky for a maintainer carrying out CM tasks to base
their system knowledge and understanding solely on documentation.

Due to the difficulty of CM coupled with the inconsistency of software documentation, tools can
aid in the various comprehension-related activities of CM [54]. SoftVis tools are an example
of such tools. Despite this, there has not been extensive research that correlates software

visualization tools with corrective software maintenance. As such, tool developers targeting
this area do not have a lot of resources on the requirements for these tools. This makes the
understanding of the challenges related to acceptance in the industry of CM-related SoftVis
tools even more difficult than understanding such challenges for SoftVis tools that attempt to

support program comprehension in other types of software engineering activities. This is the

1The term early adoption is sometimes used with a different meaning, i.e. the fact that a tool or method gets
quickly adopted after it has been created. Here, by early adoption, we understand a user’s decision of adopting
a tool after a limited, short, evaluation phase.
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gap we aim to further investigate in this research.

1.2 Statement of the Problem

Many designers have embarked on developing software visualization (SoftVis) tools. Despite
this, builders of SoftVis tools for the general task of software comprehension, as well as for
corrective maintenance in particular, often see that their tools are not extensively used by their
ultimate target audience: developers working in the software industry. One reason hereof is a

gap between the features that such tools offer and the actual features that their target audience
requires [91].

This situation is complicated further by the relatively limited number of usability studies and
empirical evaluations of tools that are developed [56]. There are several cases where such tools

are evaluated on an audience that significantly differs from the target audience for the tool
being developed. We argue that this is one of the implicit reasons that leads to the fact that
many of the existing SoftVis tools are not widely used in practice. Refining this idea, we argue

that, in the absence of a guide for tool developers that is backed by a user study and that
highlights which features are truly desirable (and which not), tools that are not in line with
the targeted user requirements are likely to be developed.

General Objective

The aim of this thesis is to provide a framework for the study of the match, or lack thereof,
between the needs of the software engineering community (with a focus on maintenance) with
respect to visualization tools, and the provided facilities in existing visualization tools.

Specific Objectives

The specific objectives of this thesis are to:

i Determine and analyze the desirable properties of software visualization tools from the
perspective of expert programmers in the industry;

ii Design a Unified Requirements Categorization (URC) for modeling the early adoption

process of SoftVis tools;

iii Refine and evaluate the URC for software visualization tools for corrective maintenance;

iv Validate the refined URC against software developers carrying out actual corrective main-

tenance tasks.

Scope

In this work, emphasis was put on expert programmers and developers, as these users are a

good reflection of the requirements that a SoftVis tool should meet to gain acceptance in the
real-life software industry. Also, emphasis was put on the corrective maintenance of object-
oriented software systems such as written in languages as Java, C++ or C#. The reason hereof
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is that such systems arguably exhibit a more complex structure, e.g., in terms of the types of

relations, hierarchy, and types of software attributes, than plain procedural language software
such as C or Pascal, and therefore are more interesting targets for the added value claimed
to be delivered by SoftVis tools. In the remainder of this thesis, the software being targeted
by the studied SoftVis tools will be implicitly assumed to be object-oriented, unless otherwise

specified.

To address the various steps of the goals outlined above, we have conducted several studies, as
follows.

A first study was done to elicit several so-called general desirable features that developers have
for SoftVis tools involved in program comprehension during maintenance. The aim of this step
is to get a first-level understanding of what developers feel that such tools should provide in
general, regardless of the specific type of maintenance task that is to be supported.

From the insights of this first study, we noticed that tool adoption is a multiple phase process.
Like in other adoption processes involving humans, there appears to be a first, early, phase in
which users decide, based on limited information and investigation time, whether a tool has the

potential to be usable or not. A second phase involves a more in-depth analysis of the tool’s
provisions in order to decide whether the tool is useful or not (for a specific task). Based on this
insight, we attempted to capture the types of desirable features prominent in the early adoption
phase in a so-called Unified Requirements Classification (URC). Based on the compatibility of

these URC elements, it may be possible to understand the types of decisions that users take
to decide whether the tool has potential to be usable (and thus examine it further in deeper
detail), or not (and thus reject the tool and possibly continue searching for a different tool).

The third step in our work is a study of way zooms in on the second phase of adoption, where
a tool’s usefulness is assessed in connection to a specific activity. To better understand this
phase, we have chosen to focus on a more specific type of software activity, namely corrective
maintenance, and SoftVis tools that aim to support it. The outcome of this step, based on a

study of several SoftVis tools for corrective maintenance, is a refined requirements classification
that models desirable features for such tools. Just like our first-level model, this second-level
model can be used in several ways: to understand a posteriori why a given tool does match a
given usage context; to check a priori which tools, from the large palette of available tools, are

best suited in a given usage context; and to assist tool developers in the shaping of their tool
development for high chances for adoption by a specific target audience.

The fourth step in our work attempts to validate the previous model for desirable features of

SoftVis tools for corrective maintenance by means of an actual case study. Tools were selected
for a given corrective maintenance task, based on the model’s previsions. Next, the actual
selected tools were used by actual developers to accomplish a given task related to the domain
of application of the tools. The developers were next interviewed in the effectiveness of using

the tools, and the results were correlated with the model predictions.
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1.3 Contributions

• A Universal Requirements Classification (URC) that documents desirable features of soft-
ware visualization tools that are used for the general task of software comprehension.

• A Requirements Classification for software visualization tools for Corrective Maintenance
(CMRC) which refines the URC to present desirable features for software visualization
tools used in corrective software maintenance.

• A guide in the setting up and executing of experiments involving software visualization
tools.

• Finally, this thesis has also resulted into the publications shown below:

i M. Sensalire, P. Ogao and A. Telea. Evaluation of Software Visualization Tools: Lessons
Learned. In Proceedings of the 5th IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), Edmonton, Canada, September 2009.

ii M. Sensalire, P. Ogao and A. Telea. Requirements for Software Visualization Tools for
Corrective Maintenance: How Effective is the Classification Model? Submitted to the
Springer Journal of Empirical Software Engineering, 2009. Currently under a second
round review with the journal.

iii M. Sensalire, P. Ogao, and A. Telea. Classifying desirable features of software visual-
ization tools for corrective maintenance. In Proceedings of the 4th ACM symposium on
Software Visualization (SOFTVIS), Germany, September 2008.

iv M. Sensalire and P. Ogao. Tool users requirements classification:how software visual-
ization tools measure up. In Proceedings of the 5th ACM International Conference on
Computer Graphics, Virtual Reality, Visualization and Interaction in Africa (AfriGraph),

Grahamstown, South Africa, 2007.

v M. Sensalire and P. Ogao. Visualizing object oriented software:towards a point of reference
for developing tools for industry. In Proceedings of the 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT), Banff, Canada,

2007.

1.4 Thesis Format

The rest of this thesis is organized as follows (see also Figure 1.1 which presents a schematic
overview of the workflow).

• Chapter 2 - Literature Review
In this chapter, previous work in software visualization, as well as evaluations of software
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Study 1 Study 2 Study 3 Study 4

- general SoftVis tools
- 3 tools
- 5 developers
- 3 code bases

- general SoftVis tools
- 10 tools
- 2 developers
- 10 code bases

- SoftVis tools for CM
- 15 tools
- 15 developers
- 3 code bases

- SoftVis tools for CM
- 3 tools
- 17 developers
- 1 code base

- general desirable features
- experimental insights

- URC model
- general desirable features
- early adoption phase

- CMRC model
- desirable features for CM tools
- detailed adoption phase

- CMRC model re!nement
- CMRC model validation

Chapter 4 Chapter 5 Chapter 6 Chapter 7

Lessons learnt

- methodology
- best practices
- challenges

Chapter 8

Literature
Chapters 2,3

- previous work study

- tool taxonomies
- study methodology

Figure 1.1: Workflow of the research presented in this thesis (Chapters 2 to 8)

visualization tools, is discussed. The link between the previous work and what has been

covered in this thesis is detailed, outlining the gaps that still necessitate additional study.

• Chapter 3 - Methodology
In this chapter, empirical research methods commonly used in tool studies similar to the
studies described in this thesis are discussed, along with the advantages and disadvantages

of each. The triangulation research methodology, which was central to our work, is further
elaborated on with a justification on why it was suitable for our research.

• Chapter 4 - Software Visualization Needs For General Software Comprehen-

sion
In this chapter, a first exploratory study is presented that aims to elicit the views of ex-
pert programmers on what should be incorporated in a software visualization too for it to
be usable. These views are determined after exposing the programmers to three SoftVis

tools that support the general task of software comprehension and allowing them to use
the tools for a given short period of time. The results from these observations form the
basis of further work aimed at producing a model of desirable features of SoftVis tools

identified by developers in an early examination phase, which is described in the next
chapter. The potential need for a point of reference for developing tools for the industry
is also discussed.

• Chapter 5 - Unified Requirements Classification

Various ways of categorizing software visualization tools have been developed in the past,
as discussed in Chapter 2). This chapter presents a classification of tool requirements
aimed at modeling the early adoption phase of SoftVis tools, based on the results from
Chapter 2 as well as on previous taxonomies and research results. Ten software visualiza-

tion tools that differ in their functionalities are then measured against this categorization
in order to show the extent to which they fulfill the requirements that are desired by
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tool users at a first glance. We do not attempt here to do a tool-against-tool comparison

in terms of effectiveness of solving a specific problem on a given code base, but rather
compare and assess the tools against a set of global requirements perceived as desirable,
in an effort to address the early tool adoption issue, introduced earlier in Chapter 1, on
a more general level.

• Chapter 6 - Software Visualization for Corrective Maintenance
This chapter provides an evaluation of 15 software visualization tools aimed at corrective
maintenance from the perspective of usefulness. In this phase, different types of require-

ments are important as compared to the early adoption phase, modeled by the URC
introduced in Chapter 5. As such, the classification model is further refined for specific
properties and requirements of SoftVis tools aimed at corrective maintenance. The result
is a set of Corrective Maintenance Requirements Classification for SoftVis tools (CMRC).

By observing trends of current SoftVis tools, tool developers can gain additional insight
on what to consider, avoid or improve in their tools. Tool users can also recognize what
to broadly expect from software visualization tools for corrective maintenance, before ac-
tually using the tool. The CMRC can function as a basis for an informed choice of a tool

to use both for tools that have been evaluated in this chapter, but also extrapolated to
other tools that share requirements and/or features discussed in the unified requirements
classification.

• Chapter 7 - Validating the Classification Model
This chapter presents a comparative evaluation of three software visualization tools used
in the context of corrective maintenance which were selected with the aid of the CMRC
classification model presented in Chapter 6. Two tools were chosen to fit the model’s

requirements well, whereas a third one was chosen to have a lesser fit. Three groups
of professional software developers participated in the evaluation with each group using
a different tool to solve the same concrete corrective maintenance tasks. The aim of
the experiment was to validate the effectiveness of the proposed model as well as seek

further recommendations for improving SoftVis tools used in the context of corrective
maintenance.

• Chapter 8 - Lessons Learned

This chapter presents a compilation of the lessons learned during our four studies involving
SoftVis tools and industrial users. Several aspects are outlined related to methodological
points involved in setting up studies, executing the actual study, and interpreting the
results. The aim of this discussion is to outline important challenges and difficulties

involved in such experimental work, in the hope of helping further researchers who wish
to carry out such studies.

• Chapter 9 - Conclusion

This chapter presents the conclusions of our research described in this thesis and outlines
areas where future work can be carried out related to evaluation of SoftVis tools with
respect to features deemed to be desirable by actual users.
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Chapter 2

Literature Review

Significant work has been done in many of the areas related to the research questions addressed
by this thesis. This chapter reviews the literature related to these areas, with the aim of
outlining existing results and positioning our work with respect to existing gaps between the
research questions, stated in Chapter 1, and these results.

In section 2.1, we review the basics of software comprehension. Section 2.2 presents an overview
of previous work related to software visualization aimed at program comprehension. Section 2.3
discusses the need for software visualization to support a given application domain. The im-

portance of empirical studies and validation of the effectiveness and efficiency of software vi-
sualization tools is discussed in Section 2.4. Related work aimed at practically comparing
various software visualization tools is discussed in Section 2.5. Finally, Section 2.6 discusses
requirements for software visualization tools that have been identified by earlier scholars.

2.1 Software Comprehension

Software comprehension refers to the process of understanding and reasoning about soft-
ware [155]. Software practitioners need to understand the various artifacts of the development
process, including source code, documentation, and execution log data, in order for them to
carry out their various development and maintenance tasks effectively. In the following, our

main focus is going to be on the understanding on source code and related structural data, e.g.
design and architecture information which can be extracted from the source code. The tasks
referred to above range from actual software design to corrective, perfective, and preventive
maintenance [81].

In an effort to document the software comprehension process, several studies have been carried
out in the past [153, 108]. These studies indicate that, when analyzing software for comprehen-
sion, several models can be used depending on the size of the software artifact dataset under

study, as well as on the intention of the programmer [95]. These include the bottom-up model,
the top-down model, as well as the integrated comprehension model. These models are outlined
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next.

The Bottom-Up Model

When this approach is used, the source code under observation is studied incrementally from a
small section upwards, until the whole program is understood [95, 131]. In situations involving
unfamiliar (new) code or limited programmer knowledge, this approach is predominant. It is

also seen to provide the best cognitive results when studying medium to small-scale programs
[154]1. However, this approach is harder to use as the program size increases since the small
sections under study become too many to correlate, and/or the dependencies between such
sections become too numerous to store in the ’working memory’ of the person that performs

the analysis [108].

The Top-Down Model

This model proposes that a hypothesis is first formed, which is then proved or disproved accord-

ingly until the whole program or desired segment is understood [154]. This process is achieved
with the aid of beacons, or clues (denoted (1) in Figure 2.1)), that guide in the breaking of a
larger hypothesis into smaller ones (denoted (2)..(4) in the same figure) [131]. This approach
is more scalable than the bottom-up approach, and can also be used when the programmer is

experienced either in the subject domain or is familiar with the source code itself [154, 153].
One of the reasons hereof is that a knowledgeable programmer is more likely to make an in-
formed hypothesis, which arguably leads to a shorter overall time to successful hypothesis
validation [95, 108].

The Integrated Comprehension Model

This model proposes a combination of both the top-down and the bottom-up methods of soft-
ware comprehension. When the software being studied is large, a combination of both methods
is found to be more effective for comprehension than using each method in isolation [131, 148].

The combination entails several repeated passes of bottom-up and top-down comprehension
analyses during which information is gathered, hypotheses are made and tested, and the accu-
mulated knowledge gets incrementally refined.

1Giving an exact quantitative definition of the scale of software systems is a difficult task. Here and in the
following, we qualitatively distinguish between small-scale, medium-scale, and large-scale programs mainly from
a source code size perspective. Small-scale programs range around a few hundreds to thousands lines of code
(LOC). Medium-scale programs range from thousands to tens of thousands of LOC. Large-scale programs range
from tens of thousands of LOC upwards.
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Figure 2.1: Hypothesis generation process [16]

2.2 Software Visualization and Software Comprehension

Software visualization is the use of interactive computer graphics, typography, graphic design,

animation, and cinematography to enhance the interface between the software engineer or
the computer science student and their programs [107]. Similar definitions worded slightly
differently are used in the literature, e.g. the use of graphics techniques to support program
comprehension [29]). In the context of this thesis, we refer to a tool as being a software

visualization (SoftVis) tool if it is implemented to serve the aims, and using the technology,
outlined in the definition above 2.

Software visualization and software comprehension are related procedures. Software visual-
ization can be seen generically as an instrument (in the methodological sense), supported by

actual tools, for supporting the various processes involved in program comprehension. The
overall claim of software visualization is that it can reduce the time and effort required by the
person that aims to understand a software system, both in providing answers to given questions

(hypothesis validation) but also in helping the formulation of questions (hypothesis creation)
[57, 156]. As such, software visualization relates to the general aims of data and information
visualization of ’confirming the known and discovering the unknown’ [118].

To support these claims (and aims), it is important for tools that claim to support human

2In the remainder of this thesis, the unqualified term tool will always refer to software visualization tools
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cognition to support, or match, the theories on which these claims were based [155]. How-

ever, we argue that there exists a certain gap between the comprehension theories outlined in
Section 2.1, i.e. bottom-up, top-down, and integrated comprehension, and the way in which
existing SoftVis tools provide features that support (or not) these theories. In the following, we
support this argument by examples from a (non-exhaustive) list of existing work in evaluating

SoftVis tools with respect to a set of program comprehension tasks.

Storey et al. had earlier noted the importance of program comprehension theories and ad-
vocated for the use of results from program comprehension studies to support the design of

tools [131]. Related to this background, a cognitive framework that considers the maintainers’
comprehension needs was designed. As an outcome hereof, several software exploration tools
have been developed, such as the SHriMP tool. Our work builds onto Storey’s results as we
expose software maintainers to SoftVis tools and extract the developers’ views on how these

tools can be improved, based on their comprehension activities. In relation to this point, one of
the tools which we have explored was Creole [21], which implements the SHriMP visualization
metaphor.

According to Petre et al., there are several cases in which a mismatch between software visu-
alization and software comprehension can lead to undesirable results [103]. An example hereof
are animation tools that use code-steppers [57]. This suggests that not all software visualization
tools have the usefulness that their creators originally claim, or imply, directly or indirectly.

Petre et al. further suggest bridging the gap between desirable features and tool provisions by
seeking the tasks that the programmers carry out and then deciding how the support for these
tasks can be provided. This is one of the points explored further in this thesis, with a focus on
corrective maintenance.

Sim developed a search tool called grug (grep using GCL) whose main aim was to support
program comprehension [120]. Two studies were carried out and the results hereof were used
as supporting evidence for the tool construction. In the first study, the Portable Bookshelf

(PBS) tool was given to software maintainers and observations were carried out during tool
use. Results indicated that a search facility would be useful, which was later added to the
tool. The second study observed users with the modified tool and the feedback led to the
development of grub. Our work relates to that of Sim [120] as our users were also exposed to

tools with the aim of eliciting both the desirable and undesirable features . The difference is
that we did not develop a new tool, but rather gathered a set of requirements and desirable
features that a potential tool developer can use from existing tools.

Knight proposed customizable views and multiple browsing as the best way to support compre-
hension in SoftVis tools [67]. This was done with the guide of comprehension studies involving
the SHRIMP technique proposed by Storey et al. [131]. As a proof of concept, the so-called
’broker’ comprehension tool was developed. A user evaluation to test the tool’s features was

however not carried out. Our work differs from Knight’s as several existing tools are compared
and evaluated as opposed to developing a new tool [120].

In another study, the three-dimensional Source Viewer (sv3D) tool used three-dimensional (3D)
visualization metaphors to aid in the software comprehension process, both at structural and
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evolution levels [84] (see also Figures 2.2 and 2.3). In order to justify the tool’s development,

the developers analyzed two-dimensional visualization metaphors and outlined shortcomings
thereof, arguing that several such shortcomings could be addressed by the use of 3D visualiza-
tions. The link between the sv3D tool features and existing comprehension models was however
not detailed to a large extent. An evaluation of the sv3D tool was later carried on with the

aim of getting feedback from the users as well as determining how helpful the tool would be in
software comprehension [82].

Figure 2.2: Classes as shown by
sv3D [82] Figure 2.3: A sample image of sv3D’s evolution view [80]

Undergraduate and graduate students participated in the study described in [84]. These in-
volved answering questions related to the software code under study. One group of students
used the tool as an aid while a second group addressed the same tasks without the tool’s use.

The authors noted that the evaluation results were surprising as the tool users took longer to
answer the questions in relation to the group without the tool. Although arguably present, the
ability to aid in software comprehension was therefore not immediately evident.

In a recent publication, two types of SoftVis metaphors for visualizing large call graphs of

C and C++ code bases were compared [47]. These were classical node-link metaphors and
the newer hierarchical edge bundles metaphor. The task addressed by these visualizations
is understanding and assessing the modularity of large C and C++ systems. Several tool

implementations of the node-link metaphor were compared by users with one implementation
of the hierarchical edge bundles. A sample of this comparison is shown in Figure 2.4. A number
of desirable SoftVis tool properties emerged from this study, most notably the need of layout
stability and predictability and scalability, minimal occlusion, and search facilities. However,

this study does not further detail the way in which the studied SoftVis layouts do directly map
on finer-grained comprehension tasks beyond a global assessment of a system’s modularity.
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Figure 2.4: Comparison of hierarchical edge bundles (a) and force-directed layouts (b) for
visualizing large call graphs [47].

2.3 Application Domains for Software Visualization

In this thesis, we argue that studying SoftVis tools that target the same application (sub)domain
is generally more insightful from our perspective of eliciting desirable requirements and how well
tools fit these requirements than comparing tools that address different domains. For instance,

it makes more sense to compare SoftVis tools (and their features) that address corrective
maintenance only, rather than comparing SoftVis tools that address program comprehension
in general. Two main reasons are outlined below in support of this claim.

First, program comprehension (when used without further qualifications) is a rather vague term,
as it does not refer to a set of specific tasks that the programmer wants to solve beyond ’under-
standing’ a program3. As such, it is hard to compare SoftVis tools purely from the perspective
of how much they support comprehension in general, since they may actually support different

finer-level, more specific, comprehension tasks, which are best addressed by different visualiza-
tion features. It is more relevant to compare tools that support comprehension-related tasks
within a subdomain of software engineering, like corrective maintenance for example. This will
necessarily limit and focus the types of actual tasks that the users want support for.

Secondly, for a comparative analysis of the effectiveness of visualization techniques, used in
different SoftVis tools, in supporting concrete tasks, the link between these techniques (or fea-
tures) and the actual tasks to be supported must be made as clear as possible. For this, we need

first a clear delimitation of the types of tasks targeted. Note that, from this perspective, such
tasks can be part of the same or different activities in software engineering. For example, the

3This problem is not unique to software visualization. Several data and information visualization papers
propose techniques that are useful in ‘getting insight’ in datasets with only a limited quantitative or qualitative
qualification of the term ‘insight’.
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task of correlating the hierarchical structure of a software system with its function call pattern,

may be seen as part of corrective maintenance (when tracing cause-effect relations between
failures and bugs), part of perfective maintenance (when refactoring a system to improve its
modularity), or part of adaptive maintenance (when determining how to change a system to
remove or add new components). For this task, different techniques can be used, e.g. different

graph layouts.

To further proceed with our analysis, we need a classification of SoftVis tools with respect to the
application domains within software engineering that they address. Several such classifications

exist, as follows.

Price et al. proposed a taxonomy for SoftVis tools which compares twelve tools against six
categories of desirable features [57]. The categories used were scope, content, form, method,
interaction and effectiveness. The level to which each of the tools fulfilled the categories selected

was shown. The twelve tools compared were chosen based on the diversity of the approaches
that they used as well as their historical relevance in the area of SoftVis [57]. The tools were
however not related to a single application area.

Another general taxonomy of SoftVis tools is proposed by Maletic et al. [79]. This classification
compares five software tools along five axes: task, audience, target, representation, and medium.
As in the case of Price et al., the scope of the considered taxonomy and tools is quite broad.

The audience for different SoftVis tools strongly varies depending on the tools’ exact pur-
poses [79]. From the audience (users) perspective, too, it can be hypothesized that a compara-
tive evaluation of tools in the same (sub)domain is more useful for users in that area, and also
for designers of those specific tools, than a comparison of tools targeting different areas [69]. In

this direction, Storey et al. performed a survey of tools supporting software development [132].
Twelve tools were compared to show how each of them measure up against the identified cat-
egories of intent, information, presentation, interaction and effectiveness. For a different field
(corrective maintenance), and from a technique rather than tool perspective, Baecker et al.

analyzed three classes of visualization techniques that are useful for debugging [11]. These
were animation, improved typographic representations and sound in relation to program er-
rors. The evaluation presented in Chapter 6 relates to that of Baecker et al. as they both cover
visual tooling supporting corrective maintenance. However, Baecker’s work addressed only how

certain visual techniques can help debugging activities, whereas we consider techniques, their
’instantiations’ in concrete tools, and desirable features identified by users.

In Chapter 5, we present the evaluation of ten SoftVis tools. The tools address the quite general

task of software understanding without focusing specifically on one activity, similar to [57, 79].
In this evaluation, we noticed the earlier mentioned difficulties of comparing desirable features
of tools that address different activities. In Chapter 6, we narrow the scope of tool evaluation
by looking only at tools that support corrective maintenance. Moreover, we also classify and

analyze the set of visualization techniques used in the tools’ implementations, and attempt to
correlate user acceptance with these techniques in order to detect which techniques seem to
yield the most accepted tools.
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2.4 Empirical Studies and Validation for Tools

It is important for SoftVis tools that are developed to be evaluated. In the past, extended work
has been done in both tool evaluations as well suggestions on how to improve the evaluation

process itself. While a variety of evaluations have been carried out, some of which are outlined in
the previous sections, we note that the evaluation procedure used is not always documented. As
such, the lessons learned from previous tool evaluations are not often used by new researchers.
The relatively low availability of such information can potentially hinder new evaluations as

researchers may deem them too difficult to carry out. In the following, we detail a few general
aspects related to the evaluation of SoftVis tools, with a focus on the evaluation process itself.

Among the previous tool evaluations, Pacione evaluated five SoftVis tools in relation to com-

prehension questions on program dynamics (behavior) understanding [100]. In his study, a lot
of emphasis was put on the tools as well as the results of the evaluations, clearly showing how
each tools performed in relation to the criteria used. Despite this, there was little information
on the evaluation procedure, the challenges faced as well as recommendations on how to carry

out a similar evaluation.

Bassil and Keller [121] also carried out an evaluation of seven commercial and academic tools
using the taxonomy of Price et al. [107]. In this work, the level up to which the evaluated tools
measured against the desirable features captured by the taxonomy was discussed. The main

evaluators were the actual authors of [121], rather than independent users from the application
domain. Also, relatively little information was given on the actual challenges faced during the
evaluation process.

Working from another angle, other researchers have made various suggestions related to im-
proving evaluation experiments for visualization tools. Ellis and Dix suggested many ways in
which information visualization evaluations can be improved [160]. These included evaluating
for the sake of discovery as opposed to proving that a given system is optimal; measuring vari-

ables that contribute to the aim of the evaluation; evaluating the whole tool as apposed to only
its best features; and balancing between qualitative and quantitative evaluations. Information
visualization is tightly related to software visualization [29]. Hence, the recommendations made

by Ellis and Dix are largely applicable to SoftVis evaluation studies.

Interestingly, the recommendations made in the above-cited work were made after reviewing
65 papers that described new information visualization techniques and found that less than
20% of the authors had carried out evaluations. A similar trend was observed earlier by Tory

and Möller who noted that relatively few papers published over a seven year period in the
IEEE Transactions on Visualization and Computer Graphics (TVCG) had a so-called ’human
component’ (see Figure 2.5). By definition, humans are important both in the design, as well
as the evaluation, of visualization tools. One of the reasons for this low percentage could be the

lack of guidelines on how such evaluations can be carried out, an aspect which we mentioned
earlier.

Recently, Kraemer et al. outlined several lessons learned in carrying out various evaluations

and empirical studies related to SoftVis tools, specifically algorithm animation and engineering
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Figure 2.5: Papers from IEEE Transactions on Visualization and Computer Graphics which
contain a human component [145]

diagram visualization [70]. Some of these included encouraging the use of interviews and think-
aloud studies to obtain feedback on site as opposed to surveys, a technique also used earlier
in [152]; and advocating several advantages of observational studies such as think-aloud studies,
notably the wide variety of unexpected information that is generated by this method.

In an early study, Shneiderman et al. suggested multi-dimensional, in-depth, long-term case
studies as the way forward when carrying out information visualization tool evaluations [117].
This procedure involves identifying three to five domain experts that can take part in the

evaluation which can run from several weeks to months. After these users are exposed to the
tools, feedback is collected and the tools under consideration are to be improved. The work
presented in this thesis converges on the above-presented idea of using feedback gathered during
tool evaluation to further improve the tools, albeit in the narrower context of SoftVis tools.

In terms of study duration, the work covered by this thesis covers both relatively long studies
(months) as well as shorter studies (one weeks).

Marcus et al. discuss the aspect of user training, or in broader terms, user suitability for per-

forming user studies of SoftVis tools [80]. They observed that students performed poorly when
doing SoftVis tool evaluations, due to their low exposure level to such tools, but also due to
an implicit low exposure to the actual tasks that those tools were aimed to support. As such,
to obtain results with a high relevance from such studies, they recommend selecting users for

studies from the same category as the final users whom the tools target. For corrective mainte-
nance, for example, those would be experienced programmers actively involved in maintenance
activities in the software industry. This observation is in line with the recommendations of
[28].

O’Brien et al. took a broader perspective and observed how to empirically study software prac-
titioners, and outlined certain so-called ’negative trends’ which should be discouraged during
evaluation studies [165]. Some of these included setting up experiments that were not natu-

ral in nature (e.g. asking users to perform tasks that they were not fundamentally interested
in), as well as not combining qualitative as well as quantitative evaluations. The emphasis
of O’Brien’s observations was program comprehension in general, whereas in this thesis we
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focus more specifically on the way in which SoftVis tools support program comprehension for

maintenance activities.

In a keynote presentation, Basili gives an overview of the past, present, and future trends
in empirical software engineering research [12]. Although not specifically aimed at software
visualization, most of his arguments are directly applicable to SoftVis. First, hidden context

variables in the phenomena under study must be better understood in order to be able to
interpret, and generalize, a study’s findings. However, this is a challenging task by definition.
Secondly, the dimensionality of the space of a study is very large (e.g. threats, studied artifacts,

study population, study duration, experimental setup). Ideally, all these dimensions should
be densely sampled. However, this requires considerable effort and resources, typically not
available within a single research group. Correlating the results of several studies by means
of so-called meta-analyses or meta-studies is a promising solution, but it requires detailed

information on all parameters of such studies, as already mentioned.

In Chapter 8, we present our own ‘lessons learned’ during the evaluation of a wide range of
SoftVis tools, with a focus on the evaluation process itself. The evaluation results themselves

are discussed in earlier chapters.

2.5 Comparison of SoftVis Tools

As already mentioned, a specific class of evaluation studies focuses on comparing several con-

crete SoftVis tools against each other, with the aim of finding out which tool is best for sup-
porting a certain task. Several studies in this class are outlined below.

Pacione compared five dynamic visualization tools and evaluated them with one user in relation

to specific comprehension questions [100]. The study found that no one tool was able to answer
both the small-scale and large-scale program comprehension questions that were presented.
Subsequently, a multiple faceted abstraction model was proposed that combines statically and
dynamically generated data for better comprehension. The Vannessa tool was later built based

on this model proposed as a proof of concept [101]. Despite this, Pacione noted that the
usefulness of the multifaceted three-dimensional model in software comprehension as well as
the developed tool was yet to be evaluated.

The work presented in this thesis differs from Pacione [100] as we study only SoftVis tools.
This is done with the aim of eliciting user requirements and so-called ’desirable features’ of
such tools as opposed to comparing the presentation (visualization) techniques employed by
the tools, e.g. different graph layouts. In comparison with Pacione, the number of users

in our evaluations is also different: Up to 16 expert programmers took part in the software
comprehension experiments presented in this thesis, while only one user was involved in [100] .

Storey et al. performed a survey of tools in a single application area, i.e, tools that provide

awareness of human activities during software development [132] . Twelve tools were com-
pared clearly showing how each of the tools measure up against the identified areas of intent,
information, presentation, interaction and effectiveness. Among the observations made from
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the comparison was the lack of desirable requirements for the tools as well as the low levels of

evaluation that the tools were exposed to. As such, it was difficult to determine the success of
a given tool in the absence of this information. While the evaluation presented in [132] was in
a different area, the same problems exist for SoftVis tools targeting (corrective) maintenance,
which is the main focus of our work.

Bassil and Keller [14] evaluated seven tools, three of which were commercial and four academic,
against the taxonomy of Price et al. [107]. This was done with the aim of showing how each of
the tools compared to the features captured in the taxonomy. As opposed to our work, their

evaluation did not involve participants (users) from the industry. As such, it is arguable that
features which are (un)desirable from the specific perspective of industrial users may have been
insufficiently covered.

In another study, Charland et al. carried out a comparison of three software visualization

tools with the aim of identifying the value that they offered to programmers during program
comprehension activities [19]. Five experienced programmers participated in the study and
examined the three tools which covered a combination of both dynamic and static visualization

techniques. All the three tools were standalone ones, that is, not embedded within Integrated
Development Environments (IDEs). In the experiment setup, the users first employed IDE’s
in order to familiarize themselves with the source code under study before they were exposed
to the SoftVis tools. The limitation noted with this setup was the difficulty in determining the

exact tool that contributed to adding value, i.e. IDE or SoftVis tool. In Chapters 6 and 7, we
evaluate both SoftVis tools that are integrated with IDEs and tools that work standalone, and
explicitly ask users to assess the desirability of tool-IDE integration.

A recurring problem in tool comparison studies is the appropriate selection of users, or evalua-

tion subjects. Several constraints have been outlined in this respect. Tools that are compared
from the perspective of measuring their effectiveness in supporting a given task should be
used, during comparison, by similar (or ideally, identical) categories of users, e.g. professional

developers with similar experience or students, but not mixed groups thereof [35, 18]. User
availability is another factor of concern, especially for longitudinal studies [117]. Although
students are easier available for longer studies, they may need longer training phases, and the
results of such studies cannot be easily extrapolated to e.g. industrial users [82]. The fact that

tools that work well with academic users are not automatically effective in the industry was
also noted by Cordy [22]. Finally, involving the actual tool developers in studying their own
tool has advantages (reduced learning) but also clear limitations (bias).

In Chapters 4-7, we detail on these points in the specific context of SoftVis tools aimed to
be used in the industry. Our general approach is to consider tools developed by third parties
(that is, not the study subjects or the researchers involved in this thesis), and focus on eliciting
desirable features from the viewpoint of the target group (industrial users). Our aim is not

develop new SoftVis tools, but understand which are the features of existing tools which best
serve our target user group, and why, with the aim of helping the tool adoption process and
also potentially helping tool developers to better match their target group.
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2.6 User Requirements for SoftVis Tools

One of the core areas that we are interested in is understanding the way user requirements
map to features provided by SoftVis tools. The core question here is: What is the best way

to determine which are the essential requirements that a given user category has on a given
type of SoftVis tool? Previously, various forms of specifications for tool development were
proposed. These specifications covered a broad area of what could be needed in tools both
in the development process, the functionality required, as well as the necessities after the

development phase. We outline below related work in these directions.

Coulmann’s work was among the first to suggest requirements for SoftVis tools [24]. Among
the suggestions made were the need for the tools to display just the needed information while

hiding that which may not be required for each user session. This is perfectly in line with the
well-known information seeking mantra of Ben Shneiderman “overview first, zoom, then details
on demand” [118]. Among the other requirements suggested were the ability to show multiple
views as well as the need for users to manipulate what has been visualized. In similarity to

our work, Coulmann also noted that evaluation of tool functionality was critical especially for
adoption purposes [24]. It is from this background that we advocate tool evaluation as a (first)
basis for eliciting user requirements.

In another study, Zayour noted that, when developing a reverse engineering tool, focus should

be put on designing it in a way that increases its chances for adoption [165]. It was proposed
that a study aimed at discovery needs to be carried out in realistic settings, i.e. settings which
parallel the actual usage settings as closely as possible. This can be complemented by a study

of program understanding by programmers so as to know which particular tasks are essential
for tool support. After this is done, a tool can then be developed based on earlier requirements,
after which the tool is evaluated to ensure that it actually overcomes the problems. While these
recomendations were made for reverse engineering tools, many are still applicable for SoftVis

tools. As such, several of the suggestions made by Zaynour were extensively followed in our
work.

Kienle dedicated a whole chapter of his thesis on requirements for reverse engineering, with

the majority being tool requirements [63]. His work includes a comprehensive literature review
focused on non-functional requirements or quality attributes. Some functional requirements
were mentioned as well. The identified quality attributes were scalability, interoperability,
customizability, usability, and adoptability.

Reiss also mentioned questions that should be asked when approaching software visualization
research or the development of a new tool [112]. The questions can be summarized as follows

- Is the approach used realistic and scalable?

- Is the approach easy to use?

- Does the system abstract to the needed information?

- Lastly, does the new approach offer any advantage to the programmer that can be easily
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seen.

In our work, these questions were considered to be user requirements. From a tool developer
perspective, these requirements can be used as checkpoints during the tool development process.

In a related study, O’Shea studied the types of information that are most important to the

experienced programmer during maintenance, with the aim of finding out the requirements
that would lead to supportive software visualization tools in the area of source code compre-
hension [99]. O’Shea’s results showed that high importance was attached to meta data and
informal code comments, descriptions of the code itself, e.g. class and package level docu-

mentation, as well as information related to the control structure of the code. Other types of
information, like functionality-related information, were mentioned. Interestingly, their level of
importance was deemed to be less than 5% [99].

Using a different approach, Tjortjis et al. surveyed software maintainers in order to determine
their needs and in turn provide tools to support them [143]. Among the needs noted were the
ability to view both low-level and well as high-level abstractions automatically in order to ease
the comprehension process . It was also noted that alternative means other than consulting the

code experts were needed in order to faster comprehend the code. Visualization was one of the
means proposed. Considering that many of the changes made in the source are documented in
the comments, it was also deemed important that these comments be easily seen and accessed
(e.g. searched for).

Overall, the above previous work addresses a complementary approach to the tool evaluation
studies described earlier. While tool evaluations measure the effectiveness of an already imple-
mented tool, in whose construction a number of requirements have been already considered,

direct consultation of users in order to elicit requirements is an earlier, more general, step of
gathering insight into desirable features. In our work, we follow a mixed approach: On the
one hand, we expose users to existing tools. On the other hand, we ask users to comment on
the desirable features of these tools both from a general perspective (’would these features be

useful to you in general’, Chapters 4 and 5) as well as from a task-oriented perspective (’which
features of this specific tool help you in solving this specific task’, Chapters 5, 6 and 7). The
elicited requirements by us, as well as other requirements pointed out by different researchers,
are structured in a Unified Requirements Classification (URC) (Chapter 5). This URC can be

used as a reference point for future SoftVis tool developers, but also for practitioners interested
in quickly pre-selecting existing SoftVis tools for further in-depth evaluation.

2.7 Summary

Summarizing our review of previous work, several points become apparent.

First, there are many axes, or dimensions, along which evaluations can take place, e.g., evalu-

ating tools from the perspective of end-users in a focused domain; comparing tools addressing
different domains; comparing tools against a set of technical visualization requirements deemed
to be generally important; comparing tools against a set of desirable features deemed to be
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important; and executing empirical studies to actually measure the effectiveness of tools for a

given task.

However, it is quite hard to draw upfront conclusions from existing studies as to whether a
given SoftVis tool is going to be appropriate for a given software engineering task. Most
studies present a posteriori gathered information from actual tool usage. It would be highly

useful to have a way in which we could assess whether an existing SoftVis tool is good for a
given task or usage context, a priori, that is, before actually using the tool. This would help
developers in choosing from the multitude of existing tools. Also, this would help tool designers

in fine-tuning their designs to better serve a given user group. Achieving this without actually
using the tool is probably impossible in general, as there are many hidden context variables that
no single requirements classification model can capture [12]. However, a unified requirements
classification can serve as a pre-selection instrument for quickly narrowing down the tool search

scope.

The problem of visualization tools evaluation becomes increasingly important and is acknowl-
edged as such by many prominent researchers. Without good evaluations, specific tools, but

also the general claims of (software) visualization being useful, may be endangered [112, 69, 77].

In the remainder of this thesis, we aim to fill this gap, i.e, establish a way to extract desirable
features of software visualization tools for a given usage domain from both the tools themselves
and feedback of the users, build a classification model for these features, and show how this

model can be used to predict the suitability of SoftVis tools in new usage contexts.
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Chapter 3

Methodology

As outlined in Chapter 2, there are many types of studies involving SoftVis tools, related to
various dimensions such as the techniques used, the tasks addressed, the requirements fulfilled,
and concrete types of evaluation. There is no simple common denominator along which all
these studies can be related. As a consequence, it is currently hard to establish how a user

study for the effectiveness of a new software visualization tool should be set up. Since we are
going to perform such studies next, as described in the following chapters, we need to make
choices in the ways, or methodology, used when setting up a study.

This chapter overviews the different methodologies that contribute to the construction and
execution of a user study, with a focus on studies on software visualization tools. In the following
chapters, we shall combine different ingredients of the different methodologies presented here
to set up our own studies. Hence, the purpose of this chapter is to overview the different

applicable methodologies and also outline their advantages and limitations in our context.
Moreover, this chapter defines the methodology-related terminology which will be used in the
following chapters.

3.1 Empirical studies

Empirical studies aim to compare what is believed to be true about a product or process

(the hypothesis) with what that product or process actually is (the measurement). As such,
empirical studies can validate or invalidate the whole or parts of a hypothesis, and also help in
creating new hypotheses.

According to Perry et al., empirical studies usually involve four main steps i.e., generating the

hypothesis, testing it, analyzing the generated data and getting a conclusion in relation to the
hypothesis earlier generated [102]. Empirical studies can either be qualitative or quantitative
depending on the quantitative or qualitative nature of the hypothesis, and whether the mea-

surement done involves extracting quantitative or qualitative data. Below is a brief description
of these methods. For a more detailed analysis, we refer to Yin [163, 162].
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3.1.1 Qualitative research

This type of empirical research aims at understanding the reason for a given type of behavior.
Qualitative studies, as opposed to quantitative ones, do not aim to produce actual measure-
ments on a metric scale of their results, but limit themselves to comparative or qualifying

statements, e.g. ‘technique A is better than B’ or ’technique A is suitable for task B’. However,
this does not mean that such studies have a lower value than quantitative ones. It is not always
possible or easy to set up a metric scale along which to compare some attributes. The difficulty
of establishing a metric scale is related to two different dimensions:

• it is generally hard to devise a metric scale to measure qualitative properties such as
’insight’. It can be argued that the difficulty relates to the fact that such properties like
insight are acquired during a complex process that is also highly person-specific;

• even when the metric is clear, e.g. comparing whether accomplishing a task using tool A
is faster than tool B, the actual task may involve attributes which are hard to quantify,
for example measuring how ’modular’ or ’well organized’ a certain software system is.

Related to the above, several points can be made about the particular measurement of effec-
tiveness of SoftVis tools in supporting program comprehension tasks. One difficulty here is
to measure how much understanding has a user obtained on a software system. This reflects
the difficulty of quantifying insight. A second difficulty relates to measuring how much of that

understanding has been obtained because of the use of a given SoftVis tool, and how much is
independent on that.

In cases when quantitative studies are hard to perform, qualitative answers can be more ap-

propriate and correct. Qualitative research involves observation of the relevant study group in
order to establish both their views as well as actions taken as a basis for generating research
findings. Two types of qualitative studies are case studies as well as action research.

Case Studies

Case studies are a qualitative research approach that attempts to understand the workings,
shortcomings, as well as advantages of a given setting [119]. This is done using actual users
carrying out tasks in a realistic environment [119]. Case studies are among the first types of
instruments used in empirical software engineering research [12].

Case studies are explorative in nature. As such, they present the opportunity to discover new
results as the study progresses. Among the other advantages of case studies are the effectiveness
that they offer when choosing between two competing technologies [65]. Due to their small scale

nature, they can also be used to detect early failures or shortcomings in a technology before
it is deployed on a large scale. For researchers, case studies also provide a good chance for
developing tools and techniques that are relevant to the studied audience [38].

The deep level of understanding of the subjects required for this approach however leads to a

high investment cost which may hinder the level to which they are used. Another challenge
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faced by case studies is the small sample that they typically target, which raises questions on

whether the results can be generalized. Cases where the person carrying out the study has an
interest in the results can introduce bias in the way that the results are interpreted. Even in
cases where no bias exists, the non-specific nature of the results in case studies leads to many
different ways of interpretation of the findings.

In some sense, case studies convey ‘insight’ about the working of a process or product which is
conceptually very similar to the function of providing ‘insight’ of a visualization tool or method.
That is, just as one of the aims of visualization is not to measure things but to discover the

unknown, case studies also try to discover unknown facts about a given process or product. As
opposed to this, quantitative studies try to measure concrete metrics of a process or product,
just as another role of visualization in general is to offer a way to quantitatively compare data
values.

Action Research

Action research is a qualitative method that aims at balancing both action and reflection using
a participatory as well as democratic process [110]. Action research is centered around the
practitioner who gets a chance to question their environment and find ways to improve it with

the researcher playing an advisory role [86]. A sample cycle of action research is shown in
Figure 3.1.

Figure 3.1: Action reflection cycle. Adapted from [86]

Action research is good for cases where the problem may not be immediately obvious. As such,
a hypothesis does not have to exist before one starts the research. The action is taken, after
which a hypothesis is formed which can be further tested using e.g. quantitative methods.
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Again, this is similar to the role of ’discovering the unknown’ that a data visualization tool or

method has.

Action research may, however, not be useful in cases where a comparison is being made between
two competing technologies. Other cases where it may not be relevant is when a precise statis-
tical measurement is needed, e.g. the time users take to finish a given task or the percentage

of programmers that are unable to use a given technique. In such cases, quantitative studies
are a better instrument.

3.1.2 Quantitative research

This type of empirical research relies on statistical methods in order to analyze the numerical
results of studies [123]. Quantitative research can also be applied when the measured data is

non numerical, as long as such data can be described along a metric scale or one has, at least,
a similarity (distance) function defined on such data. Surveys, experiments and historical data
are all types of qualitative studies. For statistical methods to be applicable, sufficient measure-
ments (samples) need to be gathered. As such, quantitative studies are powerful instruments

that can determine if a given process or phenomenon is ‘statistically significant’, e.g., detect
correlations between different variables. However, they pose more constraints on the type,
quantity, and quality of the gathered data. For example, in order to draw statistically rele-
vant conclusions from a set of measurements, a minimal number of samples, measured within

a maximal error, must exhibit a certain correlation. For such reasons, statistical studies are
relatively less frequent in practice in the software visualization world.

While quantitative research is not primarily aimed at developing hypotheses, it can be used to

test an already established hypothesis. This method also has other advantages. For example,
the chance of diverging from an established experiment path is less high than with qualita-
tive studies, given that quantitative experiments require fixing the studied input and output
variables [85]. Interpretation of the quantitative numerical results is also less exposed to sub-

jectivity of the researcher. Drawing higher-level qualitative conclusions from such results is, of
course, still potentially affected by wrong generalizations.

The closed nature of quantitative research method, however, presents certain shortcomings.

Among these is the inability to get broad insights on the participants due to the specific nature
of the requested answers. This limits chances of identifying other areas of research as well as
getting a deeper understanding of the issue being studied [85].

Surveys

Surveys are a quantitative research method that is used to generate data from a group of
respondents who are considered to be representative of a given population. Several data col-
lection methods exist, such as paper questionnaires, Internet surveys, or telephonic interviews.
Surveys are used in many disciplines, but are arguably less appropriate for assessing software
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visualization tools. Reasons hereof include the difficulty of identifying upfront a significant

group of developers using comparable SoftVis tools in the same area.

Experiments

Experiments are a quantitative research method that is used to explain causal relationships
between variables by applying different measures and determining the effect of the change [89].

In software visualization, experiments start by identifying a number of variables of interest, such
as various parameters of the visualization methods used e.g., number of colors, icon sizes, type
of layouts, and so on. Next, these variables are changed, and a given task is performed using
the resulting visualization. Relevant output variables are measured, such as time or accuracy

of completion. Following this, a quantitative relation is inferred that tries to link the input and
output variables, e.g. using statistical correlation.

3.2 Data Collection Methods

When any of the research methods mentioned above is being used, there are usually several
instruments involved in the collection of the data. These include questionnaires, interviews as

well as observations.

3.2.1 Questionnaires

This method consists of a group of questions which are prepared for the participant to answer.
The questions are usually tailored to a particular audience with the inquiry being made for a
specific subject.

Questionnaires are cheap to use yet they can also cover a wide geographical area. They provide
convenience on the part of the participant as they do not require the researcher to be present
when they are being filled. When designed properly, the identity of the participant can be
protected which in turn may lead to more genuine responses.

The design of the questionnaire is however vital to the success of the study [163, 162]. Par-
ticipants may be discouraged by requests for personal details as well as too many closed or
open questions. Also, the design of quantitative or qualitative scales has to be carefully done

to remove potential bias, and to sample uniformly the answer value range in relationship to the
statistical distribution of the answers. Typical quantitative scales used in questionnaires include
the 5-point and 7-point Likert scales on which subjects state their level of (dis)agreement with
a given statement [87]. Qualitative answers can be gathered by means of free-form answers. In

comparison with other data collection methods, such as interviews, questionnaires have however
the weakness of a relatively low response rate, as participants may not feel obliged to respond.
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3.2.2 Interviews

Using this method, a set of pre-defined questions are presented the participants to answer one at
a time. This can be done via face-to-face discussions, or interviews where the researcher meets
with the participant, or via the telephone, where the participant is called and an interview date

and time agreed upon. Interviews have a high response rate and also enable the researcher to get
a deeper understanding of the issues. Effective combinations of interviews and questionnaires
are possible to gather both qualitative and quantitative data.

Interviews can however be expensive to use both in terms of money as well as time. Geo-
graphically, this method may not be able to cover a very wide area. Also, the attitude of the
interviewer during the interaction with the subject has the potential of biasing the answers.

3.2.3 Observations

Using this technique, the behavior of participants during an experiment are observed as a basis
for feeding the research. The observations can either be disguised or undisguised. This method

is able to capture behavior that may not otherwise be possible using other methods. One
important challenge is that participants may change their behavior after knowing that they are
being observed. Observations are often complemented by video recording of the activities of
the users, followed by a post-mortem analysis of the video. This technique is frequently used

in studies interested in user interfaces, e.g., Kagdi et al. [58].

A variant of this technique asks the users to think aloud expressing the questions they have,
what they see, and the actions they take. This is a very valuable and cost-effective way for

eliciting otherwise unseen cause-effect relationships [152].

3.3 Selected Methodology and Justification

In order to achieve the objectives of this work, the triangulation research method was used.
Triangulation refers to the combination of various research methodologies, e.g. quantitative
and qualitative studies, with the aim of addressing a given research problem [55].

When triangulation is used, a more solid argument with broad sources of evidence is presented
making it easier to tackle a given research problem [157, 89].

The first step of our work encompassed the exploration of the study area, in order to form

a hypothesis. A hypothesis is a conditional statement that proposes an explanation to some
phenomenon or event [2]. In our case, the hypothesis involves the set of features that industrial
users perceive as desirable in a SoftVis tool. This part is mainly described in Chapter 4. For
this stage, case studies were the main method used. Due to their explorative nature, they were

helpful in creating a basis from which a hypothesis could be formed. In our case, this regards
the initial gathering of desirable features of SoftVis tools.
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After the hypothesis was generated, there was need to test and refine it. This was done in

Chapters 5 to 7 using a combination of qualitative and quantitative methods. This included case
studies as well as experiments which were combined for better analysis. Testing the hypothesis
involved examining additional SoftVis tools with additional subjects in order to see whether the
initial set of desirable features is indeed broadly applicable. Refining the hypothesis involved

refining several of the initial desirable features, as well as zooming in on the more specific area
of SoftVis tools for corrective maintenance.

Among the data collection methods used in this work were questionnaires which aided in

the selection and filtering of the participants for the studies. This instrument was also used
after each study to get the participants views of the studies carried out. Questionnaires were
supplemented by interviews depending on the particular task being covered.
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Chapter 4

Software Visualization Needs For
General Software Comprehension

This thesis focuses on evaluating SoftVis tools in maintenance activities. Software comprehen-
sion is however needed before, as well as during the execution of software maintenance. As such,

this chapter analyzes the user needs for SoftVis tools that support the general task of software
comprehension. This is done by observing five expert programmers using three visualization
tools. Their output is discussed in the attempt of formulating a first-level hypothesis on which
are general desirable features for SoftVis tools, with a focus on industrial users.

4.1 Motivation

Traditionally, before developing a software product, specifications and requirements are sought
from the future users of the application. Many times though, software developers do not
involve the final users as much as they should during the product development process [145].
This situation occurs also in the development of software visualization tools. This aspect of

visualization tool design has the risk of underutilizing existing perceptual and cognitive theories
on usability, with the ensuing risk of having tools that are not optimally suited to the users for
whom they are intended [116, 124, 145]. As such, the effectiveness of many of the tools and
techniques developed for visualizing software is yet to be proven [83].

In this chapter, we do a first step towards eliciting general desirable features of SoftVis tools by
exposing several professional developers to several SoftVis tools and gathering their feedback
on the types of features that they see in these tools which they identify as desirable. This work

serves as an exploratory study in getting a first impression on which are the types of desirable
features that users focus on when being exposed to a new SoftVis tool. In Chapter 5, we refine
this insight within a larger study involving more SoftVis tools. Both the work here and in
Chapter 5 focus on the so-called early adoption phase, i.e. the phase in which users attempt to

quickly decide whether a given SoftVis tool has the potential to be useful, and thus should be
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further studied, or not. In Chapter 6, we refine the extraction of desirable features by focusing

on a more specific domain (and tools supporting it): Corrective maintenance.

4.2 Tools

To start with our discovery of desirable features of visualization tools from their users, we first
need to select both the tools and the users. This section outlines the procedure used for tool
selection. The user selection is discussed further in Section 4.3.

4.2.1 Tools Selection

There are hundreds of SoftVis tools in existence which could be used to elicit a set of desirable

features from their users’ perspective. Clearly, performing such an analysis is prohibitive both
in terms of effort, tool availability, and complexity. As such, we chose the following set of
criteria to perform a pre-selection of the tools to study

i The tools had to be able to visualize object oriented software;

ii The tools had to be freely accessible/available;

iii The techniques used to represent software by the different tools had to vary;

iv The tool had to be well-known and used within the software visualization community.

These criteria were considered because of varying reasons, as follows.

In recent years, there has been a substantial move from procedural to Object Oriented (OO)

programming in many sectors of the software development industry [25]. It can therefore be
hypothesized that SoftVis tools that are able to visualize OO software would be more useful to
software developers. Hence, the introduction of the first pre-selection criterion.

Free availability of a tool (either as open source or academic or trial license) can aid in the

replication of the study or for users that may be doing research but lack the budget for buying
the tools. Even in contexts where the financial constraints would not be a problem, obtaining
the needed approvals for actually purchasing the tool can be a lengthy process. Moreover, as

we have seen it ourselves in a number of industrial contexts, it is sometimes hard for some
corporate users to present a negative evaluation of a tool once the buy decision has been taken
(the implication is that a tool is bought because it is a good one). Choosing tools that are
freely available was therefore considered important as these tools would be able to cover a

wider audience in a shorter time and with less bias. Finally, a freely available tool has a higher
chance to get a quick evaluation, potentially followed by adoption, than a tool whose evaluation
involves a buy decision.

The third criterion was motivated by the need for the users to get a broad view of the techniques
being used in the visualization field. Selecting a set of tools that cover different visualization
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Tools Availability Visualize
Object Oriented Software

ALMOST Free Yes
AVIS Free Yes
CC-RIDER Commercial Yes
Code Crawler Free Yes
Creole Free Yes
Imagix 4D Commercial Yes
Source Navigator Free Yes
Understand for C++ Commercial Yes
Understand for FORTRAN Commercial No
Visualize It Commercial Yes

Table 4.1: Tools comparison

techniques was chosen so that we obtain an overall insight in a broad spectrum of such tech-
niques, rather than deeper insight in the desirability of one single technique. This is in line with
our overall goal of eliciting a set of general desirable features for software visualization tools.
In Chapter 6, we refine this analysis by zooming in on more specific tools aimed at supporting

a subset of program comprehension activities involved in corrective maintenance.

The fourth criterion was used for two purposes. First, a well-known SoftVis tool has higher
chances of being a relevant (and useful) one, as it has already been tested, improved and used
by many people. Secondly, well-known tools have a higher chance of being further considered

by new users. Hence, additional information that we can find to support (or reject) the usage
of such tools can be of higher value to the user community at large than if we considered a
less-known tool.

Further on in Chapter 6, we shall zoom in on a subset of SoftVis tools (and their desirable
features), namely tools that support corrective maintenance. At this level, however, we are
interested how industrial users appreciate SoftVis tools in general, hence the broad and task-
unspecific tool selection criteria presented above.

4.2.2 Chosen Tools

Ten tools were initially shortlisted and evaluated based on the criteria presented in Section 4.2,

as shown by Table 4.1. After a further examination of the tools from the viewpoints captured
in the preselection criteria, only three tools were retained. These were Code Crawler [125, 73],
Creole [21, 88], and Source Navigator [126]. A brief description of each of these tools is given

below.

CodeCrawler: This is a SoftVis tool that combines traditional 2D graph layouts such as trees,
treemaps, and nested force-directed layouts with simple metrics that reflect static software
properties [26]. It was developed based on the principle of simplicity, scalability and language
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independence. Examples of the metrics supported by CodeCrawler are the number of instance

variables, number of methods, lines of code in a method and the number of children in a class.
These metrics are extracted from source code projects using third-party static analyzers and
stored in a language-independent database format. The metrics are displayed simultaneoulsy
with nodes and arcs in software diagrams. The node colors, positions and sizes can encode

each a different metric value, as outlined in Figure 4.1. This enables users to compare a few
different metrics among themselves and also correlate their values with the system structure.

Figure 4.1: Metrics-and-structure visualization in CodeCrawler. Adapted from [26]

CodeCrawler is incorporated within Moose, which is an extensible language-independent envi-
ronment for re-engineering object oriented systems [125, 32]. Figure 4.2 shows a sample system
hierarchy diagram displayed by CodeCrawler.

Figure 4.2: Code Crawler’s hierarchy diagram on which complexity can be mapped as a metric

Creole: Creole is an Eclipse plug-in that integrates the SHriMP visualization metaphor [128]
with the Java Development Tools (JDT) platform in the Eclipse environment [33]. The main

purpose of Creole is to provide both high-level program views as well as visualization of different
dependencies within the source code using multi-views. Various navigation and visualization
techniques are used, e.g. the fish-eye technique, pan and zoom, as well as nested graphs. Creole

makes comprehensive use of color and supports system browsing from the package level down
to the source code. Examples of inheritance hierarchies classes visualized by Creole are shown
in Figure 4.4 and Figure 4.5. The SHriMP views used in Creole were generated based on the
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cognitive framework that considers how maintainers understand software [128]. Part of the

framework is shown in Figure 4.3.

Figure 4.3: Classification of cognitive design elements (adapted from [131])

In order to use Creole, an import of a Java project needs to be made using the Eclipse IDE’s

menus. Once the project is in the IDE space, a drag and drop of elements from the project
that are to be examined can be made to the Creole view.

Source Navigator: This is a source code analysis tool which enables code editing, display
of classes and their relationships, as well as call trees. It uses a small set of quite simple

visualization techniques, such as syntax coloring and tree views [126]. Overall, the visualization
gives a strong ’text-oriented’ display impression. Source Navigator loads information extracted
from source code into a project database. This database stores facts about file names, program
symbol elements e.g. functions and variables, and symbol relationships. Source Navigator then

provides different browsers (graphical views) into the project database. An example hereof
that displays function references is shown in Figure 4.6. The tool supports C, C++, Fortran,
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Figure 4.4: Creole visualization of in-
heritance trees

Figure 4.5: Zoom-in view of the Creole inheritance visu-
alization

COBOL and Java and uses the grep tool to enable different searches within the source code at

a lexical level.

Figure 4.6: Source Navigator visualization of function references

4.3 Participants

In order to test the abilities of the selected tools, as well as gather feedback with respect to

which visualization features are perceived as desirable, users needed to be selected to perform
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this test. The details of the participants as well as the selection process are explained below.

4.3.1 Selection Process

The study was aimed at getting participants who are expert programmers and are also employed

in the software development and maintenance industry. As already mentioned, our aim is
to understand how typical professional developers in the software industry reflect upon the
usefulness of SoftVis tools. As such, all selected users were professional programmers with wide
programming skills. The idea behind having experienced users was that they would generally

find it easier to learn a new tool and their criticism would be based on an informed background
rather than on their limitations. Furthermore, the collective opinions and advice on the various
tools gathered from such users would provide relevant guidelines to future tool developers if

their target audience is similar to such users.

In order to ensure that this type of user was selected, pre-study questionnaires were given to
all the participants that were interested to engage in the study. The questionnaires sought
knowledge about the participants gender, the number of years that they had used the com-

puter (i.e general computer knowledge) as well as the number of years that they had spent
programming. Other details asked were the object oriented languages that the participants
had working knowledge of as well as the frequency that they used each of these languages. The
participants were also asked if they had used a software visualization tool before.

4.3.2 Selected participants

The five expert programmers who best scored on the above-mentioned selection guidelines were
further selected to participate in the study. They were all male, working in the software industry
in Kampala, Uganda, and had over ten years experience both in programming and computer
usage. They were experienced with the object oriented paradigm with knowledge of at least

two object oriented languages. These aspects are summarized in Table 4.2.

4.4 Source Code

The third step after selecting the tools and participants is to select a code base to be examined
(visualized). The selection of the source code used in this study was based on the following
properties:

• Scale: We are interested in visualizing large-scale code bases having hundreds of compo-
nents and thousands of methods. This criterion aims to replicate actual use-cases in the
industry. As such, it aims to elicit desirable features of SoftVis tools which make them
effectively and efficiently usable in understanding large code bases.
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User Computer Languages Programming
usage known experience

1 Java
> 10 years C++ > 10 years

SmallTalk
2 Java

> 10 years C++ > 10 years
Python
Java

3 > 10 years C++ > 10 years
Ruby
Java

4 > 10 years C++ > 10 years
Ruby
Java

5 > 10 years C++ > 10 years

Table 4.2: Selected study participants

• Language: As our targeted visualization tools support object-oriented code, we selected
object-oriented code bases for the study. Furthermore, we restricted the selected code

bases to programming languages which were mastered well by the targeted participants
(see Table 4.2).

• Availability: Just as for the tools, we selected freely available (open source) code. This
favors potential interested researchers in replicating our study. Further on, none of the

participants had prior knowledge on these code bases.

• Ease of importing: A fourth and final criterion for the code selection was that the code
would be straightforward to load and examine in the targeted visualization tools. This

was done so that the participants’ efforts would be focused on the actual visualization
actions and not the data management actions.

4.4.1 Selected Source Code

Three different source code bases were selected based on the criteria mentioned above. These
were Lucene, Apache BeeHive and Apache Tomcat. All code bases are written in Java, which
is one of the languages in which our subjects were proficient, and also is well supported by the

studied SoftVis tools.

Lucene: Lucene is an information retrieval Application Programming Interface (API), origi-
nally implemented in Java by Doug Cutting [8]. It is free, open source and released under the

Apache Software License [39] . The Lucene source code is arranged in 35 main packages and
has 772 classes.
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Software visualization tool Source code used
Code Crawler Lucene
Creole Apache BeeHive
Source Navigator Apache Tomcat

Table 4.3: Tools and source code

Other details of this code base, as measured by the MOOSE engine [32], are as follows: 4710
methods in the entire project, 6.1 average number of methods per class, and 1.43 average class
hierarchy depth level. Lucene has been ported to other languages like C++ and C#. However,
the implementation used for this study was the native Java one.

Apache BeeHive: Apache BeeHive is a Java Application Framework designed to make the
development of Java Enterprise Edition (EE) based applications quicker and easier [6]. BeeHive

is contained in 17 general packages with an average of 7 sub-packages within each main package.

Apache Tomcat: Apache Tomcat is a web servlet container that implements the servlet

and the Java Server Pages (JSP) specifications from Sun Microsystems [7]. It provides an
environment for Java code to run in cooperation with a web server.

4.4.2 Tools and Code Allocation

Each tool was evaluated using separate source code bases, as follows. Code Crawler was evalu-
ated using the Lucene source code, Creole was tested using Apache BeeHive code, and Source
Navigator was tried using Apache Tomcat code (see Table 4.3). The code-tool allocation was

not done based on any specific considerations. We could have tried several other combinations,
in particular using more than one SoftVis tool to examine the same code base. We limited
the possible combinations in order to restrict the experiment duration to a level which was
acceptable for our industrial developer subjects.

All participants used all the three SoftVis tools to study the respective code base associated
with each tool. A different subject system was assigned for each tool in order to ensure that
there was no familiarity with the code for each session. Using the same code could bias the

participants as knowledge from the previous session could be carried forward.

4.5 Experiment

The five participants were all exposed to the three tools, one tool at a time. Each participant
was given a five minutes introduction to a tool. After this, they had five extra minutes for
familiarizing with the tools themselves or seek any extra information. Tool usage instructions

and sample tasks were also given to the candidates during the familiarization phase before the
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actual experiment (study of the large code bases) was started. These familiarization tasks were

similar to the ones in the experiment but the code used was different and much smaller. This
stage helped in clearing any questions that the users had about the tools and also ensuring that
working knowledge of the tools had been established before the actual experiment.

After the familiarization stage, all users noted that they understand the way the tools operated.

At this point, two tasks for each tool were given to the participants, one task at a time. The
tasks given out were as follows:

i Describe the static core structure of the system, i.e. the main classes and their relation-

ships;

ii What would be the effect of deleting a particular class or method from the source code?

These tasks were replicated for all the three tools. However, the second task was modified

according to the source code being analyzed, i.e. the specific class or method to be deleted was
chosen differently for each code base. Specifically, the second task was outlined as follows:

i What would be the effect of deleting the “hook class”? (CodeCrawler)

ii What would be the effect of deleting “org.apache.beehive.netui.tags”? (Creole)

iii Name the effect of deleting the “DbStoreTest” class (Source Navigator)

Overall, the combination of the two tasks given to each user was aimed at testing the tools’

capacity to provide answers concerning both the larger-scale structure (task 1) and small-scale
details (task 2) of the source code. The second task was able to test further the abilities to
examine relationships and cross-references between given parts of the source code. Both types
of activities are very common in a wide range of software maintenance tasks [100]. The answers

to these tasks and further user comments were recorded on a pre-formatted, provided answer
sheet that covered all the three tools.

After working with a particular tool, there was a two-minute break before proceeding to the

next tool. This duration was kept short so as to ensure that the participants attention was not
diverted from the experiments. Table 4.4 shows a summary of the tasks and the time that was
planned for each.

After the actual task execution, the post study questionnaire was given to the participants to

be filled in. This questionnaire was aimed at establishing the shortcomings of the tools that
were used during the experiment as well as their positive points. Questions also sought to find
out what extra features the users needed but felt were lacking in the tools. A combination of

the answers given in this questionnaire as well as observations during the experiment led to the
results of the study.

4.5.1 Analysis of Results

The main aim of the experiment was to expose several expert programmers to SoftVis tools
so as to get their opinions on their desires and dislikes from the tools during typical software
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Task Number of times Time per Total time
the task was executed task (minutes) (minutes)

Pre-Study 1 5 5
questionnaire
Introduction 3 5 15
to tool
Familiarize with 3 5 15
tool
Two assignments 3 7 42
Post-study 3 5 15
questionnaire

92 minutes

Table 4.4: Planned tasks and their execution time

understanding activities performed in maintenance. The tasks chosen in this experiment aimed
to replicate such typical activities, albeit on an unknown code base. Tool knowledge was

acquired in a short pre-study phase in which sample tasks were accomplished on a small code
base.

We did not measure, however, the task completion rate. The reason for this is related to the

purpose of our evaluation. The aim here was to extract general desirable features that the users
would require, as based on typical work with a SoftVis tool for a typical software maintenance
task. Since we were interested in general features, we did not need to measure actual completion
rates. Such rates would be needed when e.g. comparing the actual effectiveness of several tools

against each other, or when being interested in finding out which specific tool features are
effective in assisting a specific maintenance task (see Chapter 2). This type of detailed analysis
is described separately in Chapter 7.

4.6 Results

During the course of the experiment, the participants made numerous comments about the

tools in a ‘think-aloud’ fashion and also asked for extra functionality which was not always
supported by the tools. The results from the questionnaires as well as the observations are
combined to provide the experiment’s results shown in Table 4.5.

Overall, the results of the study showed that the programmers had numerous desires with
respect to features to be provided by the visualization tools, but such features were missing.
In this respect, the main missing desirable features mentioned are outlined below.
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4.6.1 IDE Integration

There was a strong desire to have the visualization tools integrated with an IDE for the target
programming language. The reasoning was that when one visualizes data, it is usually for a
purpose. If the desire is to add more code to existing software, or to modify existing code for a

purpose (e.g. debugging) then it would be too much effort to switch between the visualization
tool and the environment that is being used to program. Hence, the impression of the subjects
was that even if a SoftVis tool is able to generate amazing visualizations, the effort and time
spent switching between the two environments may have an effect on the knowledge preservation

for programming and thus on the overall effectiveness. Creole and Source Navigator, which were
both IDE integrated, were noted to be easier to use. On the other hand, users had challenges
with Code Crawler due to its lack of IDE Integration.

4.6.2 Fast responses

The low speed of constructing the visualization was also highly complained about. Having

programmed for a while, code was not as difficult for the experts to comprehend as it is for the
novices. This means that the switch to using additional tools, like the SoftVis tools we studied
here, should not decrease the overall working speed that these programmers are accustomed
to. More than two users stopped the generation of call graphs because they felt it was taking

too long and a third user said that they would have achieved better results even with a plain
IDE as opposed to waiting for a visualization solution that takes too long.

The fast response requirement is especially important for corrective maintenance activities,

where a fast analyze-code-test cycle is usually present. This requirement may be of a lesser
importance for perfective maintenance and more specifically for higher-level tasks such as ar-
chitectural recovery, modularity assessment, or quality assessment, which have a less dynamic
pace and involve slower iterations from the supporting tools (whether visualization or code

analyzers) to the actual code modification and back. Also, we argue that there may exist a
correlation between the expected visualization speed and the speed of the native IDE in which
one works. For example, Java programmers are used to extremely fast compilation cycles, due
to the nature of the language and compiler. In contrast, we believe that C++ programmers

may be more tolerant towards slower tools, as typical C++ compilers (e.g. gcc and Visual
C++) take significantly longer to compile large code bases than similar code bases written in
Java. However, we have not found literature studies that further shed light on this hypothesis.

Overall, the users’ feeling was that the added value of an otherwise correct and complete
visualization is highly reduced by having to wait too long for this visualization to be generated.
At the opposite end of the spectrum, and in line with the above observation, a fast, responsive,
integrated tool like Source Navigator was highly appreciated.
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Best features observed in tools Complaints on tools
Creole Code Crawler Source Creole Code Crawler Source

Navigator Navigator
User 1 - Eclipse integration - Ease to see - Good speed - Slow - Difficulty in use -Better layout

classes response time needed
- Zoom - Ease of use - Absence of IDE

User 2 - Good layout - Scalable - Ability to see - Slow - Difficulty in use - Better layout
display source code response time - Inability to see needed

- Ease of use source code
- IDE integration - Good speed

- IDE integration
User 3 - Search function - Scalable - Good speed - Slow - Difficulty in

display - Ease of use response time exporting code - None
- IDE integration - Absence of IDE

- Better search
User 4 - Zoom - Scalable - Good speed - Better search - None

display - Ease of use - Speed - Inability to see
- Search function source code

User 5 - Metaphors used - User-definable - IDE Integration - Reduce - Difficulty in use - Better initial
customizations - Access to code crowding display

- Zoom - Ease of use
- Search function

Table 4.5: Tool evaluation results

4.6.3 Minimal effort

The users stated their high preference for having visualizations that can be generated with a

minimal amount of effort, e.g., parameter settings, data conversions, and other manipulations.
Having to export and import code in another format was found to be cumbersome for the
participants. As much as possible direct code manipulation was preferred. In cases where that

was not possible, close proximity to code was encouraged, i.e. have a visualization which can
be easily and quickly cross-correlated with the source code by means of clickable linked views.

4.6.4 Good search abilities

The ability to search the visualization was another desired component that the users felt could
have been addressed better. A good visualization (from the perspective of layout, clutter, and
scalability) that can not be queried was not found to be useful. Searching was desired both at

the displayed diagram level and at the source code level. Linked views were again mentioned
as important in the search context, i.e. being able to search in one view and have other views
focus and highlight the search hits. Creole is one of the tools that covered this element to a
greater extent.

4.6.5 Clear display

Simple, clear, easy to read displays were prefered by the participants. If, for example, a class

was shown, the participants desired its name (fully qualified or not) to be shown as well in close
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proximity to the class. The named class hierarchy of Code Crawler was especially mentioned

as having been very clear.

4.7 Study Limitations

There are limitations to the approach used in this study that may hinder the level of generality
of the results. The experiments carried out were in a controlled environment, a method that
has been criticized in the past [119, 105]. We specifically examined only the area of static

visualization, or more exactly put, visualizations that address questions related to the static
code structure. However, keeping in mind our general aim of understanding the desirable
features of SoftVis tools for corrective maintenance, visualizations that cover a combination of
static and dynamic data should have been looked at. However, this was hard to address, as we

also wanted to have tools which are simple to use and, if possible, well integrated within an
IDE.

Another limitation was the relative small size of the user group and set of tested tools. Although

both sizes are in line with the typical user group and toolset sizes considered by many user
studies on SoftVis tools in the literature [14, 19, 100, 132], this is nevertheless a point of concern
for our study in particular and for SoftVis and empirical software studies in general [12]. In
particular, we note that some of the larger user studies involving SoftVis tools involve mainly

academic participants [18, 71]. As already explained, our intention was to evaluate tools with
their direct target audience, software development professionals. Organizing larger scale studies
with such professionals is a much harder endeavor given their limited time and availability.

4.8 Conclusions

From this first study, the following general desirable features of SoftVis tools emerged: IDE

integration, fast visualization generation, search facilities, and the possibility to set up and use
the tool with minimal effort.

It can be deduced that better visualization tools and techniques can be achieved if more views
of desired features within SoftVis tools are sought before hand, that is, before the tools are

actually developed. This method would be most effective if the target group of the tool being
developed is the one that is used in the evaluations. In order to develop tools that can be
accepted in the software development and maintenance industry therefore, effort should be put

on finding out the needs of the industry users first and then later developing tools to meet those
needs.

Two main conclusions can be drawn as to the desirable features elicited in this chapter. First,
these are general desirable features, meaning that a more specific study, e.g., focusing on a

subclass of software maintenance tasks, a subcategory of tools, or a more specific user group,
would need to take into account how these general features are to be refined for that specific
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context. Secondly, by being general, the insight derived from the presence of these desirable

features is also not sufficient for further tool selection (by users) or tool improvement (by tool
designers). Although being a starting point for pre-selection that is able to filter out some
tools, more fine-grained requirements of the users are not captured.

In the following chapters, we aim to address the above points. Chapter 5 refines these gen-

eral desirable features in a more detailed classification, still aimed at understanding the early
adoption process of a tool. Chapter 6 continues this refinement further, by focusing specifically
on SoftVis tools for corrective maintenance and at the phase following early adoption. As

such, chapters 5 and 6 can be seen as a top-down refinement of the general insight in desir-
able features presented here in Chapter 4. Finally, Chapter 7 presents an experiment in which
the refined requirements are validated by actually testing whether tools that satisfy them are
indeed appreciated by users.
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Chapter 5

Unified Requirements Classification

In the previous chapter, a variety of preliminary top-level desirable features of SoftVis tools
were identified after exposing the users to various such tools and a set of sample program
understanding tasks. In this chapter, these results are combined with previous work in the
same area in order to generate a Unified Requirements Classification (URC). Ten tools that

use different techniques are then compared against the URC in order to see the level to which
they meet those requirements. The selection process for the tools as well as the methodology
used to generate the URC are further detailed. Comparisons and observations are made from
the study data, and insight is derived which can be used to improve tool development. The

aim of the URC introduced here is to capture the types of desirable features that users test for
during the first steps of evaluating a new tool, or the so-called early adoption phase.

The rest of the chapter is organized as follows. Section 5.2 introduces the Unified Requirements

Classification (URC). Section 5.3 gives an introduction to the tools selected for comparison.
In Section 5.5, the selected tools are compared against the categorization and the observations
from the comparison are drawn. Lastly, Section 5.6 concludes and provides areas for future
research.

5.1 Proposal

As already discussed in Chapter 2, several dimensions exist along which one can evaluate the
effectiveness of SoftVis tools. These dimensions have emerged during research in the SoftVis
area from various perspectives: evaluating a given SoftVis tools against other tools; aiming to
classify requirements of SoftVis tools for a given set of tasks; or the more general attempt of

producing a set of universal (or unified) requirements that a large class of SoftVis tools would
need to comply with to be usable.

As already mentioned in Chapter 1, tool adoption is a multiple-phase process. We distinguish

an early adoption phase, in which users want to quickly test a tool’s suitability, and thus do
not have time to zoom in on fine-grained details; and a second phase, in which tools that pass
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the first phase are further examined with specific tasks in mind. In the first phase, desirable

features are still tested at a general level. In the second phase, desirable features are linked to
a specific set of actions to be supported.

However, such a unified classification of SoftVis tool requirements1 for early adoption is still
missing. By unified, we mean here a classification of requirements that

• captures a large part of the features seen as desirable by typical users of such tools in an
industrial usage context;

• is instrumental in assessing the effectiveness of a new SoftVis tool that has not yet been

used in a given context.

By early adoption, we mean the phase in which general desirable features are quickly tested for
a rapid rejection or further adoption examination. As a simple example hereof, consider the

elements one examines when finding a new tool on the internet: If the tool is well documented,
available for download and quick install, and easy to start and try out, it has a higher chance
to be examined in further detail.

The proposed classification should also be extendable with new desirable features, and features
existing in the classification should be refinable into sub-features once more insight is available.

The aim of this chapter is to propose a classification of desirable features of SoftVis tools along
the guidelines mentioned above. The qualification of ‘unified’ to our classification should be

seen along these guidelines too, i.e., applicable to a large class of SoftVis tools, tasks, and users,
and extendable and refinable. However, we do not claim the classification to be unified in the
sense of complete. We are definitely aware of its limitation and needs of refinement with more

tools, users, and tasks. Yet, such refinement should be doable within the framework proposed
here.

5.2 Generating the Unified Requirements Categoriza-

tion

In order to generate the URC, insight from tool users is considered to be essential. The context

of the URC is identical to the one outlined in Chapter 4: The users taken into account are
not novices but experienced developers that have considerable knowledge in programming and
computer usage, and work in an industrial context. As such, the level to which our results are
applicable to novice users and/or academic users has therefore not been further elaborated in

this thesis. This point is in correlation with the differences between early adoption constraints
of industrial and academic users: An industrial user is arguably under higher time pressure than
an academic user, thus (s)he is interested to quickly decide whether a new tool has potential
or not.

1Here and in the following, we use the terms ‘requirements’ and ‘desirable features’ interchangeably. A
strongly desirable feature can be seen as a user requirement.
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There are many types of requirements identified by other researchers that provide useful insight

into the subject of what are the desirable features of software visualization tools. These may
include specifications that make the development process for the tools easier, for example, de-
velopment of tools in such a way that their code is re-usable [142, 64]. While these requirements
are usually needed by the tool developers, they are not always needed by the tool users. Here,

we make an explicit distinction between the two roles, and argue that there is a large segment
of industrial developers who do not have the time (or freedom) to take up the tool developer
role. As such, only user requirements have been considered for our URC. The categories of
the URC presented below thus narrows down to those requirements that are presented by the

tool users that directly impact of the way that they use the tool, and more specifically on the
requirements that can be evaluated during a quick, early adoption phase.

The URC are structured along the following main axes, or dimensions, each of them indicating

a separate class of user requirements for software visualization tools:

- Search enabled

- Meta-data display

- Simplicity/lightweight

- Added advantage

- Integrated

- Realistic specifications

A detailed explanation of each of the sections of the URC is given below:

5.2.1 Search Enabled

This requirement refers to the ability of a tool to support query and analysis facilities both
within the source code as well as the visualization displayed.

This requirement was among those generated in our initial experiment presented in Chapter 4
which involved five users from industry using three SoftVis tools to perform typical comprehen-
sion tasks on three large code bases. Among the other studies that advocated for the same are

Bassil and Keller’s survey which had over 100 participants, in which 74% of the respondents
considered search facilities for both textual and graphical displays to be important [13].

Independently, Sim carried out two user studies and concluded that a search facility was neces-

sary in the SoftVis tool they studied (the Portable Book Shelf) so as to ease the user’s movement
through the code [120]. Petre et al. also made an analysis of what experts demand from visu-
alization tools in which search and navigation tools featured highly [103]. In addition, in their
comprehensive review on software visualization tools, Lemieux and Salais included search and

query facilities among the essential requirements of SoftVis tools [76].
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5.2.2 Meta-data Display

Meta-data display describes the ability of a SoftVis tool to show textual data inside the visu-
alization, like code fragments, documentation snippets, URLs, or other meta data related to
the graphical entities being visualized. In our initial study shown in Chapter 4, the partici-

pants were displeased with tools that did not allow the viewing of the source code in a linked
way with the visualizations. The inability to view code prevents access to the code comments
which would greatly increase program understanding. O’Shea’s observations from open source
Java mailing lists also indicated that meta-data was considered important by expert program-

mers [99]. A tool that supports this feature would therefore be more appealing to a this group
of users. Moreover, being able to quickly correlate visualizations with code is important during
an early adoption phase, when users are not yet familiar with the visual semantics of the new

tool.

5.2.3 Simplicity/Lightweight

When a tool is simple or lightweight, it can be easily installed and used. Users from our study
complained about tools whose usage procedure was complicated with preference being for tools
that are easy to install and use [117]. Clearly, a tool that is simple to install and start has
higher chances for early adoption than a tool that requires a long time investment to create the

first images.

The ease of using and installing a tool is relative, yet there are established procedures within
the computing industry that installations and user interfaces usually follow i.e., Graphical

User Interface based installers or portable makefiles. When a tool deviates too much from
these procedures, it is considered difficult to use.

Other researchers who advocated for simplicity include Reiss who emphasized that software
developers can only use a SoftVis tool if it does not require too much work before output is got

from it [112]. Schafer further noted that a tool can only be accepted if its ease of use as well
usefulness are obvious [116]. Müller et al. additionally noted that tools that require too much
time to learn and use would be difficult to be adopted in industry thus the need for simplicity

[92]. Lanza first introduced CodeCrawler as a ‘lightweight software visualization tool’, arguing
for the importance of simplicity of use [72]. Simplicity and ease of use are especially important
in a cost-aware environment such as the software industry where users can be reluctant to invest
significant amounts of time in installing, configuring, and fine-tuning visualization tools.

5.2.4 Added Advantage

This requirement addresses the need for tool designers to observe the existing tools before

investing efforts in new tools. Evaluating existing tools and techniques helps in showing the
added advantage of a new idea before too much money and time is invested in a new design.
This is one of the reasons that we opted for a review and experimental analysis of existing tools
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as opposed to inferring desirable features from designing yet another software visualization tool

and studying its usage pattern in a given context. Moreover, if the added advantage of a tool
is quickly evident, then its chances for early adoption increase.

In this context, Reiss also noted the failure by many researchers to show the superiority of their
novel techniques over the existing simpler representations [112]. Muller et al. and Coulmann

recommended the need for tool developers to explicitly show the added benefits of their tools.
Among the methods proposed in the aid of this activity include expert reviews, user studies,
field observations, case studies, and surveys. When a tools benefit is easily seen, software

developers are more willing to take it up [92, 24]. It is therefore important that new tools
show their improvements in comparison with a workflow in which no such visualization tools
are present, like using a traditional IDE or command-line development tool only.

5.2.5 Integrated

This requirement refers to the tools ability to be coupled together with the development envi-
ronment as well as with other tools that support the task being worked on. Users from our tool

exposure experiment presented in Chapter 4 showed preference for tools that were integrated
with an IDE as the stand alone tools have a switching effect on the understanding of code.
Integrated tools also have a higher chance for early adoption, especially for users who routinely
work with IDEs and do not want to change this way of working for a quick evaluation.

Many other studies have also identified integration as being important. While selecting a tool
to be used in an industrial setting, Tilley et al. noted that companies prefered tools that their
developers were more familiar with. A tool that is integrated with the available development

environment would therefore be best as it would provide a smaller learning challenge to the
programmers [141]. After a review of over 140 papers and nearly as many tools, Lemieux
and Salois identified essential requirements of SoftVis techniques in which integration featured
highly [41]. Müller et al. observed that SoftVis tools can increase their adoption within the

industry only if they integrate with the development environments as well as the platforms that
the developers use [92]. Similar observations are made by Koschke [69], Storey [130], and in a
larger software development context, by Wuyts and Ducasse [161].

5.2.6 Realistic specifications

This requirement refers to having a SoftVis tool that can be practically used in real-life sce-

narios. The intention is to quantify whether a tool is able to address problems of real interest
to the users in a given environment, including platform, type of software under scrutiny, type
of activity to support, programming language, and interchange data formats. As such, a real-
istic tool is a tool that can operate under a given real-life environment as outlined above. In

particular, a realistic SoftVis tool should be able to run on the typical computer configuration
used by mainstream software developers in the industry, e.g. a PC having a mainstream op-
erating system and an average graphics card and memory. Having the tool readily run on a
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wide range of platforms increases the chances of early adoption, as the tool can be tested right

away, without further modifications to the host environment.

The word ‘realism’ is sometimes used with a different connotation with respect to SoftVis tools,
i.e. from the perspective of generating images which look natural. In our work, we associate
realism with the targeted working environment of the tool and not the type of generated

imagery.

Gilmore mentioned the need to design tools that support activities that people really engage
in, i.e., realistic tools, as this would increase the tool’s chances of being adopted [43]. When

discussing the potential reasons for the failure of software visualizations, Reiss also advised
developers of new systems to ask themselves whether the new systems they are developing
addresses real, relevant and important problems for the programmer [112]. Tilley et al. in
addition noted cases where relatively advanced tools were not selected because the operating

system that they run on was different from that of the company selecting the tool [141]. Wang
et al. recognize the strong need for SoftVis tools to operate in complex real-world environ-
ments and approach this goal by advocating an extensible multi-layer and multi-tier software

visualization framework [158].

5.2.7 Unified Requirements Categorization

The proposed URC hierarchy is shown in Figure 5.1. As indicated in this figure, the five
main URCs are further refined into sub-requirements, along the lines already explained in the
previous section. It is already easily visible that our proposed URC hierarchy differs notably
from other classifications of requirements for SoftVis tools, e.g. that of Bassil and Keller [13]

(which focuses on functional aspects) or the taxonomy of Price et al. [107] (which focuses on
a mix of functional and non-functional aspects). Other taxonomies are discussed in Chapter
2. The main difference between our URC and related taxonomies is that we our central (and
actually only) focus is on what users perceive as desirable in a tool in an early study phase,

rather than on what functions or mechanisms a tool may offer (which become apparent only
after one uses the tool for a while). Although the two perspectives intersect, we argue that
a first step in tool adoption (or rejection) hinges on a user perception of desirable features

identified in an early usage phase. After a tool passes this early adoption phase, more fine-
grained feature classifications can be used to discriminate between different tools. This is the
context that we try to capture with our URCs.

5.3 Visualization tools

In the first part of this chapter, we have presented a proposal for an unified requirements
classification (URC) for SoftVis tools. In the remainder, we shall evaluate the URC against a

set of concrete SoftVis tools. The aim of this evaluation is twofold. First, it serves to check how
the URC model actually performs in being able to describe the capabilities of a set of concrete
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Figure 5.1: Unified Requirements Categorization

tools. Secondly, we aim to exemplify how the URC model can be used in practice in pointing
out how they can be used to determine advantages and limitations of concrete visualization
tools in an early phase, and thereby serve as to assess the suitability of such tools, or point to

directions in which such tools can be further refined.

In order to evaluate the URC against concrete software visualization tools, ten such tools were
selected and compared against the URC. The comparison procedure aimed at establishing the
level up to which these tools satisfied the URC requirements. This study is similar in structure

to the study described in Chapter 4, but is performed using the more refined URC model, and
against a larger set of tools.

The tool selection procedure is described next.

5.3.1 Selected tools

To assess the level of satisfaction of the URC requirements, we selected ten SoftVis tools which

complied with the selection requirements described in our first study in Chapter 4(Sec. 4.2.1).
We did not select these tools based on their perceived compliance with the URC requirements,
as the assessment of this degree of compliance was precisely the desired output of the study.
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The three tools that had been used for the study in Chapter 4, i.e., Creole, Code Crawler

and Source Navigator were among the tools selected, as these tools appeared to be interesting
candidates according to the first study. The remainder of seven tools were selected based mainly
on their wide audience in the software engineering world. Widely known tools have a higher
chance to be candidates of an early adoption test than less known tools, simply because they

are easier to be found. The first three tools were explained in detail in Chapter 4 and are thus
excluded from the brief tool introduction of the other seven tools which is given below.

ArgoUML

This is a Computer-aided software engineering (CASE) tool that is able to reverse engineer

Java code into UML. It supports an input format of both Java and XML and uses the XMI
format which enables exchange between other UML tools. It is good for design and modeling
especially where previous knowledge of UML exists [115]. Figure 5.2 shows ArgoUMLs display

of a class, its child classes as well as the operations (methods) within that class.

Figure 5.2: ArgoUML display [9] Figure 5.3: Sample output view from Columbus CAN [40]

Bauhaus

Bauhaus is a tool-set that is supported on GNU/Linux, Microsoft Windows and Sun Solaris
and is able to work with programs that are written in Ada, C, C++, and Java [109]. Depending
on the information that one needs to represent, two main formats are used in Bauhaus. The
InterMediate Language (IML) is used to represent the low level data while the Resource flow

graphs (RFG) are used to show the general picture of the analyzed system. Some of the
capabilities of this tool are dead code detection, protocol analysis as well as feature analysis.
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Columbus/CAN

Columbus/CAN is currently a commercial package that can be freely downloaded for academic
purposes [40]. It is aimed at heavyweight, detailed static analysis of large-scale C and C++
programs. Columbus is the main framework that enables the analysis filtering and exporting

of results to various formats, while CAN is the core tool that parses C++, performs semantic
analysis, and creates the central database on which Columbus operates further. Currently,
various C and C++ dialects are directly supported by Columbus/CAN. A third tool, the linker,
combines the information extracted from independent source files, or translation units, to deliver

whole-program results such as call graphs and class inheritance diagrams. Many export formats
are supported including HTML, FAMIX, GXL and RSF (Rigi Standard Format). Figure 5.3
shows a sample output from Columbus/CAN exported in HTML format.

Goose

Goose was developed by the Research Center on Information Technologies at the Karlsruhe
University in collaboration with the FAMOOS project for reengineering object-oriented sys-
tems [31]. The GOOSE tool set is capable of source code analysis, visualization, abstraction

and problem detection. It is supported on the SUN Solaris/SPARC operating system and is
able to analyze source code written in C, C++ and Java.

Once code is loaded onto the tool, several analyses can be carried out. This stage does not
give any output for examination by the user but helps gather the information to be used at the

later stages of the tool. The analyzer can also give pointers as to why the chosen analysis task
could not be completed. After the analysis stage, several types of visualizations can be carried
out. The output for this step is generated in three main formats: simple relational database

format, graph-based (GML and VCG) and logic (Prolog facts). Given the large size of the
generated datasets, GOOSE offers several abstraction and hierarchical clustering mechanisms.
An example snapshot of a GOOSE visualization at two levels of detail is shown in Figures 5.4
and 5.5.

Tarantula

Tarantula is a system developed at the Georgia Tech School of Computing that helps users find
faults or problems with their systems using a line-oriented source code visualization [57]. Color
is used to differentiate between statements that have passed a given set of tests and those that

have failed, e.g. using green and red respectively. Yellow is added to represent cases that have
both passed and failed parts within the selected texts. The visualization metaphor builds atop
of the pixel-oriented mapping technique introduced in Seesoft [34] which reduces each line of
source code to a (colored) line of pixels, thereby achieving visual scalability. The system is

configured together with a Java environment to acquire the source code and test results. A
sample display of Tarantula is shown in Figure 5.6.
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Figure 5.4: GOOSE visualization -
fine level of detail [36] Figure 5.5: GOOSE visualization - coarse level of detail

TkSee

TkSee is a tool that enables browsing of source code while maintaining a history of the tasks

carried out [46, 62]. Search is a particular strong point of this tool, in line with its targeted
user group. Figure 5.7 shows one of the views of TkSee. This tool is currently supported
on the UNIX platform and maintains a close link with the source code. Its look and feel is
strongly similar to that of a classical IDE, making heavy use of syntax coloring and highlighting

techniques.

VizzAnalyzer

VizzAnalyzer is a prototype tool developed based on a framework at the Software Technology
Group at the Växjö University [78]. The idea behind the VizzAnalyzer prototype is to integrate

different visualization techniques and enable the viewing of both low-level and high-level rep-
resentations. The workflow, like for TkSee, is centered around an IDE metaphor, with several
visualization plug-ins such as different 2D and 3D graph layouts of static software structure,
and analyses such as static software metric computations, filters, and queries. This tool receives

source code and binary code using various data importers. The received code is then changed
to a relational (graph) format which becomes the input for the so-called High Level Analysis
and metrics engine (HLA). Finally, different types of graph visualizations can then be generated

from the output of the HLA module.
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Figure 5.6: Tarantula visualiza-
tion [10] Figure 5.7: TKsee’s Graphical User Interface [62]

5.4 Evaluation procedure

Two professional software developers assisted in the evaluation of the ten selected tools. Doc-

umentation for each tool was collected along with a functional tool copy. The developers were
then allocated the ten tools and asked to grade them along the categories of the URC. The
format of the study was similar to the typical evaluation one would do when finding a tool on
the internet and deciding to have a first look at it to assess its usability. Independently of the

developers, we also carried out a separate evaluation. The results from both the developers and
our own results were compared, and a final grading of the analyzed tools was produced.

As already mentioned earlier in this chapter, the focus of the URC model is to capture an

‘early impression’ of developers interested in using a given SoftVis tool. As such, the exact
capability of the studied tool to complete a given task, or the relative speed or accuracy of task
completion, is not important in determining the scores within this classification. Hence, the
evaluation procedure used generic code bases and generic program comprehension tasks such

as searching for a given software component in a system and producing a high-level overview
of the static system structure. The main aspect measured in this evaluation was whether the
users find the examined tools usable. In a positive case, further, more refined, evaluations
based on specific tasks and functions can be executed to determine the finer-grained level of

tool effectiveness.

In terms of the tasks addressed by each evaluated tool, the measurement related the expecta-
tions of the users with respect to the tool’s features as advertised by the tool’s own documenta-

tion, and the prior expectations of the users as to what they would perceive as being desirable
features of any SoftVis tool.
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5.5 Tools against Categorization

Table 5.1 shows a comparison of the tools against the categorization (URC). The way in which
each examined tool scores with respect to all categories of (sub)requirements captured by the

URC model is described in the table rows, one row per tool. Each tool is assessed against each
of the components of the URC to see whether that component is fulfilled or not. When a URC
requirement has sub-requirements, separate grading is given for each of these sub-requirements.
In this way, one can assess whether a given top-level URC requirement is fulfilled fully or only

partially.

URC CATEGORIES
Tools Lightweight/Simplicity Search enabled Meta-data Added Integrated Realistic

Install Use Code Visualization display advantage IDE Other Computer Problem
tools specifications addressed

ArgoUml
√

X X X X
√

X X
√ √

Bauhaus
√ √ √

X
√ √

X
√ √ √

Code Crawler
√

X X
√ √ √

X
√ √ √

Creole
√ √ √

X
√ √ √

X
√ √

Columbus/Can
√ √ √

X
√ √

X X
√ √

Goose X
√

X
√ √ √

X X
√ √

Source Navigator
√ √ √

X
√ √ √

X
√ √

Tarantula X
√ √

X
√ √

X
√ √ √

TkSee X X
√

X
√ √

X
√ √ √

VizzAnalyzer
√ √

X X
√ √

X
√ √ √

√
= tool fulfills requirement up to a sufficient degree from the user’s perspective

X = tool does not fulfill requirement sufficiently from the user’s perspective

Table 5.1: Results of the URC evaluation

Observations
Using the URC, we can summarize and compare the examined SoftVis tools in a compact

manner. Further details of this comparison are presented below, with a focus on tool aspects
which were identified as suboptimal and which may be of priority for tool developers in the
future.

Simplicity: It was observed that majority of the tools were lacking in at least one of the two
simplicity subsections, i.e., installation and use, with only four of the evaluated being found
both easy to install as well as use. This presents a challenge for the potential tool adopters as
difficulty in any of these areas may prevent them from using otherwise good tools and giving

up on further tool examination from an early phase. Tool developers therefore need to ensure
that their tools do not divert too much from widely accepted installation procedures if they are
to be adopted.

Search Facilities: None of the tools had search enabled at both the code level as well the
visualization display stage. Considering that the graph displays shown by the tools can become
very complex, search at both these levels is deemed important. As such, tool developers need
to ensure that the visualizations displayed by the tools can be searched at both levels, and that

the search hits presented in both code and visual displays are correlated.

Meta-Data: Meta data display relates to the proximity of the visual elements to the source
code being evaluated, or the ability to recognize code-level constructs in the visualizations by

means of annotations. Based on the study’s results, the majority of the tools supports meta
data display, mainly by small textual annotations and tooltips. Several tools even enable the
user change the code and automatically update the visual displays to reflect the changes. This
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relates well to the users’ general requirements of having an easy to follow mapping from the

visual metaphors to the code, a trend that should be encouraged by future tool developers.
The availability of such annotations was deemed important by the users in understanding the
visual displays during the early adoption study, and motivating for continuing them to further
study the tools.

Added Advantage: The added advantage was assessed by reading the tools’ documentation.
In all cases, the documentation contained a fairly explicit description of what the tool should
help with. However, from actual tool usage, it was not always observed that the advertised

added advantage was in sync with the impressions of the users. This points at the fact that
there is potential for credible added advantage in many SoftVis tools, but that not all tools live
up to all of the created expectations. Having (at least) a large parts of the advertised added
advantage

Integration: Integration was measured at two levels, i.e., integration with an IDE as well
as integration with other tools that support program comprehension. A general trend of sup-
porting tool interoperability at various levels was found in all tools that were studied. The

main integration mechanism was by means of data exchange in widely accepted data formats.
However, the tighter level of integration, namely IDE integration by means of shared data
and linked views, was still lacking in many of the studied tools. There is ample evidence that
such integration is highly desirable for the targeted user group of professional developers (see

Chapter 2). As such, more effort seems to be needed in the future in this direction to increase
SoftVis tool acceptance in an industrial context. We noticed that IDE integration strongly
helps in an early adoption phase: An integrated visualization tool is simply easier to quickly
test, as users can always fall back on the known, trusted, functions of their IDE than in case

they have to understand a fully new tool.

Realistic: Many of the tools presented in this chapter address a realistic problem experienced
by programmers. Moreover, the computer specifications on which the tools are to be run were

also found to be realistic, i.e. in line with the average specifications of typical computers used
in the software engineering industry. As such, there were no tools in the studied set that would
require specific software or hardware configurations to be used.

5.6 Conclusion

Comparing SoftVis tools from the perspective of desirable features is a difficult task. In this

chapter, we have proposed a set of Unified Requirements Classification (URC) that can serve
to structure the comparison of such tools (and the outcomes of such a comparison) with a
focus on the early adoption phase. The URC consists of six main categories further refined into
eight subcategories, and can be further refined to accommodate a more detailed type of tool

comparison, e.g., for a specific set of tasks, user group, or tool type.

To demonstrate the way in which the URC can be actually applied to summarize the comparison
of SoftVis tools, we have evaluated ten such tools against the URC requirements and discussed
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the results of the evaluation comparatively. The evaluation process followed the typical steps

users take when quickly examining a new tool during the so-called early adoption phase. As a
side effect of this study, we have observed that many features described in the URC are still
only partially implemented in the studied tools. However, the users who participated in the
study mentioned that these features are indeed highly relevant from their perspective of quickly

accepting (or rejecting) a given tool. We believe that this holds true also for other SoftVis tools
at large, beyond the studied sample of tools, and identifies directions in which tool design can
be improved.

The URC presented here can be used by future developers of SoftVis tools, especially those
targeting experienced programmers. The comparison of existing SoftVis tools against the URC
can be used by typical industrial users during the early acceptance phase of a SoftVis tool,
specifically by actively looking for the degree of fulfillment of these requirements. Since these

requirements are relatively easy to test for, they can act as an easy filter that can be applied
on a large set of tools to obtain a smaller subset that has higher chances of being usable in
an industrial context. On the other hand, developers that aim to penetrate the industrial
development community with their new tools can steer efforts in the directions outlined by the

URC model to maximize their chances for early tool adoption.

In this study, the focus has been on general requirements of SoftVis tools during their early
adoption phase. However, for a better, more detailed, assessment of desirable features of

such tools, we need to have a narrower field of analysis. In the next chapter, we analyze the
desirable features of SoftVis tools aimed at helping a more specific field of activity: Corrective
maintenance.
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Chapter 6

Software Visualization for Corrective
Maintenance

In this chapter, we focus on the support that SoftVis tools offer for a specific area of software
engineering: Corrective maintenance. To support evaluation and comparison of such tools, we

refine the URC classification of desirable features introduced in Chapter 5 to focus on corrective
maintenance. Next, we illustrate the way that such a classification can be used by evaluating
15 SoftVis tools that support corrective maintenance. The evaluation procedure used a set of
sample corrective maintenance tasks to be executed by a group of 15 developers on a given code

base. Finally, we compare and discuss the evaluation results using the proposed classification
model.

6.1 Introduction

Corrective maintenance (CM) refers to the branch of software maintenance concerned with
correcting faults that occur in software [135]. Corrective maintenance, as a part of software

maintenance, can also benefit from SoftVis tools. The use of software visualization (SoftVis)
tools for software maintenance has been advocated for in a variety of studies [11]

In the previous chapter, we evaluated a number of desirable features that users require from

SoftVis tools in general, by collecting feedback from software engineers who used such tools
for the general task of program understanding. The focus was on the so-called early adoption
phase, when users want to quickly decide whether to further study a given tool or reject it as
unfit from a usability perspective.

In this chapter, we refine and enlarge the set of considered features and focus on SoftVis tools
supporting CM. In this respect, we focus mainly on software developers, testers, and system
integrators from the software industry as our target user group. In this sense, the proposed

classification model for SoftVis tools for CM presented here is actually a refinement of the
general URC presented in Chapter 5 for SoftVis tools in general.
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In practice, it usually takes a considerable amount of time for users to try out the many

available SoftVis tools before they can asses their suitability and effectiveness in a given context.
Although there exist several tool surveys on the internet, it is still very hard to answer the
questions “does this tool fit my user profile?” (for tool users) and “what do the users most
(dis)like in this tool?” (for tool developers). The lack of such surveys which reflect the degree

of support of concrete desirable properties makes the tool acceptance even harder.

Our aim is to provide an evaluation that guides users in the selection of SoftVis tools useful
in corrective maintenance, and also exposes the desirable features for such tools, as perceived

by their users. Finally, we aim to test and refine the unified requirements classification (URC)
model introduced in Chapter 5 on the more focused and more specific area of SoftVis tools
for corrective maintenance. This will serve as a test of the suitability of the proposed URC in
capturing the desirable features of a more specific set of SoftVis tools, as opposed to its usage

for general SoftVis tools which was introduced in Chapter 5.

In this respect, our contribution is an aid for pre-selecting SoftVis tools, either from the set
discussed here or from the larger set of tools available in general, based on the identification

of a number of desirable features. Secondly, and as a new element in comparison to the work
presented in Chapter 5, we are interested to discover possible correlations between the perceived
tool acceptance levels and the usage of certain visual techniques, to further determine what
makes a tool accepted (or not).

The rest of the chapter is organized as follows. Section 6.2 presents our model for desirable
features for SoftVis tools for corrective maintenance. Section 6.3 discusses how this classification
extends and refines the URC introduced in Chapter 5. Section 6.4 then introduces the evaluated
tools. The evaluation procedure that was used is elaborated in Section 6.5. Section 6.6 presents

and discusses the evaluation results, and correlates our findings with a study on program
comprehension during corrective maintenance. Finally, Section 6.7 concludes the chapter.

6.2 Classification Model

In this section, our proposed tool classification model is detailed. We use four main categories
to classify the software visualization tools: Effectiveness, Tasks supported, Techniques used and

Availability. These categories extend our previous analysis, introduced in Chapter 5 in which we
empirically studied how users graded a number of general-purpose SoftVis tools along desirable
requirements from the perspective of early adoption.

After additional user interviewing aiming at understanding how users choose and grade a Soft-
Vis tool, we observed that, after early adoption issues are settled (positively), users consider
different types of requirements to further determine adoption or rejection. In contrast to the
early adoption requirements, which appear to capture the immediate usability impression a

user has on a given tool, further adoption decisions focus on whether a tool supports the user’s
tasks effectively while at the same time it is efficiently usable. The URC model introduced
in Chapter 5 modeled the early adoption phase. The classification model described in this

60



phase describes the second adoption phase, when users test a tool’s usefulness for corrective

maintenance.

We structured this insight into four types of requirements. Under each of these feature cat-
egories, sub-categories exist. Within each sub-category, we model the degree up to which a
tool fulfills the respective requirements on numerical or categorical scales. In contrast, the

early adoption URC model did not use such scales, since at that level we were concerned with
modeling simple acceptance/rejection decisions.

In the following, the four types of requirements for SoftVis tools for corrective maintenance are

described.

6.2.1 Category A: Effectiveness

This category groups non-functional requirements related to the effectiveness of the tools. We
call a tool effective when it can arguably help users to solve the problems that it was designed

to assist with. Effectiveness is strongly task-specific, hence it is hard to measure in general.
Yet, there are a number of properties we have identified which SoftVis tools should have to
be effective, namely Scalability, Integration and Query support. We focus mainly on non-
functional properties here. The functional properties are covered under the category Tasks

supported (Sec. 6.2.2).

A1: Scalability

Scalability refers to the extent to which a tool can support large-scale industrial code. By large-

scale, we consider systems of millions of lines-of-code and/or thousands of classes and/or source
files. We measure scalability on a scale of low – high. A tool is given a scalability of �low if it was
created mainly for educational purposes, as a proof-of-concept or as a research prototype. A

grading of medium is given to tools that go beyond the proof-of-concept level but, at the same
time, have limitations with large-scale software. For example, many graph layout techniques
have typically medium scalability: They can quickly produce useful structural diagrams of
systems having hundreds of elements, but often have problems in visualizing systems having

(tens of) thousands of elements and relations, either in speed or result quality. A level of high
is used to represent tools that comfortably support large-scale code. For example, treemaps
and line-oriented pixel visualizations scale well to tens of thousands of data elements, with
little or no user intervention. Scalability is determined by the units that each tool uses as data

input. For example, if a tool works at file level, then the more files it can handle the higher its
scalability [150].

A2: Integration

A tool is considered to be well integrated if it can plug into an IDE or similar set-up where
it combines seamlessly with other tools that support debugging, software comprehension and
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other tasks which are part of corrective maintenance. We measure integration by considering

the level at which different tools can easily be switched and communicate in completing a
given task. We are not interested to assess only the ability of tools to co-exist in the same
environment, but also the ability of tools to interact by exchanging and observing exchanged
data. This translates into the ability to use an output from one tool as input for another tool

and the ability for a tool to discover and present changes to a shared data model performed by
another tool.

On a scale of low – high, a tool with all the qualities mentioned above is considered to have

high integration. Tools that are, for the purpose of start-up, shutdown, and user interface,
integrated within an IDE but do not actively communicate data and/or change events with
peer tools, are given a medium. Tools that are not designed to be integrated in an IDE so as
to cooperate with other tools, as well as standalone tools, are graded low.

A3: Query support

A corrective maintenance tool requires query facilities in order to reduce the time needed to
identify specific areas within the code or to answer targeted questions on the code at hand.

We grade the query category on a scale of low – high. Tools that do not have this provision, e.g.,
work in batch or pipeline mode, are considered to have low query facilities. Tools that support
limited searching (e.g., purely lexical) are given medium. There are other tools however that

have sophisticated searching facilities. These may include correlating a search in the code base
with the visualization displayed (search highlighting) or the use of complex search expressions
(e.g., syntax-aware or type-based semantic searches). In this case, a movement from the code
to the visualization and the other way round is supported as well as more complex queries.

Such tools are graded with high.

6.2.2 Category B: Tasks supported

This section details the particular tasks that we aim to support with the considered tools, and
the grading of the support level. We mainly focused on the tasks of detecting code smells,

code refactoring, trace analysis, and support for debugging activities. While these tasks do not
fully cover all corrective maintenance activities, they are typical for a large range of use cases.
Moreover, the set of tasks considered here was well understood by our interviewed software
engineers, which was a fundamental initial condition for the evaluation.

B1: Detecting code smells / Refactoring

Code smells, related to code quality metrics, generally refer to symptoms related to bad pro-

gramming and/or design in code. Refactoring is the process carried out to restructure the
code and improve one or several quality metrics, e.g., remove the code smells found. For this
category a level of low – high is applied. Tools that support neither refactoring nor detection of
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any type of code smells, such as debuggers, will be graded with a low. Tools are given medium

if they have the ability to detect code smells but are unable to suggest ways of correcting them.
This is the case of many static analysis tools. A grading of high is used for tools that not only
detect the smells but can suggest ways to correct them as well.

B2: Trace analysis

Traces are defined as data gathered during the execution of a program [113]. On a level of low
– high, tools that are graded as low are those that can neither generate traces on their own
nor examine and visualize traces generated by other programs. Tools that can generate and
save traces but can not visualize them, e.g., profilers, will be given medium. The same will

be applied for tools which examine traces that are generated by other programs, e.g., loosely
coupled visualizations of software behavior [23, 90]. A grading of high will be for tools that are
able to generate traces on their own and create visualizations out of them as well.

B3: Support for debugging activities

Support for debugging activities is measured on a scale of low – high. A low will be for tools
that support only basic debugging e.g., setting breakpoints, stepping through code, and offering
basic code watches e.g., for individual data variables.

There are other tools however that focus on higher-level bug-related information. For example,
these show the level of debugging activity over a long period of time e.g., by displaying the
users that were involved in each activity [149]. Other tools may allow the viewing of many
different files within a project with emphasis on those that have failed test cases and those that

do not. These type of tools will be given medium.

A high grade will be allocated for tools that support presenting both low-level and high-level
bug-related data and a combination of the tasks explained above. Tools that are able to relate

the bugs in a project to the response carried out to remove the bugs while supporting all the
other tasks will be also given high.

6.2.3 Category C: Availability

There exist other tool aspects that were not specifically covered in the previous sections and
which are important in the use of the tools. Some of these include: programming languages
supported by the tool, whether the tool is free or commercial, and the platform on which

the tool is supported. We gather all these aspects under the description availability. We did
not grade these aspects separately, since they all had to be met for one to be able to use (or
evaluate) the tool. However, we provide information on these aspects as textual descriptions.
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6.2.4 Category D: Techniques used

We now analyze the particular visualization techniques that are used by the considered tools.
For quantifying the support level, we shall use a simple binary scale yes or no for those tech-
niques which are either present or not; and a scale low – high for techniques where a more

fine-grained level of support can be measured. Assessing the types of techniques used and their
support levels is interesting as it can shed more light on factors such as usability and ease of
learning, as we shall see later. Since there are too many techniques than one could evaluate,
we selected our subset of interest based on previous SoftVis taxonomies [79] as well as our

own insight in what the software engineers involved in the study considered to be the most
important ones.

D1: Two-dimensional displays

The ability for a tool to show data using just two dimensions is measured on a yes-no scale. 2D
visualizations are sometimes seen as less expressive than 3D ones, but may be easier to learn
and use.

D2: Three-dimensional displays

The usage of a third dimension in order to increase the amount of information being shown by
a tool is graded on a yes-no scale. As mentioned above, 3D visualizations offer additional data
display space, but may come with additional costs.

D3: Animation

Tools are considered to support animation if motion is used when displaying the scrutinized
data. Animation can be used to show time-dependent data such as traces or program code
evolution. Tools that support animation will be graded with yes. Those that do not support
animation for these purposes, but support animation only for navigation purposes, e.g., smooth

zooming and panning [1, 47], will be given no.

D4: Color usage

Tools that do not use color at all, e.g., editors without syntax highlighting or command-
line debuggers, will be categorized with low. Tools that use just a few saturated colors only,

e.g., to display categorical values, will have medium for color usage. Tools that use a wide
range of colors, e.g., doing blending for multivariate data display or color mapping for showing
continuous value ranges, will be given high.
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D5: User interaction

Within the user interaction category, we quantify the extent to which a user can interact with
the displayed information. Tools that show a view that the user cannot alter in any way
are graded low. Tools that support a single main action via user interaction, e.g., adjusting

the layout of some software architecture view with the mouse by moving the nodes displayed
in graph view are given medium [111]. If the tool supports two or more different actions
(tasks) by combining two or more medium-graded user interaction facilities, e.g., direct mouse
manipulation and rubberbanding, it will be given high.

D6: Multiple views

Several tools are able to display the same (or related) bits of information in many different ways
and perspectives. These are considered to have multiple views. We grade the multiple view

support based on how these views interact. Tools that have only one view for all the tasks that
they carry out are given low. Tools that have several not linked views, i.e., interaction and/or
selection in a view does not affect the other views, are given medium. Linking implies that
whenever the user interacts with the data in a view, e.g., selects or changes an object, then the

other views respond accordingly, e.g., show the same object selected or modified. Tools that
have several linked views are graded high.

D7: Information density

The information density dimension quantifies the amount of information that a given tool can

display using a given unit of screen space. Tools that are given high are those that can display
the greatest amount of information per screen space unit, i.e., achieve the highest information
density.

It is hard to precisely define how to quantify information density, since different tools display
different types of information. We refer to the type of information units being displayed as
information granularity. We see several fixed levels of information granularity recurring in
many SoftVis tools, inversely correlated with the information units’ sizes. From high to low

granularity, these are: code lines, syntactic components (e.g., classes, functions, services, or
components), and high-level organization units (e.g., files, folders or packages). This scale is
a natural element of the type of data involved in software: Whereas in the physical world
(and thus in scientific visualization) most data is continuous, therefore naturally allows for

meaningful interpolation and sampling at any desired scale, software data (and thus software
visualization) is inherently discrete. There are no natural ways to e.g. interpolate between a
line of code and a function, or subsample a set of code lines.

Tools can use the same given screen space to show source code in a file or class (e.g., Coderush
[27]), classes in a subsystem as UML diagrams or graphs (e.g., JIVE [42]), or all files in a repos-
itory as dense pixel displays or using treemaps (e.g., CVSgrab [149]). We compare information
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density by counting the number of displayed units per screen space unit, on a scale of low,

medium, high. For example, a text editor has low information density, a UML browser medium
density, and a dense-pixel treemap visualization high density.

D7: Navigation

Panning, scrolling, zooming and viewpoint change are all categorized under navigation options.

We evaluate this level using yes or no depending on whether these options are supported or
not.

D8: Dynamic visualization

This refers to the ability of a tool to display data generated on-the-fly while the program is

running, e.g., debugging or tracing data. Tools that do not have this ability will be given no.
The tools that are able to do this will be given yes.

6.3 URC Refinement for Corrective Maintenance Soft-

Vis Tools

We have described so far a Requirements Classification for SoftVis tools for Corrective Main-

tenance (further referred to as CMRC). In this section, we describe the way in which this
classification relates to the Universal Requirements Classification (URC) model introduced in
Chapter 5 (see also Figure 5.1).

First and foremost, the two classifications have different purposes. While the URC models
requirements which are important during an early adoption phase of SoftVis tools, the CMRC
models requirements which are relevant during a subsequent adoption phase, during which one
looks at specific support for a given set of activities and specific features. As such, the two

classifications can be seen as independent, serving two different purposes.

However, it is clear that there are also overlaps of the two classifications, since the usability and
usefulness of a SoftVis tool has aspects which are relevant at any moment during its evaluation.

In this sense, The CMRC is a refinement, but also an extension, of the URC for general-purpose
SoftVis tools introduced in Chapter 5. Below we show how each of the four components of the
CMRC (Effectiveness, Tasks supported, Availability and Techniques used) maps to the original
URC.

First, the various sub-components of the Effectiveness CMRC requirement refine several URC
requirements, as follows. The Scalability CMRC requirement refines the Scalability/Ease to
use URC requirement. Indeed, for a tool to be easy to use, it must further be scalable and

handle efficiently large code bases. The Integration CMRC requirement refines the requirement
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from the URC with the same name. The Query support CMRC requirement refines the Search

enabled URC requirement.

Secondly, the Tasks supported CMRC requirement refines the Realistic/Adress problems of real
interest URC requirement, by specifying a number of tasks (or problems) of interest in CM.
For a SoftVis tool for CM to be realistically useful, it has to address specific CM tasks.

Thirdly, the Availability CMRC requirement refines the Realistic/Uses realistic computer spec-
ifications URC requirement. A SoftVis tool for CM will be realistically usable if it is indeed
available, i.e., runs on the target platform, comes with a suitable licensing model, and under-

stands the source code for the CM task at hand.

The fourth and final CMRC category, Techniques used, does not however map to (or refine)
one of the existing categories in the original URC model. This category is to be seen as an

extension of the URC, i.e., a new dimension of requirements. While the original URC categories
(Search enabled, Meta-data display, Simplicity/Lightweight, Added advantage, Integrated, and
Realistic) all address the general suitability of a SoftVis tool for a wide range of activities, the
new Techniques used category is different: It addresses the way users see visualization techniques

as useful or not. The introduction of this category was deemed necessary as there are several
studies in SoftVis and InfoVis that compare visualization techniques from the perspective of
user acceptance (see e.g.,[83, 47, 11]). In the terminology of Maletic et al., the new Techniques
used category covers the ‘representation’ dimension [79].

One may argue that introducing this new category of Techniques used is not part of an URC that
should purely describe user requirements, and should be agnostic of the techniques employed
to achieve those requirements. However, in practice, many researchers have argued that certain

visualization techniques are easier accepted than others (we refer here again to [83, 47, 11]).
This is further supported by our analysis of concrete SoftVis tools presented further in this and
the next chapter, where 3D visualization was perceived by industrial users as less accepted than
2D visualization. In this case, having Techniques used as a CMRC category is useful, since it

can help assessing the suitability or acceptance of a tool based on the type of techniques the
tool employs.

6.4 Evaluated Tools

The tool selection procedure used here followed the same guidelines as for the selection of
general SofVis tools for the study described in Chapter 4 (Sec. 4.2.1), with a narrower focus on

tools that can, or claim to, support corrective maintenance activities.

We now present the tools considered for the evaluation, starting with a short description for
each tool. We chose a mix of software visualization tools that support corrective maintenance

from both commercial and research areas, all of them however freely available for evaluation
purposes. Secondly, we tried to choose tools that support different types of tasks in order to
cater for a wider audience and broader evaluation.
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6.4.1 Allinea DDT

This tool is designed for debugging of scalar, multi-threaded large scale parallel applications
written in C, C++ and Fortran [3]. It can interoperate with all major MPI implementations
and batch queuing systems. Visualization is used mainly in the control of program execution

as well as the display and manipulation of multidimensional data [114]. A snapshot of Allinea
DDT is shown in Figure 6.1.

Figure 6.1: Allinea DDT [3] Figure 6.2: Code Coverage [93]

6.4.2 CodeRush with RefactorPro

In collaboration with Visual Studio, this tool enables the refactoring of code by providing
change options with hints as well. Visualization clues are continuously presented within the
code so as to prompt action when needed [27].

6.4.3 CodePro AnalytiX

This is an Eclipse plugin that enables code coverage analysis, dependency analysis as well as
report generation with the aid of visualization [53]. CodePro AnalytiX also integrates into the
Rational and WebSphere development environments.

6.4.4 Code Coverage Plugin NetBeans

Using coloring of source code, this plugin helps in visually identifying code portions that have
low coverage according to a given set of test cases [93]. It supports Java and works with the
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NetBeans IDE. A Code Coverage is shown in Figure 6.2.

6.4.5 CVSgrab

CVSgrab visualizes data from the CVS and Subversion software configuration management

systems. CVSgrab supports corrective maintenance by displaying the correlation of project
activity and bug data mined from a Bugzilla database, using dense pixel displays. Sort and
cluster mechanisms enable users to correlate various aspects of interest in a given project
evolution [149]. A snapshot of CVSgrab is shown in Figure 6.3.

6.4.6 Gammatella

This visualization tool supports the remote monitoring of Java programs [98]. It is able to
gather the execution data from remote machines and visualize it locally using a combination
of execution metric-colored treemaps and SeeSoft-like code displays.

Figure 6.3: CVSgrab [149] Figure 6.4: Gammatella’s main view [98]

6.4.7 JBIXBE

This is a standalone Java debugger enhanced with visualization features [30]. It is customized

for Java programs and simplifies debugging of multi-threaded applications. It combines classi-
cal debugger interaction (breakpoints, step-mode execution, watches) with execution flowcharts
and UML-like class diagrams of the debugged code. A snapshot of JBIXBE is shown in Fig-
ure 6.5.
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6.4.8 JIVE

JIVE supports the analysis of Java programs during runtime. Using forward and backward
stepping through program execution, JIVE facilitates debugging. JIVE visualizes execution
history by means of interactive UML sequence diagrams [42]. A snapshot of JIVE is shown in

Figure 6.6.

6.4.9 JSwat

Jswat is a graphical debugger that uses visualization combined with debugging of Java source

code [37]. The provided visualizations include standard IDE-like breakpoints and watches. A
snapshot of JSwat is shown in Figure 6.7.

Figure 6.5: JBIXBE [30] Figure 6.6: JIVE [42]

6.4.10 Paraver

Paraver is a tool that analyzes and visualizes program traces. It is capable of concurrent

visualization of separate trace files as well as showing multiple views of the same trace file [104].
It uses 2D colored dense pixel displays very similar to the ones used by CVSgrab for software
evolution visualization [149]. A snapshot of three views of Paraver is shown in Figure 6.9.

6.4.11 Project Analyzer

Project Analyzer is a standalone tool that aids in detecting errors of Visual Basic code with
the aid of visualization. Project Analyzer helps in checking for error proneness in the tool as
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well as guiding on ways in which to improve the code [4]. It comes as an IDE using syntax

highlighting and multiple linked views of the code.

Figure 6.7: Jswat [37] Figure 6.8: STAN [96]

Figure 6.9: Three different views of Paraver [104]

6.4.12 Source Navigator

Source Navigator is an open source tool that loads information extracted from source code into
a project database, e.g., file names, program symbols, and relationships like declaration-to-

definition [126]. Source Navigator provides different browsers for this database, both code-based
using syntax highlighting and graph-based for showing code relationships. The tool supports
C, C++, Fortran, COBOL and Java and uses the grep tool to search within the source code.
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6.4.13 STAN

Structure Analysis for Java (STAN) is an Eclipse plugin that visualizes Java code with the
aim of understanding and detecting design flaws [96]. Visualization is done using several linked
graph views, metric-colored treemaps, and metric histograms. A snapshot of STAN is shown

in Figure 6.8.

6.4.14 Tarantula

This is a system that helps users find faults or problems with their systems using visualization.
Color is used to differentiate between statements that have passed the test (green) and those
that have failed (red) [57]. Yellow represents cases that have both passed and failed bits within

them. This system extends the dense pixel visualization technique introduced by Seesoft [34].
A snapshot of Tarantula is shown in Figure 5.6 in Chapter 5.

6.4.15 VB Watch v2

This is a toolset of three tools: VB Watch Profiler, Protector and Debugger [5]. It enables the
testing and debugging of Visual Basic 6 code. Visualizations include code-level multiple views,
metrics histograms, and metric-annotated call graphs. A snapshot of VB Watch is shown in

Figure 6.10.

Figure 6.10: VB Watch [5]
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6.5 Tools Evaluation

In this section, we describe our tool evaluation procedure.

6.5.1 Participants

Fifteen professional software developers, 11 male and 4 female, participated in the study. The
participants did not include ourselves, and were all working in non-research-related fields of the

software industry. Among the software developers that participated in the study, only two had
ever used a SoftVis tool before in their work. Their details are given in Table 6.1.

A pre-study questionnaire was used for the participants in order to ensure that the right skill

level was present for the evaluation. The questionnaire sought information about the pro-
gramming languages that the developers had working knowledge of as well as the visualization
tools that they had used before. We specifically selected people having a minimal number of
years in software maintenance (over 4), and who were familiar with at least two, but preferably

three, mainstream development languages. These constraints were necessary to ensure that the
evaluation would not get biased by a lack of experience and/or exposure to the problems of
maintenance, and also that the users would be familiar with visualization tools in general, and
willing to experiment with new tools. We also specifically assigned users to evaluate tools they

never used before so as to avoid prior knowledge bias.

In order to ensure efficiency, tools were grouped according to similarity and allocated to the
developers as shown by Table 6.2. Next, we assigned tools to developers, trying to match the

tool’s constraints (programming language and running platform) with the ones best known by
the respective developer.

6.5.2 Source Code

Three source code bases were provided to the participants in order to perform the study. For
tools that use Java, the ArgoUML system [9] source code was used. Tools that targeted C++
were evaluated on the source code of the network simulator ns 2 [45]. Tools that targeted

Visual Basic were evaluated on the proprietary code of a vehicle registry system written in
VB6. Finally, CVSgrab was evaluated on both the ArgoUML and Visualization Toolkit [66]
open-source repositories. The programming language is here not important, as the type of
information CVSgrab visualizes is language independent.

6.5.3 Evaluation Procedure

The developers were let to use the assigned tool(s) to perform several analysis tasks on the
assigned systems, as described further. The 15 tools were compared against the four categories
of desirable features described in Section 6.2.
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User Languages Years Years in Group of
known of software tools

experience maintenance evaluated
1 VB, Java, C# 6 4 1
2 VB, C# 8 5 1
3 Java, C++ 8 5 2
4 Java, C 9 7 2
5 C, C++, Java, 7 5 3
6 C++, Java > 10 7 3
7 C++, VB, Java, > 10 8 4
8 VB, Java, C# 7 5 4
9 C++, Java 8 5 5
10 C, VB 6 4 5
11 C++, Java > 10 7 7
12 C#, Java 9 6 7
13 C, Java, C++ 8 4 6
14 C, Java, C# 9 6 6
15 C, Python, Java 8 4 6

Table 6.1: Evaluation participants

Each developer had a 15 minutes introduction to each of the tools that they had to grade.
After the introduction, the developers were asked to grade the tools against our four categories
based on the pre-defined criteria of Effectiveness, Tasks supported, Availability and Techniques

used. We used six generic tasks to aid the developers in assessing the tools’ capabilities for the
sub-categories of (a) scalability, (b) Integration, (c) Query support, (d) Detecting code smells,
(e) Trace analysis, and (f) Support for debugging activities.

These tasks were as follows:

a Analyze the provided code for errors or error proneness incrementally, from classes to files
to packages and finally the whole project;

b Using the tool, make a change in the source code provided and analyze the effect of your

change using the complementary tools;

c Query the code base for all classes that have errors and visualize them to determine how
they interact with the rest of the code;

d Use the tool in order to find two code smells and use the refactoring hints provided by
the tool to improve it;

e Use the tool to generate traces from the code and analyze the generated traces in order

to know the codes behavior at run time;

f Use the tool to set breakpoints, step through the code and display the users that have
been involved in debugging activities over the last 2 years;

Comparing these tasks with those outlined for the tool evaluations in Chapters 4 and 5, we
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Tools
Tool groups Group rationale

1 - VBWatch -Use Windows platform
- CodeRush - Support Visual Basic

2 - JIVE
- JBIXE - All support java
- Source Navigator

3 - Allinea DDT - Use Linux platform
- Paraver
- NetBeans code coverage plugin

4 - Project Analyzer - Use Windows platform
- CodePro Analytix

5 - Tarantula -Research tools
- Gammatella

6 - CVSgrab - Tool’s input is history
of industry-size projects

7 - JSwat - All support Java
- STAN - Use Windows platform

Table 6.2: Tools grouping by common features

immediately see that they are more complex and fine-grained. This is an expected point, as

we are now interested in an in-depth evaluation of the desirable features of SoftVis tools for a
specific domain (corrective maintenance) as opposed to the quick type of evaluation described
in the previous chapters for the early tool adoption process.

After carrying out those tasks, the participants were in a position to know the techniques
supported by the tools and the level to which they are supported. Next, the participants
graded the presence of these techniques, and finalized the evaluation by writing down any other
remarks they had, after the grading was completed.

In total, each tool was evaluated by at least two developers. Tables 6.3 and 6.4 show the results
of the tools’ evaluation against the desirable requirements and set of supported techniques,
obtained by averaging the grades produced by the two or more developers who evaluated that

tool.

We are fully aware that a set of specific, uniform corrective maintenance tasks would have
been ideal in measuring the selected tools against the categories identified. However, given the
high heterogeneity of the tools and analyzed systems, we could not easily design such a set.

Moreover, we were interested in extracting user feedback at a broader level, so it can be easier
extrapolated to other tools. This therefore made it difficult to evaluate tools that support two
different tasks (e.g., detection of code smells and debugging of parallel applications) using the

same specific predefined tasks.
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6.6 Evaluation Results

Tables 6.3 and 6.4 show the results of the evaluation of the considered tools against the four
categories of desirable features (Sec. 6.2). We discuss these results below.

EFFECTIVENESS TASKS SUPPORTED AVAILABILITY
TOOLS Detecting Trace Support for

Scalability Integration Query Code Analysis Debugging Language Licensing Platform
support Smells Activities Support

Allinea High Low High Medium Medium Medium C, C++ Commercial Linux
DDT Fotran
CodeRush Medium High Medium High Low Low VB, Commercial Windows

C#
Code Pro High Medium High High Low Low Java Commercial Linux
Analytix Windows
Code Coverage Medium High Medium Medium Low Medium Java Non Linux
Plugin Netbeans Commercial Windows
CVSgrab High High Medium Medium Low Medium Non Linux

Commercial Windows
Gammatella Low Low High Medium High Medium Java Non Linux

Commercial Windows
JBIXBE Medium Low Medium Low Low Medium Java Commercial Linux

Windows
JIVE Medium Medium High Medium High Medium Java Non Linux

Commercial Windows
JSwat Medium High Medium Medium Low Low Java Non Linux

Commercial Windows
Paraver High Low High Medium High High Java Non Linux

Commercial
Project Medium Low Medium Medium Low Low VB Commercial Windows
Analyzer
Source High High Medium Medium Low Low Java, C++ Non Windows
Navigator C,Fotran Commercial
STAN High Medium High Medium Medium Low Java Commercial Windows

Linux
Tarantula Low Low Low Medium High Medium C Non Linux

Commercial
VB Watch Medium Low Medium Medium Medium Medium VB 6 Commercial Windows

Table 6.3: Tools against desirable features

TECHNIQUES USED
TOOLS 2D 3D Animation Color User Multi Information Navigation Dynamic

usage Interaction Views Density Visualization
Allinea DDT Yes Yes No Medium Low Medium Low Yes No
CodeRush with Yes No Yes Medium Medium High Low Yes No
RefactorPro
CodePro Analytix Yes No No Medium Medium High Medium Yes No
Code Coverage Yes No No Medium Medium Medium Low Yes No
plugin for NetBeans
CVSgrab Yes No No High High High High Yes No
Gammatella Yes No No High Medium High High Yes No
JBIXBE Yes No No Medium Medium High Medium Yes Yes
JIVE Yes No No Medium Medium High Medium Yes Yes
JSwat Yes No No Medium Medium High Low Yes No
Paraver Yes Yes No High High High High Yes Yes
Project Analyzer Yes No No Medium Medium Medium Medium Yes No
Source Navigator Yes No No Medium Medium High Medium Yes No
STAN Yes No No Medium Medium Medium Medium Yes No
Tarantula Yes No No High Low Medium High Yes Yes
VB Watch v2 Yes No No Medium Medium Medium Low Yes No

Table 6.4: Tools against techniques used

As already mentioned, only two developers had used SoftVis tools before in their work, although
all were aware of the existence of several such tools. When asked why, many of the participants

noted that their choice of a tool to use for corrective maintenance tasks at work was influenced
by what their competitors (or companies perceived as larger than theirs) use. The developers
also noted that their busy schedules did not give them enough time to evaluate the different

tools available in sufficient detail in order to form their own opinions. This may be an indicator
of the fact that the so-called early adoption phase did not essentially succeed on these tools, as
more time was needed to form a good impression of the tools’ usability.
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This aspect presents a challenge for new tool developers, as the chances of small-to-medium size

companies using their SoftVis tools might be tied to the tool acceptance by larger companies.
The lack of time for the developers to validate the various tools also highlights the need for
tool selection guides in the different areas of SoftVis, on the one hand, and SoftVis tools that
are specifically designed (and presented) in ways that favor a quick early adoption process.

In the few cases where the developers had used SoftVis tools before, preference was given to
those that would not show too much detail or interaction features. Even for this study, we
noticed that tool acceptance is heavily influenced by the amount of user interaction provided.

When interaction is hardly supported, tools tend to become unusable without a considerable
amount of learning time. Yet, too much interaction becomes cumbersome for the user to learn,
thus affecting usability as well, e.g., the complex 2D widgets and dense visualizations offered
by CVSgrab [150]. An average amount of user interaction would therefore be suitable for users.

This finding correlates well with our earlier study [117]. During that study, software developers
also showed discontent with a tool which required a lot of user input before displaying any
output. Nevertheless, tools that did not enable the user to contribute to or tune at all the final

visualization (layout, colors, annotations) were also not desired.

Another observation, noted from more than half the participants, is the frequent use of the
Eclipse IDE. Many developers felt that the features provided by Eclipse were sufficient for
their corrective maintenance tasks and thus never felt the need for additional SoftVis tools for

corrective maintenance. A few even raised questions as to whether the Eclipse IDE could not
be categorized as a SoftVis tool.

This observation suggests that new SoftVis tool developers focusing on corrective maintenance

would need to show the added advantage that their tool provides in comparison with a plain
IDE, a point already mentioned in the URC presented in Chapter 5. An evaluation such as the
one described here is relevant in proving the level to which a tool does what it claims to do.
We believe that tool developers are also interested in knowing that the users of their SoftVis

tools are actually performing faster or better than the ones without the tools. Failure to have
comparative studies may create skepticism on the users’ side.

Tool developers can use the developers’ IDE attachment to their benefit. First, they can create

tools that plug into the IDE’s. Second, they can use the IDE metaphor in organizing their
visualization tools. For example, the developers that evaluated the STAN tool found it easy
and natural to use as its visualizations utilized the basic Eclipse layouts. On the other hand,
five of the users taking part in our study felt that education had a major role to play in tool

adoption in the industry. They said that, had they been exposed to several SoftVis tools during
their undergraduate training, they would have been more inclined and motivated to use such
tools in their work.
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6.6.1 Observations from the study

We have observed a variety of tool trends from the evaluation results. These trends are detailed
below.

Among the considered tools, there is more support for static visualization compared to dynamic

visualization. Users that need tools that use either technique would, however, be able to find
them. Based on this trend, tool developers may choose to increase on the tools that support
dynamic visualization as those for static visualization seem to be sufficiently represented.

Animation and 3D, on the other hand, are not frequently utilized by the tools. Also, we noticed
that 2D visualizations are much better accepted by virtually all users. This trend also correlates
to previous observations of users favoring 3D and animation less, emphe.g. [150].

The preciseness of answering queries while carrying out corrective maintenance was ranked as
very important. The popularity of Rational Purify Plus within the industry, albeit its poor
presentation capabilities, supports this point [51]. Most of the tools considered here, however,
focus on visualizing the data, but do not offer analyses helping the actual problem correction.

A tighter integration between analysis and presentation was deemed as extremely desirable by
all users.

Along the same line, tool integration was mentioned by all users to be greatly desired for

SoftVis tools in program comprehension. Tool integration has a direct relation to the tool’s
user interface and as such influences the tool’s usability. When a tool is integrated with an
IDE, a familiar user interface is provided to the software developer as the menus for the new
tool are incorporated within the existing IDE. Standalone tools, on the other hand, present a

new learning challenge to the user, thereby reducing the ease of use. The medium to high levels
of integration observed in our evaluation, which were appreciated by the users, support the
importance of this factor to the success of the tools. Tool developers would therefore benefit
from integrating their tools in order to increase their acceptance by users.

Rich color usage and multiple views are well supported and accepted, and most tools make use
of them. Availability of multiple views, enabling user interaction and facilitating navigation in
SoftVis tools, are three features extremely well received by most users. These three features

enable developers to switch to the preferred visual representation of the data under observation
as well as customize the view, emphe.g., rearrange objects in layouts, to decrease ambiguous
or hard-to-interpret displays.

Within the programming languages, Java is well supported by most of the tools. Java program-

mers therefore have the most SoftVis tool support for corrective maintenance. The ease with
which Java engines enable data extraction and analysis seems to be responsible for this trend.
This is both true for static analysis and dynamic analysis. Hence, future tool developers can
choose to support Java based on the ease explained above or may choose instead to capitalize

on the much lower support of the other languages e.g. C++ so as to develop tools for them,
as recently shown in another study [139].

The visual scalability of the tools, or information density, is not high in most of the tools. This
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can be a hindrance to user acceptance of the tools. The higher the information density, the more

one can monitor at any given time. This is especially important when monitoring high-volume
dynamic data such as traces. Low density means that users takes more time to analyze code as
each session represents only a small bit of the total project. However, a too high density, such
as in dense pixel visualizations, e.g., [150] and similar, was also seen as quite hard to learn and

understand, and may prove an initial acceptance blocker. Overall, we believe tool developers
should incorporate multiscale methods for flexibly selecting the amount of information desired
by the user to be shown at a given time.

6.6.2 Results comparison with program comprehension studies

We now compare our evaluation results with the results of von Mayrhauser and Vans who looked

at program understanding behavior during corrective maintenance of large-scale software by
observing developers carry out corrective maintenance tasks on industry-size projects [148].

Actions and process

The actions of the developers carrying out corrective maintenance involved chunking and hy-

pothesis generation at all the different levels of abstraction [148]. Based on this, SoftVis tools
that support corrective maintenance should enable a user to view diverse abstraction levels
while enabling the generation of the hypothesis. This can only be done if query facilities are
supported within the tool as they form a basis from which a hypothesis can be proved or dis-

proved accordingly. Inability to search large code also makes it impossible for the developer to
carry out chunking. Additional factors crucial in the presentation of different abstraction levels
are the multiple view support and, partly, and the IDE integration to coordinate inter-view
navigation.

The categorization presented in this paper also highlights the importance of high query support.
This level enables a query within the code to be related to the visualization displayed thus
enabling faster chunking. Six of the 15 tools evaluated had high query support with 8 tools

having medium support. The majority of the tools are therefore tending towards high query
support which is the prefered mode for corrective maintenance [117, 148].

Information needs

Software maintenance professionals have varying information needs depending on their exper-

tise [148]. A tendency was, however, outlined for the more experienced programmers to search
for very specific types of information. This further emphasizes the need for refined, high query
abilities in the SoftVis tools for corrective maintenance. These facilities can enable the main-
tainer to relate the information got to the tasks to be carried out in order to perform corrective

maintenance.
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Finally, we should note that, as program comprehension is an essential ingredient of (correc-

tive) maintenance, a further comparison of existing SoftVis tools for this area with studies
of non-visual program comprehension tools and techniques would bring additional valuable
information.

6.7 Conclusions

In this chapter, the general URC model for SoftVis tools from Chapter 5 has been refined to a
more specific one for SoftVis and CM (CMRC). The usefulness of this refined model has been

demonstrated by doing a user study on actual tools and CM tasks. The model was instrumental
in structuring the comparison and discussion of the tools. While the URC model covers the
general desirable features involved in the early acceptance process of a new tool, the refined
CMRC model covers the more fine-grained features involved in supporting the more specific

corrective maintenance activities.

An evaluation of fifteen software visualization tools that support corrective maintenance was
carried out. The evaluation was not intended to choose one tool as superior over others. The

aim was to provide a pattern to evaluate existing visualization tools in corrective maintenance,
so as to guide tool users and developers in their choice of tool to use or techniques to support,
and to gain supportive evidence for the proposed CMRC model.

Furthermore, in this evaluation, the users assigned actual scores to the degree up to which a

given SoftVis tool matches a desirable requirement. In comparison, the users of the more general
evaluation of SoftVis tools against requirements presented in Chapter 5 did not quantify their
observations, but delivered them only qualitatively. Several observations can be made here.

Constructing a quantitative evaluation of a broad range of tools, against a relatively high-level
set of desirable features, and comparing such quantitative results obtained from different users,
is a delicate process. For this reason, we restricted the degree of detail of the quantification
scales to a few levels (Low, Medium, High). However, although imperfect, we believe that this

approach is more useful, and more scalable, for drawing actual conclusions about the suitability
of a given SoftVis tool for a given sub-discipline (like corrective maintenance) than having a
purely qualitative evaluation of tools (like the one presented in Chapter 5). This is in line
with the different intentions of the two models: Whereas the URC model describes the early

adoption process, which has typically a pass/fail outcome, the CMRC model describes the more
subtle evaluation process of a SoftVis tool for CM, which has more gradations.

From the techniques perspective, we see several tool features such as IDE integration, scalability,

visual multiscales and multiple views, and query support being strongly required by users and
provided by increasingly many tools, whereas some other features like 3D or animation are less
present in tools.

The study presented here still has several open questions:

a Do users reject 3D and animation in SoftVis tools for CM or are developers reluctant to
provide them?
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b Would developers exposed to SoftVis tools in their early training be more willing to use

them in their professional work?

c When developing SoftVis tools for corrective maintenance, at what point should the
views of practicing software maintainers be mainly involved? Should it be at the point of
conceiving the idea; during the development of the tool; or after the tool is developed and

is fully functional? Involvement at all points, although desirable, may not be practically
feasible.

In the next chapter, three tools that score differently against the CMRC model will be evaluated

with concrete corrective maintenance tasks. This will provide a more quantitative view of the
tools’ abilities to address their tasks as well as give feedback related to the predictive powers
of the CMRC.
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Chapter 7

Validating the classification model

In Chapter 6, a classification model for desirable features of SoftVis tools used in corrective
maintenance was proposed. The model gradually emerged out of three studies carried out over
a period of two years. In the first study, expert programmers were exposed to three SoftVis
tools and asked to carry out several simple comprehension and maintenance tasks (Chapter 4).

Their feedback was collected and structured in a model of desirable features. In a second study,
the model was compared against ten SoftVis tools to validate and refine the initially elicited
desirable features in the context of early tool adoption (Chapter 5). The result of the second
study is a Unified Requirements Classification (URC) model that is applicable to SoftVis tools

in general.

In a third study, our URC model of desirable features was particularized for corrective main-
tenance (CM) tasks, by exposing 16 programmers to 15 SoftVis tools that target CM tasks,

and having them both emphasize which features they consider desirable for assisting with a
number of submitted CM tasks, and also grade the tools according to the degree to which they
implement these desirable features (Chapter 6). The tasks included analyzing source code for
errors, debugging activities, finding classes and class interactions involved in a given error, and

generating and analyzing traces. The result, shown in Figure 7.1, classifies desirable features
in four main categories, each having sub-categories.

In terms of the case study design discussed by Yin [162], the above-mentioned three studies

led to the formation of a hypothesis, or theory. Specifically, let us further consider the refined
URC for SoftVis tools for CM (CMRC). The main hypothesis of the CMRC presented is that a
SoftVis tool that scores high on most of the model’s desirable features, will be indeed effective
in addressing (a subset of) the targeted CM tasks. However, this hypothesis needs to be tested

from various angles:

• predictive power: is a SoftVis tool, that scores high on the model’s desirable features,
perceived as useful by actual users in a concrete CM task during their actual work?

• completeness: would other desirable features, beyond those covered by the model, emerge
when actually using such tools?
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Figure 7.1: Requirements Classification model for SoftVis tools for Corrective Maintenance
(CMRC)

In this chapter, we aim to analyze the model’s predictive power and completeness, defined as
explained above. For this, we proceed as follows:

1. use the model to select three SoftVis tools for CM which fit the model’s requirements for

a good tool to different degrees

2. select a specific CM task and user group

3. ask the users to address the CM task using the selected SoftVis tools

4. gather quantitative and qualitative data on the effectiveness of the tools to help in solving
the task

5. interpret the data to understand the model’s completeness aspects and predictive power

For the predictive power analysis, in step 4 above, we measure different variables to assess
the tools’ usefulness, including the ability to complete the tasks successfully, the duration for
task completion, and the actual feedback from the developers concerning the tools’ usefulness
(Section 7.3.2). Next, we check the model’s predictive power by testing how these measurements

correlate with the model predictions. Specifically, we check if the developers who were able to
solve the given task (or not); perceived that the tool helped them in doing so (or not); and if
the tool features they made use of are in line with those claimed to be desirable by the model.

For the completeness analysis, in step 4 above, we gather qualitative data from written and oral
feedback given by the study participants after completing the given CM tasks (Section 7.4).
The details of the questionnaire used to gather the written feedback are given in Section 7.3.3.
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7.1 Study Structure

The structure of our study follows the explanatory case study design, as described by Yin [163,
162]. Case studies are the method of choice when the phenomenon under study (in our case:

the effectiveness of a SoftVis tool for CM) is not readily distinguishable from its context (in our
case: the CM process itself); the research question is of the type “why” or “how” (in our case:
“why and how is a SoftVis tool effective for CM?”); the investigator has little or no possibility
to control the studied phenomenon (in our case: the way developers use SoftVis tools for CM);

and when the object of study is a contemporary phenomenon in a real-life context.

Our case study is of the explanatory (causal) type, as we try to analyze the predictive power of
our SoftVis tool classification model, or in other words test the hypothesis “if a SoftVis tool fits

the model’s requirements, then it is highly likely to be a good SoftVis tool”. The used methods
involve both quantitative elements, e.g., measured variables such as developer experience, abil-
ity to complete task, task duration, accuracy, and correctness; and qualitative elements, e.g.,
the various questions addressed to the users in the post-study phase (Section 7.3.3).

Following the terminology of Yin [162], our study is of a single-case design, the case itself being
the usage of SoftVis tools in CM. The units of analysis are the individual experiments in which
developers solve a CM task using one of the SoftVis tools selected to fit the model (see further
Section 7.3). The theoretical proposition is that a SoftVis tool which fits our classification

model is highly likely to be effective in supporting CM. The logic linking data to propositions
states that, if a tool fits the model (by experiment construction), and it is effective in CM (as
measured by the experiment data), then it validates our proposition (the model’s predictive

power). The criteria for interpreting the findings uses the qualitative textual and oral feedback
from the users to interpret the hard measurements (time and accuracy of task completion), and
thereby elicit the reasons of why a certain SoftVis tool, or tool aspect, was good (or not) for
addressing a certain CM task.

In the following sections, we describe the actual experiment in detail, specifically the selected
SoftVis tools, the source code to be maintained, the participants, maintenance tasks, and post-
study questionnaire used to collect feedback.

7.2 Tools

We describe now the tools used for the evaluation. The selection process was restricted to

SoftVis tools usable for CM which comply with the following:

• score medium to high on most features deemed as desirable by our classification model.
These are also among the most important tool usability and effectiveness factors men-

tioned in the literature;

• are widely available, well known, and mature. This was done so as to remove any potential
bias present in some innovative, but not fully operational or mainstream, research-grade

84



tools;

• target the same programming language, run on the same platform, and integrate with the
same IDE (Eclipse). This was done so as to diminish further bias caused by differences
in such factors which are not relevant for our hypothesis testing.

Overall, the selection procedure follows the same procedure as described in Chapter 4, Sec-
tion 4.2.1, and also used in the study in Chapter 6, with the addition that we now only select
tools that score relatively high on our CMRC. This is needed as we aim to check the predictive
power of the CMRC.

The availability of professional programmers familiar with the chosen target language (Java)
and willing to invest time in the study, narrowed the alternatives to three actual tools. The
actual scores that the three tools obtained, based on the proposed classification model, are

shown in Table 7.1. The scores were given by the authors of this paper, independently on, and
in no interaction with, the actual developers who further tested the tools in the given CM task.

EFFECTIVENESS TASKS SUPPORTED AVAILABILITY
TOOLS Scalability Integration Query support Detect smells Trace analysis Debugging Languages Licensing Platform
CodePro High Medium High High Low Low Java Comm. Linux, Win
Ispace High Medium High High Low Low Java Free Linux, Win
SonarJ Medium Low Medium High Low Low Java Comm. Linux, Win

VISUAL TECHNIQUES USED
TOOLS 2D 3D Animation Color usage User interaction Multi views Info. density Navigation Dynamic viz
CodePro Yes No No Medium Medium High Medium Yes No
Ispace Yes No No Medium Medium High High Yes No
SonarJ Yes No No Medium Low Medium Low Yes No

Table 7.1: Tools against desirable features of the classification model

Figure 7.2: CodePro Analytix visualization plugin (actual screen snapshot from the tested code
base)
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The first tool, CodePro Analytix, was selected based on the results of an earlier study presented

in Chapter 6. For the other two tools, Ispace and SonarJ, we actually evaluated the tools with
respect to the model by using them on several small-scale, example-like, programs. In all cases,
the tool classification was only performed following the definition of the desirable features
as given in Chapter 6, and not based on the actual tool suitability for the current CM task

(described further in Section 7.3.2). CodePro and SonarJ are commercial tools. Ispace is an
open-source tool, but nevertheless shows the same level of maturity, documentation support,
ease of installation, and overall ease of use as the other two tools. All three tools are widely
known in the software engineering community. All three tools were used on comparable PC

machines running Windows XP and Eclipse, to remove further bias.

The three tools are detailed next.

Figure 7.3: Ispace visualization plugin (actual screen snapshot from the tested code base)

7.2.1 CodePro Analytix

This tool plugs into the Eclipse environment and adds several visual functionalities to the

Java IDE that can be used during CM [53]. Given a Java project loaded within Eclipse, the
plugin adds several menus to the folders and files in the project, containing options for code
auditing, computing code metrics, code coverage, and analyzing dependencies. Visualization
options include various types of force-directed and hierarchical graph layouts for extracted

containment and dependency relations, possibly annotated by metrics, such as the example
shown in Figure 7.2.
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Figure 7.4: SonarJ visualization plugin (actual screen snapshot from the tested code base)

7.2.2 Ispace

Ispace is also an Eclipse plugin targeted at visualizing Java code [50]. The tool enables drilling
down from displayed dependency graphs to the code level, and also allows code changes to be

synchronized with the displayed views. The visualization options are roughly analogous with
the ones available in CodePro, but based on a different implementation of layouts, interaction
and navigation options, and a slightly different look-and-feel. Figure 7.3 shows a snapshot of
an Ispace view showing containment and dependency relations between classes.

7.2.3 SonarJ

SonarJ is a standalone system that provides functions for navigating the structure, dependen-

cies, and source code of Java programs [44]. The tool provides multiple views on a system’s
structure, including architectural views, code metrics, hierarchical aggregation of dependen-
cies, and selection of software entities and dependencies that violate a set of user-specified
architectural or design rules. SonarJ can be used as a standalone tool, but also features an

operation mode where it functions integrated with the Eclipse IDE. Figure 7.4 shows a snapshot
of SonarJ depicting the visualization of dependencies between the packages of a Java system,
with dependencies highlighted based on a user query.
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7.2.4 Source Code

The code base used as target for the CM activities of this study was EpiHandyMobile, an
extension of EpiHandy, which is a mature Windows Mobile data collection tool [61]. Epi-
HandyMobile extends the base application, EpiHandy, to support Java-enabled phones using

Java Mobile Edition (J2ME). The code base is relatively large, containing 5886 methods in 207
classes, with an average of 8.59 lines of code per method, and a total of 12051 lines of source
code (excepting system packages and libraries).

7.3 Evaluation procedure

7.3.1 Participants

In total, seventeen programmers participated in the SoftVis tools evaluation, distributed in

several roles, as follows. First, two developers who had advanced knowledge of the code base
(Section 7.2.4) were assigned, one for CodePro, the second for Ispace. One of them was actually
the main developer of the code base. They assisted in evaluating the correctness of the CM task
completion, i.e., determined if the activities carried out by the other group members did solve

the given task or not. Next, fifteen professional developers were assigned to the evaluation,
six for CodePro (CP), six for Ispace (IS), and three for SonarJ (SJ), as shown in Table 7.2,
explained next. From the six developers in each of the first two groups, one also had prior
exposure to the considered code, but was not aware of the existing problem that was to be

solved during this experiment (see Section 7.3.2). We included this participant in order to see
how experienced developers, with good information about the code, use SoftVis tools in the
process of CM.

All participants were sought from software development companies. A pre-study questionnaire
was used to ensure that they had all needed skills, i.e., fluency in Java, competence in software
development with emphasis on CM, knowledge of J2ME, and familiarity with Eclipse and other
modern IDE’s. Familiarity with any SoftVis tool was also queried, but not used in the selection.

In an earlier tool evaluation presented in Chapter 6, participants were exposed to each tool
that they had to evaluate for 15 minutes. Over half of those participants, however, felt that a
developer needs 3 to 7 days to really grasp the features of a new tool in practice, and advised

this for further studies. We followed this point and provided the subjects of our current study
with 3 days of tool study time and a compact user manual explaining the tool’s main features.
The subjects could call back on a ‘trainer’ (one of the authors) several times during this training
phase, in order to receive additional help with the tools. To get a clear feeling that the tools

were understood well, we had the subjects use the SoftVis tools on their own code bases during
this training phase. Before starting the actual CM task, we confirmed with the developers that
they did not have unanswered questions on the SoftVis tools that they had to use.

Furthermore, the participants were clearly told that the authors of this paper were not related in
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User Sex Languages Programming CM experience IDE used for Ever used Prior code
known experience (years) (years) daily work SoftVis tool exposure

Java Eclipse
CP1 M C# 5 . . . 10 < 5 Visual Studio No Yes

Visual Basic .NET
CP2 M Java

PHP 5 . . . 10 < 5 Netbeans Yes No
Visual Basic

CP3 M Java
Python 5 . . . 10 5 . . . 10 none (command No No
HTML line tools)

CP4 M Java
C# 5 . . . 10 < 5 Visual Studio Yes No

Visual Basic
CP5 F Java < 5 < 5 Eclipse Yes No

Java Eclipse
CP6 M C++ 5 . . . 10 5 . . . 10 Visual Studio No No

Visual Basic

Java
IS1 M Visual Basic .NET < 5 < 5 Eclipse No Yes

C#
Python Visual Studio

IS2 M Java 5 . . . 10 5 . . . 10 No No
C Eclipse

C++ Visual Studio
IS3 M Java 5 . . . 10 5 . . . 10 No No

C# Eclipse
C

IS4 M Java 5 . . . 10 5 . . . 10 Eclipse No No
HTML scripting

IS5 M Java < 5 < 5 NetBeans No No
Visual Basic

Java
IS6 M C++ 5 . . . 10 5 . . . 10 Eclipse No No

Java
SJ1 M C, C++ > 10 > 10 Eclipse Yes No

Python Visual Studio
Java

SJ2 M C++ 5 . . . 10 5 . . . 10 Eclipse Yes No
Visual Studio

Java
SJ3 M C++ < 5 < 5 Eclipse Yes No

Python Visual Studio

Table 7.2: Programmers evaluating the CodePro Analytix (CP ), Ispace (IS) and SonarJ (SJ)
visualization tools

any way to the evaluated tools, in order to remove any possible positive bias. Finally, following
the recommendations in [122] on improving experiments that involve participants from industry,
the participants were paid nominal fees in order to increase both their dedication and lower the
risk of drop-out.

7.3.2 Tasks

All three developer groups received the following use case: A user would like to download

study lists from a server. For this, he opens the Phone Emulator, clicks the Run option, starts
the EpiHandy midlet, and logs on using the default username and password. Next, using the
wireless connection emulator, he selects a given connection type, goes back to the main screen,
and selects the Download Study List option. At this point, the application throws an exception.

A screenshot of this situation is shown in Figure 7.5.

Given this use case, we asked each developer to individually perform corrective maintenance on
the code base, i.e., find the problems and repair the code to ensure that the exception thrown

is replaced by a user-friendly message telling what is happening and what the user should do
to correct the problem. For this, they could use the Eclipse IDE, including the standard Java
compiler and debugger, and the additional SoftVis tool (Section 7.2). The set-up of this CM
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Figure 7.5: Application use-case showing a user provoked error

task is very similar, both in context and complexity, to typical CM activities performed by
mobile Java developers in their daily work.

The challenging part of the CM task was actually locating the code component that had to be

modified to correct the problem. Although only one component had to be modified, finding it
involved a thorough checking of the exception stack, after the exception was thrown, as well as
the code itself, to identify the precise section of the code that needed to be changed in order to
alter the displayed message. Considering the size of the code, and the fact that the developers

were not familiar with it, except for the two control persons mentioned above in Section 7.3.1,
the entire process could take a considerable amount of time.

7.3.3 Post-Study Questionnaire

After carrying out the CM task described in the previous section, which we also timed, we
collected feedback from each developer by means of a post-study questionnaire, as described

below. The questionnaire consisted of multiple choice and free-text answers. The questions
were explained in detail to the participants, and we sought their confirmation to be sure that
they were understood fully and correctly.

a Was the SoftVis tool suitable/helpful for the required debugging tasks?

Answer: Yes / No

b Would the tool have been more helpful if it was detached from the IDE

Answer: Yes / No
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c To what level did querying/ searching assist in fixing the problem
Answer (select one choice):

• it did not assist at all

• it was a bit helpful but I wish it was more precise

• it was very helpful in its current form and would need no further improvements

d Which of the following factors would positively influence your decision to purchase this

or a similar visualization tool that aids software debugging?
Answer (multiple choices possible):

• the tool has 2D graphics

• the tool has 3D graphics

• the tool provides animation

• the tool has a high use of color

• the tool allows users to interact with the visualization

• the tool supports several simultaneous views of the source code

• the tool displays as much information as possible on one screen

• the tool supports dynamic visualizations of the program as it runs

• the tool could automatically point where there are potential errors and offer sugges-
tions on how to overcome them

• tool is free (alternative: I would not mind paying if it catered for my needs)

e What functionality did you miss in the visualization tool which would have helped in
completing the given CM tasks?

Answer: Free text

f Any other comments / suggestions

Answer: Free text

Besides the questionnaire, we also engaged the participants in discussion in explaining their

answers in more detail, and providing any additional feedback, and noted down the comments
made.
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7.4 Results

The results presented below are compiled from the two questionnaires filled in by the partici-
pants, i.e., pre-study (Section 7.3.1) and post-study (Section 7.3.3), as well as the results and

timings of the CM tasks, which are presented in Table 7.3.

7.4.1 Background

Results from the pre-study questionnaire showed that most participants had never used a
SoftVis tool before despite the fact that several of them had been programming at professional
level (as part of a software company) for more than five years, a large part of which was spent in
CM. Figure 7.6 shows a pie chart summarizing the users’ responses to questions about SoftVis

tool usage. These results re-emphasize the point that SoftVis tools are not yet well adopted in
the industry. Some of the reasons become more clear as we further analyze the other results.

7.4.2 Task completion and duration

All users of CodePro and Ispace successfully completed the assigned task, as measured by the
two expert developers in each group (see Section 7.3.1). All these users but two explicitly

stated that the SoftVis tool was helpful (Table 7.3). Ispace users had lower completion times
on the average (Figure 7.8), and Ispace was also perceived as more useful than CodePro (Fig-
ure 7.7). Since both user groups did not know any of the tools prior to the study learn phase
(Section 7.3.1), we may conclude that Ispace was easier to use than CodePro. This point is

detailed further in Sec. 7.4.3 below.

In contrast, none of the three users of SonarJ was able to complete the CM task successfully.
The reasons for this outcome, as inferred from the users, are detailed separately in Section 7.4.6.
The times reported in Table 7.3 and Figure 7.8 for these users indicate the time until they gave

up the task.

Within the same tool group, there are not very large variations of the required time, and we
do not see a speed difference in favor of the two users having prior code exposure (Figure 7.8).

Note that completion times include a combination of using the IDE and visualization plug-in
for both searching for and correcting the error. Although hard to precisely quantify the amount
of time spent in the ‘visualization proper’ (SoftVis tool) and the IDE itself, due to the tight
integration and intertwining of the two, a qualitative observation of the users’ behavior suggests

that roughly a third up to half of the total time was related to the SoftVis tool. Given this,
we argue that the usage of the SoftVis tools had a relevant impact in the success, respectively
failure, of the CM task.

The completion time within each tool group seems, further, to be correlated with the developers’
experience (Table 7.2 vs Figure 7.8): The two users that have the highest completion times,
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IS1 and CP5, both within their group and globally, are also the only ones having under 5 years

of programming and CM experience.

User Task completion Task completion Prior code SoftVis tool
duration (mins) status exposure was useful

CP1 49 Correct Yes No
CP2 55 Correct No Yes
CP3 43 Correct No No
CP4 65 Correct No Yes
CP5 70 Correct No Yes
CP6 54 Correct No Yes

IS1 78 Correct Yes Yes
IS2 42 Correct No Yes
IS3 44 Correct No Yes
IS4 47 Correct No Yes
IS5 50 Correct No Yes
IS6 45 Correct No Yes

SJ1 40 Failed No No
SJ2 45 Failed No No
SJ3 60 Failed No No

Table 7.3: Post-study questionnaire results for the CodePro Analytix (CP ), Ispace (IS) and
SonarJ (SJ) tools

7.4.3 Used tool features

The Ispace plugin provides only one type of view to show package relationships in a project,
with drill-down functions enabling the user to move from packages to classes and then to code,
which can be edited. In comparison, CodePro offers more advanced features like code auditing,
metrics computation, generation of factory and test classes, analyzing dependencies, and finding

code clones. SonarJ offers structure and dependency visualizations and drill-down navigation
which is roughly similar to Ispace. Besides these, SonarJ offers a powerful set of architectural
views and ways to check architectural rules. However, for our CM task, these latter features
are less relevant.

We noticed that all users of CodePro, Ispace and SonarJ mainly used dependency visualizations
to support their CM task. However, the three tools use quite different visualizations for showing
dependencies, as follows. Ispace uses the drill-down method which enables both detail and

overview. CodePro does show the overall picture but, when requesting details, looses the
overview. Furthermore, the actual nested layout implemented by Ispace was perceived as
delivering a higher information density than CodePro. However, while both CodePro and
Ispace enable users to customize the dependency layout, SonarJ uses a predefined, fixed layout

based on a simple grid-based or row-based ordering of the entities, with relations always drawn
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as arcs (Figure 7.4 exemplifies this grid-based layout). While this layout is reasonably effective

in navigating hierarchically layered systems [94], it is less effective, produces more visual clutter,
and has a lower visual scalability, than the force-directed layouts used by CodePro and Ispace.

Most of the other visual elements present in the three tools look quite similar. They all provide
a folder explorer to navigate the system hierarchy (see Figures 7.2 - 7.4), linked views, including

source code views, and very similar graphical icons to show the elements in the visualizations.
However, since visualizing dependencies was heavily used by all users, the above-mentioned
technical differences in the dependency visualizations contribute in explaining the difference

in user performance and completion success (Section 7.4.2). This is an instance of the well-
known information visualization principle of combining overviews with zooming and details-on-
demand [118]. As one CodePro participant put it

Figure 7.6: Prior exposure to SoftVis
tools Figure 7.7: Response to question 7.3.3a

Figure 7.8: Comparison of task completion du-
rations. Users are sorted on cumulative pro-
gramming and CM experience Figure 7.9: Response to question 7.3.3b

“The tool [CodePro] cannot drill-down to the methods. The dependency view pro-

vides just high-level information for classes and interfaces. This is of little value
to the developers as class dependencies can be traced more easily than methods.
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CodePro is good and its usefulness can not be ignored, but another view of depen-

dencies is needed, apart from the tree. Maybe it could be a table enhanced with
drill-down functions. This is important in case of large volumes of dependencies”.

A similar comment, albeit in a stronger form, was made by the SonarJ users. In contrast,
Ispace allows users to drill down up to the level of individual methods, thereby providing a

quicker link and navigation to the source code itself.

All in all, there were several complaints of various degrees about all three dependency visu-
alization (scalability, flexibility, visual presentation, queriability). Just as one example, one

Ispace user required to hide/unhide the arrows (relations) between classes to reduce clutter.
This feedback actually maps to the scalability points made when determining the desirable
features: A scalable and clutter-free dependency visualization was, indeed, a main factor for
tool acceptance degree (see Chapter 6). The concrete feedback obtained in this study, both in

the form of textual and timing results, proves the importance of this desirable feature for the
tool success.

Interestingly, Ispace, which was found to be more useful by its users, is an open-source tool,

while CodePro and SonarJ are commercial tools. Mentioning this point is important, as there
are many tool evaluations which suffer from the bias of comparing a less-than-mature open-
source tool with a professional commercial tool. Given the evaluation outcome, and also the
fact that no user pointed in the verbal or written feedback to ‘tool immaturity’ as a limiting

factor, we believe that our measurement of tool usefulness is not biased by tool immaturity.

7.4.4 Query facilities

Figure 7.10 shows responses on how important the query facility (of the SoftVis tool) was to
the participants. While most users found this facility to have been helpful, preciseness was still
found to be lacking. Also, the tools’ inability to integrate with the finer-grained Eclipse query

functions was complained about, the weakest tool here being SonarJ. In particular, the fact
that the various SonarJ views are not tightly linked by queries and selection makes their usage
inefficient for our task of locating and following code elements (Section 7.3.2). One Ispace
user felt that it would have been helpful if the tool could show all classes implementing an

interface and including classes in other packages. This is a typical example of a complex query,
strengthening our claim, also reflected in both the URC and CMRC classification models, that
extensive query mechanisms are crucial to SoftVis tools in CM. Yet, one user found the query
facilities not useful at all, this being the expert in the CodePro group, who also had the highest

code exposure (see Section 7.5.2 below). This user actually also did not find the SoftVis tool
useful at all, so he used the built-in text query facilities of Eclipse.
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Figure 7.10: Response to question 7.3.3c

7.4.5 IDE integration

All participants strongly agreed that the SoftVis tools would work better attached to the

IDE than standalone (Figure 7.9). Some users mentioned explicitly the need to have the
visualizations integrated with the debugger so they could quickly locate classes or methods
throwing exceptions. If the buggy areas could be highlighted, at runtime, with a different
color for clearer identification, it would be better, one user suggested; another user suggested

the ability to auto-highlight the path of an exception in the code so as to make it easier to
troubleshoot. Such paths could be highlighted in sync in both the textual views as well as the
dependency views.

SonarJ was perceived, by far, as having the weakest IDE integration of the three studied tools.
Although the tool claims the capability of a smooth Eclipse integration, it appeared that many
of its functions, such as its query facilities, hierarchy browser, and even the code views, are
replicated functionalities rather than coordinated (linked) with the similar Eclipse features.

This high need for IDE integration matches observations in a wide variety of SoftVis tool
evaluations and studies [141, 69, 129, 20, 116, 138]. However, none of the previous references are
actually from the context of SoftVis usage in CM. From our observations in the current study,
compared with our own insight in earlier tool design [138, 137, 149, 47], the IDE integration

requirement is significantly stronger for SoftVis tools used in CM than for SoftVis tools used
in other activities, due to the inherent tight communication needs with editors, debuggers, and
compilers typical to CM.

7.4.6 SonarJ: Potential reasons for failure

If we summarize the apparent limitations of SonarJ, as indicated by its users, the following

points stand out (in decreasing order of importance):

• IDE integration: the tool replicates several functions of Eclipse, such as browsing, code
views, and queries, instead of (re)using the native functions. This makes users constantly
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navigate between the Eclipse and SonarJ views, thereby creating considerable usage over-

head. This overhead was mentioned as the main element for not being able to complete
the task;

• Information density: the dependency views use a fixed grid-based layout and arc-like
dependencies, which do not scale to large systems, and create significant visual clutter;

• Query support: the limited amount of linkage between views upon selection and searching
made the multiple views less collaborative, thus less useful in actually solving the given
task;

The interesting point to note here is that the above facts are in line with the classification of
SonarJ, performed independently on the actual CM task, user group, and code base (Section 7.2,
Table 7.1). That is, the classification model ranks SonarJ as ‘weak’ on the same desirable

features which are mentioned by its actual users.

7.4.7 Purchase factors

Figure 7.11 shows the results to the question on which factors would positively influence a
purchase decision for a SoftVis tool for CM. We asked this question separately in order to
determine, first of all, whether the CMRC classification model dimensions are perceived, indeed,
as relevant by the users (note the similarity between question 7.3.3 and the model’s dimensions,

detailed in Chapter 6). The following elements were observed:

• Dynamic visualization: Over half of the participants felt that dynamic visualization tools
would be very helpful, which is also argued for in earlier studies [11, 129, 69]. Note that

none of the evaluated tools provided such features (Table 7.1).

• Show suggestions: A similar number of participants also wanted tools to be able to
dynamically show suggestions on how to overcome errors while enabling simultaneous
views into the source code. This was a less expected point, but nevertheless one that may

be of interest to developers of SoftVis tools for CM.

• 3D rendering and animation: None of the participants felt that 3D rendering or anima-
tion would motivate purchase. Again, note that none of the evaluated tools provided such

features. We will not insist on this issue, as there is a certain split in the research com-
munity between advocates and skeptics of the effectiveness of 3D software visualizations
(see e.g., [80, 159, 69, 140]). However, given this aspect, in line with our previous obser-
vations (Chapter 6), we suggest adapting the proposed classification model by removing

3D visualization and animation as ‘desirable features’, as these did not appear, in this
study or our previous ones, as being mentioned as highly desirable by users. Animation
needs a few clarifications. By animation, we mean in our study the use of tools that ani-
mate given algorithms at a high-level of abstraction, such as described e.g., in [11]. This

is in contrast to dynamic visualizations of running code (mentioned earlier), where live
data is extracted from the runtime object and visualized. The distinction is potentially
important for tool success.
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• Commercial aspect: The participants were roughly equally divided between being willing

to pay for the tool and requesting a free tool. Although this response may be influenced
by the fact that our participants were all from the industry, thus more likely to accept
fee-based tools than e.g., academic users, this aspect is important as it does not outline
the commercial status of a tool as being a major acceptance hurdle.

Figure 7.11: Response to question 7.3.3d

7.4.8 Model validation and refinement

We aimed to check the predictive abilities and completeness of the CMRC model proposed
in Chapter 6. For the predictive aspect, we observed that all participants but one found the
two tools that scored high in the classification model (CodePro and Ispace) as being suitable

and useful for supporting the given CM task (see question 7.3.3a and Figure 7.7). All partici-
pants using these tools completed the given task successfully. We also noticed features explicitly
named as desirable by users, and for which the tested tools score low in the model, i.e., dynamic
visualization and showing debugging suggestions (Figure 7.11 vs the model’s dynamic visualiza-

tion and debugging dimensions (Table 7.1). The participants using SonarJ, which scored lower
on all three effectiveness dimensions and three of the visual techniques used (Table 7.1) was
not effective in supporting the given CM task. Furthermore, the textual and verbal comments

on SonarJ indicated limitations mainly along these dimensions (Section 7.4.6).
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Although not exhaustive, the information above suggests that the dimensions of the proposed

CMRC classification model are, indeed, relevant for selecting effective SoftVis tools for CM.
In other words, from the answers to questions 7.3.3b and 7.3.3d, as well as to the free-text
comments ( 7.3.3e and 7.3.3f, discussed above, we observed that the users found the evaluated
SoftVis tools useful (or not) because of the presence, or absence, of the features deemed as

desirable by the classification model.

However, we also noticed dimensions of the classification model which seem less relevant, and
as such, are possible candidates for elimination, i.e., the presence of animation and 3D visual-

ization. To fully decide on the relevance of these dimensions, further study is needed e.g., by
comparing SoftVis tools for CM that are equal along most other dimensions, except animation
and 3D views.

We should stress again that, during the entire study, the users were not aware of the existence

of a classification model, or the existence of a predefined set of so-called ‘desirable features’.
As such, we argue that the proposed classification model is indeed valid in the sense that a
SoftVis tool meeting the features deemed desirable by the model, has a high chance of being

useful in CM practice because of having these features. Beyond this point, however, we cannot
claim more predictive power for the proposed model. However, the fact that a SoftVis tool
would be perceived as useful without meeting most of the model’s desirable features would be
quite improbable, due to the fact that many other independent studies outline similar features

as our model, for a wide range of use-cases outside code-level CM [107, 64, 134, 133, 82].

7.4.9 Threats to validity

We acknowledge several threats to validity concerning our study. Following e.g., Huberman
and Miles [48] and Trochim and Donnely [146], we can classify these as follows:

Internal validity

Internal validity would be threatened if one were to conclude that a SoftVis tool under study

was helpful in solving the given CM problem when the problem was solved otherwise. In our
case, however, we explicitly asked the users to say whether, and how the tools were helpful or not
(questions 7.3.3a, 7.3.3c and 7.3.3f). Moreover, in the five cases when the tool was not helpful,
this was explicitly reported and justified by the users (see also Table 7.3). History, testing, and

instrumentation threats were not present, given the actual set-up of the study. Expectancy bias
was arguably removed by explicitly stating that the authors had no stakeholding in a positive
or negative outcome (Section 7.3.1). Differential subject selection is a possible threat, which we

tried to minimize (though not eliminate) by having a uniform mix of participants with various
experience in each group (Table 7.2).
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External validity

External validity would be threatened if the hypothesis that the classification model can pre-
dict likelihood of (un)suitability of a SoftVis tool for CM were not to hold for other SoftVis
tools or CM tasks or users. The fact that a SoftVis tool scoring very low on the model would

be suitable for a wide range of CM tasks and users, is, however, very unlikely, given that the
model’s dimensions are in line with attributes identified as desirable by many other researchers,
as mentioned in Section 7.4.8. Moreover, the type of CM task, selection of the SoftVis tools
(widely used and mature), and developers from the software industry, are quite typical, we

believe, for what the usage of a SoftVis tool in CM should be in the industry. Pretest effects
are arguably small, as we did not notice that the users had already formed opinions on the
(un)suitability of the tested tools at the end of the training period, except that they under-

stood their operation and were willing to test them further (Section 7.3.1). Reactive effects to
experimental arrangements were minimized by letting the users work individually in their own
familiar environment.

Conclusion validity

Conclusion validity would be threatened if there were no relationship between a tool fitting the
model and its perceived usefulness in practice. We tested three different tools with seventeen
participants, where each participant worked independently. The feedback from the participants
on the reasons why they (dis)like the tool they studied was quite similar. Moreover, as already

mentioned in Sec. 7.4.8, this feedback relates directly to most model features, except for the
animation and 3D views presence. A strong threat to conclusion validity would have implied
that the users perceived their studied tool as (not) useful for other reasons than the ones
accounted for the model’s dimensions. Such feedback, if present, would have been outlined by

the answers to questions 7.3.3e and 7.3.3f.

Construct validity

There are several construct validity threats to mention. Mono-operation bias is clearly an issue:

We used only one code base, CM task, three tools, and seventeen participants. Finding more
participants that would qualify the pre-selection requirements was, however, not possible. This
is a recurring issue in SoftVis research, and many SoftVis tool industrial evaluations actually
use even fewer participants than we did, and even wider tasks and more different tools to

compare [82, 129, 141, 69, 133, 134]. Determining professional programmers to invest days (as
in our case) to learn and evaluate a tool, and actually use it to measurably solve a CM task on a
non-trivial code base, is quite challenging. Many SoftVis studies focus just on the tool builders
or students, which has a high risk of introducing external validity threats such as pretest effects,

reactive effects, and internal validity threats such as expectancy bias and history threats. Mono-
method threats are present in the sense that the number of measured variables (the questions)
that quantify tool usefulness is limited. We tried to reduce, though not eliminate, this by
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designing questions that measure ‘usefulness’ in different ways, e.g., question 7.3.3a (direct

one), 7.3.3d (willing to buy a tool is another usefulness measure), 7.3.3e (if a missing feature
that helps solving the problem were present, the tool were arguably more useful). Interaction
of setting and treatment threats are arguably low, in the sense that the users experimented in
their own environment (their own workplaces at their own companies), independently, using

the tools installed on their own computers. The main factors which would differ from a real
usage of the SoftVis tools for ‘own work’ would be the usage of an externally imposed code
base and the presence of the silent observer monitoring the experiment. Concerning the first
point, however, our developers are used to work on commissioned tasks and third-party code

on a regular basis under relative delivery pressure, so this factor should not differ markedly
from their actual work patterns. Concerning the second point, the programmers involved in
this study should arguably not be strongly confused by the presence of a silent observer, given

that they are are used to pair programming techniques.

Questionnaire design

A separate potential threat to validity is related to the design of the post-study questionnaire
(Sec. 7.3.3). For instance, following the funneling method described by Oppenheim [97], the

order of the questions should start with broader questions and then narrow down to more
specific questions, one of which is actually question 7.3.3a. A further recommendation is to
follow the answers to the general questions by requests for clarification. Although our paper
questionnaire was not designed in this way, the verbal clarifications sought to the participants

after handing in the questionnaires followed this funneling pattern and the probing mechanism.
Further design points that may pose as validity threats are the lack of “not applicable” or “don’t
know” categories to the questions, and the relative bias of question 7.3.3b towards answering
it negatively.

Following Yin [163, 162], our current study is a single-case, multiple units of analysis (i.e.,
SoftVis tools) design. The study’s conclusions are based on analytic generalization (which
is possible from one single case), rather than statistical generalization (which would require,

indeed, more sample points). Probably the most feasible way to increase statistical general-
ization is to test more tools, as finding more programmers fitting our preconditions proved
very difficult. Yet, it is quite hard to find a large group of tools that share preconditions that
make them comparable, i.e., address the same CM task(s); are mature and well-accepted by

the developer community; and share the same target language, IDE integration, and platform.
For example, there are simply very few SoftVis tools for CM that are integrated with the same
IDE. Comparing tools that share less aspects is possible, but would require (a) the refinement
of the classification model with additional dimensions, which was not our goal here; and (b) a

larger user group or (c) increased pressure on the user group up to levels where they become
uncooperative or superficial, a factor we tried to avoid at all costs (Section 7.5).
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7.5 Additional points

In this section, we discuss additional points related to the organization and outcome of the
presented user study. For a detailed description of the conditions affecting the set-up of case

studies involving SoftVis tools, we refer to Chapter 8.

7.5.1 Motivating participants

Although the participants were motivated using the fee payment, it was still challenging to get
professional developers to invest enough time to do the complete round-trip of tool learning,
studying the code base, using the tool within the Eclipse IDE to successfully perform the CM
task, and present the results in the questionnaire. This was clearly a non-trivial task, which

required from the participants as much attention as they would pay when doing their regular
work. However, this makes us believe that the obtained results are indeed valid in a real-world
usage of SoftVis tools for CM. Among the mechanisms used to increase the study’s success
were allowing negotiations for higher fees than initially planned and accepting to carry out the

study at their workplace at a time that was convenient for them. Had there been no payments,
it would have been almost impossible to get any one of this specific developer group to dedicate
enough time and attention to do the study. This point on compensations may be relevant when

planning other studies of tools in industrial contexts, as also mentioned in [122].

7.5.2 Adoption by experts

As mentioned earlier, there was a code expert in each of the CodePro and Ispace groups
(Section 7.3.1). Interestingly, the expert in the Ispace group found the tool helpful in carrying
out the task, while the expert in the CodePro group, who had the highest code exposure, did
not find the tool helpful and eventually fixed the bug using only the source code and the IDE’s

text editing options. The experts’ detailed comments show a correlation between the usefulness
of a SoftVis CM tool and the tool’s ease of learn and use and specificity. The tool usefulness
and user’s familiarity with the code appear to be uncorrelated, as also noted in Section 7.4.2.
Despite the fact that a programmer is familiar with the code at hand, they can still be assisted

by a SoftVis tool, if the tool does not take up a lot of time to learn and use. However, due to
prior knowledge about the code, such users are also very likely to be impatient with tools that
do not quickly achieve what they desire. As such, it is very important to allow expert users

to incorporate task-specific features into such SoftVis tools. Any wrong step with this group
would lead to major adoption hurdles.

7.5.3 Evaluation constraints

As a general observation, the quality and generality of the results of such studies on tool
effectiveness and acceptance are strongly dependent on the use of suitable study partici-
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pants. Tools aimed at novice users, e.g., in education contexts, would be best evaluated using

novices, whereas tools aimed at industry professional developers are best evaluated using such
users [122]. Concerning this essential point, it is noted that the role of human subjects in
empirical evaluations is sometimes taken too lightly [144, 129]. Similar observations are made
by Koschke when distinguishing research and end-user contexts when evaluating future direc-

tions of software visualization [69]. In addition to this, there is also a need to elaborate on the
procedure and aim of the evaluation in order to aid in future replication of the studies as well
as usefulness of the results [15, 28, 144]. Although the efforts of setting up such evaluations are
quite high, as described above, we do believe that the insight obtained is worth the price.

7.6 Conclusion

In this chapter, we have presented an evaluation of three representative software visualization
(SoftVis) tools in the context of corrective maintenance (CM). Our aim was to check whether
the potential usefulness of a SoftVis tool for CM, as determined by the classification model
proposed in Chapter 6 does match indeed the opinions of actual professional developers using

the tool for a concrete CM task. We described the set-up and results of an evaluation study that
targets the above question. The study results are in line with the model predictions. This brings
additional justification to the claim that this classification model is helpful in determining the

usefulness of a SoftVis tool for typical CM tasks such as debugging. Specifically, the desirable
features identified by the model seem strongly necessary for a SoftVis tool to be useful in CM.
However, due to the limited number of test points, we cannot yet argue that the presence of
these features is also sufficient for predicting a tool’s usefulness, and that there are no other

hidden context variables which affect the results.

During this evaluation, several desirable points named as crucial for acceptance were observed:
tight functional integration within a recognized IDE, multiple correlated views, visualization-
to-code navigation, advanced search capabilities, and scalable and customizable dependency

visualizations. These are in line with the main factors of SoftVis tool acceptance in the industry,
independently identified by different types of studies [107, 13]. Additional desirable features
which we found are the important need of dynamic visualizations, error-correction suggestions,

and the observation that there is no significant difference between a tool’s availability (free vs
commercial) as long as it is highly effective for the users’ needs.

To conclude, a well-chosen SoftVis tool can, thus, be of high value in typical debugging activ-
ities in the software industry. However, the above-mentioned features required for acceptance

are not typically those that foster creative visualization research, but those that require high
implementation efforts. As a SoftVis survey also states: “Overcoming the problem of high [im-
plementation] investments with unclear benefits for visualization researchers is the real challenge
in integration and interoperability” [69]. This, together with the high costs associated to user

studies in the industry, which limit the insight we have into what this user group finds re-
ally useful in SoftVis tools, may be one of the primary causes of the gap between the SoftVis
research and its industrial acceptance.
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As a last comment, there is still a section of programmers who believe in the traditional way

of doing CM. Apparently, no amount of functionality would entice them to use a SoftVis tool.
As one programmer in our study put it:

I do not work with tools/IDE’s because it is like spoon feeding. I can get by with
basic code editors like vi. I would therefore not be motivated to adopt a Softvis

tool, no matter how good the functionality. Debugging is fun, with all these tools,
the fun is taken away leaving no need to debug.

In the next chapter, we will summarize the lessons learned over the period of evaluating SoftVis

tools.
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Chapter 8

Lessons Learned

In Chapters 3-7, we presented several user studies involving software visualization tools. One
common aim of all of these studies has been to elicit and analyze features of such tools that are
perceived as useful for software understanding tasks. This insight has been used to build and
refine a classification model of such features (Chapters 4 - 6) and, further, test the completeness

and predictive power of this model for SoftVis tools in corrective maintenance (Chapter 7).

During these studies, we have made several observations related to the set-up and execution of
user studies involving software visualization tools. This chapter discusses the lessons learned

during this process, and outlines recommendations for the execution of such further studies.
Here, we focus on the methodology of such a study, and not (the interpretation of) its results.
The latter have been discussed separately in the previous chapters.

8.1 Introduction

The set-up and execution of user studies involving software visualization tools is an arduous

process. A successful study is influenced by two types of factors. First, there are specific
constraints that pertain to the specific nature of a given study, e.g., the way to measure task
completeness or accuracy for a study that involves a given SoftVis tool for the execution of a
precise, given, software engineering tasks. We shall not discuss such factors here, as they are

specific to the concrete context of the task and tool under study. A second type of factors,
however, is arguably applicable to most user studies involving SoftVis tools. In the following, we
shall discuss the lessons learned during our studies presented earlier in this thesis that pertain
to such general factors.

The studies performed in this thesis involved, in increasing level of specificity, a general set of
SoftVis tools (Chapters 4 and 5), and SoftVis tools focusing on corrective maintenance (Chap-
ters 6 and 7). The users were professional programmers involved in software engineering in

general, and in corrective maintenance in particular. All these studies were related to eliciting,
refining, and measuring the so-called desirable features that a SoftVis tool offers to a developer
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involved in a given set of software maintenance activities.

As such, the generally applicable lessons learned in these studies address factors that can influ-
ence, positively or negatively, the execution of a study involving SoftVis tools and users from
the computer industry, with a focus on maintenance. We group these factors into ten classes:
Tool selection, participants, tool exposure, task selection, experiment duration, experiment lo-

cation, experiment input, participants motivation, relation of evaluators with the tools, and
analysis of results. A schematic overview of the typical experimental workflow, including the
above steps, is given in Figure 8.1.

Participants
selection

Tools
selection

Tool
exposure

Experiment Result
analysis

Task
selection

- based on questionnaires
- based on incentives

- based on users/tasks
- based on models

- based on users/tools
- user vs owner model
- discovery vs maintenance

- users learn tools - decide on location
- decide on duration 

Input
selection

- based on tasks/tools
- care to avoid bias

- questionnaires
- silent observations
- think-aloud comments 

Figure 8.1: Workflow of setting up and executing user experiments involving SoftVis tools

The lessons learned that involve each of the above-mentioned class of factors during execution
of SoftVis user studies are described and discussed next.

8.2 Tool selection

When carrying out evaluations, the first step is usually deciding which SoftVis tools to evaluate.

It is important that the tool selection is done with a clearly predefined motive, as it may not be
possible to evaluate all the SoftVis tools that exist. Different types of motives will determine
different styles, and set-ups, of the evaluation process, as follows.

Evaluating techniques: If the motive is to evaluate techniques, like in e.g. [136, 47], then

tools that use each of the techniques under evaluation may need to be chosen and later measured
against each other. The data collection should also focus on the techniques themselves rather
than the overall effectiveness of the tool, e.g. by means of questions specifically targeting the

former. Indeed, a tool may use an otherwise perfect technique, but in such a way that the
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task aimed to be solved is not addressed effectively. Conversely, a tool may be very effective in

addressing a task, but not because a certain technique is used.

Evaluating effectiveness: If the motive is to evaluate the effectiveness of a SoftVis tool for
a software engineering task, strictly looking at the visualization tool is not enough in general.
The effectiveness of such a tool is strongly influenced by the amount of integration thereof in an

entire workflow, which implies evaluating the communication with other established tools [69].
In this case, we noticed that it only makes sense to evaluate tools that have comparable amounts
of integration within the same workflow and toolset, as developers experience using weakly-

integrated tools as highly disruptive (see Chapters 4 and 7).

Comparative tool evaluation Finally, when comparing functionally identical tools, with the
aim of selecting a ‘winner’, the focus should be on the tool itself and less on the integration
aspects. While this is feasible, with some effort, the insights gained from such an evaluation are

naturally limited to the set of tools being compared. Ideally, comparative evaluations should
use the same subjects in evaluating different tools. However, if the task to be done has an
important program comprehension element, prior learning effects are hard to avoid in such a

case.

Here, we also noticed the important impact the tool audience has. It is risky to compare tools
whose target audience differs, e.g., tools targeted towards novice users such as Jeliot [60] against
tools aimed at professional developers such as CodeProAnalytix [53]. From the reactions of the

involved participants in our four studies described in the previous four chapters, we noticed
that this, first and foremost, causes confusion for the users themselves, as they have trouble
positioning themselves in a clear way against the tool (as novices, or professionals, respectively).

8.3 Participants selection

While many people may volunteer for a tool evaluation, it is essential to get a pre-study screen-

ing procedure that is in line with the objectives of the study. This ensures that participants that
will be indeed helpful to the evaluation at hand are selected. For a counter-example, in a related
study on visualizing annotations on UML diagrams, a wide range of users were involved [18].
These included fresh graduates, PhD students, seasoned researchers, and professional develop-

ers with over 10 years of experience. After that study, results had to be post-filtered based
on the developer experience, as several results delivered by the inexperienced developers were
suboptimal (due to limited knowledge) and would have biased the study’s results. In chapter 7,

studying SoftVis tool integration with IDEs such as Visual Studio was important, so accepting
participants with limited knowledge of that IDE would greatly affect the results of the study.
Precious time would be spent trying to bring the participants knowledge to an acceptable level
instead of carrying out the core experiment.

Pre-selection can be done with the aid of a questionnaire that asks about the knowledge of the
willing participants as was done in Chapters 6 and 7. We found this method better than pre-
selection based on the professional level (years of experience in the field). People with identical
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amounts of professional training years can have widely different skills, as it was evident in a

related study on software evolution [136].

Finally, it is very important to use tool evaluators that are similar, or identical, to the final
target group of the tool. It may not be appropriate to use students for a tool that is targeting
industrial practitioners, as they may not have the background to provide useful feedback [35,

18]. For this reason, our evaluations described in the earlier chapters involved only industrial
participants. However, in other cases, the tasks to be completed are comparatively simpler,
and thus easier to understand even by users with limited experience, such as the earlier cited

software evolution study [136]. If developers with a wide experience-level spread are involved,
a post-study classification, or weighting, of the results based on the experience, is a good
correction factor [18].

8.4 Tool exposure

To be able to get the most out of the experiment, the participants should be allowed sufficient

time to study and understand the SoftVis tools that they are going to use. In our experiment
carried out in chapter 6 the participants were given 15 minutes to study the tools before
carrying out their tasks. More than half of the evaluators later complained that the tool
exposure duration was too short and advised longer exposure durations days before the actual

evaluation, a point also noted by Plaisant et al. in a different context [105]. The learning
phase does not need to be contiguous, but has to be of sufficient duration. A learning phase
of at least a few hours, spread over maximally a week, seemed to be sufficient for the types of
experiments carried out in this work. Spreading the learning phase is also helpful for highly

experienced IT personnel that have very busy schedules. They require flexibility in order to
learn the tool at their own time without unnecessary pressure.

Novices may even need a longer tool learning phase. This was also earlier observed by Marcus et

al. [82] who had students perform poorly during the evaluations due to their low tool exposure
duration. The advantage with students, however, is that they are more willing to ask when they
do not understand and are more comfortable with slightly longer training durations. In [136],
the learning phase for the involved over 45 students was of roughly four full days, spread over

a period of 6..8 working days. Overall, it is not advisable to expect the participants to learn
the tool just minutes before the experiment. This is very hard and does not also reflect the
real-life scenarios.

However, there are exception to the need of extensive learning periods. First, there are cases
when the involved tasks are simple and thus involve short durations for learning the tools, like
in [18, 136], where the learning phase was approximately 20-30 minutes, due. Secondly, if the
evaluation aims precisely at understanding early adoption issues, i.e. the way in which users

quickly decide to further study (or discard) a new SoftVis tool after a quick scan, then extensive
learning periods should actually be avoided, since we are interested in understanding the users’
first impressions. This was the approach taken in Chapter 5.
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Overall, we strongly encourage on reporting the learning phase duration in publications involv-

ing user studies, as an added measure of the confidence in the evaluation’s results and a way
to compare different evaluations in meta-studies.

8.5 Task selection

Tasks are an essential part of tool evaluations. There are many ways in which these tasks
can be selected. Regardless of the method used, however, the tasks should be reflective of the

scenario being simulated in order for the evaluation to be helpful. An example would be a case
where a tool is being measured for its ability to answer software maintenance questions. We
see several axes along which task selection can be carried out, thereby influencing the purpose
of evaluation, as follows.

Task author: users vs owners The tasks can be generated by the tool user or tool owner.
By the owner, we mean here the person that is interested in the evaluation results, be it the
tool builder or a third party like a researcher interested in studying tools usability. If tasks are

generated by the users, e.g., software maintainers, then these will naturally include questions
that they are usually faced with during their work. These tasks/questions can be given to
additional tool participants along with the tools and then observed to see if they can indeed
answer them, as long as the participants share the same working environment and goals as the

original task author. This was the scenario taken in [136], where we pre-selected the tasks from
earlier discussions with KDE developers [151]. The chief advantage of this method is that a
positive evaluation is a very strong signal in terms of tool usability and/or effectiveness.

Alternatively, tasks can be generated by the tool owners. When this method is used, it is

advisable for either these tasks or their solutions to be validated by the domain experts, as
done e.g., in [151]. Failure to do this may pose the risk of generating tasks that are either
irrelevant, too simple or too difficult for the target participants, or biased to reflect the tool

under evaluation. This may in turn affect the evaluation by reducing its ability to reflect real
life scenarios. This second type of task generation seems predominant in many research papers
where authors aim to gather a-posteriori evidence for the design choices of their proposed tools.

Task type: discovery vs maintenance There are numerous types of tasks in software en-

gineering where SoftVis tools can help, and thereby many ways to classify SoftVis tools [29],
Within our tool evaluations, we have found a marked difference between tasks involving pro-
gram discovery and program maintenance. By program discovery, we denote the subset of

comprehension activities that enable one to get familiar with an unknown code base. We have
noticed at several occasions that programmers that maintain their own code, usually for long
periods of time, have much less need for tools that support generic discovery activities such as
e.g. showing the overall structure of the software or presenting evolution trends. The needs

here go towards detailed support for precise, fine-grained activities like debugging, refactoring
or optimization.

In contrast, tools that support discovery activities have a somewhat different aim: enable the
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user to get familiar with a wide range of aspects of a given system. Setting up evaluations for

tools in the two classes (discovery and maintenance) is also different. For discovery, it is harder
to quantify the effectiveness of a tool (how can one measure if a tool is effective in discovering
if it is not known what one is looking for?) For maintenance, it is easier to measure a tool’s
effectiveness, as the tasks are more precise, so one can quantify e.g., the duration or precision

of a task’s completion using a given tool. We also noticed that the above two task selection
dimensions seem to correlate with two types of participants: professionals are interested in
defining the tasks to be supported and focus more on maintenance and less on discovery; tools
supporting discovery and tasks generated by tool owners are mostly evaluated in academic and

research environments.

We believe, although we do not have hard evidence, that there is a direct correlation between the
task selection (when defining tool evaluations) and the perceived value of the tool evaluation.

In terms of the lean development philosophy, the value of a SoftVis tool evaluation would
be different for industrial users and academic groups [106]. For industrial users, the value is
in obtaining measurable improvement in supporting an ongoing software engineering activity,
e.g. reducing costs, increasing quality. For academic groups, the value is often in obtaining

early evidence supporting a novel tool design. The two notions of value should meet (a tool is
valuable when it measurably supports a valuable task).

8.6 Experiment duration

It has been advised in the past that tools be studied over long periods of time, e.g., months, in
order to fully assess their capabilities [119]. From our studies, however, we have noticed that

there are certain durations beyond which most tool participants become reluctant to continue as
the benefit of carrying on with the evaluation becomes less obvious for them. This is manifested
during the process of recruiting evaluators, with many asking upfront about the duration of the
experiment. We have noticed, for example, that expert programmers or industrial participants

are not comfortable with very long durations [18]. For our studies, 2-3 hour experiments,
excluding the time taken to learn the tool, were generally felt as appropriate by this group.
Researchers in the past who have worked with students have managed to use longer experiment

durations. For example, Lattu et al. were able to train a first group of students for 52 hours
and a second group for 12 hours as part of a tool evaluation [74]. This training was done in
form of introductory programming courses both at university and high school. In [136], the
total study duration for the targeted evolution visualization tool was 2-3 weeks per participant.

Similar results are shown by Haaster et al. [147]. Overall, experiments involving only students
can be set up in line with the students’ course contents, so longer durations are possible. This
is harder, or even unachievable, for industrial participants.
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8.7 Experiment location

One of the factors that can affect a tool evaluation is the location of the experiment. In our
previous studies presented in Chapters 4 and 5, we have had both lab-based experiments as

well as ‘mobile’ evaluations that could be taken to the evaluators’ locations. We have observed
that, when working with experts, preference is given to perform studies in their workplace.
The inconvenience on the participant is reduced as they can continue with their usual work
immediately after the experiment. In order to entice industrial users to participate in rigid

experiment set-ups located in labs, the incentives given to them may need to be higher than
for the in-place set-ups.

In contrast, previous researchers who have worked with students have used university premises [75,

147, 74, 136]. This is mainly due to the nature of the experiment setups. Finally, in mixed
academic-research studies such as [18], using the project meetings to schedule the experiments
proved very convenient. All in all, we hypothesize that locations that provide the least bother,
and least time consumption, for the participants are the ideal ones for such tool evaluations.

8.8 Experiment input

Depending on the motive of the evaluation, there are many ways in which the actual experiment

can be carried out. These may include measuring a tool’s ability to solve a program compre-
hension task or comparing several SoftVis tools. In all our experiments, the input was a given
system’s source code. When source code is analyzed, this code should be reflective of the tool’s

targets in order for realistic results to be achieved. As Hundhausen et al. noted, however, there
are tools developed whose authors are not sure of the targeted group, a phenomenon termed as
system roulette [49]. When evaluating such systems, it can be challenging to decide the type
of code to be used for the input. Regardless of this, care should be taken to ensure that the

code selected does not bias the experiment in any way. Examples of this bias include using
code that some participants have prior knowledge of, experimenting with very simple code for
a tool that should be targeting large scale code, or conversely.

Our studies described in Chapters 4 and 5 all targeted small-to-middle size code bases (under 10
KLOC), while the repository evolution study in [151] targeted large repositories of millions of
LOC. As such, issues such as optimization, speed of processing, and stability were mentioned as
the most important usability factors by the subjects involved in the repository study, whereas

these were less prominently mentioned by the users involved in the other studies we performed,
given the much smaller size of the input datasets.
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8.9 Participants motivation

Motivation is an important element of SoftVis tools evaluations and should thus be planned
and taken into account for when organizing such a study. Depending on the group that one is

working with, different forms of motivation may be used.

When working with professionals, one should keep in mind that this group already holds jobs
that are paying them on an hourly or monthly basis. As such, motivation may need to be
equated to tangible benefits at the study’s outcome. These may be in terms of learning to

use a tool that will provide measurable benefits in the regular work activities after the study
is completed, or possibly also financial incentives. In our studies, we tried both types of
motivation, and we cannot say that one motivation type is definitely more successful than the

other one.

Within industry professional, there exists a slightly different sub-group. This includes PhD
holders who are in industry, as well as academic staff that also double as consultants or de-
velopers. Some of our industrial participants in [18] were in this category. This group is at

times willing to take part in studies for the sake of gaining knowledge and may require less or
no additional motivation. However, for all industrial users, whether having a research affinity
or not, we noticed that a clear added value for the participants must be present in the study
set-up to motivate them to take part.

Motivation for students differs considerably. In previous experiments, students were motivated
using extra credits for their course project [82]. Experiments which were structured in form of
course work did not have major motivation hurdles, as the students had to complete the course

as part of their programs [136]. However, from our experience, we noticed that this ‘implicit’
motivation of students does also usually imply a less critical attitude towards the tools involved
in the study, as they do not identify themselves strongly with future tool users.

Regarding motivation, an essential point in doing evaluations of software visualization tools, or
other software engineering tools for that matter, regards correlating the tool’s provisions with
the users’ needs. It may sound obvious that any tool evaluation will be validated in measuring
how well a tool actually satisfied a concrete need of a concrete user. However, to be able

to quantify that, the users should have some concrete stakeholding in the analyzed software.
This correlates with the above user categories: Professionals would rarely give a truly positive
evaluation of a tool unless that solves problems on their own software. One may think that
to be less true for students. In previous experiments where both categories of participants

were involved, different results were observed. Professionals used the evaluated visualization
tools on software they were actively working on, and expressed clearly that tool usability has
to be proved on that software, not a third-party one (see Chapter 5). In a SoftVis tool study
related in aim and structure to the work in this thesis, a mixed population was used: Some of

the participants were active KDE developers (so knew the software under study), whereas the
others were not familiar with the visualized systems [151]. The participants who were actively
involved in development were, overall, more critical with respect to the studied tool’s usefulness

than the unfamiliar participants, who focused most on general usability features of the tool.
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Overall, we believe that users familiar with a code base will be significantly more strict when

evaluating a visualization tool than users unfamiliar with the code. The former ones have
very specific questions and wishes and also already have prior knowledge of the code, so they
find less value in tools that produce general-level facts. This opens the question: Is it, then,
meaningful to let users evaluate a SoftVis tool on input code in which they have no explicit

interest? From our experience, the answer is that this is possible, but mainly when the SoftVis
tool addresses general program comprehension tasks. In that case, it makes sense to evaluate
the tool on ‘unknown’ code bases. However, if the tool’s claims are of different nature, e.g.,
support maintenance, refactoring, or assessing code quality, for example, then it is much better

for the tool to be evaluated by users holding some type of stake in, thus familiar with, the tool’s
input.

8.10 Evaluators relationship with the tools

In many cases, the tool developers are in a better position to evaluate their tools since they
are very familiar with it, as it was the case in e.g., [151]. The learning curve is practically zero

in such cases, and there is high confidence in the quality of the results obtained. However,
there are some dangers with this route. Apart from the problem of bias from the evaluators
side, if participants know that the evaluator developed the tool, they may tend to be generous

with compliments while minimizing criticism. We noticed this effect relatively strongly in [151].
This, in turn, can create false positives about either the technique or the tool being looked at
thus reducing its chances of being improved.

In order to get the most objective results, its advisable for the evaluator to be as detached as

possible from the tool being evaluated. This can be done by letting a different person supervise
the evaluation of the tool or not informing the participants who developed the technique or tool
under evaluation. This was the route taken in [18]. In that study, we noticed no difference in
the qualitative output of the participants between participants who knew the (non-disclosed)

developers of the studied technique and those who had no relation whatsoever with the de-
velopers. In other studies involving student populations [136], the tool under evaluation was
originally developed by the main course lecturer. To eliminate bias, a slightly different version

of the tool was used, and presented under a different name and provided it from a third party
(web site). Although it was possible for the participants to trace the connection of the tool
and the course lecturer, and thus generate positive bias, this did not happen. All 45 student
reports, with no single exception, contained clearly critical observations on the ineffectiveness

of the evaluated tool with respect to certain tasks.

Another important element in student evaluations was found to be the decoupling of the eval-
uation itself from the success of completing the task. From previous tool evaluations done with
student populations, it was found that students are either positively or negatively biased when

the assignments goal is the completion of the task, depending on the student’s success in com-
pleting, or failing to complete, that task. In [136], it was found that this bias can be eliminated
by structuring the assignment in terms of describing the results of a number of actions done
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with the tool, and asking the users to comment on their findings (whatever those are), rather

than stressing on obtaining some results with the tool, and asking the students to describe
those results.

8.11 Analysis of results

As a final point learned during the tool evaluation studies we performed, there is a lot of data
that a study can generate, and that the evaluator has to interpret. In order for this evaluation

to be beneficial to a potential adopter of the evaluated tools, or to the developers of the tools,
the results should be analyzed in direct relation to the objective of the study (the task). If
visualization techniques are the ones being analyzed, the results should clearly indicate which
of the analyzed techniques is better than the other and also offer potential reasons why, see

e.g. [47]. This is very important as many practitioners are only concerned about the results as
opposed to the procedure itself.

If, however, the evaluation’s aims include understanding whether (and how) a tool is effective
in supporting a given software engineering task, other issues become prominent. The relation of

a visualization tool and software engineering task is rarely a direct one, the tool being effective
for that task only as part of a tightly integrated toolset and workflow, as outlined already in
Section 8.2. In that case, we see no other reliable and generic solution than to spend the added

effort to achieve a high level of integration prior to the evaluation. This is the road that was
taken, for example, in [136], where the repository visualization tool is tightly integrated with
the software configuration management (SCM) system used (CVS or Subversion) and also with
several software quality metric tools. A similar route was taken in [17, 18], where the targeted

UML visualization tool can be used as a drop-in replacement for other similar UML tools such
as Poseidon.

8.12 Limitations

We do not, in any way, suggest that the evaluations carried out in this thesis were perfect. As
outlined at several instances our evaluations have meaningful, extrapolable, results only within

specific conditions. All in all, were evaluated just 20 SoftVis tools, and involved only around
30 users. However, in presenting the lessons learned in this chapter, we limit ourselves to the
common denominator over which strong consensus from nearly all participants and evaluations
existed. As such, we believe these points to be important, and valid, for a wide range of

evaluations of SoftVis tools in general.

In this work, the only tool evaluations that we could study in detail, were the ones in which
we were directly involved as evaluators. This is, on the one hand, hard to avoid, as it is

very difficult to be aware of all the preconditions and details of a tool evaluation process done
by a third party, if these are not all explicitly reported in the respective publications. Also,
the number of SoftVis tool evaluations which are comparable in the sense mentioned in share
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comparable aims, tasks, types of users, learning curves, and experiment durations, is relatively

small. To strengthen the lessons learned mentioned in this chapter, it would be important
to further search for such studies in the literature, and enhance (or possibly invalidate) the
conclusions drawn here based on such additional evidence.

8.13 Summary

In this chapter we presented a number of lessons learned that target the context of organizing

evaluations of software visualization (SoftVis) tools. We distilled several dimensions which are
important to consider both when organizing a tool evaluation, and also when interpreting the
results of such a study. These dimensions cover areas ranging from tool and task selection,
choosing and training of participants, and analyzing the results from the evaluation.

Future research may include showing a different perspective of the evaluations in order to
present the respective lessons learned. This can include areas such as lessons learned in evaluat-
ing SoftVis tools for software evolution, software maintenance as well as education in software

engineering. By analyzing tool evaluations for more specific, narrower, areas, more specific
criteria that influence such evaluations can be elicited, thereby helping the organization and
comparison of such tool evaluations in the future.
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Chapter 9

Conclusions

The main aim of this thesis was to develop a framework that shows the correlation between
desired features of SoftVis tools in relation to software maintenance and the existing facilities
provided by such the tools. The purpose of such a framework is twofold. First, it can serve
to catalogue and classify existing SoftVis tools with respect to features perceived as desirable

by their targeted users so it helps users in choosing a SoftVis tool for a concrete context.
Secondly, it can serve in motivating tool developers in building increasingly suitable tools for
a given target audience. Our target user group involves professional developers working on
software maintenance in the industry.

We have approached the above aim of developing this framework in a top-down fashion. First,
a literature study was performed in order to extract several types of requirements (or desirable
features) perceived as being important for SoftVis tools in general (Chapter 2), as well as

different types of methodologies involved in user studies of SoftVis tools. In this respect,
numerous studies exist, ranging from taxonomies of SoftVis tools in general or according to a
specific field up to evaluations of concrete SoftVis tools for concrete tasks. From our literature
study, the general conclusion that emerges is that there does not yet exist a comprehensive

framework that captures and classifies software visualization tools in a way that makes it easy
to link, in a straightforward way, the features offered by these tools to the requirements deemed
to be important by their users. More importantly for the context of this thesis, there does not
exist a general framework that captures and classifies features of SoftVis tools perceived as

desirable by their main target users, the software engineers.

The second step of our work involved the creation of a unified requirements framework (URC)
that describes the SoftVis tool features perceived as important, or desirable, by typical indus-

trial users, during the so-called early adoption phase, i.e. the short amount of time during
which users explore a new SoftVis tool and decide to further learn it in more depth, or to
reject it (Chapters 4 and 5). The creation of this framework has involved two studies in which
three, respectively ten, SoftVis tools that target various aspects of software maintenance were

involved. The first study was exploratory in nature, aiming at understanding which are the
challenges involved in early adoption evaluation, and which are typical desirable features that
users can identify at this stage. This insight was refined in the second study, after which

116



the URC model emerged. The model captures six main classes of desirable features: search

functions, meta-data display, simplicity, integration, perceived added advantage, and realism.

The third step of our work involved studying desirable features of SoftVis tools for a more
specific area of software engineering: corrective maintenance (Chapter 6). This corresponds to
the features that users identify as desirable after a given tool has passed the early adoption

stage, and is considered for actual use in support of a concrete task. In this context, we
presented a Corrective Maintenance Requirements Classification (CMRC) for SoftVis tools.
The CMRC refines and extends the URC for the early adoption phase with subsequent features

that relate to specific tasks in corrective maintenance. The CMRC is structured around four
main categories of desirable features, targeting effectiveness, tasks supported, availability, and
techniques used. As expected, these categories are more specific than the ones presented by
the URC for the early adoption phase.

The choice for corrective maintenance as an area of interest was motivated by the predominant
amount of effort that is spent in this activity in the software industry, the large amount of
persons involved in corrective maintenance, as opposed e.g., to persons involved in design or

other forms of maintenance, and the relatively small number of studies in the literature that
discuss SoftVis tools for corrective maintenance, as opposed e.g., to studies that discuss SoftVis
tools for program understanding in general.

The fourth and last step of our work involved the testing of the completeness and predictive

powers of our refined CMRC model for desirable features of SoftVis tools for corrective mainte-
nance (Chapter 7). This step aimed to validate the initial claims of usefulness of such a model,
namely that it can be used to select the suitability of a tool for a given context based on the
tool’s scores with respect of the URC model features. For this, we carried out a case study in

which a concrete corrective maintenance problem had to be solved on a given code base with
three different tools. Two of these tools have high scores for the CMRC model requirements,
whereas the third tool has lower scores. All three tools have similar scores from the perspective

of desirable features identifiable at an early adoption stage, so they could all be potentially
selected by developers. The study performed outlined that the effectiveness of the three tools
is in line with their scores on the CMRC, and that the perceived limitations of the tools for the
task at hand are correlated with their limitations in covering desirable aspects of the CMRC.

Throughout this work, several user studies were carried out, involving over 30 software profes-
sionals and over 20 SoftVis tools. The lessons learned with respect to methodological aspects in
carrying our such user studies are compiled and summarized in Chapter 8. From these studies,

several general observations were made. First and foremost, there seems to exist a large gap
between the desirable features needed by software professionals involved in the corrective main-
tenance industry and the features provided by many of the widely available SoftVis tools. This
gap involves features such as toolset integration, ease of use, query support, and the support of

dynamic visualizations. On the other hand, SoftVis tools excel in providing a large number of
visual metaphors, or representations, for visualizing the data at hand. Although unsupported
by further evidence, we believe that this situation is typical for the research stage in which many
of the SoftVis tools currently exist: Many provide novel visualization paradigms, but relatively
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few take the further implementation-level steps of becoming fully operational products in an

industrial context.

The above observations relate to the future of software visualization, and specifically the steps
needed for SoftVis tools to make the transition to widely accepted (and used) instruments in the
software industry. Several conclusions can be drawn here. First, a refinement of the work in this

thesis in the direction of bringing additional evidence that emphasizes and details the differences
between desirable features and offered features of SoftVis tools would be of important added
value. Such a refinement could support our claims that more attention is needed for features

such as integration, query support, ease of use, and dynamic visualizations. A second future
work direction would be in refining and extending the CMRC model proposed here for other
fields beyond corrective maintenance, such as perfective and preventive maintenance. A third
direction of future work involves the execution of a large-scale broad survey of the usage of

SoftVis tools in the software industry during the past years, with the aim of eliciting evidence
for the factors which favor, or block, the wide acceptance of such tools in daily development
activities.
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