ENHANCED DECISION MAPS FOR
EXPLORING CLASSIFICATION MODELS

YU WANG

Cover: A decision map visualized in both the data space and the
2D image space.

Enhanced Decision Maps for Exploring Classification Models

Yu Wang
PhD Thesis

The research for this dissertation was conducted at the Visual-
ization and Graphics (VIG) group, part of the Department of
Information and Computing Sciences (ICS), Faculty of Science,
Utrecht University, the Netherlands.

Dor: https://doi.org/10.33540/3023

https://doi.org/10.33540/3023

Enhanced Decision Maps
for Exploring Classification

Models

Verbeterde beslissingskaarten voor het verkennen van
classificatiemodellen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de
rector magnificus, prof. dr. ir. W. Hazeleger,
ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

woensdag 16 juli 2025 des ochtends te 10.15 uur

door

Yu Wang

geboren op 9 Mei 1997
te Hebei, China

Promotor:
Prof. dr. A. C. Telea

Copromotor:
Dr. M. Behrisch

Beoordelingscommissie:
Prof. dr. D. Archambault
Prof. dr. H. L. Hardman
Prof. dr. A. P.J. M. Siebes
Prof. dr. R. C. Veltkamp
Prof. dr. P. Yolum Birbil

ABSTRACT

High-dimensional data is a key study object for both machine
learning (ML) and information visualization. In the field of visu-
alization, dimensionality reduction (DR) methods, also known
as projections, are one of the most frequently used classes of
techniques for visually exploring large and high-dimensional
datasets. In ML, high-dimensional data is generated and pro-
cessed by classifiers and regressors, which increasingly require
visualization for explanation and exploration.

This thesis focuses on a recent visualization technique called
decision maps. A decision map is a 2D image that visualizes the
decision boundaries of a classifier in the data space, and can be
used to explain and improve the behavior of ML classifiers. Con-
structing decision maps essentially involves a DR method and
its inverse process (inverse projection). As such, ML techniques
can help to create decision maps by providing improved (inverse)
projections.

We begin with a case study applying decision maps to explain
the classification of mineral deposit genesis. Our findings show
that decision maps provide extra insights into the mineral classi-
fication model, aiding geologists in interpreting the model. How-
ever, we also identified gaps in current decision map techniques
that present opportunities for improvement.

Following this case study, we conducted a comprehensive eval-
uation of three notable decision map techniques. Our evaluation
shows that each technique has unique advantages and disadvan-
tages. Our results can guide users in selecting the most suitable
technique for specific tasks. A particularly salient finding of this
evaluation was that all tested decision maps exhibit a surface-like
behavior when applied to a 3D dataset.

We explored the aforementioned surface-like behavior of de-
cision maps across more scenarios. By estimating the intrinsic
dimensionality of the maps, we found that existing decision map
methods cover only a small portion of the intrinsic dimensional-
ity of high-dimensional data spaces. This finding highlights fun-
damental limitations in all current approaches to constructing
decision maps.

To address these limitations, we propose a novel approach
for computing inverse projections with the support of ML. Our
method allows users to interactively control the location of the in-

iii

ABSTRACT

versely projected points, thus also of visualizations like decision
maps, within the high-dimensional space. In this way, users can
explore larger parts of the data space, bypassing the practical lim-
itations imposed by the aforementioned surface-like behavior of
decision maps. We demonstrate the effectiveness of our approach
through its application to a style transfer task.

Finally, we introduce an accelerated computation method for
decision maps. Our method significantly reduces the computa-
tion time for both basic decision maps and enhanced variations
thereof such as gradient maps. The acceleration facilitates the fur-
ther deployment of such visualizations in interactive visual ana-
lytics workflows for classifier engineering.

iv

SAMENVATTING

Hoog-dimensionale data is een belangrijk studieobject voor zo-
wel machine learning (ML) als informatievisualisatie. In het vak-
gebied van visualisatie zijn dimensionaliteitsreductie (DR) me-
thoden, ook wel projecties genoemd, een van de meest gebruikte
klassen van technieken voor het visueel verkennen van grote
en hoogdimensionale datasets. In ML wordt hoogdimensionale
data gegenereerd en verwerkt door classifiers en regressoren, die
steeds vaker visualisatie vereisen voor uitleg en verkenning.

Dit proefschrift richt zich op een recente visualisatietech-
niek genaamd beslissingskaarten. Een beslissingskaart is een 2D-
afbeelding die de beslissingsgrenzen van een classifier in de ge-
gevensruimte visualiseert en kan worden gebruikt om het gedrag
van ML-classifiers te verklaren en te verbeteren. Het construeren
van beslissingskaarten omvat in essentie een DR-methode en het
inverse proces daarvan (inverse projectie). ML-technieken kun-
nen bijdragen aan het maken van beslissingskaarten door verbe-
terde (inverse) projecties te leveren.

We beginnen met een casestudy waarin beslissingskaarten wor-
den toegepast om de classificatie van mineraalafzettingen te ver-
klaren. Onze bevindingen tonen aan dat beslissingskaarten extra
inzichten bieden in het mineralenclassificatiemodel, wat geolo-
gen helpt bij de interpretatie van het model. We identificeren ook
tekortkomingen van de huidige technieken voor beslissingskaar-
ten — die mogelijkheden voor verbetering bieden.

Na deze casestudy voeren wij een uitgebreide evaluatie uit van
drie prominente technieken voor beslissingskaarten. Onze evalu-
atie toont aan dat elke techniek unieke voor- en nadelen heeft.
Onze resultaten kunnen gebruikers helpen bij het kiezen van de
meest geschikte techniek voor specifieke taken. Een opvallende
bevinding van deze evaluatie was dat alle geteste beslissingskaar-
ten een oppervlakachtig gedrag vertonen wanneer ze worden toe-
gepast op een 3D-dataset.

We onderzoeken dit oppervlakachtige gedrag van beslissings-
kaarten verder in meerdere scenario’s. Door de intrinsieke di-
mensionaliteit van de kaarten te schatten, ontdekten wij dat be-
staande methoden slechts een klein deel van de intrinsieke di-
mensionaliteit van hoogdimensionale ruimtes dekken. Deze be-
vinding benadrukt fundamentele beperkingen in alle huidige be-
naderingen voor het construeren van beslissingskaarten.

SAMENVATTING

Om deze beperkingen aan te pakken, stellen we een nieuwe
benadering voor om inverse projecties te berekenen met onder-
steuning van ML. Onze methode stelt gebruikers in staat om in-
teractief de locatie van de invers geprojecteerde punten te con-
troleren, en daarmee ook visualisaties zoals beslissingskaarten,
binnen de hoog-dimensionale ruimte. Op deze manier kunnen
gebruikers grotere delen van de dataruimte verkennen zonder
de praktische beperkingen die worden opgelegd door het eerder
genoemde oppervlakgedrag van beslissingskaarten. We demon-
streren de effectiviteit van onze aanpak door de toepassing ervan
op een stijltransfertaak.

Tot slot introduceren we een versnelde berekeningsmethode
voor beslissingskaarten. Onze methode vermindert de rekentijd
aanzienlijk voor zowel basisbeslissingskaarten als geavanceerde
varianten zoals gradiéntkaarten. Deze versnelling vergemakke-
lijkt de verdere inzet van dergelijke visualisaties in interactieve
visuele analyseworkflows voor classifier-engineering.

vi

PUBLICATIONS

This thesis is a result of the following publications:

Y. Wang, A. Machado, and A. C. Telea. Quantitative and
qualitative comparison of decision-map techniques for ex-
plaining classification models. Algorithms, 2023.

Y. Wang and A. C. Telea. Fundamental limitations of inverse
projections and decision maps. In Proc. International Joint
Conference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications (IVAPP), 2024. (Best Student Pa-
per Award)

A. C. Telea, A. Machado, and Y. Wang. Seeing is learning
in high dimensions: The synergy between dimensionality
reduction and machine learning. SN Computer Science, 2024.

C. Grosu, Y. Wang, and A. C. Telea. Computing fast and
accurate decision boundary maps. In Proc. EuroVis Workshop
on Visual Analytics (EuroVA), 2024.

Y. Wang, K. Qiu, A. C. Telea, Z. Hou, T. Zhou, Y. Cai, Z.
Ding, H. Yu, and]J. Deng. Interpreting mineral deposit gen-
esis classification with decision maps: A case study using
pyrite trace elements. American Mineralogist, 2024.

Y. Wang, C. Grosu, and A. C. Telea. Computing fast and ac-
curate maps for explaining classification models. Computers
& Graphics, 2025.

Y. Wang and A. C. Telea. Investigating desirable properties
of inverse projections and decision maps. Communications
in Computer and Information Science, 2025. (In press)

Y. Wang, F. Dennig, M. Behrisch, and A. C. Telea. LCIP:
Loss-controlled inverse projection of high-dimensional data.
2025. (Submitted to IEEE Transactions on Visualization and
Computer Graphics)

The relation between the abovementioned papers and the chap-
ters of this thesis is explained in a footnote at the beginning of
every chapter which is based on these publications.

vii

PUBLICATIONS

During the development of this thesis, other contributions were
also achieved:

¢ D. Blumberg, Y. Wang, A. C. Telea, D. A. Keim, and F. L.
Dennig. Inverting multidimensional scaling projections us-
ing data point multilateration. In Proc. EuroVis Workshop on
Visual Analytics (EuroVA), 2024.

* D. Blumberg, Y. Wang, A. C. Telea, D. A. Keim, and F. L.
Dennig. Multilnv: Inverting multidimensional scaling pro-
jections and computing classifier maps by multilateration.
Computers & Graphics, 2025.

viii

CONTENTS

1 INTRODUCTION 1
1.1 Machine learning 1
1.2 Challenges of ML engineering 2
1.3 Explainable Al 2
1.4 Visualization, visual analytics, and XAI 3
1.5 Decision maps for classifier engineering 5
1.6 Research questions 9

1.7

Contributions 11

2 RELATED WORK 15

2.1
2.2

2.3

2.4

Introduction 15
Background 17
2.2.1 Interaction between ML and DR 20
22.1.1 How DR helps ML and con-
versely 20
2.2.2 Common aspects of DR and ML 21
2.2.2.1 Functional commonalities 22
2.2.2.2 Non-functional commonali-
ties 22
Seeing for learning: DR assists ML 24
2.3.1 Assessing and improving classifiers =~ 25
2.3.2 Pseudolabeling for ML training 26
2.3.3 Understanding DL models 27
2.3.4 Decision boundary maps 30
2.3.4.1 Basic idea of decision boundary
maps 31
2.3.4.2 Enhancements of basic
DBMs 32
2.3.5 Putting it all together: Visual analytics
workflow 36
Learning for seeing: ML assists DR 37
2.4.1 Deep learning projections 38
2.4.1.1 Basic idea of learning projec-

tions 38
24.1.2 OOS and sensitivity analy-
sis 39

2.4.1.3 Refinements of NNP 40
2.4.2 Inverse projections 41

CONTENTS

2.4.2.1 EBarly methods for computing in-
verse projections 43
2.4.2.2 Deep learning inverse projec-

tions 44
2.4.2.3 Applications of inverse projec-
tions 45
2.5 Future exploitations of the ML-DR connec-

tion 46

2.5.1 Prospects of DR assisting ML: Seeing to
learn better 46
2.5.1.1 DBMsinuse 46
2.5.1.2 Visualizing regressors 47

2.5.2 Prospects of ML assisting DR: Learning to
see better 48
2.5.2.1 Inverse projection quality 48
2.5.2.2 Increasing user control 50
2.5.2.3 Dynamic projections 51

2.6 Conclusions 52

3 APPLICATIONS OF DECISION MAPS IN GEO-
SCIENCE 53
3.1 Introduction 53
3.2 Related Work 55
3.2.1 Traditional trace element discriminant dia-
grams 55
3.2.2 Machine learning classifiers for mineral ge-
netic type classification 57
3.3 Methods 58
3.3.1 Dataset collection 58
3.3.2 Workflow 59
3.3.2.1 Metrics 59
3.3.2.2 Data preprocessing 60
3.3.2.3 Optimal decision boundary map
construction 60
3.4 Results 62
3.5 Applications 62
3.5.1 Unseen location example 63
3.5.1.1 Case Study: Analysis of the Za-
ozigou Gold Deposit 63
3.5.1.2 Classifying Pyrite from Za-
ozigou 64
3.5.2 Exploratory data analysis and model expla-
nation using decision maps 65
3.5.2.1 Feature Inverse Projection 65

3.6

3.7

CONTENTS

3.5.2.2 Ranking the features 66
3.5.2.3 Visualizing feature patterns 68
Discussion 70
3.6.1 Interpretability and limitations of decision
maps 70
3.6.2 Implications for mineral deposit genesis
classification studies 73
Implications 75
3.7.1 Implications for the geoscience commu-

nity 75
3.7.2 Implications for visualization commu-
nity 76

QUALITATIVE AND QUANTITATIVE EVALUATION OF
DECISION MAPS 77

4.1
4.2

43

44

45

Introduction 77

Related Work 78

4.2.1 Overall workflow of decision map 78
4.2.2 DBM 8o

423 SDBM 81

4.2.4 DeepView 82

4.2.5 Limitations 82

Evaluation method 83

4.3.1 Global metrics 84

4.3.2 Local metrics 87

4.3.3 Datasets 89

4.3.4 Classifiers 9o

Comparison Results 91

4.4.1 Global metrics of real-world datasets 91
4.4.2 Interpreting local metrics on synthetic

data 92
4.4.3 Analyzing local metrics on real-world
data 93

4.4.3.1 Decision Maps 95

4.4.3.2 Smoothness 96

4.4.3.3 Class stability map 98

4.4.3.4 Distance to decision bound-

ary 99
4.4.3.5 Distance to the nearest training
data 100

4.4.4 Computational efficiency 101

Discussion 102

4.5.1 Decision Maps for Deep Learning Varia-
tions 102

xi

CONTENTS

Xii

4.6

4.5.2 Workflow to guide the selection of decision
map techniques 106

4.5.3 What decision maps really are 107

4.5.4 Limitations 110

Conclusion 111

FUNDAMENTAL LIMITATIONS OF DECISION
MAPS 113

5.1
5.2
53

5.4

55

5.6

Introduction 113
Background 114
Visual evaluation on 3D data 115
5.3.1 Method 116
5.3.2 Results 116
5.3.2.1 Preliminary comparison 116
5.3.2.2 Detailed comparison 117
Evaluation on high dimensional data 121
5.4.1 Method 121
5.4.1.1 Datasets 121
5.4.1.2 Error of the inverse projec-

tion 122
5.4.1.3 Intrinsic dimensionality estima-
tion 122

5.4.1.4 Gradient maps 124
5.4.2 Results 125
5.4.2.1 Error assessment 125
5.4.2.2 Intrinsic dimensionality estima-
tion 126
Discussion 133
5.5.1 Surface behavior of inverse projections and
decision maps 133
5.5.2 Coverage of decision maps 134
5.5.3 Comparing decision map methods 135
5.5.4 Limitations caused by the low dimension-
ality of decision maps 135
5.5.5 Limitations 137
Conclusions 137

LOSS-CONTROLLED INVERSE PROJECTIONS 139

6.1
6.2

6.3

Introduction 139

Background and Related Work 140

6.2.1 Learning disentangled representations and
adversarial training 142

Design of Loss-Controlled Inverse Projec-

tion 143

6.4

6.5

6.6
6.7

CONTENTS

6.3.1 Inverse Projection Deep Learning Network
Architecture 143

6.3.2 Computing z for the entire projection
space 145

6.3.3 Controlling the inverse projection 145

Evaluation 147

6.4.1 Added value of disentanglement 149

6.4.2 Comparison to other inverse projection
methods 151

6.4.3 Controllability: Going beyond a fixed sur-
face 155

User control of the inverse projection 159

6.5.1 Local control: Target 1is close to
source 159

6.5.2 Far-away control: Target is far from
source 161

6.5.3 Smoothness of controlled projections 163

Discussion 164

Conclusion 166

FAST COMPUTATION FOR DECISION MAPS AND
CLASSIFIER MAPS 169

7.1
7.2
7-3

74

75

7.6

77

Introduction 169

Related work 170

Fast DBM computation 172

7.3.1 Binary split 172

7.3.2 Confidence split 173

7.3.3 Confidence sampling 174

Evaluation of acceleration heuristics 174

7.4.1 Comparison of acceleration heuris-

tics 174
7.4.2 Parameter setting for binary split heuris-
tic 177

7.4.3 Implementation details 178

In-depth evaluation of binary split accelera-

tion 178

7.5.1 Using additional classifiers 178

7.5.2 Consistency evaluation 180

7.5.3 Accelerating additional direct and inverse
projection techniques for creating decision
maps 180

Accelerating the computation of continuous

maps 182

Discussion 186

xiii

CONTENTS

7.8

Conclusion 189

CONCLUSIONS 191

8.1
8.2
8.3
8.4
8.5
8.6

Decision maps in practice 192
Quality of decision maps 192
Coverage of decision maps 193
Controllable inverse projections 193
Fast decision map computation 194
Directions for future work 195

BIBLIOGRAPHY 197

BIOGRAPHY 219

ACKNOWLEDGMENTS 220

Xiv

INTRODUCTION

1.1 MACHINE LEARNING

In the last decades, Machine Learning (ML) has exponentially
grown to be a key technology that assists a wide, and in-
creasing, range of application domains in science, engineer-
ing, technology, and everyday life. Whether serving scientists
who aim to design specific chemical molecules for effectively
combatting widespread diseases — like the by now infamous
COVID (Kowalewski and Ray, 2020); engineers who work to opti-
mize specific machinery configurations to reduce costs (Geng and
Wang, 2020); geologists who aim to understand which factors
have led to the appearance of specific mineral deposits (Petrelli
and Perugini, 2016; Gregory et al., 2019); biologists aiming to
automatically classify parasites based on images thereof to in-
crease public health efficiency (Suwannaphong et al., 2023); or
consumers asking for recommendations on buying specific prod-
ucts (Ren et al., 2020), ML technologies have become a fundamen-
tal part of all such solutions and applications.

ML comes in many guises and variants. At a high level, and
without loss of generality, we can distinguish so-called supervised
and unsupervised ML approaches. In the unsupervised case, ML
algorithms are used to ‘find structure’ in a large amount of data
samples (also called observations or data points) where each sam-
ple typically has tens up to thousands of so-called dimensions
(also called variables or attributes). When successfully identified,
structural elements such as clusters of samples (including their
spread, density, and shape); distinctions between noisy samples
and samples following a given pattern; the fit of samples to a
given distribution; and the presence of outlier samples (which
are far away from dense sample clusters) can further help practi-
tioners in reasoning about the underlying phenomena that have
created the data under study. In the supervised case, ML algo-
rithms aim to construct a so-called model that best fits a set of pre-
defined so-called training set of samples. The aim hereof is to next
extrapolate the constructed model to predict, or infer, behavior on
subsequent, so-called unseen, samples. Supervised learning next
takes various forms such as classification and regression. In classi-
fication, the model aims to predict a so-called class label based on

INTRODUCTION

the values of other available sample dimensions. In regression,
the model aims to predict one or several, typically continuous,
so-called dependent dimensions based on the available, so-called
independent, data dimensions.

1.2 CHALLENGES OF ML ENGINEERING

Developments in the ML field in the last decade have shown re-
sults which were earlier hard to imagine. In particular, the advent
of Deep Learning (LeCun et al., 2015), which proposes models ar-
chitected as dense neural networks that mimic (up to an extent)
the functioning of the human brain, coupled with increasing com-
putational power delivered by Graphics Processing Units (GPUs),
have led to practical solutions for training highly complex (and
large) models that can perform sophisticated tasks such as face
detection and recognition; text and image analysis and synthe-
sis; and steering automotive devices to navigate real-world com-
plex landscapes over land, sea, and air. Names such as DALL-E,
ChatGPT, or self-driving cars are well-known proofs of the above
advances.

However, such spectacular developments have also generated
additional challenges. Apart from those concerning the availability
of large amounts of high-quality (and, for classification purposes,
labeled) data, and the increasing costs of running huge models
that consume large amounts of electrical power, a predominant
challenge concerns the black-box nature of most modern ML mod-
els. Putting it simply, such models are trained by feeding them
with data they have to fit — the hope being that, given sufficient
such data, the model will learn the ‘essence’ of the phenomena
that the data have been sampled from. After training, a similar
hope exists — namely that the trained models will infer plausible
results which actually match the said phenomena. However, dur-
ing both training and inference, ML engineers (mainly involved
during the training phase) and actual model users (mainly in-
volved in the inference phase) have very little understanding of
how such models operate.

1.3 EXPLAINABLE AI

The black-box nature of many ML models causes several impor-
tant challenges to various types of stakeholders. For ML engi-
neers, it is not clear what one can do to increase the performance
of a given model or, in some cases, even how to architect and train

1.4 VISUALIZATION, VISUAL ANALYTICS, AND XAI

a model when not sufficient (labeled) data is available (Benato
et al., 2021). When models respond incorrectly — that is, yield
wrong predictions on their so-called testing sets — there is no sim-
ple, out-of-the-box, solution to fix the issue. Equally, if not even
more importantly, users of trained ML models increasingly want
to know why a given model emits certain predictions. If this can
be shown, users will gain trust in the respective solution, which
is a key element for its practical acceptance (van den Elzen et al,,
2023).

Following the above, the last decade has witnessed the growth
of a specific research field called Explainable Artificial Intelli-
gence (XAI) or interpretable machine learning (Ribeiro et al., 2016;
Gilpin et al., 2018; Kaur et al., 2020; Molnar, 2020; Chatzimparm-
pas et al., 2024). As its name says, the main goal of XAl is to
explain the working of ML models throughout their entire lifecy-
cle, that is, from their architecting, following their training and
testing, and ending with their deployment in the field. Key ques-
tions that XAI aims to address are: Why has a model yielded a
given prediction; what has a model learned from its training data;
and how has the model arrived at emitting a given prediction for
a given input. When such questions can be (partially) answered,
one can next fine-tune the design and training of the models in
effective ways and also embed the models in complex real-life sit-
uations where non-specialist users operate side-by-side with the
model to solve actual tasks.

1.4 VISUALIZATION, VISUAL ANALYTICS, AND XAI

Data visualization (VIS) is a separate discipline that has originally
developed independent on ML. At its origin, visualization’s key
goals were to depict large amounts of data, mainly coming from
numerical simulations and physical measurements, so that scien-
tists and engineers could get a holistic, high-level, understand-
ing of the measured or simulated phenomena. Following this,
the respective (original) branch of visualization has been known
under the name scientific visualization (scivis) (Hansen and John-
son, 2005; Telea, 2014). Examples of domains targeted by scivis
include flow (fluid) simulation, mechanical engineering, material
science, geo- and Earth sciences, and medical science (in partic-
ular, radiology and surgery). Following the increase of digital
sources of information, and most notably the explosion of the in-
ternet, many additional data types and data sources entered the
scope of visualization. Examples of such data types include net-
works (e.g., social, transportation), source code repositories, large

3

INTRODUCTION

text document and image archives, and databases. This expanded
the scope of visualization to consider contexts where data would
not come from a physical phenomenon embedded in (2D or 3D)
Euclidean space and governed by (well known) physical laws.
Such data was addressed by a new subfield of visualization called
information visualization (infovis) (Tufte, 2001; Munzner, 2014).

In parallel with the development of infovis, the goals ad-
dressed by visualization users would shift from the mere depiction
of data to the exploration of data and, even further, to obtaining so-
called “actionable insights’ from it. In other words, the key added
value associated with visualization would increasingly correlate
with the ability of its users to solve complex, often ill-posed, prob-
lems pertaining to a multitude of phenomena that underlie the
data at hand. To address this, a new field, called Visual Analytics
(VA) emerged (Andrienko et al., 2020; Cook and Thomas, 2005;
Keim et al., 2008). Since its inception, around the turn of the mil-
lennium, VA proposed a wealth of interaction, navigation, and
visual depiction techniques which, when applied jointly and it-
eratively, enable the so-called ‘sensemaking loop’, i.e., empower
users to incrementally extract higher-level knowledge from raw
data — knowledge which is next directly usable for problem solv-
ing.

Given the above, it is not surprising that VA and ML have been
increasingly getting closer to each other. We summarize their in-
teraction as two ‘flows” wherein one domain helps the other one,
as follows:

ML4VIS: In this context, ML algorithms, e.g., classifiers and re-
gressors, are used to improve visualization algorithms and tech-
niques. Examples hereof include the acceleration of algorithms
due to the highly-parallelizable nature of ML, in particular DL,
models (Espadoto et al., 2020); simplified operation of visualiza-
tion techniques by using trained ML models to execute their
tasks (Espadoto et al., 2019c); and the design of novel visualiza-
tion metaphors using the generative power of modern ML mod-
els (Dibia and Demiralp, 2019).

VIS4ML: In this context, the roles are reversed: Visualization
(mainly infovis and VA) techniques and tools are used to support
the entire workflow involved in ML pipelines (Sacha et al., 2019;
Yuan et al., 2021). This directly maps to the earlier-introduced
XAI goals: Indeed, since visualization can effectively depict large
and complex data (and underlying phenomena), it is a prime
candidate for depicting how ML models operate during their
training and/or inference. Moreover, the interactive exploration

1.5 DECISION MAPS FOR CLASSIFIER ENGINEERING

proposed by VA directly supports ‘what if” exploration that en-
able users to probe complex models to enrich their understand-
ing of the model operation. As very suitably put, visualization
is a very effective instrument for ‘opening the black box” of ML
models (Tzeng and Ma, 2005; Alicioglu and Sun, 2022; Chatzim-
parmpas et al., 2020a, 2024).

This thesis contributes to both ML4VIS and VIS4ML, as we
elaborate next.

1.5 DECISION MAPS FOR CLASSIFIER ENGINEERING

We further choose to focus our work on VIS4ML and ML4VIS
on one of the two main applications of ML indicated in Sec. 1.1,
namely classification. We motivate our choice as follows. Classi-
fication is a relatively simpler problem than general-purpose re-
gression. Indeed, the output of a classifier is relatively simple: For
a given input sample, a class label (defined over a usually small
set of categorical values) is to be output, optionally accompanied
by a continuous confidence value. In contrast, regressors output
one or several continuous values for every given input. As such,
designing VIS4ML solutions for general-purpose regressors is a
significantly more complex task. Given this, and since we believe
that VIS4ML has still unexplored potential for the classification
context, we choose to focus our work on classification models.

‘ ‘
> ° " 000,242 000 Ton 2 003 Cosstcaton

DATA FEATURES + — 2 HIDDEN LAYERS ouTPUT

Test loss 0.054
Training loss 0.048

+
|
+

f=

El=lclsIsl=1=la]

Figure 1.1: Decision map for a simple neural network model for a 2-
class problem. Two-dimensional samples enter a single hid-
den layer (8 neurons) followed by a 2-neuron classification
layer. The sample space can be directly mapped to an image
(since two-dimensional) yielding the decision map shown in
the right image. Visualization constructed with Playground
Tensorflow (Smilkov and Carter, 2024).

INTRODUCTION

Further on, we focus on a specific visualization technique for
classifier explanation, namely decision maps, also called by some
authors decision boundary maps (DBMs). In a nutshell, decision
maps are 2D images that aim to capture the behavior of a trained
ML model in a dense way. To explain their operation, consider
Fig. 1.1 (constructed using Playground Tensorflow (Smilkov and
Carter, 2024)). A simple 3-layer neural network is created to clas-
sify two-dimensional samples in two classes. The network’s input
has two units since the data is two-dimensional. The output layer
has two units, one responsible for each class. Since the data space
is two-dimensional, we can map it one-to-one to a 2D image (see
Fig. 1.1 right). If we color each image pixel by the label assigned
to a sample having the respective x and y coordinates, we effec-
tively obtain a decision map for our classifier. For this example,
we see how, after training, the decision map consists of two dis-
connected blue decision zones and one, larger, orange decision
zone. We also see how the training samples (white-outlined dots
overlaid atop of the map) of the two classes perfectly fit the two
decision zones.

Visualizing decision boundaries or decision maps is a power-
ful tool for understanding how a classifier operates. For exam-
ple, Fig. 1.2, from the well-known machine learning library scikit-
learn (Pedregosa et al., 2011), shows decision boundaries for four
Support Vector Machine (SVM) classifiers with different kernels
on the Iris dataset (Fisher, 1988). Since our target visual space is
two-dimensional, only two features of the dataset’s four original
features are used in this simple example. The decision maps of
these classifiers help get an intuitive understanding of their re-
spective expressive power. In this toy example, one can see how
a linear classifier (top row images) can only separate the data
with a straight line; in contrast, using more complex kernels for
the SVM classifier can separate the data with a more complex
curve (bottom row images).

However, classification models have to handle data whose di-
mensionality is far larger than two. One way to construct decision
maps for such cases is to first use projections to reduce such data
dimensionality to two. Projection algorithms, also known as di-
mensionality reduction (DR) methods, well known in infovis, aim
to place samples whose dimensions are similar close to each other
in the (2D) projection space (Nonato and Aupetit, 2018; Espadoto
et al., 2019a). Figure 1.3 (left) shows a projection of a 2310-sample,
19-dimensional, 7-class dataset, with labels mapped to categori-
cal colors. We see clusters of same-color (same-label) points ap-
pearing in the projection since, indicating that many similar-class

1.5 DECISION MAPS FOR CLASSIFIER ENGINEERING

SVC with linear kernel LinearSVC (linear kernel)

£ £
L L
s s
k=] =]
2 2
© ©
< <
@ @
& &

sepal length (cm) sepal length (cm)

SVC with RBF kernel SVC with polynomial (degree 3) kernel

sepal width (cm)
sepal width (cm)

sepal length (cm)

sepal length (cm)

Figure 1.2: Plotting the decision boundaries for four SVM classifiers with
different kernels on the Iris dataset. Only the first 2 features
are used (Scikit-learn developers, 2024).

samples also have similar data values. Conversely, projection ar-
eas where such point clusters mix are a potential indication of
classification difficulties, since some similar-valued samples have
different classes. However, this visualization only shows what the
trained model does for the fixed set of 2310 samples the projection
was given to depict. How the model generalizes for other samples
is left unexplained.

Decision maps aim to precisely fill the above-mentioned gap
which is left unexplained by projection visualizations. More
specifically, they aim to literally show how a classifier operates
in the empty areas in a projection — that is, for samples which
would project in the white space between projection points. To il-
lustrate this, consider the dataset shown in Fig. 1.3 (left) on which
we train a simple logistic regression model to infer the classes.
Figure 1.3 (right image) shows a decision map for this classifier,
constructed by an early technique (Rodrigues et al., 2018). All im-
age pixels are now assigned a class label, that of a data sample
which would project at that location. Finding such samples is
done by using a so-called inverse projection technique which aims
to reverse the effects of a user-chosen projection technique. Such
visualizations extend the insights provided by simple projections
in several directions, as follows:

¢ They show a dense image where every pixel conveys infor-
mation on the explored classification model. The amount
of depicted information does not depend on the size of the
training (or test) set fed to the projection but only on the
resolution of this image. Thus, increasing this resolution

INTRODUCTION

Figure 1.3: How decision boundary maps (DBMs) work. The left im-

age shows a projection of a 19-dimensional, 2310-sample, 7-
class dataset. Points map data samples and their class labels.
While one can see how similar points (close in the projection)
tend to have similar labels, this image does not tell us what
happens in the white areas between projected points. The
right image shows a DBM for the same dataset and model
which fills such gaps. All image points are now colored to
show the label assigned by the model to a sample which
would project at that location. Compact same-colored areas
show the model’s decision zones; pixels on the boundaries
of these areas show the model’s decision boundaries. Images
taken from (Rodrigues et al., 2018).

shows increasingly more insights into the classifier’s behav-
ior. Conversely, one can use (in theory at least) as many or
as few samples as one wants to construct the projection.

Decision maps show how the classifier behaves between the
training (or test) set samples. The available 2D space is ef-
fectively partitioned into compact single-color areas which
indicate the classifier’s decision zones. Borders of these ar-
eas, where two or more different colors meet, indicate the
classifier’s decision boundaries.

Decision zones and boundaries help get insights into a
model’s behavior. Analyzing how decision boundaries ‘go
through” a set of training samples effectively tells how a
model generalizes to unseen samples. The jaggedness (or,
conversely, smoothness) of decision boundaries gives in-
sights into how well the model can fit its given training
data. Additionally, if one marks misclassified samples on a
decision map, one can see how close these are to decision
boundaries and eventually perform training fine-tuning to
alleviate such problems.

1.6 RESEARCH QUESTIONS

Given all above, we argue — in line with previous authors -
that decision maps are useful tools for classifier engineering tasks
such as assessing the actual fit of a model with what one ex-
pects from its known theoretical behavior (Rodrigues et al., 2019);
getting insight on where, in data space, the classifier performs
well or not(Rodrigues, 2020; Schulz et al., 2015); finding types
of data samples for which the classifier is brittle (Machado et al.,
2024); and guiding semi-supervised annotation to enrich labeled
datasets for classifier training (Benato et al., 2024). In the same
time, just as for all other XAI techniques (based on visual ana-
lytics or not), decision maps are only one of the tools in a wider
arsenal offered to Al specialists to complete their various tasks
related to model design, improvement, deployment, and usage.
In particular, decision maps do not directly handle regressors
but only classifiers; they show where, in data space, the deci-
sion boundaries are drawn, but do not offer direct mechanisms
to ‘tune’ these boundaries, apart from suggesting the addition
of extra (labeled) samples to certain zones; and they cannot di-
rectly link specific sample properties to the formation of deci-
sion boundaries in a model. Nevertheless, our conclusion is that,
within these more general limitations, decision maps are a useful
tool in the abovementioned arsenal and, as such, deserve being
further refined to better accomplish the goals they have been orig-
inally introduced for.

1.6 RESEARCH QUESTIONS

In the last decade, several decision map techniques have been
proposed (Schulz et al., 2015; Rodrigues et al., 2018; Espadoto
et al.,, 2019c; Schulz et al., 2020; Rodrigues, 2020; Rodrigues et al.,
2019; Oliveira et al., 2022, 2023a). Globally put, these techniques
can handle generically any classification method, data of any di-
mensionality, and are relatively simple to set up and use in prac-
tice. Deep-learning-based variants of such methods additionally
bring in extra computational performance (Oliveira et al., 2022)
and are also robust to small-scale noise present in the input
data (Oliveira et al., 2023b). Recent extensions allow enriching a
plain DBM image with various additional information depicting
e.g. the model’s confidence, support of its decisions, and non-
linear deformations performed during the data-to-image map-
ping (Machado et al., 2024).

However, many aspects of decision maps remain unsolved to
date and lead to corresponding research questions:

INTRODUCTION

Quality (RQ1): While several decision map construction meth-
ods have been proposed, as outlined above, there have been for-
mally no comparisons of their quality apart from the side-by-
side display of decision maps produced by them for a few hand-
picked classification models and datasets. This is not surprising;:
To perform such comparisons, we would need in the first place
to have formal quality metrics that quantify desirable aspects of
such maps. Two questions follow here: How can we define such
quality metrics; and how do current decision map methods fare
with respect to each other from the perspective of such metrics?

Coverage (RQz2): A decision map aims to depict the behavior of
a trained model by mapping its high-dimensional decision zones
to a partition of a 2D image into corresponding label-colored
zones. Formally speaking, for such a map to capture the full
behavior of the model, it should be able to map all the high-
dimensional points that the model can work on to 2D points.
However, it is clear that densely sampling a high-dimensional
space creates a sample count having an exponential size with
the spatial dimension, so not all such samples can be realistically
mapped to 2D. Hence, existing decision map methods do inter-
nally make some (non-transparent) choices as to which areas of
the data space they sample to depict. Key questions related to
this coverage are: How do decision map methods differ in their
sampling of the data space? Does this sampling depend on the
data dimensionality or depicted classification model?

Control (RQ3): If, as stated above, current decision map meth-
ods do not densely cover their entire data space when creating
decision map images, and arguably complete coverage is impos-
sible in practice due to the aforementioned dimensionality prob-
lem, it follows that users would benefit from being able to spec-
ify how a decision map method samples this space. Such func-
tionality would allow one to e.g. explore, in turn, different parts
of the space, to compose a final picture (or insight) on how the
model actually works — much like radiologists compose their un-
derstanding of a 3D CT or MRI volume by examining individual
2D slices thereof. The ensuing question is: How can we enable
users to control the parts of the data space depicted by a decision
map in simple, interactive, ways?

Interactivity (RQ4): One of the key added-value claims of de-
cision maps resided on their ability to examine the behavior
of a classifier and, upon seeing problems such as misclassifi-
cations, tune its hyperparameters and/or augment its training
data to obtain an improved model (Rodrigues, 2020). For this to

10

1.7 CONTRIBUTIONS

effectively work in a VA setting, the loop consisting of model
training, decision map construction, and user-driven parameter
changing should execute as fast as possible — ideally, at near-
interactive rates. If this were possible, users could literally ‘shape’
the model’s decision zones by interacting with data depicted in
a decision map visualization. However, none of the current de-
cision map methods offers this performance — the fastest such
methods we are aware of still require several seconds to generate
a decision map image of roughly 5002 pixels (Oliveira et al., 2022).
Can we significantly improve this computation time for creating
decision maps for any classification model and for any type and
dimensionality of datasets?

Summarizing the above, we can next state our key research
question:

How can we improve decision map methods to understand and con-
trol which parts of the data space they sample, leading to desirable qual-
ity values, with high computational performance?

1.7 CONTRIBUTIONS

This thesis aims to answer the above-stated central research ques-
tion by covering all sub-questions RQ1 — RQ4 that are subsumed
therein. We next outline how we approach this goal and also
thereby detail the structure of the thesis.

Chapter 2 presents related work in machine learning (ML) and
visual analytics (VA) and, more specifically, the way in which
ML can help VA and conversely. We introduce here basic nota-
tions used throughout the thesis and also explain the key meth-
ods and techniques that form the basis of ML4VIS and VIS4ML.
While VIS4ML is the area that the use of decision maps fall into,
ML4VIS provides several important techniques for building de-
cision maps. We focus here chiefly on methods and quality met-
rics related to high-dimensional data and, more specifically, pro-
jection (dimensionality reduction) and inverse projection, since
these are the key mechanisms underlying the computation of de-
cision maps. Apart from presenting related work, this chapter
outlines an important claim of this thesis, namely that ML4VIS
and VIS4ML can be, and should be, approached jointly for most
effective results in both fields. At a higher level, this chapter de-
tails the context in which we are going to improve decision maps
to further answer RQ1 — RQj4.

Chapter 3 presents an application of decision maps, as we
encountered them at the onset of our work, for understanding

11

INTRODUCTION

classification models constructed for a geoscience application,
namely the understanding of the genesis of mineral deposits. The
main added value of this application is to expose both the advan-
tages, but also the limitations, of current decision map methods
in a practical setting, when used by scientists who are not ML spe-
cialists. Our work outlines that decision maps can indeed help to
answer concrete questions in our chosen application domain — an
insight which, to our knowledge, was not presented before in the
DBM literature. This insight justifies the added value of decision
maps and, thus, implicitly, our goal of further analyzing RQ1 —
RQ4. In the same time, our work exposed several limitations of
existing DBM methods, thus provides starting points to further
answer RQ1 — RQ4 in the following chapters.

Chapter 4 addresses RQ1 by proposing a set of novel metrics
for the comparison of decision maps — more precisely, the in-
verse projection techniques which are fundamental to any deci-
sion map construction. We use these metrics to evaluate all the
decision map techniques (and inverse projections) we are aware
of on a variety of datasets and classification models. Our findings
show to-date unknown differences between the evaluated DBM
techniques and, also, propose a practical workflow for choosing
suitable techniques in practice based on the aspects quantified by
our metrics. To our knowledge, this is the first — and, to writing
date, only — study that quantitatively compares decision maps
and inverse projections. This chapter also outlines a surprising
observation we made during our study, namely that decision
maps seem to cover only a small, manifold-like, surface embed-
ded in the high-dimensional data space they aim to depict.

Chapter 5 further explores the above-mentioned observation
on the coverage of decision maps. We study this issue of cov-
erage further using a larger set of decision maps (and inverse
projections), datasets, and classification models. We also propose
both visual (qualitative) and computational (quantitative) ways
to assess the dimensionality of this coverage — thereby addressing
RQ:2. Our findings confirm our earlier observation, namely that
all decision map methods cover only a manifold of intrinsic di-
mensionality two embedded in the data space, regardless of any
other parameters. Our findings — to our knowledge, observed for
the first time by our work — significantly affect the way in which
decision maps can be next used in practice.

Chapter 6 builds on the findings explored in Chapter 5 by
proposing an interactive mechanism that allows users to control
which parts of the data space an inverse projection — and thus
a decision map — cover. We propose a simple, generic, and com-

12

1.7 CONTRIBUTIONS

putationally efficient mechanism that allows users to ‘pull” the
aforementioned manifold surface closely towards selected data
samples, thereby addressing RQ3. We illustrate the added value
of this mechanism by presenting an application in style transfer
in image datasets. To our knowledge, our work is the first tech-
nique that allows users to explicitly control inverse projections.
In contrast to the previous chapters, which focus on VIS4ML ap-
plication, chapter falls under the topic ML4VIS, as it uses deep
learning based methods to construct the inverse projections.

Chapter 7 attacks our last research question, RQ4, namely
the accelerated computation of decision maps. We propose Fast-
DBM, a simple heuristic that reduces the number of times that
an inverse projection needs to be called to compute a decision
map by exploiting smoothness and continuity properties which
should be present in the underlying mappings. Our method can
be generically applied to any inverse projection and classifica-
tion method, thus, any decision map method. Our results show
that we can compute decision maps at about one order of magni-
tude faster than existing methods and with minimal quality loss.
We also generalize this algorithm to accelerate the computation
of other classifier maps such as gradient maps and distance-to-
boundary maps (see Sec. 2.3.4.2). This enables one, for the first
time, to practically compute maps that explain classifiers at high
resolutions. Our work next opens the possibility for using deci-
sion maps in near-interactive visual analytics loops where users
iteratively refine a classification model based on insights drawn
from the visualized decision maps.

Finally, Chapter 8 concludes this thesis by revisiting our re-
search questions, summarizing our results, and outlining poten-
tial directions of future work for the computation and application
of decision map techniques.

13

=

RELATED WORK

2.1 INTRODUCTION

This chapter introduces basic notations and concepts used
throughout the thesis and explain how both dimensionality re-
duction (DR) and machine learning (ML) can help each other in
achieving their respective aims, i.e., ML4VIS and VIS4ML. By pre-
senting an overview of the state-of-the-art in both fields, we aim
to provide readers with a better understanding of the existing
synergies between ML and DR. More importantly, we highlight
the role of decision maps in this context, i.e., their importance in
VIS4ML, and how they can benefit from ML4VIS*.

ML has become one of the indispensable instruments in data-
driven science and virtually any data-intensive application do-
main in our society. At a high level, and without loss of general-
ity, ML models can be described as engines which process high-
dimensional data — that is, collections of observations (samples)
consisting of tens up to millions of individual measurements (di-
mensions) of a given phenomenon. Such data occurs throughout
the ML pipeline — it is present in the input of the models (e.g., im-
ages consisting of millions of pixels); in the internal working of
such models (e.g., the so-called activations of neural units in the
many intermediate layers of a DL model), and also in the models’
output (e.g., the image created by generative Al techniques from
given inputs). As such, it is not surprising that understanding
high-dimensional data, and how it is transformed by ML models,
is a key goal and challenge in ML.

In a separate field, exploring and understanding high-
dimensional data is one of the top goals of information visual-
ization (infovis) (Munzner, 2014; Telea, 2014; Liu et al., 2015). Dur-
ing the last decades, many techniques have been proposed to this
end, including scatterplots and scatterplot matrices (Yates et al.,
2014; Lehmann et al., 2012), parallel coordinate plots (Inselberg
and Dimsdale, 1990), table lenses(Rao and Card, 1994; Telea,
2006), and glyphs (Borgo et al., 2013). However, most such tech-
niques are fundamentally limited in the size of the datasets they

This chapter is based on the paper “Seeing is Learning in High Dimensions: The
Synergy Between Dimensionality Reduction and Machine Learning” (Telea et al.,
2024).

15

RELATED WORK

can depict: They can show either datasets having many samples
with few dimensions, few samples having many dimensions, but
not both.

Dimensionality reduction (DR) techniques, also called multidi-
mensional projections (MPs), are a family of visualization tech-
niques that aim to solve the aforementioned visualization scal-
ability issue in both the sample and dimension count. Simply
put, given a high-dimensional dataset consisting of several sam-
ples, DR techniques create a low-dimensional (typically 2D or
3D) scatterplot in which close points correspond to similar sam-
ples in the input dataset. This allows users of DR visualizations
to identify salient patterns in the dataset in the form of clusters
of closely-packed scatterplot points, clusters of points with differ-
ent shapes or densities, or outlier points (Lespinats and Aupetit,
2011; Sorzano et al.,, 2014; Nonato and Aupetit, 2018). Tens, if
not hundreds, of DR techniques have been designed to cater for
the various functional and non-functional requirements inherent
to the DR process, such as computational scalability, ability of
treating data of various types and dimensionality, handling time-
dependent data or data with missing values, ability of depicting
new samples along existing ones (out-of-sample property), stabil-
ity in the presence of noise, ability of capturing specific aspects
present in the input dataset, and ease of use (Cunningham and
Ghahramani, 2015; Espadoto et al., 2019a; Nonato and Aupetit,
2018).

At a first glance, ML and DR are separate fields with different
goals. ML is chiefly concerned with learning a model to predict
the behavior of some phenomenon from existing samples thereof.
In a more general setting, this has been extended to additional
tasks such as data representation (autoencoders) or generative
Al For the purpose of our discussion next, we will mainly focus
on prediction tasks, either in a classification or regression setting.
Separately, DR aims at depicting, or seeing, the samples of such
a phenomenon. We argue that these two goals — learning and
seeing — are, however, strongly related, and advances in one field
directly support requirements of the other field in both directions.
Simply put, we argue that seeing is learning, in both directions of
the implication, as outlined below:

* Learning needs seeing (VIS4ML): The ML field generates
complex models, whose ‘black-box’ behavior is increasingly
hard-to-understand by both their developers and users. Un-
derstanding such models is increasingly important for fine-
tuning their behavior but also gaining trust in their deploy-

16

2.2 BACKGROUND

ment. Such understanding can be massively aided by seeing
(visualizing) their structure and operation. Since ML mod-
els revolve around high-dimensional data, and DR tech-
niques are ideally suited for depicting such data, DR tech-
niques are a candidate of choice for visualizing them;

* Seeing needs learning (ML4VIS): Existing DR techniques
are increasingly challenged by the already-mentioned sum
of requirements they have to cope with. Few, if any, of such
existing techniques can cope with all these requirements. In
contrast, many ML techniques are designed upfront to han-
dle such requirements, especially computational scalability,
accuracy, stability, and out-of-sample ability. Given these, it
makes sense to use ML techniques to learn the high-to-low
dimensional mapping and thereby assist the DR task.

In this chapter, we explore the commonalities of ML and DR
techniques and bring evidence of existing, emerging, and poten-
tially new interactions between these two fields. We proceed by
introducing our two fields of interest - ML and DR - with an
emphasis on their commonalities (Sec. 2.2). We next explore in
Sec. 2.3 how learning (ML) is supported by seeing (DR), espe-
cially in the creation of visual analytics (VA) solutions for ex-
plainable artificial intelligence (XAI), in particular decision maps.
Subsequently, we study in Sec. 2.4 the converse connection, that
is, how seeing (DR) is supported by leaning (ML). We further
outline in Sec. 2.5 new, emerging, connections between the two
fields that point to promising future research directions in which
the DR and ML fields can benefit from each other. Finally, Sec-
tion 2.6 concludes the chapter.

2.2 BACKGROUND

In this section, we provide a general introduction to ML and DR
concepts, notations, and principles, with a focus on highlighting
the commonalities between the two fields, which will be further
explored in the remainder of the chapter.

Notations: Let D = {x;} be a dataset of n-dimensional samples,

also called observations or data points x;, 1 < i < N. A sample

— (1
x;p = (x;,...,x]

1) is a tuple of n components xf, also called fea-
tures, variables, attributes, or dimension values. For exposition
simplicity, we next consider that xf € IR; other data domains are
treated similarly for the purpose of our discussion. We denote by
Z C R" the spatial subset where samples of a given phenomenon

17

RELATED WORK

are found. For instance, considering image data, only positive val-
ues (possibly bound by a maximum) can denote pixel intensities.
Following this notation, D can be depicted as a table with N rows
(one per sample) and n columns (one per dimension). Typically,
these dimensions are considered to be independent variables, i.e.,
whose values are measured from the behavior of a given phe-
nomenon over Z. Atop of these, D can have one or more dimen-
sions (columns) of so-called dependent variables, also called labels
or annotations. We next consider a single such dependent vari-
able y; € C, where C is the domain of definition of the labels,
unless specified otherwise. We denote the annotated dataset D
by Dy = [Dlyl.

Machine learning basics: Given a so-called test set Dt C D,,
machine learning (ML) techniques aim to create a function

f:Z->cC (2.1)

which predicts data values for most (ideally, all) samples in Z.
Models f are built by using a so-called training set D; C D,
DN Dr = @ so as to maximize the number of test set points
x; € Dt for which f(x;) = y;. ML models can be further split into
classifiers, for which C is typically a categorical, or label, dataset;
and regressors, for which C is typically a subset of R. For regres-
sors, f typically strives that f(x;) is as close as possible to y;,
whereas for classifiers exact equality is aimed at.

Many methods exist to measure the performance of ML mod-
els. The most widespread such methods measure several so-
called quality metrics on the training set (training performance)
and, separately, on the unseen test set (testing performance).
Common metrics include accuracy, precision, recall, F-score, and
Cohen’s kappa score. More advanced methods take into ac-
count hyperparameters that allow optimizing between precision
and recall, e.g. the Receiver Operator Characteristic (ROC) curve
and area underneath (Botchkarev, 2019; Jiang et al., 2020; Thiya-
galingam et al., 2022).

Dimensionality reduction basics: A dimensionality reduction
technique, or multidimensional projection P, is a function that
maps every x; € D to a point P(x;) € RY. For convenience, we
next denote by

P(D) = {P(x;)[xi € D} (2.2)

the projection of an entire dataset D. For visualization purposes,
g € {2,3}, iee,, P(D) is a 2D, respectively 3D, scatterplot. Since
2D projections are by far the most commonly used in VIS4ML,
we will focus on them for the remainder of this thesis.

18

2.2 BACKGROUND

At a high level, all projection techniques P aim to preserve the
so-called structure of the dataset D, so that users can infer this
structure by visualizing P(D), following a well-known inverse
mapping principle in data visualization (Telea, 2014). Forms of
such structure include, but are not limited to, clusters of simi-
lar samples; clusters having different sample densities; similar-
ities between different samples; and outlier samples. Structure-
preserving projections map (some) of these data properties to the
corresponding properties of their generated scatterplots. Usually,
projections do not use data annotations (even when these are
available), but only independent variables — more on this aspect
to be discussed further in Sec. 2.4.1.

Since data structure preservation entails several aspects, as out-
lined above, different so-called quality metrics have been devised
to capture the abilities of a given P. A quality metric is a function

M(D,P(D)) € R" (2.3)

that tells how well the scatterplot P(D), or a part thereof, cap-
tures a given aspect present in the dataset D. At a high level,
such metrics can be grouped into (1) measuring distance preser-
vation between pairs of samples, respectively pairs of projection
points, in IR” and IR7 respectively, such as normalized stress and
the Shepard diagram correlation (Joia et al., 2011); and (2) measur-
ing if neighborhoods (groups of close points) in D are mapped
to neighborhoods in P(D), such as trustworthiness and continu-
ity (Venna and Kaski, 2006), false and missing neighbors (Martins
et al., 2014), and the Kullback-Leibler divergence (van der Maaten
and Hinton, 2008). The latter class is extended for projections
of labeled data P(D,) by metrics such as neighborhood hit and
class consistency (Paulovich et al., 2008; Sips et al., 2009). Detailed
surveys of projection quality metrics are given in (Aupetit, 2007;
Lespinats and Aupetit, 2011; Nonato and Aupetit, 2018; Espadoto
et al., 2019a).

Projection quality is implicitly linked to the measuring of the
quality of inverse projections (discussed further in Sec. 2.5.2.1). In-
deed, if a direct projection P has poor quality, then it will not pre-
serve some aspects of its input data D. As such, and since inverse
projections P! are constructed based on the projection P(D) of
the data D, it follows that also P~! will inherently have low qual-
ity. In turn, poor direct and/or inverse projection methods will
affect the quality of visualizations constructed using them such
as the decision maps we discuss further in Sec. 2.3.4. Importantly,
we note here that, in general, no projection technique P can pre-
serve all structure in D perfectly in P(D) — that is, at least some

19

RELATED WORK

quality metrics will have relatively low values. This is inherent to
the operation of mapping datasets having high intrinsic dimen-
sionality to a (very) low-dimensional target space.

To disentangle such quality assessments, a simple but effective
rule of thumb is to first measure the quality of P(D) for some
given dataset D. If this quality is deemed by the users to be
too low for their application at hand, then P(D) should be dis-
carded and one should attempt to create better results by using
e.g. different projection techniques or their hyperparameter set-
tings (Martins et al., 2014). Conversely, if the quality of P(D) is
deemed good enough, then one can further measure the quality
of P~! to decide if this latter technique is good enough for the
application context. We will use this approach throughout all our
work in this thesis.

2.2.1 Interaction between ML and DR

As mentioned in Sec. 2.1, our central statement is that learning
(accomplished using ML) and seeing (visualization accomplished
using DR) are intimately related to each other. This assertion, il-
lustrated by Fig. 2.1, is explored next in detail.

2.2.1.1 How DR helps ML and conversely

Machine learning pipeline: The central box (Fig. 2.1 blue) shows
a technical view on the typical ML pipeline which maps an in-
put real-valued dataset D into class labels or another real-valued
signal by means of a classifier, respectively regressor. Such ML
pipelines can be next deployed to assist a wide variety of tasks.
In our work here, we do not further detail these, but rather fo-
cus on how DR techniques can be used to assist the technical
aspects of a typical, task-generic, ML pipeline; and conversely,
how ML techniques can generically assist constructing better DR
methods. As explained earlier in Sec. 2.1, ML models operate
on high-dimensional data. The green arrows atop this pipeline
point to various visualization methods that use DR to depict such
data. By using such visualizations, one can literally ‘see” how the
model learns. We further exemplify the use of such visualizations
for ML tasks such as semi-automatic labeling (Sec. 2.3.2), assess-
ing classification difficulty (Sec. 2.3.1), and assessing training of
DL models (Sec. 2.3.3).

Dimensionality reduction pipeline: The bottom box (Fig. 2.1 yel-
low) shows how ML regressors can be used to create better DR

20

2.2 BACKGROUND

projections of any high-dimensional data. Examples of this pro-
cess include (self-)supervised projections and sensitivity analyses
(Sec. 2.4.1), inverse projections (Sec. 2.4.2), and quality analysis
for inverse projections (Sec. 2.5.2). Such better DR methods can
be next used for assisting ML engineering tasks, as shown by the
red arrow in Fig. 2.1.

pseudolabeling classif. difficulty feature training

explained by

0
os00
e B
output labels
Machine | ML inputcata regressor (mmmm)
learning | pPipeline

used to construct

output signal

e < :
a::;i 3 _“ £ o
&4 A P
supervised DR sensitivity analysis self-supervised DR quality analysis inverse projections

Dimensionality
reduction

Figure 2.1: Two-way interaction between machine learning (ML) and di-
mensionality reduction (DR) workflows. ML algorithms can
be used to construct DR techniques. In turn, these can be
used to construct explanatory visualizations for ML. See
Sec. 2.2.1.

2.2.2 Common aspects of DR and ML

Section 2.2.1.1 and Fig. 2.1 have outlined how DR can help ML
and conversely. As such, it is not surprising that DL and ML
share many common aspects. We detail next such commonalities,
grouped in functional and non-functional ones, following a sys-
tems engineering perspective (Sommerville, 2015).

21

RELATED WORK

2.2.2.1 Functional commonalities

Functional aspects describe how a system should operate. As al-
ready outlined, both ML models f and DR projection methods P
are specialized cases of inference involving high-dimensional data.
More specifically, P can be seen as a particular type of regressor
from R” to R?. Given this, we next use the notation M to jointly
denote an ML model or DR algorithm, when distinguishing be-
tween the two is not important.

2.2.2.2 Non-functional commonalities

Non-functional aspects describe how a system should behave in
practice. Without claiming full coverage, we identify the follow-
ing key aspects that both ML and DR techniques M strive to
achieve in their operation. We also outline cases where these two
classes of techniques achieve the respective requirements up to
different degrees, thereby pointing to potential synergies where
one technique family can be used to assist the other.

Genericity: In the ideal case, M should be readily applicable to
any dataset D — that is, of any dimensionality, attribute types,
and provenance application domain.

Accuracy: M should deliver highly accurate results (inferences
for ML; projection scatterplots for DR) as gauged by specific qual-
ity metrics in the two fields.

Scalability: M should scale well computationally with the num-
ber of samples N and dimensions n — ideally, M should be lin-
ear in both N and n. In practice, M should be able to handle
datasets with millions of samples and hundreds of dimensions on
commodity hardware at interactive rates. This further enables the
use of M in visual analytics (VA) scenarios where the iterative
and interactive exploration of complex hypotheses via data visu-
alization is essential. We discuss this aspect further in Secs. 2.3
and 2.4.

Understandability: For a technique to be useful and usable in
practice, its operation should be easily understandable by its
intended users. This requirement takes different forms for ML
and DR techniques. In general, ML techniques have an easy-to-
understand output — they are designed to infer features having
a clear meaning, e.g., the classes present in a dataset. However,
due to their often black-box nature, the way in which they op-
erate to do this is far less understandable, leading to challenges
for their design, deployment, and acceptance (see next Sec. 2.3.3).

22

2.2 BACKGROUND

In contrast, most DR methods have a relatively clear way of op-
eration — the projection aims to minimize a cost function that
preserves certain aspects of the data D in the projection scat-
terplot P(D) (Sorzano et al., 2014; Nonato and Aupetit, 2018).
However, their output — a raw scatterplot, in the minimal case
— is hard to interpret and requires additional explanatory mech-
anisms (Martins et al., 2014; da Silva et al., 2015; Coimbra et al.,
2016; Chatzimparmpas et al., 2020b; Marcilio and Eler, 2021; Tian
et al., 2021; Thijssen et al., 2023).

Understandability is subtly related, but not identical, to the

concept of interpretability. As mentioned above, we refer to un-
derstandability as the ‘low level” ability of the intended users of
a technique or tool to grasp how the tool works, at a basic level,
so they are able to deploy it in practice. Interpretability operates
at a higher conceptual level and refers to the ability of the users to
reason about how the tool operates internally when executing its
work. For ML models, for instance, linear regression is arguably
more interpretable than deep neural networks due to its inher-
ent linear model. Similarly, PCA’s operation based on a global
and linear data transformation is easier to understand than local
and/or non-linear DR techniques such as t-SNE. In our further
discussion, we mainly focus on the lower level of understandabil-
ity.
Out of sample (OOS): An operator M is said to be OOS if it can
extrapolate its behavior beyond the data from which it was con-
structed. In ML, this usually means that the model f extrapolates
from a training set D; to an unseen test set Dt and beyond. By
analogy, a projection P is OOS if, when extending some dataset
D with additional samples D’ ¢ D, the projection P(D U D') ide-
ally keeps the samples of D at the locations they had in P(D),
ie, P(DUD') = P(D)UP(D'). If P is OOS, this helps users to
maintain their ‘mental map’ obtained by studying P(D) when
they further study P(D UD'). As most ML methods are OOS by
design, they can be potentially used to design OOS projections
(see next Sec. 2.4).

Stability: Small changes in the input dataset D should only
lead to small changes in the output dataset M (D). If not, spu-
rious perturbations in D can massively affect the resulting infer-
ence M(D) thereby rendering such results potentially unusable
and/or misleading. Similarly, large-scale changes in D should ar-
guably lead to correspondingly large changes in M (D). Stability
is related but not the same as OOS: An OOS algorithm is stable
by definition but not all stable algorithms are OOS (Vernier et al.,

23

RELATED WORK

2021; Espadoto et al., 2019a; Oliveira et al., 2023b). Most ML meth-
ods are OOS by design, a property which is not shared by many
projection techniques — therefore opening up an interesting case
for using ML for DR. We discuss stability and OOS in more detail
in Secs. 2.4.1 and 2.5.2.

Ease of use: Visualization methods aim, by construction, to be
easily usable by a wide range of users and with minimal or no
programming effort. In contrast, building — and especially de-
bugging and fine-tuning — an ML pipeline can be challenging for
practitioners with limited training in ML. As such, this offers op-
portunities for using visualization (and DR in particular) to ease
the task of ML practitioners.

Availability: M should be readily available to practitioners in
terms of documented open-source code. While sometimes ne-
glected, this is a key requirement for ML and DR algorithms to
become adopted and impactful in practice.

Table 1 summarizes the above observations at a high level by
comparing how ML and DL techniques satisfy in general the
above requirements. Scores are given on a 5-point Likert scale
(++: best; --: worst), according to our own experience. Besides
genericity, where both ML and DR algorithms score equally well,
all other requirements are met complementarity by the two al-
gorithm families. This supports our earlier point that the two
technique classes can support each other, if combined properly.

Table 1: Comparison of how ML and DR methods satisfy desirable re-
quirements (Genericity, Accuracy, Scalability, Out (understand-
ability of output), Alg (understandability of algorithm), OOS,
Stability, Ease of use, Availability).

Methods | Gen Acc Scal Out Alg OOS Stab Ease Avail

ML ++ ++ ++ ++ -- ++ ++ - ++

DR ++ -/+ - -- + -- - ++ ++

We next explore these commonalities and contrasts by first dis-
cussing how DR is used to help ML (Sec. 2.3) and next how ML
is used to create better DR algorithms (Sec. 2.4).

2.3 SEEING FOR LEARNING: DR ASSISTS ML

Many examples of visualization applications that assist ML work-
flows exist, most often coming in the form of complex multiple-
view visual analytics systems (Garcia et al., 2018; Hohman et al.,
2019; Yuan et al., 2021; Alicioglu and Sun, 2022; Chatzimparm-

24

2.3 SEEING FOR LEARNING: DR ASSISTS ML

pas et al., 2023). An exhaustive presentation thereof is out of the
scope of this chapter. Rather, we focus in the following on se-
lected use-cases where DR techniques have been used, with min-
imal additions, to assist ML workflows: assessing and improving
classifiers (Sec. 2.3.1), pseudolabeling for enriching training sets
(Sec. 2.3.2), exploring deep learning models (Sec. 2.3.3), and ex-
ploring classifier outputs via decision boundary maps (Sec. 2.3.4).
We also highlight connection points between the discussed tech-
niques and the focus of our research, namely decision maps.

2.3.1 Assessing and improving classifiers

One of the simplest, and still most frequently used, application of
DR in ML is to project a labeled training or test set D, with points
x; colored by their ground-truth labels y; or labels f(x;) inferred
by some classifier f. The rationale for this use-case is straightfor-
ward: A projection places similar samples close to each other; a
classifier labels similar samples similarly; hence, the visual struc-
ture of the projection helps several tasks:

* see how (and where) are misclassified samples distributed
over the extent of a test set Dt (to next elicit what makes
them hard to classify);

* see how well a training set D; covers the data space (to e.g.
determine where extra training samples are needed);

* see how well a training set D; is separated into different
same-label sample groups (to next predict the classification
ease).

The two first tasks are quite straightforward. In contrast, the
last task is particularly interesting. The intuition that a projection
P(D) which is well separated into compact same-label groups in-
dicates that D is easy to classify is quite old. Yet, a formal study
of this correlation was only relatively recently presented (Rauber
et al., 2017b). In the respective work, the authors show that, given
a range of classifiers, a dataset D whose projection P(D) has
well-separated classes (as measured by the neighborhood hit met-
ric (Paulovich et al., 2008)) is far easier classifiable than a dataset
whose projection shows intermixed points of different labels (low
neighborhood hit). The projection P(D) becomes a “predictor’ for
the ease of classifying D, helping one to assess classification diffi-
culty before actually embarking on the expensive cycle of classifier
design-train-test.

25

RELATED WORK

KNN classifier RFC classifier

== all features (500)

feature subset (20)

& ER & A
¢) good visual separation, AC=88% d) good visual separation, AC=89%

Figure 2.2: Classification difficulty assessment via projections (Rauber
et al., 2017b).

Figure 2.2 illustrates the above usage of projections. Images (a)
and (b) show the two-class Madelon dataset (Guyon et al., 2004)
(n = 500 dimensions, |C| = 2 classes) classified by KNN and
Random Forests (RFC) respectively, with samples projected by
t-SNE (van der Maaten and Hinton, 2008) and colored by class
labels. The two projections show a very poor separation of the
two classes, in line with the obtained low accuracies AC = 54%
and AC = 66% (also visible by the misclassified samples, marked
as triangles). Images (c) and (d) show the same dataset where ex-
tremely randomized trees (Geurts et al., 2006) was used to select
n = 20 dimensions. The projections show a much higher visual
separation of the two classes, in line with the higher accuracies
AC = 88% and AC = 89% obtained. Many other examples in
(Rauber et al., 2017b) show that projections can predict classifica-
tion accuracy quite well.

Connection to DBMs: Decision maps, discussed next in this
chapter, keep the predictive power of projections for assessing
classification models and also enhance this simple scatterplot-
only view by filling in the gaps between projected data points.

2.3.2 Pseudolabeling for ML training

If projections are good predictors of classification accuracy, it
means that their low-dimensional (2D) space captures well the
similarity of the high-dimensional samples. This leads to the idea
of using projections to create, rather than just explain, ML models.
A first attempt was shown by Bernard et al. (2017) in the context

26

2.3 SEEING FOR LEARNING: DR ASSISTS ML

of an user evaluation that compared classical active learning with
a user-supported procedure they dubbed Visual Interactive La-
beling (VIL). Next after that, Benato et al. (2018) proposed a very
similar approach to VIL, called visual pseudolabeling, aimed to
assist building a classifier from a training set having only very
few labeled points: The entire training set, including unlabeled
points, is projected and the user explores the projection to find un-
labeled points tightly packed around labeled ones. Next, the user
employs a tooltip to study the attributes of these points to con-
firm that they have the same class as the surrounded labeled one.
If so, the user simply assigns that label to the unlabeled points.
This workflow minimizes the user’s labeling effort to quickly lead
to sufficiently-large labeled sets for training the desired model.
Interestingly, automatic label propagation in the embedded space
using state-of-the-art methods (Belkin et al., 2006; Amorim et al.,,
2016) leads to poorer results than user-driven labeling, which con-
firms the added value of the human-in-the-loop, and thus of the
projections.

However, optimal results are obtained when humans and ma-
chine cooperate, rather than aim to replace, each other. Benato
et al. (2021) refined the above workflow to (a) use automatic label
propagation (Belkin et al., 2006; Amorim et al., 2016) for the pro-
jection points where the propagation confidence is high; and (b)
expose only the remaining unlabeled points to manual labeling
(see Fig. 2.3). This way, many ‘easy to label” points are handled
automatically and the user’s effort is channeled towards the hard
cases, further reducing the manual labeling effort. This strategy
also leads to increasing model accuracy and, again, surpassed
confidence-based label propagation into the high-dimensional
space.

Connection to DBMs: Decision boundaries are a crucial con-
cept in the so-called uncertainty sampling strategy in active learn-
ing (Monarch, 2021). As such, decision maps can be used to visu-
alize the decision boundaries of a classifier, and therefore provide
a visual cue to the user to select the most informative samples
for annotating. This strategy was recently explored showing an
increase of the efficiency of users in constructing annotated train-
ing sets as compared to using only raw projections (Benato et al.,
2024).

2.3.3 Understanding DL models

Deep learned (DL) models, with their millions of parameters,
are among the hardest artifacts in ML to understand (Shwartz-

27

RELATED WORK

high-confidence
automatically labeled points

sparsely
labeled
dataset D

projection
P(D)

automatic label
propagation

few ground-truth labels from D

manually
assigned

labels
user
interaction

@ supervised ()
@ candidates for manual \\)
auto-labeled — . s | . o

richly labeled dataset
standard ML training

Figure 2.3: Semi-automatic label propagation for constructing training
sets. An algorithm propagates ground-truth labels from a
small set of supervised samples towards unlabeled neighbor
samples in the projection. When this algorithm is uncertain,
samples are left for manual labeling (Benato et al., 2021). See
Sec. 2.3.2.

Ziv and Tishby, 2017; Azodi et al., 2020). Visualization has been
listed early on as the technique of choice for explainable AI (XAI)
for DL models (Tzeng and Ma, 2005). A recent survey (Garcia
et al.,, 2018) outlines a wide spectrum of visual analytics tech-
niques and tools used for DL engineering, grouped along how
they support the tasks of training analysis (TA), architecture un-
derstanding (AU), and feature understanding (FU). Given the
diversity of these tasks, the variety of the proposed visualiza-
tion solutions — e.g. matrix plots (Pezzotti et al., 2017), icicle
plots (Alsallakh et al., 2018), parallel coordinate plots (Strobelt
et al.,, 2017), stacked barcharts, annotated networks (Liu et al.,
2016), activation maps (Chattopadhay et al., 2018) — is not sur-
prising.

Projections occupy a particular role among such visualiza-
tions due to their ability to compactly capture high-dimensional
data — in the limit, a projection needs a single pixel to repre-
sent an n-dimensional point, for any value of n. As such, they
are very suitable instruments to depict several aspects of a DL
model. For example, in Fig. 2.4a, every point denotes a high-
dimensional sample in D, in this case a digit image from the
SVHN dataset (Rauber et al., 2017b). The points, colored by their
ground-truth classes, have as dimensions all activations of the
last hidden layer — also called learned features — of a DL model

28

2.3 SEEING FOR LEARNING: DR ASSISTS ML

trained to classify this dataset. We notice a good separation of
same-class images (the projection contains compact same-color
groups), which tells that the model’s training went well. We also
see, for each color (class), two distinct such groups. This tells
that the model has learned to split images of the same digit into
two subclasses. Upon inspection, illustrated by the tooltips in
the figure, we see that the model has learned by itself to sepa-
rate dark-on-bright-background digits from bright-on-dark back-
ground ones. Such findings would be hard to get without the
projection-based visual exploration tool. Moreover, such findings
can help fine-tuning the model to increase performance — in this
case, eliminate the learning of the background-vs-foreground ar-
tificial separation for same-class digits.

Figure 2.4b explores a different DL aspect, namely how the
model learns. For every epoch, a projection of all training-set sam-
ples is made, using as dimensions the samples’ last hidden layer
activations, similar to image (a). To maintain temporal coherence,
i.e., have similar-value samples from the same or different epochs
project to close locations, a dynamic projection algorithm, in this
case dt-SNE (Rauber et al., 2016), was used (see further Sec. 2.5.2).
Next, same-sample points from all epochs are connected by a
trail. As the last step, trails are bundled in 2D (van der Zwan
et al., 2016) to reduce visual clutter. The resulting image (b) shows
how the projection literally ‘fans out” from a dark clump (in the
middle of the image), which represents the similar activations of
all samples in the first epoch, to separate clusters of same-label
points (in the final epoch). This effectively summarizes the train-
ing success — the model has increasingly learned to separate the
classes throughout its training. We also see some challenges of
this model: The purple bundle (digit 4) is less well separated from
the others, which indicates difficulties in classifying this digit.

Figure 2.4c shows a similarly-constructed visualization but
where the trails connect projections of test-set image activations
through all network’s hidden layers. Bundles start fanned out but
apart from each other, indicating that the trained model success-
fully separates the classes even after its first layer. Same-color
trails in a bundle progressively fan in and also stay separated
from trails in other bundles, indicating that, as we go down the
model towards its further layers, class separation only becomes
better, i.e., that the chosen network architecture is indeed good
for the classification task at hand.

Connection to DBMs: If visual structures in projections help
understanding the operation of a DL model, then the richer vi-
sual structures shown by decision maps — such as the shapes and

29

RELATED WORK

layer 1 layer4
0123456789
EEERER

a) explore learned features b) explore training vs time c) explore training vs layers

Figure 2.4: Projections for understanding DL models. Exploring (a) acti-
vations of similar instances, (b) evolution of activations over
training epochs, and (c) evolution of activations over network
layers (Rauber et al., 2017a). See Sec. 2.3.3.

sizes of decision zones and the smoothness (or lack thereof) of
decision boundaries — will be able to give richer insights on such
operation.

2.3.4 Decision boundary maps

A key aspect of ML classification models are points in their input
data space Z C R" where f changes output, i.c.., the inferred
class. Given the continuity assumption behind most ML models,
such points are located on hypersurfaces (manifolds) embedded
in Z, also called decision surfaces (see the light blue surfaces in
Fig. 2.5a). These partition the Z space into compact regions where
the classifier has the same output, also called decision zones.

As described so far, projections P(D) depict a discrete set of
samples D, optionally color-coded to show the behavior of a ML
model f. For the dataset D represented by the green points in
Fig. 2.5a, this would yield the red-points scatterplot in Fig. 2.5b.
Such images, however, do not explicitly show where decision
boundaries are — we know that they occur somewhere between
the red dots, but not where precisely. Depicting such boundaries,
along the color-coded training and/or test sets of f, significantly
improves the understanding of how f actually behaves. This can
help ML engineers to find where in the input space more training
samples are needed to improve a classifier or, conversely, assess
in which such areas would samples be misclassified.

30

2.3 SEEING FOR LEARNING: DR ASSISTS ML

nD space . .
. decision boundaries
oot 7 in nD
v
X
j\ 2D space

what to draw here?

.

a) b) decision boundaries
in 2D

d)

Figure 2.5: Decision boundary maps. (a) A high-dimensional dataset
with its decision boundary hypersurfaces. (b) Projecting the
samples (green) and decision boundaries (light blue) of this
dataset yields the red 2D points, respectively light blue 2D
curves. (c) Example of such a 2D projection with samples
colored by the class inferred by a ML model. (d) The deci-
sion zones for this classifier are depicted in the 2D projection
space as same-color areas. See Sec. 2.3.4.

2.3.4.1 Basic idea of decision boundary maps

Decision boundary maps (DBMs, sometimes called simply deci-
sion maps in various papers and also this thesis) are a visual
representation for both decision zones and boundaries for any
classifier (Schulz et al., 2015; Rodrigues et al., 2018). Intuitively
put, DBMs aim to map the entire space Z (as classified by f) to
2D rather than the discrete sample set D, as follows. Given a
training and/or test set D, a direct projection P is used to cre-
ate a 2D embedding thereof. After that, given an image space
I C R?, a mapping P~! : I — R" is constructed to reverse the
effects of P. We describe P! in detail further in Sec. 2.4.2. The
mapping P! is then used to ‘backproject’ each pixel p € I to a
high-dimensional point x = P~!(p), x € Z. Finally, each pixel p
is colored by the label f(x) assigned to it by the trained model to
be explored. Same-color areas emerging in I indicate f’s decision
zones; pixels on the frontiers of these areas show f’s decision
boundaries. Figure 2.5d shows this for a KNN classifier trained
to produce the test set depicted by the projection in Fig. 2.5 for a
six-class problem.

31

RELATED WORK

The key to DBM construction is creating the mapping P~! for a
given direct projection P. In principle, any combination of P and
P~! can be used to construct a DBM for any given classifier by di-
rectly following the per-pixel procedure outlined above. However,
earlier studies have shown that, for certain classification prob-
lems where one has ground-truth information about the expected
outcomes — for example, in the sense of the shapes, sizes, and
smoothness of the decision zones that a given classifier should
create for that dataset — certain direct projections P and P~! com-
binations work better (Rodrigues et al., 2019; Oliveira et al., 2022).
We discuss these aspects separately in Sec. 2.4.2.

2.3.4.2 Enhancements of basic DBMs

DBMs can be further enhanced to encode, via brightness, the
model’s confidence at every 2D pixel (Figs. 2.6a,c) or the actual
distance, in Z, to the closest decision boundary (Fig. 2.6b). The
appearing brightness gradients tell which areas in the projection
space are more prone to misclassifications. Importantly, this does
not require actual training or test samples to exist in these areas
— rather, such samples are synthesized by P~

Figure 2.6: Decision boundary maps for classifier analysis with lu-
minance encoding classifier confidence (a,c)(Schulz et al.,
2015; Oliveira et al., 2022), respectively distance-to-decision-
boundary (b) (Rodrigues et al., 2019). See Sec. 2.3.4.

Interpreting confidence or distance-enhanced DBMs is, how-
ever, not trivial, as illustrated next by the example in Fig. 2.7.
Image (a) shows the MNIST digit dataset(LeCun et al., 2010)
(n = 782 dimensions, |C| = 10 classes) projected to 2D by us-
ing t-SNE and classified by a neural network. Image (b) shows
the DBMs for this problem. Image (c) enhances this by encod-
ing the classifier confidence encoded into brightness (dark=lower
confidence). For clarity, image (d) shows the confidence informa-
tion separately (green=low confidence; yellow=high confidence).
The images (c) and (d) convey the impression that the visualized

32

2.3 SEEING FOR LEARNING: DR ASSISTS ML

classifier is highly, and equally, confident in all areas except very
close to its decision boundaries.

Combining this information with the distance-to-closest-
decision boundary reveals a different story. Image (e) shows
this distance. In contrast to earlier techniques (Rodrigues et al.,
2019) (Fig. 2.6b) which use expensive iterative-search in the high-
dimensional space to locate, for each pixel p, the distance from
x = P~!(p) to its closest decision boundary, Machado et al.
(2024) proposed recently to create such images (e) by a simpler,
and much faster approach. For each such point x, they synthe-
size its closest adversarial example a € Z and approximate the
sought distance as ||x — a|| using DeepFool (Moosavi-Dezfooli
et al., 2016). This is orders of magnitude faster than iterative
search and allows generating the desired distances in subsecond
time on a commodity PC. Examining image (e), we see that the
distance-to-boundary evolves very differently for the different de-
cision zones and has complex patterns even in a single such zone,
indicating that certain points are far closer to decision boundaries
than others. For example, the red decision zone, although appear-
ing very close to its neighbors in the raw projection (Fig. 2.7a,
is quite bright, telling that it is farther away from its surround-
ing decision boundaries, than the other, darker, zones. Image (f)
shows the same information, but with inverse brightness map-
ping than in (e). This highlights zones close to decision bound-
aries, i.e., where the classifier may have trouble. We see, for exam-
ple, a small yellow decision zone (marked by a white triangle).
This zone, which is also disconnected from the other, larger, yel-
low decision zone (thus, for the same class), is very bright in
image (e), indicating that it is very close to decision boundaries.
This likely indicates potential model instabilities in this area.

To further explore this hypothesis, Machado et al. (2024) per-
formed a simple experiment, as follows. They select ten pixels in
the above-mentioned small yellow region, synthesize their corre-
sponding data samples by P~!, and add to them a wrong label
— corresponding to the cyan color instead of the correct, yellow,
label (see Fig. 2.7g, with the selected pixels marked in red). They
next add these mislabeled points to the training set, re-train the
model, and visualize its DBM. The result (Fig. 2.7h), shows how
the small yellow region has become cyan, which is potentially not
surprising given the newly added labels. More interestingly, how-
ever, we see large changes in decision zones of different classes
adjacent to the yellow region: The dark-blue zone grows signifi-
cantly to cut away a portion of the brown zone. This shows that
few data changes in a small decision zone, potentially flagged

33

RELATED WORK

B

i) I

Figure 2.7: Explanatory visualizations for interpreting DBMs created by
the technique of Machado et al. (2024). See Sec. 2.3.4.

by the DBM visualization as unstable, change indeed the overall
behavior of the classifier even outside this zone.

Annotating a DBM with the classifier confidence and/or dis-
tance to closest decision boundary does not, however, reveal all
information that characterizes different decision zones. Indeed,
one additional such information involves how close the DBM
points are to the actual training points that the classifier was con-
structed from. We illustrate the added-value of this information
next. Images (c-f) in Fig. 2.7 show several large decision zones,
e.g. the green and orange ones, which look quite similar from the
perspective of confidence and distance to boundary - their inner
pixels appear to be quite confident and far away from the sur-
rounding decision boundaries. To gain more insight, Machado
et al. (2024) visualize, for each pixel p, the distance of its corre-
sponding data sample to the closest training-set point, i.e.

dp(p) = min||P~}(p) — x|, (2.4)
xeDy

which we will also use in Chapters 4 and 7. Figure 2.7i shows the
distance dp for the MNIST classifier, with dark blue indicating
small distances and yellow large ones, respectively. We immedi-
ately see that all pixels of the orange decision zone are very close
to the training-set, whereas pixels in all other zones appear much
farther away. This indicates non-linear behavior of the DBM con-

34

2.3 SEEING FOR LEARNING: DR ASSISTS ML

struction algorithm — the visible sizes of the decision zones in the
DBM do not indicate actual sizes in the data space. Differently
put, the orange decision zone is much closer ‘wrapped around’
training-set points than the other zones. This indicates that, all
other aspects being equal, one should have more trust in the clas-
sifier behavior in the orange zone, as its depicted points are much
closer to the training set that the classifier was built from.

Additionally, we see in image (i) a bright yellow band at the
bottom of the corresponding pink decision zone. This tells that
points around this decision boundary (between the pink and
green zone) are quite far away from any training-set point. As
such, even if the confidence of the classifier appears quite high
in this area, apart from points very close to the decision bound-
ary (see image (d)), the classifier extrapolates much farther away
from its training data here, so, it is more prone to errors. Note
that one would expect the confidence to drop as the data points
become further apart from the training set (intuitively, what the
classifier learned from that training set is now ‘stretched” to ac-
count for very different data), but this is not the case for this clas-
sifier. The visualizations show that purely relying on classifier
confidence is not sufficient for users to gain enough understand-
ing of what the classifier does in specific situations and, hence,
whether they trust (or not) the classifier in those situations.

Besides the above, we see, within each decision zone, a vary-
ing color pattern consisting of dark ‘cells’ separated by slightly
brighter bands. These indicate how the respective sub-areas in a
decision zone have been created by samples in the training-set —
much like the visualization of a Voronoi diagram whose sites are
the training-set samples.

Figure 2.7j shows a final variation of the explanatory visualiza-
tions for DBMs. Here, instead of depicting the distance of a map
pixel to the closest training-set point, Machado et al. (2024) show
the distance to the closest training-set point of the same class as
the pixel itself.

dsDameclass (min

= p! —x||. (2.5)
xeDy| f(x)=f(P~1(p)) I ®) ”

The distance d§3"¢!%s shows how far away samples that map to
a decision zone are from training-set samples that led to the cre-
ation of that zone in the model f. We see that image (j) is quite
similar to image (i). This is a positive finding, as it tells that pix-
els in a decision zone correspond to data points which are close
to the training samples for that zone, which is indeed what a
good DBM should show. In the same time, we see that the con-

35

RELATED WORK

trast between the orange and green zones, visible as dark blue,
respectively bright green in image (j), has increased. This tells
that the decision boundary between the orange and green zones
is far closer to the orange training samples than to the green ones
— an insight which the basic confidence or distance-to-boundary
maps do not reveal.

2.3.5 Putting it all together: Visual analytics workflow

At this point, we can further detail the general visual-analytics
workflow of ML assistance by DR techniques introduced in
Fig. 2.1 (green arrows). Figure 2.8 does this by refining the work-
flow for using DR to assist ML proposed earlier by Rauber et
al. (Fig. 1 inRauber et al. (2017b)) to include the DR-based tech-
niques discussed above in this section — all which are novel in
comparison with Rauber et al. (2017b)), apart from the classifica-
tion ease analysis (see next). This gives a practical guideline on
how to use the presented visualization techniques in practical ML
engineering. In the following, numbers in the text indicate steps
in the workflow Fig. 2.8.

feature extraction reduction projection study

model design training assessment model evaluation

bad

separation

iEp

oo low testing perfo
4 9

Legend
=) data
=) findings
ML operations
3 VA operations

DBM study

system is ready

Figure 2.8: Workflow of using DR techniques to assist ML (see Fig. 2.1,
green arrows). Visual analytics (VA) operations enabled by
DR are marked by red-outlined boxes.

¢ The process starts by acquiring a dataset that one wants to
further analyze, e.g. classify, using ML.

— If not enough labeled samples are available (1), pseu-
dolabeling (Sec. 2.3.2) can be used to create additional
ones (2), else the process continues with the avail-

36

2.4 LEARNING FOR SEEING: ML ASSISTS DR

able data (3). Projections and decision maps can guide
users during the pseudolabeling process.

* From these data, features are typically extracted by various
processing operations (4).

* Next, DR is used to construct a projection (5) from the data.
The projection is visually studied to assess whether the data
form sufficiently separated classes to suggest a feasible clas-
sification problem (Sec. 2.3.1).

- If so (7), a ML architecture is chosen to design and
train a model. Else, the workflow reverts to extracting
better features (6).

* DR-enabled techniques are next used to assess (8) whether
the training performed well (Sec. 2.3.3).

— If training is found unsatisfactory (9), the model is fur-
ther inspected (Sec. 2.3.3) to find whether it has a poor
design (10) or was fed by poor features (11).

+ In the former case, the model goes to redesign
stage; in the latter, different features are extracted.

— If the model’s training was positively assessed (12), the
flow continues with standard ML evaluation (testing).

+ Upon measuring satisfactory performance (13),
the workflow ends with an operational model
ready for use.

+ If testing performance is found too low (14),
decision-map techniques (Sec. 2.3.4) can be used
to find out whether different features (15) or if
more (or different) training data is needed (16). In
both such cases, the workflow continues from the
respective earlier steps, as indicated in the figure.

2.4 LEARNING FOR SEEING: ML ASSISTS DR

Section 2.3 has shown several examples of how DR visualizations
help in several use-cases of ML engineering. In this section, we
outline the opposite path, i.e., how ML techniques can be used
to create DR visualizations so as to surpass limitations of exist-
ing DR algorithms. We discuss two classes of such methods for
creating projections (Sec. 2.4.1), respectively inverse projections
(Sec. 2.4.2).

37

RELATED WORK

2.4.1 Deep learning projections

Tens of DR techniques have been developed in the visualization
community. However, choosing such a technique to apply in prac-
tice, for instance for the ML use-cases outlined in Sec. 2.3, is
challenging, as few comparisons of such techniques exist follow-
ing all desirable requirements listed in Sec. 2.2.2. A recent sur-
vey (Espadoto et al., 2019a) addressed this question at scale for
the first time by comparing 44 projection techniques P over 19
datasets D from the perspective of 6 quality metrics M, using
grid-search to explore the hyperparameter spaces of the projec-
tion techniques. Equally important, all its results — datasets, pro-
jection techniques, quality metric implementations, study proto-
col — are automated and freely available, much like similar en-
deavors in the ML arena. Following the survey’s results, four
projection methods consistently scored high on quality for all
datasets, namely UMAP (Mclnnes et al., 2018), t-SNE (van der
Maaten and Hinton, 2008), IDMAP (Minghim et al., 2006), and
PBC (Paulovich and Minghim, 2006), with several others close to
them. However, none of the top-ranked surveyed techniques also
met the OOS, computational scalability, and stability criteria. As
such, the survey concluded that better DR techniques are needed.

Following the analogy with ML regressors and given that
such regressors meet the OOS, scalability, and stability criteria
(Sec. 2.2.1), it becomes interesting to consider ML for building
better projection algorithms. Autoencoders (Hinton and Salakhut-
dinov, 2006) do precisely that and meet all requirements in
Sec. 2.2.1 except quality — the resulting projections have in gen-
eral poorer trustworthiness and continuity than state-of-the-art
methods like UMAP and t-SNE. Figure 2.9 illustrates this: The
well-known MNIST dataset, which is well separable into its 10
classes by many ML techniques, appears, wrongly, poorly sepa-
rated when projected by autoencoders. Following (Rauber et al.,
2017b) (see also Sec. 2.3.1), we can conclude that autoencoders
are a poor solution for DR.

2.4.1.1 Basic idea of learning projections

The idea of using deep learning to create an OOS projection is
quite old. Pekalska et al. (1999) proposed to do this to approxi-
mate Sammon’s mapping in a way that could be extended to ap-
proximate also other DR techniques. Autoencoders, mentioned
earlier, are another early approach for the same task. More re-
cently, Espadoto et al. (2020) proposed Neural Network Projec-

38

2.4 LEARNING FOR SEEING: ML ASSISTS DR

tions (NNP), a supervised approach to learning DR: Given any
dataset D and its projection P(D) computed by the user’s tech-
nique of choice P, a simple three-layer fully-connected network
is trained to learn to regress P(D) when given D. Despite its
simplicity, NNP can learn to imitate any projection technique P
for any dataset D surprisingly well. While NNP’s quality is typ-
ically slightly lower than state-of-the-art projections like t-SNE
and UMAP, it is a parametric method, stable as proven by sen-
sitivity analysis studies (Bredius et al., 2022), OOS, linear in the
sample count N and dimensionality 7 (in practice, thousands of
times faster than t-SNE), and very simple to implement.

a) t-SNE

"

f) SHaRP (ellipses) g) SHaRP (rectangles) h) HyperNP (p=5) i) HyperNP (p=15) j) HyperNP (p=25)

Figure 2.9: Projection of MNIST dataset with (a) t-SNE (van der Maaten
and Hinton, 2008) and with deep learning methods: (b)
NNP (Espadoto et al., 2020), (c) kKNNP (Modrakowski et al.,
2022), (d) autoencoders (Hinton and Salakhutdinov, 2006), (e)
SSNP (Espadoto et al., 2021b), (f,g) SHaRP (Machado et al.,
2023) with elliptic, respectively rectangular, cluster shapes,
and (h-j) HyperNP (Appleby et al., 2021) imitating t-SNE for
three different perplexity values p. See Sec. 2.4.

2.4.1.2 OOS and sensitivity analysis

As explained earlier, the OOS and sensitivity (stability to small
changes of the input) are related, but not identical, desirable prop-
erties. We illustrate both properties for NNP next, noting also
that all other similar deep-learned projection algorithms (kNND,
SNNP, SHaRP, autoencoders) share by construction the same
properties, since they use very similar neural network architec-
tures.

Figure 2.10 (top two rows) illustrates NNP’s out-of-sample abil-
ity. The top row shows t-SNE projections of the MNIST dataset
for an increasing number of samples (from 2K to 100K). As visi-

39

RELATED WORK

ble, the projection continuously changes, making it hard for users
to maintain their mental map of the studied data. The row below
shows NNP trained to mimic t-SNE. We see that the shape of the
projection and location of its ten clusters (one per class) stays the
same as more samples are added. A drawback of this is that the
cluster separation is lower than for the t-SNE projection as more
samples are added. This is expected since NNP was trained only
on the initial set of 2K samples, i.e., it did not have a chance to
see the additional ones.

Figure 2.10 (bottom row) illustrates NNP’s stability. An NNP
model is trained to project the MNIST dataset, after which is
asked to project MNIST images where an increasingly larger
number of dimensions (pixel values) have been cancelled, i.e., set
to zero. Surprisingly, NNP can capture the cluster structure of
the data (10 classes for the 10 digits) up to 40% cancelled di-
mensions. The aggregated image shows the ‘movement’ of the
points in the NNP projection as increasingly more dimensions
get dropped. Similar insights are obtained for other input-dataset
perturbations such as sample jitter, translation, and scaling. At a
higher level, we see sensitivity analysis as a very powerful, yet
under-explored, technique — well known in the ML repertoire —
to assess the quality of DR projections.

2.4.1.3 Refinements of NNP

Subsequent refinements of NNP aim to keep the attractive as-
pects of the method (speed, OOS, genericity, stability, simplic-
ity) while increasing its quality and controlling the visual ap-
pearance of the resulting projections (see further Fig. 2.9). k-
NNP (Modrakowski et al., 2022) enhances the projection quality,
measured following the metrics introduced in Sec. 2.2, by learn-
ing to project sets of neighbor samples rather than individual
samples. SSNP (Espadoto et al., 2021b) works in a self-supervised
way, similar to autoencoders, thus dispenses of the need of a train-
ing projection. The self-supervised information comes either in
the form of ground-truth labels (when available) or pseudolabels
computed by clustering the input data. Since based on an autoen-
coder structure, SSNP can also create inverse projections (see next
Sec. 2.4.2). SDR-NNP (Kim et al., 2022) increases NNP’s ability to
separate clusters of different observations by pre-sharpening the
input training set D; via mean shift (Comaniciu and Meer, 2002).
SHaRP (Machado et al., 2023) refines SSNP to allow one to con-
trol the shapes of clusters of similar observations to match de-
sired templates such as ellipses, rectangles, or triangles. Finally,

40

2.4 LEARNING FOR SEEING: ML ASSISTS DR

HyperNP (Appleby et al., 2021) extends NNP by learning the be-
havior of a projection technique P for all its hyperparameter val-
ues, thereby allowing users to explore this parameter space at
interactive rates. All the above results prove that DL is a serious
contender for generating projections that comply with all require-
ments set forth by practice.

We will use deep-learned projections at several points in our
work such as when quantitatively comparing decision maps cre-
ated using such techniques (Chapter 4).

D,|=2K D,|= 10K
T T

ID,| = 30K D, = 60K D, = 100K
% - N
i

0O0S analysis

aggregation

Sensitivity analysis

Figure 2.10: NNP out-of-sample (OOS) analysis. Image taken from
(Bredius et al., 2022). The top row shows projections of the
MNIST dataset using t-SNE for increasing numbers of sam-
ples in the test set Dr. The projection does not maintain
stability. The second row shows how NNP maintains stabil-
ity as new samples are added to the test set. Bottom row:
NNP sensitivity analysis when removing between 10% and
90% of the dataset’s dimensions. NNP can robustly depict
the data structure even when a large part of the input infor-
mation is missing. See Sec. 2.4.1.

2.4.2 Inverse projections

Following the success of DL for constructing projections P out-
lined above, it becomes immediately interesting to consider their
use for the complementary problem of computing inverse pro-
jections P~!. Introduced in Sec. 2.3.4 for constructing DBMs, in-
verse projections have additional uses, e.g., generating synthetic
samples for data augmentation scenarios (Rodrigues et al., 2018)
and hypothesizing the unexplored regions of a sampled data

41

RELATED WORK

space for e.g. shape or image morphing applications (dos San-
tos Amorim et al., 2012).

Definition: Formally put, given a direct projection function P :
R" — R7, with g < n typically, the inverse projection is just the
inverse of that function, i.e., a function

P71 R7T — R" (2.6)

so that P~1(P(x)) = x for any x € R". Unfortunately, computing
such an exact inverse function is not possible for most of the ex-
isting projection algorithms P for one or several of the following
reasons:

* non-injectivity: Typical projection functions P are not injec-
tive — that is, they can map different points in R" to the
same location in RY. This is a direct, and likely unavoidable
in general, consequence of the fact that g < n;

* non-parametric nature: While we are talking about P as be-
ing a function between two spaces (R" and IR7), many pro-
jection algorithms do not work in this fashion. Rather, they
map a given sampling, or dataset, D C IR" to another dataset
P(D) C R7 (see Eqn. 2.2). When the dataset D changes, the
mapping can change as well - that is, the same point x € R”"
can be mapped to different locations in IRY, depending on
which other points it comes along with in the new D. This
is precisely the lack of OOS ability discussed in Sec. 2.4.1
and illustrated, for t-SNE, in Fig. 2.10. Only a (small) sub-
set of projection techniques are parametric, i.e., comply with
the functional definition given above (van der Maaten, 2009;
Jolliffe, 2002);

* inverse problem: Even for cases when an algorithmic func-
tional definition of P is available and P is injective, comput-
ing its inverse can be quite challenging since inverse prob-
lems do not always have guaranteed unique and/or stable
solutions.

To address the above three problems, the practical approach
to computing P~! is by various forms of approximation, which
share one or several of the following characteristics:

* non-injectivity: This aspect is usually neglected by practi-
cal algorithms that compute P~!. That is, if two (or more)
points x; € R" map to the same location p € R, P~1(p)
will yield a single value in R";

42

2.4 LEARNING FOR SEEING: ML ASSISTS DR

* non-parametric nature: Since most projections P are of this
nature, inverse projections are usually defined in terms of
a given dataset D C IR". For such a dataset, an inverse pro-
jection is a function that aims to yield P~1(P(x)) ~ x for all
x € D. However, inverse projections need to be parametric
themselves, i.e., applicable to any other values p € R? apart
from P(D), otherwise they would not be useful for the tasks
mentioned earlier in this chapter — in particular, for the con-
struction of decision maps. For such “unseen’ points p, P~
is usually defined to work in a smooth manner — that is,
the closest p is to a known P(x) value, the closest should
P~1(p) be to x.

e inverse problem: Computing P~ is usually done by minimiz-
ing suitably-chosen (convex) error functions that model the
goal P~1(P(x)) =~ x for all x € D mentioned above. This
simplifies and accelerates the computation problem by us-
ing existing numerical optimization methods.

2.4.2.1 Early methods for computing inverse projections

Likely one of the earliest methods for computing inverse pro-
jections is by training an autoencoder to jointly perform P and
P~! (Hinton and Salakhutdinov, 2006). While this method is sim-
ple to implement and fast to compute, it does not allow inverting
any user-chosen direct projection P. Moreover, projections cre-
ated by autoencoders are of lower quality than other state-of-the-
art techniques (see Fig. 2.9 and related text and also the evalua-
tion in (Espadoto et al., 2019a)).

Mamani et al. (2013) presented a method that uses inverse pro-
jections to transform the high-dimensional data space based on
manipulations of the 2D projection space. This allows users to ex-
ecute several potentially complex operations that affect the invisi-
ble high-dimensional data based on a simple interface that allows
direct manipulation of 2D projection points. However, the pro-
posed method does not directly allow inversely projecting new
points — that is, 2D points which are not the direct projection of
existing data points.

iLAMP (dos Santos Amorim et al., 2012) uses local informa-
tion in P(D) to build affine transformations that map R? to R".
Although iLAMP was proposed to reverse the LAMP projection
technique (Joia et al., 2011), it can be used to reverse other projec-
tions P with reasonable results (Rodrigues et al., 2018; Espadoto
et al., 2019c). The same authors next proposed an inverse projec-

43

RELATED WORK

tion method using Radial Basis Functions (RBFs) to gain continu-
ity and global behavior.

Schulz et al. (2015, 2020) proposed DeepView to compute in-
verse projections using UMAP (Mclnnes et al., 2018) as direct pro-
jection P. In contrast to UMAP, however, similarities of points are
computed by combining their high-dimensional attributes with
the outcome of a classifier f (similar to SSNP). The inverse pro-
jection is then computed also by UMAP from the projection of
the given dataset P(D) and then extrapolated to the entire 2D
space by minimizing the Kullback-Leibler divergence (similar to
t-SNE). DeepView yields quite smooth results (see its application
for DBM construction in Fig. 2.6a) but is over an order of magni-
tude slower than all other P~! techniques described here.

More recently, Blumberg et al. (2024) proposed iMDS to invert
MDS projections using multilateration with randomly selected
samples to estimate the inverse projection. While this method is
simple to implement, it only gives good results for datasets hav-
ing a quite low intrinsic dimensionality (under 10) and can only
invert MDS. Although this method is quite recent, we include it
in this section which discusses early inverse projections since it is,
fundamentally, sharing the same characteristics as all other meth-
ods which do not use the more recent deep-learning approach
which are discussed in the next section.

2.4.2.2 Deep learning inverse projections

Following the success of NNP for direct projections (Sec. 2.4.1),
Espadoto et al. (2019c) computed inverse projections by simply
‘switching’ the input and output of NND, i.e., given a dataset D
that projects to a 2D scatterplot by some technique P, train a
regressor to output D when given P(D). This technique, called
NNInv inherits all the desirable properties of NNP (Sec. 2.4.1)
and also produces higher-quality inverse projections than autoen-
coders and iLAMP. The usage of NNInv is illustrated in the DBM
construction in Fig. 2.6b. Further variations of this design in-
clude SSNP (Espadoto et al., 2021b) (used to construct the DBM in
Fig. 2.6c and SHaRP (Machado et al., 2023)). Both techniques use
an autoencoder basis so produce both a direct and inverse pro-
jection (see also Sec. 2.4.1). However, their quality is higher than
plain autoencoders and also than plain NNInv given their (self-
)supervised operation based on class (pseudo)labels. Figure 2.11
illustrates this by comparing NNinv (first row) with SHaRP (sec-
ond and third rows) for the construction of a decision map for
a simple k-nearest neighbors (KNN) classifier (k = 21) for four

44

2.4 LEARNING FOR SEEING: ML ASSISTS DR

datasets of varying dimensionalities n. This is a novel insight as
SHaRP has, so far, not been gauged on its performance for com-
puting decision maps. We see that, similarly to SSNP (shown in
Fig. 2.6¢), SHaRP produces decision zones with smoother bound-
aries than NNInv, which are closer to the known ground-truth
smooth boundaries (hyperplanes) that a KNN classifier should
have.

FashionMNIST (n=784)

K-Jl

. vl N 'A

Figure 2.11: Comparison ~ of decision maps constructed by
NNinv (Espadoto et al, 2019c) (top row) and
SHaRP (Machado et al., 2023) (middle row: plain map;
bottom row: map with classifier confidence encoded
into color saturation) inverse-projection techniques, for a
KNN classifier and four datasets (n indicates the dataset
dimensionalities). See Sec. 2.4.2.

HAR (n=561) Reuters (n=5000) USPS (n=256)

SHaRP (plain)

SHaRP (with confidence)

2.4.2.3 Applications of inverse projections

NNInv was further explored in detail for visual analytics scenar-
ios involving dynamic imputation and exploring ensemble classi-
fiers (Espadoto et al., 2021a). Figure 2.12 shows the latter use-case:
In the image, each pixel is backprojected and ran through a set
of nine classifiers, trained to separate classes 1 and 7 from the
MNIST dataset. The pixel is then colored to indicate the classi-
fiers” agreement. Deep blue, respectively red, zones show areas
where all classifiers agree with class 1, respectively 7. Brighter ar-
eas indicate regions of high classifier disagreement — which are
thus highly difficult to decide upon and are prime candidates for
ML engineering, regardless of the used classifier.

45

RELATED WORK

Figure 2.12: Classifier agreement map for g classifiers, two-class problem
(MNIST datasets digits 1 and 7). Dark colors indicate more
of the g classifiers agreeing, at a pixel in the map, with their
decisions (red=1, blue=7). Brighter, desaturated, colors in-
dicate fewer classifiers in agreement (white=four classifiers
output 1, the other five output 7, or conversely). Image taken
from (Espadoto et al., 2021a). See Sec. 2.3.4.

2.5 FUTURE EXPLOITATIONS OF THE ML-DR CONNECTION

Reflecting upon the current achievements of using ML for DR
and conversely, we see a bright future ahead for research where
the two directions assist each other. We illustrate this with a few
selected, non-exhaustive, examples of such potential ML-DR syn-
ergies. Moreover, we connect these examples to concrete cases
where we leverage this synergy in our own work on decision
maps in the next chapters.

2.5.1 Prospects of DR assisting ML: Seeing to learn better

2.5.1.1 DBMs in use

For researchers in various fields, DBMs can provide insights into
the behavior of classifiers in their respective applications, thereby
helping them to understand and interpret the results of their ML
models. For machine learning engineers, they offer a visual and
informative way to refine models.

Apart from the scenarios depicted in (Espadoto et al., 2021a;
dos Santos Amorim et al., 2012; Amorim et al., 2015), DBMs
could be readily used in a visual analytics explorative scenario
to drive a classifier’s training. If computable in real-time, users
could visualize the DBMs, find problematic areas with respect
to how the decision boundaries wrap around samples, and next
modify the training set by e.g. adding or deleting labels, adding
new augmented samples, or even moving samples. We envisage a
tool in which users could effectively ‘sculpt’ the shape of decision

46

2.5 FUTURE EXPLOITATIONS OF THE ML-DR CONNECTION

boundaries by sample manipulation much as one edits 2D shapes
by manipulating spline control points. This would offer unprece-
dented freedom and a wholly new way of fine-tuning classifiers
to extend the approaches pioneered in Benato et al. (2018, 2021).

This thesis contributes to this topic from two aspects: First,
Chapter 3 presents an application of decision maps to under-
stand classification models constructed for geoscience research,
which demonstrates how decision maps can be used to help re-
search in other fields in practice. Secondly, Chapter 7 presents
a novel method to accelerate the construction of decision maps
(and other maps related to inverse projections). Our method can
compute such maps interactive rates, which is a prerequisite for
the interactive exploration mentioned above. An early version of
our acceleration technique has been used in a practical applica-
tion, namely for pseudo-labeling high dimensional datasets to
improve classification performance (Benato et al., 2024).

2.5.1.2 Visualizing regressors

All visualizations examples shown in this chapter have covered
only the depiction of classifiers that output a single categorical
value. However, as Sec. 2.2 mentions, ML also studies multi-
valued classifiers and, further, single-valued and multi-valued re-
gressors. Concerning decision maps, we are not aware of their
extension to multi-valued classifiers. This could be achieved by
using multiple-view maps, one per classifier output, or categori-
cal color-coding of all multi-valued class combinations in a single
decision map. Concerning regressors, recent results have shown
how to extend the decision map metaphor to visualize single-
valued regressors (Espadoto et al., 2021¢, 2023). However, this re-
search only used a relatively low-quality projection (PCA), so it
could be readily explored how better direct and inverse projec-
tions, like the ones described in Secs. 2.4.1 and 2.4.2 could im-
prove its results. Visualizing multi-valued regressors is a harder
problem as several continuous values would need to be displayed
at each pixel. To assist this, techniques developed earlier in sci-
entific visualization, such as tensor visualization (Weickert and
Hagen, 2005), could offer an outcome.

We leave this challenge of visualizing general regressors open
in our work in this thesis.

47

RELATED WORK

2.5.2 Prospects of ML assisting DR: Learning to see better

2.5.2.1 Inverse projection quality

While many metrics exist to gauge the quality of direct projec-
tions (Sec. 2.2), there are no established ways to measure the qual-
ity of an inverse projection, apart from the simple mean-square-
error (MSE) Y,cp |Ix — P(P~1(x))|| (Espadoto et al., 2019c). This
is not surprising since, as explained in Sec. 2.4.2, inverse pro-
jections are mainly used to infer, or hypothesize, what the data
would be in locations where no ground-truth is present. As such,
defining what a good inverse projection should return in such ar-
eas is conceptually hard. Yet, possibilities exist. One can e.g. use
a ML approach where an unseen test set is kept apart from the
construction of the inverse projection and is used to assess the
quality of such a trained model using the aforementioned MSE.
An equally interesting question is how to design a scale, or hi-
erarchy, of errors. It is likely that differently inversely-projected
points X' = P~!(P(x)) that deviate from its ground-truth loca-
tion x by the same distance ||x’ — x|| are not equally good, or
equally bad, depending on the application perspective. As such,
inverse projection quality metrics may need to be designed in an
application-specific way.

Similarly to direct projections (Espadoto et al., 2019a), the qual-
ity of inverse projections can be measured not only globally (by
a single aggregate metric) but also locally, at every pixel. The ex-
planatory visualizations in Fig. 2.7 can be thought as being such
per-pixel quality maps (for classifiers). For inverse projections,
we are aware of a single such per-pixel quality visualization —
gradient maps (Espadoto et al., 2021a). Figure 2.13a shows this
gradient map, which depicts the gradient magnitude of the P~1
function (in this case constructed with NNInv) at every pixel.
Hot, respectively dark, regions in the map indicate nearby 2D
points which backproject far away from, respectively close to,
each other. Points in the hot regions thus indicate areas where
the inverse projection may be unstable, and as such, potentially
create misleading data. However, one cannot directly say that this
is an error of the inverse projection P~1. Such regions may cor-
respond to areas where the direct projection P squeezed faraway
data points to fit them in the 2D space — thus areas of low continu-
ity (Venna and Kaski, 2006). Hence, analyzing inverse projection
errors should go hand-in-hand with analyzing the errors of the
direct projection it was computed for. For the latter, many per-
pixel techniques are readily usable (Aupetit, 2007; Lespinats and

48

2.5 FUTURE EXPLOITATIONS OF THE ML-DR CONNECTION

Aupetit, 2011; Martins et al., 2014). We will further use gradient
maps in evaluating our results in Chapters 4 and 6.

Figure 2.13: (a) Gradient map of NNInv inverse projection constructed
from a t-SNE projection of an uniformly sampled sphere.
Hot, respectively dark, regions indicate nearby 2D points
that inversely project to far-apart, respectively close, nD
points (green line, top sphere; orange line, bottom sphere,
respectively). (b) Gradient map of NNInv inverse projection
used to construct the decision maps for the MNIST classi-
fication in Fig. 2.7, with distance-to-closest-boundary map
at the top (grayscale). (c) Two regions of large, respectively
low, gradients are sampled by the red, respectively green,
points. The corresponding images generated by NNInv are
shown and confirm the large, respectively low, variations of
the inverse projection in these areas. See Sec. 2.5.2.

Figure 2.13b shows an additional use-case for gradient maps.
The image depicts the gradient map of the NNInv inverse-
projection method used to construct the decision map visualiza-
tions for the MNIST classifier explored in Fig. 2.7. Atop of this
gradient map, we overlaid the classifier confidence (Fig. 2.7d), so
the dark bands in the image correspond to the classifier’s deci-
sion boundaries. For clarity of exposition, we show atop image
(b) the distance-to-closest-boundary, i.e.., the same information
as encoded in the luminance in Fig. 2.7e. Image (b) gives us sev-
eral insights. We see that large inverse-projection gradients occur
both along decision boundaries but also deep inside the decision
zones. Also, these large gradients are not correlated with areas
of low, or high, distance-to-closest boundary. Hence, the gradient
map tells additional information not present in earlier visualiza-

49

RELATED WORK

tions. This information helps seeing where a classifier will be
exposed to high data variability, thus, meet more challenges. We
show this by taking five points (A...E) in a low-gradient, and
five others (F...]) in a high-gradient area, respectively. Fig. 2.13c
shows the MNIST images corresponding to these points. Indeed,
we see how the respective digits vary significantly more in high-
gradient areas than in low-gradient ones.

Another aspect related to inverse projection quality is the cov-
erage of an inverse projection function. Simply put: Consider an
image space I = {p}, I C R? as a set of pixels p, and an inverse
projection function P~! : R?> — R". Let ™! = {P~!(p)|p € I} be
the mapping of the entire pixel image I to the data space via P~
Current decision maps only ‘sample’ the data space by examin-
ing 1. The question is: How well does [~! cover, or represent,
the entire data space Z on which some machine-learning model
is supposed to work?

We will describe a comprehensive quantitative and qualitative
evaluation of the decision maps in Chapter 4 which addresses the
inverse projection quality aspect discussed in this section. Sepa-
rately, we will further investigate the coverage of inverse projec-
tions in Chapter 5.

2.5.2.2 Increasing user control

Clearly, both direct and inverse projection operations can be de-
fined, and applied, by only having an input present in the form
of a high-dimensional dataset, respectively a 2D scatterplot. How-
ever, in many cases, this lack of controlling how the direct and/or
inverse projection actually work can lead to suboptimal results.
Typical ways to address this are of offer various hyperparame-
ters to control the direct and/or inverse projection (Appleby et al.,
2021). However, controlling such hyperparameters is not always
easy or intuitive for actual users(Wattenberg et al., 2016). Sev-
eral other mechanisms for control exist and could be further ex-
ploited, as follows.

All projection methods aim to encode the relative distance be-
tween data points in their resulting scatterplot. Atop of this, para-
metric projections aim to encode the actual data values. SHaRP
extends this to force data clusters to specific shapes (Sec. 2.4.1).
Such strategies could be extended to map other data attributes,
such as sample density or specific value ranges, to the size, shape,
and/or position of point clusters in a projection. For DL methods,
this could be done by refining their loss function. Additionally,
SHaRP could be extended to create a hierarchy-aware projection

50

2.5 FUTURE EXPLOITATIONS OF THE ML-DR CONNECTION

algorithm that would combine the advantages of treemaps and
classical projections, extending earlier ideas in this class (Duarte
et al., 2014). All in all, projection techniques can be extended to
take more properties of the input data into account when com-
puting the output 2D scatterplot than pairwise point distances.
We will not explore this direction in our work.

A second extension would be to design local cost functions that
attempt to construct the projection by combining different criteria
for different subsets of the input data — for example, to achieve a
globally-better projection that locally behaves like t-SNE in some
areas and like UMAP in others. ML techniques can help here
by e.g. extending the HyperNP idea (Appleby et al., 2021) to train
from a set of projection techniques run on the same input dataset.
Further inspiration can be gotten from recent ways in which DL
is used for image synthesis and style transfer, e.g., Luan et al.
(2017). We will also not explore this direction further.

Finally, one can control the way that inverse projections work.
Indeed, as mentioned in Sec. 2.5.2.1, current inverse projections
simply map a given 2D image, discretized as a set of pixels, to
the high-dimensional data space, without any user control. It is
very likely that this simple construction will not be able to cover
all the high-dimensional data space equally well. As such, it is
interesting to consider ways to control how the inverse projection
samples this data space so that regions of higher interest, for
any given application, are offered a higher chance to show up
in the 2D representation — for example, in a decision map. We
will present such a mechanism that allows users to control the
inverse projection intuitively and interactively in Chapter 6, with
the help of deep learning.

2.5.2.3 Dynamic projections

Section 2.3.3 has briefly introduced dynamic projections. These
are extensions of the standard, static, projection techniques which
aim to handle a dataset consisting of high-dimensional points
which maintain their identity while changing their attribute val-
ues through time. Dynamic projections have a wealth of ap-
plications — simply put, anywhere one wants to study high-
dimensional data which changes over time. However, only a
handful of dynamic projection techniques exist(Rauber et al.,
2016; Vernier et al., 2021, 2020; Neves et al., 2022), and their
quality — as gauged by established quality metrics — is good in
data structure preservation or data dynamics preservation but
not both aspects. Designing a dynamic projection technique that

51

RELATED WORK

accurately maps both data structure and dynamics is a grand
challenge for the infovis community. Following the good results
of using ML for DR (Sec. 2.4), it looks highly interesting to ex-
plore ML (and in particular DL) to create dynamic projections.
An issue here is that, since good ground-truth dynamic projec-
tions are relatively hard to construct, the supervised way (NNP-
class methods) may be less preferable than the self-supervised
(SSNP-like) direction.
We leave this challenge open in our work in this thesis.

2.6 CONCLUSIONS

In this chapter, we have presented an overview of recent con-
nections between the two fields, with a focus on techniques and
methods in one field which assist tasks and use-cases in the other,
and also satisfy overal desirable criteria as genericity, computa-
tional scalability, stability, and ease of use. We have made the
case that the two fields are complementary, with key features be-
ing offered by methods in one field being required by methods in
the other, therefore the potential for cross-fertilization. The first
part of our overview (Sec. 2.3) showed how DR can assist ML
tasks by examples in assessing the behavior of general-purpose
classifiers, pseudolabeling for creating large training-sets, explor-
ing the training and inference of deep learning models, and de-
picting the high-dimensional decision zones and boundaries of
classifiers. The second part (Sec. 2.4) showed how ML can assist
DR by examples covering the deep learning of projections and
inverse projections.

In the third part (Sec. 2.5), we have outlined several high-
potential research directions at the crossroads of ML and DR
based on the techniques discussed in this chapter, and we have
shown which of these directions we will further explore in the
context of this thesis.

Decision maps are an important tool of the use-case where DR
can assist ML as they help exploring the behavior of a trained
classifier. Conversely, decision maps rely on direct and inverse
projections which can be improved in several ways by using ML.
In the remainder of this thesis, we will explore both these direc-
tions and propose improvements for both use-cases.

52

=

APPLICATIONS OF DECISION MAPS IN
GEOSCIENCE

3.1 INTRODUCTION

To date, decision maps have not been adapted or used to actu-
ally assist in solving scientific problems. As Oliveira et al. (2022)
remark, studies are needed to show how users actually interpret
such maps to extract information on the visualized classification
problems. In this chapter, we fill this gap by presenting a case
study where we apply decision maps to a geological problem
— the classification of mineral deposit genetic environments. We
show how decision maps can be used to interpret the machine
learning classification results and how they can be used to guide
the exploration of the data in a practical setting. This chapter con-
tributes indirectly to our research questions RQ1 — RQj4 listed in
Chapter 1 by (1) making the case that decision maps are indeed
useful instruments in classifier engineering in a real-world set-
ting; and (2) outlining several limitations of decision maps which
we discovered in this setting, which further justify our choices for
exploring RQ1 — RQj4 in the next chapters*.

The accelerating pace of data generation and computational
power, coupled with the burgeoning interest of geoscientists in
machine learning, is leading to significant breakthroughs in the
applications and discoveries in geosciences (Petrelli and Perugini,
2016; Bergen et al., 2019; Karpatne et al., 2019; Petrelli, 2021). The
data-driven study in geosciences essentially aims at digging deep
information from complex/huge data sets, rather than merely
and simply producing classification or prediction models. The
‘black box’ nature of machine models, however, hinders our un-
derstanding of decision-making processes during machine learn-
ing (Lipton, 2018; Carvalho et al., 2019; Molnar, 2020). Although
pioneering explorations on the transparency of the working path-
way of machine learning have emphasized the significance of the
interpretability machine learning model (Lipton, 2018; Carvalho
et al., 2019; Molnar, 2020; Yuan et al., 2021), such work is lacking
in the classification of mineral deposit genetic environments.

This chapter is based on the paper: “Interpreting mineral deposit genesis classifi-
cation with decision maps: a case study using pyrite trace elements” (Wang et al.,
2024).

53

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

Understanding the mineral deposit genetic environments is im-
portant to explore the physio-chemical conditions that are respon-
sible for the ore formation (Rusk, 2012). To improve the precision
of the ore deposit classification environment, with a transparent
and interpretable machine learning approach, we apply decision
maps.

We underscore the potential of decision maps within a fun-
damental geological domain: the genesis of mineral deposits.
The dwindling supply of near-surface ore deposits necessitates
deeper exploration (Gregory et al., 2019). The ability to recognize
the type of mineralization present in a given context can offer crit-
ical insights, thus streamlining exploration efforts and minimiz-
ing associated costs (Gregory et al., 2019). Trace elements mea-
sured in specific minerals, such as quartz, pyrite, apatite, and zir-
con, can serve as unique identifiers for understanding their gene-
sis, revealing types of minerals deposits and host rock genetic en-
vironments (Belousova et al., 2002b; Rusk, 2012; O’Sullivan et al.,
2020; Wang et al., 2021; Zhong et al., 2021a; Zhu et al., 2022; Zhou
et al., 2023).

10000 it I I
‘)
& Lherzolites,
1000 & 104 / 125/ Carbonatites
& (
T <& N ‘Qg £ \» 83 Jacupirangite
& 10 & Nﬂ“ g -
= & ?oﬂ £ 1000
@

1 Granitoids

0.01 01 1 10 100 Y(ppm)

Ti (ppm) 1 100 1000 10000

Figure 3.1: Discriminant diagrams for minerals using their trace el-
ements concentrations (a) Ti versus Al diagrams for
quartz (Rusk, 2012). (b) Sr versus Y diagram for ap-
atite (Belousova et al., 2002a).

Classification of mineral deposits environments has tradition-
ally been studied using visual tools, including discriminant di-
agrams (Fig 3.1) (Pearce and Cann, 1973; Bralia et al., 1979; Be-
lousova et al., 2002a; Rusk, 2012; Li et al., 2019; Breiter et al., 2020;
Zhou et al., 2022), and, more recently, machine learning-assisted
approaches (Belousova et al., 2002a,b; Petrelli and Perugini, 2016;
Gregory et al., 2019; Wang et al., 2021; Zhong et al., 2021a; Liu
et al.,, 2023). However, striking a balance between visual inter-
pretability and accuracy is still a challenge. There have also been
some attempts of using machine learning to optimize geochem-
istry discriminant diagrams (O’Sullivan et al., 2020; Wang et al.,,

54

3.2 RELATED WORK

2022b). Such applications improve the quality of the patterns de-
picted by the diagrams but still do not take full advantage of
high-dimensional information. Here, decision maps come to the
fore, combining the high-accuracy of machine learning models
with visual accessibility to decision boundaries, greatly promot-
ing transparency and interpretability. This study represents the
first application of visualization to elucidate machine learning
classification in mineral deposit genetic types, highlighting the
paramount role of visualization techniques in modern data inter-
pretation and decision-making.

Here, our contributions straddle both information visualiza-
tion and mineralogy domains: (1) We offer a unique pyrite trace
elements dataset comprising six genetic populations. (2) We il-
luminate the added value of the decision map technique in de-
ciphering the machine learning classification results, opening up
new avenues for using decision maps. (3) We introduce a method
that seamlessly blends the merits of traditional 2D discriminant
diagrams (visual interpretability) and machine learning methods
(high accuracy), providing a robust framework for mineral gen-
esis classification problems. This blend of visualization and ma-
chine learning underlines the evolving landscape of data science,
championing transparency and interpretability.

3.2 RELATED WORK

We divide our discussion of related work into two main topics
— traditional mineral genetic discriminant diagrams (3.2.1) and
machine learning for mineral genetic type classification (3.2.2).
For each discussed topic, we outline the main advantages and
disadvantages, in support of our overall claim of creating a new
technique with decision maps that optimizes across existing ap-
proaches.

3.2.1 Traditional trace element discriminant diagrams

Trace element discriminant diagrams were introduced in the 1970s
and are still widely used as a tool for identifying the types of
deposit/host rock/tectonic setting with which a sample is asso-
ciated (Belousova et al., 2002a,b; Bralia et al., 1979; Breiter et al.,
2020; Pearce and Cann, 1973; Rusk, 2012). Discriminant diagrams
are basically classical scatterplots that use only a few elements
(data dimensions) plotted as binary or ternary diagrams. The
axes of the diagrams, i.e., data dimensions to explore, are usu-

55

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

ally selected based on the geologists’ experience. For example,
diagrams of Co vs Ni and Au vs As are widely used to discrim-
inate the type of pyrite (Bajwah et al.,, 1987; Bralia et al., 1979;
Deditius et al., 2014); Ti, Al, Ge are common axes used in quartz
forming environment classification (Fig. 3.1a) (Breiter et al., 2020;
Rusk, 2012); finally, Sr, Y, Mn and rare earth elements (REE) of ap-
atite are useful axes for recognizing the apatite’s host rock type
(Fig. 3.1b) (Belousova et al., 2002a).

Advantages: The most important property of discriminant di-
agrams is that they offer a direct, visual, insight into how the
depicted data dimensions relate to each other. The information
that geologists can get from such diagrams includes labels of the
depicted data samples and, at a higher level, trends, correlations,
and outliers of the depicted elements and labels, which next help
interpreting the phenomenon captured by the plotted data. In
some cases, information — such as mineralization stages within a
deposit, which often involves sequential patterns or transitions —
cannot be easily conveyed to machine learning. Visualizing how
such data points scatter in the diagram helps scientists under-
stand data evolution. Based on domain knowledge, scientists can
explore and get valuable understanding from such diagrams.

Disadvantages: The key shortcoming of discriminant diagrams
is their inability to fully use all high-dimensional information
available in the studied dataset. Only two elements (or ratios
of a few more elements) can be depicted. These dimensions
have to be hand-picked by geologists based on their experience,
which means that potentially interesting, but unknown, data pat-
terns present in other dimensions will not be found (Petrelli and
Perugini, 2016).In addition, when classifying more complicated
cases, the diagrams are usually heavily overlapped (Rottier and
Casanova, 2020).

There are also some examples of using machine learning to
optimize X-Y geochemistry diagrams (Hu et al., 2022; O’Sullivan
et al., 2020; Wang et al., 2022b). Such applications improve the
quality of the patterns depicted by the diagrams but still do not
take full advantage of high-dimensional information.

Such limitations of low-dimensional diagrams are well-known
in information visualization. Several partial solutions have been
proposed to address them. Arguably the simplest and most
used solution is to plot several diagrams side-by-side, a tech-
nique known as small multiples (Tufte, 1983). Users can then ex-
tract insights involving multiple attributes by visually compar-
ing such diagrams. However, this solution scales poorly with the
number of involved dimensions and requires careful ordering

56

3.2 RELATED WORK

of the diagrams in the plotted sequence for efficient visual in-
spection. Another class of methods generically known as scagnos-
tics (Wilkinson et al., 2005) computes all possible diagrams from
a given set of data dimensions and next selects “interesting” dia-
grams to be shown to the user based on predefined data patterns.
In contrast to small multiples, this selection scales visually well
with the number of dimensions. However, computing and ana-
lyzing all possible diagrams is computationally very demanding.
More importantly, defining and detecting what “interesting” pat-
terns are is a challenging problem.

Discriminant diagrams have an additional important limita-
tion: As they only plot a sparse set of observations (samples),
users have to mentally group these visually into clusters and de-
cide by themselves where actual “boundaries” exist that separate
different phenomena captured by the data. Doing this can be chal-
lenging especially in cases when the depicted scatterplots do not
show clear-cut visual separation between point clusters. As we
shall see, DBMs compute and depict such boundaries explicitly,
thereby significantly easing the analyst’s task.

3.2.2 Machine learning classifiers for mineral genetic type classifica-
tion

Machine learning is the emerging approach to solving geochem-
istry data classification problems (Gregory et al., 2019; O’Sullivan
et al., 2020; Petrelli and Perugini, 2016; Wang et al., 2021).

We start by recapping a few notations introduced earlier in
Sec. 22. Let D = x; C R", 1 < i < N, be a dataset of n-
dimensional data points x; = (x},...,x!) with corresponding
labels y; € C, where C is the set of classes. Given a dataset D, a
machine learning classifier constructs a function f : R" — C so
that f (x) = y; for ideally all x; € Dy, where Dy C D is so the
called training set. After training, one uses the model f to infer
labels of unseen points x;.

In the present work, we considered several machine learn-
ing classification algorithms, including Logistic Regression (Cox,
1958), Support Vector Machines (SVM) (Cortes and Vapnik, 1995),
Random Forests (Breiman, 2001), and Neural Networks. These
represent distinct families of algorithms: Logistic Regression is
a linear classification model; SVM stands as a maximum mar-
gin classifier; Random Forest embodies an ensemble method;
and Neural Network signifies deep learning. Crucially, these
classifiers are frequently examined in mineral classification stud-
ies (Gregory et al., 2019; Zhong et al., 2021a; Wang et al., 2023a).

57

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

This frequent examination not only enables a thorough compar-
ative analysis but also underscores the relevance and robustness
of our conclusions within the machine learning applications in
geosciences.

Advantages: Machine learning methods can efficiently handle
high-dimensional data. More specifically for the mineral genetic
type classification problem, such methods can make, by default,
full use of all available attributes (i.e., elements in the geochem-
istry context) of the minerals. Also, ML methods can distinguish
significantly more classes, and with higher accuracy (and limited
or no user effort) than discriminant diagrams.

Disadvantages: Most ML models are considered black-box
which lack interpretation (Molnar, 2020). In particular, ML clas-
sifiers only output a label (with optional confidence values) for
each sample. This information is usually insufficient to interpret
scientific phenomena as it tells which type (class) a sample has
but not why. Additionally, when ML methods fail to correctly
predict classes, tuning them to do so is often a complex trial-and-
€ITOI process.

Our work aims to reveal the black box by extending ma-
chine learning classifiers with decision maps. In other words,
we keep the advantages of machine learning for mineral ge-
netic type classification while compensating for their disadvan-
tages by providing extra visual insights into the classification
process. Specifically, we use Supervised Decision Boundary Map
(SDBM) (Oliveira et al., 2022), as this is the most updated version
of decision maps method that increases both the speed and qual-
ity of the original DBM method. Thus, SDBM was employed to
construct decision maps for all the following experiments in this
chapter.

3.3 METHODS
3.3.1 Dataset collection

The dataset used in this study is a compilation of published
pyrite trace elements datasets. Pyrite is a ubiquitous mineral in
the crust. Appearing in various mineral deposit types, its trace el-
ements can fingerprint its forming environments (Belousov et al.,
2016; Zhong et al., 2021a). In this study, we compiled a dataset
with 3571 pyrite LA-ICP-MS analyses from different origins, in-
cluding Ni-Cu/platinum group element deposits (Ni-Cu-PGE,
igneous deposits), porphyry deposits, orogenic deposits, Carlin-
type Au, volcanic-hosted massive sulfide (VHMS) deposits, and

58

3.3 METHODS

barren sedimentary pyrite. Eleven trace elements (Co, Ni, Cu, Zn,
Se, As, Ag, Sb, Au, Bi, Pb) are selected as features, or dimensions,
for our study. Each trace element was measured in parts per mil-
lion (ppm) and these measurements were used to train machine
learning classifiers which are next explored using the decision
map. Detailed information on the compiled dataset is shown in
Table 2, including the used data sources.

Table 2: Published pyrite trace element datasets used in this study.

Class No. of samples References
Ni-Cu-PGE 263 Mansur et al. (2021)
Porphyry 658 Hong et al. (2018); Keith et al. (2022); Liu et al.

(2020); Mavrogonatos et al. (2020); Sheng (2022);
Tang et al. (2021); Zhang et al. (2016)

Orogenic 615 Zhong et al. (2021a); Large et al. (2007)

Carlin 487 He et al. (2021); Large et al. (2009); Liang et al.
(2021); Lin et al. (2021); Xie et al. (2018)

VHMS 150 Revan et al. (2014); Zhong et al. (2021a)

Sedimentary 1421 Zhong et al. (2021a)

3.3.2 Workflow

After assembling the dataset to be used for classification, the
following workflow was conducted: data preprocessing, SDBM
training, search for best classifiers, map building, and evaluation.

3.3.2.1 Metrics

To select the best (classifier decision-map) pair, we use three met-
rics, introduced next. We fully elaborate these metrics further in
Sec. 4.3.1 which is our main contribution to quality assessment
of decision maps.

Classifier accuracy ACCc, likely the best-known and most fre-
quently used of the three metrics, is the fraction of correct predic-
tions in a high-dimensional dataset and its respective labels. It is
defined as

ACCe = {xi €D | Cg{') = O} (3.1)

where | - | denotes the size of a set and D is the sample set, with
labels in C, used for evaluation.

59

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

Map accuracy ACCy, is the proportion of correctly positioned
data points in the decision zones for a given dataset. It is defined

acy [ERIC) = PPN,

Data consistency Cons; measures the proportion of samples
that retain their predicted labels, as determined by the classifier
f, after a direct-inverse projection cycle. It is defined as

[{xi e D| f(P"1(P(x))) :f(xi)}|'

Cons; = D]

(3-3)

3.3.2.2 Data preprocessing

The data were processed by the following steps:

Data missing value imputation: Unless not measured, missing
values in the input dataset indicate analyses below detection lim-
its. Missing values were set to half the detection limit to keep the
data distribution.

Data transformation: Normality of the features is desired for
downstream machine learning model training. Trace elements in
minerals are lognormal distributed. A power transformation (Yeo
and Johnson, 2000), given by

T(x]) = logio(x] +1) (3.4)

was applied to each sample i in each dimension j to obtain this
desired normality.

Data splitting: The whole dataset was randomly split into a
training set D; (80%) and a test set D (20%) by stratified sam-
pling while keeping each class’s proportions. D; was used to train
the classifier and SDBM, while the Dt was used to evaluate the
performance of the classifier, the quality of the computed SDBM,
and finally the classifier-SDBM combination.

Oversampling: Decision functions would favor the class with
the larger number of samples as our dataset is unbalanced.
To correct this, the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002) was applied to D;. Note that this
does not affect our final results since we split Dt before oversam-

pling.
3.3.2.3 Optimal decision boundary map construction

In the following, we describe the pipeline we use to construct the
optimal decision map. The workflow is summarized in Figure 3.2.

60

3.3 METHODS

> D, »| Final evaluation
s

> D » Retrained models

O .

A
]
SSNP (B PY)

A4

Classifiers / Cross validation el dlztefilalr
(LR, SVM, RF, NN) >| (Classifiers search) decision map
. combination

Figure 3.2: Workflow of the optimal decision map construction and eval-
uation. Abbreviation: LR, Logistic Regression; SVM, Support
Vector Machine; RF, Random Forest; NN, Neural Network.

SDBM training: Building decision maps followed the SDBM
pipeline (Oliveira et al., 2022), except that we trained SSNP, the
technique used for constructing P and P~! before training the
classifier. This was needed because our aim next was to search
for the best classifier among candidates evaluated using the same
SSNP instance.

Classifier search: Four classifiers were evaluated by stratified
K-fold cross-validation on the training set using the metrics de-
scribed by Equations 1-3. These classifiers included Logistic Re-
gression, SVM (with an RBF kernel), Random Forests (200 estima-
tors), and a Neural Network (3 hidden layers of 100 units each).
All these models were constructed using scikit-learn (Pedregosa
et al,, 2011). The classifier with the highest cross-validation scores
(Equations 1-3) was selected and retrained to build the final deci-
sion map.

Map building: We created the final decision map following
the procedure detailed in Oliveira et al. (2022). The decision map
resolution was set to 300% pixels. Pixels p were colored by the
class value f(P~!(p)). To represent confidence levels (prediction
probability of f) on the decision map, we adjusted the bright-
ness of each pixel. Pixels p in areas with lower confidence, typi-
cally near the boundaries where decisions change, are shown in
darker shades. In contrast, p in high confidence areas, well in-
side a clear decision region, are shown in brighter shades. The
visual approach allows users to quickly see where the model’s
predictions are more or less certain.

Evaluation: The retrained classifier and SDBM were finally
evaluated on Dt with the metrics in Equations 1-3.

61

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

3.4 RESULTS

The results of the classifier search are shown in Table 3. Random
forests got the highest ACC¢ but the lowest ACCy;, which can
be considered a poor generalization; SVM ranked third in ACCc¢
and first in both ACCy; and Cons; Neural Network had slightly
lower results than Random forests for all three considered met-
rics; Logistic regression did not obtain competitive results in clas-
sifier accuracy compared to the other three models, its ACCc
being 0.09 lower than the penultimate one (SVM). Based on all
three metrics, we selected SVM as the best classifier for building
the decision map. The resulting map of pyrite classification built
for SVM is shown in Fig. 3.3 with samples of both the training
and test set plotted. Test set samples are dots with black outlines;
training set samples are dots without outlines. We see that most
samples fall within their respective decision zones, which already
indicates a good classification performance.

Table 3: Search results of the classifiers for building the Decision Bound-
ary Map. The highest value per metric type is indicated in bold.

Model ACCc ACCyq Consy
Logistic Regression 0.855 0.918 0.871
SVM 0.942 0.926 0.922
Random Forest 0.984 0.886 0.886
Neural Network 0.978 0.874 0.875

For the evaluation on the test set D, SVM got an overall accu-
racy ACCc¢ = 0.91 (Equation 3.1), while the SDBM got an overall
accuracy ACCp; = 0.88 (Equation 3.2) and a consistency Consy
= 0.90 (Equation 3.3). The confusion matrices of both the SVM
and the SDBM are shown in Fig. 3.4. ACCy, is 0.03 lower than
ACCc. This minor discrepancy, which is nearly uniform across
all classes, suggests that the SDBM’s (inverse) projection process
(P and P~!) introduces a minimal classification error for the SVM.
This negligible drop of accuracy indicates that the SDBM faith-
fully represents the actual classifier’s decision boundaries.

3.5 APPLICATIONS

We next present two applications of the decision maps to show
their added-value in classifier construction and analysis. First, we
demonstrate how decision maps work on samples from unseen
locations and show their added-value in conjunction with regu-

62

3.5 APPLICATIONS

o Carlin o Orogenic o Porphyry
o Ni-Cu-PGE o VHMS o Sedimentary

Figure 3.3: Decision Map built from the training set and the trained SVM.
Training set samples are plotted as colored dots without out-
lines. Test set samples are plotted as colored dots with black
outlines. Darker pixels in the map (mainly pixels close to the
decision boundaries) show lower classification confidence.

lar machine learning methods. Second, we demonstrate how de-
cision maps can help data exploration and model explanation.

3.5.1 Unseen location application example

3.5.1.1 Case Study: Analysis of the Zaozigou Gold Deposit

The trained classifier and its decision map were applied to data
of pyrite trace elements from a new location — the Zaozigou gold
deposit, which is unseen by the models. Zaozigou is the largest
gold deposit (118 tons Au) that is under operation in the Gannan

a Confusion matrix for the SVM b Confusion matrix for the SDBM

Carlin 0 0 0 O 80 Carlin

Ni-Cu-PGE - 0 0 3 o0 Ni-Cu-PGE - 0 0 5 0
] 60 @ 60

8 Orogenic - 3 4 10 3 8 Orogenic - 3 2 11 7
g VHMS- 0 0 1 28 1 o0 | 40 % VHMS- 0 0 2 27 0 1 |40

= =
Porphyry - 0 0 10 4 1 -20 Porphyry - 0 0 19 1 2 -20
Sedimentary - 0 0 6 1 2 Sedimentary - 1 0 7 3 1

o -0 o -0

S W g v » 2 R T R

52§ % 28 525 % 2 &

© 38 > g 5 o 3 9 > 8 §

25 S E Z 5 § £

z] =]

3 5

v w
Predicted label f(x) | x €Dy Predicted label f(P~1(P(x))) | x € Dt

Figure 3.4: (a) Confusion matrix for the actual SVM classifier. (b) Confu-
sion matrix for the trained decision map for this classifier.

63

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

area in the Triassic West Qinling orogenic belt in China (Qiu et al.,
2020). Pyrite is the main gold-bearing mineral in this deposit,
and its trace elements can be used to identify the physicochem-
ical conditions of gold mineralization (Rusk, 2012). The genetic
classification however is still in debate, which hinders our under-
standing for ore formation and future explanation strategy (Qiu
et al., 2020). Sui et al. (2020) considered that the Zaozigou deposit
is a reduced intrusion-related gold system (magmatic); Qiu et al.
(2020) argued that this deposit is best classified as an epizonal
orogenic Au-Sb deposit (metamorphic hydrothermal) based on
in situ monazite geochronology.

The fine-labeled pyrite trace element data from Sui et al. (2020)
was analyzed using the trained classifier and decision map. The
pyrites are categorized into three types: (1) Py1a: pyrites in sedi-
mentary rocks, (2) Py1b: pyrites in dike-hosted ores, and (3) Py2:
pyrite grains in quartz-sulfide-ankerite veinlets. We believe that
this example demonstrates our new approach’s utility in solving
real scientific problems.

3.5.1.2 Classifying Pyrite from Zaozigou

The data from the Zaozigou deposits yield results in two parts:
the regular machine learning classifier (SVM) results (Table 4)
and the decision map (SDBM) results (Table 5, Fig. 3.5). (1) For
the samples labeled Pyia (pyrite sedimentary rocks), the SVM
classified 56% of them as orogenic pyrite and 44% as pyrite in
Carlin-type deposits; on the decision map, 46% of these sam-
ples were plotted in the sedimentary zone, 39% in the orogenic
zone, and 15% in the Carlin zone. (2) For samples labeled Pyib
(dike-hosted ores), most are classified as orogenic (94% and 84%
for SVM and SDBM, respectively). (3) Most samples labeled Py2
(grains in quartz-sulfide-ankerite veinlets) are also classified as
orogenic (70% and 78% for SVM and SDBM, respectively). In
summary, SVM and SDBM yield similar results: Py1ib and Py2
samples are classified as orogenic class; Py1a samples, however,
exhibit ambiguity between Carlin, orogenic, and sedimentary
types. The decision map tends to classify Pyia samples as sed-
imentary more than the SVM.

Focusing on the decision map (Fig. 3.5), Py1b and Py2 samples
are mainly plotted in the orogenic zone, as expected. However,
intriguingly, Py1a samples are divided into two clusters. One
cluster is within the orogenic domain, while the other is located
around the boundaries of the orogenic, Carlin, and sedimentary
zones. From the geological perspective, this bifurcation suggests

64

3.5 APPLICATIONS

Table 4: Zaozigou pyrite trace element data classification result from the
SVM

Ni-Cu-PGE Porphyry Orogenic Carlin VMS Sedimentary

Pyia o0 (0.00% 0 (0.00%) 18 (43.90%) 23 (56.10%) 0 (0.00%) 0 (0.00%)

Pyib 0 (0.00% 0 (0.00%) 30(93.75%) 2 (6.25%) 0 (0.00%) 0 (0.00%

)
))
Py2 0 (0.00%) 2(5.41%) 26 (70.27%) 7(18.92%) 2(5.41%) 0 (0.00%)
))

Total 0 (0.00% 2 (1.82%) 74 (67.27%) 32 (29.09%) 2 (1.82%) 0 (0.00%

Table 5: Zaozigou pyrite trace element data classification result from the
DBM

Ni-Cu-PGE Porphyry Orogenic Carlin VMS Sedimentary

Pyia 0 (0.00%) 0 (0.00%) 16 (39.02%) 6 (14.63%) 0 (0.00%) 19 (46.34%)
Pyib 0 (0.00%) 2(6.25%) 27 (84.38%) 2 (6.25%) 0 (0.00%) 1 (3.12%)
) 0 (0.00%) 29 (78.38%) 5(13.51%) 2 (5.41%) 1 (2.70%)
) 2 (1.82%) 72 (65.45%) 13 (11.82%) 2(1.82%) 21 (19.09%)

Py2 0/(0.00%
Total 0 (0.00%

that the first cluster may have interacted with ore fluids, resulting
in a distinct geochemical signature. Consequently, their intricate
geochemical features make these data to be a challenge to be clas-
sified. As a result, they landed near the decision boundaries of
several related decision zones, which are areas of low confidence
from the perspective of machine learning classification.

In summary, decision maps offer two significant pieces of ad-
ditional information beyond mere agreement with the classifier:
First, they reveal data clusters, which are crucial for interpret-
ing the data, as demonstrated above; second, the decision maps
demonstrate information for each individual sample, not as an
aggregate score. This includes the level of classification confi-
dence, for example, whether a sample is close to a decision
boundary. Such detailed information offers a more granular un-
derstanding than an overall and general aggregate score.

3.5.2 Exploratory data analysis and model explanation using decision
maps

3.5.2.1 Feature Inverse Projection

The decision maps shown so far are useful to show how all sam-
ples spread over the decision zones inferred by the trained model
and also allow interpretation of the classification confidence in
terms of the distance from a sample to its closest decision bound-
ary in the map. However, they do not show which features are
most responsible for the emergence of the respective decision

65

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

Figure 3.5: Zaozigou pyrite trace element data plotted on the trained de-
cision map. The pyrite trace element data is fromSui et al.
(2020).

zones. Understanding this is essential to further explain the stud-
ied phenomenon. To address this goal, we propose a new visual-
ization called feature inverse projection.

To see the relationship between each feature and the decision
zones/boundaries, we created a corresponding map to each fea-
ture (pyrite trace elements). For the map of each feature j, j € Co,
Ni, Cu, Zn, Se, As, Ag, Sb, Au, Bi, Pb, each pixel p was colored
by T~1(P~1(p)/), which is the value of the respective feature j,
where T~1(t) = 10" — 1 is the inverse function of the power trans-
formation given by Equation 3.4.

3.5.2.2 Ranking the features

To better guide a better reading of the maps, we propose to
rank the features quantitatively. While there are multiple ways
to rank the features based on their importance, here we suggest
two options: (1) permutation feature importance (Breiman, 2001)
for global ranking (all classes), and (2) mutual information (Ross
2014) for local ranking (user selected class).

The permutation feature importance of the classifier gives an
intuition of the importance ranking of these trace elements in
pyrite genetic type classification globally. The rank of the permu-
tation feature importance of the SVM classifier on the test set is
Ni > Au > Sb >Pb > As > Se > Co > Bi > Cu > Ag > Zn (Fig. 3.6a).
The importance value of each feature is the decrease in SVM ac-
curacy on Dt when a single feature value is randomly shuffled.
All the importance scores are above zero, which means that all
these trace elements are helpful in the classification.

66

3.5 APPLICATIONS

Permutation Importances (test set) Ni
nNi {3 —o
Audi
sbq}
Po o}
Asq1
se i
cod1
LEH
1
1
1
I
0

100000

10000

Cu
Ag
Zn

HH
L2l
ok
HH

0 005 010 015 020
Decrease in accuracy score

10000

100000 100000

1000 10000

10000

1000
1000

100000

10000

1000

100

01

Figure 3.6: (a) Permutation feature importance of the SVM classifier. (b-
1) Feature inverse projections for all the 11 features of the
considered dataset that explain which features and feature-
values are most responsible for the appearance of the learned
decision zones.

The permutation importance provides a glimpse of the overall
feature ranking. However, when the users are interested in how
much a feature helps with distinguishing a certain class from all
the others, a better option is to design an algorithm to rank for
this specific class. Therefore, we tailor mutual information to our
decision map case. For each feature j, we calculate the mutual in-
formation I(S:(f(P~1(p))), P~'(p)/) for all pixel p, where S is a
function that masks off all labels which are not ¢ (the class label
selected by users). Mutual information is a non-negative value.
Simply put, it measures the dependence of the feature j and the
user-selected class c. It equals o if feature j and label c are inde-
pendent. The higher the value, the stronger the dependency, and
thus the visual pattern of the feature aligns better with selected
decision zone ¢ and its decision boundaries (discussed below).
This quantitative measurement is particularly useful when multi-
ple features show similar patterns.

Note that the ranking methods are to provide the users (geolo-
gists) with clues for exploring the data. Geologists” knowledge is
still crucial in interpreting the data in this human-centered appli-
cation case.

67

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

Carlin Ni-Cu-PGE Orogenic

As Co Pb
Co Pb Sb
Sb Ni Co
Ag As Se
Pb Au Bi
Au Sb Cu
Bi Se Ag

Se
Zn
Cu

Ni

Bi 1
Zn 4
Ag 4
Cu 4
T T T T T

IIII
N
5

Porphyry Sedimentary

Cu Au
Ni 4
Sb 4
Zn 4
Ag 4
As

Zn
Co
Bi
As
Pb
Ni
Bi
Pb
Se
Co 1
Au 9

T T T T T T
0.0 0.2 04 00 0.2 04 00 0.2 0.4
Mutual information score Mutual information score Mutual information score

Au
Ag
Se
Sb
Cu

||| < |
I 4
=
1]

@

Figure 3.7: Mutual information scores ranking feature importance for
each class respectively.

3.5.2.3 Visualizing feature patterns

The resulting inverse projected features are displayed in the per-
mutation importance order (Fig. 3.6b-1). Black lines in these im-
ages show the decision boundaries. Actual feature values of the
high-dimensional samples corresponding to every pixel are color-
coded on an ordinal colormap (blue=low, red=high feature val-
ues). We used a banded colormap having a small number of dis-
crete levels. This way, color changes in the images indicate the ac-
tual isolines (equal-feature-value contours) of the respective fea-
tures in the data. Simply put, if a color band created by the above
colormap for value v of feature j has a shape that matches well
the shape of a decision zone for class c it is plotted over, it means
that the value v of j is a strong predictor of class c. Conversely,
if all color bands of feature j have shapes that do not match well
any of the decision zones, it means that j is not a strongly use-
ful feature for the classification. This can be exemplified by ei-
ther permutation importance or mutual information ranking: (1)
Ni, which is ranked as the most important feature for prediction,
shows three color bands (dark blue, light blue, red) which match
quite well the Porphyry, VHMS, and Ni-Cu-PGE zones, respec-
tively (Fig. 3.6b). In contrast, Zn, the least important feature for
prediction, shows color bands that match far less well than any of
the six decision zones (Fig. 3.61). While permutation importance
gives us an initial understanding of feature relevance, mutual in-
formation can provide a more nuanced view, especially in terms
of how specific features align with a certain class. (2) For instance,
in mutual information ranking, the features with the highest and

68

3.5 APPLICATIONS

lowest scores for the orogenic class are Pb and Au, respectively
(Fig. 3.7). The isolines of Pb align well with the shape of the oro-
genic decision zone (Fig. 3.6e), highlighting Pb is a strong in-
dicator for predicting orogenic class. Conversely, the isolines of
Au, being roughly perpendicular to the orogenic decision zone
(Fig. 3.6¢), indicate that Au is less useful for discriminating this
class.

Let us explore in detail how the feature inverse maps show the
relationships between pyrite trace elements and their forming en-
vironment types learned from the model. We consider both visual
patterns (relations between color bands and decision zones) and
feature ranking. We do this in order of permutation importance:

1. The color bands show that Ni > 1000 ppm can distinguish
Ni-Cu-PGE from other classes, and Ni < 1 ppm can distin-
guish porphyry from other classes (Fig. 3.6b); Mutual infor-
mation feature ranking confirms the importance of Ni for
both Ni-Cu-PGE and porphyry classes (Fig. 3.7)

2. Au > 100 ppm characterizes pyrites from orogenic and
Carlin-type deposits. Au < 0.1 ppm is the character of
pyrites from barren sedimentary and Ni-Cu-PGE (mag-
matic) deposits (Fig. 3.6c); However, Au is not a strong pre-
dictor for any single class, as indicated by its lower mutual
information scores (Fig. 3.7).

3. Pyrite with Sb < 0.1 ppm is more likely from Ni-Cu-PGE or
porphyry deposits, while pyrite with Sb > 10 ppm is more
likely from the other four classes (Fig. 3.6d); The mutual
information score robustly supports the visual pattern indi-
cating the importance of Sb for the porphyry class (Fig. 3.7).

4. Pyrites from VHMS deposits, sedimentary and Carlin-type
deposits tend to have Pb values > 100 ppm (Fig. 3.6e); More-
over, as mentioned above, the color band of Pb concentra-
tion ranging 10 - 100 ppm aligns well with the shape of
the orogenic decision zone, the significance of which is also
confirmed by mutual information score for orogenic class

(Fig. 3.7).

5. Pyrite from Carlin, orogenic and VHMS deposits have high
As values. Most Carlin pyrite and some orogenic pyrite
could have As > 10000 ppm (Fig. 3.6f); When focusing on a
single class, As appears to be an efficient predictor for only
Carlin class (Fig. 3.7).

69

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

6. Pyrites with Se < 10 ppm are more likely to be from por-
phyry or orogenic deposits (Fig. 3.6g); Se, however, does
not have a significant mutual information score for distin-
guishing any single class, as shown in Figure 3.7.

7. Co > 1000 ppm characterizes Ni-Cu-PGE pyrite (Fig. 3.6h);
Figure 3.7 highlights Co as the most significant element for
the Ni-Cu-PGE class.

8. VHMS and part of the Ni-Cu-PGE zone have Bi > 10 ppm
(Fig. 3.6i); However, Bi’s insignificance for single-class dis-
crimination is evident in Figure 3.7.

9. Cu < 10 ppm is the character of porphyry pyrite. Pyrites
in the other four classes have Cu varying from 10 to 10000
ppm (Fig. 3.6j); The significance of Cu for identifying por-
phyry class is also strongly confirmed by the mutual infor-
mation score (Fig. 3.7).

10. The color band of Ag < 1 ppm align with the porphyry
zone(Fig. 3.6k); However, similar to Au, Ag is overall also
not efficient for identifying any class, as it never ranks in the
top 3 for any class in mutual information score (Fig. 3.7).

11. The Zn value color bands do not match the decision zones
well, except for the band of Zn > 100 ppm, which matches
the VHMS zone well (Fig. 3.61); And, indeed, Zn is the
most efficient element for distinguishing VHMS from other
classes according to mutual information score for VHMS
class (Fig. 3.7).

3.6 DISCUSSION

3.6.1 Interpretability and limitations of decision maps

Based on the evaluation metrics (Equations 1-3), we established
the optimal decision map for the pyrite genetic type classification
task. As shown in the results, the SVM has an ACC¢ of 0.91, while
the decision map for the aforementioned SVM has an ACCy, of
0.88 and a Cons; of 0.90, on the test set Dr. This means that
decision maps can be used to accurately predict how a classifier
works. From a visual perspective, there is only a slight overlap
of data points in the center of the map (Fig. 3.3), a property with
which no existing 2D discriminant diagram can compete.
Decision maps provide a novel way to get insight into how ma-
chine learning classifiers work and where each data point lands

70

3.6 DISCUSSION

in the context of decision boundaries. They should not be seen
as a replacement, but rather an enhancement, of traditional clas-
sifier metrics (e.g., accuracy): Classifier metrics give a highly ag-
gregated quality score (for the entire problem or per class), but
do not tell how specific instances (train, test, or new) get clas-
sified. This is exactly the addition that decision maps provide.
More specifically, the actual shapes of the decision zones and the
spread of instances over them tell how easy is for a given clas-
sifier to handle a given data distribution, e.g., which classes are
easily separable from the others and/or which parts of the data
distribution are easily classifiable.

On top of the samples being categorized into a major class
label, decision maps show how samples are similar to certain
other classes via their distances to the closest decision boundaries.
Samples near decision boundaries are more uncertain about the
predicted label and thus more likely to be misclassified. Feature
inverse maps (discussed below) provide additional insights into
why these samples may have such problems. However, all these
tools need to be complemented by an expert’s knowledge to lead
to effective interpretations and understanding of the studied phe-
nomenon. Decision maps provide thus a way to combine human
knowledge with machine learning predictions when interpreting
classification results in a way that cannot be obtained from reg-
ular machine learning classification routines. The application of
the decision map on the Zaozigou pyrite data discussed next fur-
ther illustrates the added-value of our visualizations (detailed in
the next subsection).

Besides observation-centric interpretation (seeing how sam-
ples spread with respect to each other and the inferred decision
zones), our new addition to decision maps — the feature inverse
projections — provides a class-centric interpretation, i.e., allows
analysts to understand which features and feature values are key
responsible for the appearance of specific decision zones or even
separate sample groups. These feature inverse projections can be
seen as a summary of real-world complex data that show what
the model learned and how it decides when values vary. We fur-
ther discuss this in the next subsection.

Our visual analysis techniques scale well with both the number
of samples and the number of dimensions. As shown in Figure 7,
the computation time of SDBM is minimally affected by changes
in either the number of dimensions or the number of samples. It
consistently remains at approximately 3-10 seconds on a standard
desktop computer with a consumer-level graphics card. This con-
trast is particularly noticeable when compared to machine learn-

71

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

Models
SDBM
RF

NN
SVM
LDA
QDA
Dimensions
10

+ 100
--m-- 1000

Elapsed Time (s)

0 5000 10000 15000 20000
n_samples

Figure 3.8: Plot showing the time taken by SDBM and 5 common clas-
sifiers, utilizing synthetic datasets of varying dimensionality
and number of samples (n_samples). The time recorded for
SDBM includes the duration for fitting training samples and
inverse projecting grids (grid size: 300%); whereas, for classi-
fiers, it records the time for fitting and predicting labels for
the training samples. Abbreviation: REF, Random Forest; SVM,
Support Vector Machine NN, Neural Network; LDA, Linear
Discriminant Analysis; QDA, Quadratic Discriminant Analy-
sis.

ing classifiers such as SVM, LDA, and QDA, which can be highly
sensitive to changes in data dimensionality (Fig. 3.8). In general,
using SDBM to obtain a decision map for a given classifier re-
quires only a few additional seconds after the classifier is trained.
Every sample point is reduced to a single 2D scatterplot point.
While overplotting does occur, this does not affect, we argue, the
usability of our proposal. Indeed, in most applications, one is in-
terested in reasoning about groups of similar samples and not ev-
ery single individual. Such groups become actually better visible
when large amounts of samples are plotted. Decision maps also
inherit by construction the scalability of the underlying projec-
tion techniques to tens or even hundreds of dimensions. Feature
inverse projections are less scalable in this sense since we need
to plot (and study) one map per feature. However, as discussed
above, such maps can be ordered by feature ranking methods
(e.g., permutation feature importance, mutual information), so
that analysts can focus on a small set of most relevant features.
Similar techniques have been used for explaining projections of
high-dimensional data for 3D projections (Coimbra et al., 2016).
Decision maps and their proposed extensions are also gener-
ically deployable and easy to use: They can be generated auto-
matically using any trained classifier and any relevant data set,
whether it be training, test, or new data. Exploring the created vi-

72

3.6 DISCUSSION

sualizations also does not require any complex interaction from
the user except the optional brushing of points to show details in
a tooltip. While the standard implementation of SDBM (Oliveira
et al.,, 2022) does not provide this feature, adding it is very sim-
ple. Note that this functionality can target both existing points
from the projected dataset D used to construct the SDBM, and
more interestingly, new points that correspond to pixels in the
decision map to which no actual data point projects. These effec-
tively generate new, unseen, data points in the high-dimensional
space (via the inverse projection P~!) which allow the analyst to
reason about how the classifier, or more generally phenomenon
under study, would behave for data outside the actually mea-
sured dataset one has.

However, decision maps also have some limitations. As ex-
plained earlier, both direct and inverse projections have inevitable
errors which cannot be fully eliminated in the generic case. We
address this issue by quantifying the magnitude of errors and
demonstrating that, for classifier analysis, these errors are mini-
mal and do not significantly impact the interpretability of the de-
cision maps. If desired, one can easily extend our proposal by vi-
sualizing errors locally in the decision maps following Espadoto
et al. (2021a). Studying how such more refined error views can
help interpret classifiers is an important future work topic. A sep-
arate limitation of decision maps is that they do not explicitly de-
pict individual dimensions along the two axes of the map, unlike
classical discrimination diagrams. Combined with the nonlinear
nature of the projections used to create the maps, this asks ana-
lysts to deploy more effort to understand how dimensions vary
across the map. For example, the pyrite decision zones in Fig. 3.3
show a trend from the high-temperature forming environment to
the low-temperature forming environment in sequence: Ni-Cu-
PGE - Porphyry — Orogenic — Carlin. The feature inverse projec-
tions help this analysis by mapping the feature variations, one by
one, to the respective maps. An interesting future work direction
is to summarize several such feature inverse projection images in
a single map, thereby reducing the number of different visualiza-
tions one needs to study to interpret a decision map.

3.6.2 Implications for mineral deposit genesis classification studies

The dataset used in our work includes Carlin-type pyrite and
Ni-Cu-PGE pyrite trace elements, which fills the gap of previous
pyrite machine learning related work (Gregory et al., 2019; Zhong
et al., 2021b). This dataset provides a more comprehensive view

73

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

of pyrite from magmatic to hydrothermal origins. More impor-
tantly, we present a solution to the current problem of the lack of
visual interpretability of machine learning in geochemical data
classification work. Visual interpretability is a valuable property
of traditional geochemistry discriminant diagrams, and it is also
a desire for geochemistry data exploration and analysis. Our de-
cision maps solution provides a unique perspective to reveal the
structure and properties of data hidden from regular machine
learning routines, offering new opportunities for analyzing and
explaining geological problems. More specifically, the decision
map application on Zaozigou pyrite trace elements shows how
seeing the data clusters and their locations on the decision map
can help interpretation compared to regular machine learning
routines; the feature inverse projection application shows how
the decision map can uncover what the model learned from the
mapping of pyrite trace elements to pyrite forming environments,
and displays how the model decides the type of pyrite when the
trace element values vary.

We now discuss the specific findings we obtained using de-
cision maps for our specific use-case of studying mineral de-
posit genesis. Pyrite trace element data of the Zaozigou deposit
from Sui et al. (2020) are plotted mainly in the orogenic zone
on the decision map. Within this zone, the plotted data clus-
ters are closer to the Carlin and sedimentary zones than the
porphyry and Ni-Cu-PGE zones. From the view of pyrite trace
elements, Zaozigou shows little similarity to magmatic-related
(Ni-Cu-PGE, Porphyry) deposits. Instead, it shows some more
similarity to low-temperature Carlin-type deposits. Therefore, it
is reasonable that Pyia are plotted around the boundaries of
the orogenic zone, Carlin zone, and sedimentary zone (Fig. 3.5):
Since Py1a samples are pyrites in sedimentary within the gold de-
posit district, Py1a shares similarities to pyrite in barren sedimen-
tary geologically; Carlin-type deposits, which were first found in
Nevada, USA, are sediment-hosted, disseminated Au deposits.
So, they also share some similarities to pyrite in barren sedimen-
tary. Most of the Carlin-type samples in the dataset are from gold
deposits near the edge of the Yangtze craton, in southeast China.
These deposits are also argued to be epizonal orogenic gold de-
posits (Bodnar et al., 2014). If we regard the Carlin class as an
epizonal orogenic class, Py1a pyrites are more similar to pyrite
from epizonal orogenic deposits than from classic orogenic de-
posits; Pyrites from Pyib and Py2 are more similar to pyrites
from classic orogenic deposits. The conclusion from pyrite trace

74

3.7 IMPLICATIONS

elements and the decision map method closely agrees with the
monazite geochronology conclusion from Qiu et al. (2020).

According to the feature inverse projections (Fig. 3.6, Fig. 3.7),
some trace elements can be considered indicator elements in dis-
criminating the mineral-forming environments. For example, the
model learned that Co, Ni, and Pb are efficient features when clas-
sifying Ni-Cu-PGE from others. This model learned knowledge
is consistent with geologists” experience that Co, Ni, and their
ratio in pyrite are considered reliable indicators and geochemical
tools in ore deposit genesis (Bajwah et al., 1987; Bralia et al., 1979).
Knowing what the model learned for classifying the pyrite ge-
netic types makes it easy to find other elements as indicators. For
example, Pb, which is less discussed in the literature, could be an
indicator for discriminating Ni-Cu-PGE, porphyry, and orogenic
pyrites from the other classes. In Figure 5, we can observe that
the model considers pyrites of Ni-Cu-PGE and porphyry classes
to have the feature that Pb < 10 ppm, while orogenic pyrite has
Pb roughly between 10 to 100 ppm; Cu could be another indica-
tor for discriminating porphyry pyrite from the other classes, i.e.,
the model considers porphyry pyrite has the feature that Cu <
10 ppm (Fig. 3.6j). The effectiveness of Pb and Cu as indicators
remains to be further proven in practice.

3.7 IMPLICATIONS
3.7.1 Implications for the geoscience community

The union of information visualization and mineralogy, as pre-
sented in this study, heralds a transformative era in geoscience re-
search. By harnessing the capabilities of enhanced decision maps,
we have illuminated a novel approach to interpret classification
models, deepening our comprehension of multifaceted geochem-
istry data dimensions.

The introduction of inverse projections is particularly ground-
breaking for geology. This feature unravels the depth of under-
standing models extracting from complex geochemical data, en-
abling researchers to directly correlate predictions with specific
mineralogical features or value-ranges. In the realm of mineral
geochemical discrimination, this research signifies a monumental
shift. Transitioning from traditional machine learning classifica-
tion to the advanced visual analytics of machine learning, we're
effectively merging the precision and scalability of modern com-
putational methods with the rich, interpretative legacy of discrim-
inant diagrams.

75

APPLICATIONS OF DECISION MAPS IN GEOSCIENCE

As it continues to lean into data-driven methodologies, our
work offers a robust toolset for enhanced mineral genesis clas-
sification and exploration. Beyond the immediate applications,
this study promises to influence a range of geochemistry sub-
disciplines, driving more informed, nuanced, and efficient re-
search and exploration endeavors in the future.

3.7.2 Implications for visualization community

This chapter shows that decision maps are practically useful in
geosciences research, a discipline which is far away from com-
puter science, and whose users are non-specialists in data visu-
alization. While applications of decision maps in geosciences are
also reported in Zhou et al. (2023), our work is, to our knowledge,
the first in this area. On the one hand, these results are a good in-
dicator that decision maps are an effective tools for solving prob-
lems in practice when one needs to explore and/or improve a
trained classification model. On the other hand, we discovered
that current decision map methods have several challenges that
need to be addressed to make them even more effective in such
practical use cases. We summarize these challenges next.

First, our work investigated only the SDBM decision map
method — and, while doing so, used only three relatively sim-
ple metrics to gauge quality. As mentioned in Chapter 2, sev-
eral other decision map methods exist. As such, a comprehensive
comparison of such methods with additional quality metrics is
needed to understand the pros and cons of each method. This is
addressed in Chapter 4.

Secondly, we found that a single view — or single decision map
image — cannot capture everything we aim to understand in the
behavior of a trained model. To alleviate this, we customized the
decision map with so-called feature inverse projection (Sec. 3.5.2).
While this is a good start, more refined user customizations are
needed to make decision maps more flexible and more informa-
tive. We propose such user-driven customizations in Chapter 6.

Finally, we only created decision maps with a fixed resolution
of 300% pixels. The key reason for this was the limited compu-
tational efficiency of SDBM. As more user control is eventually
incorporated, such as zooming in and out, the resolution of the
decision map should be increased, which will require faster ways
to compute it. We address this topic in Chapter 7.

76

=

QUALITATIVE AND QUANTITATIVE
EVALUATION OF DECISION MAPS

4.1 INTRODUCTION

As introduced in Chapter 2, several techniques exist to construct
decision maps for arbitrary classifiers (Hamel, 2006; Migut et al.,
2015; Schulz et al., 2015, 2020; Rodrigues et al., 2019; Oliveira
et al., 2022), These techniques have found applications in ar-
eas like model steering (Rodrigues, 2020), detecting backdoor at-
tacks (Schulz et al., 2020), and our own work in interpreting geo-
science models (Chapter 3). Overall, such techniques take away
some of the complexity of interpreting the working of a machine
learning model while, in the same time, depicting the functioning
of the model in more detailed ways than classical aggregate per-
formance metrics. As such, decision map techniques are particu-
larly attractive for users of machine learning who are not domain
experts in the operation of the underlying ML algorithms (Zhou
et al.,, 2023)".

Despite the above, no framework to comprehensively evaluate
and compare such techniques exists (Oliveira et al., 2022). This
makes it hard for actual users to know which technique to pick
and use in a given application context.

Lacking an in-depth assessment for the quality of decision
maps lead to some issues. From a technical perspective, it is
unclear how effectively different decision map techniques cap-
ture information present in high-dimensional decision zones and
boundaries. For instance, it is unclear whether the smoothness
or fragmentation visible in decision boundaries truly depicts the
same properties of the actual, high-dimensional, boundaries. Sim-
ilarly, it is unclear whether a sample located close to a decision
boundary in the map genuinely reflects its proximity to the high-
dimensional point where a classifier changes output. From a prac-
tical perspective, this lack of evaluation makes it hard to select
the most suitable decision map technique for a given dataset and
classifier.

This chapter is based on the paper “Quantitative and Qualitative Comparison
of Decision Map Techniques for Explaining Classification Models” (Wang et al.,
2023b).

77

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

We aim to fill this gap — and therefore answer our research
question RQ1 introduced in Chapter 1 — by proposing a frame-
work that evaluates decision map techniques. We proceed by
identifying the desirable aspects that a decision map technique
should have — accuracy, reliability, interpretability, and computa-
tional efficiency. Next, we design several metrics to quantify these
aspects. Taken together, these metrics aim to capture the concept
of ‘quality” of a decision map technique, much like classical met-
rics in ML such as accuracy, area under the ROC curve, F1-scores,
and similar aim to capture the concept of quality of a ML model.
We then use these metrics to conduct a multi-faceted comparison
of existing decision map techniques over several classifiers and
datasets. This helps us identify several strengths and limitations
of the evaluated decision map techniques. Finally, we propose
a workflow for choosing the best decision map technique for a
given dataset in light of a set of desirable requirements.

Summarizing the above, our key contributions are as follows:

* We propose a suite of metrics to quantitatively evaluate de-
cision map techniques;

* We conduct a comprehensive comparison of existing deci-
sion map techniques, both quantitatively (by comparing the
aforementioned metrics) and qualitatively (by comparing
visually the obtained decision map images);

* We propose a workflow to guide the selection of the most
suitable decision map technique for a given dataset, based
on a set of desirable requirements.

* At a higher level, this chapter answers our question RQ1
introduced in Sec. 1.

4.2 RELATED WORK
4.2.1 Overall workflow of decision map

Decision maps — introduced in Sec. 2.3.4 — are techniques that
visualize the decision boundaries and decision zones of a classi-
fier: Given a classifier f, a decision boundary is a surface in R" that
separates high-dimensional data points x € R" into regions, also
called decision zones. All points in a given zone are assigned the
same label y € C by the model f. Decision zones are separated
by decision boundaries, which are hypersurfaces embedded in R"
where the classifier f changes output. Understanding how the

78

4.2 RELATED WORK

high-dimensional space is partitioned into such decision zones,
and how data samples in a training or test set are distributed
across the zones, effectively helps understand how a classifier be-
haves (Rodrigues et al., 2019; Schulz et al., 2020). For example,
seeing how labeled samples distribute close to decision bound-
aries can help categorize misclassification problems; seeing how
unlabeled samples (whose class is to be predicted by f) spread
across decision zones helps understand how well f can handle a
given data distribution.

The general workflow of constructing decision maps is as fol-
lows (see also Figure 4.1):

=y

3. Project
nD data

R to 2D ‘e g
4. Create
2D grids

5. Create un ”**”**********ﬁ-ﬁ’

synthetic

1D points ﬁ
T

6. Predict
labels

7. Color
pixels

Figure 4.1: General workflow of decision map techniques (see Sec. 4.2.1).

1. Train a classifier f on a dataset D;. This is the classifier
whose decision map we next want to visualize;

2. Construct a direct projection P and inverse projection P!
using a dataset D’;

79

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

Project D' to create a 2D scatterplot P(D');
Sample the extent of P(D’) on a uniform pixel grid I;

Backproject all pixels p € I to the data space using P~1;

AN L S

Use f to predict the labels of the backprojected points
P~(p);

7. Color I according to the predicted labels f(P~!(p)).

In the above, D’ can be, at a minimum, a subset of the train-
ing set D;. However, if more samples of the target domain are
available, such as in the form of test data D7 or even unlabeled
data, these can be added to D’. By doing this, the constructed
decision map will better sample the actual data distribution of
the investigated phenomenon and, thus, the classifier’s behavior.
In this work, we set D’ = D; following earlier examples of this
workflow (Oliveira et al., 2022).

We next describe three specific techniques that implement the
above workflow and introduce some of their key features. For
completeness, these are the techniques we further selected for
quantitative and qualitative evaluation in this chapter. The selec-
tion was based on the fact that these techniques pioneering in
the DBM area (Rodrigues et al., 2019); are computationally effec-
tive and simple to use (Oliveira et al., 2022); and achieve a high
quality representation (Schulz et al., 2020), respectively. For each
technique, we also indicate the exact origin of its source code, for
replicability purposes of our comparison.

4.2.2 Decision Boundary Maps (DBM)

Decision Boundary Maps (DBM) (Rodrigues et al., 2019) closely
follow the above workflow. While the original DBM used t-
SNE (van der Maaten and Hinton, 2008) and, alternatively,
UMAP (Mclnnes et al.,, 2018) for the projection P, any user-
chosen projection method can be used, such as PCA (Jolliffe and
Cadima, 2016), LAMP (Joia et al., 2011), Least Square Projec-
tion (LSP)(Paulovich et al., 2008), or Piecewise Laplacian Pro-
jection (PLP) (Paulovich et al., 2011). For the inverse projection
P~1 DBM evaluated two techniques, namely iLAMP (dos San-
tos Amorim et al., 2012) (the inverse of the LAMP projection
technique mentioned above) and NNinv (Espadoto et al., 2019c).
Compared to iLAMP, which constructs the backprojection by in-
terpolating between the samples of D and P(D) using linear or

8o

4.2 RELATED WORK

radial kernels, NNinv deep learns a regressor to output D us-
ing P(D) as input. NNinv achieves inverse projections having a
lower mean absolute error than P and is also simpler to imple-
ment and significantly faster (Espadoto et al., 2019c; Rodrigues
et al., 2019). Note that the same deep learning idea has been used
to construct direct projections with similar speed, quality, and
implementation simplicity advantages (Espadoto et al., 2020).

DBM is simple to implement and allows one to use any di-
rect and inverse projection techniques. Also, DBM works with-
out requiring label information, which means that constructing
decision maps only depends on the distribution of points in D’
in the feature space. In our subsequent evaluation, we use DBM
with UMAP as the direct projection P and NNinv for P~!, as
this combination led to the best results in earlier DBM evalua-
tions (Rodrigues et al., 2019). More information about DBM is
available at https://mespadoto.github.io/dbm/.

4.2.3 Supervised Decision Boundary Map (SDBM)

While flexible, the independent choice of P and P~! in DBM
means that these operations have to be constructed separately
(including fine-tuning their hyperparameters), which incurs
additional effort. Self-Supervised Neural Network Projection
(SSNP) (Espadoto et al., 2021b) alleviates this by constructing P
and P! jointly. Briefly put, SSNP follows a classical autoencoder
architecture but adds a classification loss atop the standard recon-
struction loss. To minimize this classification loss, either true la-
bels (supervised mode) or pseudo-labels (semi-supervised mode;
labels are obtained by running a clustering algorithm on the
feature space) can be used. The encoder part then delivers P,
whereas the decoder delivers P~ 1.

Supervised Decision Boundary Map (SDBM) (Oliveira et al,,
2022) directly applies SSNP to construct decision maps follow-
ing the workflow in Fig. 4.1. Like DBM, SDBM is also simple to
implement and has a similar speed. More interestingly, SDBM
seems to produce smoother decision boundaries than DBM and
these boundaries appear to better agree with ground-truth infor-
mation on the visualized classifiers. The price to pay for this is the
inability to choose a specific direct projection P. This can be sub-
optimal in cases where one has such a technique that is known
to be best for depicting the structure of a given dataset. The code
of SDBM is available at https://github.com/mespadoto/sdbm.

81

https://mespadoto.github.io/dbm/
https://github.com/mespadoto/sdbm

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

4.2.4 DeepView (DV)

DeepView (DV) (Schulz et al., 2020) constructs the direct projec-
tion P by using UMAP. However, in contrast to classical UMAP,
the points’ similarities are computed using a Fischer distance
which combines their high-dimensional features with the clas-
sification function f. This approach, also called discriminative
dimensionality reduction (Schulz et al., 2015), favors grouping
points in the projection that are similar both feature-wise and in
terms of classification by f. The inverse projection P~! of DV also
uses UMAP, with the roles of input and output swapped. The in-
verse projection is next extrapolated to all 2D points by minimiz-
ing a Kullback-Leibler (KL) divergence that captures probabilities
of closeness in both 2D and the data space. Once P~! is available,
DV colors the 2D pixels following the same approach as DBM
and SDBM (Fig. 4.1, step 7).

While DV produces decision maps with smooth boundaries,
the process is quite expensive, given that the computation of
the Fisher distance is squared in the number of samples in
D'. Also, the process involves optimizing several hyperparame-
ters to construct an accurate P~ L. Just as DBM, the direct and
inverse projections P and P! can be in principle freely cho-
sen. However, given the aforementioned optimization complex-
ity, we next use the exact original proposal in Schulz et al. (2020)
to construct both P and P~'. The code of DV is available at
https://github.com/LucaHermes/DeepView.

4.2.5 Limitations

As indicated in Chapter 2, the by far most evident issue of cur-
rent decision map techniques is the very limited evaluation they
come with. DBM was evaluated qualitatively by using 28 projec-
tion techniques P (and iLAMP for P~1) to conclude that UMAP
and t-SNE are among the best options for P for creating smooth
decision boundaries (Rodrigues et al., 2019). However, this eval-
uation was purely qualitative, i.e., based on visually examining
the respective decision maps for smoothness. SDBM was evalu-
ated on four classifiers and four real-world datasets and com-
pared against DBM. However, as in the previous case, the com-
parison was purely qualitative, based on a visual assessment of
the map’s smoothness. Finally, DV was evaluated on two real-
world datasets. Its quality was measured by computing two met-
rics related to our map accuracy and data consistency (discussed
further in Sec. 4.3.1). However, it was not compared to any other

82

https://github.com/LucaHermes/DeepView

4.3 EVALUATION METHOD

xwith true label y Lc.gc.nfi .
° @ Originial data in nD
® o % Data in 2D
L4 \ P(x) O Inverse projected data in nD
8 By O Pixel in 2D
O, PUPK) B B Inverse projected pixel in nD
o / - Decision boundary
© o
2D image space nD data space
Y PTp,)
\
Acc, ACC, o . @\ "
i o
P Ly r/\/'u ®)
e D
/(@ <F—=>/(0) P; P, : ;
Cons, b Plp)
G(p,): color p, with V(G? + G?)
2D image space nD data space
pD H——m ||] T g~
ne— | O a
T—n P s
Cons,: f(®) —=p f(®) d,(p): color p with d
D 2= P(p) ° °
P D*;\\/LD 0® °
. « IRd .
iterate 3 _oF P ‘Tpﬂa i
i N 2 i /
until f(z,) #/(z,) 2:=P(P(z,,) = o B8 e o “77 -
S: color p with & d,(p): color p with d

Figure 4.2: Illustration of the metrics used to evaluate decision maps.
(see Sec. 4.3)

decision map technique. We expand on all these aspects by our
proposed evaluation method described next.

4.3 EVALUATION METHOD

As mentioned in Sec. 4.2.5, current evaluations of decision map
techniques are limited. Due to inevitable errors in the decision
map creation process (detailed next in Sec. 4.3.1), using the clas-
sifier’s accuracy to gauge a decision map’s quality is neither ap-
propriate nor comprehensive. Simple visual inspection of a de-
cision map is equally limited in gauging its ability to correctly
capture a classifier’s behavior since we do not usually know this
ground-truth behavior upfront. We aim to improve upon this by
proposing an extensive set of both quantitative and qualitative
evaluations, each characterizing a different desirable property of
decision maps, as follows.

83

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

4.3.1 Global metrics

Global metrics aim to characterize the quality of a decision map
by a single (scalar) value, much like metrics for direct projections
such as trustworthiness, continuity, or normalized stress (Venna
and Kaski, 2006) (see also Eqn. 2.3 and related text).

We propose five such metrics, as follows (see also Figure 4.2).
Note that we used the first three metrics in Sec. 3.3.2.1 for select-
ing the best (classifier, SDBM) combinations for our geoscience
application. In this chapter, we discuss these three metrics in fur-
ther detail and also introduce additional metrics for decision map
evaluation. We then use these metrics to evaluate three decision
map techniques (DBM, SDBM, DV) with a broader set of classi-
fiers and datasets than in our work in Chapter 3.

Classifier accuracy ACCc: Accuracy is one of the most common
metrics for evaluating the performance of a classifier and is de-
fined as the ratio of correct predictions made by the model f to
the total number of predictions, i.e.

e UELILLAES Lol)

where | - | indicates set size, D is the sample set used for evalu-
ation, and C(x;) is x;’s ground-label y; assigned by the trained
model f. We will use these notations throughout this section
when defining global metrics. In the following, we will set D
to either D; (training set) or D (test set) and thereby compute
the corresponding classifier accuracies which we denote as ACCL
and ACC[, respectively. ACCc ranges in [0,1], where ACCc =1
indicates perfect classification. While accuracy does not, as we
already noted, gauge the quality of a decision map, it helps cal-
ibrate the understanding of subsequent metrics. For example, if
we know a classifier is accurate, we expect its decision map to
reflect this accordingly.

Map accuracy ACCjy;: We define map accuracy as the fraction of
data points (of a given dataset D) that are drawn in the correct
decision zones. We define map accuracy as

acy - [ERIC) = PPN,

Intuitively, this says that data points x; for which we have ground-
truth labels y; are indeed colored correctly (i.e., by y;) in the com-
puted decision map. As for class accuracy, we compute ACC},
and ACCI, for the training, respectively test, sets. Note that map

84

4.3 EVALUATION METHOD

accuracy only evaluates the map pixels onto which the data in D
projects since, for all other pixels, we do not have ground truth
labels. The range of ACCy; is [0,1], where ACCy; = 1 tells that
all data points are drawn on the pixels with the same color as
their ground-truth labels. Another way to evaluate map accuracy
is to employ an additional 2D classifier, as used in the DV evalua-
tion (see Qxnn in (Schulz et al., 2020)). We do not use this option
since we believe it introduces an additional degree of complexity
in the selection and training of this additional classifier.

Data consistency Cons;: In general, both direct and inverse pro-
jections P and P~! unavoidably introduce errors (Espadoto et al.,
20193a; Nonato and Aupetit, 2018; dos Santos Amorim et al., 2012;
Espadoto et al.,, 2019c). That is, in general, P~ is not an ex-
act inverse of P, ie., P~1(P(x)) # x for several data points x.
Such errors can be evaluated by the mean square error MSE =
YxeD X = P7Y(P(x))|?>/|D| computed over the set D (Espadoto
et al., 2021a). However, for decision maps, MSE is not the most
relevant metric to consider: A pixel P(x) may be backprojected
away from x, i.e., the MSE may be nonzero; still, if the backpro-
jection has the same label as the original point x, then there is no
visible error in the map. To account for this, we gauge whether
the error introduced by the ‘round-trip” direct-and-inverse pro-
jection creates inconsistencies in the decision maps. For this, we
define the projection consistency metric

X; “1(P(x))) = f(xi
Consy = L EDLAPTORIN = fll -,

Simply put, Cons; measures the fraction of so-called consistent
projections, i.e., samples x; from a given set D that keep the same
classification label after one round-trip given by the projection
P and inverse-projection P~!. This metric is also used in DV’s
evaluation under the name Q,;, (Schulz et al., 2020). As for class
and map accuracy, we compute Cons and Cons! for the training,
respectively test, sets. Note that, in contrast to ACCc and ACCy,
Consp does not use ground truth labels y;. That is, consistency
assesses only how much the decision map can represent a given
classifier, and not whether the DBM is correct with respect to
ground-truth labels. The range of Cons, is [0, 1], where Cons; = 1
indicates perfect consistency.

Map consistency Cons,: All above metrics evaluate a decision
map only at locations where an actual data point in D would
project. However, as already noted, most pixels in such a map are

85

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS
not covered by data points. We extend Cons; to cover all pixels
in a map by

_ Hp eIl f(PTH(P(P~(p)))) = f(P~'(P))}|
1] '

Cons) (4-4)
where p is a pixel of the decision map image I. Cons, calculates
the fraction of consistent pixels in the decision map, that is, pixels
whose corresponding data points (obtained by inverse projection
P~1) have the same classification label after a round-trip of pro-
jection P and inverse-projection P~!. Note that Cons) extends the
idea of using the round-trip to visually evaluate an inverse pro-
jection (Espadoto et al., 2021a) to a quantitative metric used to
evaluate a decision map. Cons, ranges in [0, 1], where Cons, = 1
implies perfect pixel-level consistency in a decision map.

Class stability S: One application of decision maps concerns im-
proving a classifier by, for instance, adding extra labeled train-
ing samples by backprojecting selected decision map pixels. In
this case, multiple round-trips between the 2D map space and
data space occur. Since P~! is not an exact inverse of P, several
such round-trips can increasingly accumulate errors. We measure
this as follows. Given a pixel in the decision map, we apply P~!
to obtain a data point and then apply the classifier to it. Next,
we project this point to 2D and repeat the backprojection-and-
labeling process until the class label changes or a maximum num-
ber of iterations (set to k;zx = 10 in our experiments) is reached.
Let S be an image recording this maximum iteration count (nor-
malized by k) that keeps the class label constant at every map
pixel. We then define the class stability S as the average of S over
all pixels, with values in [0,1]. A value S close to 1 indicates a
stable decision map with consistent class assignments through
multiple P and P~! round-trips. Conversely, a value S close to
o suggests an unstable decision map, sensitive to distortions in-
troduced by (inverse) projection, potentially misrepresenting the
classifier’s decisions. As explained next in Sec. 4.3.2, we also di-
rectly visualize S to get local insights in the class stability over
the map.

Average gradient G: Since P! is a function of two variables (the
x and y coordinates of a pixel), one can measure its gradient
magnitude G at every pixel p by central differences (Espadoto
et al., 2021a) as

-1 w _p-1 —(w
Gx(p):P (p+(/0))21’ (p— (w0))

86

4.3 EVALUATION METHOD

6, (p) = 2T Q) =P o= O)

G(p) = /G ()2 + Gy (p) 2 (4.5)

where w is a small step size, set to the size of one pixel for all
our experiments. Large gradient values indicate pixels where the
decision map has a high likelihood of being incorrect since neigh-
boring pixels correspond to faraway data points, thus, data points
can be classified differently. Separately, discontinuous changes in
this map indicate areas where P~! is not smooth, where we likely
expect to see errors in the decision map.

We can reduce G to a scalar value by computing the average
G of the normalized values G(p)/Guax over all the decision map
pixels, where Gyuy is the maximal value of G over the set of de-
cision maps being compared. The value 1 — G, ranging in [0,1]
thus signals how smooth a decision map is. Values close to o indi-
cate a smooth map (with low average gradients). Values close to
1 indicate a map having many discontinuities — thus, more prone
to errors, as explained above.

4.3.2 Local metrics

The metrics presented so far aggregate the quality of a decision
map to a single scalar number. While simple to interpret, such
metrics only give a global assessment of the decision map. Since
typical direct projections and, in any case, inverse projections are
nonlinear functions, large errors can occur locally in such maps.
Such local errors — if not too numerous — will not show up in
global metrics. Moreover, the position of such local errors is very
important for interpreting a decision map. For example, errors
appearing close to a decision boundary will influence the shape
of this boundary and, subsequently, how one uses the map to
interpret and/or improve a given ML model.

To get more insight into such local phenomena, one can use
so-called local metrics. Introduced for studying direct projec-
tions (Aupetit, 2007), these metrics evaluate the quality of a map
at every 2D spatial position and typically display the result as a
color-coded visualization. We propose three local metrics to as-
sess the quality of decision maps, as follows (see also Figure 4.2):

Gradient map: We display the gradient map G, computed as ex-
plained in Sec. 4.3.1, to help understand the smoothness of the
inverse projection and, as outlined earlier, check for the presence

87

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

of high-gradient regions which are prone to creating errors in the
map. Figure 2.13 shows a typical gradient map and how to inter-
pret it. Simply put, dark regions indicate areas of low gradients
G, where the decision map is reliable; bright regions indicate ar-
eas of high gradients G, where the decision map is very likely
unreliable.

Distance to boundary: Due to the nonlinearity of the mappings
P and P!, if a pixel is visually close to a decision boundary
in the map, this does not necessarily mean that its correspond-
ing data point is close to the classifier’s decision boundary in the
data space. Yet, as already mentioned in Chapter 2, a key aim of
decision maps is precisely to indicate points which are close to
decision boundaries, since these are prone to misclassifications
upon slight changes in the data or model parameters.

We alleviate this by computing the distance to the boundary
using DeepFool (Moosavi-Dezfooli et al., 2016), as described by
Machado et al. (2024). An adversarial example for a given classi-
fier is a synthetic data point X = x + Ax such that f(X) # f(x)
with ||Ax|| as small as possible. Here, Ax indicates a small pertur-
bation, or change, of the sample x. In practice, it is complicated to
generate the smallest perturbation possible that generates an ad-
versarial example, so DeepFool approximates it instead for every
map pixel p as

dn(p) = min {Iax] | F(P1(p) + %) # F(P ()}, 46

In other words, dg(p) tells how close P~1(p) is to a change in
the class predicted by f, i.e., which is the distance between the
backprojection of p and the closest decision boundary in data
space. Note that, to compute the above, a differentiable classifier
is needed. For this, we use a Logistic Regression classifier, imple-
mented in PyTorch.

Distance to data: Besides knowing how close a decision-map
pixel p is to its closest decision boundary, it is also useful to
know how close such a pixel is (via backprojection) to the near-
est data point in the training set D; used to construct f. Following
Machado et al. (2024), as introduced in Chapter 2 (Eqn. 2.4), we
compute this as

dp(p) = min| P~} (p) — x|, (47)

xeDy

that is, the smallest distance between the data point P~!(x) cor-
responding to the pixel p and samples in the training set D;. In-
terpreting dp works as follows: Decision map pixels p which are

88

4.3 EVALUATION METHOD

close (in 2D) to projections P(x) of training-set points x € D
should represent data points which are close to such x. If this
is not the case, i.e., if we see high dp(p) values for pixels close
to the training-set projection, it means that the decision map has
issues there with extrapolating from the training-set — that is, it
takes classifier values from points far from the training-set and
depicts them close to the projection of the training-set.

Class stability map: As outlined in Section 4.3.1, the class sta-
bility map S can act as a local metric. As explained there, pixels
with high S values will have the same class label even after mul-
tiple round-trip P and P~! iterations. When a pixel is close to a
decision boundary, S will likely be lower since the chance that a
point there ‘jumps’ on the other side of a decision boundary due
to such round-trips increases. However, if the pixel is far from
a decision boundary, its S value should be higher. If this is not
the case, then the decision map may be unreliable in such areas.
As such, visualizing how S matches the distances to the depicted
boundaries in a decision map tells us about confident we are
about the quality of that map.

4.3.3 Datasets

We evaluate the three decision-map techniques (DBM, SDBM,
and DV) using both a synthetic dataset and real-world datasets.
The real-world datasets are chosen following the same criteria as
in Oliveira et al. (2022). They are chosen to be openly accessible,
representative of different types of data (e.g., time series, image,
text), and to have different numbers of classes and dimensions.
The datasets are listed as follows and summarized in Table 6.

Synthetic Blobs: This is a synthetic dataset with 5 classes, 100
dimensions, 1500 samples. All data points in a blob (following
a Gaussian distribution) have the same label. Therefore, it is an
easily classifiable dataset, for which we expect all three decision-
map techniques to produce good-quality metric values.

Human Activity Recognition (HAR) (Anguita et al., 2012):
This a dataset with time-series data from smartphone sensors.
The goal is to classify the type of physical activity (e.g., walking,
climbing stairs) performed by the user. This dataset has 10299
samples, 561 dimensions, and 6 classes.

MNIST (LeCun et al., 2010): This dataset is a collection of hand-
written digits that is commonly used for training various image
classification systems. The dataset contains 60,000 training im-
ages and 10,000 testing images. Each image is a 28x28 grayscale

89

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

Table 6: Datasets used in our decision map evaluations and their proper-

ties.
Dataset Type [D¢| |Dr| Dimensionality No. of Classes
Synthetic Blobs Synthetic 1000 500 100 5
HAR Time Series 5000 2352 561 6
MNIST Image 5000 5000 784 10
Fashion MNIST Image 5000 5000 784 10
Reuters Newswire Text 5000 2432 5000 6

image, associated with a label from o to 9. The dataset is down-
sized to 10k for all our experiments.

FashionMNIST (Xiao et al., 2017): A dataset of Zalando’s arti-
cle pictures, with images of 10 fashion categories. It has the same
size as MNIST, and is downsized to 10k samples for our experi-
ments.

Reuters Newswire Dataset (Thoma, 2017): This dataset con-
tains 8432 samples of news report documents, from which 5000
features were extracted using the standard TF-IDF (Salton and
McGill, 1986) text processing method. From the full dataset, we
use only the 6 most frequent classes to favor the creation of easily-
interpretable decision maps.

4.3.4 Classifiers

We evaluate decision maps for four classifiers — Logistic Regres-
sion (Cox, 1958), Random Forest (200 estimators) (Breiman, 2001),
Neural Network (having 3 hidden layers with 200 units each),
and Support Vector Machines (SVM, with an RBF kernel) (Cortes
and Vapnik, 1995) — which are all extensively used in machine
learning. They represent different families of algorithms: Logis-
tic Regression is a linear classification model; Random Forest is
an ensemble method; Neural Network represents deep learning;
and SVM is a maximum margin classifier. Importantly, these clas-
sifiers are frequently studied in existing decision map research,
thus allowing for meaningful comparisons. The four machine
learning classifiers are implemented using scikit-learn (Pedregosa
et al., 2011).

We train all four classifiers on 5000 samples from the four real-
world datasets and use the remaining samples for testing. We
construct the corresponding three decision maps for each com-

90

4.4 COMPARISON RESULTS

bination. As a result, we get 4 x 4 x 3 = 48 combinations of
datasets, classifiers, and decision maps to study.

4.4 COMPARISON RESULTS

We next discuss the results of our evaluation metrics for the con-
structed decision maps.

4.4.1 Global metrics of real-world datasets

= ACC. wm ACCI wem ACC, wem ACC, wmm Cons; wmm Cons) wmm Cons, mem 5 mm 1-G

DBM (UMAP + NNinv) N) DeepView

Figure 4.3: Aggregated global metrics for each combination of deci-
sion map, classifier, and dataset. Herein, ACCc, ACCyy,
Consg, Consp, 5, 1 — G are the global metrics defined in
Sec. 4.3.1.Red dashes ’-" show the highest values across each
dataset (row). Top-left numbers in each plot give the average
value of ACCCT, ACCMT, ConsdT, Consy, and S. Bold values
indicate the highest value along the dataset (row).

Figure 4.3 shows all global metrics for all combinations of de-
cision map technique, classifier, and dataset. Note that DV failed
to run with SVM on the real-world datasets, and thus is not in-
cluded in the figure. From a dataset perspective, the results dif-
fer heavily based on the specific dataset being considered. On
HAR, SDBM and DV show comparable (high metric) results
while DBM got slightly lower scores; on MNIST, DBM shows the
best results in all aspects, even though DBM’s training does not
use label information. on FashionMNIST, SDBM gets the highest
scores, while DV shows comparable results for data-level met-
rics (ACCc, ACCyy, Consy) but much lower results on pixel-level

91

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

metrics (Consy, S); finally, on Reuters, the overall winner is DV.
From a classifier perspective, the results are more stable. The ac-
curacy of classifiers themselves varies little. The most noticeable
difference is that random forests always have lower scores (on
all global metrics except ACC¢ and 1 — G) than the other clas-
sifiers for all considered metrics, particularly on MNIST dataset.
For 1 — G, almost all results are close to 1. This is due to a large
maximum value of DV which influences the normalization (see
the definition of G in Sec. 4.3.1). We explore this in more detail
next in Section 4.4.3.

The datasets in Figure 4.3 are sorted top-to-bottom on increas-
ing dimensionality (see also Table 6). The higher the dimen-
sions, the more difficult for the models to learn. So, it is not
surprising that DBM, which is a fully unsupervised method, has
trouble when aiming to depict classifiers for higher-dimensional
datasets like Reuters (5000 dimensions). In contrast, for this
dataset, SDBM reaches higher quality metrics, while DV reaches
the highest values. This suggests that DV is the decision map
method of choice — from the perspective of global quality metrics
— for high-dimensional datasets. However, as we shall see next,
other aspects weigh the three decision-map methods differently.

4.4.2 Interpreting local metrics on synthetic data

We start explaining the local metrics proposed in Sec. 4.3.1 using
the simple synthetic blobs dataset which is, as explained earlier,
straightforward to classify. As such, we only study its decision
maps for the simple Logistic Regression classifier (we obtained
very similar results for the other three considered classifiers). The
blobs dataset is split into 1000 training and 500 testing samples.
All three map methods — namely, DBM, SDBM, and DV - achieve
100% on the test set for all data-wise global metrics. We next use
the blobs dataset to establish and validate our expectations for
a ‘good’ decision map based on the local metrics introduced in
Section 4.3.2 as follows:

1. Distance to the nearest data dp: We expect this distance to
be small for pixels close to actual projections of data points
and larger for pixels far away from these points. In other
words, we expect that the 2D distance (to projections of data
points) to mimic the nD distance (to actual data points).

2. Distance to the decision boundary dp: Similar to the above,
we expect that points close to decision boundaries (in 2D)
are also close to decision boundaries (in nD) and conversely.

92

4.4 COMPARISON RESULTS

3. Class stability map S: Ideally, we would like to have most
pixels with high stability values, especially close to decision
boundaries (where we are most interested in studying a
decision map).

4. Gradient map G: We expect (1) a smooth gradient map with-
out any discontinuities or peaks. Ideally (2), we would also
like to have low gradients close to the decision boundaries
(for the same reason mentioned above for class stability).

With these expectations in mind, we analyze the results shown
in Figure 4.4 for the three decision-map methods and the above-
mentioned four local metrics. The first row in Figure 4.4 shows
the decision maps and projected data points for the three meth-
ods. At a glance, all maps appear similar. However, a deeper anal-
ysis of the local metrics reveals more. The results for dp (second
row) and dp (third row) meet our expectations across all methods.
Some discontinuities in DV, however, are noticeable — the dp and
S images appear to contain some ‘cuts’ that perturb their overall
smoothness. S (fourth row) primarily manifests as expected, with
all low-value pixels situated around the decision boundaries. A
notable difference arises with SDBM showing larger regions of
unstable pixels, indicating its vulnerability to projection errors.
For G, DBM and SDBM are smooth, whereas DV exhibits peaks,
thus not satisfying our first expectation of G. Even more inter-
estingly, the local maxima for G for DV takes the shape of lines
roughly connecting the clusters of projected points. As for our
second expectation, we find a surprising result: DBM and SDBM
show relatively higher values close to decision boundaries, while
DV shows lower values in these areas. Consequently, no method
satisfies both expectations of G simultaneously.

In conclusion, on the synthetic blob dataset, all three methods
generally align with our expectations of local metrics. However,
despite the decision maps’ similarities for this simple example,
there are subtle but significant differences between them. This
is the first indication that, while superficially similar, the three
studied decision map techniques behave quite differently. We ex-
amine this aspect further on real-world data.

4.4.3 Analyzing local metrics on real-world data
To refine our preliminary insights concerning the differences be-

tween the three studied decision-map techniques, we now use
our four proposed local metrics to study their behavior on the

93

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

DBM (UMAP+NNinv) SDBM DeepView

25
2.0
15
1.0

0.5

15

1.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

(A

0.4

0.2

Figure 4.4: Decision maps and local metrics of the synthetic blob
dataset (see Sec. 4.4.2). Row 1: Decision map with data
points projected onto it (marked black). The brightness of
pixels encodes the confidence of f’s prediction (dark=low,
bright=high confidence). Row 2: Distance of each map pixel
to the nearest data point dp depicted using a blue (low dis-
tance) to yellow (high distance) colormap. Row 3: Distance of
each map pixel to the closest decision boundary dp, using the
same colormap as in row 2. Row 4: Class stability map S de-
picted using a red-white-blue colormap. Blue values indicate
stable pixels, while red ones pixels for which fewer direct-
and-inverse projection round-trips change the classifier’s de-
cision depicted at that pixel. Row 5: Gradient map G showed
using a rainbow colormap. Blue and red pixels indicate low,
respectively high, values of the derivatives of the inverse pro-
jection function.

94

4.4 COMPARISON RESULTS

four real-world datasets in Tab. 6. We start by presenting the ac-
tual decision maps (Sec. 4.4.3.1). The next sections (Sec 4.4.3.2-
4.4.3.5) interpret these maps using our four local metrics.

4.4.3.1 Decision Maps

Figure 4.5 shows the decision maps computed using training, re-
spectively testing, data. The decision zones are color-coded cat-
egorically, while the brightness of pixels encodes the confidence
of f’s prediction (as used earlier in all decision-map techniques).
The projected samples are also color-coded according to their
class, but made slightly brighter to distinguish them from their
surrounding zones. Misclassified samples, i.e., samples for which
f(x') # y', are marked with a white outline. Theoretically, points
near decision boundaries represent samples about which the clas-
sifiers are most uncertain. This can be observed at the bound-
aries between the pink and the yellow zone in the HAR dataset,
where some misclassified points are highlighted with white out-
lines. Notably, there are even some misclassified light blue points
at the boundaries of the pink and yellow zones. Knowing the
nature of this dataset — classification of human activities — this
observation aligns well with the understanding that static activi-
ties (corresponding to the class labels yellow and pink). are more
challenging to distinguish than dynamic activities, such as vari-
ous walking activities.

We see that each decision-map technique has its own ‘signa-
ture”: DBM is more random; SDBM shows radial patterns; and
DV presents blob-like patterns. Also, we see that prediction con-
fidences are always lower near decision boundaries and higher
within decision zones, which is expected. In more detail, DBM
shows some ‘island’ decision zones that have no data points.
Without more information, it is hard to tell whether these islands
actually do exist in the high-dimensional data or are artifacts of
the decision map. In contrast, DV shows some discontinuities, in-
dicated by ‘breaks’ or ‘jumps’ in the decision boundaries. Regard-
ing the smoothness of decision boundaries, SDBM displays the
smoothest ones; DBM has more complex but still smooth bound-
aries; and DV exhibits the least smoothness. The shapes of the
decision zones seem to be strongly influenced by the underlying
projection method P: SDBM consistently shows radial, elongated,
star-like structures (a property known to autoencoders used for
dimensionality reduction); DV presents well-separated, blob-like,
structures (highly likely due to its use of discriminative dimen-
sionality reduction); and DBM has more variable structures (due

95

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

DBM (UMAP + NNinv) DeepView

Figure 4.5: Decision maps with training data (top) and test data (bot-
tom).

to its UMAP projection). It is worth noting that DBM failed on
the Reuters dataset, as also reflected by the low global metrics
score in Figure 4.3.

Separately, we examine the issue of overfitting. By displaying
both training and test data, we can check whether decision maps
can visually indicate overfitting. This overfitting is reflected by
the noisier scatters plotted on incorrect background colors in the
test sets (Figure 4.5 bottom). For the test data, we observed over-
fitting in all three methods across all four datasets, except for the
simplest one, the HAR dataset. Among the three methods, DV
appears more prone to overfitting, a fact also evident from the
noticeable difference between ACCY, - ACCI; and Cons!, - Cons]
in Figure 4.3.

4.4.3.2 Smoothness

The gradient map G, as defined in Equation (4.5), captures the
smoothness of decision maps. Figure 4.6 shows this map for the
three studied decision-map techniques. We see that each tech-

96

4.4 COMPARISON RESULTS

DBM SDBM DeepView

1.0

har

0.8

mnist

0.6

0.4

fashionmnist

reuters

. 0.05 0.0

@

Logistic Regression Random Forests Neural Network

Figure 4.6: Gradient maps G of the studied decision map methods. Gra-
dient values are scaled to [0,1] within each dataset. The num-
ber in the bottom right corner of each plot is the average G
of each map.

nique creates its unique type of gradient, as follows. The DV tech-
nique shows high gradient values close to the projected points,
which indicates a high degree of data compression during the
projection P in these areas. Additionally, the DV technique shows
some high gradient ‘lines” connecting the clusters of projected
points, indicating discontinuities. The remaining areas have uni-
formly low gradient values. In contrast, SDBM shows low gra-
dient values almost everywhere, with slightly higher values in
the gap areas between point clusters. Both the above patterns
for DV and SDBM are similar to what we observed on the blob
dataset in Figure 4.4. Finally, DBM’s gradient map presents a
more complex pattern, entirely different from what we observed
on the easily classifiable blob dataset (Figure 4.4). As stated in
Section 4.4.2, we expect gradient maps to not show peaks and to
have low values in areas close to decision boundaries. However,
no method simultaneously exhibits these two properties. Notably,
SDBM'’s relatively high gradient values in the gap areas between
point clusters are still low in absolute terms, making SDBM the
method that best satisfies the two mentioned gradient-map prop-
erties. SDBM’s high smoothness can be attributed to the joint
training of P and P~!. DV is clearly the least smooth method, as
indicated by the number of discontinuities reflected by the ‘peaks’

97

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

in its gradient map. DBM falls in between, with its complex pat-
tern showing less smoothness but at least continuity.

4.4.3.3 Class stability map

As explained earlier in Sec. 4.3.1, the global average value for
class stability S indicates whether a decision map is robust to
(inverse) projection errors. The class stability map S, which we
study next, reveals where the decision map is susceptible to such
errors. Figure 4.7 shows the S maps for the three studied decision-
map techniques. As explained in Section 4.4.2, pixels with low S
values are expected to appear primarily near decision boundaries.
This assumption holds true, especially for simpler datasets such
as the HAR dataset.

DBM (UMAP + NNinv) DeepView

Figure 4.7: Class stability map S. The number in the bottom right corner
of each plot is S of each map.

However, some anomalies can be seen for each decision-map
technique: DBM displays large zones with low S values. Refer-
ring to the decision map (Figure 4.5), most of these zones are no
data zones (NDZs), in which no data points are projected — see
the zones circled by dotted green lines in Figure 4.7 (leftmost im-
age). Another interesting observation is that the most unstable
pixels tend to change their labels immediately after the first round-
trip in DBM. This observation also applies to DV. Unlike these
two methods, SDBM continues to be affected by round-trip er-
rors. This can be observed by the gradual changes in S values for
SDBM in Figure 4.7. After several rounds, most of the pixels in
SDBM change their labels, except for those with the most robust
labels, which almost never change. DV presents another salient
pattern: Given the blob-like patterns in this decision map, a par-
ticular class often forms the ‘base’ of the blob-like shapes in some
cases, e.g., the MNIST dataset with Random Forest and Neural

98

4.4 COMPARISON RESULTS

Networks. Pixels in these areas are more prone to round-trip er-
rors. In summary, SDBM performs the worst on S, as also indi-
cated by the result global metrics (Figure 4.3) and the synthetic
blob dataset (Figure 4.4). DBM and DV show similar patterns S,
with DBM slightly outperforming DV on the MNIST and Fash-
ionMNIST datasets. However, all three methods are quite prone
to instabilities and many such instabilities exist along their deci-
sion boundaries — which, as explained earlier in Sec. 4.4.2, is an
undesirable aspect for trustworthy decision maps.

4.4.3.4 Distance to decision boundary

A key application of decision maps is to show how close a point
on the map is to the actual decision boundary of the studied
classifier. For this, the 2D distances in the map should depict as
closely as possible the corresponding nD distances. Figure 4.8
(left) shows, for each map pixel, its distance to its closest de-
cision boundary in the high-dimensional space, computed via
Eqn. 4.6. From this figure, we see that our expectations align
with the observations — pixels close to the decision boundaries
in the map are dark (meaning, they map points close to the ac-
tual decision boundaries in nD), while pixels deep in the decision
zones are bright (meaning, they map points far away from the
nD decision boundaries). Yet, we also see variation in these dis-
tances across the decision-map methods. SDBM and DV display
patterns closer to the desired outcome than DBM. DV shows a
wider area with low distance values, while SDBM shows a more
concentrated area. This follows the patterns observed in gradient
maps (Figure 4.6), where DV expands the gaps between point
clusters, whereas SDBM compresses them. DBM exhibits a com-
plex pattern, where certain zones display low distance values en-
tirely, even for pixels located in the center of the decision zones.
These zones are particularly noticeable in the upper areas of the
HAR and FashionMNIST datasets, as well as the leftmost area
of the MNIST dataset. Interestingly, these zones (circled by red
dotted lines in Figure 4.8 left) are also NDZs, which coincide
with the zones of low S (see Figure 4.7). This correlation indi-
cates reduced confidence in the inverse projection in those zones.
The importance of confidence in extrapolation is underscored by
these findings and will be discussed further in Sec. 4.4.3.5.

99

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

Distance to decision boudary Distance to the neareast sample
DBM SDBM

DBM SDBM DeepView

DeepView
¥

nlo

0.8 0.8

mnist
mnis!

0.6 0.6

0.4 0.4

B
H
£
£

2

=
]

&

fashionmnist

0.2 0.2

reuters

2
2
5
13

0.0 0.0

Figure 4.8: Left: Distance to decision boundary dp; Right: Distance to
the nearest training data dp. Projections of training data are
shown as white dots.

4.4.3.5 Distance to the nearest training data

The distance to the nearest data point dp (Eqn. 4.7) indicates how
far the inverse projection for a given pixel is from the actual data
distribution. If an inverse projection is significantly far from this
data distribution, t likely corresponds to a point where the clas-
sifier will have generalization difficulties. Ideally, a decision map
should (1) not contain points which are far away from the actual
training or testing points and (2) pixels close to these points in the
map should actually also be close to the respective data points.
Figure 4.8 (right) shows the distance dp for the three decision-
map methods. Data points are marked as white dots. For DV, pix-
els near the data points exhibit low distance values, as expected.
However, this pattern is less evident for DBM and SDBM. In the
SDBM representation of the FashionMNIST dataset, a zone on
the right side displays high distance values, even though a data
point cluster is projected there. For DBM, an entire region in the
HAR dataset map also shows very high distance values. Different
from SDBM'’s case, this is an NDZ again, which also has low S
values and low dp in the entire zone (see Figure 4.7 and Figure 4.8
(left) respectively). This high-value region, which is significantly
distant from the data distribution, indicates that the inverse pro-
jections in this zone are unlikely to align with user expectations
based on the class labels. This might be due to the square shape
of the 2D map. Depending on the distribution of the data, the
inverse projection is likely not to populate the square region uni-

100

4.4 COMPARISON RESULTS

formly. In this case, the inverse projection has to extrapolate cer-
tain pixels which correspond to locations further away from the
training data. This scenario underscores the value of the distance
dp in offering insights into potential issues.

Another interesting observation is that the pattern of the dp
metric is prone to outliers. For instance, we see some ripple-like
patterns in HAR with DBM and DV. Although these patterns
appear slightly different in each case, they are consistently caused
by the presence of outliers. Other NDZs not showing high dp
values might be caused by the same reason.

Furthermore, a closer examination of the data point locations
(white dots) reveals that not all close decision-map pixels cor-
respond to data samples which are close to each other. That is,
the 2D distance we see on the map is not the same as the high-
dimensional distance we have in the data space. In other words,
decision-map pixels equally (and very) close to data points actu-
ally depict points at various distances from such data. This can
lead to interpretation problems of the decision maps created by
all three methods — more so for DBM and SDBM, where this pat-
tern is more visible, and less for DV.

4.4.4 Computational efficiency

We measured the training and inverse projection time of the three
studied decision map techniques on an Intel Core iy-12700 CPU
machine with 32GB of RAM and an NVIDIA GeForce RTX 3070
GPU with 8GB of RAM. For this, we used the synthetic blob
dataset with varying dimensions (10-500) and numbers of sam-
ples (250-5000). Particularly, we evaluated DV, which requires a
pre-trained classifier, with Logistic Regression, Random Forest,
Neural Network, and SVM. It is important to note that DV’s train-
ing time varies based on the classifier used (as detailed further
below).

Figure 4.9 shows the training times for the compared methods
(that is, the time needed to construct the functions P and P~ 1).
When the number of samples dp and dimensions 7 are both small
(N <1000, n < 50), the training time of DV (with Logistic Regres-
sion) is comparable to SDBM and DBM. For larger n and/or dp,
comparable to the real-world datasets (Table 6), DBM and SDBM
showed comparable training times. DV, however, had substan-
tially higher training times. SDBM remained the fastest method,
with average training times of less than 10 seconds across all
tested scenarios. DBM’s training time is affected by the number
of samples dp but far less by the number of dimensions n. DV’s

101

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

training time, when using SVM, increased drastically for larger n
and/or dp — training DV with SVM for n = 500, N = 5000 took
over 2.7 hours. This steep increase made SVM-based DV experi-
ments unfeasible for our real-world datasets.

Figure 4.10 shows the time required to create the decision maps
(given a trained direct and inverse projection P and P~!) for vari-
ous numbers of dimensions 1, samples dp, and grid resolution I.
As for training, DV took the longest and was heavily influenced
by all these parameters, even failing to handle resolutions over
I = 150 pixels squared. Conversely, both DBM and SDBM had
a relatively high and consistent performance, roughly linear in
the number of pixels in the map and the number of samples dp.
Summarizing all the above, we conclude that DBM and SDBM
are practical methods for creating decision maps for real-world
datasets, while DV is not.

Classifiers

104 DM methods s,
—— DBM (UMAP + NNinv) .
SDBM

Logistic Regression
Random Forests
Neural Network

—— DeepView
Dimensions
-

SVM
Dimensions

,_.
i

Training Time (s)
= =
< 3
1 1
. + 4 + 8
Pt g
AR
w o
\\\\é\\x

10°

1000 2000 3000 4000 5000
n_samples

1000 2000 3000 4000 5000
n_samples

Figure 4.9: Time to train P and P! pairs. Left: Training time of DBM,
SDBM, and DV with Logistic Regression. Right: Training
time of DV with 4 different classifiers.

4.5 DISCUSSION

4.5.1 Decision Maps for Deep Learning Variations

The previous evaluations have covered the way the three studied
decision map methods — DBM, SDBM, and DeepView — perform
over a wide range of classification models. However, in the re-
spective study, we used a single such model based on a deep
learning architecture (see Sec. 4.3.4). It can be argued that, with
the increasing prominence of deep learning, it is especially impor-

102

4.5 DISCUSSION

DBM (UMAP + NNinv) SDBM DeepView

@ 102 Dimensions Dimensions
[} — 10 — 10
£
(=P — 25 — 25
2o — 50 — 50
E g 10 — 100 — 100 Dimensions
S8 250 250 — 10
23 500 500 — 2
gg w00 — = — 50

- - — 100
: / — 250
g L
2 10t “ 500
O 2 n_samples n_samples ~ n_samples

10 -
2 -- 250 —--- 250 27 ==1250
Ea --- 500 —-—- 500 ;27 == 500
-

2§ R ~=- 1000 ~=+ 1000 ¥ 222 == 1000
£¢ 10 -—. 2500 —=- 2500 /,0-7T == 2500
SE 5000 5000 75 5000
U)_B //,
fo 100 =" L
Fo -
ol =7 ="
& -~ _e*®
@ e e®
2 10t 7 Plie

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Grid Size Grid Size Grid Size

Figure 4.10: Time to create decision maps for DBM, SDBM, and DV.

tant to gather insights on how decision map methods perform on
this particular family of algorithms.

We cover this desiderate next by studying, separately, the de-
cision maps created for four such deep learning architectures,
as follows. First, we consider the original, and relatively simple,
neural network architecture already used in the previous eval-
uations, for comparison purposes. This architecture has three
fully-connected layers of 200 units each. Note that, albeit small,
it is precisely the type of architecture used earlier in all deep-
learning applications for computing direct projections (Espadoto
et al., 2020), inverse projections (Espadoto et al., 2021a), and de-
cision maps (Oliveira et al., 2022). We then used two larger vari-
ants of this architecture having four layers of 1024 units, respec-
tively four layers of 2048 units. Finally, we used TabNet (Arik
and Pfister, 2021), a very recent architecture designed for tabular
data, which combines the principles of decision trees and neural
networks and uses attention mechanisms (Vaswani et al., 2017)
to prioritize important features during decision-making. We did
not include in this comparison more specialized architectures like
Convolutional Neural Networks (CNN) (LeCun et al., 1989), Re-
current Neural Networks (RNN) (Elman, 1990), Long Short-Term
Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997),
or Deep Belief Networks (DBMs) (Salakhutdinov and Murray,
1998). While these architectures are in themselves quite powerful,

103

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

they are most often designed for being used with one particular
type of data, e.g., images or time-dependent signals.

har | DBM mnist | DBM fashionmnist | DBM

Lo Classifier
0.9 . NN 3%200 (original)
NN 4¥1024
0 08 NN 4*2048
3 - TabNet
So7
0.6

har | SDBM mnist | SDBM fashionmnist | SDBM reuters | SDBM

10
L 08
El
So7
06
05

S
:::::
<

S5
2
Sp
6
2
Sp
5a
Sp
Sn
5»

:::)g»
<

:::)gv
<

Acct

Accl

Acc
9.7

2

Acct
Accl
Acc,

2 Acc,
Al

2 cor
 cor
Co
Acct
Acct
Acch
2 Acc,
2 con:
~ con:
con
Avg.t
Avg.T
Acct
Accr
Accl
- ACCM
2 cons,
~ cor
Co
- Ach
2 cons,
 cor
Co

Figure 4.11: Label related metrics for different neural networks. NN m
n denotes a neural network with m hidden layers of # units
each.

Figure 4.11 shows the performance metrics for three decision
map techniques trained to classify four datasets using the above-
mentioned four deep learning architectures. We see that, across
the four deep learning techniques - that is, within one set of four-
colored bars in the respective plots —is quite similar. The large dif-
ferences which occur are, rather, dependent on the dataset or met-
ric, much as we have seen for the earlier-evaluated architectures
(see Fig. 4.3). The only outliner in this respect is TabNet when
run on the Reuters dataset to compute the SDBM map and, up
to a much lesser extent, when run on the FashionMNIST dataset
to compute the DBM map. Let us examine these two situations
separately next.

In the latter case, TabNet has low ACC¢ but relatively higher
Consy and Cons)p values. This demonstrates the situation when
the classifier f performs poorly and the decision map has good
quality. This is a very good example of the use of DBMs — the
maps can serve as a reliable indicator of the classifier’s under-
performance.

In the former case, TabNet shows clearly lower scores in all
metrics. If we look at the actual decision maps (Figure 4.12), we
see that these are, for all four architectures, overall quite similar
for the same dataset. Moreover, these maps look quite different
than those of the other classifiers depicted in Figs. 4.4 to 4.6 —
apart from neural network classifier to the two sets of images,
of course. In other words, the variability of decision maps is
much smaller over one type of architecture (neural networks)
than across different architectures, which is expectable. However,

104

4.5 DISCUSSION

Figure 4.12 also shows some subtle differences between the maps,
in the middle of the depicted data clusters, that is, close to the
locations where the decision boundaries appear. This indicates
that the four studied deep learning classifiers are, indeed, behav-
ing slightly differently in the most uncertain areas. Also, we see
that, the more complex a model is, the more complex its deci-
sion boundaries are. For example, in the case of SDBM-HAR, the
decision boundary along the green zone is relatively simple for
the NN 3 % 200 model. For the NN 4 * 1024 model, the dark blue
intersects between the green zone and the other zones (pink and
yellow). Further, for the most complex model NN 4 x 2048, the
pink zone thrusts into the middle of the green zone and the light
blue zone. Finally, with TabNet, the decision boundary of the
green zone becomes rugged, and the whole decision boundaries
become more complicated. This can be explained by the fact that
the more complicated the classifier is, the more chance it will
overfit the given training data. While this aspect is known in ma-
chine learning, the fact that we can show it directly using decision
maps has, to our knowledge, not been done earlier.

Summarizing the above, our findings highlight the consistent
performance of decision map methods across different datasets
and classifiers. The absence of a clear best method for computing
decision maps underscores the importance of a comprehensive
selection workflow for decision maps. We propose such a work-
flow for choosing the decision map method in the next section
(see Sec. 4.5.2).

DBM (UMAP + NNinv)

har

reuters fashionmnist mnist

Figure 4.12: Decision maps for different neural networks. See Sec. 4.5.1.

105

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

4.5.2 Workflow to guide the selection of decision map technigues

Putting together all the results of our evaluation, we see that there
is no clear winner among the studied decision map techniques.
When we consider the global quality metrics (Sec. 4.3.1), we
found that each method reached its maximal quality on different
datasets. Surprisingly, the unsupervised method (DBM) some-
times scored higher than the supervised ones (SDBM and DV)
on the MNIST dataset. However, DBM’s failure on the Reuters
dataset indicates that more challenging datasets may still require
some level of supervision.

The results of the local metrics bring more insights that lead us
to the no-winner conclusion. For the synthetic dataset, all meth-
ods showed quite similar patterns, except for DV’s poor smooth-
ness and SDBM'’s slightly worse class stability. For real-world
datasets, the patterns are less distinct. Yet, some trends can be
discerned. The smoothness of DV is consistently low, irrespec-
tive of the simplicity or complexity of the datasets. Additionally,
DV and SDBM consistently show more representative distances
(dg and dp) than DBM.

Concerning speed, SDBM and SBM are clear winners — they
definitely surpass DV in both training and inference (map con-
struction) time by one up to three orders of magnitude, which
makes the latter not suitable for creating decision maps in real-
world application scenarios, especially when using more time-
consuming classifiers such as SVM.

Compared to SDBM and DV, DBM has a separate advantage.
As outlined in Section 4.2, DBM allows one to use any chosen
direct projection function P to create decision maps. This can be
important in cases where one knows that a given P is optimal,
either for quantitative reasons or because it creates projections
which are easier to interpret by users.

In conclusion, since there is no clear winner, the choice of the
decision map method should be guided by the specific require-
ments and constraints of individual use-cases. We capture this by
proposing a workflow for choosing a method to create decision
maps as illustrated in Figure 4.13. Given a specific dataset and a
set of potential classifier candidates, the workflow assists users
in making the choices following the steps below:

1. If the user has already chosen a projection function P, they
should select DBM, as this is the only method that can ac-
commodate a predefined P, and proceed to step 4.

106

4.5 DISCUSSION

2. If the user does not have a specific P, the next key aspect
to consider is computational efficiency. If speed is impor-
tant and the data to be visualized is large, DV should be
excluded from consideration, and the workflow proceeds
to step 4.

3. If the user does not have a specific P, and computational
efficiency is not a concern, one should consider if smooth-
ness is important. If yes, DV should be excluded, and one
can proceed to step 4.

4. If more than a single classifier-decision map combination
remains to choose from, global quality metrics can be used
to select the optimal one. The key metrics to use here are
ACC¢, ACCypy, and Cons, (defined in Sec. 4.3.1), which can
be computed for any combination of direct projection, in-
verse projection, and classifier. Note that Cons, and S are
not available when the selected projection P cannot infer
new data, such as for the case of non-parametric, non-out-

of-sample, projections like t-SNE.

5. Finally, visualizations of local metrics can be used to gain
more trust and/or understanding of the behavior of the cho-
sen decision map, such as described in detail in the scenar-
ios in Sec. 4.4.

4.5.3 What decision maps really are

A key observation running through all our experiments so far is
that decision maps are imperfect instruments that map a part of
the high-dimensional space of a classification model to a 2D sur-
face or map. While our various metrics have shown differences
between the three evaluated decision-map methods, it is still un-
clear how these 2D maps are created. To gain more insight in this,
we consider a simple experiment: We create a three-dimensional
dataset having 6 concentrated blobs (data point clusters), each of
a separate class. Next, we use the three studied techniques to con-
struct the respective decision maps for a given classifier (note that
the classifier choice is not important next). Finally, we backproject
the map pixels to the data space, which is three-dimensional in
our case, and directly visualize the obtained set of 3D points.
Figure 4.14a-c show these ‘backprojected’ decision maps for
DBM, SDBM, and DV, with colors mapping the six classes. Sur-
prisingly, in all cases, these zones appear as residing on a surface,

107

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

Given a dataset and a
set of classifiers

Do you have
specified P?

Is short
computation time
desired?

A
Global metrics on
DBM with each
classifier. Choose the
one combination with
the best score

Global metrics on
DBM, SDBM.
Pick the
combination with the
best core

Is smoothness
desired?

Global metrics on all
3 methods.

Pick one combination
with highest score

(Optional: compute the|
local metrics to assist
interpretation

Figure 4.13: Workflow for choosing the most suitable decision map in a
given user application context.

whereas, knowing the structure of the underlying dataset, they
should actually be volumetric zones that partition the 3D space
into six regions corresponding to the six class labels. In other
words, the evaluated DBM techniques only choose a very specific
two-dimensional surface-like subspace Z’ of the entire data space
to visualize. For clarity, note that this surface Z’ is not the same
as the actual decision boundaries of the studied classifier. These
boundaries cannot be directly shown by the studied DBM visual-
izations. Rather, only their intersections with the artificial surface
Z' are shown as the curves that separate different-color patches
inZ.

Image (d) illustrates this for the DBM map shown in image (a).
Here, we sketch how the decision zones of three classes (yellow,
blue, and purple) would arguably look like in 3D. As said, these
are volumetric objects that enclose the training samples of their
three respective classes. The border between the yellow and blue

108

4.5 DISCUSSION

zones is the decision boundary Byb between these classes, which
is a surface. However, only the curve-like intersection B,; N Z' of
this surface, indicated by the black curve in the figure, is shown
by the DBM. Similarly, the border between the yellow and purple
zones is the decision boundary By, between these two classes.
However, in this case, the DBM does not show anything, since
the surface Z' it constructs does not reach to that area of the 3D
space, i.e., since Byb NZ' = @ (dotted black curve in the figure).
This is due to the finite size of the 2D image that these methods
construct.

Figure 4.14e summarizes the above by a simpler, lower-
dimensional, 2D sketch (all quantities in Fig. 4.14d thus become
one dimension lower). We see here the decision zones (2D yellow
and pink surfaces), actual decision boundary By, (1D curve), sur-
face Z' constructed by the DBM method (1D curve), and the part
of the decision boundary that a DBM method can depict (B, N Z’,
oD point). As stated earlier, DBM methods only visualize a subset
(oD point in this sketch) of the actual decision boundaries (1D
curves in this sketch).

Summarizing our findings: (1) the way that a DBM method
constructs the surface Z" will strongly influence which parts of
the actual decision zones of a classifier will be offered for visu-
alization; (2) only a part of the actual decision boundaries of a
classifier are visualized by DBM methods; and (3) different DBM
methods will produce different decision map visualizations for
the same dataset and classifier — therefore, potentially leading to
different interpretations. To our knowledge, none of these three
findings have been outlined by earlier work on decision maps.

A final observation from Fig. 4.14 is that the above-mentioned
surfaces Z' appear to smoothly connect the samples D used by
the direct projection P that go into generating the inverse projec-
tion P~!. Intuitively put, they look like tension surfaces (Colding
and Minicozzi, 2006) that pass close to samples in D. This further
suggests that, if the data to classify Z lives in high dimensions on
a surface, and if D closely samples this surface, DBM methods
will work predictably well and, also, deliver similar results — so,
the choice of the DBM method to use is less relevant. Conversely,
if D contains points that cannot be fit along such a surface - in
other words, the sampled phenomenon has intrinsic dimensional-
ity higher than two — DBM methods may generate very different
results depending on the actual dataset and DBM algorithm. This
matches our earlier observation concerning the challenge of DBM
methods to ‘squeeze” a high-dimensional space into a 2D image.
Designing more refined DBM algorithms that offer users a way

109

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

to control which part of the high-dimensional space they sample
to construct their classifier explanations is, thus, an important
direction for future work (see next Sec. 2.5.1).

b)

decision boundary B,,

decision boundary B, Z* y
b yellow-blue classes

yellow-blue classes surface Z’
(shown by DBM)

decision zone of
yellow class \ ' . "3 '
e}
decision boundary Bwﬂ z \.

B,NZ

yellow-purple classes —>
(not shown by DBM)

decision zone of

purple class \ surface Z'

decision zone of

blue class decision zone of decision zone of

yellow class purple class

d) e)

Figure 4.14: Decision map methods construct and visualize the classifier
(Logistic Regression) only over an implicitly-constructed sur-
face embedded in the high-dimensional space (see Sec. 4.5.3).
(a) DBM (Rodrigues et al., 2019). (b) SDBM (Oliveira et al.,
2022); (c) DeepView (Schulz et al., 2020). (d) Limitations of
decision map visualizations. (e) 2D sketch of (d). We discuss
the implications of this important observation in more detail
in Chapter 5.

4.5.4 Limitations

We single out two limitations of our current work:

Decision maps: While they significantly simplify understand-
ing how a trained ML model works, decision maps require quite
some effort to become actionable — that is, lead to concrete insights
that explain and/or improve the working of a given ML model.
In other words, it is still challenging for users to make decisions
using decision-maps. Our work helps partially in this direction
by helping users to make decision about (a) how and where they
trust a given decision map and (b) which decision map technique
to next use in practice in a given context. Improvements can, and
should, be done to the understandability of decision map visual-
izations, e.g., explain which parts of a given training set, training
process, or model are responsible for visible patterns in such a

110

4.6 CONCLUSION

map. Such extensions are not the scope of this work but are very
promising directions for future work.

Evaluation: Our evaluation, covering only five datasets and
seven classifiers, is necessarily limited in its generalizability.
More models and architectures exist in machine learning. How
the studied three decision map techniques (DBM, SDBM, and
DeepView) cope with these models is not necessarily the same
as for the models we studied so far, so our evaluation can be ex-
tended by considering additional models. However, we argue our
choice for our initial evaluation consisting of the aforementioned
datasets and classifiers as follows: (1) As no similar evaluation of
decision maps existed before our work, we had to start with rela-
tively simple cases — that is, datasets and classifiers with known
behavior. This way, we could use these datasets and classifiers as
‘ground truth’ to actually assess the produced decision maps. (2)
Our limited evaluation already pointed out several key insights
such as the very limited computational scalability of DeepView
and the fact that all decision map methods only visualize a sur-
face subset that passes close to the training samples in the data
space. These limitations will exist for any more complex model
visualized by the current methods. As such, future work can al-
ready focus on removing these limitations before applying deci-
sion map techniques to more complex models.

4.6 CONCLUSION

In this chapter, we have presented a framework for exploring
and comparing methods for constructing decision maps for vi-
sualizing the behavior of general-purpose classifiers of high-
dimensional data. To this end, our framework proposes six global
metrics and four local metrics to gauge the overall quality, re-
spectively the local quality, of a decision map. We validated our
framework by applying it to a simple synthetic dataset for which
the expected behavior of the decision map constructed by three
state-of-the-art decision map techniques (DBM, SDBM, DV) was
known. Furthermore, we compared these three techniques for a
combination of four real-world datasets and four classifiers.

Our results showed that there is no decision map method from
the evaluated ones that consistently scores better than its com-
petitors in all aspects deemed relevant for quality. Furthermore,
we outlined that all the studied decision map methods have in-
herent limitations in various quality aspects and that these limita-
tions can fluctuate quite significantly as a function of the studied

111

QUALITATIVE AND QUANTITATIVE EVALUATION OF DECISION MAPS

dataset and/or classifier being explored. To aid users in choos-
ing a suitable decision map method in a practical setting, we pro-
posed a workflow that considers all studied quality aspects and
proceeds by elimination and next optimization of these aspects.

Separately, we showed that all studied decision maps have an
inherent, previously unknown, limitation — they only visualize
a surface from the entire high-dimensional space. The way this
surface is constructed depends on the actual decision map tech-
nique. As a consequence, the decision map visualization reflects
both the actual decision boundaries in the data and the way these
intersect with the surface constructed implicitly by the decision
map technique. However, this surface-like behavior is only ob-
served on that 3D datasets with a logistic regression as the classi-
fier. We further investigate this issue in Chapter 5.

Several directions of future work exist, as follows. First, our
evaluation can be extended by considering more datasets and
classifiers and, when these will appear, more decision map tech-
niques. Second, our finding that decision maps actually visual-
ize a single surface from the high-dimensional space can turn
this inherent limitation of decision map techniques to a strength.
We can imagine ways to parameterize this implicit surface un-
der user control so as to let it ‘slice’ through the actual high-
dimensional decision boundaries in an interactive way, thereby
offering the user the possibility to examine these decision bound-
aries in a more controlled, and global, way. Chapter 6 will explore
this parameterization direction.

112

FUNDAMENTAL LIMITATIONS OF DECISION
MAPS

5.1 INTRODUCTION

Chapter 4 (Sec. 4.5.3) explored the behavior of decision maps and
their related inverse projection techniques. In particular, an ex-
periment we performed during this evaluation showed that, for
a linear regressor model trained on a synthetic 3D dataset, all
three techniques we examined, i.e., DBM (Rodrigues et al., 2019),
SDBM (Oliveira et al., 2022), and DeepView (Schulz et al., 2020),
created essentially smooth surfaces that interpolate between the
3D samples (see Fig. 4.14). Practically, this means that decision
maps created by these methods only show the model’s behavior
on a small 2D subset of the entire 3D data space the model works
on, namely the aforementioned surfaces. How the model behaves
on samples away from these surfaces is not shown. In this chapter,
we conduct an in-depth investigation about the coverage question
of decision maps — thereby answering our research question RQz2
introduced in Chapter 1). Our results show that this 2D behav-
ior is intrinsic to all decision maps that we area ware of and is
independent on the studied classifier and dataset”.

To further explore the surface-like behavior of inverse projec-
tions observed in the simple experiment in Chapter 4, we aim to
answer several questions:

Q1 How do decision maps look like for different ML models
than the one used in Figure 4.14?

Q2 How do the boundaries we see in Figure 4.14 relate to the
actual decision boundaries of a classifier?

Q3 Which parts of the data space do decision maps cover for
data spaces having more than three dimensions?

Q4 How do different inverse projection techniques influence
the answers obtained for Q1-Q3?

1 This chapter is based on the papers “Fundamental Limitations of Inverse Projec-
tions and Decision Maps” (Wang and Telea, 2024) and “Investigating Desirable
Properties of Inverse Projections and Decision Maps” (Wang and Telea, 2025)

113

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

Q5 How is the smoothness of the backprojection influenced by
the direct-and-inverse projection technique choice?

To answer Q1-Q4, we study the behavior of DBM (which uses
the NNInv inverse projection (Espadoto et al., 2019c)), SDBM,
DeepView, and a few additional direct projection and inverse
projection pairs, on a combination of several datasets (of vary-
ing dimensionality) and classification models. Next, we propose
a way to measure how far an inverse projection can produce struc-
tures away from a single surface using intrinsic dimension estima-
tion (Bennett, 1969; Camastra, 2003; Campadelli et al., 2015; Bac
et al., 2021). Jointly put, our findings show that, for all datasets,
all studied techniques essentially create surface like structures
— with varying local smoothness — when mapping all points of
the 2D space, except for points very close to the ones created
by the direct projection (Q1-Q3). Answering Q4 is important for
practitioners aiming to choose which (inverse) projections to use
for any of the aforementioned applications (imputation, morph-
ing, decision maps). In this chapter, we address this by study-
ing not only NNInv, SDBM and DeepView, but also several addi-
tional combinations of direct projections (UMAP (Mclnnes et al.,
2018), MDS (Borg and Groenen, 2005)) and inverse projections (iL-
AMP (dos Santos Amorim et al., 2012), RBF (Amorim et al., 2015),
and iMDS (Blumberg et al., 2024)). Answering Q5 is important as
a smooth backprojection is essential for interactive applications
such as morphing where users want that small changes of a se-
lected 2D point yield only small changes of the inferred data sam-
ple (dos Santos Amorim et al., 2012). Conversely, a backprojection
that aims to cover as much as possible from the data space will
be more effective in e.g. creating decision maps that capture more
of a ML model’s behavior, but will be likely less smooth. Under-
standing the inverse projection’s smoothness is thus important
for users to make informed choices for such applications.

The structure of this chapter is as follows. Section 5.2 in-
troduces related work. Section 5.3 presents our results for 3D
datasets, for which direct visual evaluation can be used to answer
our questions. Section 5.4 extends our evaluation with new meth-
ods that address high-dimensional data. Section 5.5 discusses our
findings. Finally, Section 5.6 concludes this chapter.

5.2 BACKGROUND

Decision maps, introduced in Sec. 2.3.4, aim to construct dense
visualizations of a trained ML model f. We refer to Sec. 2.3.4

114

5.3 VISUAL EVALUATION ON 3D DATA

and Sec. 4.2.1 for a detailed description of how such maps are
computed, including notations used in the process. We further
denote the set

It ={P~(p)lp € I} (5.1)

of all pixels p of an decision map image I which get mapped via
P~! to the data space as the backprojection of the decision map.
The surfaces in Fig. 4.14 are examples hereof. As such, Q3 and
Q5 (see Sec. 5.1) relate to how much of the data space does [~
cover, respectively how smooth is 1. Similarly, we denote the
set

P~1(D) = {P~'(P(x))|x € D} (5.2)

as the backprojection of the dataset D.

As explained in Sec. 2.3.4, decision maps can be constructed
using any inverse projection P~!, which is in turn suitably con-
structed from any direct projection P. However, only a limited
number of (P,P~!) combinations have been used to this end,
as follows. Espadoto et al. (2019b) tested 28 projection tech-
niques P with iLAMP as the inverse projection to construct de-
cision maps and concluded that t-SNE and UMAP were the best
choices for P. Following this, DBM (Rodrigues et al., 2018) used
UMAP (Mclnnes et al., 2018) or t-SNE (van der Maaten and Hin-
ton, 2008) for P and NNinv (Espadoto et al., 2019c) for P~1. Es-
padoto et al. (2019c) used UMAP and t-SNE for direct projection
while using iLAMP or RBF for the inverse one. SDBM (Oliveira
et al., 2022) uses SSNP which, as already mentioned in Chapter 2
and Chapter 4, provides both P and P~!. DeepView (Schulz et al.,
2020) leverages discriminative dimensionality reduction (Schulz
et al., 2015) to enhance the direct projection UMAP (Mclnnes
et al., 2018), which also provides an inverse projection. Finally,
the recent inverse projection iMDS (Blumberg et al., 2024) can
also potentially be used to construct decision maps if P is set
to multidimensional scaling (MDS, Torgerson (1952)).

In this chapter, we investigate the coverage and smoothness of
decision maps constructed by the all the above mentioned meth-
ods/combinations.

5.3 VISUAL EVALUATION ON 3D DATA

To answer questions Q1-Q4 introduced in Sec. 5.1, we first extend
the visual evaluation for 3D datasets in Fig. 4.14 to use more in-
verse projection techniques and more classifiers. We next evaluate
these techniques on high-dimensional data (Sec. 5.4).

115

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

5.3.1 Method

Dataset: We conduct this evaluation using the well-known three-
class Iris flower dataset (Fisher, 1988). As explained in Chapter 2,
the key idea of visual evaluation is to directly draw the backpro-
jected decision maps I~ and see how these actually cover the
data space of the trained ML model they are supposed to depict.
To be able to create such visualizations, we need our dataset to
have maximally n = 3 dimensions. We achieve this by restricting
the Iris dataset to its last three features.

Decision map methods: Besides the three decision map meth-
ods used in Fig. 4.14, ie, DBM(Rodrigues et al, 2018),
SDBM (Oliveira et al., 2022), and DeepView (Schulz et al., 2020),
we also consider three additional inverse projection techniques:
iLAMP (dos Santos Amorim et al., 2012), RBF (Espadoto et al,,
2019c), and iMDS (Blumberg et al., 2024). For all methods except
SDBM and Deep View (which use their own direct projection tech-
niques, see Sec. 5.2), we now use MDS as direct projection. This is
because (a) one of the considered inverse projections, iMDS, only
works with MDS as direct projection; and (b) this setting allows
us to minimize the number of direct projection techniques we use
and thus provide a more intuitive comparison.

Classifiers: We study the behavior of decision maps us-
ing six classifiers: Logistic Regression (Cox, 1958), Support
Vector Machines (Cortes and Vapnik, 1995, SVM), Random
Forests (Breiman, 2001), Neural Networks, Decision Trees, and
K-Nearest Neighbors (KNN). All are implemented using Scikit-
Learn (Pedregosa et al., 2011) with default parameters, except
Neural Networks, which uses three hidden layers each with 256
units. For each classifier, we not only construct the backprojected
decision maps ! (see Sec. 5.2) for the six studied decision map
techniques, but also visualize the actual decision boundaries in
the 3D data space.

5.3.2 Results

5.3.2.1 Preliminary comparison

Figure 5.1 (top two rows) shows the backprojected decision maps,
each from two different viewpoints (for better interpretation),
for the six studied direct-and-inverse projection combinations
(columns). For ease of interpretation of the results, we use here
only the simple Logistic Regression classifier. The corresponding

116

5.3 VISUAL EVALUATION ON 3D DATA

2D decision maps are shown in Fig. 5.1 (bottom row). This pre-
liminary investigation already reveals several interesting facts.
Firstly, we see that the backprojected decision maps for the
first three methods (DBM, SDBM, DeepView) have very similar
smooth-surface-like shapes as the ones shown in Fig. 4.14 for the
synthetic blobs dataset. The backprojected surfaces of DBM and
SDBM are quite smooth and, as such, cannot get very close to
(all) the actual data points; In contrast, DeepView creates a much
more noisy surface which ‘connects’ the data points better. This
is also observed in the actual 2D decision maps (bottom row
in Fig. 5.1): The maps for DBM and SDBM have far smoother
decision boundaries than the DeepView map. This tells us that
DBM and SDBM can depict the classifier’s behavior further from
the training set (extrapolation), whereas DeepView shows this
behavior close to and inside this set (interpolation). Further on,
we see that the backprojected decision maps for MDS+iLAMP,
MDS+RBF, and MDS+MDS behave very differently from the
first three techniques. The latter two generate decision maps and
backprojections which are very similar to each other and also
quite close to a planar surface. Slight differences exist though:
MDS+RBF creates a quite smooth backprojection that strictly
passes through every sample x, i.e., P~1(P(x)) = x for all x € D.
In contrast, MDS+iMDS creates a noisier backprojection that does
not strictly pass through the data samples. The most noticeable
outlier is the result of MDS+iLAMP. It shows the appearance of a
‘triangle soup’ that exhibits practically no smoothness. In contrast,
its backprojection covers far more of the 3D data space than all
other compared methods. It is worth mentioning here that such
discontinuities, originating from the iLAMP inverse projection, is
precisely why the iLAMP authors next proposed the RBF inverse
projection which is continuous and smooth (Amorim et al., 2015).

5.3.2.2 Detailed comparison

We now extend the findings obtained so far using the Linear Re-
gressor classifier to all six classifiers mentioned in Sec. 5.3.1. At
the same time, we extend the visual exploration used in Fig. 5.1
to show not only the backprojections I~! but also the actual de-
cision zones and decision surfaces. As this creates quite complex
imagery, we now restrict the Iris dataset to its last two classes.
This will decrease the amount of colors we need to use in our
visualizations to two. Note that these two classes are not fully
linearly separable, which makes our classification task more chal-
lenging than the synthetic blob dataset used in Fig. 4.14.

117

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

DBM(MDS+NNInv) SDBM DeepView MDS+LAMP MDS+RBF MDS+iMDS

NN MNN

3D viewpoint 1

3D viewpoint 2

decision maps

Figure 5.1: Top two rows: Backprojections of the decision maps con-
structed by 6 inverse projection techniques (columns) with
Logistic Regression on IRIS dataset, viewed from two view-
points. Bottom row: Corresponding (2D) decision maps.

Figure 5.2a shows the actual decision zones and decision
boundaries and the backprojected decision maps for the six classi-
fiers mentioned in Sec. 5.3.1 and the same six decision map meth-
ods already explored in Fig. 5.1. The actual 2D decision maps
are shown in Fig. 5.2b. We further study the differences between
the backprojected decision map and the actual decision zones and
surfaces as follows. We sample the 3D data space on a voxel grid
of size 100% (to limit computational effort); compute, for each
voxel v, the predicted class f(v), and color code it; and draw this
color-coded volume half-transparently (Fig. 5.2a, bottom 6 rows).
The yellow, respectively purple, volumes are thus the actual de-
cision zones of f. For clarity, we show these volumes, without
the backprojection 17!, in the leftmost column in Fig. 5.2a. Also,
we draw the actual decision boundary S that separates the two
decision zones in beige — see Fig. 5.2a, leftmost column, top cell
for an example.

Figure 5.2 leads us to several insights. First, we see that the
backprojected decision maps [~! (shaded surfaces in Fig. 5.2a,
top row), i.e., the part of the data space that a decision map vi-
sualizes, are roughly orthogonal to, and intersecting, the actual
decision surfaces (pale brown in Fig. 5.2a). That is, the boundaries
which we see in a decision map (curves where yellow meets pur-
ple in Fig. 5.2b) are the intersection S N I~!. Separately, if we scan
a column in Fig. 5.2a, we see that the backprojections I~ ! are the
same — or almost the same in the case of MDS+iMDS and Deep-
View (the reason for this is discussed separately below). How-

118

decision surface
decision zone: L

Neural Random Logistic
Network Forest SYM Regression

Decision
Trees

b)

Figure 5.2:

5.3 VISUAL EVALUATION ON 3D DATA

DBM (MDS+NNInv) SDBM DeepView MDS+LAMP MDS+RBF MDS+MDS

backprojections

Logistic
Regression

Decision
Trees

Decision maps (a) backprojected in 3D; (b) original in 2D of
six classifiers, modified Iris dataset, computed by six tech-
niques. The decision zones are yellow, respectively purple;
the decision surface separating them is beige. The shaded
surfaces are the backprojected decision maps.

119

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

ever, as the classifiers change (rows), the decision boundaries
change — see Fig. 5.2a, leftmost column. Hence, the intersection
of I~! with the actual decision boundary will change. As men-
tioned, this intersection is precisely what we see as color bound-
aries in a 2D decision map. So, if the backprojection I~! is not
smooth, this intersection can change significantly, even when the
visualized classifier model changes only slightly. Simply put, this
means that decision maps whose backprojections look ‘crumpled’
(non-smooth) can be very unstable and thus unsuited for practi-
cal use. Even stronger: the non-smoothness of the backprojection
can create the false impression that a classifier has complex deci-
sion maps. Take for instance Logistic Regression, SVM, or Neural
Networks; these classifiers show very smooth decision bound-
aries (Fig. 5.2b, leftmost column). However, their 2D decision
maps created with DeepView or MDS+iLAMP show complex,
non-smooth boundaries, which is clearly misleading. All in all,
the above insights argue in favor of e.g. (§\DBM and MDS+RBF
as techniques for creating decision maps and definitely against
DeepView and MDS+iLAMP.

Secondly, we see that no decision map technique can actually
depict the full decision boundaries of any classifier. For example,
the linear decision boundary of Logistic Regression is not well
captured, except by MDS+iMDS. The other decision maps show
non-linear boundaries or even disconnected decision zones, see
e.g. DeepView and MDS+iLAMP. Another example is for Deci-
sion Trees. We see that the actual decision zone (purple) is split
into two disconnected components (top and bottom purple cubes
(Fig. 5.2a, leftmost column)). However, none of the tested decision
map techniques shows two such separated purple decision zones
(Fig. 5.2b).

Finally, let us revisit the issue of the backprojection shapes gen-
erated by a given technique. DBM, SDBM, iLAMP, and RBF pro-
duce exactly the same shapes regardless of the classifier they de-
pict — indeed, their P and P~! do not depend on the classifier.
In contrast, MDS+iMDS and DeepView can generate (slightly)
different shapes for different classifiers, for different reasons, as
follows. By design, DeepView uses discriminative dimensionality
reduction (Schulz et al., 2015), so its P depends on f. As for the
reason why MDS+iMDS has different shapes for rows, this is be-
cause iMDS uses random selections of samples to compute its P~ 1.
While one can argue that DeepView’s design shows more infor-
mation on f, controlling how DeepView’s decision maps actually
sample the data space as a function of f is unclear. As such, we
believe that the approaches of (5)DBM, iLAMP and RBF where

120

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

this sampling only depends on the training set, are more intuitive
and stable.

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

We next conduct a quantitative evaluation of inverse projections
and decision maps using high-dimensional datasets for all the six
inverse projection techniques listed in Sec. 5.3.1. Additionally, we
substitute UMAP for MDS when using it in combination with the
inverse projection techniques NNInv, RBF, and iLAMP, as UMAP
is far better suited to handle high-dimensional data than MDS.
We also present additional quantitative measurements that gauge
the quality of the studied inverse projections and corresponding
decision maps, as well as a visual exploration of the smoothness
of the studied inverse projection techniques.

5.4.1 Method

Since decision maps fundamentally depend on inverse projec-
tions, it makes sense to first and foremost quantify the quality
of P~1. Further on, for n > 3 dimensional data, we cannot di-
rectly draw the backprojected images [~!, as already mentioned
in Sec. 5.3.1. Recall now our question Q3 (Sec. 5.1). To answer it,
we measure how far 1 is, locally, from a two-dimensional man-
ifold embedded in R". For this, we use intrinsic dimensionality
(ID) estimation (Bac et al., 2021) with a linear method, i.e., Prin-
cipal Component Analysis (PCA), due to its intuitiveness, com-
putational efficiency, ease of use, and popularity (Espadoto et al.,
20193; Bac et al., 2021; Tian et al., 2021). Finally, we use the gradi-
ent map technique (Espadoto et al., 2021a) to get insights into the
decision maps’ smoothness. All these steps are detailed further
below.

5.4.1.1 Datasets

We use five synthetic and real-world datasets, all having N =
5000 samples (Tab. 7). The synthetic datasets, with dimension-
ality n of 10, 30, and 100, consist of each of C = 10 isotropic
Gaussian blobs. Using isotropic blobs ensures that the ID is the
same as the dimension count n for these datasets. As real-world
datasets, we use HAR (Anguita et al., 2012) and MNIST (LeCun
et al., 2010). The intrinsic dimensionality of these datasets has
been estimated by prior work (El Moudden et al., 2016; Facco
et al., 2017; Aumdtiller and Ceccarello, 2019; Bahadur and Paffen-

121

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

roth, 2019). We use Logistic Regression as an example classifier
f. Note that this does not affect the ID estimation, as f is not
involved in the construction of P~!.

Table 7: Datasets used for ID estimation. For each dataset, we list the
provenance, dimensionality 7, sample count N, and class count

IC].
Dataset n N |C|
Blobs 10D (synthetic) 10 5000 10
Blobs 30D (synthetic) 30 5000 10
Blobs 100D (synthetic) 100 5000 10

HAR (Anguita et al., 2012) 561 5000 6

MNIST (LeCun et al., 2010) 784 5000 10

5.4.1.2 Error of the inverse projection

We measure the quality of an inverse projection P~! for a given
dataset D and its projection P(D) by the mean squared error
(MSE) of the data backprojection D’ = P~1(P(D)) which is de-
fined as 1

MSE = 57) lx P=H(P(x))|* (5:3)
An ideal inverse projection P~! should yield P~!(P(x)) = x for
all x € D, i.e., have zero MSE, which is the same as saying that
D’ = D (Espadoto et al., 2019¢c). Conversely, if this error is large,
then the inverse projection is likely poor and will lead to mislead-
ing or even meaningless decision maps.

5.4.1.3 Intrinsic dimensionality estimation

Let X be a dataset in R” with S(x) being its k nearest neighbors
in X. Let A = (A1,A,...,A,) be the n eigenvalues of S(x)’s co-
variance matrix, sorted decreasingly. A common way to define
the ID of S(x) as the smallest d value so that the sum of the first
d eigenvalues is larger than a given threshold 6, where 0 was
set to a value close to 1, typically 0.95 (Jolliffe, 2002; Fan et al.,
2010; Tian et al., 2021). This method is also known under the
name total variance (Tian et al., 2021). When using the total vari-
ance method for computing d;, we found that, in the case of iL-
AMP (an inverse projection method they didn’t study but we do),

122

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

sometimes the first two eigenvalues capture a significant portion
of the variance (e.g., 85%); however, to arrive at 95%, one would
need a large number of additional eigenvalues (e.g., over 500 on
MNIST dataset), each contributing less than 1% to the total vari-
ance. Obviously, this is not desirable, as it would highly overesti-
mate the intrinsic dimensionality. To cope with this, we adopted
the alternative definition of intrinsic dimensionality known as
minimal variance which solves precisely this problem (Tian et al.,
2021) — that is, we define ID as the number of eigenvalues each
accounting for at least 0 percent of the data variance, where 8 is
set typically to a small value.

Algorithm 1 shows our computation of ID values. We set
6 = 0.01, thereby identifying the principal components that cap-
ture more than 1% of the total variance as significant for the in-
trinsic dimensionality. The size k of the local neighborhood S(x)
needs careful setting. A too large k leads to overestimating the
local ID. Conversely, too small k values lead to noisy estima-
tions. Note that d + 1 independent vectors are required to span
d dimensions, so k should be at least equal to the actual ID of
S(x) (Verveer and Duin, 1995). We have ID estimations ranging
from 13 to 33 for MNIST (Facco et al., 2017; Aumiiller and Cecca-
rello, 2019; Bahadur and Paffenroth, 2019); and from 15 to 61 for
HAR, depending on the estimation method (El Moudden et al,,
2016); our synthetic datasets have known ID values of 10, 30,
and 100 (see Tab. 7). To cover all the above cases, we globally
set k = 120.

Algorithm 1: Intrinsic Dimensionality Estimation

Data: X, set of data points in R” (can be D, D/, or 1*1);
neighborhood size k = 120; threshold 6 = 0.01
Result: d, the estimated ID of X (average among all local
neighborhoods)

1 begin

2 for x € X do

Find the k nearest neighbors S(x) of x; in X;
Compute the covariance matrix Cov of S(x);
Compute the eigenvalues A = (A1, A5,...,A,) of Cov;
Sort A in descending order;

Calculate ID d(x) of S(x) as

N U e W

d(x):H ff '>91<i§n}

s | Calculate average ID d = Y, cx d(x)/|X|;

123

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

We perform two different ID estimations, as follows. First, for
a given dataset D and its 2D projection P(D), we compute the
average ID of the data backprojection D’ = P~1(P(D)) over all
neighborhoods S(x), denoted IDp/. We then compare IDp with
the ground-truth average 1D of D, denoted IDp. Both IDp and
IDp are computed using Alg. 1 with D and D’ as inputs, re-
spectively. For an ideal inverse projection P~! that perfectly re-
verses the effects of a direct projection P on D, we would obtain
IDpr = IDp. Secondly, to study how well a decision map cov-
ers the data space it aims to depict (see Q3, Sec. 5.1), we create
a pixel grid I of size 500> and backproject it by P~! to obtain a
sample set I~!. We next measure the ID at each sample p € ™!
using Alg. 1 with I~! as input. Let the resulting value at p be
called ID,. Finally, we color the image [by the values ID, and
also compute the average D, over all pixels in I.

dataset D projection P(D)
A %0 — = %50
o °: oo ° o o
ID, ‘ ® 50 °0%
o ° o
[DD, ‘ 38 \\1—/ ::g :
p P °_EE
D+ \\1—/
backprojection 71 P~ pixels 7
backprojection D’

Figure 5.3: Computing the intrinsic dimensionality of data, backprojec-
tion of data, and backprojection of pixels.

Figure 5.3 depicts all the above processes: Given a dataset D,
we compute its 2D projection P(D). We inversely project these
points via P~! to get the backprojection D’. Separately, we in-
versely project all pixels in the image I to get the sample set I !.
In this example, the intrinsic dimensionality IDp is the same to
IDp for the yellow areas in D; and higher than IDp for the
green areas in D, respectively.

5.4.1.4 Gradient maps

To study the smoothness of the computed decision maps, we use
the gradient map technique (Espadoto et al., 2021a), following
Equation (4.5). Recall from Sec. 4.3.2 that areas in a decision map
where G is large mean that neighboring pixels are backprojected
by P~! far away from each other in the data space, hence the
map is unreliable at those locations. Conversely, areas in a deci-
sion map with low G mean that neighboring pixels sample the IR"

124

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

space at close locations. Assuming a (relatively) smoothly evolv-
ing classifier f over R", such areas will accurately capture the
local behavior of f.

5.4.2 Results

5.4.2.1 Error assessment

Table 8 shows the MSE results for all our datasets and decision
map computation methods. Values for the iLAMP and RBF in-
verse projections are exactly zero since these methods enforce
that P~1(P(x;)) = x; for all x; € D by construction. We see that
the MSEs of DBM, SDBM, and DeepView are quite low and com-
parable across all datasets, indicating that these inverse projec-
tions are similar and reliable. In contrast, the MSE of MDS+iMDS
is significantly higher. On the synthetic datasets (Blobs), the er-
rors of MDS+iMDS are 2 to 3 orders of magnitude higher than
for the other tested methods, which is already quite high. How-
ever, on the real-world datasets (HAR and MNIST), the errors
of MDS+iMDS become even higher. This indicates that the back-
projections of MDS+iMDS, and thus the corresponding decision
maps, are likely meaningless. Figure 5.4 confirms this by run-
ning a simple test on the MNIST dataset. For 14 images x; in this
dataset (top row), we show the corresponding inverse projections
P~1(x;) computed by DBM, SDBM, DeepView, and MDS+MDS.
The first three methods yield very similar images to the origi-
nal ones, as expected due to the low MDS thereof. In contrast,
MDS+MDS yields basically noise. Note that this agrees with
the preliminary discussion of Blumberg et al. (2024) which men-
tioned that iMDS may be unsuitable for inversely projecting scat-
terplots created from data of a too high dimensionality.

Table 8: MSE of the backprojection for the studied datasets.

Blobs 10D Blobs 30D Blobs 100D HAR MNIST

DBM 1.83x 1073 213 x 1073 216 x 1073 5.30 x 1073 3.67 x 1072
SDBM 222 %1073 2.06 x 1073 2.16 x 103 8.69 x 10~ 5.28 x 102
DeepView 142 x 1073 1.67 x 1073 1.90 x 1073 4.40 x 1073 2.92 x 1072
UMAP+iLAMP o o o o o
UMAP+RBF o o o o o

MDS+iMDS 1.07x 107! 611 x 107! 571 x 10° 5.15x 10® 6.19 x 10°

125

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

Figure 5.4: Selected samples from MNIST and their corresponding back-
projections using different P~! methods. Compare with the
MSE values in Tab. 8.

5.4.2.2 Intrinsic dimensionality estimation

To answer Q3, we first test how well an inverse projection P~
covers the data space D it aims to depict. For this, we compare
the estimated ID of the actual data (IDp) with that of the round-
trip consisting of the direct and inverse projections (IDpr). As
explained in Sec. 5.4.1, an ideal inverse projection would yield
IDp = IDp. Table 9 shows the results for our five studied
datasets. A first consistency check is to see how good the esti-
mated IDp is. We see that these values align well with the ex-
pected (ground-truth) ID values for most datasets. The largest
difference occurs for Blobs 100D, which is due to the fact that
this dataset isotropically spreads in 100 dimensions at every blob
by construction (see Sec. 5.4.1); the ID estimation by PCA (Alg. 1)
is heavily affected by the well-known curse of dimensionality.
Given the above, we can next compare the estimated IDp with
the round-trip estimation IDp to gauge the inverse projection
quality (see Tab. 9). Just as for the 3D data discussed in Sec. 5.3.2,
we see that (5)DBM creates basically a two-dimensional, surface-
like, structure in the data space. DeepView is slightly better in
capturing the IDp of the data — which matches the fact observed
for 3D datasets that its backprojected surfaces have more complex
shapes that aim to connect the data samples (Fig. 5.2). Still, Deep-
View’s IDps values are much lower than the estimated IDp. Note
that iLAMP and RBF are not included in the comparison as they
have P~1(P(x;)) = x; for all x; € D by construction, which means
IDpr = IDp. Finally, for MDS+iMDS, we see that IDpy is much
closer to the estimated IDp than for all other methods. This may
suggest that MDS+iMDS is better at capturing the data space. Yet,
as observed earlier, this method has a very high MSE (Tab. 8) and
also generates meaningless inverse projections (Fig. 5.4). As such,
the high IDp for this method is rather an indication of its ran-

126

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

dom sampling pertaining to its implementation (see (Blumberg
et al., 2024) for details) than its intrinsic higher quality. The au-
thors of iMDS also noted that this inverse projection may not be
effective for datasets of high intrinsic dimensionality. Our experi-
ment here confirmed this observation.

Table 9: Estimated intrinsic dimensionalities IDp and IDp for our stud-
ied datasets. The expected ID values for HAR and MNIST are
taken from prior studies (E1 Moudden et al., 2016; Facco et al,,
2017; Aumdiiller and Ceccarello, 2019; Bahadur and Paffenroth,

2019).
Blobs 10D Blobs 30D Blobs 100D HAR MNIST
Expected ID 10 30 100 15-61 13-33
IDp 10.00 29.03 39.63 24.62 20.04
1D, DBM 2.04 2.10 2.04 3.56 471
1D, SDBM 2.23 2.14 2.11 2.09 2.47
IDp DeepView 4.98 4.71 4.63 8.25 7.60

IDpr UMAP+HLAMP - - - - -
IDpr UMAP+RBF - - - - -

1D MDS+iMDS 10.00 22.95 37.69 11.77 28.68

To further answer Q3, we want to know how well a decision
map image covers the entire data space of the classifier it aims to
visualize. We measure this by comparing the ID of the backpro-
jected decision map image ID,, at each pixel (see Sec. 5.4.1) with
the IDp of the dataset D the classifier is trained (or tested) on.
Areas where D), is close to IDp indicate that the decision map
covers well the local distribution of D; areas where ID, < IDp
indicate that the decision map can only capture a part of this
local distribution.

Figures 5.5—5.7 show this comparison. In each figure, the top
row shows the actual decision maps computed by our six deci-
sion map techniques for the studied Logistic Regression classifier.
Colors in these images indicate the inferred class by the trained
model f at each pixel; brightness encodes the confidence of f at
those locations (dark values indicate low confidence); for details
of this computation, see (Rodrigues et al., 2018, 2019). These deci-
sion map images are only provided for illustration purposes e.g.,
showing the location of decision boundaries and the data clusters;

127

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

the ID analysis presented next does not depend on the classifier
choice.

Blobs 10D
DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

o
5
£
=
S

@
S
@

=}

Estimated ID

accounted by
the first 2 PCs

Percentage of variance

Gradient map

—
25 50 75 100 2000 4000

E)
Blobs 30D
DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF

accounted by
Estimated ID Decision map

Percentage of variance
the first 2 PCs

a
5
£
E
15}
b=}
o
[}

1886.85

2000 4000 6000 100 2000 4000

Figure 5.5: Decision maps and ID estimation, Blobs 10D and 30D.

The second rows in Figs. 5.5-5.7 show the estimated ID, at
each decision map pixel, with the average value ID;, over the
entire map shown bottom-right in the images. The results are
very interesting to examine.

For DBM and SDBM, the estimated ID) are exactly 2 almost
everywhere, which means that these decision maps precisely cor-
respond to surfaces in the data space. This extends our earlier
findings (Sec. 5.3.2) to n > 3 dimensions. DeepView yields higher
ID,, values (but still much lower than IDp, peaking at 10 for the
HAR dataset) close to the actual data points; and values roughly

128

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

equal to 2 further away from these points, with an ID, over all
datasets of 2.49 £ 0.03.

For UMAP+RBE in areas close to the data points, the estimated
ID, is high (about the same as IDp), see the red-colored spots
in Figs. 5.5-5.7 (second rows). This is expected by the design of
the RBF method, as mentioned earlier. Between the data points,
the estimated ID,, for this method is exactly 2. UMAP+LAMP
shows more complicated patterns: This method also yields high
ID,, values (basically equal to IDp) close to the data points ar-
eas, as expected by construction for this method, as explained
earlier. Between the data points, this method yields an estimated
ID,, roughly equal to 2. However, in contrast to all other meth-
ods, UMAP+LAMP shows strong radial-like patterns of high
estimated ID, that ‘fan out’ from the data points. These radial
patterns in the ID), images match similar ones in the decision
maps (Figs. 5.5-5.7, first rows). We see here again an instance
of iLAMP’s behavior discussed in Fig. 5.2 for the 3-dimensional
dataset case: iLAMP covers the data space better than other meth-
ods (thus answers Q3 better) but does this at the expense of con-
tinuity — that is, it produces decision maps which can be hard to
interpret.

To further understand the high ID), values for iLAMP in image
areas far away from data samples, we select an area having such
high values for the MNIST dataset (Fig. 5.7, second row, white
square). We next oversample this area at a resolution of 5007 pix-
els to compute ID,. The result (Fig. 5.7 bottom row) shows that
ID,, is actually almost 2 in such areas as well, apart from very
close to the data points. Hence, the observed higher intrinsic di-
mensionality ID,, for iLAMP (and, actually, all other tested meth-
ods) is only an effect of the image resolution; all methods have the
low IDj, values they exhibit virtually everywhere except infinites-
imal neighborhoods around the data points. Further, an interest-
ing observation is that the aforementioned radial patterns seem
to be less noisy as the data dimensionality increases — compare
the Blobs 10D, 30D, and 100D images in Figs. 5.5-5.6. Indeed, as
the data is increasingly higher dimensional, iLAMP has more dif-
ficulties to ‘cover’ the entire data space with a two-dimensional
map, even close to the data points.

Finally, MDS+iMDS shows a quite different result: The ID,
values it produces are nearly identical over the entire image and
also roughly equal to IDp. The fact that ID), is nearly constant
matches the linear behavior of this inverse projection method that
we discussed for the 3D dataset case (Sec. 5.3). Separately, the
fact that ID, ~ IDp is due to the random sampling process used

129

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

Blobs 100D
DBM (UMAP+NNInv) DeepView UMAP-+LAMP UMAP+RBF MDS+MDS

IIIII
,

Estimated ID Decision map

accounted by
the first 2 PCs

. |
352 11304 69

2000 4000 6000 S 10 10 20 1oh0 200

Percentage of variance

Gradient map

HAR
DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF MDS+MDS

Decision map

Estimated ID

Percentage of variance
accounted by
the first 2 PCs.

Gradient map

——
2000 4000 500 1000 1500

Figure 5.6: Decision maps and ID estimation, Blob 100D and HAR.

by iMDS, see Sec. 5.2. We also see that the decision maps for
this method are quite dark in all areas, even in those near the
actual samples. This correlates with the relatively high MSE of
MDS+MDS (Tab. 8). Intuitively put, these findings indicate that
this inverse projection quickly ‘goes away’ from the data samples
x; for pixels which are not very close to the locations P(x;). Again,
this is due to the linear nature of iMDS — the backprojected sur-
face 71 cannot, by construction, follow the likely curved man-
ifolds on which the samples x; are spread. Separately, we see
strong noise in the decision maps for this method, which is due
to the aforementioned random sampling process. Again, we see

130

5.4 EVALUATION ON HIGH DIMENSIONAL DATA

here the earlier-mentioned trade-off between coverage and conti-
nuity.

MNIST
DBM (UMAP+NNInv) SDBM DeepView UMAP+LAMP UMAP+RBF

Decision map

[=}
o
2
z
£
k]
i}

Percentage of variance
accounted by
the first 2 PCs

Gradient map

Decision Map Estimated ID Percentage of variance Gradient Map
accounted for by the first 2 PCs

Figure 5.7: Decision maps and ID estimation, MNIST. Bottom images
show selected detail zones sampled at a high resolution of
500 pixels.

As iMDS has a global linear behavior, we can study it in further
detail as follows. We compute the covariance matrix for the whole
set of backprojected points I~ and then analyze its eigenvalues
A1, ..., Moo (Fig.5.8). We observe that there is always a clear drop
from the second to the third eigenvalue, indicating that the back-
projected points are also dominated by a 2D planar-like structure.
This matches the visual observation for the 3D dataset shown in
Fig. 5.2. Hence, the earlier discussed fact that 1D, is overall high
(Figs. 5.5-5.6, second rows) is purely due to the random sampling
of iMDS. Separately, we see that as the dimensionality of the data
increases, this drop becomes less significant. This suggests that
the structure becomes more dominated by noise as the dimen-
sionality increases, which correlates with the fact that the MSE of
MDS+MDS is significantly higher for higher-dimensional data
(Tab.8).

131

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

Blob 10D Blob 30D Blob 100D
0.121

0.015 4
0.104

o
w

0.08
0.010 -

0.06

0.04 4 0.005 4
0.02 4

Normalized Eigenvalues
o o
= N

0.00 1 0.000 -
T . T T . v T -
As Ao A A1s Aso M Aso A100

o
o

.

Figure 5.8: Eigenvalues of the covariance matrix of the whole set of back-
projected points I~ for MDS+MDS.

The third and fourth rows in Figs. 5.5—5.7 refine the above
insights. The third rows show the percentage of data variance
in a neighborhood S captured by the eigenvectors correspond-
ing to the two largest eigenvalues A; and A;. Yellow values in-
dicate that almost all the data variance is captured by these two
eigenvalues, so the inverse projection creates locally planar struc-
tures there. Dark blue values indicate that the opposite, i.c., the
inverse projection creates high-dimensional structures in the re-
spective areas. The fourth rows in the figures show the gradient
maps of the inverse projections. Dark values in these maps indi-
cate low values of G (Eqn. 4.5), i.e., areas where the backprojec-
tion changes slowly and smoothly. Bright areas indicate the con-
verse phenomenon — rapid and potentially non-smooth changes
in the backprojection. The computation details are described in
Sec. 5.4.1.

These visualizations lead us to additional interesting observa-
tions. First, we see that, in nearly all cases, all inverse projection
methods except MDS+iMDS create large yellow areas far away
from the data points (third rows in Fig. 5.5—5.7) — that is, they es-
sentially create two-dimensional surface-like backprojections 1.
In contrast, MDS+iMDS shows dark blue values nearly every-
where in these images, i.e., it creates nearly everywhere a high-
dimensional sampling of the data space. As explained earlier, this
is due to the random sampling process inherent to this method.

A second observation pertains to the presence of 1D dark
filament-like linear structures that connect the projected data
points which we notice for DeepView and UMAP+iLAMP. These
filaments seem to connect the projected points much like a De-
launay triangulation. These structures match quite well high val-
ues in the corresponding gradient maps. Taken together, these
findings indicate that the backprojections of DeepView and
UMAP+LAMP consist of a set of planar-like facets, separated

132

5.5 DISCUSSION

by sharp creases or gaps. This generalizes our earlier findings on
the ‘crumpled” aspect of these backprojections, observed for 3D
datasets (Fig. 5.2a) to higher dimensions.

The gradient maps allow us to draw some other insights on
the behavior of the inverse projections. For (S)DBM, these maps
have high values that align quite well with the corresponding
decision boundaries shown in Figs. 5.5—5.7, first rows. In con-
trast, UMAP+RBF has high gradients systematically close to the
projected data samples only. UMAP+iLAMP shows an almost
complementary behavior to UMAP+RBF, that is, high gradient
values on the aforementioned filaments connecting the projected
data points and relatively low gradient values close to the data
points. Overall, these insights tell that the studied inverse projec-
tion methods have very different smoothness behaviors: (5)DBM
is relatively smooth overall except close to the decision bound-
aries; UMAP+RBF is also quite smooth except close to the data
samples; and UMAP+LAMP is overall smooth except close to
lines that connect neighboring data samples. All these findings
match our earlier observations in the visual study of these back-
projections for the 3D dataset case (Fig. 5.2a).

5.5 DISCUSSION

We next discuss our findings on the interpretation, added value,
and found limitations of decision maps and their accompanying
inverse projections, and summarize our answers to the questions
Q1-Q5 listed in Sec. 5.1.

5.5.1 Surface behavior of inverse projections and decision maps

All six inverse projection pipelines we studied essentially gen-
erate surface-like structures embedded in the high-dimensional
data space, with some local differences. (S5)DBM tends to cre-
ate relatively smooth and compact surfaces that closely interpo-
late the data samples. UMAP+RBF does the same but passes ex-
actly through the data samples while being slightly less smooth.
DeepView and UMAP+LAMP create highly twisted surfaces
with a similar type of trade-off, i.e., DeepView interpolates the
data points less accurately but yields smoother surfaces, while
UMAP+LAMP interpolates the data points exactly but yields
very non-smooth results. Finally, MDS+iMDS yields a structure
which formally speaking has higher intrinsic dimensionality than
a surface. Upon closer examination, we see that this structure is

133

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

essentially a plane jittered by high amounts of noise (Q1, Q4). We
also saw that this surface-like property does not depend on the
intrinsic or total dimensionality of the studied datasets (Q1), the
studied classifiers (Q1), or resolutions of the decision map images

(see Figs. 5.4).
5.5.2 Coverage of decision maps

Given the aforementioned surface property, we conclude that
current decision maps only depict a small part of the behavior
of a given classifier (Q3). The only (relative) exception here is
MDS+iMDS which succeeds in covering a higher proportion of
the data space. However, this is done by using a random sam-
pling mechanism which leads to high inverse projection errors
(Tab. 8) and noisy results in both the inverse projections (Fig. 5.4)
and decision maps (Figs. 5.5, 5.6). We conclude that this method
is not suitable for creating general-purpose inverse projections
and decision maps for high-dimensional data.

The boundaries shown by the studied decision maps (1D
curves separating same-color regions in e.g. Fig. 5.2) are actu-
ally the intersections of the aforementioned surfaces with the
actual decision boundaries in high-dimensional space (Q2). In-
tuitively put, a decision map thus shows a ‘slice” through the
high dimensional data space — its pixels are located on the afore-
mentioned 2D surface; and its decision boundaries are 1D curve
subsets of the actual decision surfaces. It is tempting to argue
that, since inverse projections take a 2D space as input, they will
always produce also a 2D surface as output and not a higher-
dimensional object. Yet, this does not need to be so. Space-filling
curves (Peano, 1890) and space-filling surfaces (Paulsen, 2023) can
map low-dimensional sets to higher-dimensional ones in a con-
tinuous fashion. By combining such primitives, we could in prin-
ciple create continuous mappings of intervals between any two
dimensions g and n, ¢ < n. Our study - in particular, the ID
and gradient map estimations — showed that all evaluated inverse
projections (DBM, SDBM, DeepView, iLAMP, RBE, iMDS) do not
even get close to such behavior — which can be explained by the
fact that they are constructed by differentiable mappings which
cannot in principle exhibit fractal behavior. iMDS has the highest
coverage but, as we saw, this is achieved by random sampling,
which completely loses continuity.

134

5.5 DISCUSSION

5.5.3 Comparing decision map methods

Different decision map techniques sample the high-dimensional
space quite differently (Qg). As such, they produce different
maps for the same classifier (which, obviously, has a unique set
of actual decision surfaces). Each such map provides its own in-
sights for the same classifier (see e.g. Figs. 5.2, 5.5, 5.6, 5.7), each
with its own advantages and limitations. At a global level, we see
a clear trade-off between smoothness and precision (Q5). Methods
that generate the smoothest surfaces (DBM, SDBM) cannot ap-
proximate very well the data samples. Conversely, methods that
pass very close or exactly through the data samples (DeepView,
UMAP+LAMP) generate non-smooth surfaces. UMAP+RBEF falls
somewhere in the middle of these two types. These aspects af-
fect in turn the interpretability and ultimately usability of the cor-
responding decision maps. Smooth-surface methods yield maps
which are easier to interpret and show better how a classifier ex-
trapolates from its training set but are harder to control in terms
of where they are actually constructed; tighter-surface methods
approximate data samples better and, for the case of DeepView,
are also easier to control in terms of where they sample the data
space. However, they only interpolate the classifier behavior close
to and between the training points, and can create decision maps
which are hard to interpret (UMAP+LAMP). Summarizing the
above, we believe that smooth-surface methods are overall pre-
ferred to tight-surface ones — they ultimately yield decision maps
which are easier to interpret at the small cost of not perfectly
approximating the data samples.

As a separate point, we note that none of the studied tech-
niques aims to explicitly sample a classifier close to its actual deci-
sion boundaries — which, arguably, are the most interesting areas
to understand (Qz). For this task, new inverse projections and/or
decision map methods need to be devised.

5.5.4 Limitations caused by the low dimensionality of decision maps

Inverse projection tasks are structurally similar to data recon-
struction or data generation tasks — all of these aim to output
high-dimensional data from low-dimensional representations.
From the perspective of data reconstruction, the projection and
inverse projection pipeline (P, P~1) can be seen as a special case
of an encoder-decoder structure, where the bottleneck, or latent
space, is two-dimensional. Existing works show that the dimen-
sionality of the latent space, which is analogous to the input of

135

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

P!, is a critical factor for the reconstruction or generation qual-
ity (Wang et al., 2016; Marin et al., 2021; Padala et al., 2021).

Inspired by these findings, we wonder how the dimension-
ality g of the latent representation affects the quality (MSE
and ID) of an inverse projection. To explore this, we ran DBM
(UMAP+NNInv) and SDBM (SSNP) with g values in the range 2
to 25. We chose these methods since they are easily modifiable to
use a different latent dimensionality than g = 2 and also since,
following our earlier results, they seem to offer a good balance
in terms of desirable properties of inverse projections. For each g
value, we recorded the IDps and MSE of the inverse projection
again on D. The results, shown in Fig. 5.9, reveal that, although
DBM and SDBM exhibit similar surface behavior, their outcomes
differ. The MSE of both methods decreases with g increasing,
which is expected — a higher g is closer to the data dimension-
ality n, so both P and P~! have an easier task. This drop in MSE
is however more pronounced for DBM. The IDp of both meth-
ods increases until reaching a plateau around 10-20 (for DBM)
and 5 (for SSNP). This tells that the inverse projection task is fun-
damentally harder than the direct projection — indeed, even when
having a much higher number of dimensions g than two as input
for P~1, it is not always possible to fully recover the full dimen-
sionality # of the data.

Blobs 10D Blobs 30D Blobs 100D HAR MNIST

—e— DBM 0.05

0.0020 ssnp | 0.0020 00022 0.008

H 0.0015 —e— DBM —e— DBM —e— DBM 0.04 —e- DBM
= 0.0015 SSNP | 0.0020 SSNP | 0.006 SSNP SSNP
o k“\v** " &\./0—‘—‘
0.0018
0.0005 0.004
10 20
15 8 10
15
—=— DBM = DBM = DBM 6 = DBM 8
SSNP. 10 SSNP SSNP SSNP 6

4 —=- DBM
SSNP

IDp
N oA o
5

Figure 5.9: Changes of MSE and IDpy as a function of the latent dimen-
sionality g4 for DBM (UMAP+NNinv) and SDBM (SSNP). See

Sec. 5.5.4.

From this experiment, we infer that the 2D bottleneck of a
(P, P~1) transformation strongly affects the quality (error and ID)
of the inverse projections. Increasing the number of dimensions
q available as input for inverse projections can increase the qual-
ity of their output, but only up to a given limit. Moreover, from
a practical viewpoint, increasing g is not possible — after all, we
need to have g € {2,3} if we want to directly visualize the deci-

136

5.6 CONCLUSIONS

sion maps. Exploring how this barrier can be overcome, e.g., by
more sophisticated inverse projection methods, are an important
direction for future work.

5.5.5 Limitations

Our results are limited in their power by several factors. We used
only two real-world datasets. Datasets having different character-
istics, e.g., local intrinsic dimensionality, data distribution, spar-
sity, or dimensionality, could potentially lead to new insights on
how the tested decision maps and inverse projections work. A
challenge here is to find datasets having ground-truth estima-
tions of their intrinsic dimensionality. Separately, apart from the
technical estimation of MSE, ID estimation, and gradient maps,
we gauged the suitability of decision maps to practical applica-
tions only by qualitatively interpreting the visual smoothness of
the resulting decision zones and boundaries. It is expected that,
for the tested datasets and classifiers, such zones and boundaries
should be smooth (Oliveira et al., 2023b). A more powerful rank-
ing of decision maps would need to consider their actual use in
ML engineering scenarios such as data augmentation or adver-
sarial attacks, see e.g. (Machado et al., 2024).

5.6 CONCLUSIONS

We have analyzed the limitations of current inverse projection
and decision map techniques used to visualize the behavior
of machine learning classification models. Specifically, we com-
pared the decision zones and boundaries depicted by six inverse
projection techniques (and corresponding decision maps), with
the actual zones and boundaries created by six classifiers on a
three-dimensional real-world dataset. We found out that, in all
cases, all the studied maps essentially capture a 2D structure em-
bedded in the data space. We further extended our analysis to
high-dimensional data by comparing the intrinsic dimensionality
of the data with that of the inverse projection and backprojec-
tion of the map to the data space. We found that, as for the 3D
data case, all studied map techniques still only cover essentially
two-dimensional structures in the data space (modulo a certain
amount of noise). We found that this surface-like limitation is
particularly visible in areas located between the projected data
points. Apart from this common aspect, we found several differ-
ences between the studied methods in terms of smoothness of

137

FUNDAMENTAL LIMITATIONS OF DECISION MAPS

the generated surface and accuracy by which it approximates the
data points.

Our conclusion is that, when selecting inverse projection
methods for constructing decision maps, methods which create
smoother surfaces, i.e., DBM, SDBM, and UMAP+RBE are pre-
ferred in terms of predictability and ease of interpretation of
the resulting maps, to methods that create tighter-fitting, less
smooth, surfaces, and thus harder to interpret decision maps,
i.e., UMAP+LAMP and DeepView. Finally, we showed that the
recent MDS+iMDS inverse projection method is not suitable for
constructing meaningful decision maps. Our work highlights fun-
damental limitations of all studied decision map techniques in
terms of how much of a classifier’s behavior they capture, but
also where and how they choose to capture this behavior. These
limitations are essential to understand when choosing which
such technique to use in practice to construct decision maps but
also when actually interpreting the resulting maps.

Future work can advance in a number of directions. The
key one, we believe, is overcoming the ‘surface limitation” of
current decision map techniques. Likely, capturing a full high-
dimensional space in a 2D map is not possible in general. Rather,
one can focus on capturing specific areas in this space which are
important to ML engineering, such as low-dimensional (curved)
subspaces which contain most of a given dataset; areas close to
the actual decision zones, where a classifier is most interesting
to study; or areas where a classifier exhibits poor testing perfor-
mance. An alternative way is to involve interacting allowing the
user to move the current backprojected surfaces so as to sweep
interesting zones of the data space, by e.g. generalizing the ap-
proach of Sohns et al. (2023), which interactively explores deci-
sion boundaries by the simple but limited PCA projection. In
Chapter 6, we present a general purpose approach — that can ac-
commodate any direct projection technique — that allows users to
achieve the above by directly controlling the backprojected sur-
face in an interactive way.

138

=

LOSS-CONTROLLED INVERSE PROJECTIONS

6.1 INTRODUCTION

As outlined several times from Chapter 1 to Chapter 4, multidi-
mensional projections and their inverse projection counterparts
methods enable a wealth of applications such as data imputation,
classification model evaluation, and shape morphing (Rodrigues,
2020; Rodrigues et al., 2019; Oliveira et al., 2022; Schulz et al,,
2020; Benato et al.,, 2024, Amorim et al., 2015, Machado et al.,
2024). However, it is well known that direct projections suf-
fer from information loss when the intrinsic dimensionality of
their input data significantly exceeds that of the projection space
(Sec. 2.2). Additionally, our work in Chapter 5 showed that all
inverse projection techniques we know can only generate fixed,
surface-like, structures in the data space. In other words, both di-
rect and inverse projections are subject to significant information
loss (Zheng et al., 2023). The key problem with this is that users
expect to use inverse projections — or techniques using these such
as decision maps — to examine large parts of a data space starting
from the (2D) visual space. If both direct and inverse projections
have limitations in this sense, such visualizations may be mislead-
ing in several ways.

In this chapter, we address the above-mentioned limitations by
proposing a novel controllable inverse projection method, thereby
answering research question RQ3 introduced in Chapter 1. In
contrast to our contributions in previous chapters, which fall un-
der the topic VIS4ML (see Chapters 1 and 2), the work in this
chapter falls under the topic ML4VIS as it employs deep learning
techniques to create better visualizations®.

The key novelty of our work is that we enable inverse pro-
jections to represent surface-like structures that can "sweep"
through the high-dimensional data space in a user-controlled
manner, achieving significantly higher coverage than all existing
fixed-surface inverse projection techniques. In more detail, for a
sample x projecting to y = P(x) by some user-chosen technique
P, we find the information z that is lost during the projection P.
Next, we enable users to (interactively) control how to combine y

This chapter is based on the paper “LCIP: Loss-Controlled Inverse Projection of
High-Dimensional Data” (Wang et al., 2025a).

139

LOSS-CONTROLLED INVERSE PROJECTIONS

(the information preserved by P) and z (the information lost by
P) to compute our controllable inverse projection.
To realize this, we must answer three questions:

1. How to ensure z is independent of y (as we want to let P
compute y and the user control z)?

2. How to compute z for locations in the 2D space where no
ground-truth sample x projects?

3. How to control the structure created by the inverse projec-
tion, to enable users to explore large parts of the data space?

Our proposal, called Loss-Controlled Inverse Projection (LCIP)
answers the above questions as follows:

1. We minimize mutual information to disentangle the y and
Z spaces;

2. We use interpolation to fill in the ‘empty’ areas using
learned z values for known data samples;

3. We allow users to interactively adapt z to control the shape
of the inverse projection.

We introduce LCIP in Sec. 6.3. To show our method’s abilities,
we first study its disentanglement effect (Sec. 6.4.1) and next com-
pare LCIP both visually and via quality metrics with 3 state-of-
the-art inverse projections for 4 datasets and 2 direct projections
(Sec. 6.4.2). Further on, we show how LCIP’s main feature — its
ability to control the shape of the inversely-projected structure in
data space — creates higher-dimensional structures than surfaces,
something existing methods cannot achieve (Sec. 6.4.3). Finally,
we illustrate the added-value of being able to control the inverse
projection by using LCIP to create a style transfer application
(Sec. 6.5).

6.2 BACKGROUND AND RELATED WORK

Preliminaries: The key concepts and definitions we will use in
this chapter have been introduced and used multiple times in
this thesis. Projections map high-dimensional datasets in R" to
two-dimensional scatterplots (see Eqn. 2.2 and related text). In-
verse projections map the entire 2D projection space to the R”
data space aiming to reverse the effects of a direct projection
(see Eqn. 2.4.2 and related text). Most importantly, Chapter 5
showed that all existing inverse projections we are aware of map

140

6.2 BACKGROUND AND RELATED WORK

the 2D space to a surface-like structure embedded in data space —
or, more formally, a structure with intrinsic dimensionality close
to two (Ansuini et al., 2019). While this is not entirely unexpected
given that an inverse projection aims to be a smooth mapping
of R? to R”, this means that inverse projections can only cover
a very limited subspace of a given data space. Moreover, which
exact such subspace an inverse projection generates in a given
context is completely non-transparent to, and not controllable by,
its users.

The above imply, in turn, serious limitations for inverse pro-
jection applications. Using inverse projections for data augmenta-
tion (Benato et al., 2024) will lack diversity. Separately, one cannot
be sure that decision maps, which need to use inverse projections
in their construction (Chapter 4), truly depict a classifier’s behav-
ior, as they show only a small part of the data space — more specif-
ically, the intersections of the true decision boundaries with the
surface-like structure created by P~!. Finally, inverse projections
generate only surface-like structures in the data space (Chapter 5).
Hence, how to explore the data space outside such structures, and
how to control this exploration, are challenges not answered by
current inverse projection methods.

Information loss: Direct and inverse projections share some lim-
itations concerning information loss. For direct projections, if
the data X do not land on or close to a manifold, it is hard to
construct a mapping P(X) that fully preserves the data struc-
ture (Zheng et al., 2023). For inverse projections, the limitations
are stronger — these always create a surface-like structure when
mapping the 2D space to data space (Wang and Telea, 2024). Com-
bining the above, if we consider the project-unproject cycle, infor-
mation loss will always occur.

Inverse projections are structurally similar to data recon-
struction or data generation tasks which aim to output high-
dimensional data from low-dimensional representations. From
this perspective, the (P, P~!) cycle can be seen as an encoder-
decoder structure, where the bottleneck is the 2D latent space.
The dimensionality of this space is a critical factor for the quality
of reconstruction and generation (Wang et al., 2016; Marin et al.,
2021; Padala et al., 2021). Inspired by these observations, we aim
to break the limitations imposed by our bottleneck — the visual
space — by retrieving information lost during P and using it to
drive the construction of P~! under user control. This will enable
our P! to span structures with higher intrinsic dimensionality
than two, and also control where these are placed in data space.

141

LOSS-CONTROLLED INVERSE PROJECTIONS

6.2.1 Learning disentangled representations and adversarial training

As Sec. 6.1 stated, our first goal is to find the information z lost
during projection independent of the projection y. Independence
is often relaxed to minimizing mutual information or separating
complementary factors (Moyer et al., 2018). When achieved, this
improves interpretability, reduces potential bias, and enhances
generalization. For example, in handwriting recognition, sepa-
rating text content y (what an actual letter is) from its style z
(how the letter is written) helps model generalization. In speech
processing, one aims to separate the speech content y from the
speaker’s identity z (Hadad et al., 2018).

Minimizing mutual information between two latent represen-
tations, also called learning disentangled representations, can
be done via adversarial training (Mathieu et al., 2016, Hadad
et al, 2018, Xie et al., 2017; Jaiswal et al., 2019; Zheng and
Sun, 2019). Adversarial training, first used by generative adver-
sarial networks (GANSs) for image generation (Goodfellow et al.,
2014), can generate high-dimensional realistic samples from low-
dimensional latent codes. GANSs jointly train a generator G and
a discriminator Dis; G aims to create samples that are indistin-
guishable from real samples; Dis tries to distinguish real from
generated samples. Adversarial training has been extended to
other areas like robust machine learning, domain adaptation, and
disentangled representation learning. While diffusion models are
now more popular for image generation, GANs are significantly
more efficient (Pan et al., 2023). For example, DragGAN (Pan
et al., 2023), an interactive image manipulation method, uses the
StyleGANZ2 architecture (Karras et al., 2020).

Directly projecting high-dimensional datasets such as high-
resolution images is challenging. In such cases, one typically
describes the data using the latent space of a pre-trained classi-
fier such as InceptionV3 or VGG16 (Espadoto et al., 2020; Benato
et al., 2024). Since we focus on inverse projection, we prefer to
retrieve images from the latent space of a generative model de-
signed for this purpose such as StyleGAN2. In more detail: Let
w € W be latent code that StyleGAN2 uses to generate images.
Codes w can be obtained by inverting StyleGAN2 pre-trained on
the same dataset (Karras et al., 2020). For a given w, the corre-
sponding image is then given by G(w).

Adversarial training connects to our work in two ways: (1) We
use it to enforce disentanglement between the information z and
the projection y during the training of our inverse projection. (2)

142

63 DESIGN OF LOSS-CONTROLLED INVERSE PROJECTION

We use the W space of an image dataset to ease the projection
process.

6.3 DESIGN OF LOSS-CONTROLLED INVERSE PROJECTION
6.3.1 Inverse Projection Deep Learning Network Architecture

We implement our inverse projection using neural networks. Con-
sider a dataset X and its projection Y = P(X) computed by
any user-chosen projection technique P. Our network has two
key parts: an encoder Enc that computes the information in X
lost by P; and a decoder Dec which is also our inverse pro-
jection P~!. Enc reads the data X and outputs a latent code
Z = Enc(X) = {z;}. Dec reads the concatenation Y & Z and
outputs the inversely projected data X’ = Dec(Y,Z) (Fig. 6.1a).
We also need to ensure that Z is not related to Y (see Sec. 6.2.1).
We do this by a third network Dis which reads Z and outputs
Y’ = Dis(Z) and is adversarially trained to minimize the error
between Y and Y’. Enc and Dec are jointly trained to (i) minimize
the reconstruction error between X and X’, and (ii) maximize the
difference between Y and Y’.

Let Otyc, Opec, Opis be the weight and bias parameters of Enc,
Dec, and Dis, respectively. Let L,;,(Y,Y’) be the reconstruction
loss between Y and Y/, and Ly (X, X’) the reconstruction loss
between X and X’. When optimizing 6p;s, L4, is minimized, so
Dis learns to predict Y from Z. The cost function | for optimizing
Enc and Dec is defined as

J = Lyec(X, X") — ALy (Y, Y"), (6.1)

where A > 0 is a hyperparameter that balances reconstruction vs
adversarial loss, with the target of the optimization being

min J, (6.2)

OEncHDec

that is, we minimize L,, and maximize L,;, while keeping 6p;;
fixed. Once trained, Enc infers Z from X and Dec next inversely
projects Y & Z to X'

Implementation: We use fully-connected networks for Enc, Dec,
and Dis. Enc has 3 hidden layers (sizes 512, 256, and 128). Dec has
4 hidden layers (sizes 128, 256, 512, and 1024). Each hidden layer
of Enc and Dec is followed by a ReLU activation function. The
final layer of Dec is followed by a sigmoid activation function. Dis
has 2 hidden layers, each with a size of 128. Each hidden layer is

143

LOSS-CONTROLLED INVERSE PROJECTIONS

(a) Training
any user assigned P

X @—»—»X'._.

e e)

(b) Inference

o © =] P 1
oo p
oo Dec
®
[-> (P-l) —>q
° .. ° ¥ interpolation

K (p.p) (c) Control mechanism

N p\
® O —l
“% PP Dec
LN user
xe b @ >q
o ® j
° ° zp+aAz

Figure 6.1: Illustration of our LCIP method. @ denotes concatenation. (a)
Training the networks. P is a user-selected DR method that
projects X to Y. Enc encodes X into Z. Dis uses Z to predict
Y. Dec (P~1) uses Y and Z to reconstruct X. Disentanglement
is enforced by the adversarial network Dis (see Sec. 6.3.1).
(b) Inversely projecting a 2D point q to the data sample p
(see Sec. 6.3.2). (c) The control mechanism refines the inverse
projection by maneuvering z (see Sec. 6.3.3).

followed by batch normalization and a ReLU activation function.
The dimension of Z is set to 16 — a value we empirically found
to be sufficient to capture the information loss of all studied P
techniques. We use all these settings consistently for all tested
datasets.

We use mean squared error (MSE) for both L, and L,z
(Eqn. 6.1). For A (Eqn. 6.1), we ran a grid search over the range
[0.005, 4], and found that A € [0.01,0.1] gives good results for all
tested datasets. We train all networks using the Adam optimizer
with a learning rate of 0.001. While training Dis, we have noticed
that the adversarial training requires more steps to stabilize, since
it learns from a changing input. Hence, at each iteration, we up-
date Dis 5 times, then update Enc and Dec once. Our work is
implemented using PyTorch (Paszke et al., 2019) with PySide6
(Qt) for the GUI, and is publicly available (Wang et al., 2025b).

144

63 DESIGN OF LOSS-CONTROLLED INVERSE PROJECTION

6.3.2 Computing z for the entire projection space

To apply our inverse projection presented in Sec. 6.3.1 at a 2D
point p;, we need a latent code z; = Enc(x;), which in turn re-
quires that we know the data sample x; € X that projects to p;,
ie., pi = P(x;). To apply our method to any 2D point p, we need
to estimate z;, at that location. We do this by interpolating the z;
values of the training points X (see Fig. 6.1b). We tested two meth-
ods: weighted k-NN (k = 10 neighbors) and smoothed RBF with
a parameter-free thin plate spline kernel. RBF gives a smooth
surface, while weighted K-NN is slightly faster. We discuss the
results of both interpolation methods in Sec. 6.4.2.

Having now the latent code z;, for any p € R?, we can inversely
project p to the data space (Fig. 6.1b) as

q=P~!(p) = Dec(p, zp)- (6:3)
6.3.3 Controlling the inverse projection

To allow users to effectively control the shape of the inverse pro-
jection in data space, two questions arise: (1) How to do this easily,
i.e., by changing a small number of intuitive parameters in a di-
rect, visual, way; and (2) How to make our P~1 cover zones in
data space where plausible samples exist, so that P~ is useful for
real-world applications.

Data space R”

direct projection Projection space R?
P(x,)
o P(x)
op control
ra}iius G

inverse projection

Dec(p,z,) soufce p, S‘/n‘

\\\gupi/ //

backprojected
surface
Dec(p.z)p € R?

Figure 6.2: Controlling the inverse projection. User parameters are
marked in red.

We solve both problems by the pipeline shown in Fig. 6.1c,
which we explain next (see also Fig. 6.2). Let x; € X, called a
target sample, be a data point that we want to make our inverse
projection go close to. Users can discover such points by brush-

145

LOSS-CONTROLLED INVERSE PROJECTIONS

ing the projection with a tooltip to see their values P(x;) (Fig. 6.2,
green point). The user next selects a 2D source point ps and ma-
nipulates it to control P~! (Fig. 6.2, yellow point). We then “pull’
the inverse projection P~1(ps) of ps towards x; by adjusting zp,
(initially computed as described in Sec. 6.3.2) — see the red arrow
in Fig. 6.2. To achieve this pull, we first compute the difference

Az = z; — zp, = Enc(x;) — zp, (6.4)

between z; = Enc(x;) and zp,. Intuitively put, Az tells how much
the latent codes of the source and target differ — that is, what we
need to change in the source’s inverse projection to make it be-
come the target. Having Az, we now compute the user-controlled
inverse projection of p; as

q.*" = Dec(ps, zp, + aAz), (6.5)

where & € R is a factor giving the pull magnitude (Fig. 6.2, light
blue point). Yet, this adjustment only changes P~ at the single lo-
cation qZ**’. 2D points close to ps will not be affected by this pull,
as their inverse projections still follow Eqn. 6.3. The inverse pro-
jection will exhibit a discontinuity or lack of smoothness around
q2%¢", which is undesired (Sec. 2.4.2). We could get smoothness
by applying Az to all such 2D points. However, this changes the
inverse projection globally — the source p; will equally influence
all inversely-projected points, no matter how far these are from
ps. We jointly achieve smoothness and local control by weighing
the adjustment based on distances to the source ps. That is, af-
ter adjusting the inverse projection at ps (Eqn. 6.5), we replace
Eqn. 6.3 by

q"*" = Dec(p, zp + aK;(p, ps)Az), (6.6)

_ lp—psI?
where K,(p,ps) = e 22 is a Gaussian centered at ps and o

controls the source’s influence. Larger o values make the control
more global and yield smoother inverse projections; smaller val-
ues have the opposite effect. When p is close to the source p;
(Fig. 6.2 purple point), its inverse projection gets pulled towards
the target x; — see light-blue bump on the surface in Fig. 6.2.
When p is far from ps (Fig. 6.2 orange point), its inverse pro-
jection stays on the surface given by Eqn. 6.3.

Figure 6.3 shows this control mechanism in action for a simple
style transfer application. Here, the dataset X contains images of
various animal faces. The user selects the source p by picking
a location in the projection — not necessarily an actual projected

146

6.4 EVALUATION

sample. The image q for this point is computed by the inverse
projection — see the sad-looking dog in Fig. 6.3a, right. Next, the
user selects a target sample x; — see the happy-looking dog in
Fig. 6.3a, left. Pulling a slider changes & and morphs the source
image towards the target. The user can see how far/strong the
effect of changing the source propagates over the projection by
selecting other images (Fig. 6.3e) and assessing their changes dur-
ing source manipulation.

Figure 6.3: LCIP illustrated by a style transfer application. If we want to
make a dog smile, we proceed as follows: 1) Brush the pro-
jection (a) to find a frowning dog which we want to change.
The actual image of this dog is shown in (b, right). 2) Use
the same brushing to find a target image with a smiling face
(b, left). 3) Pulling a slider (d) changes the source towards
the target — that is, makes the frowning dog (b) smile like
the target, without changing its identity, see result in (c). Op-
tionally, we can adjust the influence range o to affect how
other images close to the source also get changed towards
the target — see the circles centered at mouse location in (a).
We can also select a few additional points in the projection —
see locations marked o-4 in (a) — and inspect how the user-
controlled inverse projection behaves there. Point 3 is close
to the source, so it will be strongly influenced by the source’s
change; points o, 1, and 4 are far away from the source, so
they will not be affected.

6.4 EVALUATION

We evaluate our proposed inverse projection method on several
datasets and projection techniques. We first study the effect of
disentanglement both qualitatively and quantitatively and show
that our latent codes z are indeed independent on the projected

147

LOSS-CONTROLLED INVERSE PROJECTIONS

information y (Sec. 6.4.1). Then, we compare our inverse projec-
tion (without interactive control) to existing inverse projection
methods and show we reach similar quality (Sec. 6.4.2). Finally,
we show that our interactive control can break the surface-like
limitation discussed in Sec. 6.4.3.

For P, we consider t-SNE and UMAP as these are the two
highest-quality techniques in DR landscape (Espadoto et al,
2019a) and are also used in other inverse-projection stud-
ies (Espadoto et al., 2019¢, 2021a; Schulz et al., 2020; Wang et al.,,
2023b). We use the following datasets:

MNIST: 70K samples of handwritten digits (0-9), each a 282
grayscale image flattened to a 784-size vector (LeCun et al., 2010).

Fashion-MNIST: 70K samples of 10 fashion categories (e.g., T-
shirts, trousers, dresses), each a 282 grayscale image flattened to
a 784-size vector (Xiao et al., 2017).

HAR: 10K samples of smartphone accelerometer and gyroscope
data capturing six human activities (walking, walking upstairs,
walking downstairs, sitting, standing, laying)(Anguita et al.,
2012).

W of AFHQv2: AFHQv2 contains 15K color images of animal
faces in 3 classes: dogs, cats, and wild animals (Choi et al., 2020).
Its W is a R5!? latent space used by StyleGAN2 models (Karras
et al.,, 2020) to generate images (see Sec. 6.2.1). In the following,
for ease of exposition, we will show the generated images G(w)
instead of the raw codes w.

For a dataset X = {x;}, we first compute the projection ¥ =
{yi}, yi = P(x;). We next split D in a training Dr = {(Yr, X7)}
and testing D, = {(Yy, X,)} set (see Sec. 6.4.2). We set A (Eqn. 6.1)
to 0.01 (AFHQv2), 0.05 (HAR) and 0.1 (MNIST, Fashion-MNIST)
respectively. Table 10 summarizes the above.

Table 10: Datasets used in our evaluation with dimensionality #n, sample
count |D|, training and testing set sizes |Dr| and |Dy|, and
values of hyperparameter A (Eqn. 6.1).

Dataset n ||Dr|

Do|| D] | A

MNIST 784 | 5000 | 5000 | 60000 | 0.1
Fashion-MNIST | 784 | 5000 | 5000 | 60000 | 0.1

HAR 561 | 5000 | 5000 | 10299 | 0.05

W of AFHQv2 | 512 |5000 | 5000 | 14336 | 0.01

148

6.4 EVALUATION

6.4.1 Added value of disentanglement

To show the added value of the disentanglement, we compare
our results using the loss in Eqn. 6.1 (called next WithDis) with
the same network trained without L,;, (called next NoDis).

Quantitative evaluation: We measure disentanglement by how
well can z predict y. The worse z can predict y, the better the dis-
entanglement, i.e., z and y are more independent (Jaiswal et al,,
2018, 2019; Moyer et al., 2018). We measure this by training a
post-hoc regression model to predict Yy from Zp = Enc(Xr). This
model is a neural network with one hidden layer (100 units) fol-
lowed by ReLU activation, trained for 200 epochs using the Adam
optimizer. We measure R?> and MSE on a hold-out test set. We ex-
pect that WithDis should yield low R? and high MSE - that is, z
and y are independent and/or different. Conversely, we expect
that NoDis should yield high R? and low MSE - that is, z and
y are correlated and/or similar. Table 11 shows that MSE and
R? for WithDis and NoDis indeed match the expectations, thus
confirm our claimed disentanglement.

Table 11: Measuring disentanglement: How well can z predict y?

Dataset P WithDis NoDis

MSE R*|MSE R?

MNIST UMAP| 17.1 0.032| 1.7 0.900
MNIST tSNE | 1497.5 0.011|161.9 0.892
FashionMNIST UMAP| 19.9 0.201| 0.7 0.968
FashionMNIST tSNE | 1284.4 0.096| 79.4 0.944
HAR UMAP | 488 0.098| 6.9 0.862
HAR tSNE |1337.8 0.170|152.7 0.892
W of AFHQv2 UMAP 5.8 0.014| 3.6 0.402

W of AFHQv2 tSNE 664.8 0.024|336.2 0.500

Qualitative evaluation: We visually evaluate disentanglement
by selecting two samples x; and x, of MNIST dataset and their
t-SNE projections y; and y,. These are two images of digits o and
7 — see Fig. 6.4a. Let zy = Enc(x1) and z, = Enc(xy) be the codes
of these two images. These are shown in a UMAP projection of
the z values for the dataset in Fig. 6.4b. We linearly interpolate
between y; and yy, and z; and z,, respectively, with 10 steps in

149

LOSS-CONTROLLED INVERSE PROJECTIONS

(a) t-SNE projection Y (b) UMAP projection of Z

z

Figure 6.4: Showing disentanglement on the MNIST dataset. (a) 2D t-
SNE projection Y. (b) UMAP projection of Z using WithDis.
(c) Inverse projections of the linear interpolation between two
data points in the Z and Y spaces, using WithDis (c) and
NoDis (d).

each of these two dimensions. This yields a total of 10? interpo-
lated values (y,z) which we next inversely project to the data
space using both WithDis (Fig. 6.4c) and NoDis (Fig. 6.4d).
Several observations follow. First, we see from the t-SNE projec-
tion that the label information is well-preserved in the projection
space (Fig. 6.4a) — that is, digits of the same type, e.g., zeroes or
sevens, are well grouped. In contrast, the UMAP projection of
z strongly mixes labels (Fig. 6.4b). This is desired, as z should
capture a digit’s writing style and not its class. We next see that,
as we change z using WithDis, the style of the digit changes —
see columns in Fig. 6.4c; while, as we change y, the digit itself
changes — see rows in Fig. 6.4c. Hence, WithDis disentangles y
and z well. In contrast, for NoDis, the inverse projection changes
only when z changes — see columns in Fig. 6.4d; when y changes,

150

6.4 EVALUATION

the digit stays the same — see rows in Fig. 6.4d. Hence, NoDis
keeps the latent codes z and y entangled.

6.4.2 Comparison to other inverse projection methods

We now compare our inverse projection LCIP to iLAMP (dos
Santos Amorim et al., 2012), RBF (Amorim et al.,, 2015), and
NNInv (Espadoto et al., 2019c). We show that LCIP yields similar
if not higher quality even without using its control mechanism
(which we discuss separately in Sec. 6.4.3).

Inverse projection error: We first measure the Mean Squared Er-
ror (MSE) of the inverse projection on the test set D,

MSE = L

Yo x=P(y2)|? (6.7)

| v‘ (y,x)€Dy

where z is ignored for iLAMP, RBF, and NNInv. For LCIP, we
compute z at y € R?\ Y by smoothed RBF and weighted k-NN
interpolation of the z; values (see Sec. 6.3.2). We call these two
interpolation variants LCIP (rbf) and LCIP (knn), respectively. We
also evaluate z; = Enc(x;),x; € X, and denote this computation
as LCIP*. While this is not the intended way to get z (as we cannot
do this for any 2D point, see Sec. 6.3.2), this gives the performance
of our method if we could compute z exactly.

MNIST FashionMNIST W of AFHQv2

s UMAP
0.04 tSNE
0.03
w
)
= 0.02
0.01
0.00

w w w
2] [sa] 2]
o= o= o s

iLAMP
iLAMP

w
[2a]
o s

NNinv
LCIP(rbf)
LCIP*
iLAMP
NNinv
LCIP (rbf)
LCIP (knn)
LCIP*
iLAMP
NNinv
LCIP (rbf)
LCIP(knn)
LCIP*

LCIP*
LCIP(knn)

NNinv
LCIP(rbf)
LCIP (knn)

Figure 6.5: MSE of the studied inverse projections.

Figure 6.5 shows that iLAMP, RBE, NNInv, and LCIP have sim-
ilar MSE on D,. Yet, LCIP* has a lower MSE than the others on
MNIST and Fashion-MNIST. Hence, our method can produce in-
verse projections with lower error when z is properly provided.
This quality gap between LCIP* and LCIP (rbf) or LCIP (knn) can
be filled by interaction (see next Sec. 6.5).

Visual quality in gap areas: The above MSE testing can only be
done for points in Dy, i.e., where we have ground truth on p1

151

LOSS-CONTROLLED INVERSE PROJECTIONS

in terms of data samples. As explained several times so far, a 2D
projection space mainly consists of gap areas where no sample
projects, i.e., we have no ground truth — and it is precisely there
that one wants to use inverse projections. One way to assess qual-
ity there is to study how inversely projected samples from gap
areas look like. Ideally, we want to obtain plausible samples which
follow the overall nature of the data in a given dataset.

a) Projection with selected points

Figure 6.6: Visual comparison of the inverse projection on MNIST
dataset. 13 points are selected in the projection space at var-
ious distance from projected samples (A-M, top image). The
middle set of images shows the inverse projections at these
locations using the tested inverse projection techniques. The
bottom set of images shows results obtained by inversely pro-
jecting points located along a line between the locations U
and V in the projection.

Figure 6.6 shows the four studied P~! methods on MNIST. Im-
ages (b) show that LCIP produces more plausible digits than the
other methods even at locations far away from data samples (e.g.,
A, C, M). We also see that iLAMP and RBF are sensitive to out-

152

6.4 EVALUATION

liers. For example, there is a single green point (near K, class 2)
located in between pink (class 4) and purple (class 6) clusters,
while the main green cluster is far down at the bottom of the pro-
jection. It makes sense that this green point is an outlier and this
gap area is supposed to be something between 6 and 4. Yet, the
inverse projection of ‘K’ (close to the green point) is a ‘2" in iL-
AMP and RBEF, while it is a ‘6" in NNinv and LCIP. Also, iLAMP
creates gray backgrounds (e.g., A,B,C,EM) which are not only far
away from the actual data distribution but also not what one
would expect for MNIST. Images (c) show the inverse projections
from points along a line between images U (digit 9) and V (digit
8) in the projection. iLAMP, RBF, and NNInv generate spurious
shapes that do not resemble any digit during this interpolation
process. In contrast, LCIP morphs the 9 to an 8 following, we
argue, a more natural set of intermediate images.

target x,

CoNaUEWNRO

NNinv

2 |8
2| -8 T
H | A0 T

Figure 6.7: Visual comparison of the inverse projection on Fashion-
MNIST dataset.

Ours(knr) Ours(rbf)

On Fashion-MNIST, iLAMP and RBF mix several images in
the reconstruction (Fig. 6.7). For example, at point A, iLAMP and
RBF mix high heels and boots; at point B, RBF mixes shoes and
pants; at point F, iLAMP and RBF mix a wider and a narrower

153

LOSS-CONTROLLED INVERSE PROJECTIONS

T-shirt. NNinv doesn’t have this problem, but it produces jagged
(e.g., at points A, B, C, G) or ambiguous shapes (e.g., at points E,
F). LCIP keeps the reconstructed shape clear and recognizable in
all cases.

Finally, on AFHQv?2, all methods work well when the inversely-
projected 2D points are close to training samples. Once a 2D point
is further away, iLAMP immediately becomes problematic (see A,
B, C, E, J, P). In extreme cases, all methods but ours have some
issues. For example, at point C (see Fig. 6.8), iLAMP produces
a mass of colors with indiscernible shapes; the image by RBF
has color distortions and the dog in the image only has one ear;
NNinv produces a dog but in a strange appearance, also with
color distortions. In contrast, LCIP produces realistic images in
all cases.

target image

B Y
é Mt L‘LL’] i"»‘o g

Figure 6.8: Visual comparison of the inverse projection, AFHQv2 dataset.
(a) Dataset projection with 16 selected locations both close
and far away from the data samples (A-P). (b) Inversely pro-
jected resulting images at these locations created by all tested
methods. (c) Results obtained by inversely projecting points
along a line between the locations U and V in the projection.

Smoothness comparison: We next evaluate smoothness using
gradient maps, introduced in Sec. 2.5.2.1 and used extensively in
Chapter 4. Figure 6.9 shows these maps for the tested inverse pro-
jections on the MNIST dataset with the UMAP projection; Bright
colors indicate high gradients, that is, points where the inverse
projection ‘jumps’ in data space when its input moves between
neighbor pixels. Such jumps are undesirable (see Sec. 2.5.2.1). We

154

6.4 EVALUATION

LCIP (fixed)

L
1000 2000 3000 1000 2000 200 400 600 100

Figure 6.9: Gradient maps for the tested inverse projections for UMAP
on MNIST.

see that LCIP achieves the smallest gradient norms (see color leg-
ends) for all datasets and direct projections.

Computational speed Figure 6.10 shows timings for the four
studied inverse projection methods on a desktop with an Intel
Core i5-12400 CPU and NVIDIA GeForce GTX 3090 GPU. The
y-axis shows total time, i.e. the (constant) training time and in-
ference time (linear in the projected points count). All methods
show similar speed except iLAMP which is significantly slower.
Although LCIP requires slightly more training time due to its
adversarial training, its slope is nearly identical to NNinv and
RBE showing the same high scalability. Separately, our evalua-
tions show that the results of LCIP (rbf) and LCIP (knn) are very
similar. Since LCIP (rbf) is theoretically smoother, we will use it
in our following experiments.

700 HAR W of AFHQv2 MNIST FashionMNIST

—— RBF
5 500 iLAMP
2 —=— NNinv
—— LCIP

e |l | e e | e

0 160 260 6 160 260 (5 160 260 0 160 260
number of inverse projected points (x1000)
Figure 6.10: Inverse projection speed. The training time equals the y-
intercept of the graphs. The slopes of the graphs depict

how inference time depends on the number of inversely pro-
jected samples.

6.4.3 Controllability: Going beyond a fixed surface
We have shown so far that LCIP can construct a ‘fixed” inverse
projection from a given dataset X and its projection P(X) with

results which are comparable — and often better — than other ex-

155

LOSS-CONTROLLED INVERSE PROJECTIONS

isting inverse projection techniques in terms of generating plau-
sible results in gap areas, inverse projection MSE, inverse projec-
tion smoothness, and speed. Yet, the key feature of our method
is its ability to dynamically control the inverse projection, which
we describe next.

Effects of control: Figures 6.11-6.12 show how the inverse pro-
jection changes when their z values are adjusted towards se-
lected targets in MNIST, Fashion-MNIST, and AFHQv2. Targets
are marked by x; (blue) in Fig. 6.6-6.8 with their images shown as
insets. In Figs. 6.11-6.12, topmost rows show the selected source
images (¢ = 0); rows below show how the inverse projection
‘sweeps’ the data space between source and target as the user in-
creases «. For example, when selecting an italic-like ‘o’ digit in
MNIST as target, as we increase «, the inverse projection grad-
ually become more italic, no matter which is the selected source
image (Fig. 6.11). We see similar changes in Fashion-MNIST, such
as subtle changes in the style of shoes and shirts (Fig. 6.11 bot-
tom). For AFHQv2, the selected target is a dog tilting its head —
see inset image in Fig. 6.8. As we increase «, all selected source
animals in the inverse projection rotate their heads with similar
angles (Fig. 6.12).

<
=]
N
=)
[
v o
H

= o
® o
*
=)
<
-

b) Fashion-MNIST

Figure 6.11: Controlling the inverse projection for MNIST (a) and
Fashion-MNIST (b). Targets are the blue-outlined inset im-
ages in Fig. 6.6 for (a) and Fig. 6.7 for (b). Rows in the two
images show the effect of increasing user control «.

156

6.4 EVALUATION

Figure 6.12: Controlling the inverse projection for AFHQv2. The target
is the blue-outlined image in Fig. 6.8.

Increased reach: Recall, from Chapter 5, that the main limita-
tion we identified for existing inverse projections was their fixed
surface-like behavior. While LCIP can generate inverse projec-
tions that go beyond a fixed surface, a key question is how much
beyond such a surface can we reach. To measure this, we evalu-
ate the Intrinsic Dimensionality (ID) of the inverse projection by
the Minimal Variance method (Tian et al., 2021), for all pixels in
an image (300 x 300), without interaction. We call this ID value
the baseline. Next, we adjust the inverse projection by globally
adding Az values, for 50 uniformly sampled values of « € [0,0.2],
and measure the ID of all resulting inversely-projected points
taken together. Figure 6.13 shows that the baseline has ID ~ 2
at roughly all pixels (with small higher-ID areas close to the sam-
ple points), so we generate roughly a surface embedded in R",
much like other inverse projection techniques (Chapter 5). When
using control, we get an ID roughly equal to 3, i.e., Az ‘shifts’
our inverse-projection surface to span a 3D space in R”. Some
ID values of 2 are likely due to the z value of those areas being
insensitive to the selected target, i.e., z; and z,, are close in the
first place. Note that we only use a single target point here. If we
used k target samples x; which span a k-dimensional space in R",
we would obtain an inverse projection of ID ~ k.

Flexibility of control: We further study the impact of using more
control targets x;. For this, we consider a training set Xt with
5000 points. For each x; € Xt, we compute its latent code z; =
Enc(x;), consider it as a target for our control mechanism, and
consider each pixel p of the image as source point. For each such
p, we measure the variance

© Var({P~(p,z))})

\% = -
(P) Y Var(Xr))

(6.8)

157

LOSS-CONTROLLED INVERSE PROJECTIONS

a) t-SNE
Inverse projection
interactively modified baseline (no interaction)

b) UMAP

Inverse projection . .
interactively modified baseline (no int

Figure 6.13: Intrinsic dimensionality of LCIP without and with interac-
tion for different datasets and direct projections.

over the set {Dec(p,z;)}, across all n data dimensions. Here, su-
perscript j denotes the j dimension of a data sample. Higher
values of V(p) indicate that the inverse projection of p is more
sensitive to control, and vice versa. The denominator normaliza-
tion factor in Eqn. 6.8 accounts for the spread of the training set
X in data space. If this spread is low, then we should not expect
that our inverse projection reaches far further in the data space,
and vice versa.

MNIST FashionMNIST HAR W of AFHQv2

Figure 6.14: Normalized variance of inverse projections produced by
5000 different z values, t-SNE direct projection. See Eqn. 6.8
and related text.

158

65 USER CONTROL OF THE INVERSE PROJECTION

Figure 6.14 shows the results. On W of AFHQv2 and HAR,
variance is lower near data samples and higher in gap areas,
telling that inverse projections are more ‘nailed” when there is
ground-truth data around, and more flexible when no ground
truth nearby. On MNIST and Fashion-MNIST, the pattern seems
not to be related to the distance to data samples. We believe that
this is an effect of t+-SNE’s known tendency of t-SNE to com-
press (or stretch) point neighborhoods from data space to projec-
tion space (Chatzimparmpas et al., 2020b). That is, areas show-
ing a low normalized variance in Fig. 6.14 may actually map
points which are close in data space, where our inverse projec-
tion does not have the freedom to move much; conversely, areas
of high variance may map points far away in data space, where
our inverse projection has more freedom to move. These maps
provide users with insights on where interaction is likely to be
most effective: Interacting with source points in high-variance ar-
eas will produce inverse projections which ‘sweep’ the data space
more freely, which is the core goal of interaction; interacting with
source points in low-variance areas is likely not going to discover
new areas in data space.

65 USER CONTROL OF THE INVERSE PROJECTION

We now show the added value of the controllability of our in-
verse projection method. All experiments use the interactive tool
shown in Fig. 6.3a.

Based on how far the selected source ps is from the selected
target P(x;) in projection space, we distinguish two types of con-
trol: (1) target is close to source and (2) target is far away from
source. In (1), we expect the controlled P~! to gradually but fully
change towards the target; In (2), we only expect a partial change,
e.g., style-wise. We detail both scenarios next.

6.5.1 Local control: Target is close to source

Consider the limit case where P(x¢) = ps. The difference between
the target x; and the controlled inverse projection Dec(ps, zp,) is
fully controlled by z,,. When z, = Enc(x;), the inverse projec-
tion of ps becomes Dec(P(x;), Enc(x¢)) = x;. In other words, the
inverse projection fully changes towards the target x;. We next
show how our control helps with two challenges that frequently
occur in inverse projection usage.

159

LOSS-CONTROLLED INVERSE PROJECTIONS

) range with radius o H 7P N i ° cat
5, . . * H H

i i range with radius 20 * dog
* source pointp_ * wild
O target samplex,

Figure 6.15: Close and far-away control of the inverse projection,
AFHQv2 dataset. (a) 2D locations where we performed in-
teraction. See also Figs. 6.16,6.17. (b) Assessing smoothness
of controlled inverse projection at various sampling loca-
tions (+). Color encodes the distance ||q — q**|| at each
pixel. Figure 6.18 shows the inverse projections at these sam-
pling locations.

Inverse projection correction: While good inverse projections
should have a low MSE (Eqn. 6.7), they do not yield P~!(P(x)) =
x at all projected samples P(x). For instance, in Fig. 6.15a, pso
and ps; are two points at the margin of clusters. As such, their
inverse projections qs and qs; should barely be influenced by
other points and, ideally, equal the data samples xy and x;; that
project there. Yet, this is not the case — compare images qso, qs1
to x40, X¢1 in Fig. 6.16, respectively. We can adjust our controllable
inverse projection to make it closer to the data. As we add Az to
zy,, the inverse projection q"*" gradually changes towards the

160

65 USER CONTROL OF THE INVERSE PROJECTION

source q user-controlled g (number in lower left corner is o) target X,

Figure 6.16: Local control — adjusting the inverse projection when
P(xt) =~ ps. Locations of qs and P(x;) are shown in
Fig. 6.15a. Numbers in upper right corners show ||x; —
q2*¢"||. Numbers in lower left corners show the control pa-
rameter a.

user

target x; — see Fig. 6.16 top two rows. The distances || q"*" — x||

are also reduced, reaching minima for « = 1 (Fig. 6.16).

Overlap separation: Overlapping points in a projection are com-
mon. In such areas, P is not injective, so formally it is not invert-
ible. For example, in Fig. 6.15a, the area around point ps, — which
corresponds to a cat (denoted x;;) — shows several overlapping
samples of cats (blue) and wild animals (green). This overlap is
due to the projection — the samples are actually separable in data
space. Existing inverse projection methods will map ps; to a cat,
a wild animal, or a mix of them in a fixed and not controllable way.
Our method allows flexibly controlling the inverse projection of
ps2 to be more like a cat or a wild animal: We see that qsp is ini-
tially a fox (Fig. 6.16, bottom row, left). Setting the cat image xs»
as the target and ps; as source, we see how the inverse projec-
tion gradually transforms from a fox into a cat as we increase «
(Fig. 6.16, bottom row, columns q**").

6.5.2 Far-away control: Target is far from source

In this scenario, the controlled P~ (ps, z,,) will not go completely
toward x;, since P(x;) # ps. Rather, only what is controlled by z
will change. Yet, it is hard to tell what z exactly controls with-
out prior knowledge or exploration since this depends on the
information that is not captured by the projection y, which in
turns depends on the actual projection technique P used. In our
studies, we found that, for the MNIST-t-SNE combination, the

161

LOSS-CONTROLLED INVERSE PROJECTIONS

digit is controlled by y, while z controls the digit’s style; for
the AFHQv2-t-SNE combination, the type of animal faces is con-
trolled by y, while the animal poses are controlled by z. Control-
ling z shapes the inverse-projected surface as desired, enabling
applications like user-controlled data generation, as illustrated
next.

Consider a source point ps far from any target, i.e., within a so-
called gap area in the projection. All existing inverse-projection
techniques produce surface-like structures in such areas (see
Chapter 5). Our control breaks this limitation: Take point ps3
which is in a gap area (Fig. 6.15a). Its inverse projection is a sad-
looking puppy (qs3, Fig. 6.17 top-left). We now pick as the target
a happy dog (xs3 in Fig. 6.15a, Fig. 6.17 top-right). As we increase
Az, the sad puppy gradually smiles and eventually laughs with
open mouth (Fig. 6.17, q"*¢, top row). Note that the puppy’s ap-
pearance did not change to the target one (e.g., hair color and
ear shapes); only its ‘style’ changed. This control also works with
source and target from different classes. The inverse projection g4
of pss is a cat looking ahead (Fig. 6.17, left column, second-top
image). We choose a tiger looking up as the target (x4 in Fig. 6.17,
right column, second-top image). By adding Az, the cat gradually
looks up without becoming a tiger (Fig. 6.17, q***", second row).

Decreasing Az gets an opposite effect. We first choose as source
point pg5 a front-facing cheetah (Fig. 6.17, left column, third im-
age from top). Our target is a left-facing dog x;5 (Fig. 6.17, right
column, third image from top). By adding Az, the cheetah grad-
ually turns its head to left (Fig. 6.17, q“*’, row 3). Decreasing
Az, the cheetah turns its head to right (Fig. 6.17, q***", row 4). At
around & = —0.55, the cheetah starts changing into a tiger. This
is not surprising since cheetahs and tigers overlap in the projec-
tion. This decrease operation triggers the overlap separation (see
Sec. 6.5.1). A final example considers a point ps in a gap area
whose inverse projection is a black-and-white, front-facing, cat
(Fig. 6.17, left column, bottom image). We set a left-facing dog as
the target (x;, Fig. 6.17, right column, bottom image). Increasing
Az, the cat gradually turns its head left (Fig. 6.17, q***", row 5).
Decreasing Az, the cat tilts its head to the opposite direction and
changes fur color to brown (Fig. 6.17, q"*¢, row 6).

These examples show the flexibility and potential of LCIP. By
adjusting Az, users can control subtle style features, such as the
expression or direction a subject is facing, without altering a sam-
ple’s fundamental identity. This ability extends across different
classes and also in areas far from any projected data sample. This
shows LCIP’s support for user-controlled data generation, where

162

65 USER CONTROL OF THE INVERSE PROJECTION

source q, user-controlled " (number in lower left corner is a) target x,
FFy
|

Figure 6.17: Far-away control — adjusting the inverse projection when
P(xt) # ps. Locations of qs and P(x;) are shown in
Fig. 6.15a.

maintaining the original data’s integrity, while introducing de-
sired variations, is crucial (Wang et al., 2022a).

6.5.3 Smoothness of controlled projections

Section 6.4.2 showed the smoothness of our inverse projection in
absence of user control. User control should create a smooth in-
verse projection since the input of Dec smoothly varies with p, &,
and o (Eqn. 6.6) and since Dec itself is smooth (being the neural
network described in Sec. 6.3). Yet, it is worth to practically test
this smoothness. For this, we choose 7 source points psj ... pss
and sample several lines A;... Ay — Gp...Gy in the projection
space, with 8 samples per line. Figure 6.15b shows the sampling
locations (+) and source points (%). We next set different « and
o values for the source points and compute their inverse projec-
tions. Figure 6.18 shows these inverse projections without and
with control. Images in each row — thus, over a set of linearly-
spread sampling points — smoothly change in both cases. To fur-
ther confirm this, Fig. 6.15b color-codes the difference between

163

LOSS-CONTROLLED INVERSE PROJECTIONS

the inverse projection without and with control ||q — q"*"|| at
each pixel. The result is a smooth signal, with large values close
to the source points and small values further away, exactly as
aimed by the local control aimed in Eqn. 6.6.

6.6 DISCUSSION

We next discuss several aspects of our controllable inverse projec-
tion method.

Controllability: To our knowledge, our method shows for the
first time that an inverse projection can be controlled by users —
rather than being fully prescribed by a dataset X and its projec-
tion P(X). This also breaks the limitation that inverse projections
land on a surface embedded in the data space (Sec. 6.4.3).

Genericity: While we illustrated LCIP with style transfer for
images, our method is not limited to manipulating image data
and, also, should not be seen as competing with other dedicated
style-transfer methods. We chose the image style-transfer appli-
cation as it is a very simple and illustrative one for our tech-
nique. Yet, our method can be applied to control inverse pro-
jections generated by any user-selected projection P(X) of any
high-dimensional dataset X. To our knowledge, this is the first
inverse projection method that allows such control for any pro-
jection technique P and any dataset.

Quality: Our evaluations show that our inverse projection has
better quality in gap areas as compared to existing inverse
projection techniques (Sec. 6.4.2). Our inverse projection cre-
ates smoother-varying data samples (when the input 2D points
smoothly change). This is an important added value point for
any user-driven applications of inverse projections since a lack
of smoothness in the inverse projection would cause at least dif-
ficulty, and most likely confusion, for users who aim to control
how 2D points are backprojected to the data space.

Scalability: Our method scales in the size and dimensionality of
its input data as well as state-of-the-art inverse projection meth-
ods, e.g., NNinv (Sec. 6.4.2). Its speed is linear in the number of
inversely projected points.

Ease of use: To inversely project a so-called source point, our
method requires at minimum only selecting that point in a 2D
projection space. If one desires to modify the inverse projection,
the user needs additionally to select one target point (from the
projected ones) and a ‘pull’ factor a that tells how much the
source point will change towards the target. All such operations

164

6.6 DISCUSSION

without with without with without with without with without with without with without

with

Figure 6.18: Control smoothness: Inverse projections at 8 sampling
points (columns) around 7 different source points (rows),
with and without user control. Each image corresponds to a
‘+” in Fig. 6.15b.

165

LOSS-CONTROLLED INVERSE PROJECTIONS

are simple to perform in a general-purpose user interface by click-
ing (to select points) and pulling a slider (to change «). Addi-
tionally, users can change how smooth the inverse projection is
around a source point by changing ¢ — again, by pulling a slider.

Limitations: First and foremost, our method relies implicitly on
disentangling the information captured by a projection operation
P from what P cannot capture, and subsequently manipulating
this information to control the inverse projection. From a techni-
cal perspective, we argued that this makes good sense. However,
from a practical perspective, it is by far not clear to the common
user what a given P would capture (and thus not subject to user
control) and what would be, consequently, left to the said control.
Our experiments showed that, for selected datasets, the projec-
tion captures the core similarity of items, while the lost informa-
tion — under user control — mainly affects a generic attribute we
called ‘style’. Yet, what exactly style is; how it differs from what
a given projection captures; and how much is this style control-
lable in practice, are all questions that we cannot formally an-
swer for all datasets and all projection methods. In connection to
this, it is not yet obvious how the control of inverse projections
which we proposed can assist a broad set of applications. Our
examples of style transfer on images are, we hope, convincing.
Yet, more use-cases, and ideally user studies, would be needed
to strengthen our claims of added value concerning our inverse
projection method.

6.7 CONCLUSION

In this chapter, we have presented an inverse projection method
that allows users to explicitly break the barrier of creating two-
dimensional, fixed, surfaces embedded in the data space — a prop-
erty exhibited by all inverse projection methods we are aware of.
To do this, we split the information present in a high-dimensional
dataset into the information which is captured by a projection
technique and, separately, the information that such a technique
cannot capture — the latter which we call a latent code. Next, we
allow users to control this latent code in a simple but effective
manner and thereby generate a dynamic inverse projection which
can effectively ‘sweep’ the data space between the samples used
by the direct projection it aims to invert.

Several experiments show that our proposal meets a number
of key requirements which are important for inverse projections:
Our method is — in absence of user control — at least as accu-

166

6.7 CONCLUSION

rate, and practically as computationally scalable, as state-of-the-
art inverse projection techniques. When user control is added,
our method can generate a family of inverse projections that span
the data space in a controlled manner — that is, by letting users
tell where the inverse projection should adapt to so-called tar-
get data points, and where it should be purely driven by the
underlying direct projection. This control is simple to perform
as it involves changing two simple-to-understand linear param-
eters — an action radius and an action amount. Moreover, our
inverse projection method has smoothness properties which are
required from methods in this class for application deployment,
up to a higher degree than other inverse projection methods we
are aware of. Also, we showed that out method can cover a larger
area of the data space — measured in terms of intrinsic dimen-
sionality — than other inverse projection methods. Last but not
least, we showed that our inverse projection method creates data
samples (images in our studies) which look more natural than
those created by existing methods in the same class.

The key following point to this work, we believe, is its direct ap-
plication in practice, to validate its effectiveness. We envisage, in
the short term, applications such as data augmentation, pseudola-
beling, data interpolation, and morphing. Using our method in
such contexts is, we believe, of significant added value — though,
we acknowledge, such concrete studies are a subject of future
work.

167

[

FAST COMPUTATION FOR DECISION MAPS
AND CLASSIFIER MAPS

7.1 INTRODUCTION

As introduced in Chapters 2 and 4, decision maps and their asso-
ciated extensions such as gradient maps (Espadoto et al., 2021a)
or differential decision maps (Machado et al., 2024) are powerful
tools for understanding the behavior of ML classification models
and exploring high dimensional data. However, computing a de-
cision map, even at quite small resolutions of hundreds of pixels
squared, can take tens of seconds up to tens of minutes, depend-
ing on the decision map technique (Chapter 4). This precludes
using such DBMs in scenarios where users aim to inferactively
and iteratively improve a classification model by e.g. changing its
hyperparameters or performing data pseudo-labeling in active
learning settings (Benato et al., 2018; Schulz et al., 2020; Benato
et al.,, 2021). In this chapter, we propose a method that acceler-
ates the computation of decision maps and their enhancements,
thereby addressing our last research question RQg introduced in
Chapter 1.

To achieve the above, we propose FastDBM, a set of techniques
that speeds up the computation of DBM images. FastDBM has a
very low error rate — only a few tens of pixels, located on deci-
sion boundaries, are different from the ground-truth, slow, DBM
computation. Our method can speed up any DBM that encodes
classifier label and confidence without inner knowledge of how
the model operates. Also, the method is simple to implement and
has no hidden parameters.

Additionally, we show that the basic FastDBM can be easily
extended to compute any real-value classifier map that depends
only on sample positions, such as the gradient maps and differ-
ential decision maps mentioned above, by a simple modification.
We show that this modification still keeps the attractive speed-up
and low error rates proposed by the basic FastDBM technique.
We also explore additional combination of techniques and qual-

This chapter is based on the papers “Computing fast and accurate decision bound-
ary maps” (Grosu et al., 2024) and “Computing Fast and Accurate Maps for Ex-
plaining Classification Models” (Wang et al., 2025d).

169

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

ity metrics introduced in Chapter 4 to gauge the added value of
our proposal.

The structure of this chapter is as follows. Section 7.2 intro-
duces related work on decision maps and classifier maps and
techniques used for computing these such as direct and in-
verse projections. Section 7.3 presents the core of our FastDBM
technique which can be used to compute decision maps. ec-
tion 7.4 evaluates the three acceleration heuristics we proposed
for FastDBM and outlines the winning heuristic: binary split. Sec-
tion 7.5 presents additional evaluations focusing on the binary
split heuristic. Section 7.6 presents our extension of FastDBM to
handle general real-valued maps as well as examples of acceler-
ating three such map types. Section 7.7 discusses the features of
our method. Finally, Sec. 7.8 concludes the chapter.

7.2 RELATED WORK

Following our by now established notations, which we repeat
here for easing the reading, let D = {x;} C R" be a high-
dimensional dataset with samples x;. A classification model f :
R" — C, trained and/or tested on D, maps samples from the
data space to a categorical (label) domain C. Let ¢ : R" — [0,1]
denote the confidence of this classification. A decision map is a
two-dimensional image I that aims to capture f’s behavior by ex-
trapolating it from D. Three elements are key to the construction
of I, as follows:

Direct projection: Let P : D — R? be a projection, operation;
and P(D) be the mapping of D to a 2D scatterplot computed
by P, that is, P(D) = {P(x)|x € D}. P maps the input space of
the model f to R?, next allowing the construction of the decision
map image I.

Inverse projection: An inverse projection P~! : R?> — R” in-
versely maps, or backprojects, any pixel p € I to the data space
location P~!(p), aiming to revert the effects of a given direct pro-
jection P.

Decision maps: These are images

F(p) = f(P™'(p)) (7.1)

that depict, at every pixel p, any property of interest f that is mea-
sured in the data space R” at location P~!(p). In their simplest
form, which we extensively discussed in the previous chapters,
decision maps depict a classification model.

170

7.2 RELATED WORK

Besides depicting a classifier, maps can be used to visualize
additional properties of f or P~1. For instance, the gradient map
G (Secs. 2.5.2.1 and 4.3.1) depicts the smoothness of the inverse
projection P~! computed at every pixel via Eqn. 4.5. Visualizing
G over I shows areas where P~! has high gradients, i.e., where
the extrapolation of the model f from the samples in D can
be risky due to so-called compression of the high-dimensional
space to the 2D projection space created by the direct projection
P (Aupetit, 2007; Nonato and Aupetit, 2018). The distance to clos-
est decision boundary dp (Sec. 4.3.1, Eqn. 4.6) depicts at each
pixel the distance to the closest decision boundary which allows
one to find different areas in the data space where the trained
model may be brittle (Rodrigues et al.,, 2018; Machado et al,,
2024). Computing dp is however quite expensive as it requires
bisection-like search for the closest decision boundary (Rodrigues
et al., 2018) or running adversarial example generation (Moosavi-
Dezfooli et al., 2016). The distance to the closest training sample
dp, also called distance to data (Sec. 4.3.1, Eqn. 4.7) helps locating
areas where we extrapolate the behavior of f far away from the
training data D, i.e., where the model’s behavior can be less reli-
able, despite high confidence values (Machado et al., 2024). Any
other characteristics of interest of f can be visualized via such
maps. We now call these classifier maps as the mapped functions
are in general real-valued ones (see Eqns. 4.5-4.7) as opposed to
decision maps which map class values only (see Eqn. 7.1).

Scalability: All current decision map techniques are quite slow
—on a typical commodity PC, computing a DBM for resolutions
of 2502 pixels reach about 10 seconds for all tested methods ex-
cept DeepView; for the latter, the computation time can extend to
several hours, depending on the choice of classifier (Chapter 4).
As we shall see in Sec. 7.4, these costs increase quadratically with
the DBM resolution — and higher resolutions are needed to create
maps in which users can see subtle details such as the exact shape
of decision boundaries close to groups of data samples or the
variations due to compression in gradient maps (Aupetit, 2007;
Nonato and Aupetit, 2018) or distance to boundary /training sam-
ples (Machado et al., 2024). This makes current DBM methods
poorly suitable for visual analytics scenarios that require fast re-
computation of decision and/or classifier maps upon re-training
of the studied model.

171

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

B blocks, n pixels

) B
E by -
o
= . .
g b, b b, oo
[5}
el 5 I 5 B
] b
q d . I . ol .
a) b)
block b, block b,
e/ o/
R a---
°
o LTIy
block b, block b block b, block b, | | ' block b | block b,
block b, block b,
°/, el
c) d)

Figure 7.1: Illustration for binary and confidence-based splitting heuris-
tics. Given the block-set in (a), binary split creates the refined
block-set in (b). For the block in (c), binary split would create
four equal-sized blocks along the thin dashed lines. In con-
trast, confidence-based splitting (d) examines the confidence
values and splits the block in up to g smaller blocks along the
thin dashed lines.

7.3 FAST DBM COMPUTATION

For an image I of n x n pixels, the complexity of current DBM
methods is O(n?K), where K is the cost of a single f(P~!(-))
operation. Decreasing K is hard if we allow any generic inverse
projections P~! and classifier model f. Hence, to improve speed,
we next aim to reduce the n? term.

A classification model f, in general, must fit its decision bound-
aries so that they (a) surround same-class training points, but (b)
the boundaries are sufficiently smooth to allow for generalization
without overfitting. Given (b), f, and thus a decision map that
aims to accurately capture f, has in general relatively few com-
pact decision zones (not necessarily one zone per class). We use
this property to devise our acceleration as follows.

7.3.1 Binary split

We start by dividing the image I into B? blocks — each such block
is a square of % x % pixels from I. For each block b, we evaluate

172

7.3 FAST DBM COMPUTATION

the label I, = f(P~1(p)) at its central pixel p. Figure 7.1a shows
this for a binary classifier (cyan and yellow are the two classes).
Let I,,,13,1;, 1 be the labels computed similarly for the up, down,
left, and right neighbor blocks of b. Let N be the number of neigh-
bors with labels different from [,. If N = 0, then b is surrounded
by same-label blocks, so, if we assume that a decision zone in the
DBM is locally thicker than % pixels, no decision boundary crosses
it. Hence, we can assign [, to all pixels in b. If N > 0, we split b
into four equal smaller blocks (Fig. 7.1b shows the results of this
splitting). We repeat the process, in a quadtree-like fashion, un-
til we arrive at pixel-sized blocks or blocks do not need splitting
anymore. During this, we note that (1) splitting larger blocks first
helps to ensure a uniform refinement all over the image; and (2)
splitting blocks having several neighbors with different labels is
better than splitting blocks having a single such neighbor since
the former cover more decision boundary fragments. We model
this by keeping blocks to split in a priority queue sorted decreas-
ingly on d - d - ¥ where d is the size of a block, N is its number
of different-label neighbors, and C is its neighbor count (4 for
blocks inside the DBM, 3 for blocks on the DBM boundary, and
2 for blocks on the DBM corners).

As Sec. 7.2 outlines, a DBM also often shows the confidence of
the visualized model f at each map pixel. Per block, however, we
have a single data sample P~!(p), computed at the block’s center
pixel p. This is fine for class labels since these are constant over
decision zones, thus also per block as per our splitting heuris-
tic. In contrast, confidence varies continuously within a decision
zone, hence can also vary within a block. We avoid computing ad-
ditional confidence values apart from c(p) by interpolating these
values, computed at the blocks’ centers p, using nearest-neighbor,
bilinear, and bicubic schemes.

7.3.2 Confidence split

The binary split is a simple bisection procedure to find the places
in IR? where decision boundaries are, up to the pixel precision
of I. We can potentially use the confidence values c(p) to refine
this process as follows. Take the block b shown in Fig. 7.1c. Bi-
nary split would divide b along the dashed lines in the image.
Consider the confidence values ¢4 and cp for the inferred classes
purple, respectively orange, sampled at the centers of cells b; and
b, denoted next as c4, cpj, cap and cp, respectively (Fig. 7.1d).
We next linearly interpolate these values to find the point where
ca = cp (red point, Fig. 7.1d). This is likely a good point to split

173

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

cell b (along the thick dashed line, Fig. 7.1d) since, left to this
point, class A has a higher confidence than class B (so the de-
cision zone there should tell A) and, right to this point, class
B has a higher confidence than class A (so the decision zone
there should tell B). Note how this confidence maximization is
precisely similar to how classification models internally decide
on the class to output, albeit using more complex interpolation
schemes than our linear one. We proceed in the same way for
all class values with respect to all four boundaries of cell b. This
yields a possible set of 2, 3, 4, 6, or g cells that split b as opposed
to the fixed 4 cells done by binary split (see thin dashed red lines
in Fig. 7.1d). Confidence is next interpolated as for the binary
split method.

7.3.3 Confidence sampling

Our final acceleration heuristic uses the underlying idea that, if
we can capture the confidence c at a coarse sampling resolution,
then we can find decision zones (and boundaries) at pixel reso-
lution by maximizing c over all inferred labels. This will reduce
the costs implied by the block-splitting process. For this, given
our initial B? blocks, we compute confidences c(p) at block cen-
ters p, for all inferred |C| classes, and next interpolate these over
I using nearest-neighbor, bilinear, or bicubic techniques — as de-
scribed above, but now only over the initial blocks, which we do
not further split. Next, for each pixel p € I, we compute which
class yields the highest interpolated confidence and assign that
class to p.

7.4 EVALUATION OF ACCELERATION HEURISTICS
7.4.1 Comparison of acceleration heuristics

We now compare our three acceleration heuristics (binary split,
confidence split, confidence sampling) against each other and
with the ground truth. For this, we use two metrics:

Label errors: We ideally want to get the same labels for a Fast-
DBM image If,s and the ground-truth DBM image I. We evalu-
ate this by the error

100
€label = w2 Z (S(I(x/]/)/lfust(x/y))/ (7-2)

1<x<n,1<y<n

174

7-4 EVALUATION OF ACCELERATION HEURISTICS

“&fa
truth DBM b) binary split (e, =0.001%) c) confidence split (¢, =0.012%)

h %
a) ground 1T label

(brightness = confidence)

d) confidence sampling e) confidence sampling f) confidence sampling
(NN, ¢ =6.022%) (bilinear, €, =2.156%) (bicubic, €, =1.454%)

label label

Figure 7.2: a) Ground-truth DBM with labels and confidence encoded
into colors, respectively saturation, MNIST dataset. b-f) Class
assignment errors for FastDBM method variants.

where §(a,b) is 0 if a = b and 1 otherwise. That is, €},,; measures
the percent of the n x n FastDBM map image which is different
from the ground truth.

Confidence errors: Our interpolated confidence Cfast should be
as close as possible to the ground-truth one c. We evaluate this
by the normalized MSE error

Elgxgn,lgygn(c(x/ }/) - Cfast(x/ }/))2
Zlgxgn,lgygn C(xry)z

€conf = (73)
Figure 7.2 shows our results for the MNIST dataset (LeCun et al.,
2010), classified with a simple deep learning network f (flat-
ten layer, dense 10-unit layer and softmax activation, 20 train-
ing epochs, 3.5K training samples, 1.5K test samples); t-SNE and
NNInv used for P and P~1; DBM image size n = 256 pixels,
B = 8 blocks. Image (a) shows the ground-truth DBM with labels
and confidence color- respectively saturation-coded. Images (b-d)
show the results of our binary split, confidence split, and confi-
dence sampling heuristics, the latter using nearest neighbors, bi-
linear, and bicubic interpolation. Red points show pixels where
ground-truth labels differ from our results. Our heuristics yield
practically the same decision maps, with only a few different pix-
els. The binary split method is best — only 8 pixels of the 2567

175

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

are different; the confidence sampling method is the worst; for
the latter, errors appear strictly on the decision boundaries. This
is likely since confidence varies slowly inside decision zones but
rapidly close to boundaries (see Fig. 7.2a), so our interpolation
has difficulties in the latter areas.

1.2 R
3 104 T ’
K .
o 0.8
w .01 . .
§ —— binary split
5] 0.6 4 confidence split
T | e confidence sampling (bicubic)
2 0.4
-
T 0.2
0.0 -
T T T T
500 1000 1500 2000
0.0010 4
. | e
S
» 0.0008
5 X X
3 0.0006 1 —— binary split
g confidence split
<)) —
% 0.0004 1 confidence sampling (bicubic)
H
S
~ 0.0002 4
Qo
T T T T
500 1000 1500 2000
2001 B ; R
) —— binary split 7/
b confidence split R
o 1504 confidence sampling (bicubic) /./
.g —-= ground truth
c 7/
o .
E 1004) e
3
o
£
o
o
c

T T T
500 1000 1500 2000
DBM resolution n

Figure 7.3: Label errors €4y, (a), confidence errors €., ¢ (b), and compu-
tation time (c) for our three acceleration heuristics, MNIST
dataset.

Figure 7.3 shows the errors €y, and €., and computing
time for the above experiment for different image resolutions n
(100 to 2000 pixels squared). For confidence sampling, we only
use bicubic interpolation as this yields lower errors than near-
est neighbor and bilinear (see Fig. 7.2). Error-wise, the binary
split and confidence split methods are very similar and consis-
tently lower than confidence sampling since the latter method
uses a single fixed block resolution which, if too low, is unable
to capture complex signal variations over the map image. Also,
the binary split and confidence split errors are virtually constant
with 7, while confidence sampling errors show a slight increase

176

7-4 EVALUATION OF ACCELERATION HEURISTICS

with n. Speed-wise, the binary and confidence-sampling meth-
ods show near-linear behavior in n (with a very small slope) as
opposed to the quadratic behavior of ground-truth DBM, with
the confidence-split method in between the two. The binary and
confidence-sampling methods are over one order of magnitude
faster than ground-truth DBMs. The confidence split method’s
relative low speed can be explained by the fact that it can cre-
ate up to g cells when splitting a single block as opposed to
exactly four for the binary split (see Fig. 7.1 and related text).
Note also that our maximal resolution n = 2000 exceeds by far
all reported DBM results in the literature. From the above, we
conclude that the binary split method is the clear winner when
considering computational speed and accuracy factors. As such,
we focus only on this method in our further evaluations.

7.4.2 Parameter setting for binary split heuristic

Computation time (secs) Label errors e, , (% of map pixels)
35.0 Bl E]
\ P P 0.25 P P
25 — AE AE — AE AE
SSNP SSNP SSNP SSNP
30.0 \ — PCA_NNInv . 020 — PCA NNInv
- — UMAP NNInv /\ — UMAP NNInv
— t-SNE NNInv — t-SNE NNInv
275
015
25.0
225 0.10
20.0
0.05
17.5
15.0 0.00
8 16 24 32 40 48 56 64 72 80 88 96 8 16 24 32 40 48 56 64 72 80 88 96
Initial number of blocks B Initial number of blocks B

Figure 7.4: Speed (left) and label errors (right) of binary split method
as function of initial block count B for decision maps con-
structed by various (P, P~!) methods.

Binary split has one parameter — the initial block count B —
so how to set its value? A high B will limit errors due to dense
sampling of the image, but will be slow, since f(P~!) must be
evaluated on many blocks. A low B will be fast, but as Sec. 7.3
notes, decision map details under 3 may be lost. To find a good
initial value for B, we measure both speed and label errors €,
for various B settings ranging from 8 to 96. To generalize our
findings, we test several combinations of P and P~! to compute
our ground-truth decision maps, specifically autoencoders (AE,
used for both P and P~1); SSNP (used for both P and P~!); and
DBM (PCA, UMAP, and t-SNE used for P, NNInv used for P’l).
Figure 7.4 shows the speed and label errors as function of B for

177

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

our maximally considered resolution n = 2000. We see that, label-
error-wise, all B values above roughly 32 yield (very) low errors.
Speed-wise, B values in the interval 32-64 offer best results, which
confirms our earlier observations that too low or too high B will
be slow. Also, we see that the overall speed trend as function of
B does not strongly depend on the choice of (P,P~ 1), up to a
constant bias factor. Hence, we conclude that a block size B = 32
is a good preset for FastDBM.

7.4.3 Implementation details

Our FastDBM method is implemented in Python and runs fully
on the CPU. The full source code, including datasets and experi-
ments presented here, is publicly available (Wang et al., 2025c¢).

7.5 IN-DEPTH EVALUATION OF BINARY SPLIT ACCELERA-
TION

We found that binary split works the best among the three pro-
posed heuristics (Sec. 7.4.1). We now further evaluate the binary
split heuristic using more classifiers, an additional quality metric,
and using decision maps constructed with all inverse projection
techniques that we are aware of.

7.5.1 Using additional classifiers

We evaluate the binary split method with additional combina-
tions of datasets, classifiers, and (P,P‘l) combinations used
to compute the ground-truth DBM. The datasets include Fash-
ionMNIST (Xiao et al., 2017), HAR (Anguita et al., 2012), and
Iris (Fisher, 1988). Classifiers included logistic regression (LR),
support vector machines (SVM), k-nearest neighbors (kNN), de-
cision trees (DT), random forests (RF), and the neural network
(NN) we used earlier for MNIST. It is important to note that
the accuracy of the trained classifiers is of no concern in this ex-
periment. If FastDBM approximates well the ground-truth DBM,
FastDBM can be next used next to assess how well (or poorly)
the classifiers behave.

Ground-truth DBMs were created by the DBM (t-SNE, NNInv)
and DBM (UMAP, NNInv) combinations at resolution n = 400
pixels squared. Figure 7.5 shows the ground-truth DBMs; those
created by our binary split method; 2D projections of training
samples in green and the label difference encoded by red dots as

178

7.5 IN-DEPTH EVALUATION OF BINARY SPLIT ACCELERATION

MNIST (t-SNE) FashionMNIST (t-SNE) HAR (t-SNE)

ground truth our method ground truth our method difference ground truth our method
MNIST (UMAP) FashionMNIST (UMAP)

¥

HAR (UMAP)

2 £
ground truth our method difference ground truth our method difference ground truth our method difference

Figure 7.5: Comparison between ground-truth DBM and our binary split
method for three datasets, six classifiers, t-SNE and UMAP
projections.

in Fig. 7.2, for the MNIST, FashionMNIST, and HAR datasets. We
see that our method yields visually almost identical label results
as the ground-truth — there are only few red points in the ‘differ-
ence’ images. This occurs consistently for quite different DBMs,
e.g., the smooth decision-zone DBMs created for LR, NN, SVM,
and KNN, but also the far noisier DBM created for DT, and the
overall low-confidence DBM created for RF. Additional results

179

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

for all other tested combinations, present in the supplementary
material, confirm this observation.

7.5.2 Consistency evaluation

To further confirm the visual similarity between the ground-truth
decision maps and the FastDBM versions shown in Fig. 7.5, we
next compare the map consistency metric Cons, (Eqn. 4.4) com-
puted for both cases. To recap, Cons, computes the fraction of
‘consistent” pixels in a decision map image, i.e., pixels whose cor-
responding data points (obtained by P~!) have the same class
label after a round-trip of projection and inverse projection (see
Chapter 4). If our acceleration technique works well, then the con-

fas

sistency Consy, " of the images it produces should be very close to
the consistency Cons), of the ground-truth decision map images.
Table 12 shows, for several datasets and classifiers, the values
of Consém computed by binary split for DBM (UMAP+NNInv)
and SDBM compared to the ground-truth Cons,. We see that, al-

though both ConsJ;HSt and Consy are less than the ideal value of
one (which would imply that P~! is an exact inverse of P), their
values are very close to each other. That is, the quality of the
images produced by FastDBM is very close to the ground-truth
images.

7.5.3 Accelerating additional direct and inverse projection techniques
for creating decision maps

So far, we computed our (accelerated) decision maps using
NNInv and SSNP for the inverse projection P~! since, as men-
tioned in Sec. 7.2, earlier work showed that NNInv and SSNP
are fast and accurate for this task. Yet, other inverse projection
techniques do exist, most notably iLAMP (dos Santos Amorim
etal., 2012) and the inverse projection using radial basis functions
(RBF) (Amorim et al., 2015). Earlier work has shown that both
these techniques are slower than NNInv (Espadoto et al., 2019c).
However, it is interesting to see how these techniques fare given
our acceleration. Separately, iLAMP and RBF have a quite differ-
ent behavior from the already-tested NNInv and SSNP. Hence, if
our acceleration technique can create accurate approximations of
decision maps using these inverse projections, this increases the
claims of generality of our proposal.

Figure 7.6 shows, for the MNIST dataset, the decision maps
computed by four ground-truth technique pairs (t-SNE and iL-

180

7.5 IN-DEPTH EVALUATION OF BINARY SPLIT ACCELERATION

Table 12: Consp of FastDBM wvs two ground truth methods for three

datasets and six classifiers. A Cons, = Consém - Consy. See

Sec. 7.4.

Model Metric Fashion HAR MNIST Model Metric Fashion HAR MNIST
MNIST MNIST

DT Cons, 0.4033 0.3704 0.4718 DT Cons, 0.2685 0.1515 0.3594

Cons}ffSf 0.4041 0.3659 0.4651 Consim 0.2678 0.1510 0.3616

A Cons, 0.0009 -0.0045 -0.0067 A Cons, -0.0007 -0.0005 0.0022

KNN Cons, 0.2152 0.0816 o0.1414 KNN Cons, 0.1145 0.0778 0.0950

fast fast
Consy, »

0.2159 0.0735 0.1364 Cons 0.1149 0.0767 0.0956

A Cons, 0.0007 -0.0081 -0.0049 A Cons, 0.0004 -0.0011 0.0007

LR Consy, 0.2787 o0.1776 0.2759 LR Cons, 0.0589 0.0432 0.0909

Consﬁ"” 0.2792 0.1745 0.2727 Consﬁm 0.0591 0.0431 0.0910

A Cons, 0.0005 -0.0031 -0.0032 A Cons, 0.0003 -0.0001 0.0002

NN Consy, 0.2959 0.1740 o0.2810 NN Cons, 0.0725 0.0320 0.0872

Consﬁm 0.2969 0.1712 0.2785 Cons{’m 0.0726 0.0321 0.0881

A Cons, 0.0010 -0.0028 -0.0025 A Cons, 0.0001 0.0001 0.0009

RF Cons, 0.2480 0.2477 0.3009 RF Cons, 0.1455 0.0655 0.2174

fast fast
Consy, »

0.2464 0.2400 0.2955 Cons 0.1456 0.0658 0.2178

A Cons, -0.0016 -0.0077 -0.0053 A Cons, 0.0001 0.0002 0.0004

SVM Cons, 0.2153 0.1591 0.2470 SVM Cons, 0.0597 0.0364 0.0893

Cons{;”Sf 0.2149 0.1551 0.2458 Cons{,m 0.0603 0.0364 0.0898
A Cons, -0.0004 -0.0039 -0.0013 A Cons, 0.0006 -0.0000 0.0006
(a) DBM (UMAP+NNInv) (b) SDBM

AMP, UMAP and iLAMP, t-SNE and RBF, and UMAP and RBF)
and their counterparts produced by our binary split acceleration.
The ground-truth maps are noisier than those we computed so
far using NNInv and SSNP for P!, in line with earlier find-
ings (Espadoto et al., 2019c; Rodrigues et al., 2018). Our binary
split method captures these ground truth images quite well — the
label difference images show only a few pixels where our results
differ from the ground truth, much like in Fig. 7.5. Our method
speeds up the computation of most maps — see timing figures in
the lower-left corners of the images. Speed up is overall much
smaller except for the t-SNE and iLAMP combination. This is
due to the high irregularity of the decision boundaries in this
case, which generates a very large amount of cell splits — see the
corresponding ‘binary split process’ images in Fig. 7.6.
Concluding, we claim that our binary split heuristic creates
accurate decision maps for all existing inverse projections we are
aware of; and, for most cases except very noisy decision maps

181

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

t-SNE + iLAMP UMAP + iLAMP

404:077/s 352.29]s
Decision map (ground truth) Decision map (binary split)
PR DAY o B > i =

Ay//‘

446%/2: s

Label difference Binary split process

t-SNE + RBF UMAP + RBF

Label difference

1¥65]s

Decision map (binary split)
T

Decision map (ground truth) Decision map (binary split) Decision map (ground truth)

Label difference Binary split process Label difference Binary split process

Figure 7.6: Maps computed using the iLAMP and RBF inverse projec-
tions in combination with the t-SNE and UMAP direct projec-
tions for the MNIST dataset. Resolution: 2562. See Sec. 7.5.3.

(which are likely not useful in practice), it also accelerates the
map computation by several factors.

76 ACCELERATING THE COMPUTATION OF CONTINUOUS
MAPS

So far, our binary split method only works for maps with label
values like classification functions f : R” — C. However, several
maps used in classifier visualization have continuous values, i.e.,
are of the form f : R” — R. Examples are the gradient maps G
(Eqn. 4.5), distance-to-closest-training sample dp (Eqn. 4.7), and
distance-to-decision boundary dp (Eqn. 4.6). In general, one can-
not reduce such continuous maps to the computation and com-

182

76 ACCELERATING THE COMPUTATION OF CONTINUOUS MAPS

parison of purely categorical (label) values. Yet, we would like to
accelerate their computation.

To do this, we generalize the binary split idea by replacing the
label comparison (see Sec. 7.3) with a threshold comparison. For
a dataset D, we compute this threshold globally as

T (max f(P(p) - min (P (P))) . (7
peB peB

Simply put, T is a fraction of the range of the function f over the

map. B denotes the set of center pixels of the initial B> blocks.

t=¢ 5 isa decreasing function of the block size d, i.e., smaller
blocks will use a higher threshold. The intuition behind this is
that smaller blocks already capture f at a higher resolution so
we make them harder to further split to reduce over-refinement.
Conversely, if f exhibits even a small variation over large blocks,
this is a reason to split these to capture further details. The last
parameter « is a scaling factor. When the difference between the
maximum and minimum values of the four neighbors of a block
including the block itself exceeds T, we split the block.

Distance-to-boundary maps which compute dp (Eqn. 4.6) are
a first example of such continuous maps. Figure 7.7 shows the
results of accelerating the computation of dp at resolution 5122
pixels for the three datasets as in Fig. 7.5, and for all four inverse
projection techniques we are aware of (NNInv, SSNP, RBF, and
iLAMP) with UMAP as the direct projection. For all inverse pro-
jection techniques, we show the ground-truth dg map, the map
computed by our binary split acceleration, and the blocks cre-
ated by the binary split process. Ground-truth maps are visually
almost identical from those computed by our binary split heuris-
tic. Speed-wise, our binary split heuristic is up to roughly ten
times faster than computing the ground truth, see the figures in
the bottom-left corners in the respective images in Fig. 7.7. This
speed-up is in line with what we visually see as amounts of cells
being split in the rightmost columns in Fig. 7.7 — the largest cells
in those columns indicate the original block sizes, that is, using
B = 32 initial cells for the acceleration heuristic, as explained
earlier in Sec. 7.4.

Gradient maps G (Eqn. 4.5) are a second example of contin-
uous maps we can accelerate. Figure 7.8 shows gradient maps
computed by ground truth and our generalized binary split ac-
celeration for the same dataset-projection-inverse projection com-
binations as shown in Fig. 7.7. Our accelerated maps are very
similar to the ground truth, while the computation time is up to

183

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

Ground Truth Binary Split Binary Split Process Ground Truth Binary Split Binary Split Process

RBF

-9
161854 s

FashionMNIST

iLAMP

142.02 s

RBF

164.23 s

MNIST

573.69's

RBF

145.48]s)

HAR

iLAMP

Figure 7.7: Distance-to-decision-boundary maps dp for the generalized
binary split method, three datasets (resolution: 5122). See
Sec. 7.6.

10 times lower — see timing figures in the lower-left corners of the
images.

Figure 7.9 shows a final example of continuous maps, namely
distance-to-closest sample maps dp (Eqn. 4.7). As for dg and G,
our acceleration yields practically the same images with high
speed-ups vs ground truth. Given these results and the fact that
our binary split works entirely agnostically on the nature of the
function f, we claim that similar results can be obtained for any
function f : R" — R that produces a real value from an inversely-
projected 2D pixel. The only implicit assumption our acceleration
method makes for f is that it should be locally smooth, i.e., not
have unbounded variations on a small spatial extent, so that we
can use the threshold computed by Eqn. 7.4 to locate map areas
needing subdivision.

To find a suitable choice for «, we executed a grid search over
the range [0,0.6] by evaluating both computation time and MSE

184

76 ACCELERATING THE COMPUTATION OF CONTINUOUS MAPS

Ground Truth Binary Split i Ground Truth Binary Split

FashionMNIST

MNIST

HAR

374.38's 202.73's i

Figure 7.8: Gradient maps G for the generalized binary split, three
datasets (resolution: 5122). See Sec. 7.6.

error of our resulting map vs the ground-truth maps G, dp, and
dp for the MNIST dataset. The MSE error is computed analo-
gously to €.nr (Eqn. 7.3). Figure 7.10 shows the search results.
For larger « values, we get higher errors since the split threshold
T is larger, so fewer block refinements (splits) occur; for smaller
values, the error decreases but the computational time increases,
since there are more splits. We found that « € [0.1,0.2] is a good
choice balancing between speed and accuracy. Specifically, we set
a = 0.125 for G, « = 0.1 for dp, and &« = 0.15 for dp consistently
in all our following experiments.

Figure 7.11 shows the computation times and normalized MSE
errors of our generalized binary split method for different im-
age sizes and for all the three maps dp, G, and dp. The results
are quite similar with the binary split used for label-based maps
(Fig. 7.3¢): Our method is roughly linear in the map resolution (as
compared to quadratic in resolution for the brute-force ground
truth computation), while errors decrease inversely quadratically

185

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

Ground Truth Binary Split

FashionMNIST

549.77 s

MNIST

HAR

351.98js! 93.92s]

Figure 7.9: Distance to nearest sample maps dp for the generalized
binary split method, three datasets (resolution: 5122). See
Sec. 7.6.

with resolution. All in all, the above results show us that the gen-
eralized binary split is a computationally effective and accurate
way to accelerate the construction of continuous maps.

7.7 DISCUSSION

We next discuss several aspects of our method.

Genericity: Our acceleration method based on the binary split
can accommodate the construction of classifier maps for any func-
tion f : R" — IR. This covers, but is not restricted to, the ac-
tual classification label F, gradient maps G, distance-to-boundary
maps dp, and distance-to-closest-training sample maps dp. We
can accelerate the computation of all such functions, while pre-
serving their accuracy, in a black-box manner, i.e., without know-
ing anything additional about what the respective functions cap-

186

7.7 DISCUSSION

Search Threshold for dp Search Threshold for G Search Threshold for dg
—— UMAP+NNInv 254
44 t-SNE+NNInv 157
_ —— SSNP 201
0
8
& 151 10
2
£ 1.0
[5 4
051"’
0.0 7 T T T 0 T T T
0.005
0.0008 0.008 4 0.004 |
0.0006
w 0.006 0.003 4
s
5 0.0004 4 \
0.004 4 0.002 4
N
0.0002 A
0.002 4 0.001 4
———
0.0000 T T T T T T T T T
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Threshold a Threshold a Threshold a

Figure 7.10: Generalized binary split method: Search for the best thresh-
old a for the MNIST dataset. Columns show different clas-
sifier maps (dp, G, dg). Top row shows computation time.
Bottom row shows computation error.

Binary Split for dp (@ =0.1) Binary Split for G (a =0.125) Binary Split for dg (@ =0.15)
50 . .
—— NNInv binary split / 254 —— NNInv binary split /s 150 4 —— NNInv binary split e
40 1 SSNP binary split ~ ,/ SSNP binary split ~,* 125 4 SSNP binary split //"/
_ ——- NNInv ground truth ’ 209 __. NNInv ground truth ’ —=~- NNInv ground truth 7
?J 304 ——- SSNPground truth /' 154077 SSNP ground truth 1004 === SSNP ground trth
° o ’ 751 -
P
£ 10 pa
= 50 Vil
5 -~
] 254 id
e
0 01~
T T T T T T T T T T T
R -] 0-005 R . . .
0.0004 4 —— NNInv binary split — NNInv binary split | 020 4 —— NNInv binary split
SSNP binary split 0.004 4 SSNP binary split SSNP binary split
0.0003 4 0.015 4
e 0.003 A
£ 0.0002 4 0.010 4
]
0.002 +
0.0001 4 0.005 +
0.001
0.0000 1 0.000
T T T T v T T T T v T T T T T
200 400 600 800 1000 200 400 600 800 1000 100 200 300 400 500
Resolution Resolution Resolution

Figure 7.11: Performance of the generalized binary split method with
varying grid resolutions for NNInv and SSNP on the MNIST
dataset. Columns show different classifier maps (dp, G, dp)
with optimized thresholds «. Top row shows computation
time for binary split and ground truth methods. Bottom row
shows the error as the image resolution increases.

187

FAST COMPUTATION FOR DECISION MAPS AND CLASSIFIER MAPS

ture or how they are computed. The only constraint we have is
that such functions are smooth.

Performance: Our experiments showed a consistent performance
gain of our binary split heuristic of roughly 5 times with respect
to the brute-force computation of the decision maps at each pixel.
This figure varies mainly as a function of the smoothness of the
inverse projection method P~! being used: NNInv, SSNP, and
RBF are relatively speaking smooth mappings so they require less
block splits to capture their variation, thus, yield higher speed-
ups. In contrast, iLAMP is far less smooth so it requires many
more block splits, thereby reducing our speed-ups to roughly 1
to 2 times. Practically, for the inverse projection methods NNInv
and SSNP, which were earlier found to be the most reliable for
computing decision maps, our acceleration yields roughly linear
times vs the map resolution as compared to quadratic time for
the brute-force computation.

Quality: All our experiments showed that we can obtain the
maps virtually identical visually to the ground-truth ones no
matter which type of function we visualize. Moreover, the qual-
ity, measured in terms of normalized MSE vs ground truth, only
increases with the image resolution. This means that our acceler-
ated maps can be safely substituted for the brute-force-computed
ones for all practical reasons.

Ease of use: Our acceleration method is essentially parameter-
free — the only two parameters B (initial block count, see
Sec. 7.3.1) and a (controlling the split threshold for continuous
mappings, see Eqn. 7.4) have well-tested presets which are inde-
pendent on the classification model, choice of direct and inverse
projections P and P~!, and type of map being computed.

Limitations: The key assumption behind our acceleration is that
the combination of function f we aim to visualize with the in-
verse projection function P~! is smooth and has bounded varia-
tion over IR?. While this is true of all f and P~! we know of, and
is also in line with the well-known smoothness assumption un-
derlying most machine learning methods for f, that cases could
exist where smoothness would not hold. In such cases, it is pos-
sible that our acceleration does not yield worthwhile speed-ups
and/or the accelerated maps have visible errors as compared to
the ground truth ones. Separately, we believe that the confidence
split method (Sec. 7.3.2) has not yet reached its true potential.
Better interpolation schemes than our current linear one should
be able to decrease the number of generated cells and thereby
achieve higher performance at the same quality level as com-

188

7.8 CONCLUSION

pared to the so far currently best-ranked binary split. Another
open challenge lies in scaling decision map visualizations to a
large number of classes. In that case, encoding class values in
categorical colors will not work well. This limitation is broadly
shared by many visualizations that use categorical color maps to
encode class values. Potential solutions can group class values
hierarchically to reduce the needed color count and offer detail-
on-demand interactively. Note that this scalability problem only
affects decision maps (which depict class value) and not the clas-
sifier maps (which depict real-valued quantities).

7.8 CONCLUSION

We have presented FastDBM, a technique for accelerating the
computation of maps that describe the working of general-
purpose classification models. Our technique is agnostic of the
exact type of maps being computed as shown by its appli-
cation to create maps of classification label, classification con-
fidence, distance-to-classification-boundary, distance-to-closest-
training sample, and gradient maps. We show that our technique
can be applied to not only to decision maps but also real-valued
maps; and also show high speed-ups and accuracy for more com-
binations of direct and inverse projection methods used to com-
pute the maps. Practically, we show that our method can com-
pute classifier maps that are visually almost identical to ground-
truth ones with a speed-up of one order of magnitude on aver-
age. This allows the further deployment of such visualizations in
interactive visual analytics workflows for classifier engineering.
Our method depends on just two free parameters for which we
provide good preset values. Our method can accelerate any cur-
rent classifier map computation technique, and can be applied to
any trained classifier model, as it only requires access to the in-
verse projection function this technique uses, respectively to the
black-box execution of the trained model.

Future work aims to explore our acceleration technique to
compute additional classifier maps. Also, we consider speeding
up our method by more advanced sampling and interpolation
schemes, GPU execution, and evaluating it on novel direct and
inverse projection methods which arrive in the infovis arena. In
parallel, measuring the added value of computing near-real-time
classifier maps for classifier engineering, e.g., in the context of
visual active learning, is a key goal we aim at.

189

CONCLUSIONS

We close this thesis by revisiting our contributions and discussing
future research directions.
In Chapter 1, we introduced our key research question:

How can we improve decision map methods to understand and
control which parts of the data space they sample, leading to desirable
quality values, with high computational performance?

This question was next refined into four more specific research
questions that address quality, coverage, control and interactiv-
ity of decision maps, respectively:

RQ1: How can we define such quality metrics and how do cur-
rent decision map methods fare with respect to each other
from the perspective of such metrics?

RQ2: How do decision map methods differ in their sampling of
the data space? Does this sampling depend on the data di-
mensionality or depicted classification model?

RQ3: How can we enable users to control the parts of the data
space depicted by a decision map in simple, interactive,
ways?

RQ4: Can we significantly improve this computation time for cre-
ating decision maps for any classification model and for
any type and dimensionality of datasets?

Next, in Chapter 2, we presented related work related to di-
mensionality reduction (direct and inverse projections) and deci-
sion maps. We highlighted how ML methods, in particular deep
learning, can assist (inverse) projection and decision map compu-
tation; and also how projections and decision maps are key in-
struments for the exploration of ML models and related datasets.
Apart from elaborating on the natural synergy between DL and
MR in Chapter 2, our main thesis contributions come in the next
chapters, as follows.

191

CONCLUSIONS

8.1 DECISION MAPS IN PRACTICE

In Chapter 3, we presented an application of decision maps for
understanding a mineral genesis classification problem in practi-
cal setting. Specifically, we created a decision map for a classifier
trained on pyrite trace elements data to classify its formation en-
vironment. We demonstrated two use cases of the decision map:
(1) providing extra evidence for a mineral deposit whose genetic
environment is in debate; (2) visually identifying the most impor-
tant trace elements for the classification.

Our work contributes to both the information visualization
community and the mineralogy community by showing how de-
cision maps, extended by additional features, can be efficient and
effective instruments to interpret classification models and arrive
at a better understanding of the involved data dimensions. While
this work showed the added value of decision maps in research
where the target users are not ML experts, it also highlighted the
need for a comprehensive evaluation of existing decision maps,
and the need for several enhancements of the by-then existing
decision map techniques so as to make them more flexible and
more informative. At a high level, our work here did not directly
answer RQ1 — RQg but demonstrated that, since decision maps
are useful instruments in practice, answering these questions is
next important to further increase the efficiency and effectiveness
of decision maps.

8.2 QUALITY OF DECISION MAPS

In Chapter 4, we conducted a series of comprehensive assess-
ments for the three state-of-the-art decision maps methods,
namely DBM, SDBM, and DeepView, combined with several com-
mon classifiers, on a range of both synthetic and real-world
datasets, which addresses RQ1 (quality of decision maps). In
this work, we proposed six global metrics and four local metrics
to measure the global and local quality of decision maps, respec-
tively.

Our results showed that none of the evaluated decision map
techniques consistently outperforms the others in all measured
aspects. Separately, our analysis exposed several previously un-
known properties and limitations of decision map techniques. In
particular we saw that all the studied decision map methods have
inherent limitations in various quality aspects; and that these
limitations can fluctuate significantly depending on the dataset
and/or classifier being explored. To support practitioners, we

192

8.3 COVERAGE OF DECISION MAPS

also propose a workflow for selecting the most appropriate de-
cision map technique for given datasets, classifiers, and require-
ments of the application at hand.

8.3 COVERAGE OF DECISION MAPS

One of our most surprising discoveries in Chapter 4 is that all
the three examined decision map methods produce surface-like
structures on a synthetic 3D dataset. At the time of the respective
work, this indicated a potential limitation in the coverage of the
data space by inverse projections and decision maps. In Chap-
ter 5, we elaborated to elucidate this potential limitation. For this,
we further investigated the coverage of inverse projections and
decision maps in more scenarios, i.e., additional datasets of differ-
ent dimensionalities, more classifiers for creating decision maps,
and more direct and inverse projection method combinations to
create the maps, thereby addressing RQz2 (coverage of decision
maps). We studied the said methods by using both visual assess-
ment and quantitative assessment based on the intrinsic dimen-
sionality of the backprojected surfaces.

Our results demonstrate that, despite differences in the behav-
ior of various inverse projection methods, all the studied tech-
niques essentially capture only two-dimensional structures em-
bedded within the data space, regardless of the dimensionality
of the data space or the classifier used. This work — which we
consider to be the first key result of this thesis — highlights the
fundamental limitations of all studied decision map techniques,
particularly in terms of the extent to which they represent a clas-
sifier’s behavior and the specific regions and ways in which they
capture this behavior. Understanding these limitations is crucial
both for selecting an appropriate technique to construct decision
maps and for accurately interpreting the resulting maps in prac-
tice. Additionally, we also found the dimensionality of the pro-
jection space ¢ has an impact on the intrinsic dimensionality of
inverse projections.

84 CONTROLLABLE INVERSE PROJECTIONS

In Chapter 6, we proposed LCIP, to our knowledge the first con-
trollable inverse projection method — which we consider to be the
second key result of this thesis. Our method overcomes the sur-
face dimensionality of backprojections studied in Chapter 5 and
thereby addresses RQ3 (control of decision maps). To achieve

193

CONCLUSIONS

this control, we first found a latent space which is disentangled
from the 2D projection space, and then designed a control mecha-
nism to manipulate this latent space. The inverse projection, com-
puted via deep learning, is then updated based on the manipula-
tion of the latent space, as our proposed inverse projection takes
both the latent space and the 2D projection space as input. Addi-
tionally, we managed to found a reasonable initial status for the
latent space and thereby the inverse projection, named as ‘LCIP
(fixed)” in Chapter 6.

Our evaluations showed that, without conducting the control,
LCIP (fixed) are already comparable to existing inverse projec-
tion methods. When adding control, LCIP can hit higher intrin-
sic dimensionalities, and more importantly, can generate more
diverse and meaningful inverse projections that no existing in-
verse projection methods can achieve. We also demonstrated the
application of LCIP in style transfer application.

85 FAST DECISION MAP? COMPUTATION

In Chapter 7, we presented FastDBM, a set of techniques for
accelerating the computation of classifier maps (decision maps
and other maps related to inverse projections) thereby address-
ing RQ4 (interactivity of decision maps). Our core idea is based
on an initially sparse sampling of the image space, followed by
local recursive refinement of areas marked as containing rapid
changes of the depicted signal.

Our evaluations showed that FastDBM can compute classifier
maps that are visually almost identical to ground-truth ones with
a speed-up of over one order of magnitude. Importantly, our
method can accelerate any current classifier map computation
technique, e.g. decision boundary maps, gradient maps, or dis-
tance to data maps; and can be applied to any trained classifier
model, as it only requires access to the inverse projection func-
tion this technique uses, respectively to the black-box execution
of the trained model (or property to be evaluated on that model).
Importantly, FastDBM works with both discrete maps (e.g. deci-
sion boundary maps) and continuous maps (all other aforemen-
tioned examples) in similar ways and with similar computational
effort. FastDBM is, we believe, an important step towards the ap-
plication of classifier maps in interactive visual analytics scenar-
ios where users need to rapidly recompute and examine such
maps.

194

8.6 DIRECTIONS FOR FUTURE WORK

8.6 DIRECTIONS FOR FUTURE WORK

Based on our research, we foresee several new directions for fu-
ture work.

Enhancements of LCIP: In Chapter 6, we proposed LCIP, a
controllable deep-learning-based inverse projection method. All
the enhancements in Section 2.3.4.2, such as gradient maps or dis-
tance to boundary maps, can benefit from the extra freedom that
our user control offers. More interestingly, additional enhance-
ments can be particularly designed for LCIP particularly, based
on its dynamic control. For example, since we know the inverse
projection of a pixel image is a surface-like structure, we can vi-
sualize the distance of each data sample to this surface. This en-
hancement would (1) provide clues to users about the selections
of target points before the interaction; and (2) intuitively show
how far the inversely projected ‘surface’ moves when users con-
duct the interactions. Additionally, combining LCIP with Fast-
DBM would significantly increase the interactivity rate which is
key to LCIP.

Applications of LCIP: In Chapter 6, we have only demon-
strated one application of LCIP — style transfer. We envision that
LCIP can be applied to a wide range of applications in the context
of VIS4ML, such as data augmentation, building controllable de-
cision maps, and active learning. Future work could explore these
applications in more details. One of the obvious low-hanging
fruits is to apply LCIP to the data augmentation task. Rodrigues
(2020) have shown that the original DBM method can be used to
generate new samples for a training set and therefore improve
the performance of a classifier — an approach further verified in
a different application context by Benato et al. (2024). As our
work showed that all previous inverse projection methods can
only cover a surface-like structure in the data space, the samples
generated by these methods are limited. In contrast, we believe
that LCIP can generate more diverse samples for the training set,
and therefore improve the performance of classifier training more
effectively.

More advanced architectures for neural network (inverse)
projection methods: So far, all the existing deep learning-based
projection and inverse projection methods, including our pro-
posed LCIP, use only simple fully connected neural networks.
Future work could explore more advanced architectures, such as
adding attention mechanisms to enhance the ability to focus on
critical features for learning (inverse) projections, or leveraging

195

CONCLUSIONS

diffusion models for more robust inverse projection processes.
We foresee that using such advanced techniques can open new
perspectives for decision maps and make them even more suit-
able and effective for assisting machine learning tasks.

Handling modern AI models: Our work showed that decision
maps can be computed to bring useful insights for classification
models. However, much of the current Al research moves into the
direction of developing and deploying regression models such as
the Large Language Models (LLMs) or image transformers well
known via ChatGPT or DALL-E, to mention just a few. As such
models start claiming an increasingly large share of the interest
of both developers and end users of Al, a key question is whether
decision maps can be adapted to convey insights in their working,
much as we showed they can do for classification models. While
we did not attack this question in this thesis, we believe that our
contributions form a starting basis for this exploration: Our re-
search questions RQ1 — RQ4, and our methodology to answer
them, are directly applicable to the study of future decision-map-
like methods designed for regressors. Additionally, the results we
obtained for decision maps, most notably the limited coverage
of control-free methods; the possibility for adding interactivity
by capturing information lost by projections; and the possibility
of accelerating map construction by hierarchical division of the
image space, can be direct starting points for future researchers
aiming to design regressor maps.

196

BIBLIOGRAPHY

G. Alicioglu and B. Sun. A survey of visual analytics for Explain-
able Artificial Intelligence methods. Computers & Graphics, 102
(C):502-520, 2022.

B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convo-
lutional neural networks learn class hierarchy? Ileee tucg, 24(1):
152-162, 2018.

E. Amorim, E. Vital Brazil,]. Mena-Chalco, L. Velho, L. G. Nonato,
F. Samavati, and M. Costa Sousa. Facing the high-dimensions:
Inverse projection with radial basis functions. Computers &
Graphics, 48:35—47, 2015.

W. Amorim, A. Falcdo, J. Papa, and M. Carvalho. Improving
semi-supervised learning through optimum connectivity. Pat-
tern Recognition, 60(C):72-85, 2016.

N. Andrienko, G. Andrienko, G. Fuchs, A. Slingsby, C. Turkay,
and S. Wrobel. Visual analytics for data scientists. Springer, 2020.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J.L. Reyes-Ortiz.
Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. In Proc. Intl. Work-
shop on ambient assisted living, pages 216—223. Springer, 2012.

A. Ansuini, A. Laio, J. H. Macke, and D. Zoccolan. Intrinsic di-
mension of data representations in deep neural networks. In
Proc. NeurIPS, volume 32, 2019.

G. Appleby, M. Espadoto, R. Chen, S. Goree, A. Telea, E.W.
Anderson, and R. Chang. HyperNP: Interactive Visual Ex-
ploration of Multidimensional Projection Hyperparameters.
arXiv:2106.13777 [cs], 2021.

S.O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular
learning. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 6679—-6687, 2021.

M. Aumdiller and M. Ceccarello. The Role of Local Intrinsic Di-
mensionality in Benchmarking Nearest Neighbor Search, 2019.
URL http://arxiv.org/abs/1907.07387. arXiv:1907.07387 [cs].

197

http://arxiv.org/abs/1907.07387

BIBLIOGRATHY

M. Aupetit. Visualizing distortions and recovering topology
in continuous projection techniques. Neurocomputing, 10(7—9):
1304—1330, 2007.

C. Azodi,]. Tang, and S. Shiu. Opening the black box: Inter-
pretable machine learning for geneticists. Trends Genet, 36(6):

442—455, 2020.

J. Bac, E.M. Mirkes, A.N. Gorban, I. Tyukin, and A. Zinovyev.
Scikit-Dimension: A Python Package for Intrinsic Dimension
Estimation. Entropy, 23(10):1368, 2021.

N. Bahadur and R. Paffenroth. Dimension Estimation Using
Autoencoders, 2019. URL http://arxiv.org/abs/1909.10702.
arXiv:1909.10702 [cs, stat].

Z.U. Bajwah, P.K. Seccombe, and R. Offler. Trace element distri-
bution, Co:Ni ratios and genesis of the big cadia iron-copper
deposit, new south wales, australia. Mineral. Deposita, 22(4):
292-300, 1987.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization:
a geometric frame- work for learning from labeled and unla-
beled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.

I. Belousov, R.R. Large, S. Meffre, L. V. Danyushevsky, J. Stead-
man, and T. Beardsmore. Pyrite compositions from VHMS and
orogenic Au deposits in the Yilgarn Craton, Western Australia:
Implications for gold and copper exploration. Ore Geology Re-
views, 79:474-499, 2016.

E. A. Belousova, W. L. Griffin, S.Y. O’Reilly, and N.I. Fisher. Ap-
atite as an indicator mineral for mineral exploration: trace-
element compositions and their relationship to host rock type.
Journal of Geochemical Exploration, 76(1):45-69, 2002a.

E. A. Belousova, W.L. Griffin, S. Y. O’Reilly, and N.L. Fisher. Ig-
neous zircon: trace element composition as an indicator of
source rock type. Contributions to mineralogy and petrology, 143
(5):602—622, 2002b.

B.C. Benato, C. Grosu, A. X. Falcdo, and A.C. Telea. Human-in-
the-loop: Using classifier decision boundary maps to improve
pseudo labels. Computers & Graphics, 124:104062, 2024.

B.C. Benato, A.C. Telea, and A.X. Falcao. Semi-Supervised
Learning with Interactive Label Propagation Guided by Fea-
ture Space Projections. In Proc. SIBGRAPI, pages 392—399. IEEE,
2018.

198

http://arxiv.org/abs/1909.10702

BIBLIOGRAPHY

B.C. Benato, J.F. Gomes, A.C. Telea, and A.X. Falcdo. Semi-
Automatic Data Annotation guided by Feature Space Projec-
tion. Pattern Recognition, 109:107612, 2021.

R. Bennett. The intrinsic dimensionality of signal collections.
IEEE Trans. Inform. Theory, 15(5):517-525, 1969.

K.]J. Bergen, P. A. Johnson, M. V. de Hoop, and G. C. Beroza. Ma-
chine learning for data-driven discovery in solid Earth geo-
science. Science, 363(6433):eaau0323, 2019.

J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedl-
mair. Comparing visual-interactive labeling with active learn-
ing: An experimental study. IEEE TVCG, 24(1):298-308, 2017.

D. Blumberg, Y. Wang, A. Telea, D. A. Keim, and F. L. Dennig. In-
verting Multidimensional Scaling Projections Using Data Point
Multilateration. In EuroVis workshop on visual analytics (EuroVA).
The Eurographics Association, 2024.

R. Bodnar, P. Lecumberri-Sanchez, D. Moncada, and M. Steele-
Maclnnis. 13.5 - Fluid Inclusions in Hydrothermal Ore De-
posits. In Treatise on Geochemistry (Second Edition), pages 119—
142. Elsevier, 2014.

I. Borg and P.J. F. Groenen. Modern multidimensional scaling: theory
and applications. Springer series in statistics. Springer, 2nd ed
edition, 2005.

R. Borgo, J. Kehrer, D.H.S. Chung, E. Maguire, R.S. Laramee,
H. Hauser, M. Ward, and M. Chen. Glyph-based visualization:
Foundations, design guidelines, techniques and applications.
In Eurographics 2013 - state of the art reports. The Eurographics
Association, 2013.

A. Botchkarev. Performance metrics (error measures) in ma-
chine learning regression, forecasting and prognostics: Prop-
erties and typology. Interdisciplinary J. of Information, Knowledge,
and Management, 14:45-79, 2019.

A. Bralia, G. Sabatini, and F. Troja. A revaluation of the Co/Ni
ratio in pyrite as geochemical tool in ore genesis problems. Min-

eral. Deposita, 14(3):353-374, 1979.

C. Bredius, Z. Tian, and A. Telea. Visual Exploration of Neural
Network Projection Stability. In Proc. MLVis, 2022.

L. Breiman. Random Forests. Mach. Learn., 45(1):5-32, 2001.

199

BIBLIOGRATHY

K. Breiter, J. Duri$ové4, and M. Dosbaba. Chemical signature of
quartz from S-and A-type rare-metal granites—A summary. Ore
Geology Reviews, 125:103674, 2020.

F. Camastra. Data dimensionality estimation methods: a survey.
Pattern Recognit., 36(12):2945-2954, 2003.

P. Campadelli, E. Casiraghi, C. Ceruti, and A. Rozza. Intrinsic
dimension estimation: Relevant techniques and a benchmark
framework. Math. Probl. Eng., 2015:1-21, 2015.

D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine learning
interpretability: A survey on methods and metrics. Electronics,
8(8):832, 2019.

A. Chattopadhay, A. Sarkar, P. Howlader, and V. Balasubrama-
nian. Grad-CAM++: Generalized gradient-based visual expla-
nations for deep convolutional networks. In Proc. IEEE WACYV,
2018.

A. Chatzimparmpas, R.M. Martins, I. Jusufi, and A. Kerren. A
survey of surveys on the use of visualization for interpreting
machine learning models. Information Visualization, 19(3):207-
233, 2020a.

A. Chatzimparmpas, R. M. Martins, and A. Kerren. t-viSNE: In-
teractive assessment and interpretation of t-SNE projections.
IEEE TVCG, 26(8):2696—2714, 2020b.

A. Chatzimparmpas, K. Kucher, and A. Kerren. Visualization
for trust in machine learning revisited: The state of the field
in 2023. IEEE Computer Graphics and Applications, 44(3):99-113,
2024.

A. Chatzimparmpas, R.M. Martins, A.C. Telea, and A. Kerren.
DeforestVis: Behavior Analysis of Machine Learning Models
with Surrogate Decision Stumps, 2023. URL http://arxiv.org/
abs/2304.00133. arXiv:2304.00133 [cs].

N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique. JAIR,
16:321—-357, 2002.

Y. Choi, Y. Uh, J. Yoo, and J.W. Ha. StarGAN v2: Diverse im-
age synthesis for multiple domains. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2020.

200

http://arxiv.org/abs/2304.00133
http://arxiv.org/abs/2304.00133

BIBLIOGRAPHY

D.B. Coimbra, R.M. Martins, T.T. Neves, A.C. Telea, and F. V.
Paulovich. Explaining three-dimensional dimensionality re-
duction plots. Information Visualization, 15(2):154-172, 2016.

T.H. Colding and W.P. Minicozzi. Shapes of embedded minimal
surfaces. Proceedings of the National Academy of Sciences, 103(30):
11106—11111, 2006.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward
feature space analysis. IEEE TPAMI, 24(5):603—619, 2002.

K. A. Cook and].J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report,
Pacific Northwest National Laboratory (PNNL), Richland, WA
(US), 2005.

C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn.,
20(3):273-297, 1995.

D.R. Cox. Two further applications of a model for binary regres-
sion. Biometrika, 45(3/4):562-565, 1958.

J. Cunningham and Z. Ghahramani. Linear dimensionality reduc-
tion: Survey, insights, and generalizations. J. Mach. Learn. Res.,
16:2859-2900, 2015.

A.P. Deditius, M. Reich, S.E. Kesler, S. Utsunomiya, S.L. Chrys-
soulis, J. Walshe, and R.C. Ewing. The coupled geochem-
istry of Au and As in pyrite from hydrothermal ore deposits.
Geochimica et Cosmochimica Acta, 140:644-670, 2014.

V. Dibia and C. Demiralp. Data2Vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neu-
ral networks. IEEE Computer Graphics & Applications, 39(5):33—
46, 2019.

E. Duarte, F. Sikanski, F. Fatore, S. Fadel, and F.V. Paulovich.
Nmap: a novel neighborhood preservation space-filling algo-
rithm. IEEE TVCG, 20(12):2063-2071, 2014.

I. El Moudden, S. El Bernoussi, and B. Benyacoub. Modeling
human activity recognition by dimensionality reduction ap-
proach. In Proc. IBIMA, pages 1800-1805, 2016.

J.L. Elman. Finding structure in time. Cognitive science, 14(2):
179-211, 1990.

201

BIBLIOGRATHY

S. van den Elzen, G. Andrienko, N. Andrienko, B. Fisher, R. Mar-
tins, J. Peltonen, A. Telea, and M. Verleysen. The flow of trust:
A visualization framework for externalizing, exploring and ex-
plaining trust in ML applications. IEEE CG &A, 43(2):78-88,
2023.

M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. To-
ward a quantitative survey of dimension reduction techniques.
IEEE TVCG, 27(3):2153—2173, 2019a.

M. Espadoto, F.C. M. Rodrigues, and A. Telea. Visual analytics
of multidimensional projections for constructing classifier deci-
sion boundary maps. In Proc. IVAPP. SCITEPRESS, 2019b.

M. Espadoto, F.C. M. Rodrigues, N.S.T. Hirata, and R. Hirata Jr.
Deep Learning Inverse Multidimensional Projections. In Proc.
EuroVA. The Eurographics Association, 2019c.

M. Espadoto, N.S.T. Hirata, and A.C. Telea. Deep learning mul-
tidimensional projections. Information Visualization, 19(3):247-
269, 2020.

M. Espadoto, G. Appleby, A. Suh, D. Cashman, M. Li, C. E. Schei-
degger, E.W. Anderson, R. Chang, and A.C. Telea. UnPro-
jection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data. IEEE TVCG, 29(2):1559-1572, 2021a.

M. Espadoto, N. Hirata, and A. Telea. Self-supervised Dimension-
ality Reduction with Neural Networks and Pseudo-labeling. In
Proc. IVAPP, pages 27-37. SciTePress, 2021b.

M. Espadoto, F. Rodrigues, N. Hirata, and A. Telea. OptMap: Us-
ing Dense Maps for Visualizing Multidimensional Optimiza-
tion Problems. In Proc. IVAPP, pages 123-132. SCITEPRESS -
Science and Technology Publications, 2021c.

M. Espadoto, F.C. M. Rodrigues, N.S. T. Hirata, and A.C. Telea.
Visualizing high-dimensional functions with dense maps. SN
Computer Science, 4(230), 2023.

E. Facco, M. d’Errico, A. Rodriguez, and A. Laio. Estimating
the intrinsic dimension of datasets by a minimal neighborhood
information. Sci Rep, 7(1):12140, 2017.

M. Fan, N. Gu, H. Qiao, and B. Zhang. Intrinsic dimension es-
timation of data by principal component analysis, 2010. URL
http://arxiv.org/abs/1002.2050. arXiv:1002.2050 [cs].

202

http://arxiv.org/abs/1002.2050

BIBLIOGRAPHY

R. A. Fisher. Iris Plants Database, 1988. UCI Machine Learning
Repository.

R. Garcia, A. Telea, B. da Silva, J. Torresen, and J. Comba. A task-
and-technique centered survey on visual analytics for deep
learning model engineering. Computers and Graphics, 77:30—49,
2018.

Z. Geng and Y. Wang. Physics-guided deep learning for predict-
ing geological drilling risk of wellbore instability using seismic
attributes data. Engineering Geology, 279:105857, 2020.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3-42, 2006.

L. H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, and L. Ka-
gal. Explaining explanations: An overview of interpretability
of machine learning. In 2018 IEEE 5th International Conference
on data science and advanced analytics (DSAA), pages 80-89. IEEE,
2018.

I.]. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative Adver-
sarial Networks. arXiv:1406.2661 [cs, stat], 2014.

D.D. Gregory, M.]. Cracknell, R.R. Large, P. McGoldrick,
S. Kuhn, V. V. Maslennikov, M.]. Baker, N. Fox, 1. Belousov,
M.C. Figueroa, J. A. Steadman, A.]. Fabris, and T. W. Lyons.
Distinguishing Ore Deposit Type and Barren Sedimentary
Pyrite Using Laser Ablation-Inductively Coupled Plasma-Mass
Spectrometry Trace Element Data and Statistical Analysis of
Large Data Sets. Economic Geology, 114(4):771, 2019.

C. Grosu, Y. Wang, and A. Telea. Computing fast and accurate
decision boundary maps. In Proc. EuroVA. The Eurographics
Association, 2024.

I. Guyon, S.G. S, and A. Ben-Hur. Result analysis of the NIPS
2003 feature selection challenge. In Advances in neural informa-
tion processing systems, pages 545—552, 2004.

N. Hadad, L. Wolf, and M. Shahar. A two-step disentanglement
method. In Proc. IEEE CVPR, pages 772—780, 2018.

L. Hamel. Visualization of support vector machines with unsu-
pervised learning. In 2006 IEEE symposium on computational in-
telligence and bioinformatics and computational biology, pages 1-8,
2006.

203

BIBLIOGRATHY

C.D. Hansen and C.R. Johnson. The visualization handbook. Else-
vier, 2005.

X. He, W. Su, N. Shen, X. Xia, and F. Wang. In situ multiple
sulfur isotopes and chemistry of pyrite support a sedimentary
source-rock model for the Linwang Carlin-type gold deposit in
the Youjiang basin, southwest China. Ore Geology Reviews, 139:
104533, 2021.

G.E. Hinton and R.R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):504-507,
2006.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735-1780, 1997.

F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics
in deep learning: An interrogative survey for the next frontiers.
IEEE TVCG, 25(8):2674—2693, 2019.

T. Hong, X.W. Xu, J. Gao, S.G. Peters, J. Li, M. Cao, P. Xiang,
C. Wu, and J. You. Element migration of pyrites during ductile
deformation of the Yuleken porphyry Cu deposit (NW-China).
Ore Geology Reviews, 100:205-219, 2018.

B. Hu, L.P. Zeng, W. Liao, G. Wen, H. Hu, M. Y. H. Li, and
X.E. Zhao. The Origin and Discrimination of High-Ti Mag-
netite in Magmatic-Hydrothermal Systems: Insight from Ma-
chine Learning Analysis. Economic Geology, 2022.

A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for vi-
sualizing multi-dimensional geometry. In Proc. IEEE VIS, pages

361-378, 1990.
A. Jaiswal, R.Y. Wu, W. Abd-Almageed, and P. Natarajan. Unsu-

pervised adversarial invariance. In Advances in neural informa-
tion processing systems, volume 31, 2018.

A. Jaiswal, Y. Wu, W. AbdAlmageed, and P. Natarajan. Uni-
fied Adversarial Invariance, 2019. URL http://arxiv.org/abs/
1905.03629. arXiv:1905.03629 [cs, stat].

T. Jiang, J. Gradus, and A. Rosellini. Supervised machine learn-
ing: a brief primer. Behavior Therapy, 51(5):675-687, 2020.

P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L.G.
Nonato. Local affine multidimensional projection. IEEE TVCG,
17(12):2563-2571, 2011.

204

http://arxiv.org/abs/1905.03629
http://arxiv.org/abs/1905.03629

BIBLIOGRAPHY

L. T. Jolliffe and J. Cadima. Principal component analysis: a review
and recent developments. Phil. Trans. Royal Soc. A, 374(2065),
2016.

L. Jolliffe. Principal component analysis. Springer, 2002.

A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Ku-
mar. Machine Learning for the Geosciences: Challenges and
Opportunities. IEEE Transactions on Knowledge and Data Engi-

neering, 31(8):1544—1554, 2019.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
Analyzing and Improving the Image Quality of StyleGAN.
arXiv:1912.04958 [cs, eess, stat], 2020.

H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wort-
man Vaughan. Interpreting Interpretability: Understanding
Data Scientists’ Use of Interpretability Tools for Machine Learn-
ing. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pages 1—14, 2020.

D. Keim, G. Andrienko, J. D. Fekete, C. Gorg, J. Kohlhammer, and
G. Melancon. Visual analytics: Definition, process, and chal-
lenges. In Information visualization — human-centered issues and
perspectives, volume 4950, pages 154—175. Springer, 2008.

M. Keith, K. M. Haase, A.R. Chivas, and R. Klemd. Phase separa-
tion and fluid mixing revealed by trace element signatures in
pyrite from porphyry systems. Geochimica et Cosmochimica Acta,
329:185-205, 2022.

Y. Kim, M. Espadoto, S. Trager,]. Roerdink, and A. Telea. SDR-
NNP: Sharpened dimensionality reduction with neural net-
works. In Proc. IVAPP, 2022.

J. Kowalewski and A. Ray. Predicting novel drugs for SARS-CoV-
2 using machine learning from a> 10 million chemical space.
Heliyon, 6(8), 2020.

R.R. Large, V. V. Maslennikov, F. Robert, L. V. Danyushevsky, and
Z. Chang. Multistage Sedimentary and Metamorphic Origin of
Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold
Province, Russia. Economic Geology, 102(7):1233-1267, 2007.

R.R. Large, L. Danyushevsky, C. Hollit, V. Maslennikov, S. Mef-
fre, S. Gilbert, S. Bull, R. Scott, P. Emsbo, H. Thomas, B. Singh,
and J. Foster. Gold and Trace Element Zonation in Pyrite Us-
ing a Laser Imaging Technique: Implications for the Timing of

205

BIBLIOGRATHY

Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits.
Economic Geology, 104(5):635-668, 2009.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten
digit database, 2010. URL http://yann.lecun.com/exdb/mnist.
http:/ /yann.lecun.com/exdb/mnist.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard,
W. Hubbard, and L.D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541—

551, 1989.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521
(7553):436-444, 2015.

D.J. Lehmann, G. Albuquerque, M. Eisemann, M. Magnor, and
H. Theisel. Selecting coherent and relevant plots in large scat-
terplot matrices. Computer Graphics Forum, 31(6):1895-1908,
2012.

S. Lespinats and M. Aupetit. CheckViz: Sanity check and topolog-
ical clues for linear and Nonlinear mappings. Computer Graph-
ics Forum, 30(1):113—125, 2011.

C.Li, E.M. Ripley, and Y. Tao. Magmatic Ni-Cu and Pt-Pd sulfide
deposits in China. SEG Special Publications, 2019.

Q.L. Liang, Z. Xie, X.Y. Song, R. Wirth, Y. Xia, and J. Cline.
EVOLUTION OF INVISIBLE Au IN ARSENIAN PYRITE IN
CARLIN-TYPE Au DEPOSITS. Economic Geology, 116(2):515—
526, 2021.

S. Lin, K. Hu, J. Cao, T. Bai, Y. Liu, and S. Han. An in situ sulfur
isotopic investigation of the origin of Carlin-type gold deposits
in Youjiang Basin, southwest China. Ore Geology Reviews, 134:
104187, 2021.

Z.C. Lipton. The Mythos of Model Interpretability: In machine
learning, the concept of interpretability is both important and
slippery. Queue, 16(3):31-57, 2018.

H. Liu, J. Harris, R. Sherlock, P. Behnia, E. Grunsky,
M. Naghizadeh, K. Rubingh, G. Tuba, E. Roots, and G. Hill.
Mineral prospectivity mapping using machine learning tech-
niques for gold exploration in the Larder Lake area, Ontario,
Canada. Journal of Geochemical Exploration, 253:107279, 2023.

206

http://yann.lecun.com/exdb/mnist

BIBLIOGRAPHY

J. Liu, W. Li, X. Zhu, J. X. Zhou, and H. Yu. Ore genesis of the
Late Cretaceous Larong porphyry W-Mo deposit, eastern Ti-
bet: Evidence from in-situ trace elemental and S-Pb isotopic
compositions. Journal of Asian Earth Sciences, 190:104199, 2020.

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better
analysis of deep convolutional neural networks. IEEE TVCG,
23(1):91-100, 2016.

S. Liu, D. Maljovec, B. Wang, P.T. Bremer, and V. Pascucci. Vi-
sualizing high-dimensional data: Advances in the past decade.
IEEE TVCG, 23(3):1249-1268, 2015.

F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo style
transfer. In Proc. IEEE CVPR, 2017.

L. van der Maaten. Learning a parametric embedding by preserv-
ing local structure. In Proc. Intl. Conf. on artificial intelligence and
statistics, pages 384—391, 2009.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE.
J. Mach. Learn. Res., 9(11):2579-2605, 2008.

A. Machado, A. Telea, and M. Behrisch. = ShaRP: Shape-
regularized multidimensional projections. In Proc. EuroVA. The
Eurographics Association, 2023.

A.Machado, M. Behrisch, and A. Telea. Exploring classifiers with
differentiable decision boundary maps. Computer Graphics Fo-

rum, 43(3):€15109, 2024.

G. Mamani, F. Fatore, L. Nonato, and F. Paulovich. User-driven
feature space transformation. Computer Graphics Forum, 32(3):
291-299, 2013.

E.T. Mansur, S.J. Barnes, and C.J. Duran. An overview of chal-
cophile element contents of pyrrhotite, pentlandite, chalcopy-
rite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits.
Miner Deposita, 56(1):179—204, 2021.

W.E. Marcilio and D.M. Eler. Explaining dimensionality reduc-
tion results using Shapley values, 2021.

L. Marin, S. Gotovac, M. Russo, and D. Bozi¢-Stulié. The effect
of latent space dimension on the quality of synthesized human
face images. Journal of Communications Software and Systems, 17
(2):124-133, 2021.

207

BIBLIOGRATHY

R. Martins, D. Coimbra, R. Minghim, and A.C. Telea. Visual
analysis of dimensionality reduction quality for parameterized
projections. Computers & Graphics, 41:26—42, 2014.

M. E Mathieu, J.]. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, and
Y. LeCun. Disentangling factors of variation in deep representa-
tion using adversarial training. In Advances in neural information
processing systems, volume 29, 2016.

C. Mavrogonatos, P. Voudouris, F. Zaccarini, S. Klemme, J. Berndt,
A. Tarantola, V. Melfos, and P. Spry. Multi-Stage Introduc-
tion of Precious and Critical Metals in Pyrite: A Case Study
from the Konos Hill and Pagoni Rachi Porphyry/Epithermal
Prospects, NE Greece. Minerals, 10(9):784, 2020.

L. McInnes,]. Healy, and J. Melville. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction, 2018.
URL http://arxiv.org/abs/1802.03426. arXiv:1802.03426 [cs,
stat].

M. A. Migut, M. Worring, and C.]J. Veenman. Visualizing multi-
dimensional decision boundaries in 2D. Data Mining and Knowl-
edge Discovery, 29(1):273—295, 2015.

R. Minghim, F. V. Paulovich, and A. A. Lopes. Content-based text
mapping using multi-dimensional projections for exploration
of document collections. In Proc. SPIE, 2006.

T.S. Modrakowski, M. Espadoto, A. X. Falcdao, N.S. T. Hirata, and
A. Telea. Improving Deep Learning Projections by Neigh-
borhood Analysis. In Computer Vision, Imaging and Computer
Graphics Theory and Applications, volume 1474, pages 127-152.
Springer International Publishing, 2022.

C. Molnar. Interpretable Machine Learning. Lean Publishing, 2020.

R. Monarch. Human-in-the-Loop Machine Learning: Active Learn-
ing and Annotation for Human-Centered Al. Simon and Schuster,
2021.

S.M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-
Fool: a simple and accurate method to fool deep neu-
ral networks, 2016. URL http://arxiv.org/abs/1511.04599.
arXiv:1511.04599 [cs].

D. Moyer, S. Gao, R. Brekelmans, A. Galstyan, and G. Ver Steeg.
Invariant Representations without Adversarial Training. In Ad-
vances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018.

208

http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1511.04599

BIBLIOGRAPHY

T. Munzner. Visualization analysis and design: Principles, techniques,
and practice. CRC Press, 2014.

T.T.T. Neves, R. M. Martins, D. B. Coimbra, K. Kucher, A. Kerren,
and E V. Paulovich. Fast and reliable incremental dimension-
ality reduction for streaming data. Computers & Graphics, 102:
233-244, 2022.

L. Nonato and M. Aupetit. Multidimensional projection for vi-
sual analytics: Linking techniques with distortions, tasks, and
layout enrichment. IEEE TVCG, 25:2650-2673, 2018.

A. Oliveira, M. Espadoto, R. Hirata, N. Hirata, and A. Telea. Im-
proving self-supervised dimensionality reduction: Exploring
hyperparameters and pseudo-labeling strategies. In Commu-
nications in computer and information science, volume 1691, pages
135-161. Springer, 2023a.

A.A.A.M. Oliveira, M. Espadoto, R. Hirata, and A. C. Telea. Sta-
bility Analysis of Supervised Decision Boundary Maps. SN
COMPUT. SCI., 4(3):226, 2023b.

A.A. A M. Oliveira, M. Espadoto, R. Hirata Jr, and A.C. Telea.
SDBM: Supervised Decision Boundary Maps for Machine
Learning Classifiers. In Proc. IVAPP, pages 77-87, 2022.

G. O’Sullivan, D. Chew, G. Kenny, I. Henrichs, and D. Mulligan.
The trace element composition of apatite and its application to
detrital provenance studies. Earth-Science Reviews, 201:103044,
2020.

M. Padala, D. Das, and S. Gujar. Effect of Input Noise Dimension
in GANs. In Neural Information Processing, Lecture Notes in
Computer Science, pages 558-569. Springer International Pub-
lishing, 2021.

X. Pan, A. Tewari, T. Leimkiihler, L. Liu, A. Meka, and
C. Theobalt. Drag Your GAN: Interactive Point-based Manip-
ulation on the Generative Image Manifold, 2023. URL http:
//arxiv.org/abs/2305.10973. arXiv:2305.10973 [cs].

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learn-
ing Library, 2019. URL http://arxiv.org/abs/1912.01703.
arXiv:1912.01703 [cs, stat].

209

http://arxiv.org/abs/2305.10973
http://arxiv.org/abs/2305.10973
http://arxiv.org/abs/1912.01703

BIBLIOGRATHY

E. V. Paulovich and R. Minghim. Text map explorer: a tool to
create and explore document maps. In Proc. IEEE IV, pages
245—251, 2006.

E.V. Paulovich, L.G. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high-precision multidimen-
sional projection technique and its application to document
mapping. IEEE TVCG, 14(3):564-575, 2008.

F. V. Paulovich, D. M. Eler, J. Poco, a. C. P. Botha, R. Minghim, and
L.G. Nonato. Piecewise laplacian-based projection for interac-
tive data exploration and organization. Computer Graphics Fo-
rum, 30(3):1091-1100, 2011.

W. Paulsen. A Peano-based space-filling surface of fractal dimen-
sion three. Chaos, Solitons & Fractals, 168, 2023.

G. Peano. Sur une courbe, qui remplit toute une aire plane. Math-
ematische Annalen, 36(1):157-160, 1890.

J. A. Pearce and J. R. Cann. Tectonic setting of basic volcanic rocks
determined using trace element analyses. Earth and planetary
science letters, 19(2):290-300, 1973.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.,
12:2825-2830, 2011.

E. Pekalska, D. de Ridder, R. P.W. Duin, and M. A. Kraaijveld. A
new method of generalizing Sammon mapping with applica-
tion to algorithm speed-up. In Proc. ASCI, volume g9, pages
221228, 1999.

M. Petrelli. Introduction to Python in Earth Science Data Analy-
sis: From Descriptive Statistics to Machine Learning. Springer
Textbooks in Earth Sciences, Geography and Environment.
Springer International Publishing, 2021.

M. Petrelli and D. Perugini. Solving petrological problems
through machine learning: the study case of tectonic discrim-
ination using geochemical and isotopic data. Contrib Mineral
Petrol, 171(10):81, 2016.

N. Pezzotti, T. Hollt, J. Van Gemert, B.P.E. Lelieveldt, E. Eise-
mann, and A. Vilanova. Deepeyes: Progressive visual analytics
for designing deep neural networks. IEEE TVCG, 24(1):98-108,
2017.

210

BIBLIOGRAPHY

K.F. Qiu, H.C. Yu,]J. Deng, D. McIntire, Z.Y. Gou, J.Z. Geng,
Z.S. Chang, R. Zhu, K.N. Li, and R. Goldfarb. The giant
Zaozigou Au-Sb deposit in West Qinling, China: magmatic-or
metamorphic-hydrothermal origin? Mineralium Deposita, pages
1-18, 2020.

R. Rao and S.K. Card. The Table Lens: Merging graphical and
symbolic representations in an interactive focus+context visu-
alization for tabular information. In Proc. ACM SIGCHI, pages
318-322, 1994.

P. Rauber, A. Falcao, and A. Telea. Visualizing time-dependent
data using dynamic t-SNE. In Proc. EuroVis —short papers, pages

43—49, 2016.

P. Rauber, S.G. Fadel, A. Falcao, and A. Telea. Visualizing the
hidden activity of artificial neural networks. IEEE TVCG, 23(1):
101-110, 2017a.

P.E. Rauber, A.X. Falcdo, and A.C. Telea. Projections as visual
aids for classification system design. Information Visualization,
17(4):282—-305, 2017b.

R. Ren, Z. Liu, Y. Li, W.X. Zhao, H. Wang, B. Ding, and J.R.
Wen. Sequential Recommendation with Self-Attentive Multi-
Adversarial Network. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 89—98. ACM, 2020.

M. K. Revan, Y. Geng, V. V. Maslennikov, S. P. Maslennikova, R. R.
Large, and L. V. Danyushevsky. Mineralogy and trace-element
geochemistry of sulfide minerals in hydrothermal chimneys
from the Upper-Cretaceous VMS deposits of the eastern Pon-
tide orogenic belt (NE Turkey). Ore Geology Reviews, 63:129-149,
2014.

M. Ribeiro, S. Singh, and C. Guestrin. "Why Should I Trust You?":
Explaining the predictions of any classifier, 2016.

F.C.M. Rodrigues, M. Espadoto, R. Hirata, and A.C. Telea.
Constructing and Visualizing High-Quality Classifier Decision
Boundary Maps. Information, 10(9):280, 2019.

F.C.M. Rodrigues, R. Hirata, and A.C. Telea. Image-based visu-
alization of classifier decision boundaries. In Proc. SIBGRAPI,
pages 353—360. IEEE, 2018.

211

BIBLIOGRATHY

F.C.M. Rodrigues. Visual Analytics for Machine Learning. PhD
Thesis, University of Groningen, 2020.

B. Rottier and V. Casanova. Trace element composition of quartz
from porphyry systems: a tracer of the mineralizing fluid evo-
lution. Mineralium Deposita, pages 1-20, 2020.

B. Rusk. Cathodoluminescent Textures and Trace Elements in
Hydrothermal Quartz. In Quartz: Deposits, Mineralogy and Ana-
lytics, pages 307-329. Springer Berlin Heidelberg, 2012.

D. Sacha, M. Kraus, D. A. Keim, and M. Chen. VIS4ML: An On-
tology for Visual Analytics Assisted Machine Learning. IEEE
TVCG, 25(1):385-395, 2019.

R. Salakhutdinov and I. Murray. On the quantitative analysis of
deep belief networks. In Proc. ICML, 1998.

G. Salton and M.]J. McGill. Introduction to modern information re-
trieval. McGraw-Hill computer science series. McGraw-Hill,
1986.

E.P. dos Santos Amorim, E.V. Brazil, J. Daniels, P. Joia, L.G.
Nonato, and M. C. Sousa. iLAMP: Exploring high-dimensional
spacing through backward multidimensional projection. In
Proc. IEEE VAST, pages 53-62, 2012.

A. Schulz, A. Gisbrecht, and B. Hammer. Using discriminative
dimensionality reduction to visualize classifiers. Neural Process.
Lett., 42:27-54, 2015.

A. Schulz, F. Hinder, and B. Hammer. DeepView: Visualizing
Classification Boundaries of Deep Neural Networks as Scatter
Plots Using Discriminative Dimensionality Reduction. In Proc.
IJCAI, pages 2305-2311, 2020.

Scikit-learn developers. Support vector machine classification of
the iris dataset, 2024. URL https://scikit-learn.org/stable/
auto_examples/svm/plot_iris_svc.html.

Y. M. Sheng. Distal gold mineralization associated with porphyry
system: The case of Hongzhuang and Yuanling deposits, East
Qinling, China. Ore Geology Reviews, page 16, 2022.

R. Shwartz-Ziv and N. Tishby. Opening the black box of deep
neural networks via information, 2017.

212

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html

BIBLIOGRAPHY

R. da Silva, P. Rauber, R. Martins, R. Minghim, and A.C. Telea.
Attribute-based visual explanation of multidimensional projec-
tions. In Proc. EuroVA, 2015.

M. Sips, B. Neubert, J. Lewis, and P. Hanrahan. Selecting good
views of high-dimensional data using class consistency. Comp
Graph Forum, 28(3):831-838, 2009.

D. Smilkov and S. Carter. Playground Tensorflow: Visualization
of simple decision maps for a neural network, 2024.

J. T. Sohns, C. Garth, and H. Leitte. Decision Boundary Visualiza-
tion for Counterfactual Reasoning. Comput. Graph. Forum, 42
(1):7—20, 2023.

L. Sommerville. Software engineering. O’Reilly Publishing, 2015.

C.0O.S. Sorzano, . Vargas, and A. P. Montano. A survey of dimen-
sionality reduction techniques, 2014. arXiv:1403.2877 [stat. ML].

H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis:
a tool for visual analysis of hidden state dynamics in recurrent
neural networks. IEEE TVCG, 24(1):667-676, 2017.

J.X. Sui, J.W. Li, A.H. Hofstra, H. O’Brien, Y. Lahaye, D. Yan,
Z.K. Li, and X.Y. Jin. Genesis of the Zaozigou gold deposit,
West Qinling orogen, China: Constraints from sulfide trace el-
ement and stable isotope geochemistry. Ore Geology Reviews,
122:103477, 2020.

T. Suwannaphong, S. Chavana, S. Tongsom, D. Palasuwan, T. H.
Chalidabhongse, and N. Anantrasirichai. Parasitic egg detec-
tion and classification in low-cost microscopic images using
transfer learning. SN Computer Science, 5(1):82, 2023.

L. Tang, Y. Zhao, S.T. Zhang, L. Sun, X.K. Hu, Y. M. Sheng, and
T. Zeng. Origin and evolution of a porphyry-breccia system:
Evidence from zircon U-Pb, molybdenite Re-Os geochronology,
in situ sulfur isotope and trace elements of the Qiyugou de-
posit, China. Gondwana Research, 89:88-104, 2021.

A.C. Telea. Combining extended table lens and treemap tech-
niques for visualizing tabular data. In Proc. EuroVis, pages 120-
127, 2006.

A. Telea, A. Machado, and Y. Wang. Seeing is Learning in High
Dimensions: The Synergy Between Dimensionality Reduction
and Machine Learning. SN Computer Science, 5(3):279, 2024.

213

BIBLIOGRATHY

A.C. Telea. Data visualization: principles and practice. CRC Press,
second ed edition, 2014.

J. Thijssen, Z. Tian, and A. Telea. Scaling up the explanation of
multidimensional projections. In Proc. EuroVA, 2023.

J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey. Scientific ma-
chine learning benchmarks. Nature Reviews Physics, 4:413—420,
2022.

M. Thoma. The reuters dataset, 2017. URL https://martin-thoma.
com/nlp-reuters.

Z. Tian, X. Zhai, D. van Driel, G. van Steenpaal, M. Espadoto,
and A. Telea. Using multiple attribute-based explanations
of multidimensional projections to explore high-dimensional
data. Comput. Graph., 98:93-104, 2021.

W.S. Torgerson. Multidimensional scaling: I. Theory and method.
Psychometrika, 17:401—419, 1952.

E.R. Tufte. The visual display of quantitative information, 2"? edition.
Graphics Press, 2001.

E.R. Tufte. The visual display of quantitative information Graph-
ics Press. Cheshire, Connecticut, 6410, 1983.

EY. Tzeng and K.L. Ma. Opening the black box — data driven
visualization of neural networks. In Proc. IEEE visualization,
2005.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

J. Venna and S. Kaski. Visualizing gene interaction graphs with
local multidimensional scaling. In Proc. ESANN, pages 557-562,
2006.

E. Vernier, R. Garcia, I. da Silva, J. Comba, and A. Telea. Quantita-
tive evaluation of time-dependent multidimensional projection
techniques. Computer Graphics Forum, 39(3):241—252, 2020.

E. Vernier, J. Comba, and A. Telea. Guided stable dynamic pro-
jections. Computer Graphics Forum, 40(3):87—98, 2021.

P.J. Verveer and R.P.W. Duin. An evaluation of intrinsic dimen-
sionality estimators. IEEE PAMI, 17(1):81-86, 1995.

214

https://martin-thoma.com/nlp-reuters
https://martin-thoma.com/nlp-reuters

BIBLIOGRAPHY

H. Wang, J. Li, A. Telea,]J. Kosinka, and Z. Wu. USTNet: Unsu-
pervised Shape-to-Shape Translation via Disentangled Repre-
sentations. Computer Graphics Forum, 41(7):141-152, 2022a.

X. Wang, C.Q. Liu, Y. Yi, M. Zeng, S.L. Li, and X. Niu. Machine
Learning Predicts the Methane Clumped Isotopologue (** CH
> D,) Distributions Constrain Biogeochemical Processes and
Estimates the Potential Budget. Environ. Sci. Technol., 57(46):
17876-17888, 2023a.

Y. Wang, F. Dennig, M. Behrisch, and A. Telea. LCIP: Loss-
controlled inverse projection of high-dimensional data, 2025a.
submitted to IEEE TVCG.

Y. Wang, F. Dennig, M. Behrisch, and A. Telea. LCIP im-
plementation source code, 2025b. URL https://github.com/
wuyuyul024/lcip.

Y. Wang, C. Grosu, and A. Telea. Generalized FastDBM im-
plementation source code, 2025¢c. URL https://github.com/
yuwang-vis/generalized_fastDBM.

Y. Wang, H. Yao, and S. Zhao. Auto-encoder based dimensional-
ity reduction. Neurocomputing, 184:232-242, 2016.

Y. Wang and A. Telea. Fundamental Limitations of Inverse Pro-
jections and Decision Maps. In Proc. IVAPP, volume 1, pages
571-582, 2024.

Y. Wang and A. Telea. Investigating Desirable Properties of In-
verse Projections and Decision Maps. Communications in Com-
puter and Information Science, 2025.

Y. Wang, K. Qiu, A. Miiller, Z. Hou, Z. Zhu, and H. Yu. Machine
Learning Prediction of Quartz Forming-Environments. Journal
of Geophysical Research: Solid Earth, 126(8):e2021]B021925, 2021.

Y. Wang, K. Qiu, Z. Hou, and H. Yu. Quartz Ti/Ge-P discrimina-
tion diagram: A machine learning based approach for deposit
classification. Acta Petrol. Sin, 38(1):281-290, 2022b.

Y. Wang, A. Machado, and A. Telea. Quantitative and Qualita-
tive Comparison of Decision Map Techniques for Explaining
Classification Models. Algorithms, 16(9):438, 2023b.

Y. Wang, K. E. Qiu, A.C. Telea, Z.L. Hou, T. Zhou, Y. W. Cai, Z.].
Ding, H.C. Yu, and J. Deng. Interpreting mineral deposit gene-
sis classification with decision maps: A case study using pyrite
trace elements. American Mineralogist, 109(12):2116—2126, 2024.

215

https://github.com/wuyuyu1024/lcip
https://github.com/wuyuyu1024/lcip
https://github.com/yuwang-vis/generalized_fastDBM
https://github.com/yuwang-vis/generalized_fastDBM

BIBLIOGRATHY

Y. Wang, C. Grosu, and A. Telea. Computing fast and accurate
maps for explaining classification models. Computers & Graph-
ics, 129:104230, 2025d.

M. Wattenberg, F. Viégas, and 1. Johnson. How to use t-sne effec-
tively. Distill, 1(10):e2, 2016.

J. Weickert and H. Hagen. Visualization and processing of tensor
fields. Springer, 2005.

L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic
scagnostics. In Proc. IEEE InfoVis, pages 21—21. IEEE Computer
Society, 2005.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms, 2017.
arXiv 1708.07747 [cs.LG].

Q. Xie, Z. Dai, Y. Du, E. Hovy, and G. Neubig. Controllable In-
variance through Adversarial Feature Learning. In Advances in
Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017.

Z. Xie, Y. Xia, J.S. Cline, M.]. Pribil, A. Koenig, Q. Tan, D. Wei,
Z.Wang, and J. Yan. Magmatic Origin for Sediment-Hosted Au
Deposits, Guizhou Province, China: In Situ Chemistry and Sul-
fur Isotope Composition of Pyrites, Shuiyindong and Jinfeng
Deposits. Economic Geology, 113(7):1627-1652, 2018.

A. Yates, A. Webb, M. Sharpnack, H. Chamberlin, K. Huang, and
R. Machiraju. Visualizing multidimensional data with glyph
SPLOMSs. Computer Graphics Forum, 33(3):301-310, 2014.

I.K. Yeo and R.A. Johnson. A new family of power transfor-
mations to improve normality or symmetry. Biometrika, 87(4):

954-959, 2000.

J. Yuan, C. Chen, W. Yang, M. Liu,]. Xia, and S. Liu. A survey of
visual analytics techniques for machine learning. Comp. Visual
Media, 7(1):3-36, 2021.

P. Zhang, X.W. Huang, B. Cui, B.C. Wang, Y.F Yin, and J.R.
Wang. Re-Os isotopic and trace element compositions of pyrite
and origin of the Cretaceous Jinchang porphyry Cu-Au de-
posit, Heilongjiang Province, NE China. Journal of Asian Earth
Sciences, 129:67-80, 2016.

216

BIBLIOGRAPHY

J. Zheng, H. Shen, J. Yang, X. Tang, M. Chen, H. Yu, J. Guo, and
X. Wei. Autoencoders with Intrinsic Dimension Constraints for
Learning Low Dimensional Image Representations, 2023. URL
http://arxiv.org/abs/2304.07686. arXiv:2304.07686 [cs].

Z. Zheng and L. Sun. Disentangling Latent Space for VAE by
Label Relevant/Irrelevant Dimensions. In Proc. IEEE CVPR,
pages 12184-12193. IEEE, 2019.

R. Zhong, Y. Deng, W. Li, L. V. Danyushevsky, M.]. Cracknell,
I. Belousov, Y. Chen, and L. Li. Revealing the multi-stage ore-
forming history of a mineral deposit using pyrite geochemistry
and machine learning-based data interpretation. Ore Geology
Reviews, 133:104079, 2021a.

R. Zhong, Y. Deng, and C. Yu. Multi-layer perceptron-based tec-
tonic discrimination of basaltic rocks and an application on
the Paleoproterozoic Xiong'er volcanic province in the North
China Craton. Computers & Geosciences, 149:104717, 2021b.

T. Zhou, K. Qiu, Y. Wang, H. Yu, and Z. Hou. Apatite Eu/Y-Ce
discrimination diagram: A big data based approach for prove-
nance classification. Acta Petrol. Sin, 38(1):291—299, 2022.

T. Zhou, Y. Cai, M. An, E. Zhou, C. Zhi, X. Sun, and M. Tamer. Vi-
sual interpretation of machine learning: Genetical classification
of apatite from various ore sources. Minerals, 13(4):491, 2023.

Z.Zhu, E Zhou, Y. Wang, T. Zhou, Z. Hou, and K. Qiu. Machine
learning-based approach for zircon classification and genesis
determination. Earth Science Frontiers, 29(5):464, 2022.

M. van der Zwan, V. Codreanu, and A. Telea. CUBu: Universal
real-time bundling for large graphs. IEEE TVCG, 22(12):2550—
2563, 2016.

217

http://arxiv.org/abs/2304.07686

BIOGRAPHY

Yu Wang was born on May 9 1997 in Hebei, China. He received
his Bachelor’s degree in Product Design from the School of Gem-
mology at China University of Geosciences, Beijing (CUGB) in
2019. During his undergraduate studies, he also obtained the
Gemmology Diploma (FGA) from the Gemmological Association
of Great Britain (Gem-A).

Following this, he began a six-year graduate program in Geol-
ogy at CUGB. Yu's research in this direction focuses on the ap-
plication of machine learning to classify mineral genetic types as
well as using various explainable AI (XAI) techniques to improve
the design and performance of such models.

In 2022, Yu met prof. Alexandru Telea and began collaborating
on research related to decision maps. In March 2023, Yu joined
the Visualization and Graphics (VIG) group within the Depart-
ment of Information and Computing Sciences at Utrecht Univer-
sity. While working with VIG, Yu expanded his research scope to
include high-dimensional data visualization, inverse projection
techniques, and decision maps for classifiers.

Yu’s research interests include interpretable machine learning,
dimensionality reduction, deep-learning-based inverse projection
methods, and generative Al He is passionate about bridging al-
gorithmic design and human understanding through visual ana-
lytics.

219

ACKNOWLEDGMENTS

First and foremost, I would like to express my heartfelt gratitude
to my supervisor, prof. Alex Telea. Thank you for accepting me
as his PhD student. Thank you for your patient guidance, strong
support, and for helping shape the person I am today. You've
given me a new direction in life, and I will always be grateful for
that.

I also sincerely thank my second supervisor, dr. Michael
Behrisch, for his support and for making my PhD journey
smoother and more rewarding.

My appreciation extends to all members of the Visualization
and Graphics (VIG) group for the valuable feedback, engag-
ing discussions, and the friendly and supportive atmosphere
throughout my time here.

I also want to thank my friend, Zhihai Zhu, who first guided
me onto the path of programming and computer science, and
who has patiently provided support along the way.

To my climbing friends — thank you for bringing fun, color,
and adventure to my life in the Netherlands. Your friendship has
meant so much to me.

A special thanks to Lisa for designing the cover of this thesis,
volunteering as the photographer for my defense, and offering
many other forms of support along the way.

Last but certainly not least, I want to thank my family and
friends for their constant love, encouragement, and understand-
ing throughout this journey. Your support has been my founda-
tion.

220

COLOPHON

This document was typeset using the typographical look-and-
feel classicthesis developed by André Miede. The style was in-
spired by Robert Bringhurst’s seminal book on typography “The
Elements of Typographic Style”. classicthesis is available for both
IATEX and LyX:

http://code.google.com/p/classicthesis/

Final Version as of June 13, 2025 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Publications
	Contents
	1 Introduction
	1.1 Machine learning
	1.2 Challenges of ML engineering
	1.3 Explainable AI
	1.4 Visualization, visual analytics, and XAI
	1.5 Decision maps for classifier engineering
	1.6 Research questions
	1.7 Contributions

	2 Related work
	2.1 Introduction
	2.2 Background
	2.2.1 Interaction between ML and DR
	2.2.1.1 How DR helps ML and conversely

	2.2.2 Common aspects of DR and ML
	2.2.2.1 Functional commonalities
	2.2.2.2 Non-functional commonalities

	2.3 Seeing for learning: DR assists ML
	2.3.1 Assessing and improving classifiers
	2.3.2 Pseudolabeling for ML training
	2.3.3 Understanding DL models
	2.3.4 Decision boundary maps
	2.3.4.1 Basic idea of decision boundary maps
	2.3.4.2 Enhancements of basic DBMs

	2.3.5 Putting it all together: Visual analytics workflow

	2.4 Learning for seeing: ML assists DR
	2.4.1 Deep learning projections
	2.4.1.1 Basic idea of learning projections
	2.4.1.2 OOS and sensitivity analysis
	2.4.1.3 Refinements of NNP

	2.4.2 Inverse projections
	2.4.2.1 Early methods for computing inverse projections
	2.4.2.2 Deep learning inverse projections
	2.4.2.3 Applications of inverse projections

	2.5 Future exploitations of the ML-DR connection
	2.5.1 Prospects of DR assisting ML: Seeing to learn better
	2.5.1.1 DBMs in use
	2.5.1.2 Visualizing regressors

	2.5.2 Prospects of ML assisting DR: Learning to see better
	2.5.2.1 Inverse projection quality
	2.5.2.2 Increasing user control
	2.5.2.3 Dynamic projections

	2.6 Conclusions

	3 Applications of decision maps in geoscience
	3.1 Introduction
	3.2 Related Work
	3.2.1 Traditional trace element discriminant diagrams
	3.2.2 Machine learning classifiers for mineral genetic type classification

	3.3 Methods
	3.3.1 Dataset collection
	3.3.2 Workflow
	3.3.2.1 Metrics
	3.3.2.2 Data preprocessing
	3.3.2.3 Optimal decision boundary map construction

	3.4 Results
	3.5 Applications
	3.5.1 Unseen location example
	3.5.1.1 Case Study: Analysis of the Zaozigou Gold Deposit
	3.5.1.2 Classifying Pyrite from Zaozigou

	3.5.2 Exploratory data analysis and model explanation using decision maps
	3.5.2.1 Feature Inverse Projection
	3.5.2.2 Ranking the features
	3.5.2.3 Visualizing feature patterns

	3.6 Discussion
	3.6.1 Interpretability and limitations of decision maps
	3.6.2 Implications for mineral deposit genesis classification studies

	3.7 Implications
	3.7.1 Implications for the geoscience community
	3.7.2 Implications for visualization community

	4 Qualitative and quantitative evaluation of decision maps
	4.1 Introduction
	4.2 Related Work
	4.2.1 Overall workflow of decision map
	4.2.2 DBM
	4.2.3 SDBM
	4.2.4 DeepView
	4.2.5 Limitations

	4.3 Evaluation method
	4.3.1 Global metrics
	4.3.2 Local metrics
	4.3.3 Datasets
	4.3.4 Classifiers

	4.4 Comparison Results
	4.4.1 Global metrics of real-world datasets
	4.4.2 Interpreting local metrics on synthetic data
	4.4.3 Analyzing local metrics on real-world data
	4.4.3.1 Decision Maps
	4.4.3.2 Smoothness
	4.4.3.3 Class stability map
	4.4.3.4 Distance to decision boundary
	4.4.3.5 Distance to the nearest training data

	4.4.4 Computational efficiency

	4.5 Discussion
	4.5.1 Decision Maps for Deep Learning Variations
	4.5.2 Workflow to guide the selection of decision map techniques
	4.5.3 What decision maps really are
	4.5.4 Limitations

	4.6 Conclusion

	5 Fundamental Limitations of Decision Maps
	5.1 Introduction
	5.2 Background
	5.3 Visual evaluation on 3D data
	5.3.1 Method
	5.3.2 Results
	5.3.2.1 Preliminary comparison
	5.3.2.2 Detailed comparison

	5.4 Evaluation on high dimensional data
	5.4.1 Method
	5.4.1.1 Datasets
	5.4.1.2 Error of the inverse projection
	5.4.1.3 Intrinsic dimensionality estimation
	5.4.1.4 Gradient maps

	5.4.2 Results
	5.4.2.1 Error assessment
	5.4.2.2 Intrinsic dimensionality estimation

	5.5 Discussion
	5.5.1 Surface behavior of inverse projections and decision maps
	5.5.2 Coverage of decision maps
	5.5.3 Comparing decision map methods
	5.5.4 Limitations caused by the low dimensionality of decision maps
	5.5.5 Limitations

	5.6 Conclusions

	6 Loss-Controlled Inverse Projections
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Learning disentangled representations and adversarial training

	6.3 Design of Loss-Controlled Inverse Projection
	6.3.1 Inverse Projection Deep Learning Network Architecture
	6.3.2 Computing z for the entire projection space
	6.3.3 Controlling the inverse projection

	6.4 Evaluation
	6.4.1 Added value of disentanglement
	6.4.2 Comparison to other inverse projection methods
	6.4.3 Controllability: Going beyond a fixed surface

	6.5 User control of the inverse projection
	6.5.1 Local control: Target is close to source
	6.5.2 Far-away control: Target is far from source
	6.5.3 Smoothness of controlled projections

	6.6 Discussion
	6.7 Conclusion

	7 Fast Computation for Decision Maps and Classifier Maps
	7.1 Introduction
	7.2 Related work
	7.3 Fast DBM computation
	7.3.1 Binary split
	7.3.2 Confidence split
	7.3.3 Confidence sampling

	7.4 Evaluation of acceleration heuristics
	7.4.1 Comparison of acceleration heuristics
	7.4.2 Parameter setting for binary split heuristic
	7.4.3 Implementation details

	7.5 In-depth evaluation of binary split acceleration
	7.5.1 Using additional classifiers
	7.5.2 Consistency evaluation
	7.5.3 Accelerating additional direct and inverse projection techniques for creating decision maps

	7.6 Accelerating the computation of continuous maps
	7.7 Discussion
	7.8 Conclusion

	8 Conclusions
	8.1 Decision maps in practice
	8.2 Quality of decision maps
	8.3 Coverage of decision maps
	8.4 Controllable inverse projections
	8.5 Fast decision map computation
	8.6 Directions for future work

	Bibliography
	Biography
	Acknowledgments
	Colophon

