
SMOOTHED PART ICLE H YDRODYNAM ICS FOR FLU ID
S IMULAT ION IN COMP U TER GRAPH IC S

yanrui xu

Cover:
Simulation of two-dimensional two-phase ink-drop scenario based on
the proposed Smoothed Particle Hydrodynamics method in this thesis.
Each dot denotes a Lagrangian particle of the heavier phase in the
simulation.

Smoothed Particle Hydrodynamics for Fluid Simulation
in Computer Graphics

Yanrui Xu
PhD Thesis

The research for this dissertation was conducted at:

Scientific Visualization and Computer Graphics (SVCG) research group,
part of the Bernoulli Institute (BI) and the Faculty of Science and Engi-
neering (FSE) at the University of Groningen, the Netherlands

and

Artificial Intelligence and 3D Visualization (AI3D) research group, part
of the School of Intelligence Science and Technology at University of
Science and Technology Beijing, China.

Smoothed Particle Hydrodynamics
for Fluid Simulation

in Computer Graphics

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. J.M.A. Scherpen
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Tuesday 21 January 2025 at 16.15 hours

by

Yanrui Xu
born on November 11th, 1995

in Beijing, China

Supervisors
Prof. J. Kosinka
Prof. A.C. Telea

Co-supervisors
Dr. S.D. Frey
Prof. X. Ban

Assessment committee
Prof. J.B.T.M. Roerdink
Prof. C.A. Bertoglio
Prof. F. Sadlo

The highest goodness is like water. Water is beneficial
to all things and does not compete with them.

— Lao Tzu
Tao Te Ching

v

ABSTRACT

Physics-based fluid simulation has emerged as a pivotal element in the
field of computer graphics, facilitating the generation of intricate and
authentic visual effects via advanced computational techniques. Among
various Lagrangian simulation methods, Smoothed Particle Hydrody-
namics (SPH) stands out due to its adaptability and remarkable ability
to capture complex dynamic phenomena accurately. However, the sim-
ulation task often involves navigating the challenging trilemma of bal-
ancing (1) efficiency, (2) accuracy, and (3) versatility. This balancing act
is increasingly tested by the growing demand for more refined, accurate
effects alongside the need for computational efficiency. Our research
aims to tackle this trilemma by focusing on three key areas: refining
the discretization scheme (balancing efficiency and accuracy), pioneer-
ing advancements in the multiphase model (balancing accuracy and cer-
satility), and enhancing the visualization pipeline (balancing efficiency
and accuracy). In doing so, each area specifically targets two out of the
three challenges, aiming for an optimal balance. We propose innovative
improvements to the SPH framework that address these critical issues,
as detailed in our subsequent contributions, on top of which we carried
out a thorough survey of recent advancements around these topics, pro-
viding a robust foundation for our innovations.

The first area of our work focuses on efficiently enhancing numerical
accuracy in fluid simulations, achieving stunning visuals whileminimiz-
ing computational demands.We introduce an adaptive SPHmethod that
leverages a boundary-distance approach. By utilizing a signed-distance
field relative to the fluid’s boundaries, our method dynamically adjusts
particle resolutions based on their proximity to these boundaries. This
results in higher resolutions near the boundary, which gradually tran-
sition to lower resolutions with increasing distance, up to a predefined
limit. Particle sizes are finely tuned through a process of splitting and
merging, ensuring optimal resolution distribution. Furthermore, we in-
corporate a novel wake flow preservation strategy, maintaining en-
hanced resolution temporarily for particles passing close to boundary
objects, thereby safeguarding against the loss of intricate flow details.
The second area of our research addresses the challenge of accurately

simulating the intricate interactions between multiphase fluids. We de-
velop an implicit mixture model tailored for SPH. Our model eschews
the conventional reliance on an explicit, unified mixture field for dy-
namic computations and inter-particle phase transitions. Instead, it cal-
culates phase momentum sources within the mixture model to gener-
ate explicit, continuous velocity fields for each phase. The mixture field
itself is derived implicitly through a novel phase-mixture momentum-

vii

abstract

mapping technique, ensuring the rigorous conservation of incompress-
ibility, mass, andmomentum across the system. Furthermore, ourmodel
introduces a refined mixture viscosity framework, which moderates the
viscous interactions between the combined fluid and its constituent
phases, thereby mitigating instabilities in scenarios characterized by
high inertial forces.
The third focus of our research is on efficiently visualizing particle-

based fluid simulations for real-time applications. We introduce a
screen space rendering approach that applies anisotropic transforma-
tions to point sprites, elongating them along optimized axes to achieve
smoother fluid surfaces. This technique leverages a weighted princi-
pal component analysis of particle distributions to determine optimal
stretching directions. Further enhancing visual fidelity, we integrate
this anisotropic point sprite treatment with advanced screen space fil-
ters, such as curvature flow and narrow-range filters, to refine depth in-
formation processing. This fusion of techniques significantly improves
the clarity and stability of fluid boundaries, bringing us closer to high-
quality, real-time fluid visualization.

viii

SAMENVAT T ING

Fysica-gebaseerde vloeistofsimulatie is uitgegroeid tot een cruciaal ele-
ment in het veld van computergrafiek, waarbij het genereren van com-
plexe en authentieke visuele effecten via geavanceerde computationele
technieken wordt gefaciliteerd. Onder de verschillende Lagrangiaanse
simulatiemethoden valt Smoothed Particle Hydrodynamics (SPH) op
door zijn aanpasbaarheid en opmerkelijke vermogen om complexe dy-
namische fenomenen nauwkeurig vast te leggen. Echter, de simulatie-
taak omvat vaak het navigeren door het uitdagende drieluik van het
balanceren van (1) efficiëntie, (2) nauwkeurigheid en (3) veelzijdigheid.
Deze evenwichtsoefening wordt steeds meer op de proef gesteld door
de groeiende vraag naar meer verfijnde, nauwkeurige effecten naast de
behoefte aan computationele efficiëntie. Ons onderzoek richt zich op
het aanpakken van dit drieluik door te focussen op drie sleutelgebieden:
het verfijnen van het discretisatieschema (evenwicht tussen efficiëntie
en nauwkeurigheid), het pionieren van vooruitgang in het multiphase-
model (evenwicht tussen nauwkeurigheid en veelzijdigheid), en het ver-
beteren van de visualisatiepijplijn (evenwicht tussen efficiëntie en veel-
zijdigheid). Daarbij richt elk gebied zich specifiek op twee van de drie
uitdagingen, met als doel een optimale balans. We stellen innovatieve
verbeteringen voor van het SPH framework die deze kritieke kwes-
ties aanpakken, zoals gedetailleerd in onze volgende bijdragen, waar-
bovenop we een grondige overzichtsstudie hebben uitgevoerd over re-
cente ontwikkelingen rond deze onderwerpen, wat een robuuste basis
biedt voor onze innovaties.
Het eerste gebied van ons werk richt zich op het efficiënt verbete-

ren van numerieke nauwkeurigheid in vloeistofsimulaties, waarbij ver-
bluffende visuele effecten worden bereikt terwijl de computationele ei-
sen worden geminimaliseerd. We introduceren een adaptieve SPH me-
thode die gebruik maakt van een boundary-distance benadering. Door
gebruik temaken van een signed-distance veld ten opzichte van de gren-
zen van de vloeistof, past onze methode de resoluties van deeltjes dyna-
misch aan op basis van hun nabijheid tot deze grenzen. Dit resulteert
in hogere resoluties nabij de grens, die geleidelijk overgaan in lagere
resoluties met toenemende afstand, tot een vooraf gedefinieerde limiet.
Deeltjesgroottes worden fijn afgesteld door een proces van splitsen en
samenvoegen, om een optimale resolutieverdeling te waarborgen. Bo-
vendien incorporeren we een nieuwe strategie voor het behoud van
kielzog-stromingen, waarbij tijdelijk een verbeterde resolutie wordt on-
derhouden voor deeltjes die dichtbij grensobjecten passeren, waardoor
verlies van ingewikkelde stroomdetails wordt voorkomen.

ix

samenvatting

Het tweede onderzoeksgebied richt zich op de uitdaging van het
nauwkeurig simuleren van de ingewikkelde interacties tussen multi-
fase vloeistoffen. We ontwikkelen een impliciet mengmodel op maat
voor SPH. Ons model ziet af van de conventionele afhankelijkheid
van een expliciet, verenigd mengveld voor dynamische berekeningen
en interdeeltjesfase-overgangen. In plaats daarvan berekent het fase-
momentumbronnen binnen het mengmodel om expliciete, continue
snelheidsvelden voor elke fase te genereren. Het mengveld zelf wordt
impliciet afgeleid via een nieuwe fase-mengmomentum-kaarttechniek,
wat zorgt voor de rigoureuze instandhouding van incompressibiliteit,
massa en moment door het systeem heen. Bovendien introduceert ons
model een verfijnd mengviscositeitskader, dat de viskeuze interacties
tussen de gecombineerde vloeistof en zijn samenstellende fasen matigt,
waardoor instabiliteiten in scenario’s met hoge traagheidskrachtenwor-
den verlicht.
Het derde focusgebied van ons onderzoek is gericht op het ef-

ficiënt visualiseren van op deeltjes gebaseerde vloeistofsimulaties
voor real-time toepassingen. We introduceren een schermruimte-
renderingbenadering die anisotrope transformaties toepast op punt-
sprites, die verlengd worden langs geoptimaliseerde assen om vloeien-
dere vloeistofoppervlakken te bereiken. Deze techniek maakt gebruik
van een gewogen hoofdcomponentenanalyse van deeltjesdistributies
om optimale rekkingsrichtingen te bepalen. Om de visuele getrouw-
heid verder te verhogen, integreren we deze anisotrope punt-sprite-
behandeling met geavanceerde schermruimtefilters, zoals kromte stro-
ming en smalbereikfilters, om de diepte-informatieverwerking te verfij-
nen. Deze fusie van technieken verbetert de duidelijkheid en stabiliteit
van vloeistofgrenzen aanzienlijk, waardoor we dichter bij hoogwaar-
dige, real-time vloeistofvisualisatie komen.

x

P UBL ICAT IONS

This thesis is the result of the following publications:

• X. Wang*, Y. Xu*, S. Liu, B. Ren, J. Kosinka, A. C. Telea, J. Wang,
C. Song, J. Chang, C. Li, J. J. Zhang, and X. Ban. Physics-based
fluid simulation in Computer Graphics: Survey, research trends,
and challenges. Computational Visual Media. Springer, 2024. doi:
10.1007/s41095-023-0368-y

• Y. Xu, C. Song, X. Wang, X. Ban, J. Wang, Y. Zhang, and J. Chang.
Spatial adaptivity with boundary refinement for smoothed parti-
cle hydrodynamics fluid simulation. Computer Animation and Vir-
tual Worlds, Volume 34, Issue 5. Wiley, 2023. doi: 10.1002/cav.2136

• Y. Xu, X. Wang, J. Wang, C. Song, T. Wang, Y. Zhang, J.
Chang, J. J. Zhang, J. Kosinka, A. C. Telea, and X. Ban. An Im-
plicitly Stable Mixture Model for Dynamic Multi-fluid Simula-
tions. In SIGGRAPH Asia 2023 Conference Paper. ACM, 2023. doi:
10.1145/3610548.3618215

• Y. Xu, Y. Xu, Y. Xiong, D. Yin, X. Ban, X. Wang, J. Chang, and
J. J. Zhang. Anisotropic screen space rendering for particle-based
fluid simulation. Computers & Graphics, Volume 110, 118-124. El-
sevier, 2023. doi: 10.1016/j.cag.2022.12.007

* Equal contribution

xi

https://doi.org/10.1007/s41095-023-0368-y
https://doi.org/10.1007/s41095-023-0368-y
https://doi.org/10.1002/cav.2136
https://doi.org/10.1145/3610548.3618215
https://doi.org/10.1145/3610548.3618215
https://doi.org/10.1016/j.cag.2022.12.007

CON TEN TS

notations of physical qantities xvii

1 introduction 1
1.1 Challenges within the Trilemma 2
1.2 Contents and Structure 4

2 survey on fluid simulation 7
2.1 Fluid Simulation Overview 8

2.1.1 Fluid Mechanics 8
2.1.2 Navier–Stokes Equations 9
2.1.3 Simulation Strategies 10

2.2 Advancements in Fluid Simulation 15
2.2.1 Survey Structure 15
2.2.2 Classification of Topics 16

2.3 Advanced Computational Approaches 19
2.3.1 Adaptive Solutions 20
2.3.2 Parallelization 27
2.3.3 Data-driven Approaches 29

2.4 Multi-material Fluid Coupling 32
2.4.1 Meshless Methods 32
2.4.2 Mesh-based Methods 35
2.4.3 Coupling with Complex Boundaries 37

2.5 Multiphase Liquids 40
2.5.1 Non-mixing Fluids 40
2.5.2 Mixing Fluids 42

2.6 Gas–liquid Interfaces 45
2.6.1 Free Surface Fluids 46
2.6.2 Bubbles, Foam, and Glugging 48
2.6.3 Spray and Splashing 50

2.7 Fine Detail Enhancement 51
2.7.1 Reduced-dimensional Simulation on the Fluid

Surface Only 51
2.7.2 Dynamical Methods for Reducing Numerical

Dissipation 55
2.7.3 Data-driven Methods for Detail Enhance-

ment 58
2.8 Fluid Control 59

2.8.1 Scenario Editing 59
2.8.2 Artificial Effects 61
2.8.3 Media-directed Formation 62

2.9 Special Fluids 63

xiii

contents

2.9.1 Highly Viscous Fluids 63
2.9.2 Ferrofluids 66
2.9.3 Thin Films 69

2.10 Conclusion and Discussion 72

3 spatial adaptivity with boundary refinement
for sph fluid simulation 75
3.1 Introduction 76
3.2 Preliminaries 78

3.2.1 Theory of SPH 78
3.2.2 SPH Approximation 79
3.2.3 Explicit Form of Solving Navier-Stokes Equa-

tions with SPH 81
3.3 Split-merge-redistribute Mechanism 82
3.4 Semi-analytic Boundary Handling 85
3.5 Adaptive Boundary Coupling 86

3.5.1 Adaptive Boundary Mechanism 86
3.5.2 Wake Flow Preservation by Delaying

Merge 87
3.6 Results 88

3.6.1 Efficiency Comparison 88
3.6.2 Evaluation of Complex Coupling Effects 91

3.7 Discussion and Conclusion 94
3.7.1 Summary 94
3.7.2 Limitations 94

4 implicitly stable mixture model for dynamic
multi-fluid simulations 99
4.1 Introduction 100
4.2 Preliminaries 101

4.2.1 Volume Fraction Scheme 101
4.2.2 Governing Equations of the Mixture

Model 103
4.3 Volume Flux Free SPH 104
4.4 Implicit Mixture Model for Multiphase Interac-

tions 108
4.4.1 Interphase Momentum 109
4.4.2 Phase-mixture Momentum Mapping 111
4.4.3 Mixture Viscosity Model 113
4.4.4 Implementation 113

4.5 Results 115
4.5.1 Performance Analysis 115
4.5.2 Comparisons of Effects 122
4.5.3 Effectiveness under Complex Scenarios 122

4.6 Discussion and Conclusion 124
4.6.1 Summary 124

xiv

contents

4.6.2 Limitations 124

5 anisotropic screen space rendering for
particle-based fluid simulation 127
5.1 Introduction 128
5.2 Real-time Screen Space Fluid Rendering 129

5.2.1 OpenGL Transformation Pipeline 131
5.2.2 Screen Space Rendering 132

5.3 Anisotropic Transformation of Point Sprites for Fluid
Particles 134
5.3.1 Tracing Surface Using Smoothing Ker-

nels 135
5.3.2 Deriving the Anisotropy Matrix 135
5.3.3 Transforming Sphere Particles onto the Screen

Space 138
5.4 Results 140

5.4.1 Anisotropic Processing Results 140
5.4.2 Combination with Popular Smoothing Fil-

ters 141
5.4.3 Performance Analysis of the Anisotropic Trans-

formation 144
5.5 Discussion and Conclusion 145

5.5.1 Summary 145
5.5.2 Limitations 145

6 conclusion 147
6.1 Contributions of This Thesis 147

6.1.1 A Survey on Fluid Simulation 147
6.1.2 An Adaptivity Mechanism with Boundary Re-

finement for SPH 148
6.1.3 An Implicitly Stable Mixture Model for Dy-

namic Multi-fluid Simulations 148
6.1.4 An Anisotropic Screen Space Rendering

Scheme 149
6.2 Addressing Our Research Questions 149
6.3 Future Work 152

6.3.1 Integration of Adaptive Mechanisms and Multi-
phase Simulations 152

6.3.2 Enhancing Screen Space Rendering for Multi-
phase Fluids 152

6.3.3 Unified Framework Development 153

bibliography 155

acknowledgments 185

short résumé 187

xv

NOTAT IONS OF PH YS ICAL QUAN T I T I E S

Variable Type Meaning Unit
𝐴 ∗ any physical property [∗]
𝑡 scalar time [𝑠]
𝑚 scalar mass [𝑘𝑔]
𝑉 scalar volume [𝑚3]
𝑝 scalar pressure [𝑃𝑎]
E scalar energy [𝐽]
¤𝜖 scalar shear rate (Herschel-Bulkley model) [𝑠−1]
𝜌 scalar density [𝑘𝑔 ·𝑚−3]
𝜓 scalar stream function [𝑚2 · 𝑠−1]
𝜇 scalar dynamic viscosity coefficient [𝑃𝑎 · 𝑠]
𝛾 scalar surface tension coefficient [𝑁 ·𝑚−1]
x vector position [𝑚]
u vector velocity [𝑚 · 𝑠−1]
𝝎 vector angular velocity [𝑟𝑎𝑑 · 𝑠−1]
f vector force field [𝑁 ·𝑚−3]
g vector gravitational acceleration [𝑚 · 𝑠−2]
s vector momentum source [𝑁 ·𝑚−3]
q vector diffusion flux [∗ ·𝑚−2 · 𝑠−1]
F vector force [𝑁]
B vector magnetic flux density [𝑇]
H vector magnetic field intensity [𝐴 ·𝑚−1]
J vector free current density [𝐴 ·𝑚−2]
D vector electric displacement field [𝐶 ·𝑚−2]
K vector magnetization field [𝐴 ·𝑚−1]
𝝈 matrix Cauchy stress tensor [𝑁 ·𝑚−2]
𝝉 matrix viscous stress tensor [𝑁 ·𝑚−2]
T matrix diffusion tensor [𝑁 ·𝑚−2]
E matrix strain rate tensor [𝑠−1]

xvii

1I N TRODUCT ION

With a pivotal role in the domain of computer graphics, physics-based
simulation techniques serve as the cornerstone for infusing realism into
the digital realm. Simulating fluid dynamics is particularly challeng-
ing due to the complex and unpredictable nature of fluids, as shown
in Figure 1.1, which makes them one of the most difficult elements to
replicate accurately in simulations. The overarching goal of fluid sim-
ulation research is to find an optimal balance among three critical as-
pects: efficiency, accuracy, and versatility. As shown in Figure 1.2, these
elements form a trilemma, often illustrated by the metaphor of navigat-
ing all three sides of a Penrose triangle simultaneously – an inherently
impossible task.
Given these challenges, this thesis strategically focuses on optimizing

two of these factors at any given time. This targeted approach allows
for the creation of simulations that are either more realistic and com-
putationally efficient, or versatile while maintaining a high degree of
accuracy. By adopting this method, the research advances the develop-
ment of sophisticated and practical fluid simulation techniques, thereby
expanding the potential of digital environments.

(a) Particle state (b) Rendered result

Figure 1.1: Animation with physics-based fluid simulation using Smoothed Par-
ticle Hydrodynamics. Particles are individually tracked and interact
based on local dynamic properties to compute accelerations for each
particle at every time step (a). The surface of the fluid is traced and
reconstructed from particle data, and the surface mesh is then ren-
dered using ray-tracing techniques to produce a realistic visual rep-
resentation of the fluid dynamics (b).

From a classical physics standpoint, the behavior of fluids is governed
by the Navier–Stokes equations. These fundamental equations explain
that the movement of tiny fluid parcels is influenced by factors such as
pressure, viscosity, and external forces, leading to a nonlinear system of

1

introduction

(b) Spatial adaptivity
(Chapter 3)

(d) Rendering
(Chapter 5)

(c) Multiphase fluids
(Chapter 4)

(a) Survey
(Chapter 2)

Figure 1.2: The Penrose triangle in this diagram symbolizes the fluid simulation
trilemma—achieving optimal efficiency, accuracy, and versatility is
inherently challenging, as one cannot address all three simultane-
ously. Each side of the triangle represents one of the three main ar-
eas of focus in this thesis: (b) spatial adaptivity on the Efficiency-
Accuracy edge, (c) multiphase fluids on the Versatility-Accuracy
edge, and (d) rendering on the Efficiency-Accuracy edge. Addition-
ally, (a) a comprehensive survey of advancements in fluid simulation
over the past decade is presented in Chapter 2, providing founda-
tional insights that support the innovations in each area.

behavior. To manage this complexity, computational methods involve
breaking down both space and time into discrete units. This process re-
duces the complex governing equations into linear problems that are
easier to handle. The motion of these discretized fluid elements is then
reconstructed by calculating the acceleration due to these forces and
integrating this over time, which allows for the detailed simulation of
fluid dynamics. To translate these simulated quantities, like position and
density, into visually engaging animations that mimic real-world fluid
behavior, an advanced rendering pipeline is utilized to map numerical
data into its graphical counterpart. However, this multi-step process in-
troduces several challenges, particularly trade-offs between efficiency
and accuracy, and between accuracy and the complexity of the simula-
tions, each vying for priority in the quest for realistic fluid simulations.

1.1 challenges within the trilemma

To enhance the quality of the simulation, there is a preference to dis-
cretize the space as finely as possible. However, in a 3D environment,
the computational demand for a single iteration increases cubicallywith
the fineness of the spatial discretization. Furthermore, the time step re-
quired for accurate simulations decreases linearly with finer spatial dis-
cretization, leading to an overall quartic increase in computational cost
for 3D fluid simulations. This trade-off highlights the inherent difficulty

2

1.1 challenges within the trilemma

in balancing the desire for high-quality simulations with the practical
limitations of computational resources.Moreover, the increase in spatial
discretization also demands a corresponding cubic increase in working
memory, exacerbating the challenge by introducing more pronounced
cache-hit issues, particularly for Lagrangian simulation methods, fur-
ther complicating the balance between simulation quality and compu-
tational feasibility. Consequently, we face the challenge of balancing
efficiency and accuracy for simulation. In light of these considerations,
we aim to investigate:

RQ1: How to enhance simulation accuracy without incurring pro-
hibitive computational cost?

As the pursuit of increasingly complex and natural effects grows,
the straightforward application of the Navier–Stokes equations falls
short. The incorporation of additional governing equations to manage
surface behaviors, interactions with other objects, and the dynamic in-
terplay between different fluids has become essential, complicating the
discretization framework and pushing the limits of existing simulation
capabilities. In scenarios where multiple fluids coexist, the traditional
Navier–Stokes framework must be expanded to a more comprehensive
mixture model. This model includes considerations for volume frac-
tions and accounts for varying physical properties, such as the densi-
ties of each fluid phase and interaction-specific attributes like diffusiv-
ity. These enhancements, while enriching the simulation’s complexity,
necessitate greater approximations within the numerical model to man-
age the computational load. Unfortunately, this can compromise the ac-
curacy of the simulations, leading to less realistic outcomes and a more
fragile solver, thereby constraining the range of phenomena that can be
effectively simulated. This complexity leads us to our second research
question:

RQ2: How to accommodate complex effects in simulations without sig-
nificantly compromising accuracy and stability?

Visualizing the results of simulations is a crucial step in computer
animation, essential for transforming numerical data into high-quality
visual content. This typically involves reconstructing explicit meshes
from the numerical flow fields, which are first converted into distance
fields and then processed using algorithms like marching cubes to cre-
ate detailed meshes. Calculating the normals of these meshes is a sub-
sequent step necessary for lighting and rendering processes. However,
this visualization pipeline can become particularly unsuited in real-time,
large-scale applications where the simulation detail is high. For particle-
based Lagrangian simulations, additional complexities arise due to the
need for background grids to track particle movement and map their
values, which can be computationally intensive. Screen-space render-
ing has emerged as a popular alternative for its efficiency, bypassing

3

introduction

the need for explicit mesh generation and enabling real-time visualiza-
tion even in extensive scenarios. However, this method comes with its
own set of trade-offs, notably in the quality of the visual output. Issues
such as bumps and gaps near surfaces and irregular artifacts at sharp
edges are common due to the discrete nature of the particles. To ad-
dress these challenges, ongoing efforts are dedicated to enhancing vi-
sual quality and reducing artifacts, aiming to strike a balance between
efficiency and fidelity in the visualization of particle-based fluid sim-
ulations. Addressing these visualization challenges while maintaining
efficiency leads us to our final inquiry:

RQ3: How to refine visualization techniques for enhanced accuracy in
an efficient manner?

1.2 contents and structure

This thesis is organized as follows to address the research questions
posed:
Chapter 2 provides a comprehensive survey of fluid simulation in

computer graphics. This survey includes a brief history of fluid simula-
tion development in the computer graphics field, a review of the phys-
ical principles underlying these effects, and an analysis of various sim-
ulation schemes. It offers an in-depth examination of recent trends and
emerging challenges over the past decade.
In Chapter 3, we focus on the balance between simulation efficiency

and accuracy in detail by introducing a spatially adaptive scheme for
Smoothed Particle Hydrodynamics (SPH). This chapter begins with a
further detailed introduction to the numerical computation of the SPH
approach to ensure readers have a solid foundation for understanding
subsequent discussions. It then explores a split-merge scheme for SPH
particles and presents our novel approach to applying this scheme to
enhance simulation details, particularly those involving fluid-solid in-
teractions, thus achieving effective and accurate simulation results.
Chapter 4 proposes an implicit mixture model for SPH to simulate

the coexistence of multiple fluid phases and their interactions while
maintaining the accuracy and stability of SPH solvers. We start with the
theoretical background on volume fraction schemes that transform the
single-phase Navier-Stokes equations into a mixture model. This is fol-
lowed by the introduction of a volume flux-free scheme that enables the
implicit SPH solver to handle fluid couplings with high-density ratios.
The chapter concludes with the application of this scheme to construct
the implicit mixture model.
In Chapter 5, we address the visualization aspect of the simulation-

visualization pipeline. The focus is on enhancing the quality of the
highly efficient screen space rendering technique. We propose the in-
tegration of an anisotropic smoothing kernel computation, commonly

4

1.2 contents and structure

used in the marching cubes algorithm, with smoothing filters to mini-
mize artifacts such as glitching edges and bumpy surfaces.
The thesis concludes with Chapter 6, where we discuss the contri-

butions of this research and potential improvements that could further
enhance performance. We also outline future work that can be pursued
to address the quest for computationally efficient realism in fluid simu-
lations based on our contributions.

5

2SURVEY ON FLU ID S IMULAT ION

P hysics-based fluid simulation has played an increasingly important
role in the computer graphics community. Recent methods in this area

have greatly improved the generation of complex visual effects and their
computational efficiency. Novel techniques have emerged to deal with com-
plex boundaries, multiphase fluids, gas-liquid interfaces, and fine details.
The joint use of machine learning, image processing, and fluid control tech-
nologies has brought many interesting and novel research perspectives. In
this survey, we provide an introduction to theoretical concepts underpin-
ning physics-based fluid simulation and their practical implementation,
with the aim for it to serve as a guide for readers of this thesis, regard-
less of newcomers and seasoned researchers, to explore the field of physics-
based fluid simulation, with a focus on developments in the last decade.
Driven by the distribution of recent publications in the field, we structure
our survey to cover physical background; discretization approaches; com-
putational methods that address scalability; fluid interactions with other
materials and interfaces; and methods for expressive aspects of surface de-
tail and control1.

In this chapter, we embark on a journey through the evolution of
fluid simulation within the realm of computer graphics. Starting with
an exploration of the foundational physical principles and simulation
methodologies in Section 2.1, we aim to establish a comprehensive
knowledge base that will not only facilitate the understanding of subse-
quent sections but also enrich the context for the contributions made in
this thesis. Progressing to Section 2.2, we conduct a thorough analysis
of the advancements in fluid simulation technology that have unfolded
over the last decade. We spotlight the key methods and important dis-
coveries that have contributed to advancing the field, setting the stage
for an in-depth discussion of these pioneering topics from Section 2.3
through to Section 2.9. We wrap up this chapter in Section 2.10 by syn-
thesizing these developments and engaging in a forward-looking dis-
cussion on the potential challenges and opportunities that lie on the
horizon for fluid simulation in computer graphics.

1 Parts of this chapter were published in: X. Wang, Y. Xu, S. Liu, B. Ren, J. Kosinka, A.
C. Telea, J. Wang, C. Song, J. Chang, C. Li, J. J. Zhang, and X. Ban. Physics-based fluid
simulation in Computer Graphics: Survey, research trends, and challenges.Computational
Visual Media. Springer, 2024. doi: 10.1007/s41095-023-0368-y

7

https://doi.org/10.1007/s41095-023-0368-y

survey on fluid simulation

2.1 fluid simulation overview

The development of fluid simulation in computer graphics is deeply
rooted in the history of physics. From the 17th to the early 19th cen-
turies, scientists such as Sir Isaac Newton and Claude-Louis Navier con-
tributed significantly to the understanding of fluid mechanics, paving
the way for the Navier–Stokes equations. These equations, which gov-
ern fluid motion, form the foundation of modern fluid simulation algo-
rithms.
This section offers a basic introduction to fluid simulation and pro-

vides background knowledge for the remainder of the survey. For a
more comprehensive understanding of fluid simulation, we refer to Brid-
son’s book [44]. For more specific knowledge about Lagrangian-based
smoothed particle hydrodynamics and material point methods, we re-
fer to the surveys of Koschier et al. [166] and Jiang et al. [154], respec-
tively. Readers less familiar with this field are highly encouraged to re-
view this section before proceeding. We first introduce relevant physi-
cal principles behind fluid simulation, such as the continuum hypothe-
sis (Section 2.1.1) and Navier–Stokes equations (Section 2.1.2). We next
present the early development of this area (Section 2.1.3), including a
brief overview of the ideas behind different discretization strategies.

2.1.1 Fluid Mechanics

Matter in nature is built up of atoms and molecules that are discrete
and separated by space. Simulating fluid at the microscopic level to
describe macroscopic phenomena is only possible on supercomputers
with weeks, if not months, of computing time. The study on computer
graphics pursues a balance between efficiency and fidelity. For this, fluid
mechanics based on a continuum hypothesis is the level on which phys-
ical properties are modeled.
Fluid mechanics models an object with matter continuously dis-

tributed over its body, an approximation called the continuum hypoth-
esis. This means that any infinitely small volume element in the fluid
is seen as a continuous medium, also called a fluid parcel. As Landau
and Lifshitz stated [169], a fluid parcel is “very small compared with
the volume of the body under consideration, but large compared with
the distances between molecules.”
In fluid mechanics, the continuity equation describes the transporta-

tion of physical properties in space and time as follows:

𝜕𝐴 (x, 𝑡)
𝜕𝑡

+ ∇ · (𝐴 (x, 𝑡) u (x, 𝑡)) = 𝑠 (x, 𝑡) , (2.1)

where 𝐴 can be an arbitrary scalar, vector, or tensor physical property,
u is the velocity, and 𝑠 is the source term for 𝐴, all described at time
𝑡 and location x. Equation (2.1) states that the change rate 𝜕𝐴

𝜕𝑡
of any

8

2.1 fluid simulation overview

physical property at a fixed position depends on the variation brought
by the flux of 𝐴u and source term 𝑠 .

Lagrangian and Eulerian viewpoints. Considering the physical
attribute 𝐴 in Equation (2.1), a flow field can be described from a La-
grangian or Eulerian viewpoint as follows.
The Eulerian viewpoint studies the physical field using fixed positions

typically located at the vertices of a grid. The change rate of the physical
value 𝐴 at a given position x is the 𝜕𝐴 (x, 𝑡)/𝜕𝑡 term in Equation (2.1),
which comes from both the flux and source terms. While intuitive, this
does not explicitly express the motion of the fluid parcel in the contin-
uum hypothesis, as parcels constantly travel through fixed locations at
all times.
In contrast, the Lagrangian viewpoint studies the change rate of phys-

ical attributes with respect to the fluid parcel by recasting Equation (2.1)
as

𝜕𝐴 (x, 𝑡)
𝜕𝑡

+ (u (x, 𝑡) · ∇)𝐴 (x, 𝑡)︸ ︷︷ ︸
𝐷𝐴(x,𝑡)

𝐷𝑡

+𝐴 (x, 𝑡) ∇ · (u (x, 𝑡)) = 𝑠 (x, 𝑡)

𝐷𝐴𝑖 (𝑡)
𝐷𝑡

+𝐴𝑖 (𝑡) ∇ · u𝑖 (𝑡) = 𝑠𝑖 (𝑡) ,

(2.2)

where 𝐷 (·) /𝐷𝑡 , the so-called material derivative, is the change rate of
𝐴 within a fluid parcel. In Equation (2.2), u and 𝑠 are the velocity and
source term of a specific fluid parcel, respectively. Hence, all positions
x can be substituted with the parcel identifier 𝑖 . For brevity, hereafter,
we omit the explicit mention of (x, 𝑡), (𝑡), and 𝑖 unless required by the
context.

2.1.2 Navier–Stokes Equations

Numerous methods for calculating fluid motion have been developed,
spanning from Lagrangian to Eulerian perspectives. However, the un-
derlying physical principles for almost all of these approaches are
rooted in the Navier–Stokes equations, which govern the dynamics of
fluid flow and serve as a fundamental foundation for fluid simulations.
Thus, we describe these briefly next.

Mass conservation. In a closed system, fluid mass is conserved
over time. This principle is represented by the continuity equation
(Equation (2.1)). Letting 𝐴 be the fluid density 𝜌 and setting 𝑠 ≡ 0,
Equation (2.1) can be rewritten as

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · u = 0. (2.3)

9

survey on fluid simulation

For the case of incompressible flow, the density within the flow is con-
served, i.e.,𝐷𝜌/𝐷𝑡 = 0. This condition further implies a divergence-free
velocity field, as expressed, by

∇ · u = 0. (2.4)

Navier–Stokes momentum Equation. To further describe the mo-
tion of incompressible fluid flow, one can analyze the momentum of
each fluid parcel. By introducing a momentum term 𝜌u in Equation (2.1)
and next using Equation (2.3), we obtain

𝜕𝜌u
𝜕𝑡
+ ∇ · (𝜌u ⊗ u) = 𝜌

𝐷u
𝐷𝑡

= s, (2.5)

where s is the momentum source altering the speed of each fluid parcel,
and ⊗ represents the outer product operation. Following this, a basic
form of the Navier–Stokes momentum equation for viscous compress-
ible flow further specifies s into three separate terms as

𝜌
𝐷u
𝐷𝑡

= −∇𝑝 + 𝜇∇2u + 𝜌g, (2.6)

where 𝑝 is pressure, g is gravitational acceleration, and 𝜇 is the dynamic
viscosity coefficient describing how viscous a fluid is. Equation (2.6)
states that the velocity change rate for a fluid parcel is affected by three
force terms: pressure (−∇𝑝), viscosity (𝜇∇2u), and gravity (𝜌g).

2.1.3 Simulation Strategies

2.1.3.1 Early developments

As computer technology advanced in the 20th century, numerical meth-
ods became popular for solving partial differential equations, including
the Navier–Stokes equations. With the advent of powerful computer
hardware and software, computer graphics began to incorporate these
physics-based algorithms, enabling increasingly realistic fluid simula-
tions.

Dating back to the 1970s, William T. Reeves, a member of Lucasfilm’s
Computer Division, Computer Graphics Group, pioneered the develop-
ment of particle systems [236, 261]. These systems enabled the realis-
tic depiction of elements such as smoke and fire in films, as seen in
“Star Trek II: The Wrath of Khan.” This breakthrough laid the founda-
tion for early fluid simulation techniques in computer graphics. In the
1990s, physics-based fluid simulation began to gain traction. Wejchert
and Haumann [307] used a simplified version of the Navier–Stokes
equations to animate irrotational, incompressible linearized fluid flow,
providing a physics-based foundation for their fluid animations. Sub-
sequently, Stam and Fiume [268] incorporated the complete Navier–
Stokes equations to create turbulent wind effects.

10

2.1 fluid simulation overview

On the Lagrangian side, Desbrun and Cani [76] introduced Smoothed
Particle Hydrodynamics (SPH) to the computer graphics field for sim-
ulating highly deformable bodies. On the Eulerian side, Foster and
Metaxas [94] used the Navier–Stokes equations on fixed grids to sim-
ulate fluid motion. The study of fluid simulation reached a signifi-
cant milestone at the end of the 20th century with Stam’s Stable Flu-
ids method [267]. This finally made stable, three-dimensional, physics-
based fluid simulation an attainable goal, producing realistic fluid ef-
fects. This was the first unconditionally stable method for fluid simu-
lation and introduced the concept of semi-Lagrangian advection. Addi-
tionally, this was one of the earliest works to apply the idea of hybrid
simulation in the field.
Hybrid methods in fluid simulation merge the strengths of both La-

grangian and Eulerian approaches, yielding more versatile and robust
systems. Two foundational principles that underpin hybrid fluid simu-
lation are Harlow’s [117] Particle-in-cell (PIC) method and the refined
Fluid Implicit Particle (FLIP)method of Brackbill and Ruppel [41]. These
techniques have contributed significantly to thewidespread success and
adoption of hybrid fluid simulation in the 21st century. The field also
saw amajor advancement when Zhu and Bridson [355] applied the FLIP
method to incompressible flow simulation. This moved hybrid fluid sim-
ulation to new heights as it enabled the exploration of complex fluid
dynamics with enhanced precision and stability. The continuous evolu-
tion of hybrid fluid simulation techniques has had a profound impact
on computer graphics, facilitating the creation of realistic and visually
stunning effects.

2.1.3.2 Discretization strategies

As fluid simulations in computer graphics have evolved since the early
development in the 20th century, the field has branched out in three
distinct directions: Eulerian, Lagrangian, and hybrid schemes. Each of
these approaches offers unique advantages and challenges, contribut-
ing to the comprehensive understanding of fluid dynamics in computer
graphics.

Eulerian schemes. These simulation methods use the Eulerian
viewpoint introduced in Section 2.1.1, i.e., compute property values at
fixed points in the simulation domain. For this, the domain is typi-
cally divided into evenly-distributed cells. In a traditional collocated grid
structure (Figure 2.1a), all physical values are evaluated at the center of
each cell. To derive a continuous flow field with values at arbitrary po-
sitions, e.g., the gray dot in Figure 2.1c, one can use a weighted interpo-
lation of neighboring cell values. The staggered grid (Figure 2.1b) stores
physical values at cell edges and centers separately. Compared with col-
located grids, staggered grids are currently more popular for simulating

11

survey on fluid simulation

(a)

u𝐼 ,𝐽 +1/2

u𝐼 ,𝐽 −1/2

u𝐼−1/2,𝐽 u𝐼+1/2,𝐽
𝑝

(b)

* *

**

+

++

𝑥

𝑦

(c)

Figure 2.1: Schematic diagram of Eulerian grids. (a) A Collocated grid where
physical quantities are stored in the cell centers (yellow points). (b)
A Staggered grid where different variables are stored at different lo-
cations; in this example, pressure is stored at the cell centers (black
points), while velocity is split into its two Cartesian components and
stored at the centers of the vertical and horizontal cell edges (red and
blue points). Subscripts 𝐼 and 𝐽 denote spatial indices. (c) Using bi-
linear interpolation to obtain the value of a physical quantity at any
position.

incompressible fluids given their higher stability. It is noteworthy that
staggered grids are related to the Marker-and-cell (MAC) method [119],
which was used in the early days of computational fluid dynamics to
solve incompressible flow problems.

Lagrangian schemes. In the Lagrangian framework, domain dis-
cretization is based on a set of particles moving with the fluid flow, each
approximating the physical values of a fluid parcel. Hence, Lagrangian
schemes conserve mass by construction. Since particle locations can be
more flexibly distributed over the computational domain compared to
a fixed grid, Lagrangian schemes are particularly effective at modeling
complex free surface details.
Currently, SPH is one of the most popular Lagrangian methods for

fluid simulation, with origins in the works by Lucy [192] and Gingold
and Monaghan [105]. SPH has evolved significantly over time, with var-
ious advancements and improvements.

12

2.1 fluid simulation overview

Distance between particles Neighboring particle

Smoothing
lengthℎ

Concerning particle

Kernel function𝑊

Figure 2.2: Schematic diagram of Lagrangian-based smoothed particle hydrody-
namics.

Figure 2.2 shows how SPH performs interpolation, where the phys-
ical value 𝐴 at location x𝑖 of particle 𝑖 is computed using a smoothing
kernel𝑊 as follows:

𝐴 (x𝑖) =
∑︁
𝑗

𝑉𝑗𝐴 𝑗𝑊
(����x𝑖 − x𝑗

���� , ℎ) , (2.7)

where ℎ is called the smoothing length, 𝑉 is the volume of (the parcel
of) each particle, and 𝑗 indicates all particles closer to 𝑖 than the distance
ℎ. The selection of an appropriate smoothing kernel is crucial and must
meet several key criteria, including:

• Compact Support: The kernel function is zero beyond a speci-
fied distance from the particle, ensuring that each particle inter-
acts only with its immediate neighbors. This property is essential
for maintaining computational efficiency and feasibility.

• Normalization: The kernel must be normalized such that its in-
tegral over all space equals one. This normalization is crucial for
conserving mass, momentum, and energy during interpolation
processes.

• Smoothness: To accurately compute gradients and Laplacians,
the kernel should be sufficiently smooth. This smoothness is nec-
essary for minimizing numerical errors and ensuring the stability
of the computations.

To compute higher-order quantities, e.g., pressure gradients, one can
simply replace the kernel function𝑊 in Equation (2.7) with its higher-
order counterpart. Detailed numerical implementations for SPH are pre-
sented in Section 3.2.
Initially, theWeakly-compressible SPH (WCSPH) [26] approachwas in-

troduced, where pressure computation was performed explicitly. Later,
the Predictive-corrective Incompressible SPH (PCISPH) [264] method was
proposed, which introduced a prediction-correction scheme for implicit
pressure computation. This technique improved the stability and accu-
racy of fluid simulations by enforcing incompressibilitymore effectively.

13

survey on fluid simulation

Further developments led to the introduction of Implicit Incompress-
ible SPH (IISPH) [139], which provided a more strictly incompressible
simulation with increased computational efficiency. Most recently, the
Divergence-free SPH (DFSPH) [28] method has been developed, which
further enforces the divergence-free condition within a simulation.

Position-based Dynamics (PBD) is a versatile and efficient simula-
tion method for handling various physical phenomena, including flu-
ids, deformable solids, and cloth. PBD was first introduced by Müller et
al. [206] as an alternative to traditional force-based dynamics, focus-
ing on the direct manipulation of object positions instead of computing
forces and accelerations. In the context of fluid simulation, the Position-
based Fluids (PBF) method was proposed by Macklin and Müller [194],
building upon the principles of PBF and enforcing incompressibility by
iteratively adjusting particle positions.

(a) (b)

(c) (d)𝑥

𝑦

P2G

G2P

Grid force

Advection

Shape function 𝑁

u𝑡+1𝑝 = u𝑡𝑝 +
∑
𝐼𝑊 (x𝑡𝑝)u𝑡𝐼

𝑚u𝑡
𝐼
=

∑
𝑝𝑊 (x𝑡𝑝) (𝑚u𝑡𝑝) u𝑡+1

𝐼
= u𝑡

𝐼
+ Δ𝑡F𝑡

𝐼
/𝑚𝑡

𝐼

x𝑡+1𝑝 = u𝑡+1𝑝 Δ𝑡

u𝑡𝑝

u𝑡+1𝑝

Figure 2.3: Hybrid scheme of the Particle-In-Cell method. This example uses a
cell-centered grid, where information is stored at the yellow points.
During simulation, momentum and weight (which can be used to
obtain the velocity u𝑡

𝐼
on the grid) are transferred from particles

to the cell centers (a). In the next step, forces are applied to grid
nodes to compute the new velocity u𝑡+1

𝐼
(b). Finally, the velocity is

re-transferred from the grid to particles (c), causing the movement
of the particles (d). When particles get their new velocities, the new
positions can be easily found by forward Euler integration.

14

2.2 advancements in fluid simulation

Hybrid schemes. These schemes combine the advantages of La-
grangian and Eulerian schemes by representing the motion of the fluid
flow with Lagrangian particles while computing dynamics (forces) on
an Eulerian grid.
As Figure 2.3 shows, to combine particles and grids, physical values

must be separately mapped from particles to grids (P2G) and from grids
to particles (G2P) before and after the dynamic simulation. A so-called
shape function, similar to the kernel function𝑊 for the SPH method,
performs these mapping procedures.
In the original PIC [118], only the momentum term is transferred be-

tween 𝑃 and𝐺 . The later proposed FLIP [41] transfers the differential of
momentum to obtain better dynamic effects at the cost of stability. The
Material PointMethod (MPM) introduced by Sulsky et al. [273] is another
extension of the original PIC. It adds a new dimension to fluid simula-
tion by considering the deformation gradient information along with
the momentum term, making it suitable for simulating a wide range of
materials, including fluids, granular materials, and deformable solids.
Throughout the development of the PIC, FLIP, and MPM methods,

these techniques have evolved and merged to form more advanced ap-
proaches. The Affine Particle-in-cell (APIC) method [153] extends the
MPM framework by incorporating affine velocity fields, which reduces
numerical dissipation and offers improved stability compared to both
PIC and FLIP. The Polynomial Particle-in-cell (PolyPIC) [95] method
takes the MPM framework one step further by incorporating higher-
order polynomial velocity fields, building upon the advancements made
by the APIC method. Finally, the Moving Least Squares Material Point
Method(MLS-MPM) [129] utilizes moving least squares for grid interpo-
lation and differentiation in MPM simulations, further enhancing the
accuracy and robustness of the approach.

2.2 advancements in fluid simulation

Fluid simulation is a dynamic field characterized by numerous active
research areas. It has seen a continual influx of innovative proposals
and solutions. To highlight significant milestones and notable contribu-
tions, we conducted a comprehensive survey of the advancements in
fluid simulation within the realm of computer graphics over the past
decades.

2.2.1 Survey Structure

Physics-based fluid simulation is a research area that has been active
for many decades, with input from a diverse range of fields, including
engineering, physics, mathematics, and computer science. A fluid simu-
lation survey covering the scope of all these fields would be too exten-

15

survey on fluid simulation

sive for one thesis. Furthermore, we believe that the interests of typical
researchers and practitioners in computer graphics focus on a subset of
the above aspects, and we structure our survey accordingly as follows.
As main information sources, we selected articles published in ACM

Transactions on Graphics (TOG), IEEE Transactions on Visualization and
Computer Graphics (TVCG), and Computer Graphics Forum (CGF), which
are arguably the three most influential and representative computer
graphics journals. As our survey aims to cover recent tendencies, we
included all relevant papers from these journals published in the last
decade (2012–2022). We further included some papers presented at key
graphics conferences like the ACM SIGGRAPH / Eurographics Sympo-
sium on Computer Animation (SCA), ACM SIGGRAPH (SIGGRAPH), and
ACM SIGGRAPHAsia (SIGGRAPHAsia). We also included earlier papers
that have significantly impacted recent research. In total, we collected
and further analyzed 327 papers meeting the above criteria.
The origins of physics-based fluid simulation in computer graph-

ics can be traced back to the 1970s with the development of “particle
systems” [236]. However, a fully developed, reasonably stable physics-
based system for fluid animation was not achieved until the end of the
last century [267]. In the decade following, various simulation strate-
gies continued to evolve, focusing on improving stability, accuracy, and
efficiency in fluid simulations. As we enter the 2010s, which is the pri-
mary focus of our survey, the main research interests in fluid simula-
tion shifted towards addressing specific effects that are challenging to
achieve using conventional fluid simulation methods. Alongside this
shift, advances in machine learning technologies have opened up new
ways to integrate neural networks with simulation algorithms, pushing
the boundaries of what can be accomplished in fluid simulations. As
our survey aims to discuss the current advancements in this area com-
prehensively, we classify the collected papers into seven relevant topics
that span the past decade based on our detailed analysis of these papers.
We then select a subset of representative papers within each topic and
discuss these in greater detail.

2.2.2 Classification of Topics

Figure 2.4 shows the seven identified topics at the first level of a hier-
archy depicting our survey’s structure. Further levels refine these into
sub-topics. The seven main topics are as follows:

• Advanced computational approaches: (Section 2.3) Methods
that aim to enhance the efficiency, accuracy, and scalability of
simulations by optimizing resource utilization and reducing com-
putational complexity.

16

2.2 advancements in fluid simulation

Figure 2.4: Classification of advancements based on the topics.

17

survey on fluid simulation

• Fluid coupling with multi-materials: (Section 2.4) Methods
that model the interaction between fluid and solid objects of var-
ious shapes and textures.

• Multiphase liquids: (Section 2.5) Methods for the simulation of
liquid–liquid interaction effects of various phases.

• Gas–liquid interfaces: (Section 2.6) Methods dealing with sce-
narios where forces on gas–liquid interfaces dominate the fluid
motion.

• Fine detail enhancement: (Section 2.7) Methods that concen-
trate on preserving/enhancing fluid motion on a detailed level.

• Fluid control: (Section 2.8) Methods that allow visual designers
to control the appearance and style of fluid simulations.

• Special fluids: (Section 2.9) Methods that simulate non-
conventional fluids, e.g., highly viscous/thin, sensitive to mag-
netic fields, or targeting materials that are, strictly speaking, not
fluids but behave like fluids.

2024/7/4 15:41 Untitled.svg

file:///Users/xuyanrui/Downloads/Untitled.svg 1/1

Figure 2.5: Number of studied papers per identified topic. For each topic, the top
(pure color) bar segment represents papers published in TOG, CGF,
and TVCG. The bottom (shadowed) bar segment represents other
key papers considered in our survey.

Our seven-topic classification aims first and foremost to identify
salient trends in the past decade. As such, the emergence of these topics
is based on a significant portion of the found papers that can be grouped
within each topic; in other words, the topics reflect a “data-driven orga-
nization” of how research on fluids proceeded in the past decade. This is

18

2.3 advanced computational approaches

in contrast with other surveys that group works based on a predefined,
model-driven taxonomy proposed by their authors.
It is insightful to analyze the distribution of topics in the found pa-

pers and how these topics evolve over time. Figure 2.5 shows the num-
bers of papers found for each of the seven identified topics. We see that
while variations exist (some topics being more popular than others),
each topic has a significant number of papers, with 4–8 top-tier papers
per year on average, thereby supporting the claim that our identified
topics are a good way to organize the research.
Figure 2.6 refines the above insight, showing the number of articles

per topic and per year. We see that while some topics show an increase
in publications (e.g., advanced computational approaches or red curve
in Figure 2.6), all identified topics have been “alive” over the past decade
– another indication that they are suitable for the organization of our
survey.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
year

18

16

14

12

10

8

6

4

2

0

co
un
t

Fluid coupling with multi-materials
Gas-liquid interfaces
Fluid control

Advanced computational approaches
Multiphase liquids
Fine details enhancement
Special fluids

Figure 2.6: Trends in number of papers published per topic over the past decade.

2.3 advanced computational approaches

Fluid simulation requires a high discretization resolution to reach high
visual quality. However, more discrete particles or denser grids demand
more computing resources. This section surveys recent approaches for
improving computational efficiency.We organize these into approaches
that use adaptive time and/or space sampling (Section 2.3.1), GPU or
CPU parallelization (Section 2.3.2), and the more recent data-driven ap-
proaches (Section 2.3.3). For a more extensive survey of this area, we
refer to the work of Manteaux et al. [197].

19

survey on fluid simulation

2.3.1 Adaptive Solutions

A stable, sufficiently accurate, and detailed simulation requires ade-
quate temporal and spatial resolution. Time steps must be short enough
to ensure stability, and high-resolution grids or dense particles are
needed to capture fine details. However, computational cost increases
with both spatial and temporal resolution, and an overall high resolu-
tion is not always needed. For example, time steps must be small for
fast motion but can be longer when the overall movement is slow; high
spatial resolution is needed to capture delicate splashes and sprays, but
it is less important deep inside the fluid, where such detail is not visible.
As such, adaptivity uses high resolution only at necessary time and

space instances and uses low resolution elsewhere to reduce computing
costs. Figure 2.7 illustrates this strategy with particles as an example.
Adaptive methods can be categorized into temporal and spatial adap-
tivity. Temporal adaptivity dynamically changes the time step, either
globally or locally, for different parts of the fluid. Spatial adaptivity ad-
justs the resolution for different fluid regions or changes the method of
discretization for a similar effect. These two approaches are described
next.

High accuracy & level of detail
Computationally expensive

Low accuracy & level of detail
Computationally cheap

Adaptive

High accuracy & level of detail
(in certain parts)

+
Less expensive

Figure 2.7: Schematic diagram of particle-based adaptivity. Particle-based adap-
tivity adjusts particle size dynamically to reduce cost and preserve
detail simultaneously.

2.3.1.1 Temporal adaptivity

Temporal adaptivity adjusts the time step length dynamically. A
straightforward strategy is to adapt the time step globally, i.e., use the
same time step for the entire simulation domain. The time step size is
determined dynamically at each time step under a restriction. For fur-
ther performance gains, different time steps can be used for different

20

2.3 advanced computational approaches

spatial domain zones, thereby reducing the total number of integration
steps needed.

Global time step. The Courant–Friedrichs–Lewy (CFL) condi-
tion [66] is a well-known method for determining the time step size.
Most current simulation methods compute a global time step according
to the CFL condition at each time step. Generally, the CFL condition
takes the form

𝐶 ≡ ∥u𝑐 ∥Δ𝑡
Δ𝑥

≤ 𝐶max, (2.8)

where ∥u𝑐 ∥ is the speed of information propagation, Δ𝑥 is the grid-cell
size for Eulerian and hybrid simulations or smoothing length for La-
grangian ones, 𝐶max is a constant based on the size of discrete opera-
tors, and 𝐶 is the CFL or Courant number. In practice, ∥u𝑐 ∥ typically
represents the speed of sound in the material or maximum velocity in
the simulation. The time step length Δ𝑡 is usually chosen so that𝐶 is in
the range of [0, 1]. The choice of the maximum Courant number𝐶max is
generally dictated by the type of simulation algorithm being used, but it
should not exceed 1. Methods such as PIC or MPM tend to offer greater
flexibility in choosing 𝐶max compared to SPH. Using the same method
with an implicit time integration scheme allows for larger 𝐶max values
while maintaining simulation stability.

Determining an optimal value for 𝐶max often involves an extensive
trial-and-error process tailored to a specific scenario. Sun et al. [275] ad-
dressed this issue by considering metrics related to the stability of MPM
simulations, such as the deformation gradient. By using these metrics,
they were able to more effectively identify the performance limits and
improve the overall stability of simulations.

(a) (b) (c) (d) (e)𝑥 𝑥 𝑥 𝑥 𝑥

𝑡 𝑡 𝑡 𝑡 𝑡

Figure 2.8: Schematic diagram of the asynchronous time integration scheme in
Koike et al. [164]. Boxes refer to discretized quantities, such as ve-
locity. Color refers to the level of regions (red: 0, green: 1, blue: 2).
The entire region (a) is first advanced with the largest time step (b).
Next, smaller time steps are used (c, d). If values needed for computa-
tion are calculated using a larger time step, they are interpolated to
match the current step size. Once the smallest time step is reached,
the small time step is applied again and overwrites variables of level
1 (e). This procedure is applied recursively to update all quantities.

21

survey on fluid simulation

Asynchronous time integration. When dealing with scenarios in-
volving both intense waves and calm regions, implementing a global
time step restriction can be inefficient and wasteful. To address this, the
concept of regional time stepping was initially introduced to the SPH
method by Goswami et al. [111]. This approach subdivides the simula-
tion space into smaller regions, allowing each region to have its own
independent time step. Recognizing the grid-based nature of the subdi-
vided regions, Fang et al. [82] extended this idea to the MPM method.
In their technique, a scheduler determines the order in which blocks
are updated, while a buffer block is employed to handle boundaries be-
tween blocks with different time steps. This resulted in significant per-
formance improvements, achieving speed-ups of 9.8 times compared
to traditional synchronous MPM implementations. Inspired by Fang et
al. [82], Koike et al. [164] proposed an asynchronous time integrator for
Eulerian liquid simulation, with an interpolation strategy to deal with
boundaries between different-time-step zones and an advection scheme
to prevent seams at the boundaries, as is shown in Figure 2.8. While the
abovementioned methods effectively enable the time step to be asyn-
chronized for separate regions, they still necessitate synchronization for
all regions at simulation time barriers. Reinhardt et al. [237] presented
a fully asynchronous time integration model for SPH fluid animation,
where each particle has an individual time step and is processed using
a priority queue.

2.3.1.2 Spatial adaptivity

These methods change the spatial resolution or discretization method
in different spatial regions to keep fine detail in some regions but use
coarser (thus faster to compute) detail in less important regions. Spa-
tial adaptivity methods are heavily dependent on the underlying dis-
cretization. We next detail different spatial adaptive approaches for the
Eulerian, Lagrangian, and hybrid approaches.

a

b

cd

e f
g

h

(a) Example of an octree

a b c d

e f g h

(b) Corresponding data structure

Figure 2.9: Schematic diagram of a quadtree represented in 2D, where each cell
has four children. 3D octrees have eight children per cell.

22

2.3 advanced computational approaches

Eulerian grids. Grid-based Eulerian methods use adaptive grid
structures to achieve dynamic spatial resolution. However, compared to
uniform grids, it is challenging to design a stencil, which refers to the
local pattern used to approximate differential operators like the Lapla-
cian, on an adaptive grid for pressure solving. This difficulty ariseswhen
trying to attain high-order accuracy and form a symmetric positive-
definite linear system that can be efficiently solved on non-symmetric
adaptive grids.
The octree data structure is one grid adaptivity approach that allows

the resolution of axis-aligned structured grids to be changed. As shown
in Figure 2.9, each cell is divided into four equal children by cutting it
in half along each axis. Octrees have the advantage of regularity, sup-
porting fast discretization, and simple implementation. However, on the
transition between different grid levels, octrees have T-junctions, which
cause challenging numerical issues.
Losasso et al. [190] proposed the first octree-based liquid solver us-

ing a set of symmetric differential operators, which enables the Poisson
equation to be solved on unrestricted octree grids. In the octree, veloc-
ity is stored on cell faces, while pressure is stored at cell centers. The
velocity divergence ∇ · u at cell centers is computed considering all cell
faces 𝑓 as

∇ · u =
1
𝑉𝑐

∑︁
𝑓

(u𝑓 · n𝑓)𝑆 𝑓 , (2.9)

where𝑉𝑐 is the cell volume, and n𝑓 , u𝑓 , and 𝑆 𝑓 are the outward-pointing
normal, velocity, and area of face 𝑓 , respectively. The pressure gradient
on each face is computed from the pressure of the two adjacent cells
using

𝜕𝑝

𝜕𝑥
=

𝑝2 − 𝑝1

(Δ𝑥1 + Δ𝑥2)/2
, (2.10)

where Δ𝑥 denotes the cell size, and subscripts 1 and 2 denote the adja-
cent cells to that face.
Dynamically adjusted octree grids also present challenges in terms

of modifying and accessing data. Implementing such grids is inherently
complex as it requires efficiently subdividing or merging cells based
on the data’s properties while ensuring these operations are error-free
and optimized for performance. Frequent adjustments to the grid in re-
sponse to rapidly changing data can also lead to substantial memory
fragmentation. As the size of the dataset increases, the scalability of the
octree grid must be addressed. Scalability not only involves handling
larger volumes of data but also maintaining performance efficiency and
managing increased memory and processing demands.
Setaluri et al. [255] proposed a Sparse Paged Grid (SPGrid) data struc-

ture that constructs the octree as a hierarchy of sparsely populated reg-
ular grids instead of a standard pointer-based tree. Goldade et al. [110]

23

survey on fluid simulation

recognized the limitations of the first-order accuracy of the velocity
field for octrees and applied a variational finite difference discretiza-
tion method to it, enabling a more efficient viscous simulation. Ando
and Batty [9] focused on using octree grids to enhance surface detail
exclusively. This approach further reduces implementation complexity
while retaining the benefits of octrees. While the particular attention
to maintaining data order for efficient computation is advantageous, it
also presents a challenge in system design. Shao et al. [258] noted this
issue and identified an underutilized potential within the regular Carte-
sian grid structure. They ingeniously integrated the single instruction,
multiple data (SIMD) approach with a multigrid structure, aiming to
streamline and minimize the required number of multiplications. Their
method showed significant speed-ups of 2.0 to 14.6 times compared to
contemporary adaptive octree solvers found in commercial software for
large-scale simulations.
Several approaches have been inspired by and extended from the

octree grid concept. These works aim to improve efficiency and accu-
racy in various ways. Ferstl et al. [90] proposed a hexahedral finite el-
ement discretization multigrid solver on adaptive octree grids. By spe-
cially treating boundary conditions on the free surface, they achieved
second-order accuracy on the surface. Aanjaneya et al. [2] focused on
enhancing pressure projection on octrees. They used a finite volume
power diagram to accurately recover irregular embedded boundaries
that cross grids, satisfying both second-order accurate and symmetric
positive definite (SPD) conditions. Xiao et al. [320] introduced an adap-
tive staggered-tilted (AST) grid for conducting adaptive fluid simula-
tions on a regular discretization. By adding a tilted grid to an octree
structure, they avoided T-junctions and further improved the adaptiv-
ity of the simulation.
Some fluid simulation methods employ multiple grids with different

resolutions or structures to simulate various parts of the fluid, later com-
positing these elements together. This approach contrasts with using
a single adaptive grid for the entire fluid domain. Gao et al. [104] de-
vised a technique that divides the domain into nested partitions with
different resolutions, effectively handling multi-resolution fluid behav-
ior. English et al. [80] used overlapping Cartesian grids with varying
scales and rotations to represent the fluid domain, constructing a local
Voronoi diagram for managing pressure projection near grid interfaces.
Li et al. [177] introduced an adaptive relaxation method for kinetic ap-
proaches, enabling fluid sampling at arbitrary overlapping resolutions
and providing an efficient representation of fluid behavior across a wide
range of scales.
While many adaptive methods that use single or multiple grid struc-

tures can disrupt the uniform data structure of the original Cartesian
grid, some works have found a balance between maintaining unifor-
mity and introducing adaptivity. Zhu et al. [353] used a uniform grid

24

2.3 advanced computational approaches

within a cubic region of interest, extending the grid into the far-field
by stretching cells along an axis. This approach retains the benefits of
a uniform grid while providing adaptivity in specific areas. Ibayashi et
al. [138] proposed a technique for dynamically warping uniform grids,
combining the advantages of both unstructured and structured grids.

Lagrangian methods. Particle-based Lagrangian approaches, such
as SPH, achieve spatial adaptivity by defining a desired resolution for
each particle with a sizing function. By adjusting particle sampling
through local merging or splitting of particles (as shown in Figure 2.7),
these methods are able to dynamically change the resolution, offering
more efficient and accurate simulations while focusing on areas of in-
terest.
The early study of adaptive SPH can be traced back to the work of

Adams et al. [3]. They introduced a sizing function based on geomet-
ric local feature size that allows computational resources to be focused
on geometrically complex regions. However, adaptive particles yield
density errors due to different resolution scales, which can lead to in-
stabilities. To address this issue, Orthmann and Kolb [220] proposed a
temporal blending technique to limit the rate of temporal resolution
change, thereby significantly reducing the error. With the advent of
more strictly incompressible implicit SPH approaches, the size differ-
ence between neighboring particles must be minimized to avoid insta-
bility. Winchenbach et al. [313] achieved this by forming a continuous
transition of particle resolution by tuning the splitting and merging pat-
tern and introducingmass redistribution between particles. A simplified
version of temporal blending was also incorporated. In their method,
splitting supports arbitrary 1 : 𝑛 patterns. Merging uses an (𝑛 + 1) : 𝑛
pattern, where one particle is merged into the others. Mass redistribu-
tion divides the excessive mass 𝑚ex of one particle 𝑖 equally among 𝑛

particles. The physical attributes𝐴 of the mass-receiving particles 𝑗 are
updated to 𝐴∗𝑗 by

𝐴∗𝑗 =
𝑚ex
𝑛
𝐴𝑖 +𝑚 𝑗𝐴 𝑗
𝑚ex
𝑛
+𝑚 𝑗

. (2.11)

In this thesis, we extend this scheme to optimize resolution at the
coupling boundaries between fluid and solid particles, detailed in Sec-
tion 3.3. Zhai et al. [345] took inspiration from this method to propose
an adaptive scheme for Power Particles [73]. Winchenbach et al. [311]
addressed the challenge of coupling fluid particles of varying sizes
with particle-based boundary representations. They proposed a semi-
analytic approach to handle boundaries in solving this problem. De-
tailed information on this implementation is provided in Section 3.4. Re-
cently, Winchenbach and Kolb [314] introduced optimized refinement
for splitting patterns with a discretized objective function that models
the error, thereby significantly improving stability. Neighbor search for

25

survey on fluid simulation

adaptive particles also needs to be specifically optimized. In adaptive
simulations, a particle can have a widely varying number of neighbors
depending on its size. Smaller particles, when neighbored by larger ones,
tend to have fewer neighbors than those in the opposite scenario. To
solve this, Winchenbach and Kolb [312] proposed constrained neigh-
bor lists to determine the neighbors in a user-specified range. To fur-
ther accelerate the neighbor search process, Winchenbach et al. [310]
introduced a sparse data structure for efficient neighbor search and ray
tracing for adaptive SPH based on hash-maps.
Among vortexmethods, ways to solve the Poisson problem efficiently

with adaptive data structures have also been studied. The Poisson prob-
lem is an 𝑁 -body problem, where the interaction between each object
and the remaining objects is considered. Naively solving this problem
requires 𝑂 (𝑁 2) computations, so adaptive methods are used to reduce
this complexity. The Fast Multipole Method (FMM) [113] uses an oc-
tree to approximately solve the 𝑁 -body problem in𝑂 (𝑁 log𝜂 𝑁), where
𝜂 ∈ {0, 1} by approximating interactions between far-away bodies by
the body centers instead of computing all pairwise interactions. Zhang
and Bridson [346] proposed a novel Particle–Particle Particle–Mesh
method, which is easier to implement and parallelize on GPUs, and ap-
plied it to a vortex segment solver. Angelidis [13] used FMMwith added
support for non-uniform particle sampling to simulate incompressible
smoke with vortices.

Hybrid methods. Hybrid methods offer greater flexibility in imple-
menting adaptive schemes due to their intrinsic combination of La-
grangian and Eulerian representations for fluid simulation. Ando et
al. [11] applied the particle splitting–collapsing scheme, similar to tra-
ditional Lagrangian adaptive mechanisms, to adjust the granularity of
fluid representation in relation to the distance to the fluid surface for
FLIP. They used the finest particles to represent splashes and sheets.
Ando et al. [12] later introduced an adaptive liquid solver on tetrahe-
dral meshes, which combined a variant of FEM with FLIP advection,
adapting the sizes of both the particles and tetrahedral meshes coher-
ently for more efficient simulation. For highly stable situations, Yue et
al. [341] explored the possibility of simulating the interior area as soft
continuum materials to reduce computational costs at the solver level.
To further save computational costs, more recent hybrid approaches

aimed to “hollow out” the inner area of the simulated fluid by using
Eulerian simulation only, with particles applied near the surface. Chen-
tanez et al. [56] proposed coupling pure Lagrangian and Eulerian meth-
ods to simulate single fluid bulks, addressing the issue of fluid repre-
sentation transition and coupling stability between two different fluid
solvers. However, coupling two different solvers can still be prone to in-
stability, so Ferstl et al. [89] later returned to adaptive FLIP simulation
using FLIP particles within a narrow band of the fluid surface. Nakan-

26

2.3 advanced computational approaches

ishi et al. [210] focused on constructing a proper data structure to adap-
tively merge and split octree grids for FLIP, adapting the size of the
background grid only near the fluid surface.
Sato et al. [250] took adaptivity to the extreme by extending Ferstl et

al.’s work [89] to replace some of the fluid surfaces using level set sur-
faces via an introduced transition function. This idea represents a break-
through in the field, enabling a seamless merging of physical simulation
details and large-scale representations. To address the setback of ineffi-
cient, highly-dissipative wave propagation during the transition of sur-
face representation, Huang et al. [134] employed hybridization of volu-
metric and surface-based advection-projection discretizations, with the
boundary element method (BEM) applied for long-lasting waves.

2.3.2 Parallelization

Parallelization of simulation algorithms offers a promising pathway to
augment fluid simulation speed by capitalizing on the existing paral-
lel computation capacities of modern GPUs and CPUs. We divide such
methods into three classes: parallelization on a single processing unit
(multi-core CPU or a GPU); parallel techniques with multiple process-
ing units, especially multiple GPUs; and using distributed systems (see
also Figure 2.10).

2.3.2.1 Single processing unit

Parallelization can be most easily achieved on a single processing unit,
such as a multicore CPU or GPU. Pure Eulerian and Lagrangian sim-
ulation techniques can be readily parallelized under these conditions.
However, hybrid methods necessitate meticulous measures due to their
composite nature of particles and grids. The method of using a volumet-
ric, dynamic grid that shares several characteristics with B+trees (VDB)
pioneered by Museth et al. [207] offers a robust framework for manip-
ulating sparse volumetric data. Wu et al. [316] successfully integrated
this approach into the FLIP method by resolving the parallel particle-to-
grid rasterization problem inherent in hybrid methods. Gao et al. [101]
accomplished a similar integration for MPM based on the SPGrid struc-
ture [255], wherein the particle-to-grid transfer mechanism was a cru-
cial aspect to be solved. Furthermore, Chu et al. [59] applied and opti-
mized the Schur complement theory for FLIP simulations. They divided
the simulation domain into multiple subdomains with face edges and
cross-points to establish a parallel-friendly data structure. Aiming to
streamline the development of parallel programs, Hu et al. [130] pro-
posed a new data-oriented programming language — Taichi. This lan-
guage facilitates efficient authorship, access, and maintenance of sparse
data structures and is accompanied by a compiler designed to automat-
ically optimize and parallelize code on CPU or GPU platforms. Subse-

27

survey on fluid simulation

CPU

Core
Thread(s)

GPU

Instruction
Unit Threads

(a) Single processing unit

CPU

GPU

GPU

GPU

GPU

(b) Multiple processing units

Network

Node Node Node

(c) Distributed system

Figure 2.10: Schematic diagrams of different parallelization types. A single pro-
cessing unit can be a multicore CPU or GPU. A CPU has few but
high-processing-power cores. A GPU has weaker but many more
cores, which can result in better performance for repetitive opera-
tions.

quently, Hu et al. [131] enhanced Taichi to include bit-level memory
control over numerical data types.

2.3.2.2 Multiple processing units

Multi-GPU techniques are the approach of choice for scaling up the
simulation size. In this case, multiple GPUs cooperate with the CPU(s),
together forming a heterogeneous computing structure. The most chal-
lenging aspect of this structure is to reduce both the frequency and
amount of data exchange between CPU–GPU and GPU–GPU, which
is very expensive. Liu et al. [185] initially introduced the Schur com-
plement method to the graphics community as a strategy to tackle this
issue. As previously outlined, the Schur complement method has the
significant benefit of segmenting the entire simulation domain into sev-
eral regions. Each region can be efficiently computed using a single
GPU, with the interaction boundary between these regions elegantly
managed by the CPU(s). This setup eliminates the need for data trans-
mission from a GPU to a CPU and subsequently to another GPU. Mean-
while, Wang et al. [304] took a different approach by directly adapt-
ing the MPM algorithm structure to fit a multi-GPU framework. They
accomplished this by developing a particle data structure to encour-

28

2.3 advanced computational approaches

age coalesced memory access and circumvent atomic operations dur-
ing particle-to-grid data writing. Additionally, they proposed a kernel
fusion strategy to reduce the number of GPU kernel launches and global
memory requirements. Chen et al. [52] further optimized kinetic meth-
ods for scenarios containing complex solids. They introduced a multi-
kernel launchmethodology for parallelism enhancement and a paramet-
ric cost model to improve performance optimization. This exploration
of fluid simulation parallelization demonstrates the richness and versa-
tility of strategies within this domain.

2.3.2.3 Distributed systems

In the pursuit of scalability in fluid simulation, the potential of dis-
tributed platforms is harnessed to delegate tasks across multiple com-
puting nodes. These distributed simulations frequently utilize auto-
matic task allocation to ensure efficient processing. Biddiscombe et
al. [33] laid a crucial groundwork by providing a GUI-based interface
and analysis system for high-performance computing (HPC). Their in-
novative approach involved substituting the I/O layer in the Hierarchi-
cal Data Format Version 5 (HDF5) with a parallel data transfer driver,
thereby enabling parallel simulation, analysis, and GUI operation con-
currently on one or multiple devices. Mashayekhi et al. [198] developed
a system that automatically distributes tasks across many multi-core
cloud computing nodes to dynamically manage fluid partitions. Shah et
al. [256] proposed a load-balancing scheme for sparse fluid simulations.
Qu et al. [233] outlined a simple yet effective solution to accelerate dis-
tributed fluid simulations, which uses micro-partitioning to greatly im-
prove load balance and communication performance.

2.3.3 Data-driven Approaches

Although great progress has been made in space–time adaptive and par-
allel computing in recent years, the simulation of fluid by traditional
physical methods still requires high computational resources. Strictly
limited time step sizes are needed to ensure simulation stability when
solving governing equations in a discretized space. Implementing ef-
ficient and accurate end-to-end fluid simulation pipelines is also tech-
nically highly challenging. Data-driven approaches provide an alterna-
tive solution for real-time interactive fluid simulation, which we outline
next.

2.3.3.1 Model reduction

Model reduction is achieved by precomputing a set of simulation se-
quences to obtain a low-dimensional representation of fluid motion, al-
lowing for efficient and fast re-simulation. Treuille et al. [290] first in-

29

survey on fluid simulation

troduced model reduction to fluid simulation via Galerkin projection.
They constructed vector field basis functions for fluid dynamics based
on principal component analysis (PCA) to generate real-time fluids. For
this, they computed the Galerkin projection of the following differential
equation F onto a reduced-dimensional space:

F (r) = 𝑃 ◦ F (v) ◦ 𝑃−1. (2.12)

The high-dimensional vector v ∈ R𝑛 and low-dimensional vector r ∈
R𝑚 are transformed by the projection operator 𝑃 (v) = r and its inverse
𝑃−1 (r) = v.

Later, improvements, such as the extension of the Galerkin projec-
tion to non-polynomial systems [269] and a multidimensional cubature
method supporting semi-Lagrangian advection [162], were proposed.
De Witt et al. [74] used Laplace eigenfunctions instead of PCA eigen-
vectors. The method performs a Galerkin projection of the vorticity
form of the Navier–Stokes equations and is therefore not data-driven
but physically driven. Liu et al. [183] further stabilized the method us-
ing a variational integrator, providing structure coefficients without
artifacts. Zhai et al. [344] proposed a model reduction method based
on empirical modal decomposition (EMD), which can decompose the
flow field into various frequency components as the basis vectors for
model reduction. This method can extract the characteristic parameters
of the original fluid to achieve inverse modeling. To reduce the mem-
ory requirement to store basis functions, Cui et al. [68] generalized the
dynamics to Neumann boundary conditions using analytic eigenfunc-
tions and the Fast Fourier Transform (FFT). This approach allows the
use of thousands of basis functions to produce more convincing and
fine-grained fluid dynamics. Using this, they proposed an analytical ex-
tension of the Laplace eigenfunction method [67]. This spiral–spectral
fluid simulation method is capable of producing realistic turbulent ef-
fects over a variety of radial domains, both surface and bulk. Mercier
and Nowrouzezahrai [200] constructed an anisotropic vector field basis
function that can accommodate curved boundaries and coupling with
dynamic obstacles. The method sacrifices a physically accurate solution
for a visually plausible simulation. A reduced model for fluids based on
incompressible polynomial vector fields was proposed by Panuelos et
al. [225] to reduce the computational cost of highly viscous fluids.

2.3.3.2 Machine learning

Machine learning methods have brought about a revolution in physics-
based fluid simulation. In particular, deep learning techniques have
proven the possibilities of data-driven approaches. Ladicky et al. [167]
expressed physics-based fluid simulation as a regression problem and
used a regression forest algorithm to approximate the dynamic behavior

30

2.3 advanced computational approaches

of fluid particles. This method strongly generalizes to simulating large-
scale scenes in real time. Raveendran et al. [235] used interpolation on
existing fluid simulations to rapidly generate a large number of new
simulation results. Thuerey [289] improved this method using a signed
distance function to fully automate the matching process. Recently, Oh
and Lee [216] proposed a temporal interpolation network based on op-
tical flow and forward advection that can derive high-frame-rate smoke
simulations from low-frame-rate simulations.

…

…

…

…

…

…
…

Feature vector
Velocity
Level set

Pressure
Boundary conditions

feature extraction

Training data

Neural network
Input

Pressure
loss function

Ground truth

Figure 2.11: Using Artificial Neural Networks to solve the pressure projec-
tion [103]. The network inputs feature vectors extracted from train-
ing data to output a pressure that is as close as possible to the
ground truth.

With the development of deep learning, other types of Artificial Neu-
ral Networks (ANNs) [103, 319] have been introduced to solve pressure
calculations in fluid simulations and accelerate the pressure projection
step (Figure 2.11). Wiewel et al. [308] proposed an Long Short-Term
Memory (LSTM) architecture to predict the evolution of fluids over time.
They used Convolutional Neural Networks (CNNs) to map the 3D fluid
simulation to a low-dimensional latent space, greatly speeding up the
simulation. They further improved the method using latent space subdi-
vision [309], allowing for more stable predictions of complex long-term
series. Takahashi and Lin [283] proposed a framework capable of ex-
tracting physical parameters from real fluid videos and applying them
to new scenarios to generate the user’s ideal fluid behavior. Eckert et
al. [78] created ScalarFlow, the first large-scale volumetric dataset for
real smoke reconstruction using computer graphics and machine learn-
ing. ScalarFlow also makes an important contribution by providing re-
liable benchmark data and evaluation criteria for reconstruction accu-
racy.

31

survey on fluid simulation

2.4 multi-material fluid coupling

A key topic frequently mentioned in fluid simulation is the coupling of
fluids with their environment, which is composed of different materials.
Indeed, in computer graphics, fluids are attractivemostly due to theway
they interact with their surroundings, as the attention of the spectator is
arguably attracted by the interfaces, or boundaries, between fluids and
the rest of the virtual world. Moreover, the behavior of fluid is strongly
affected by how these surrounding factors themselves evolve. In this sec-
tion, we explore this topic with a focus on recent works that aim to accu-
rately and efficiently model coupling with multiple complex materials.
We split the discussion into three separate subtopics: meshless meth-
ods (Section 2.4.1), mesh-based methods for handling fluid boundary
conditions in the case of solid boundaries (Section 2.4.2), and solutions
designed to model more complex couplings with multiple boundaries
(Section 2.4.3).

2.4.1 Meshless Methods

Particle-based boundaries. For most Lagrangian simulation ap-
proaches, the solid boundary sampled by so-called boundary particles is
the main enabler of inter-particle interactions between fluid and other
objects (Figure 2.12). To couple fluid with solid boundaries, early meth-
ods used various approaches such as collision detection and ghost par-
ticles. Becker et al. [27] computed the contact point between the fluid
and solid particles and controlled the normal and tangential velocities
to impose boundary conditions. Yang et al. [329] facilitated the inter-
action between an SPH fluid and nonlinear FEM deformable solid by
sampling proxy particles across the boundary, and they handled fluid–
solid coupling with momentum-conserving collisions. Schechter and
Bridson [251] used the ghost particle method to generate a thin layer of
ghost particles in the nearby solid and air, reducing numerical errors
caused by non-uniform particle distributions near boundaries. He et
al. [121] generated staggered particles between neighboring particles
to enhance data structures. This method specifically improves the rep-
resentation of simulation quantities in areas near boundaries, thereby
facilitating the support of various slip boundary conditions.
To further reduce computation time and numerical errors, Akinci et

al. [7] proposed a versatile and efficient method for SPH boundary
handling without the need for collision detection or generating extra
particles. The method resolved to directly handle the problem of un-
even boundary sampling by evaluating the relative contribution of each
boundary particle using Shepard interpolation, given by

𝜌 𝑓𝑖 =𝑚𝑓𝑖

∑︁
𝑗

𝑊𝑖 𝑗 +
∑︁
𝑘

Θ𝑠𝑘
(
𝜌0𝑖

)
𝑊𝑖𝑘 , (2.13)

32

2.4 multi-material fluid coupling

𝜕𝐷𝑥

Ω𝑓

ℎ

𝜕Ω𝑠

Ω𝑠

𝜕𝐷𝑥

Ω𝑓

ℎ

𝜕Ω𝑠

Ω𝑠

Figure 2.12: Schematic diagram of fluid–solid coupling using meshless methods.
Left: Discretization of the SPH approach in coupling with materials.
Fluid and solid particles both contribute to the boundary handling.
Ω denotes the domain, 𝑓 denotes fluid, 𝑠 denotes solid, and 𝜕𝐷𝑥 de-
notes the surrounding spherical neighborhood. Right: Solid domain
in the neighborhood of a fluid particle representing the contribu-
tion of the boundary density value at the particle position.

Θ𝑠𝑖 (𝜌0) = 𝜌0𝑉𝑠𝑖 (2.14)

to compute the correct density without depending on boundary sam-
pling. The subscripts 𝑓 and 𝑠 represent fluid and solid particles, respec-
tively; 𝜌0 denotes the fluid rest density; Θ𝑠 computes the contributions
of a boundary particle according to its volume. Compared to the volume
of fluid particles with the same size 𝑉𝑓 , the volume of solid particles 𝑉𝑠
varies based on the local solid sampling distribution. Denser sampled
regions have smaller solid volumes to maintain interaction stability. At
the mere cost of a one-time evaluation of the above procedure, thin
boundary geometries with only one layer of particles and non-manifold
geometries can be supported.
Macklin et al. [195] applied the method of Akinci et al. [7] to unify

various physical behaviors using a single-particle system for real-time
applications built on the PBD. Cornelis et al. [64] extended this ap-
proach [7] to couple high-resolution FLIP with a low-resolution implicit
SPH method. Peer et al. [228] built an implicit formulation for the sim-
ulation of incompressible linearly elastic solids embedded in the ISPH
pressure solver, which further enables a pressure-based boundary treat-
ment using the method of Akinci et al. [7]. Takahashi et al. [280, 281]
integrated this approach [7] into their multilevel particle-based solver,
in which they adaptively assigned various roles to the particles to guar-
antee the solvability of the linear system in a unified manner regardless
of the arrangements of the particles.

33

survey on fluid simulation

Although Akinci et al. [7] eliminated a variety of artifacts of particle-
based fluid–rigid coupling, numerical issues, such as the lack of higher-
order accuracy of pressure due to the mirroring scheme of physical val-
ues from fluid to boundary particles, still limit the time step size and
stability under drastic scenarios. Shao et al. [259] treated surface and
inner boundary particles differently to prevent particle deficiency and
penetration issues. Instead of using the state of density compression to
denote the magnitude of the pressure force, Band et al. [23] introduced
the notion of “volume compression” into coupling problems, where the
rest volumes rather than the mass of boundary particles are applied to
derive a continuous pressure force

Fp
𝑓𝑖
= −𝑉𝑓𝑖

∑︁
𝑗

𝑉𝑗
(
𝑝 𝑓𝑖 + 𝑝 𝑗

)
∇𝑊𝑓𝑖 𝑗 , (2.15)

which considers fluid samples 𝑓𝑖 with all fluid and boundary neighbors
𝑗 of the fluid sample 𝑓𝑖 in the same way. The results of their experi-
ments showed a significant improvement in stability and a wider range
of possible time step sizes. Gissler et al. [106] resolved the stability is-
sue in the work of Akinci et al. [7] by interlinking an artificial pressure
solver for boundary particles with the fluid pressure, achieving a fully
dynamic two-way coupling. Truong et al. [292] prevented penetration
by treating particle collisions with particle merging and splitting.

Unsampled boundaries. The influence of a solid model on the sur-
rounding fluid particles can also be handled using a mesh-based (Eu-
lerian) solid representation, which takes into account the local mesh
geometry for stable and effective coupling. Vines et al. [297] coupled
Lagrangian vortex particles to mesh-based solids by generating vortic-
ity at the solid boundary. Fujisawa and Miura [96] considered the influ-
ence of triangle mesh boundaries on the integration of a kernel function
for SPH without the need for boundary particles. However, the method
cannot handle solid boundaries with complex geometry and is computa-
tionally expensive compared to the method of Akinci et al. [7]. Chang et
al. [48] extended the work of Fujisawa and Miura [96] to support arbi-
trarily shaped solid boundaries by converting the volume integral inside
the solid boundary to a surface integral. Koschier and Bender [165] pre-
sented the “density maps” method, precomputing a continuous bound-
ary density field to efficiently handle arbitrary boundary geometries.
Bender et al. [31] also targeted the expensive renormalization process
in the work of Fujisawa and Miura [96] by storing the volume contribu-
tion from the boundary on a spatial grid that can be efficiently queried
at runtime.

34

2.4 multi-material fluid coupling

Ω𝑓

Ω𝑠

Ω𝑓

Ω𝑠

Figure 2.13: Schematic diagram of fluid–solid coupling using mesh-based meth-
ods. Left: A sample MAC grid used in the fluid–solid coupling. The
lines connecting the gray dots denotes themesh surface by the solid.
Fluid pressure values are stored at cell centers. Fluid velocity com-
ponents are stored on cell faces. Right: A coupled solid–fluid system
with the MPM method, which allows the system with particles to
be discretized on a Cartesian grid and the pressure to be updated
based on DOFs on the grid.

2.4.2 Mesh-based Methods

Another mainstream approach for fluid simulation is to use Eulerian
and Lagrangian meshes, as shown in Figure 2.13. However, loss of mass
and difficulties in handling extreme deformations often limit the prac-
ticability of these approaches. We organize mesh-based methods into
four classes as follows.

Lagrangian/Eulerian meshes. Early on, Clausen et al. [61] used
fully Lagrangian tetrahedral meshes to significantly reduce numerical
viscosity in simulations with relatively low resolutions and long time
steps. Azevedo and Oliveira [20] proposed a semi-Lagrangian method
that introduced curvilinear grids and achieved more accurate bound-
ary conditions in simulations with moderate resolutions. Besides these
Lagrangian-meshed methods, Teng et al. [287] later incorporated pre-
vious work into an Eulerian fluid solver and resolved complex contact
scenarios between multiple solids and fluids. Recently, Takahashi and
Lin [282] formulated implicit viscosity integration as a minimization
problem in which the volume fractions are consistently evaluated to
handle sub-grid details.
Focusing on the poor boundary conditions for irregular boundaries

defined under coarse grids, the cut-cell approach became a major trend
to improve convergence for Neumann boundary conditions. Fluid grid
cells are clipped against the solid boundary represented by a triangle
mesh, forming several distinct polyhedral sub-cells at each time step, al-
lowing small details to be handled without refining or rotating the grid.

35

survey on fluid simulation

Based on the multigrid scheme proposed by Chentanez and Mueller-
Fischer [54] with a variational discretization compatible on all levels,
Weber et al. [305] presented a cut-cell-based multigrid scheme on stag-
gered grids that is second-order accurate for Neumann boundaries. To
better capture the flow across thin solids and gaps, Azevedo et al. [19]
further proposed a topology-preserving pressure projection scheme on
cut-cell meshes. Following this, Zarifi and Batty [342] used cut-cell dis-
cretization for two-way fluid-deformable interaction, enforcing the free-
slip boundary condition at the actual interface. Their method computes
the pressure based on the MAC grid of three dimensions 𝑥 ,𝑦, and 𝑧 as∫

𝜕Ω𝑓

∇𝑝𝑑n ≈
∑︁

𝛽∈{𝑥,𝑦,𝑧}

(
𝑆

(
Ω𝛽

) 𝜕𝑝
𝜕𝛽

(
Ω𝛽

)
+ 𝑆

(
Ω−𝛽

) 𝜕𝑝
𝜕𝛽

(
Ω−𝛽

))
, (2.16)

where Ω contributes to the domain region and 𝑆 (Ω) is the area of the do-
main region, respectively. The cut-cell was further extended by Chen et
al. [51] to represent sub-grid structures on the free surface of the liquid,
with a new iso-surface Poisson solver with desirable properties, such
as second-order accuracy and symmetric positive definiteness. Tao et
al. [286] introduced an algorithm based on VEM for simulating fluid
flow on cut-cell meshes, which effectively handles complex geometries
and accurately captures intricate features, including thin tubes and ex-
tremely thin walls.

Material Point Method. Since its introduction to computer graph-
ics, the MPM has garnered significant attention. By integrating fea-
tures of Lagrangian particle representation and Eulerian grid represen-
tation, MPM offers a powerful technique for coupling fluid and solid
simulations. However, despite their physical realism and geometric con-
venience, conventional MPM solvers have drawbacks, such as compu-
tational inefficiency and limited capability to handle self-contact col-
lisions. To improve upon these, Gao et al. [100] presented an adap-
tive Generalized Interpolation Material Point (GIMP) method with ex-
tensively optimized particle–grid transfer memory efficiency and par-
allelism. Hu et al. [129] proposed Compatible Particle-in-cell (CPIC),
which enables the handling of discontinuous material points and in-
finitely thin boundaries by leveraging the relative positions of grid
nodes and particles. They also embedded the Moving Least Squares
(MLS) method into MPM to double the computation speed. However,
such MPM approaches do not address the inconsistent tangential veloc-
ities at the interface between multiple materials, leading to visually un-
pleasant artificial stickiness. To alleviate this, Fang et al. [83] presented
a ghost matrix operator-splitting scheme for monolithic coupling be-
tween incompressible fluids and elastic solids and designed a novel
interface quadrature cut-cell MPM formulation for free-slip boundary
conditions. Subsequently, Cao et al. [47] extended some ideas of Fang et
al. [83] from incompressible to compressible flow.

36

2.4 multi-material fluid coupling

Monolithic schemes. Monolithic solvers simulate various materi-
als and their interactions within a unified system that includes bound-
ary conditions. These schemes naturally ensure a more robust inter-
face of large density ratios and enable large time steps. They are not
only used in SPH methods [106] but also in mesh-based (e.g., MPM)
methods [47, 83]. Aanjaneya [1] proposed a monolithic solver for ef-
ficiently simulating the interaction between rigid bodies and incom-
pressible fluids. The solver remains robust even in poorly conditioned
scenarios with large density ratios between the solid objects and fluid.
Lai et al. [168] introduced a V-cycle of the Full Approximation Scheme
(FAS) multigrid method to solve the linear complementary problems to
achieve better scalability and efficiency compared to previous methods.
Takahashi and Batty [277] proposed a monolithic pressure-viscosity-
contact solver to simulate the complex interactions between rigid bod-
ies and liquids, efficiently managing incompressibility and offering the
option for implicit viscosity integration in liquids. The method also ad-
dresses contact resolution for rigid bodies and handles mutual coupling.

Partitioned schemes. Compared to the monolithic scheme, parti-
tioned schemes can deal more flexibly with multiple co-existing solvers
by alternating between the solid and fluid while applying suitable
boundary conditions. Akbay et al. [5] employed fluid and solid solvers as
independent components with restricted interfaces, promoting modu-
larity and facilitating code reusability. Lee et al. [173] used a partitioned
methodology to connect a coarse-background Eulerian grid with a fine
arbitrary Lagrangian-Eulerian mesh in their simulation framework for
character– and hair–water interactions.
Recently, several coupling approaches for the special treatment of

fluid have emerged. Brandt et al. [42] modeled fluids and deformable
objects as incompressible media, avoiding expensive operations such as
interface tracking and boundary condition handling. Ruan et al. [243]
used a three-way coupling method, employing a thin liquid membrane
to model contact between solid objects and fluid driven by strong sur-
face tension.

2.4.3 Coupling with Complex Boundaries

Besides interacting with the dynamic or static boundaries of surround-
ings composed of rigid or elastoplastic materials, fluids often inter-
act with other solid matter with complex and diverse physical at-
tributes. Such cases require intricate boundary models and correspond-
ing solvers. Next, we discuss recent advances in fluid coupling with thin
film surfaces and/or porous materials, including hair, cloth, sponges,
and sand.

37

survey on fluid simulation

surface tension force

Darcy-Forchheimer Drag Force

When hairs are fully
submerged in liquid, their
motion is affected by the
flow of the surrounding
liquid,

Adhesive/sticking forces

Flow Drag force

Surface tension

Adhesive force

Liquid

Hair

Figure 2.14: Schematic diagram of wet hairs. Left: Wet hairs with a thin liquid
layer flowing over their surface; their motion is influenced by the
surrounding liquid flow. Middle: Proximity and collision between
wet hairs cause adhesive and contact forces between hairs. Right:
Cohesion of wet hair. Surface tension creates liquid bridges be-
tween closely positioned wet hairs.

Strands and cloths. Coupling between hairs and fluid is complex
due to the wetting of hairs. Such phenomena are shown in Figure 2.14.
Rungjiratananon et al. [244] used an Eulerian approach to capture hair
porosity and wetting effects and a Lagrangian approach to simulate in-
dividual hair strands and their interactions, resulting in a detailed and
dynamic hair simulation. Chen et al. [53] proposed a real-time painting
system that aimed to generate realistic paintings by simulating the in-
teractions among the brush bristles, paint, and canvas. Fei et al. [87] pro-
posed a multi-component framework to model wet hair. PIC and Kirch-
hoff Rods were applied to model fluid and hair separately. A height field
was introduced to represent the liquid volume around each hair strand,
considering the wet condition. Fei et al. [86] next extended the fluid
attributes to compressible, shear-dependent liquids. A modified second-
order Coulomb cone model was also designed to capture cohesion and
friction during strand collisions. Lee et al. [172] used a tetrahedral vol-
ume mesh to embed hair, enabling the hairs to adhere to their embed-
ded positions and facilitating simulations with millions of hairs during
water–hair interactions.

For the interaction between cloths and fluid, Huber et al. [136] pro-
posed an efficient method for two-way interaction between particle-
based fluid and thin triangular meshes, enabling cloth–fluid coupling
even under large time steps. Jiang et al. [152] created an anisotropic
hyperelastic model that distinguishes the response to manifold strain,
shearing, and compression in orthogonal directions. This model facili-
tates the coupling of various materials, such as elastic surfaces, curves,
fluids, and granular materials. Fei et al. [85] introduced a method for
simulating the intricate dynamics of woven or knitted fabrics, both par-
tially and fully saturated, interacting with liquids, using the method of
Jiang et al. [152] to deal with contact and collisions. To simulate stain

38

2.4 multi-material fluid coupling

formation and evolution on cloths, Wang et al. [301] developed a pig-
mented solution by utilizing a homogenization process that combines
inhomogeneous and/or anisotropic properties with bulk anisotropic dif-
fusion tensors. Zheng et al. [351] formalized the spreading of stains in
woven fabric as in-yarn diffusion and cross-yarn diffusion and intro-
duced a triple-layer model to manage wetting and wicking calculations.

Sponge-like porous materials. Patkar and Chaudhuri [227] simu-
lated liquid flow within a porous object with a deforming unstructured
mesh and modeled liquid diffusion based on saturation, as well as allow-
ing the liquid to be absorbed by, or leave, the solid.

Thin film surfaces. Real-life situations often involve surface flow
phenomena, such as rainwater cascading down a tree trunk or the grad-
ual progression of water drops in a shower room. For such flows, Vant-
zos et al. [295] proposed a triangle mesh model to simulate the motion
of a thin viscous fluid film on a curved surface. The model includes
discretization for curvature and advection operators to ensure accurate
simulation results. Ren et al. [241] expanded the standard shallow-water
flowmodel to accommodate general triangle meshes. They introduced a
feature-based bottom friction model, allowing non-viscous flowmotion
to be captured along edges and creases on detailed 3D meshes.

Granular materials. Such materials, e.g., sand, can themselves ex-
hibit flow-like behavior. In addition to their porous behavior, simulating
the dissolution of granular materials has also attracted much attention.
Yan et al. [328] combined a hypoplastic model with SPH to simulate
granular materials diffusing into fluid. Yang et al. [333] integrated the
phase-field method to simulate liquids andmultiple types of solids, with
dissolution achieved by evolving the granular particle’s concentration
and phase. Tampubolon et al. [284] used continuum mixture theory to
simulate water–sand coupling in MPM, where different phases are cou-
pled by momentum exchange. Gao et al. [99] modeled the motion of
solid sediment particles inside fluids with MPM. Sediment was mod-
eled by Drucker–Prager elastoplasticity, achieving two-way coupling
between sediment and fluid. He et al. [122] proposed position-based con-
straints for granular flows, using cohesion and friction models that vary
across space, with cohesion affected by water saturation. Takahashi and
Batty [278] simulated two-way coupling between rigid bodies and con-
tinuum granular materials or liquids with a monolithic solver that com-
bines pressure, friction, and contact interactions. Gao et al. [102] used
a hybrid scheme to accurately simulate the behavior of discontinuous
fluid-like substances. This approach integrated an affine particle-in-cell
solver with density fields, enabling transformations across granular par-
ticles, dust clouds, powders, and their mixtures within a unified frame-
work.

39

survey on fluid simulation

2.5 multiphase liqids

The real world is replete with complex fluid phenomena, including dis-
solution, dispersion, and Rayleigh-Taylor instabilities, all of which are
closely related to multiphase environments. The study of multiphase
fluid simulation, a distinct subject within Computational Fluid Dynam-
ics (CFD), has garnered significant attention in the realm of computer
graphics. We next give an overview of this topic. We group various
phenomena and their corresponding simulations into non-mixing (Sec-
tion 2.5.1) and mixing fluids (Section 2.5.2) based on whether a clear im-
miscible interface can be formed between two different phases. For non-
mixing fluids, we classify their simulations according to the discretiza-
tion methods used. We also survey recent methods by grouping them
into two categories: mixture models where phase velocities are sepa-
rately calculated and non-trivial diffusion-based models where phase
velocities are considered jointly.

Fanti

Figure 2.15: Schematic diagram of non-mixing fluids. The lower-left part shows
the anti-penetration force (Fanti), which is applied to particles in
opposite directions along the surface normal. The embedding 3D
fluid mesh can be re-tessellated to accommodate vertex displace-
ment and produce changes in the interface topology.

2.5.1 Non-mixing Fluids

Recent methods for simulating non-mixing fluids include particle-based
methods, e.g., SPH [263], PBF [8], andMPM [327], andmesh-basedmeth-
ods [69, 181, 201, 331]. Phases in non-mixing fluids typically do not
merge together. Non-mixing fluid phases inherently resist fusion, cre-
ating challenges in (a) tracking the interfaces between different phases
and (b) accurately calculating force interactions between phases at
liquid–liquid or liquid–solid interfaces. The unique properties of gas–
liquid interfaces are discussed separately in Section 2.6.

40

2.5 multiphase liqids

SPH simulations of multiple fluids, particularly those with high den-
sity ratios, can produce erroneous interface tension and non-physical
separation between the fluids. In response to this issue, Solenthaler
and Pajarola [263] modified the standard SPH equations to account for
the density discontinuity across the interface. They used an SPH den-
sity interpolation formulation, 𝜌𝑖 = 𝑚𝑖

∑
𝑗𝑊 (x𝑖 − x𝑗 , ℎ), instead of the

standard one, 𝜌𝑖 =
∑
𝑗𝑚 𝑗𝑊 (x𝑖 − x𝑗 , ℎ). Particularly in explicit pres-

sure solvers like WCSPH, this modification allows the pressure to align
more closely with the actual compression state of the local fluid, even at
the interface between two different fluid phases with different rest den-
sities. However, integrating these modifications directly into implicit
solvers can lead to convergence issues, which are discussed further in
Section 4.3.
Alduán et al. [8] proposed a versatile simulation framework based

on PBF methods designed to address VFX production demands. On
the phase interface, they used an SPH density interpolation formula-
tion, which is similar to the method in the work of Solenthaler and
Pajarola [263]. Subsequent PBF calculations were also modified using
this uniform-density formulation. High viscosity was handled by break-
ing the XSPH calculation into multiple lower-viscosity stable iterations.
The surface tension effect was bounded for stable artistic controls.

Yan et al. [327] extended the MPM method to cope with interact-
ing solid–fluid simulations. Upon the detection of a solid–fluid collision
along the phase boundary, an anti-penetration force is applied to both
the fluid and solid particles in opposite directions along the surface nor-
mal. The same strategy was used to simulate non-mixing fluids, where
the anti-penetration force is calculated between each distinct phase and
all other phases collectively (Figure 2.15).
Mesh-based methodologies offer the advantage of explicit interface

tracking using high-resolution geometric structures. Da et al. [69] con-
sidered a special emphasis on topological change handling in 2D sur-
face tracking for non-mixing fluid simulations (Figure 2.15). They con-
structed highly distorted interfaces featuring thin sheets and tiny re-
gions. Meanwhile, Misztal et al. [201] aimed to prevent mismatches be-
tween phase occupancy regions and the simulation quantity storage
grid; they achieved this by discretizing each phase region using un-
structured 3D tetrahedral grids and tracking the deformation of the
tetrahedra. Theymanaged topology changes andmesh quality enhance-
ments using a modified 3D deformable simplicial complex method. In
contrast, Li et al. [181] avoided complex remeshing operations by com-
bining mesh-based tracking and surface reconstruction from distance
fields. They reconstructed the surface meshes between each phase us-
ing an unsigned distance function and indicator function. The mesh
was stored as a later interpolation reference in a semi-Lagrangian up-
date of the two functions in the next time step. Yang et al. [331] devel-
oped an advanced method for surface tracking across multi-fluid inter-

41

survey on fluid simulation

faces, specifically designed to manage the complexities involved when
dealing with more than three fluid phases. This method emphasizes the
prevention of mesh penetrations and ensures a consistent relationship
between the meshes and the regional level-set functions at the inter-
faces. An extended triangulation template strategy was also proposed
to handle triple junctions, where standard marching cubes would result
in volumetric holes.

𝑐1

𝑐2

Figure 2.16: Schematic diagram of mixing fluids. The lower-left part shows the
fractions 𝑐𝑖 (volume fraction, mass fraction, or concentration) of
different phases in each particle during the diffusion process. The
upper-right part shows the 3D fluid grid; black arrows represent
grid forces due to diffusion.

2.5.2 Mixing Fluids

Another category of multiple-fluid flows involves miscible or dispersed
fluid mixtures, for which interfaces can be challenging to track con-
tinuously or may not exist at all. In contrast to the non-mixing case
(Section 2.5.1), different phases now always co-exist at the same spa-
tial position (Figure 2.16). A key problem is to calculate how the local
volume fractions 𝑐𝑉

𝑘
of each phase 𝑘 change during the simulation, i.e.,

solving the multiphase continuity equations. Other challenges include
simulating diffusive behavior, incompressibility enhancements, and sta-
bility improvements. We summarize several typical methods that can
be integrated into the SPH [156, 239], PBF [333, 334], and MPM [50]
solvers.

Mixturemodel. Ren et al. [239] used amultiphasemixturemodel for
complex multiphase mixing and unmixing effects. Their SPH-based ap-
proach (called WCSPH) solves the mixture continuity and momentum
equations for each particle as follows:

𝜕

𝜕𝑡
𝜌𝑚 + ∇ · (𝜌𝑚u𝑚) = 0, (2.17)

42

2.5 multiphase liqids

𝜕

𝜕𝑡
(𝜌𝑚u𝑚) +∇ · (𝜌𝑚u𝑚 ⊗ u𝑚) = −∇𝑝𝑚 + 𝜌𝑚g+∇ · (𝝉𝑚 +T𝑚), (2.18)

where 𝜌𝑚 =
∑
𝑘 𝑐

𝑉
𝑘
𝜌𝑘 is the mixture density, u𝑚 = 1

𝜌𝑚

∑
𝑘 𝑐

𝑉
𝑘
𝜌𝑘u𝑘 is the

mixture velocity, 𝑝𝑚 is the mixture pressure, and 𝝉𝑚,T𝑚 are the mixture
viscous stress and diffusion tensors, respectively. A detailed derivation
of this mixture model is provided in Section 4.2, where we also discuss
its correspondence with the standard Navier-Stokes model. Phase ve-
locities are assumed to be different from each other. For each phase 𝑘 ,
a drift velocity u𝑚𝑘 = u𝑘 − u𝑚 is analytically computed at the start
of each time step. These phase-wise drift velocities are used to calcu-
late the phase volume fraction change 𝐷𝑐𝑉

𝑘
/𝐷𝑡 as well as the mixture

diffusion tensor T𝑚 . Following this, the aggregate particle motion, in-
dividual phase velocities, and phase volume fraction changes on the
particles during the simulation are solved. Yan et al. [328] extended this
mixture model to cope with solid phases. Ren et al. [240] further intro-
duced a virtual phase concept for multiphase simulations containing
porous solids, considering the absorbed and non-absorbed parts of a
single phase as two virtual phases that can be universally handled by
the mixture model. The result was a unified algorithm framework for
multiphase flows inside and outside porous solids. To alleviate the in-
compressibility issue of the WCSPH framework [239], Jiang et al. [156]
used volume-weighted mixture velocities u𝑚 =

∑
𝑘 𝑐

𝑉
𝑘

u𝑘 to ensure a
divergence-free mixture velocity field solvable by an iterative incom-
pressible SPH solver for the single-fluid case. To capture multiphase flu-
ids with highly dynamic relativemotions, Jiang and Lan [155] presented
a dynamic mixture model that abandoned the local equilibrium condi-
tion. This method also allowed for fluid control in the multiphase envi-
ronment by solving the Navier–Stokes equations for each phase flexi-
bly. In contrast, Ren et al. [238] used the deformation gradient to con-
struct a set of linear equations that match the local volume change re-
sulting from the momentum-equation-solved velocities, which resulted
from the continuity-equation-solved fraction changes, and solved these
equations for enhanced incompressibility. In this thesis, we contribute
to advancing the application of the mixture model in simulating mixing
fluids, as detailed in Section 4.4.

Non-trivial diffusion. Traditionally, phase-mixing effects in fluid
simulation have beenmodeled using the diffusion equation 𝐷𝑐

𝐷𝑡
= 𝐶𝑑∇2𝑐 ,

where𝐶𝑑 is the diffusion coefficient and 𝑐 is the concentration, which as-
sumes uniform phase velocities and movement in accordance with the
aggregate motion. This approach has been employed in various works,
such as Im’s [141] diffusive dissolved gas transfer model for calculat-
ing bubble distribution in freezing ice blocks and He et al.’s [124] two-

43

survey on fluid simulation

phase diffusivemodel for simulating diffusive appearanceswith varying
sharpness in materials like ink and bubbles.
Other researchers have advanced this field with more sophisticated

models. Yang et al. [334] integrated the Cahn–Hilliard equation into
multiphase simulation using an energy-basedmodel to capture complex
multiphase effects, such as unmixing and extraction. They computed
the change of the mass fraction 𝑐𝑚

𝑘
of each phase 𝑘 as

𝐷𝑐𝑚
𝑘

𝐷𝑡
= ∇ · (M∇𝜙𝑘), (2.19)

where M is a degenerate mobility, which can be constant or may vary
according to the value of 𝑐 , and 𝜙𝑘 is the 𝑘-th phase’s chemical poten-
tial relying on the derivative of a case-specified Helmholtz free energy
function at the current concentration composition. This model is able
to capture complex multiphase effects, such as unmixing and extraction.
Yang et al. [333] extended this model using a unified Helmholtz free en-
ergy form to handle both solid and liquid phases, thereby expanding the
capacity of the PBF multiphase solver. Chen et al. [50] proposed a mov-
ing least square reproducing kernel particle method for better precision
and stability of particle-based simulations. Using an advanced interpo-
lation scheme, they integrated the Cahn–Hilliard equations into MPM
solvers and achieved good mass conservation, stability, and sub-grid
details in multiphase fluids.
Xue et al. [325] modeled anisotropic diffusive effects using non-

Fourier diffusion, which was integrated into a phase field formulation
using an MPM solver. The resulting constitutive model is given by

q = q𝐶 + q𝐹 ,
q𝐶 + 𝜏 ¤q𝐶 = − (1 −𝐺𝑇)𝐶𝑑∇𝐴,
q𝐹 = −𝐺𝑇𝐶𝑑∇𝐴,

(2.20)

where q is the associated diffusion flux, q𝐶 and q𝐹 represent Cattaneo
and Fourier diffusion, respectively, 𝜏 is the relaxation time with respect
to the flux, 𝐶𝑑 is the diffusion coefficient, and 𝐴 is the quantity being
diffused. 𝐺𝑇 is a dimensionless parameter that represents the weight
between Cattaneo-type and Fourier-type diffusion. Their method re-
produced complex folding effects of poroelastic materials during wet-
ting and also directional diffusive transportation effects. Su et al. [272]
adopted the anisotropic diffusive model [325] for temperature transport
in an extended MPM phase change solver, allowing the simulation of
richer phenomena. They also introduced an integration scheme that
provides second-order accuracy with only first-order algorithmic over-
head.
In recent years, additional works have studied other mixing-related

phenomena. Stomakhin et al. [270] proposed anMPM approach to solve
heat-induced phase change of various materials. A carefully designed

44

2.6 gas–liqid interfaces

projection solver allowed them to simulate nearly incompressible phase-
changing materials in MPM. Hochstetter and Kolb [126] presented an
SPH method to simulate the evaporation and condensation of liquids.
Their technique utilized particles to signify the liquid phase, while the
grid primarily served as amedium for simulating the gas phase and facil-
itating water vapor transport. This method used Fourier’s law as a basis
for heat transfer between grid cells and particles, thereby advancing the
understanding of multiphase heat and mass transfer phenomena.

2.6 gas–liqid interfaces

In fluid simulations, the influence of gas is often ignored. However, nu-
merous real-world fluid phenomena, including the formation of water
droplets and bubbles, cannot be accurately represented without consid-
ering the role of gases. The phenomena formed by gas–fluid interac-
tions are complex and diverse. In this section, we discuss gas–liquid
interface phenomena by grouping them into three categories: free sur-
face fluids (Section 2.6.1), bubbles, foam, and glugging (Section 2.6.2),
and spray and splashing (Section 2.6.3).

Liquid

Bubbles

Foam

Figure 2.17: Schematic diagram of bubbles and foam. Gas accumulates underwa-
ter and forms bubbles. As bubbles rise to the surface, their volume
increases due to a pressure decrease. When reaching the surface,
bubbles may form foam.

In free surface fluid simulation, the emphasis is typically placed on
calculating the fluid surface and accounting for surface tension, rather
than explicitly modeling the presence of air or gases. Here, we intro-
duce some typical methods, such as contact angle, surface tracking, and
continuous surface force. We then discuss bubbles, foam, and glugging
together because of their similar characteristics, i.e., they are the result
of a small amount of gas being wrapped by the enclosing fluid. The
bubbles we are discussing here are those formed by gas gathering in
water, while the foam is formed by bubbles rising to the surface of the
fluid (Figure 2.17). Glugging occurs, e.g.,when a liquid is rapidly poured

45

survey on fluid simulation

from a bottle with a narrow opening and is a multiphase phenomenon
where bubbles are generated automatically. Finally, spray and splashing
are formed by free liquids in the gas. These are usually produced by vio-
lent collisions of fluids and require more accurate simulation methods.

2.6.1 Free Surface Fluids

Physically correct or at least plausible gas–liquid interface modeling is
challenging. This is largely due to the fact that while scalar fields such
as pressure can be well approximated using particles or grids at macro-
scopic scales, surface tension (and similar) effects are the result of mi-
croscopic inter-molecular forces (Figure 2.18). This makes introducing
surface tension effects into standard Lagrangian and Eulerian solvers
(see Section 2.1.3) non-trivial.

Liquid

Water molecule Molecular force

Figure 2.18: Schematic diagram of surface tension. Liquids have forces between
the same-kind molecules (cohesion) and different-kind molecules
(adhesion). The molecular force on the liquid surface is unbalanced,
resulting in surface tension effects.

Wang et al. [298] introduced the contact angle to calculate surface
tension. This angle exists at the junction of solid, liquid, and gas,
which indicates the hydrophilicity and hydrophobicity of solid mate-
rials (Figure 2.19). They used signed distance fields to represent such
surfaces and constructed a virtual surface below the solid one to re-
place the real solid–fluid interface. The distance field can be modified
by the virtual surface. Following this, the stable contact angle 𝜃𝑠 can be
obtained to estimate the surface tension from

𝛾𝑠𝑎 − (𝛾𝑙𝑎 cos𝜃𝑠 + 𝛾𝑙𝑠) = 0, (2.21)

where 𝛾𝑠𝑎 , 𝛾𝑙𝑎 , and 𝛾𝑙𝑠 are the interfacial tension coefficients for the
solid–air, liquid–air, and liquid–solid surfaces, respectively. However,
this method uses a grid to represent the volume of the fluid, which re-
quires significant memory and computation time.
Water drop animation was the main focus of Zhang et al. [349]. The

crucial part of their Lagrangian system that allows efficient simulations

46

2.6 gas–liqid interfaces

of water drop motions is the reduction of volumetric fluid dynamics
over the whole liquid volume to a deformable surface model. While also
using the contact angle method like the work of Wang et al. [298], their
model focuses only on the surface, and as such, it is more computation-
ally efficient.
Da et al. [71] proposed a surface-only model that avoids dealing with

degrees of freedom inside liquids and (often) far away from their sur-
face. This is the first such model for 3D liquids with the first advection–
projection scheme for surface-based liquids, albeit partly limited to bod-
ies dominated by surface tension and inertia, although still capable of
modeling effects such as crown splashing.
Akinci et al. [6] employed SPH tomodel surface tension and adhesion

forces. Theirs is the first method that correctly handles large surface
tension (and adhesion) without the need for ghost particles or artificial
pressure forces. The cohesion force is described as

F𝑐𝑜ℎ𝑖←𝑗 = −𝛾𝑚𝑖𝑚 𝑗𝐵
(����x𝑖 − x𝑗

����) x𝑖 − x𝑗����x𝑖 − x𝑗
���� , (2.22)

where𝛾 represents the surface tension coefficient and 𝐵 denotes a spline
function. The method is simple to integrate with existing SPH solvers
and can simulate effects such as water crown formation and rolling wa-
ter droplets.
By assigning each particle a value corresponding to an estimate of its

surface area, leading to an implicit definition of the free surface of the
fluid, Orthmann et al. [219] achieved conservative transport within and
between surfaces, including correct handling of thin sheets and other
singularities. This allows for effective simulations of detergents, cleans-
ing, and coating.
Yang et al. [335] used a pairwise-force model called PF-SPH, which re-

lies on larger support radii than traditional SPH. The method improves
the accuracy of the surface tension calculation by using anisotropic fil-
tering to scale neighboring particle interaction forces.
Energy-based methods have also been used to simulate free surface

fluids. He et al. [123] modified earlier surface tension and air pressure
formulations for SPH-based free surface flows, building on the diffuse
interface model. They computed surface tension energy E𝑠 based on
Helmholtz free energy as

E𝑠 =
∫
𝑉

𝑘

2
∥∇𝑙 ∥2𝑑𝑉 , (2.23)

where𝑉 represents the volume of the liquid, 𝑘 is a coefficient associated
with squared gradient energy, and 𝑙 denotes the condensation field, as-
signed a value of 1 inside and 0 outside the volume. The surface tension
energy E𝑠 is directly related to the surface area of a fluid interface. Its
gradient can be computed to determine the surface tension force acting

47

survey on fluid simulation

on the interface. This improves the robustness of the model vs particle
sparsity and in turn leads to increased stability. The model can simulate
delicate surface tension effects, such as water/milk crowning.
Classical methods often struggle with relatively high coefficient or

parameter values, such as those controlling surface energy. To address
this, Hyde et al. [137] developed an implicit Lagrangian formulation that
specifically targets liquidswith significant surface energy, such as liquid
metals. By treating discrete forces as gradients of the potential energy
that are proportional to the surface area of the liquid, this approach
enables more accurate and stable simulations. Chen et al. [49] proposed
an MPM approach that generalizes the work of Hyde et al. [137] by
improving resampling via new types of temporary “balance” particles,
achieving the perfect conservation of grid linear and angular momenta.

Air

Liquid

Solid

𝛾𝑙𝑎

𝛾𝑠𝑎

𝛾𝑙𝑠

𝜃𝑠

Figure 2.19: Schematic diagram of stable contact angle 𝜃𝑠 . 𝛾𝑠𝑎 , 𝛾𝑙𝑎 , and 𝛾𝑙𝑠
are the interfacial tension coefficients for solid–air, liquid–air, and
liquid–solid surfaces, respectively. When a drop of liquid rests on
a solid surface in equilibrium, the angle between the solid–liquid
interface and gas–liquid interface is called the stable contact angle.

2.6.2 Bubbles, Foam, and Glugging

The influence of gas on fluid simulation extends beyond just the free
surface of the fluid. It encompasses the behavior of the fluid interior
and involves more intricate interaction processes. Single-phase liquid
simulations typically struggle to capture phenomena like bubbles, foam,
and glugging effects, which necessitates the modeling of gas and liquid
as two-phase flows.

Patkar et al. [226] presented a hybrid Lagrangian–Eulerian scheme
for converting between small (i.e., sub-grid and under-resolved) La-
grangian bubbles and larger well-resolved bubbles modeled with an Eu-
lerian approach based on level sets. Their framework includes a bubble
seeding mechanism to realistically simulate fluid structure interaction
with complex (moving) objects. Cho and Ko [57] combined the volume
of fluid (VOF) with sub-grid refinement of the level set method to simu-
late moving interfaces in two-phase flows.

48

2.6 gas–liqid interfaces

Goldade et al. [108] developed a model for immersed bubble simula-
tion, which avoids advection and projection inside bubbles. The method
is based on constraint-based incompressible bubbles (with zero density)
and affine fluid regions (to account for non-zero density coefficients).
The simulation region is divided into a fluid region Ω𝑓 , solid region Ω𝑠 ,
and air region Ω𝑎 . Any enclosed and continuous region filled with air
is treated as a bubble. Linear velocity constraints are imposed on each
bubble via∬

Ω𝑓 ∩𝜕Ω𝑎𝑖

u𝑓 · n𝑓 𝑑𝑎 +
∬

Ω𝑠∩𝜕Ω𝑎𝑖

u𝑠 · n𝑠 𝑑𝑎 = 0, (2.24)

where Ω𝑎𝑖 is the continuous region of bubble 𝑖; n𝑓 and n𝑠 are the fluid’s
normal and solid boundary’s normal, respectively.
Additional special bubble simulations have been conducted. Pad-

dilla et al. [221] modeled bubble rings via vortex filaments of various
thickness, assuming that advective inertial forces are small compared to
viscous forces. Filaments are expressed as a configuration manifold on
which the equations of motion are geodesic. Langlois et al. [170] intro-
duced a set of techniques aimed at generating sound representations for
intricate two-phase liquid animations. They extended the open-source
Gerris solver [231] (a finite-volume-based multigrid solver) to achieve
audio–visual fluid (and bubble) simulations.
Although some of the above methods can handle foam to some ex-

tent, specialized methods exist for this. Busaryev et al. [45] animated
bubble interactions in liquid foams by treating (small) bubble particles
as sites of Voronoi cells in a weighted diagram. Their framework han-
dles bubble–bubble, bubble–liquid, and also bubble–solid interactions,
giving rise to foam simulations with bursting and coalescing. Kim et
al. [161] modeled foam waves using the FLIP solver. Foam particles
projected to 2D give rise to depth and acceleration maps, making the
method efficient. The method provides the option to art-direct the foam
effects using sketches and level-of-detail controls.
Recently, Wretborn et al. [315] presented a realistic model for white-

water simulation. Their method enhances simulations with (tiny) bub-
ble and foam detail by a stable coupling scheme between bubbles and
water, a novel bubble emission scheme, and manifold advection for ac-
curate foam tracking.
For the simulation of glugging, Boyd and Bridson [39] proposed the

MultiFLIPmethod, which extended the FLIPmethod to two-phase flows.
They treated not only liquid but also air as incompressible phases, both
modeled via particles. This (re)produces, among other effects, the glug-
ging effect.
Ando et al. [10] introduced a stream function-based solver as a FLIP

variant. In this approach, the stream function𝜓 is used to determine the
divergence-free velocity field u, given by u = ∇×𝜓 . Interestingly, their
work shows that solvers based on stream functions are just as viable

49

survey on fluid simulation

as regular pressure solvers. The method is able to simulate glugging
without modeling the second phase (air) explicitly.

2.6.3 Spray and Splashing

Spray and splashing are very common phenomena in fluid scenes
(Figure 2.20). For scenes with intense collisions like turbulence, the fi-
nal visual effect largely depends on the fidelity of the spray and splash
simulation.

Liquid

Spray

Splashing

Figure 2.20: Schematic diagram of spray and splashing. Spray and splashing are
different in simulation scales. Compared with splashing, spray is
composed of finer droplets.

Nielsen and Østerby [214] modeled spray as two-way coupled two-
continua with different volume fractions to achieve realistic spray mo-
tion. However, a grid-based density field cannot capture the motion of
a single droplet. In contrast, Jones and Southern [157] focused on ef-
ficient physics-based droplet interaction. They introduced coalescence,
separating, and fragmenting collision outcomes into a novel particle in-
teraction model to simulate droplets. This provides a ballistic particle
system for liquid droplets and spray.
Yang et al. [330] focused on spray simulation, such as that arising

from high-speed/violent liquid streams. Similar to the work of Patkar et
al. [226], they also used a hybrid Lagrangian–Eulerian model (with FLIP
components in their case) to model mixture phenomena with high fi-
delity. Their efficient CUDA implementation facilitated the integration
of a FLIP solver tailored for liquid behaviors with an additional solver
dedicated to droplet and spray effects. This combination allows for the
realistic rendering of dynamic water features such as waterfalls and
fountains in simulations.
Guo et al. [116] addressed the stability challenges encountered in the

two-phase lattice Boltzmann model (TP-LBM) by introducing a novel
density-aware sub-grid-scale model. Their approach can uniformly sim-

50

2.7 fine detail enhancement

ulate different gas–liquid phenomena, allowing for realistic and visually
compelling representations of gas–liquid flow dynamics.
Li et al. [179] proposed a multiphase flow method to simulate com-

plex effects, such as bubbling, glugging, wetting, and splashing. A single
model captures all these effects by building on the kinetic-based Lattice
Boltzmann Phase-Field (LBM-PF) method. The interface motion is gov-
erned by the conservative phase-field equation

𝜕𝑐Φ

𝜕𝑡
+ ∇ · (𝑐Φu) = ∇ ·

[
M

(
∇𝑐Φ −

4
𝜉
𝑐Φ (1 − 𝑐Φ)ninter

)]
, (2.25)

where the phase field 𝑐Φ represents the percentage of the flow phase, the
mobilityM controls the degree of interface splitting, 𝜉 denotes the inter-
face width, and ninter corresponds to the interface normal. This method
is highly general and versatile and can produce results comparable to
industry-standard CFD simulations like the method from Fakhari et
al. [81].
In a similar vein, Li et al. [180] introduced a kinetic approach to mul-

tiphase fluids. Their scheme incorporates an accurate collision model
and is able to robustly capture intricate and visually appealing behav-
iors, such as the injection of gas into the liquid.

2.7 fine detail enhancement

Capturing high-frequency details of fluid surfaces, such as vortices,
waves, and turbulence, is key to enhancing the realism or artistry of
fluid simulations. The use of higher-order advection numerical meth-
ods or finer discretization can alleviate the numerical dissipation prob-
lems inherent in fluid simulation. However, this creates very high mem-
ory and computation time costs. To cope with this, in the last decade,
several methods have been designed to specifically add fine details to
a coarse fluid simulation. We group these into three classes: reduced-
dimensional simulation on the fluid surface only (Section 2.7.1), dy-
namic methods to combat numerical dissipation (Section 2.7.2), and
data-driven methods (Section 2.7.3).

2.7.1 Reduced-dimensional Simulation on the Fluid Surface Only

These techniques decouple the surface simulation from the volume sim-
ulation, allowing a secondary model with high-resolution surface fea-
tures to be added to a coarse (thus fast to compute) volume fluid model.
We further split methods in this class into embedding techniques, 2D
water wave simulation, and surface tracking and reconstruction as fol-
lows.

Embedding techniques. The Closest Point Method (CPM) [246] is
a numerical method for solving PDEs on surfaces. Unlike 2D surface

51

survey on fluid simulation

parametrization, CPM typically uses a 3D Cartesian grid to discretize
narrow spatial bands around the surface, which allows it to scale ac-
cording to the complexity of the surface rather than the volume.
Auer et al. [16] used CPM to simulate fluid effects on static sur-

faces in real time. Auer and Westermann [15] followed up with a semi-
Lagrangian CPM that alleviated some technical limitations of previous
applications of CPM to deformed surfaces. Their method is uncondi-
tionally stable for surface deformation. Kim et al. [163] used CPM to
explicitly perform high-resolution wave simulations on the liquid sur-
face. They used the iWave algorithm [288] to produce more realistic
water waves than the traditional wave equation. The iWave equation is
given by

𝜕2𝐻

𝜕𝑡2 = −𝑔
√
−∇2𝐻, (2.26)

where 𝐻 is the fluid height, 𝑔 is the gravity constant, and
√
−∇2 is a

fractional Laplacian operator.
Mercier et al. [199] added a sub-grid wave model to particle-based liq-

uid simulations to enhance such simulations with additional turbulence.
Goldade et al. [109] worked to eliminate sub-grid errors in underlying
surfaces and reduced artifacts in narrow bands around surfaces. Mor-
genroth et al. [204] used CPM to efficiently compute high-resolution
2D simulations on rough surfaces. Their method is similar to the work
of Auer and Westermann [15] but adds mass and momentum conser-
vation and can produce interesting effects, such as oil films on water
surfaces and thermal convection on a hemisphere.

2D water wave simulation. To reduce computational complexity
while retaining surface detail, some researchers have investigated the
simulation of water waves on fluid surfaces. These water wave simula-
tions operate independently of the physical simulation system’s degrees
of freedom, allowing for the creation of high-frequency visual detail
without the need to increase the overall simulation resolution.

In response to the inability of the shallow water equations (SWE) to
capture motion details such as wakes, Pan et al. [222] used a 2D dis-
crete vortex method to capture the wake behind a moving rigid body.
Theirmethod requires only a small number ofwake particles and is suffi-
ciently fast for real-time applications. However, this method fails to han-
dle the complex wake patterns caused by vortex stretching and tiling
in 3D flow. Azencot et al. [18] used a scalar vorticity function on 2D
domains to describe the vortex behavior of fluid surfaces, greatly sim-
plifying the analysis and simulation of fluids. Later, Azencot et al. [17]
simulated the complex behavior between multiple waves by solving the
EPDiff [127] on arbitrary triangle meshes. EPDiff is the zero-dispersion
limit of the Camassa–Holm (CH) equation for shallow water waves in

52

2.7 fine detail enhancement

one spatial dimension. They achieved simulating a series of phenomena
including annihilation, recreation, splitting, and merging.
A key challenge in wave simulation is handling the coupling between

waves and obstacles. Canabal et al. [46] generated rich water waves us-
ing a dispersion kernel as the spatially variant filter and further sim-
ulated interactions between waves and static or moving obstacles by
modulating this dispersion kernel. The dispersion relation under the
Airy wave theory [4] defines the propagation speed of each wave 𝑢𝑐 as

𝑢𝑐 =

√︄(
𝑔

𝑤
+ 𝛾
𝜌
𝑤

)
tanh(𝑤𝐻), (2.27)

where𝑤 is the wave number, 𝑔 is the gravitational constant, 𝜌 and 𝛾 are
the density and surface tension of the fluid, respectively, and 𝐻 is the
fluid height. Jeschke and Wojtan [150] simulated the movement and in-
teraction of a large amount of waves by a wavefront tracking algorithm
with multivalued function interpolation. Their method can model the
dispersion, refraction, reflection, and diffraction of waves well, but it
only handles sceneswith static obstacles. Later, they introduced the con-
cept of wave packets [151], which can handle the interaction of water
waves and moving objects. They used an improved Lagrangian parti-
cle method to simulate the diffusion of water waves to add more visual
detail. However, this method cannot be extended to moving 3D fluid
simulations of surfaces. The same problem was addressed by Skrivan et
al. [262], who decoupled the wave resolution from the simulated res-
olution using Lagrangian wave packets. This method significantly in-
creases the visible detail on the fluid surface as a post-processing step.
Creating large open-water animations and adding wave detail is a

common requirement for a variety of interactive and offline applica-
tions. Implementing this requires visual quality vs computational re-
sources to be carefully balanced. Nielsen et al. [215] proposed a wave
synthesis technique based on the Fourier transform to enhance the de-
tails of wave animation. However, wave–obstacle interactions are dif-
ficult to incorporate into the spectral solver. Keeler and Bridson [158]
proposed an efficient surface-only simulation of deep ocean waves and
used a new indirect boundary integral equation to deal with wave–solid
boundary interactions. The method of fundamental solutions (MFS)
was also used to generate realistic waves behind moving obstacles.
Schreck et al. [253] proposed a novel discretization for MFS using
wavelets and achieved naturally-looking wave interactions with com-
plex boundaries. Their method achieved impressive results on a large-
scale ocean scene. Jeschke et al. successively developed two interactive
systems for the simulation of large ocean scenes that can handle de-
tailed wave features [149] and coupled interactions with complex ter-
rain [148], respectively. Recently, Schreck and Wojtan [254] proposed
a coupled method of 3D liquid simulation and 2D wave propagation

53

survey on fluid simulation

to simulate infinitely large bodies of water and fine surface wave de-
tail. An empirically-driven error compensation method was also used
to remove coupling errors from the simulation to achieve a seamless
transition between 2D and 3D.

Surface tracking and reconstruction. Tracking and reconstruct-
ing fluid surfaces is important for generating realistic animation effects.
This is difficult to achieve due to the complex shapes and frequent topo-
logical changes of fluids.
For Eulerian fluid simulations, robust handling of surface triangle

mesh splitting and merging can remove visual artifacts to preserve im-
portant surface features. Bojsen-Hansen et al. [36] proposed a method
for tracking the topological evolution of surfaces that can solve the
wave equations on lower-resolution fluid surfaces to synthesize high-
frequency details. Later, Bojsen-Hansen and Wojtan [37] presented a
novel physics-based surface fairing method that solved the physical
and topological artifacts arising from coupling high-resolution surface
trackers with low-resolution fluid simulations by introducing an er-
ror metric and surface correction force. Edwards and Bridson [79] pre-
sented a new approach to adaptive fluid simulation. They tracked ex-
plicit triangulated mesh surfaces and used the p-adaptive Discontinu-
ous Galerkin (DG) method [14] within detailed cut-cells near the sur-
face. By using coarse-grid fluid simulations, the treatment of dynam-
ics is guaranteed to be physically consistent while reducing computa-
tional costs. Chentanez et al. [55] devised a grid-free surface tracking
method that deals with topological changes by removing overlapping
triangles and performing effective triangulation of the generated holes.
This method can be used in both mesh-based and particle-based simu-
lations.

Inaccurate detection of free surface particles in particle-based fluid
simulations can lead to unrealistic artifacts. Also, irregularly distributed
particles can make the reconstructed surface bumpy. To address the
fact that particles do not keep connectivity information, Yu et al. [339]
proposed periodically projecting surface meshes to match implicit sur-
faces defined by fluid particles. This method allows the simulation of
high-resolution surface waves without the limitation of particle reso-
lution. Later, Yu and Turk [337] proposed a method for reconstructing
surfaces in particle-based fluid simulations. They utilized a stretched
anisotropic smooth kernel to represent each simulated particle, result-
ing in a greatly improved surface quality (Figure 2.21). In this thesis,
we have incorporated the anisotropic smoothing kernel approach into
a highly efficient screen space rendering method. Further details on this
implementation are provided in Section 5.3. Sandim et al. [247] pro-
posed a fast free surface detection method that only requires the posi-
tions of particles to identify surface particles without using kernel func-
tions or normal vectors. This method is applicable to cases with non-

54

2.7 fine detail enhancement

uniform particle distributions and complex free surface deformations.
Dagenais et al. [72] used an explicit mesh projection method based on
signed distance fields to preserve surface detail and introduced a new
topology matching operation to maintain consistency between explicit
surface and particle behavior.

Figure 2.21: Schematic diagram of isotropic and anisotropic particles. In con-
trast to isotropic particle fluids (left), anisotropic particle fluids
(right) have a smoother surface.

2.7.2 Dynamical Methods for Reducing Numerical Dissipation

The advection-projection method [58] leads to numerical dissipation,
which results in kinetic energy decay and suppression of motion, such
as vortices and turbulence. Bulk enhancement methods aim to improve
the whole fluid volume rather than only its free surface. We further
group such methods that aim to improve system energy conservation
and detail preservation by reducing numerical dissipation in vorticity
confinement, vortex-based methods, and various variants of dynamics
solvers, as described next.

Vorticity confinement methods. Such methods are based on the
principle of vorticity conservation, which adds a vorticity control term
to restrain the diffusion of vortices, thus simulating fluid dynamics prob-
lems, such as turbulence and vortex streets, without dissipation. Fed-
kiw et al. [84] first applied the vorticity confinement method to smoke
simulations by adding an additional force field to maintain the airflow
vorticity. Second-order vorticity confinement (VC2) [120] further im-
proved this method by ensuring momentum conservation. The confine-
ment term of VC2, fconf , is given by

fconf = −Δ𝑥∇ × (𝛼𝝎 − 𝜁m), (2.28)

where Δ𝑥 is the grid size, 𝛼 and 𝜁 are the positive and negative diffu-
sion coefficients, respectively, 𝝎 is the angular velocity, and m is the
harmonic mean of the local vorticity stencil. Lentine et al. [174] im-
proved the vorticity confinement model by allocating global momen-
tum to ensure momentum conservation. Jang et al. [147] applied the
multi-level vorticity confinement method to simulate water turbulence
to capture large- and small-scale vortices and complex flow details. He
and Lau [120] proposed adaptive adjustment of the positive diffusion

55

survey on fluid simulation

term to balance constraints, which broadened the stability conditions
of the VC2 method and made it capable of generating highly turbulent
flows. However, the vorticity constraint method can only enhance ex-
isting vortices or turbulence and may not be effective for other types
of flows, such as laminar flow. Moreover, computational costs can in-
crease significantly due to additional constraints, especially for large-
scale complex fluid scenarios.

Vortex-based methods. The potential vorticity field can be effec-
tively modeled using vortex-based methods. These methods simulate
the vorticity of the velocity field rather than the velocity field itself, so
this automatically guarantees a divergence-free velocity field and re-
moves numerical dissipation. Most such methods are Lagrangian and
model the vorticity form 𝝎𝑣 of the Navier–Stokes equations as

𝜕𝝎𝑣
𝜕𝑡
+ (u · ∇)𝝎𝑣 = (𝝎𝑣 · ∇)u + 𝜇∇2𝝎𝑣, (2.29)

∇ · 𝝎𝑣 = 0. (2.30)

This formulation represents the vorticity distribution as a superposition
of singularities.

Initial state
Advection

Projection
Refine

fluid particle

vortex

linear velocity

normal component
of linear velocity

tangential component
of linear velocity

Figure 2.22: Schematic diagram of the causes of vorticity dissipation and meth-
ods of refinement [187].

Zhang et al. [347] proposed a new scheme named IVOCK, which aims
to solve the errors and energy loss caused by the self-advection step
through compensating for vorticity error. However, this method is only
applicable to fluid simulation on uniform grids. Liu et al. [187] extended

56

2.7 fine detail enhancement

this idea to particle-based turbulent detail simulation (Figure 2.22). Re-
cently, Xiong et al. [322] proposed a vortex segment method to simulate
flows with strong anisotropic vortical features. Compared with exist-
ing Lagrangian vortex particle methods, this method can more vividly
model complex phenomena, such as the splitting and reconnection of
two vortex tubes or vortex shedding near a solid boundary.
The main challenge of vortex methods is the handling of fluid–solid

coupling and creating vortices at this coupling boundary. For this, Go-
las et al. [107] proposed a combination of Eulerian simulation and vortex
singularity bases. By using Lagrangian vortex elements inside the fluid
and enforcing boundary conditions in the Eulerian mesh, robust inter-
action of free surfaces and non-rigid obstacles can be achieved. Zhang et
al. [348] used a FLIP approach to solve the Navier–Stokes equation us-
ing viscous particle strength exchange, handling the momentum trans-
formation at the solid boundary effectively. Liao et al. [182] proposed
a new wall-bounded turbulent smoke simulation method, which intro-
duced particle–particle interactions to traditional vortex filament mesh
calculations to accurately capture the vortices and thin turbulence gen-
erated by smoke–obstacle interactions.

Variants of dynamics solvers. Additional methods improve on cur-
rent advection–projection solvers or extend classical dynamical meth-
ods to achieve detail enhancement. In the advection–projection step,
detail, and energy preservation are greatly improved by the introduc-
tion of detail capture and shape correction techniques [317], the use of
energy-preserving reflection operators [343], and feature mapping with
convectors [208].
Yang et al. [332] first introduced the Clebsch wave function [62] as

a system scaling variable to evolve Eulerian flow fields, which signifi-
cantly improved the ability to generate and sustain vorticity in simula-
tions of various gases and liquids. Later, to solve the numerical insta-
bility of Clebsch’s method near dynamic interfaces, Xiong et al. [323]
proposed a new wave function correction scheme and extrapolation
algorithm, which achieved detailed simulation of various vortex struc-
tures on free surfaces. Recently, Feng et al. [88] proposed a numerical
method for solving the Navier–Stokes equations based on the pulse
gauge transformation, which can generate rich vortical details by treat-
ing the fluid pulse as an auxiliary variable.
Liu et al. [188] and Li et al. [178] created two turbulence simulation

methods using an adaptive multi-relaxation scheme and statistical me-
chanics, respectively. Later, Lyu et al. [193] further improved the bound-
ary treatment of dynamic solids, enabling the simulation of fluid–solid
coupling between thin structures and turbulent fluids.
The micropolar fluid model is an extension of the classical Navier–

Stokes equation, which takes into account not only the linear but also
angular velocities of the fluid particles, thus enhancing the eddy and

57

survey on fluid simulation

turbulence details of the fluid. Bender et al. [30] first used the micropo-
lar fluid model to simulate the turbulence phenomenon of non-viscous
fluids. Subsequently, they post-processed the foam phenomenon on this
basis to significantly improve the realism of the visual effect.

2.7.3 Data-driven Methods for Detail Enhancement

Texture synthesis. Geared toward the production of artistic effects
based on fluid elements, texture synthesis is the technique of choice for
adding detailed features, such as higher-resolution images, to surfaces.
As a post-processing method, texture synthesis achieves detailed sur-
face features through patch or style transfer based on deep learning.
Patch-based texture synthesis maps image textures or simulated fea-

tures to the target flow field, improving the appearance of the source
simulation by matching the target dataset features. Jamriška et al. [146]
used per-pixel best-fit search to achieve rich visual effects through 2D
input image appearance transfer. However, this method is limited to
image space synthesis and is difficult to extend to 3D fluid surfaces.
Gagnon et al. [98] proposed a temporally coherent patch-based texture
synthesis method to handle scenes with significant deformation and
topological changes. This approach aims to maintain a Poisson disk dis-
tribution of patches on a free surface to find the optimal parameter val-
ues and locations of time-varying patches. For the ghosting problem of
overlapping patches in the work of Gagnon et al. [98], Gagnon et al. [97]
followed up with a solution scheme based on patch erosion. They used
feature-aware erosion to remove patch distortion textures to ensure re-
alism of the mapping.
In contrast to surface texture synthesis, Deep Neural Networks (DNN)

perform various stylization tasks on volumetric data. Sato et al. [248]
proposed a style transfer method that migrates high-resolution turbu-
lent details to low-resolution flow fields, which speeds up the fine sur-
face detail simulation almost 30-fold. In addition, they used an opti-
mized texture synthesis method to solve the problem of discontinuity
at the patch boundary. Kim et al. [159] first proposed a transport-based
neural style transfer algorithm that enables automatic conversion of
the semantic structure of 2D images into 3D smoke simulations. The
method achieves complex artistic effects by optimizing the transport of
smoke to the desired stylized velocity field at each time step. However,
this method cannot handle the transfer of color information. Therefore,
the authors further redefined the method in a Lagrangian setting to en-
sure better temporal consistency and support for color stylization [160].
Unlike stylization methods that focus on fluid simulation shapes, Guo et
al. [115] proposed a Stylizing Kernel Prediction Network (SKPN) aimed
at stylizing physical color appearances. The method can easily generate
the user’s desired color appearance without complex parameter tuning.

58

2.8 fluid control

Upsampling methods for super-resolution. Generating super-
resolution simulations from low-resolution inputs is challenging. With
the popularity of machine learning techniques, recovering fine details
of fluids through super-resolution reconstruction techniques or upsam-
pling methods has received increasing attention.
Zhang and Ma [350] proposed a spatio-temporal extrapolation tech-

nique that enables high-resolution flow features on coarse grids. Chu
and Thuerey [60] enhanced the turbulence detail of the smoke simula-
tion on the coarse grid by using local patch descriptors. Um et al. [293]
proposed a deep neural network to capture small-scale splashed droplet
details from low-resolution liquid simulations. Xie et al. [321] used a
conditional generative adversarial network with a temporal discrimi-
nator to directly generate advected quantities with highly detailed and
temporally coherent features for smoke simulation. CNNs have been
used to create matching models to correct the shape of low-resolution
smoke simulations [318] and estimate physical parameters to guide the
reconstruction of high-resolution velocity fields [176]. Bai et al. [21]
used a dictionary-based neural network for fluid upsampling. However,
the choice of their training set was somewhat limited, and the spatial
and temporal consistency of the results could not be guaranteed. They
next significantly improved the prediction quality of the network by
adding filtering to the training process [22]. Roy et al. [242] proposed
a DNN-based method for improving the resolution of coarse particle
liquid simulations.

2.8 fluid control

The wealth of methods for fluid simulation surveyed so far leads to a
key question: How do we control such simulations? Although a method
can technically produce highly accurate results, a critical objective is
to enable its users to steer the method toward the desired results. We
next group and discuss fluid control methods in three classes using dif-
ferent control perspectives: scenario editing (Section 2.8.1), artificial ef-
fects (Section 2.8.2), and media-directed formation (Section 2.8.3).

2.8.1 Scenario Editing

Scenario editing steers the fluid by generating new simulation scenarios
based on existing simulation results without losing the characteristics
of the original simulations (Figure 2.23). On the positive side, such con-
trol is technically the closest to how a simulation works, so it can steer
the fluid most directly. On the negative side, this control requires the
end users’ advanced skills and understanding of the underlying simula-
tion and overall fluid flow technicalities.We further divide scenario edit-

59

survey on fluid simulation

Fluid

Splash

Splash

Splash

Figure 2.23: Schematic diagram of scenario editing based on changing an exist-
ing simulation to achieve desired effects.

ing into three sub-types based on the implementation approach: target-
guided editing, adjustable editing, and camera-based editing.

Target-guided editing. Such methods modify an existing fluid sim-
ulation to match a given target, e.g., a higher resolution. Gregson et
al. [114] connected low-resolution smoke capture with its velocity
field. They treated the pressure projection as a proximal operator and
tracked the fluid by estimating its velocity. Through advection, their
method obtained a high-resolution re-simulated smoke. Forootaninia
and Narain [93] successfully guided high-resolution smoke flow by re-
placing its low-frequency component with a given guiding field. Gen-
erally, the guiding task is seen as an optimization problem that mini-
mizes errors. This optimization problem was solved efficiently by using
a fast primal-dual method [142]. To achieve a more desirable artistic
effect, it is essential to guide smoke animation in such a way that it
aligns with one or multiple target density keyframes provided by the
artist. To address this control problem, Pan and Manocha [224] formu-
lated it as a space-time optimization. They employed an alternating di-
rection method of multipliers (ADMM) optimizer [40] to derive a dense
sequence that forces the smoke to meet the desired target shape. Tang et
al. [285] proposed an advanced method that effectively addresses both
the issues of unconstrained optimization and high-dimensionality of the
parameter space simultaneously.

Adjustable editing. These methods aim to control, edit, or resize
fluid simulation results. Raveendran et al. [234] focused on control with
an emphasis on the liquid surface and proposed a method that provides
the animator with multiple control levels for creating high-quality fluid
animations. Later, Raveendran et al. [235] proposed a smooth blending

60

2.8 fluid control

method to interpolate between two or more existing pre-computed liq-
uid simulations. With their method, one can generate hundreds of dif-
ferent plausible results at interactive rates with potential applications
in games and virtual reality. Sato et al. [249] proposed a smoke blend-
ing method to help animators synthesize the desired fluid animation.
Velocities at the boundaries are interpolated by minimizing an energy
function. This approach significantly reduces computational costs by
reusing existing flow data instead of creating realistic fluid animations
by numerical simulation. Fluid carving is another way to edit fluid sim-
ulations. By utilizing seam carving, efficient and effective resizing of 4D
fluid simulation data can be achieved [91]. Flynn et al. [92] proposed a
lattice-guided seam computation method that can overcome the limita-
tion of rectangular boundary and that reduces calculation time.

Camera-based editing. In the context of large-scale scene simula-
tion, due to computational cost considerations, it is often necessary
to perform coarse-grained simulations of the entire world and sub-
sequently integrate finer-grained details into the scene. To integrate
two simulated fluid scenes seamlessly, Bojsen-Hansen and Wojtan [38]
presented a fluid modification approach with “non-reflecting” bound-
ary handling. They extended the simple Perfectly-Matched Layers
(PMLs) [32] method to handle coupling inflow/outflow boundaries with
varying spatial and temporal conditions. The boundary can be modified
easily during the simulation, and it handles the multi-resolution combi-
nation. Stomanuykhin and Selle [271] introduced the fluxed animated
boundary (FAB) method, in which the boundary can have a custom
shape and vary over time, with materials outside the boundary dynam-
ically removed using volume flux.

User
defined
sketch

Figure 2.24: Schematic diagram of artificial effects: Artist-directed control to
achieve non-physical effects.

2.8.2 Artificial Effects

One often needs to artificially edit and control fluids to achieve specific
artistic effects. Different from scenario editing, artificial effects add new
characteristics to a simulation by artificially guiding the formation of

61

survey on fluid simulation

fluid shapes or movements during the process (Figure 2.24). Due to the
complex motion of fluids, keyframe animation, which involves control-
ling the flow of fluids to match keyframes, is a commonly used method
for fluid control to reduce unrealistic effects in simulations. However,
manually designed frames often lack volume preservation and exhibit
excessive smoothness, resulting in the loss of simulation details.
Pan et al. [223] proposed a local control method instead of globally

manipulating the entire fluid, allowing users to edit and control fluid
shapes in specific regions using a brush-like tool. However, controlling
the simulation process between keyframes is challenging. To address
this issue, Lu et al. [191] drew inspiration from skeletal animation tech-
niques. They introduced a method that controls fluid motion by manip-
ulating a point cloud with rigid body motion and incompressible de-
formations, subsequently performing skinning operations on the point
cloud. Similar to the work of Lu et al. [191], Yan et al. [326] applied
conditional generative adversarial networks to generate fluid splashes
based on simple user-defined sketch input. Control particles with attrac-
tive forces provide an efficient way to reproduce complex motion using
pre-computed templates [252]. In this work, a set of shape-constraint
particles were seeded and a repulsion force field was computed to con-
trol the shape of the final result.

2.8.3 Media-directed Formation

Pure physics simulations often suffer from significant computational
time requirements, making them impractical for real-world production
applications.Media-directed formation aims to set up simulation scenar-
ios based on real-life videos or images of the fluid, reproducing real-
world scenes (Figure 2.25). Thesemethods estimate fluid properties such
as volume, density, motion, and style from visual data.

Figure 2.25: Schematic diagram of media-directed formation; images or videos
are used to reproduce real-world scenes.

Okabe et al. [217] focused on reconstructing a detailed 3D model of
a fluid volume, such as smoke or liquid, from sparse multi-view images.
This involved sparse reconstruction and appearance transfer to capture
the underlying structure and enhance the visual fidelity of the recon-
structed fluid volume. Unlike Okabe et al. [217], Eckert et al. [77] es-

62

2.9 special fluids

timated both the density and motion of a fluid from a single view or
sequence of images without the need for multiple views. Nie et al. [213]
proposed a fluid reconstruction and editing model to generate particle-
based simulations based on monocular videos. Using the SPH method
with external forces, they could obtain a simulated fluid volume under
the guidance of a pre-processed water surface.

2.9 special fluids

2.9.1 Highly Viscous Fluids

Viscosity is an attribute that measures the ability of a fluid to resist de-
formation at a given rate. With viscosity, moving fluids will generate
internal stress responding to the deformation, which causes energy dis-
sipation of the fluids and affects their behavior. For low-viscosity flu-
ids like water, inertial forces are dominant. For high-viscosity fluids
like molasses and chocolate sauce, viscosity leads to special phenom-
ena like bulking and coiling. Moreover, for different kinds of fluids, the
viscous characteristics can vary significantly with their shear rate (see
Figure 2.26). The simulation of high-viscosity fluids has attracted recent
interest in computer graphics.

Shear-thinning
Newtonian

Shear-thickening

Bingham-plastic (Shear-thickening)

Bingham-plastic

Bingham-plastic (Shear-thinning)

Shear rate

Yi
el
d
st
re
ss

Sh
ea
r
st
re
ss

(a)

Shear-thinning

Newtonian

Shear-thickening

Bingham-plastic (Shear-thickening)

Bingham-plastic

Bingham-plastic (Shear-thinning)

Shear rateCritical shear rate

V
is
co

si
ty

(b)

Figure 2.26: Diagrams illustrating the relationship between shear rate and shear
stress, as well as shear rate and viscosity, for various highly viscous
fluids, with design inspiration taken from Zhu et al. [352]. (a) Plots
of shear stress versus shear rate for different highly viscous fluids.
(b) Plots of viscosity versus shear rate for different highly viscous
fluids.

Newtonian fluids. Following Newton’s viscosity law, the viscosity
of a Newtonian fluid (incompressible and isotropic) can be expressed by

63

survey on fluid simulation

a material parameter 𝜇 called dynamic viscosity coefficient. Using this,
the inner viscous stress tensor 𝝉 is computed as

𝝉 = 2𝜇E, (2.31)

where E is a symmetric strain rate tensor that describes the shear strain
rate. This equation indicates that the viscous stresses of Newtonian flu-
ids are linearly correlated to the local strain rate at every point. Using
the spatial derivatives of the velocity field, the strain rate tensor E can
be defined as

E =
1
2
(∇u + (∇u)𝑇). (2.32)

Substituting Equation (2.31) and Equation (2.32) into the viscosity
force field formulation fvis = ∇ ·𝝉 and adding the incompressible condi-
tion ∇ · u = 0, the viscosity force field fvis can be computed as

fvis = 𝜇∇2u. (2.33)

This gives the viscosity term in themomentum equation, corresponding
to the viscosity term in the form of kinematic viscosity in Equation (2.6).

Discretizing the viscosity term is a challenging problem for SPH-
based methods. Takahashi et al. [279] proposed an implicit Euler inte-
gration to solve the viscosity term separately, using two SPHfirst deriva-
tives to discretize the strain tensor and the divergence of the stress ten-
sor, respectively. This method supports a larger range of viscosity and
time step values, but a second-ring neighbor computation is required,
which impacts efficiency. Peer and Teschner [229] decomposed the ve-
locity gradient into three tensors: spin rate, expansion rate, and shear
rate. A user-defined viscosity parameter modifies the shear component,
which describes the dissipation due to viscosity. This leads to a target
velocity gradient that is used to reconstruct the final velocity field with
a first-order Taylor approximation. Because the velocity gradient field
is decomposed, the linear system for solving the velocity field can be
handled separately. However, shear viscosity does physically affect the
rotation component in the velocity gradient because of the tangential
component in rotation. Peer et al. [230] extended this method using
a vorticity diffusion scheme. The spin rate tensor in the target velocity
gradient is modified by solving a vorticity diffusion process, which uses
the viscosity parameter in thework of Peer and Teschner [229] such that
vorticity damping is introduced to achievemore realistic effects. Instead
of using the strain rate, Weiler et al. [306] introduced an implicit viscos-
ity solver based on the Laplacian of the velocity field in Equation (2.33).
With a symmetric form of the approximation discretization of the vis-
cosity term [202], an implicit linear system for a new velocity field can
be obtained.
The above-mentioned solvers separate the solving of pressure and

viscosity, which reduces accuracy and cannot generate free surface de-
tails. Larinov et al. [171] introduced a unified pressure–viscosity solver

64

2.9 special fluids

based on implicit variational unsteady Stokes flow problems for grid-
based methods, where the inertial force is considered to improve accu-
racy and achieve a wider viscosity range. Combining the semi-implicit
equation of correlation pressure (SIMPLE) method with SPH, Liu et
al. [186] used the result of the pressure Poisson equation to improve
the pressure in the viscosity solver in an iterative process, which con-
verges to a globally optimal solution.

Even with a stable solver, mimicking the viscosity coefficient of the
target fluid is essential to realistically simulate highly viscous fluids.
Takahashi and Lin [283] proposed a framework to find the required
viscosity parameter from real videos of highly viscous fluids by mini-
mizing an objective function that evaluates the difference between the
silhouettes extracted from video frames and those obtained from the
simulation.

Non-Newtonian fluids. Such fluids do not follow Newton’s viscos-
ity law but rather show a non-linear relation between shear stress and
strain rate. For example, the viscosity of a shear-thickening or dila-
tant fluid (e.g., starch paste) increases when the shear rate increases;
the opposite happens for a shear-thinning or pseudoplastic fluid (e.g.,
ketchup). Some non-Newtonian fluids have properties of solids, such as
Bingham plastic fluids like toothpaste. Hence, it is impossible to use a
constant viscosity for non-Newtonian fluids, and appropriate constitu-
tive models are required to simulate such fluids.
The Carreau–Yasuda model is a well-known method to simulate non-

Newtonian fluids by defining a shear-rate-related viscosity 𝜇 as

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞) [1 + (𝑅 ¤𝜖)𝑎] (𝑛−1)/𝑎, (2.34)

where 𝜇0 is the zero-shear viscosity, 𝜇∞ is the infinite viscosity, ¤𝜖 is the
shear rate, 𝑅 is the relaxation time that scales the shear rate,𝑛 is a power
law index, and 𝑎 models the transition smoothness between the Newto-
nian plateau and power law regime. When 𝑛 = 1, this model becomes
a Newtonian fluid with dynamic viscosity 𝜇0. For shear-thinning fluids
(𝑛 < 1), as the strain rate increases, viscosity will vary from 𝜇0 to 𝜇∞.
For shear-thickening fluids (𝑛 > 1), the viscosity increases as the shear
rate increases.
Bingham plastic fluids are another kind of typical non-Newtonian

fluid that behaves as a rigid body at low stress but flows as a Newtonian
viscous fluid once the yield stress is exceeded. For many viscoplastic flu-
ids, the stress curve of the flowing part is nonlinear when the shear rate
exceeds a critical value. To capture shear thickening/thinning, 𝜇 is mod-
eled by the Herschel–Bulkley model given by

𝜇 (¤𝜖) =
{
𝑘 ¤𝜖𝑛−1 + 𝜏0 ¤𝜖−1, ¤𝜖 > ¤𝜖0

𝜇0, ¤𝜖 ≤ ¤𝜖0
(2.35)

65

survey on fluid simulation

where 𝑘 is the consistency coefficient, 𝜏0 is the yield stress, and ¤𝜖0 is the
critical shear rate. Similar to Equation (2.34), when 𝑛 = 1, this model
describes the ideal Bingham plastic, 𝑛 > 1 models shear thickening
Bingham plastic, and 𝑛 < 1 models the shear thinning Bingham plastic
fluid.

Recent work used the above two models to simulate non-Newtonian
fluids. Zhu et al. [352] simulated various co-dimensional features of
different non-Newtonian fluids, e.g., shear thinning and thickening
for Bingham plastics, and elastoplastics. The Carreau–Yasuda model
for non-Newtonian fluids was used on a multi-level-set model; semi-
implicit methods were used for elasticity and variable viscosity. On the
rims of thin fluid sheets, viscosity had an improved treatment to yield
a twisting motion. Yue et al. [340] used the non-Newtonian Herschel–
Bulkley model to simulate dense foams composed of microscopic bub-
bles using MPM. They also proposed a particle resampling method for
MPM and a tearing model to simulate tearing/connectivity recovery by
explicitly handling the weakening regions detected from space. Mix-
tures of non-Newtonian fluids were studied by Nagasawa et al. [209].
Using the Herschel–Bulkley model, a nonlinear blending model that
satisfies the five blending laws [245], along with mass conservation,
was proposed to capture non-Newtonian fluid mixture behavior. For
viscoelastoplastic materials, a constraint-based method [24] extended
position-based dynamics to simulate elastoplastic and highly viscous
fluids by recasting a constitutive model of viscoelasticity, which defined
governing equations for a conforming tensor.

2.9.2 Ferrofluids

The dynamic interactions of ferrofluids — liquid media responsive to
external magnetic fields — have emerged as an area of considerable in-
terest within the computer graphics research community. These mag-
netically active fluids, originally conceived by NASA to facilitate fuel
transfer in spacecraft under microgravity conditions, derive their mag-
netic properties from the incorporation of nanoscale magnetic parti-
cles. Upon exposure to an external magnetic field, these dispersed par-
ticles within the ferrofluid polarize, thereby generating a distinct inter-
nal magnetic field. This induced magnetic field, working synergistically
with the external one, is pivotal to the magnetization process of the fer-
rofluid, as shown in Figure 2.27. The computer graphics simulation of
these captivating fluids, however, has not received significant attention
until the very recent pioneering work of Michels et al., which directed
attention towards this specialized field [132]. We recall several key in-
sights from their contributions in the subsequent discussion.

66

2.9 special fluids

(a)

Magnet Magnet

(b)

Figure 2.27: Schematic representation of ferrofluids in interaction with a mag-
netic field. (a) Superposition of a uniform vertical magnetic field
and the magnetic field originating from an ellipsoid magnetization.
There is a pronounced discontinuity in the magnetic field on the
surface, most significantly at the extremities where there is a sharp
escalation in the field strength. (b) A surface perturbation in the
magnetized ferrofluid, resulting in a localized concentration ofmag-
netic induction lines. The ferrofluid is drawn towards this bump
due to a heightened field strength, which consequently enhances
the gradient, amplifying the perturbation and leading to the forma-
tion of a spike.

The interrelationships of these spatial magnetic fields, both internally
produced and externally imposed, conform to the well-known Maxwell
equations

∇ · B = 0,

∇ × H = J + 𝜕D
𝜕𝑡

,
(2.36)

where B is the magnetic flux density describing the spatial magnetic
field, H is the total magnetic field intensity, J is the free current density,
andD is the electric displacement field. The ferrofluids further discussed
in this section comply with the following model

B = 𝐻0 (H + K),
H = Hext + Hint,

(2.37)

67

survey on fluid simulation

where 𝐻0 is the vacuum permeability, K is the magnetization field de-
scribing the density of the magnetic moment induced by the total mag-
netic field, Hext is the external magnetic field, and Hint is the internal
magnetic field generated by the ferrofluid. The magnetization field is
a function of the known external magnetic field and internal magnetic
field, and the current internal magnetic field can be obtained by solving
Poisson’s equation with the assumptions of ∇ × Hext = J and 𝜕D

𝜕𝑡
= 0 in

Equation (2.36), as the free current density J is not influenced by Hint,
and the electric displacement produced by the flow of ferrofluid is not
strong enough to influence the system.
Under the effect of magnetic force, fluid particles gather on tiny

bumps near the surfacewhere the synthesizedmagnetic field is stronger,
pulling the fluid to form spikes with visually attractive features. The
spike shapes are also influenced by gravity and surface tension.
The past few years have witnessed the proposal of various meth-

ods for simulating ferrofluids within the field of computer graphics.
Huang et al. [132] presented the smooth magnets method, which uti-
lizes Lagrangian particles embeddedwithmagnetic nanoparticles to dis-
cretize fluids. This method was the first in computer graphics to address
themacroscopic simulation of ferrofluids based on first principles. Their
proposed magnetization model, along with the magnetic field’s Poisson
equation, can be discretized using a smooth kernel function akin to that
used in SPH.
Approaching from a Lagrangian perspective, the volumetric Kelvin

forcemodel is utilized to characterize themagnetic force interactions be-
tween particles. Standard SPH computations employ particles, enabling
the enforcement of incompressibility and surface tension within fer-
rofluids. However, the implementation of a Kelvin force model engen-
ders an unanticipated outward-directed force on the surface, prompt-
ing particles to exhibit levitation near this surface. To address this phe-
nomenon, Shao et al. [257] introduced a modification, replacing the
Kelvin force model with a current loop model, thereby creating an in-
ward force. This alteration permitted the integration of the magnetic
model into Implicit SPH models. Consequently, it enhanced system sta-
bility and facilitated the use of larger time-step increments.

From an Eulerian perspective, Ni et al. [212] presented a level-set
method for simulating various magnetic bodies, including ferrofluids.
The interplay between the magnetic field and mechanical system was
addressed as an interfacial issue, and a weighted average of the internal
and external magnetic fields was calculated to manage discontinuities.
The resulting magnetic force, coupled with surface tension, was inte-
grated into the Navier–Stokes equations to direct the dynamics of the
ferrofluids.
Advancing the research further, Huang andMichels [133] introduced

the concept of surface-only ferrofluids, a singular study to date, tested
successfully against real ferrofluids. Unlike previous approaches that

68

2.9 special fluids

incorporated magnetic force as an additional term in the momentum
equation, their method infuses the discontinuity of magnetic pressure
into the Dirichlet boundary condition within the pressure-projection of
the Galerkin Boundary Element Method (BEM)-based surface-only liq-
uid solver [71], specifically at the fluid–air interface. This pioneering
surface scheme enhances the Helmholtz decomposition step in surface-
only fluid solvers via a more precise analytic integration process. Addi-
tionally, it augments the accuracy of the pressure projection step within
surface-only fluid solvers through a Galerkin BEM.
From the hybrid discretization perspective, Sun et al. [274] uti-

lized the MPM structure to further simulate nonlinear magnetic sub-
stances in pursuit of a more general magnetic description. They used
the physically-realistic Langevin’s nonlinear magnetization model to
bound the magnetic force between magnetic micro elements without
additional numerical approximation. Following the concept of MPM,
this method uses particles to carry microscopic magnetic quantities and
solves Poisson’s equation of the magnetic fields and Kelvin force on
Cartesian grids. Without integrating the surface tension, this method
cannot form stable spikes when simulating ferrofluids. However, thanks
to the versatility of MPM, it can achieve a unified simulation and cou-
pling of different magnetic materials.

2.9.3 Thin Films

Thin films and bubbles are fascinating phenomena that have received
special attention. A common example is a soap bubble floating in air.
Bubbles produced from pure water are usually few, small, and disap-
pear quickly due to gravity, pressure, and strong surface tension. To
produce more, larger, and longer-lasting bubbles, surfactants are added
to the water, e.g., fatty acids common in soaps. With surfactants in-
terspersed among water molecules, surface tension is reduced so that
larger bubbles appear. The tensile deformation of the film will recover
due to the difference in surface tension working like elasticity — the
so-called Marangoni effect (Figure 2.28). While the Marangoni effect
models the resilience given by inconsistent surface tension, the Young–
Laplace equation describes the capillary pressure difference Δ𝑝 caused
by surface tension between air and the fluid as

Δ𝑝 = −𝛾∇ · n, (2.38)

where 𝛾 is the surface tension, and n is the surface outward-pointing
normal. Equation (2.38) relates the pressure difference to film shape.
Batty et al. [25] developed discrete viscous sheets by building on (La-

grangian) elastic thin shells. This reduced-dimensional technique de-
scribes the sheets using triangular meshes with local thickness and uses
the area-based surface tension derived from themid-surface of the (thin)
shell. Wang et al. [299] enhanced this to capture the surface tension flow

69

survey on fluid simulation

Hydrophilic group

Hydrophobic group

Bulk fluid

Film surface

∇𝛾∇𝛾

Figure 2.28: Schematic diagram of the Marangoni effect. Surfactants gather on
both sides of the thin film. The tensile deformation yields an incon-
sistent surfactant concentration, which leads to the surface tension
gradient shown in the figure. The film recovers its shape due to this
gradient.

using moving-least-squares particles. The mixed Lagrangian–Eulerian
approach models not only volumetric phenomena (3D) but also those
arising from thin shells (2D), filaments (1D), and even individual points
(0D). Surface tension (and other forces) are handled in a unified way
across all (co)dimensions, including codimensional transitions. This en-
ables complex scenarios requiring careful (surface) tension treatment,
such as two water jets colliding and forming a thin sheet, to be simu-
lated. Similarly to the work of Wang et al. [299], the codimensional sur-
face tension flow of Zhu et al. [354] also relies on simplicial complexes
and transitions between elements of different (co)dimensions, covering
thin fluid sheets, filaments, and surface tension effects.
Wang et al. [300] extended the work of Wang et al. [299] to yield

a thin-film SPH fluid model. Films are modeled as (surface) particles
of codimension one with local thickness estimates. This particle setup
interacts with a Lagrangian flow simulation using a thin film shape de-
scription. This physically couples aggressive surface deformations and
strong tangential flows. A process of transformation from codimension
one to codimension zero is used to simulate rupture.
Focusing on viscous thin films, Vantzos et al. [296] proposed a nu-

merical scheme to simulate the thin film equation (modeled as a height
function) on a planar domain, including gravity and other forces. They
added a novel quadratic term to the governing equation to stabilize flow
while maintaining visual fidelity. Their scheme is fully local; thus, it al-
lows an efficient GPU implementation that leads to real-time simula-
tions, such as that of honey flowing through honeycombs.

70

2.9 special fluids

Da et al. [70] studied soap films and foams whose dynamics are cap-
tured by a Lagrangian vortex sheet model with an emphasis on circu-
lation. Surfaces are represented using multi-material triangular meshes
supporting topological changes, and their tension forces lead to a circu-
lation update rule based on mean curvature.
By Plateau’s laws, a steady-state film consists of constantmean curva-

ture parts and minimal surfaces (vanishing mean curvature). Ishida et
al. [144] used this to model evolving foams via hyperbolic geometric
flow, a type of mean curvature flow.
Most existing soap filmmodels [70, 144] assume that a film is infinites-

imally thin and has no influence on its evolution. Ishida et al. [143] ex-
tended such methods to use film thickness, modeled on non-manifold
meshes, as a reduced degree of freedom in the Navier–Stokes equations
and to derive the motion equations. This provides an incompressible
fluid solver for 2.5D films.
In addition to dynamic effects, bubbles also produce rich color effects

due to the light interference caused by uneven film thickness. Besides
soap bubbles, other fluid dynamics simulations are also possible on a
thin film for additional visual effects.
Two further methods focused on spherical bubbles and the fluid

around them. Hill and Henderson [125] efficiently simulated fluids on
a spherical surface. They handled poles/singularities of spherical coor-
dinates, which would otherwise render the motion equations complex
if used naively on the sphere. Their method also enables vector and
scalar controls for art-directed spherical flows. Huang et al. [135] fo-
cused on the chemical–mechanical simulation of soap film flows on
spherical bubbles using lubrication theory. Considering the Marangoni
effect and the capillary pressure difference, the stress condition at the
film surface is given by

𝝈 · n = (−𝛾∇ · n − 𝑝𝑎)n + ∇𝑠𝛾, (2.39)

where 𝝈 is Cauchy stress tensor, n is the outward unit normal vector
at the surface, 𝑝𝑎 is the air pressure, and ∇𝑠 is the 2D gradient operator.
The surface tension 𝛾 is defined by a linear model

𝛾 (Γ) = 𝛾0 − 𝛾𝑟 Γ, (2.40)

where 𝛾0 is the surface tension of pure water, Γ is the surfactant con-
centration, and 𝛾𝑟 is a constant that describes the Marangoni elasticity
of the film. The surfactant concentration Γ is advected by an advection-
diffusion equation. Huang et al.’s advection scheme used spherical co-
ordinates. Changes of coordinate orientation in curvilinear coordinate
systems can be implicitly handled when transforming from global to
local coordinates and does not need to be solved separately [125]. This
last method also proposed a physically accurate shader for real-time
rendering under environmental lighting.

71

survey on fluid simulation

Recently, Deng et al. [75] introduced MELP (Moving Eulerian–
Lagrange Particles), a novel mesh-free method for incompressible fluids
on moving foams and thin films. Their approach, including multi-MELP
for interfacial flow, is able to model both large-scale surface deforma-
tions and detailed flows.

2.10 conclusion and discussion

Physics-based fluid simulation has been successful in games, film, and
animation. Current advances enable high levels of control in produc-
tion and have shown increasing acceptance and potential in virtual and
augmented reality and other real-time graphics-intensive applications.
Recent advances in physics-based fluid simulation methods rely on a
complex mix of computational efficiency, realism, controllability, and
ability to simulate diverse scenarios. This survey presented an in-depth
overview of these methods over the last decade. We discussed the differ-
ent goals in this field, techniques proposed to address these goals, and
challenges of these techniques.

Our survey found seven major themes present in approximately 300
fluid simulation papers from the computer graphics community in the
last decade: advanced computational approaches, interactionwithmate-
rials, multiphase simulations, gas–liquid interfaces, enhancing fine de-
tails, simulation control, and special fluids. These themes formed the
structure of our survey to outline important developments in this pe-
riod and community.
As outlined in our survey, the field of physics-based fluid simulation

faces numerous challenges, spanning from computational approaches
to the detailed interaction of different fluid types. Our exploration has
uncovered several ongoing challenges. In the subsequent chapters of
this thesis, we address some of these challenges from three distinct per-
spectives, proposing new solutions and further advancements.

Advanced computational approaches. Adaptive solutions and
GPU parallelization are ubiquitous in computer graphics, but there is
much room for developing such new methods for physics-based fluids.
For instance, adaptivity usually makes an implementation complex and
difficult to apply to GPU hardware. Spatial and temporal resolution are
often related aspects. In space discretization, interactions between grids
or particles at different scales may cause instability and fidelity loss,
which can also create energy diffusion. Hence, in addition to improving
computational efficiency and reducing overhead, proposing methods to
reduce such unwanted effects on a wide range of resolution scales is
important for future research. Using neural networks to learn fluid dy-
namic behavior will be a hot research topic in the future, as it has strong
prospects for real-time simulation and industrial control. However, only
summarizing physical laws from a large amount of training data lacks

72

2.10 conclusion and discussion

underlying logical support. As such, more attention is likely to be paid
next to how to inject physical prior knowledge into deep learning mod-
els.
In Chapter 3, we tackle the optimization of spatial adaptivity mech-

anisms through the lens of fluid-solid dynamics. We introduce a
boundary-distance-based adaptive method for Smoothed Particle Hy-
drodynamics simulations, utilizing a signed-distance field relative to
fluid-solid boundaries to adjust particle resolution. This ensures the
highest resolution near boundaries, which gradually decreases to a pre-
set threshold with increasing distance.

Fluid coupling with multi-materials. The key challenge for such
simulations is to keep accuracy, stability, and efficiency when coupling
multiple materials concurrently in one scenario. Using different solvers
vs materials limited the diversity of fluid animation until recent years.
Current research has moved from merging multiple solvers to develop-
ingmonolithic ones. Monolithic solvers can simulate different materials
and their interaction in a single framework, which can eliminate stabil-
ity issues. However, such solvers currently demand high computational
resources. Thus, an open challenge is to mix hardware and algorithm
designs to better support such solvers.

Multiphase liquids. Future work can explore many interesting as-
pects. One challenge is that current methods for incompressible fluid
simulation do not handle high-density ratios well. Linear systems
become ill-conditioned under high-density contrasts, and Jacobi-like
solvers fail to converge. Currently, many parameters of mixed fluid
are manually adjusted. How to control parameters more intuitively to
achieve the desired visual results is worth further study. Modeling tem-
perature, chemical reactions, elasticity blending, and optical blending
are equally important open aspects in this area.
In Chapter 4, we address the problems associated with ill-conditioned

linear systems and the convergence challenges in implicit fluid solvers.
We have integrated a multiphase fluid solver into existing frameworks
for implicit linear systems. This integration not only aims to improve
the robustness and versatility of fluid simulations but also ensures more
stable and realistic representations in complex scenarios involving mul-
tiple fluid phases.

Gas–liquid interaction. Challenges for liquid–gas interaction in-
clude simulating the gas–liquid phase transition and modeling its ef-
fect on surface tension, supporting non-manifold thin film structures,
handling the transition between different codimensionalities, produc-
ing realistic surface colors for bubbles, reducing the simulation complex-
ity while preserving accuracy for liquid–air coupling, and adding fine
splash details that are not limited by particle size. Achieving richer gas–

73

survey on fluid simulation

liquid interaction phenomena while ensuring stability and efficiency is
a subject of ongoing and future long-term research.

Fine detail enhancement. Many existing detail enhancement tech-
niques can achieve detailed fluid surfaces without using high-resolution
discretization. Realistic and fine-grained appearance representations
are the primary pursuit in this direction. Energy conservation and de-
tail preservation in accordance with physical laws are also important
goals. How to improve the efficiency and scalability of detail enhance-
ment is an open challenge for the end goal of providing real-time, in-
teractive, and generalizable tools for artists. Future work will likely use
deep learning techniques with innovative explorations in style transfer,
high-resolution reconstruction, and detail generation.

In Chapter 5, we extend these concepts by introducing an innova-
tive real-time fluid rendering technique that integrates the anisotropy
matrix into the screen space rendering pipeline. Our approach adapts
point sprites within particle-based simulations, stretching them along
feature vectors through anisotropic transformations. This method not
only achieves smoother fluid surfaces but also leverages a weighted
principal component analysis to optimize particle distribution.

Fluid control. Issues still exist in fluid control: high memory and
computation costs, sensitive parameters, andmanual feature labeling. A
key difficulty of controlmethods is to achieve precise control. Achieving
precise control, along with high accuracy and efficient computation, is
— regarding the other topics studied in this survey — one of the grand
challenges of fluid simulation research.

Special fluids. The challenge of simulating fluids with special forms
lies in unifying governing equations and other physical characteristics
in a consolidated system, which means integrating different solvers to-
gether. The targeted formulation of a monolithic-style solver is required
to perform high-performance simulation results.

We hope this survey helps to introduce the theoretical concepts un-
derpinning physics-based fluid simulation and their practical implemen-
tation to serve as a guide for researchers and practitioners as well as
facilitate future works to exploit on the basis of recent developments.

74

3S PAT IAL ADAPT I V I T Y W I TH BOUNDARY
RE F INEMEN T FOR SPH FLU ID S IMULAT ION

As we already remarked in Section 2.2, fluid simulation is renowned
for its visually stunning outputs, yet it is also known for its high

computational demands. Spatial adaptivity can significantly reduce these
demands by varying the resolution of the simulation space. Current adap-
tive methods primarily enhance the refinement of fluid surfaces to produce
more detailed splashes and wave effects. However, these methods often fail
to optimize performance in scenarios where large areas of the fluid surface
remain tranquil, and they struggle to capture the dynamic flows beneath
the surface when the interior fluid is simulated with a coarse discretization.
This work introduces a novel boundary-distance-based adaptive method
for Smoothed Particle Hydrodynamics fluid simulations. We employ a
signed-distance field, constructed relative to the fluid-solid boundaries, to
modulate particle resolution across different spatial positions. The resolu-
tion is highest near the boundary and decreases smoothly with increas-
ing distance until reaching a preset threshold. Particle sizes are dynami-
cally adjusted through a split and merge process. Additionally, we imple-
ment a wake flow preservation mechanism that maintains high particle
resolution temporarily after a particle interacts with the boundary object,
thus preserving detailed flow dynamics. Experimental evaluations show
that our method not only refines fluid-solid interaction details more effec-
tively than traditional global fine-resolution approaches but also surpasses
surface-only adaptivity schemes in capturing dynamic effects beneath the
surface1.

This chapter begins with an overview of basic concepts related to
spatial adaptivity in Section 3.1, highlighting significant innovations in
this field. The background and mathematical principles of the SPH ap-
proach, including its application to solving Navier-Stokes equations, are
discussed in Section 3.2. This section serves as the foundation not only
for the subsequent sections of this chapter but also informs the content
of Chapters 4 and 5. Detailed descriptions of the particle split andmerge
processes, along with the special treatments required for boundary cou-
pling in particles of varying sizes, are provided in Sections 3.3 and 3.4,
respectively. Our boundary-optimized adaptive method, including the
wake flow preservation scheme, is proposed in Section 3.5. The perfor-

1 Parts of this chapter were published in: Y. Xu, C. Song, X.Wang, X. Ban, J. Wang, Y. Zhang,
and J. Chang. Spatial adaptivity with boundary refinement for smoothed particle hydro-
dynamics fluid simulation. Computer Animation and Virtual Worlds, Volume 34, Issue 5.
Wiley, 2023. doi: 10.1002/cav.2136

75

https://doi.org/10.1002/cav.2136

spatial adaptivity with boundary refinement for sph fluid simulation

mance of this method is tested and discussed in Section 3.6. The chapter
concludes with a summary of the findings in Section 3.7.

3.1 introduction

Fluid simulation plays an essential role in visual effects, for the physical-
based result can produce magnificent eye-catching results to maximize
the sense of reality. Nevertheless, higher demand for simulation de-
tails usually means the rapid growth of computational cost due to the
need for the finer discretization of multidimensional space and time. As
we discussed in Section 2.3.1, although the choice of time step (tempo-
ral adaptivity) can be readily adapted using Courant-Friedrichs-Lewy
(CFL) condition, the mechanism of spatial adaptivity can still be further
exploited considering variable conditions for better efficiency. The spa-
tial adaptivity mechanism enables achieving exquisite fluid behaviors
with more affordable expenses by optimizing the interval of sampling
points to refine local areas with pertinence.
Methods for spatial adaptivity in fluid simulation depend heavily on

the fluid simulation approaches on which they are based. We discussed
related work in spatial adaptivity in Section 2.3.1.2. Here we refine that
discussion with additional references which bring more insight into the
context of our work discussed in this chapter.
For Eulerian approaches that simulate the fluid with grids, a stan-

dard scheme uses octrees to split some grids into finer grids [9]. Mean-
while, tilted grids can also be used [320] to avoid numerical issues. For
particle-based Lagrangian approaches, the sizes of particles are adap-
tively adjusted [313]. For hybrid approaches that inherit the traits of
both Eulerian and Lagrangian methods, one can improve the efficiency
by limiting the regions where particles are used [250] or combining oc-
trees with an adjustable number of particles based on regional charac-
teristics [210].

refined

(a) Surface-based refinement

refined
not refined

(b) Our boundary refinement
scheme

refined

(c) Ours + surface-based

Figure 3.1: Contrary to the previous surface-based refinement method of
Winchenbach et al. [313] (a), our method (b) refines fluid particles
near boundaries of objects to allow the fine-scale fluid-boundary cou-
pling to enhance boundary coupling details. Our method can also be
combined with the surface-based method to refine near the bound-
ary and the surface (c).

76

3.1 introduction

For adaptive SPH, Adams et al. [3] resampled particles with differ-
ent radii based on the size of local geometric features. Solenthaler and
Gross [266] introduced a two-scale mechanism that coupled a low-
resolution simulation with a high-resolution one, and particles were
directly inserted or deleted at the boundary between the two resolu-
tions, which broke the mass-preserving condition. Horvath and Solen-
thaler [128] extended the previous work [266] to support multiple levels
of resolution and conserve mass. Orthmann and Kolb [220] increased
the spatial resolution by splitting particles using a 1 : 2 pattern and
applied a temporal blending technique to achieve a smooth particle
splitting process by maintaining continuous physical fields. Vacondio et
al. [294] used the variational principle to search for an optimized split-
ting pattern that minimized density error. They also introduced a coa-
lescing scheme to realize the dynamic reduction of resolution.Winchen-
bach et al. [313] achieved adaptivity in incompressible SPH by intro-
ducing a new split-merge mechanism that produced an approximately
continuous resolution based on the distance from the free surface of the
fluid. Winchenbach and Kolb [314] later proposed a method to optimize
the density error from the splitting process into an arbitrary number of
particles by optimizing the position and mass of the split particles to
increase the stability of the previous method [313].
Nowadays, research on spatial adaptivity for Lagrangian fluid sim-

ulation mainly targets surface-based optimization, aiming at refining
surface details like splashes, waves, and thin films to enrich visual ef-
fects. Horvath and Solenthaler [128] use a higher resolution for particles
within a certain distance to the free surface of the fluid; Winchenbach et
al. [313] make the desired size of particles increase smoothly with the
distance to the surface.
However, the surface-based strategy has the disadvantage of an in-

flexible intervention mechanism, which causes low computational effi-
ciency and the failure to enhance specific dynamic areas. On the wide
fluid surface, the area with the most high-frequency details is often the
part where the fluid is coupled with other objects, such as a boat sail-
ing across the water surface, arousing the waves around and behind
the body. Meanwhile, the boat’s rotating propeller below the surface
can constantly transmit kinetic energy into the water, further produc-
ing splashes to the surface. When such a scenario is simulated using a
coarse discretization with surface-based refinement, the vast and calm
surface brings a large computational burden, causing computational
resources to be wasted in these unimportant areas. Also, the energy
dissipation from the propeller area cannot be restrained effectively. Al-
though the boundary handling for adaptive SPH has been well-studied
as discussed in Section 2.3.1.2, more attention needs to be paid to de-
signing the adaptive mechanism dedicated to the fluid-solid boundary.
So in our work, we present a spatial adaptivity method with a bound-

77

spatial adaptivity with boundary refinement for sph fluid simulation

ary refinement mechanism for SPH fluid simulation to capture detailed
interaction effects.
To conduct spatial adaptivity with more flexibility and efficiency, we

propose a novel adaptivity method with boundary refinement for SPH
fluid simulation, where particle resolution increases as the distance to
the object boundary of interest decreases (see Figure 3.1). The sizes of
the particles are adjusted towards the desired resolution via splitting
and merging. Moreover, a wake flow preservation mechanism is intro-
duced to retain the refined resolution for a specific period after a par-
ticle flows through the boundary object to prevent loss of flow details.
Our results show that our method can enrich fluid details more eco-
nomically and produce more accurate visual effects in contrast to the
surface-based strategy.

3.2 preliminaries

3.2.1 Theory of SPH

SPH is a Lagrangian discretization method that converts continuous
space into a series of discrete particles. This approach is deeply rooted in
the classical physics concept of a fluid parcel, the smallest unit of fluid
indistinguishable in the Navier-Stokes equations, as discussed in Sec-
tions 2.1.1 and 2.1.2. When the discretization of these Lagrangian parti-
cles matches the scale of fluid parcels, the physical behavior described
by the Navier-Stokes model (Equation (2.6)) is closely approximated.
The actual size of each fluid parcel is in the same way that the Dirac

function 𝛿 (𝑥) has a finite integral but an infinitely small support, a fluid
parcel has an infinitely small volume but describes a finite mass of the
fluid. This function 𝛿 (𝑥) can be expressed as

𝛿 (𝑥) =
{
+∞ if 𝑥 = 0

0 if 𝑥 ≠ 0
. (3.1)

This function is normalized such that
∫ ∞
−∞ 𝛿 (𝑥)𝑑𝑥 = 1, embodying the

ideal, infinitely narrow spike at zero with total integral one over all
space.
Mass for an object in space is usually calculated by integrating the

density over the occupied domain Ω, as 𝑚 =
∫
Ω
𝜌 (x)𝑑x, with x ∈ R3.

However, for a fluid parcel, represented as a point with infinitely small
volume, its mass cannot be directly integrated in this manner. Utilizing
the Dirac delta function, which can be seen as an extreme case of a
Gaussian distribution with 𝜎2 → 0, with the property of

𝐴(x) =
∫
Ω
𝐴(x′)𝛿 (x − x′)𝑑x′, (3.2)

78

3.2 preliminaries

we can define the density at a point x in 3-dimensional space as

𝜌 (x) =
∫
Ω
𝜌 (x′)𝛿 (x − x′)𝑑x′ . (3.3)

To render the aforementioned continuous expressions computa-
tionally feasible, SPH approximates the Dirac delta function using a
smoothing kernel 𝑊 which meets the requirements discussed in Sec-
tion 2.1.3.2. This kernel, which extends over a finite non-zero region,
effectively transforms Equation (3.2) into a solvable form as presented
in Equation (2.7).

3.2.2 SPH Approximation

In addition to approximating values at specific positions for a physical
field, the ability to compute higher-order derivatives such as gradient,
divergence, curl, and Laplacian is also crucial in the study of fluid dy-
namics. SPH is well-equipped to handle these computations as well.

First order derivatives. For computing first order derivatives of a
physical field𝐴, the computation directly involves the smoothing kernel
𝑊 as described in Equation (2.7)

∇𝐴𝑖 =
∑︁
𝑗

𝑉𝑗𝐴 𝑗∇𝑊𝑖 𝑗 ,

∇ ×𝐴𝑖 =
∑︁
𝑗

𝑉𝑗𝐴 𝑗∇ ×𝑊𝑖 𝑗 ,

∇ · 𝐴𝑖 =
∑︁
𝑗

𝑉𝑗𝐴 𝑗∇ ·𝑊𝑖 𝑗 ,

(3.4)

where 𝐴𝑖 is a shorthand notation for 𝐴(x𝑖), and𝑊𝑖 𝑗 denotes𝑊 (∥x𝑖 −
x𝑗 ∥, ℎ). However, the accuracy of SPH’s basic form is highly depen-
dent on the sampling density of particles and their distribution [166].
To maintain zero-order accuracy, a spatially constant field 𝑐1 (x) with a
value of 1 everywhere can be utilized. This field satisfies ∇𝑐1 = c0, with
each entry equaling zero. Using Equation (3.4), we have

∇𝑐1 =
∑︁
𝑗

𝑉𝑗∇𝑊𝑖 𝑗 = 0, (3.5)

79

spatial adaptivity with boundary refinement for sph fluid simulation

which may not hold true if neighboring particles are insufficient or if
they are irregularly distributed. To correct this, we subtract ∇𝑐1 from
Equation (3.4) as

∇𝐴𝑖 −𝐴𝑖∇𝑐1 =
∑︁
𝑗

𝑉𝑗 (𝐴 𝑗 −𝐴𝑖)∇𝑊𝑖 𝑗 ,

∇ ×𝐴𝑖 −𝐴𝑖∇𝑐1 =
∑︁
𝑗

𝑉𝑗 (𝐴 𝑗 −𝐴𝑖)∇ ×𝑊𝑖 𝑗 ,

∇ · 𝐴𝑖 −𝐴𝑖∇𝑐1 =
∑︁
𝑗

𝑉𝑗 (𝐴 𝑗 −𝐴𝑖)∇ ·𝑊𝑖 𝑗 .

(3.6)

This formulation is referred to as the differential form of derivative com-
putation. Another desired attribute for certain scenarios is the conser-
vation of values, which implies that for a pair of particles 𝑖 and 𝑗 , values
computed from SPH should be symmetrically opposite. This is particu-
larly useful when considering the conservation of momentum, focusing
solely on the differences in particle masses. To achieve this, derivatives
are computed using the symmetric form as

∇𝐴𝑖 = 𝜌𝑖

[
𝐴𝑖

𝜌2
𝑖

∇𝜌𝑖 + ∇
𝐴𝑖

𝜌𝑖

]
= 𝜌𝑖

∑︁
𝑗

𝜌 𝑗𝑉𝑗

(
𝐴𝑖

𝜌2
𝑖

+
𝐴 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗 , (3.7)

where 𝜌𝑖 denotes 𝜌 (x𝑖). This approach is known as the symmetric form.
For a detailed derivation, we refer to the survey by Price [232].

Laplacian. The calculation of the Laplacian in SPH using a direct
second-order difference approach on the smoothing kernel typically re-
sults in poor accuracy. To overcome this, an alternative method that ap-
proximates the Laplacian using first-order differences is often employed,
which is detailed in the work of Koschier et al. [166]. It has the form

∇2𝐴𝑖 = 2(𝑑 + 2)
∑︁
𝑗

𝑉𝑗
(𝐴𝑖 −𝐴 𝑗) · (x𝑖 − x𝑗)����x𝑖 − x𝑗

���� + 0.01ℎ2
∇𝑊𝑖 𝑗 , (3.8)

where 𝑑 represents the dimension of the simulation. The regularization
term 0.01ℎ2 is incorporated to prevent division by zero. This formula-
tion is particularly tailored for applications involving divergence-free
velocity fields.

Smoothing kernel. The choice of the smoothing kernel in SPH is
critical and varies depending on specific requirements. A commonly
used kernel is the cubic spline kernel, defined as

𝑊 (∥r∥, ℎ) = 𝜎𝑑

ℎ𝑑
𝑃

(
∥r∥
ℎ

)
, (3.9)

where 𝜎𝑑 is a dimensional normalizing factor that varies with the di-
mension 𝑑 of the simulation. The values of 𝜎𝑑 are defined as follows:

80

3.2 preliminaries

𝜎1 =
4
3 , 𝜎2 =

40
7𝜋 , and 𝜎3 =

8
𝜋
. These coefficients ensure that the kernel’s

integral over space equals 1, thereby maintaining consistency in differ-
ent dimensions [203]. 𝑃 represents a symmetric decaying spline with
finite support, given by

𝑃 (𝑞) =

6(𝑞3 − 𝑞2) + 1 for 0 ≤ 𝑞 ≤ 1

2

2(1 − 𝑞)3 for 1
2 < 𝑞 ≤ 1

0 otherwise

. (3.10)

This kernel is used by default throughout this thesis unless specified
otherwise.

3.2.3 Explicit Form of Solving Navier-Stokes Equations with SPH

To compute the acceleration of all discretized SPH particles, the Navier-
Stokes model (Equation (2.6)) is solved using the SPH discretization
scheme, as detailed in Equations (2.7), (3.4), (3.6), (3.7), and (3.8). Solving
these equations explicitly involves calculating each physical quantity
present in the equations, except for known constants and the accelera-
tion that needs to be computed. Here, we outline a basic fluid simulation
algorithm by going through the derivation of all relevant physical quan-
tities.

Density. By setting 𝐴 = 𝜌 in Equation (2.7), and noting that 𝜌 𝑗𝑉𝑗 =
𝑚 𝑗 (the mass of particle 𝑗), density 𝜌𝑖 at the location of particle 𝑖 can be
expressed as

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗𝑊𝑖 𝑗 . (3.11)

This computation provides a discretized approach to estimating fluid
density using the SPH kernel.

Pressure force. Computing the pressure force is a critical aspect
of solving the Navier-Stokes equations. For an explicit calculation, a
pressure field 𝑝 must be determined at each time step. Becker and
Teschner [26] suggest calculating the pressure field based on the local
density compression, as described by

𝑝𝑖 = 𝐵

((
𝜌𝑖

𝜌0

)𝜅
− 1

)
, (3.12)

where 𝐵 = 𝜌0𝑐
2
𝑠 /𝜅. Here, 𝜌0 is the rest density, representing the density

of the fluid in an uncompressed state. 𝑐𝑠 is the speed of sound within the
fluid, typically set to 100m/s. The stiffness parameter 𝜅 is set to 𝜅 = 7
for weakly compressible fluids to allow the simulation of fluids with
varying compressibility characteristics.

81

spatial adaptivity with boundary refinement for sph fluid simulation

From Equation (2.6), the relationship between the pressure force F𝑝
𝑖

and the pressure field for particle 𝑖 is given by F𝑝
𝑖
= 𝑉𝑖∇𝑝𝑖 . To ensure

adherence to Newton’s third law of motion, the symmetric form of the
SPH approximation (Equation (3.7)) is used to compute this force as

F𝑝
𝑖
= 𝑉𝑖∇𝑝𝑖 = 𝑉𝑖𝜌𝑖

∑︁
𝑗

𝜌 𝑗𝑉𝑗

(
𝑝𝑖

𝜌2
𝑖

+
𝑝 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗

=
∑︁
𝑗

𝑚𝑖𝑚 𝑗

(
𝑝𝑖

𝜌2
𝑖

+
𝑝 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗 .

(3.13)

This method ensures that the pressure forces are symmetrical between
interacting particles, thus conserving momentum in accordance with
physical laws.

Viscosity. Viscosity in fluid dynamics models the internal friction
resulting from the differential movement between layers of the fluid. As
indicated by the Navier-Stokes model (Equation (2.6)), the calculation
of viscous forces necessitates computing the Laplacian of the velocity
field. Utilizing the adapted form of the Laplacian in SPH as given in
Equation (3.8), the viscous force Fvis

𝑖 exerted on particle 𝑖 is formulated
as

Fvis
𝑖 = 𝑉𝑖𝜇∇2u𝑖 = 2(𝑑 + 2)𝑉𝑖𝜇

∑︁
𝑗

𝑉𝑗
(u𝑖 − u𝑗) · (x𝑖 − x𝑗)����x𝑖 − x𝑗

���� + 0.01ℎ2
∇𝑊𝑖 𝑗 . (3.14)

3.3 split-merge-redistribute mechanism

Winchenbach et al. [313] achieved SPH adaptivity by employing meth-
ods of splitting, merging, and redistributing particle mass, while strictly
conserving the total mass of the fluid, as illustrated in Figure 3.2. In this
method, the desired size for each particle is computed using a sizing
function based on the distance to the fluid’s free surface:

𝑚
opt
𝑖

=𝑚base

(
min(|𝜙 𝑓

𝑖
|, |𝜙max |)

|𝜙max |
(1 − 𝛼) + 𝛼

)
, (3.15)

where𝑚opt is the optimal mass that is the desired mass for the particle;
𝛼 is the adaptivity ratio that denotes the largest mass ratio allowed be-
tween particles;𝑚base is the largest allowed particle mass; 𝜙 𝑓

𝑖
is the dis-

tance to the fluid’s free surface similar to Horvath and Solenthaler [128]
(negative inside the fluid);𝜙max is the max distance to the surface within
which particles are refined. Equation (3.15) ensures that the optimal
mass decreases linearly (and thus also smoothly) as the distance to the
free surface decreases.

82

3.3 split-merge-redistribute mechanism

(a) Splitting

(b) Merging

(c) Redistribution

Figure 3.2: Schematic diagram of particle splitting, merging, and redistribution.
In (a), a particle classified as 𝐿 (blue particle on the left side) un-
dergoes the splitting process, dividing into several smaller particles
(small blue particles on the right side), each with a mass close to the
optimal mass𝑚opt. In (b), a particle of class 𝑆 (purple particle on the
left side) is merged into surrounding particles of class 𝑆 or 𝑠 (blue
particles on the left side), making their masses closer to𝑚opt (violet
particles on the right). In (c), a particle classified as 𝑙 (the particle
with blue and purple colors) redistributes the excess mass (purple
part) to the neighboring 𝑠 particles (blue ones on the left turning
into purple ones on the right).

In our study, we adjust particle mass towards the optimal mass,𝑚opt,
through three distinct operations: splitting, merging, and redistribu-
tion. This methodology employs the classification scheme introduced
by Winchenbach et al. [313], which categorizes particles based on the
relative mass ratio,𝑚rel

𝑖 =
𝑚𝑖

𝑚
opt
𝑖

. The particle categories are organized as
follows:

• 𝑆 :𝑚rel
𝑖 < 0.5, indicating particles are too small.

• 𝑠: 0.5 ≤ 𝑚rel
𝑖 ≤ 0.9, indicating particles are slightly small.

• 𝑜 : 0.9 < 𝑚rel
𝑖 < 1.1, indicating particles are optimally sized.

• 𝑙 : 1.1 ≤ 𝑚rel
𝑖 ≤ 2, indicating particles are slightly large.

• 𝐿:𝑚rel
𝑖 > 2, indicating particles are too large.

Each category corresponds to specific operational interventions:

83

spatial adaptivity with boundary refinement for sph fluid simulation

• Splitting: Applied to particles in category 𝐿, where each large
particle is divided into multiple smaller particles.

• Merging: Applied to particles in category 𝑆 , where each small
particle is combined with adjacent particles to increase its mass.

• Redistribution: Applied primarily to particles in categories 𝑠
and 𝑙 . Particles in 𝑙 redistribute excess mass to adjacent 𝑠 particles,
while those in 𝑠 may gain mass from or merge with neighboring
particles to reach an optimal size.

Particles of class 𝐿 are split into 𝑛 children particles where 𝑛 =

⌈𝑚𝑖/𝑚opt
𝑖
⌉. The mass and positions of children particles are determined

using precomputed split patterns. They are further optimized online
by solving a minimization problem on density error to reduce the er-
ror induced by splitting [314]. The other physical attributes of children
particles are inherited from their parents. Particles of class 𝑆 undergo
merging, distributing all of their mass to nearby 𝑠 or 𝑆 particles, while
particles of class 𝑙 redistribute their excess mass𝑚𝑖 −𝑚opt

𝑖
to nearby 𝑠

particles. The distance between the mass-distributing particle 𝑖 and the
mass-receiving particle 𝑗 must be within ℎ𝑖/2. The mass to distribute
𝑚ex =𝑚𝑖 −𝑚opt

𝑖
is equally divided among the mass-receiving particles,

while the other physical attributes are weight-averaged between parti-
cles 𝑖 and 𝑗 as in Equation (2.11).

Techniques increasing stability. Evenwith optimized splitting pat-
terns and online optimization, splitting and merging can still introduce
some density errors [314]. Temporal blending [313] and local viscos-
ity [314] can increase the stability of particle splitting and merging.
Temporal blending is applied to particles that recently participated in

splitting, merging, or mass redistribution. The original particle 𝑜 before
splitting or redistributing mass is stored. Then, 𝑜 is used to modify the
density and velocity of its children or particles that received mass from
it. The blended density is computed as

𝜌blended
𝑖 = (1 − 𝛽)𝜌𝑖 + 𝛽𝜌𝑜 , (3.16)

where 𝜌𝑜 is the density of the original particle, computed using
Equation (3.11), but ignoring the density contribution from its children.
𝛽 is a temporal blending factor that is heuristically initialized to 0.5 for
particles generated in splitting and 0.2 for particles involved in redistri-
bution or merging. Then, 𝛽 is decreased by 0.1 every time step until it
reaches 0. 𝜌blended

𝑖 is used instead of 𝜌𝑖 in further computations. The
configuration for 𝛽 follows the method outlined by Winchenbach et
al. [313]. The velocity of the original particle v𝑜 is set to the average
velocity of all its children particles and is used to update the original
particle’s position x𝑜 . The blended velocity vblended

𝑖 = (1 − 𝛽)v𝑖 + 𝛽v𝑜 is
used instead of v𝑖 to update the particle’s position x𝑖 .

84

3.4 semi-analytic boundary handling

In the local viscosity technique, the viscosity coefficient 𝜇 in
Equation (3.14) is multiplied with a factor 1 + 0.5(𝛽𝑖 + 𝛽 𝑗)/2 to increase
the viscosity of newly split, merged or redistributed particles locally,
thus increasing stability.

3.4 semi-analytic boundary handling

A suitable boundary handling method for adaptive SPH is proposed in
Winchenbach et al. [311]. This method treats all solid boundaries as lo-
cally planar through a locally planar approximation. Consequently, the
solid contribution 𝜆𝑖 for a fluid particle 𝑖 concerning value 𝐴𝑖 , derived
from Equation (2.7), is given by

𝐴𝑖 =
∑︁
𝑗

𝐴 𝑗𝑉𝑗𝑊𝑖 𝑗 +𝐴𝑏𝜆𝑖 , (3.17)

where 𝐴𝑏 represents the value of 𝐴 within the solid boundary, and 𝜆𝑖 is
the weight contributed by the solid.
Given that the boundary is treated as locally planar and𝑊 is isotropic,

𝜆 for particle 𝑖 can be analytically derived based on the distance 𝑑 from
the particle position x𝑖 to the approximated boundary plane. Assuming
the cubic spline kernel for𝑊 , with support radius ℎ𝑖 for particle 𝑖 , the
contribution can be expressed as

𝜆′ (𝑑) =

1
30 [81𝑞6 − 144𝑞5 + 80𝑞3 − 42𝑞 + 15] 0 ≤ 𝑞 ≤ 0.5

− 8
15 [2𝑞

6 − 9𝑞5 + 15𝑞4 − 10𝑞3 + 3𝑞 − 1] 0.5 < 𝑞 ≤ 1

1 − 𝜆′ (−𝑞) −1 ≤ 𝑞 < 0

,

(3.18)

where 𝑞 = 𝑑/ℎ𝑖 . For a detailed derivation, see the appendix in Winchen-
bach et al. [311]. An additional penalty term 𝛽 (𝑑) = 1− 𝑑

ℎ𝑖
is introduced

to penalize solid penetration. This term is directly applied to 𝜆′ (𝑑) to
obtain the corrected value 𝜆(𝑑) = 𝛽 (𝑑)𝜆′ (𝑑).
The distance 𝑑 is determined using a signed distance field (SDF) sdf𝑏 ,

based on the boundary domain 𝜕Ω𝑠 (see Figure 2.12). For any position
x, the value of sdf𝑏 is defined as

sdf𝑏 (x) = 𝑠 (x) inf
x∗∈𝜕Ω𝑠

∥x − x∗∥, 𝑠 (x) =

−1, 𝑥 ∈ Ω𝑠
1, else

. (3.19)

For practical methods to find the appropriate x∗, refer to the work of
Winchenbach et al. [311].

The density equation (3.11) is thenmodified to consider the boundary
as

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗𝑊𝑖 𝑗 +
∑︁
𝑏

𝜌0𝜆
𝑏
𝑖 , (3.20)

85

spatial adaptivity with boundary refinement for sph fluid simulation

Algorithm 3.1: Boundary refinement for SPH. New steps in our
method are marked blue.
SPH Computation

Establish neighbor list
Compute and blend density
Calculate advection forces
Compute fluid pressure
Apply boundary pressure and friction
Update and blend velocity
Update position

Adaptive Mechanism
Compute 𝜙𝑏 from boundary SDF (Equation (3.23))
Wake flow preservation (Algorithm 3.2)
Surface-based adaptivity [313]
Calculate optimal mass (Equation (3.24))
Splitting, merging, and redistribution

where 𝑏 denotes the boundary object(s), and 𝜆𝑏𝑖 denotes 𝜆(sdf𝑏 (x𝑖)).
The pressure at the boundary can bemirrored [7] or extrapolated [23]

from the pressure of nearby fluid particles. In the case of pressure mir-
roring, the pressure force from the boundary is

F𝑝
𝑖←𝑏 = −𝑚𝑖𝜌0

𝑝𝑖

𝜌2
𝑖

∇𝜆𝑏𝑖 . (3.21)

The friction between the fluid and solid follows the Coulomb model,
which is proportional to the boundary’s pressure force on the particle
as

Ffric
𝑖←𝑏 = 𝜇 | |F𝑝

𝑖←𝑏 | |t𝑖𝑏, (3.22)

where t𝑖𝑏 is a unit vector pointing to the direction of relative tangential
velocity between fluid and boundary.

The total force from the boundary objects to a particle is Fbound
𝑖 =∑

𝑏 (F
𝑝

𝑖←𝑏 + Ffric
𝑖←𝑏).

3.5 adaptive boundary coupling

3.5.1 Adaptive Boundary Mechanism

The region near the boundary is often of interest in fluid-boundary cou-
pling. Therefore, it is desirable to use the refined particles near the im-
portant boundary objects to emphasize the details of boundary coupling.
However, refining the entire surface can cause an unnecessary increase
in particle number. Previous work [313] refines particles only near the
free surface of the fluid, which cannot cover the entire boundary region

86

3.5 adaptive boundary coupling

Algorithm 3.2: Wake flow preservation.
for each particle 𝑖

for each solid object of interest 𝑏∗:
if sdf𝑏

∗ (x𝑖) ≤ ℎ𝑖 :
set duration 𝜏𝑖,𝑡 = max(𝜏max

𝑏∗ , 𝜏𝑖,𝑡)
decrement duration 𝜏𝑖,𝑡+1 = 𝜏𝑖,𝑡 − Δ𝑡
if 𝜏𝑖 > 0:

𝜙𝑏𝑖,𝑡 = max(𝜙𝑏𝑖,𝑡 , 𝜙𝑏𝑖,𝑡−1)

and can cause detail loss in boundary coupling. Moreover, in some cases,
only the region near the boundary is of interest, such as a ship sailing
on a vast water surface.
Given the above problems, we propose a boundary refinement

method to refine particles near specific boundary objects. The method
can either be used alone to refine only near the boundary or combined
with surface-based refinement schemes [313] to refine both the surface
and the boundary regions. It is outlined in Algorithm 3.1.
To achieve particle refinement near boundary objects, we modify the

sizing function of Equation (3.15) to consider the distance to boundary
objects. Instead of optimizing particle mass according to the distance to
the free surface 𝜙 𝑓 , we use the distance to boundary objects to define a
value 𝜙𝑏 to adjust the particle size:

𝜙𝑏𝑖 = min
(
max
𝑏∗

(
−sdf𝑏

∗ (x𝑖) + 𝜙fine
𝑏∗

)
, 0

)
, (3.23)

where 𝑏∗ denotes the solid objects of interest near which the fluid parti-
cles should be refined. 𝜙fine

𝑏∗ is a user-controlled parameter: all particles
with distance to 𝑏∗ smaller than 𝜙fine

𝑏∗ are refined to the smallest scale.
We use 𝜙fine

𝑏∗ = ℎ𝑖 unless explicitly mentioned otherwise.
To only refine the region near the boundary, we replace 𝜙 𝑓

𝑖
with 𝜙𝑏𝑖

in Equation (3.15), namely

𝑚
𝑜𝑝𝑡

𝑖
=𝑚base

(
min(|𝜙𝑏𝑖 |, |𝜙max |)

|𝜙max |
(1 − 𝛼) + 𝛼

)
, (3.24)

and to refine both near the boundary region and the fluid surface, we
substitute 𝜙 𝑓

𝑖
in Equation (3.15) with 𝜙𝑖 = max(𝜙𝑏𝑖 , 𝜙

𝑓

𝑖
).

3.5.2 Wake Flow Preservation by Delaying Merge

For scenarios where the fluid flows past the boundary object or the
boundary object moves through the fluid, interesting wake flow effects
are generated behind the boundary object, such as the wave behind a

87

spatial adaptivity with boundary refinement for sph fluid simulation

ship moving through water. However, when using 𝜙𝑏𝑖 to determine par-
ticle size, the wake flow loses detail because the optimal mass quickly
returns to the largest value as the boundary object moves away from
the particle. Consequently, the particles in the wake flow merge into
larger particles, reducing the detail level.
To preserve wake flow detail, we inhibit the particle merging process

if the particle was recently in the vicinity of the boundary, as Algorithm
3.2 shows. For each solid object of interest 𝑏∗, the user can set a dura-
tion to delay merging 𝜏max

𝑏∗ for particles that have flowed around it, and
each particle tracks its remaining duration to delay merging at every
time step 𝑡 , denoted as 𝜏𝑖,𝑡 . For each particle 𝑖 and each solid object of
interest 𝑏∗, if the particle at position x𝑖 satisfies sdf𝑏

∗ (x𝑖) ≤ ℎ𝑖 , we set
its remaining duration 𝜏𝑖,𝑡 = max(𝜏max

𝑏∗ , 𝜏𝑖,𝑡). This duration decreases at
each time step by the time step length Δ𝑡 as 𝜏𝑖,𝑡+1 = 𝜏𝑖,𝑡 −Δ𝑡 . As long as
the particle satisfies 𝜏𝑖,𝑡 > 0, 𝜙𝑏𝑖 is not allowed to decrease: if the newly
computed value 𝜙𝑏𝑖,𝑡 for the time step 𝑡 is lower than the previous value
𝜙𝑏𝑖,𝑡−1, we set it to 𝜙

𝑏
𝑖,𝑡 = 𝜙𝑏𝑖,𝑡−1. To retain the smoothness of the 𝜙𝑏 field,

the 𝜙𝑏𝑖 values for 𝜏𝑖,𝑡 > 0 are then propagated to surrounding particles
using the method from Horvath and Solenthaler [128]. This approach
effectively delays particle merging in the wake flow by 𝜏max

𝑏∗ .

3.6 results

To test the effectiveness and capabilities of our method, in this section,
we use multiple scenarios to compare the proposed approach with sim-
ulations of uniform particle scale and the surface-based state-of-the-art
SPH adaptive scheme [313], which adapts resolution near the free sur-
face.

We useWCSPH [26] for fluid simulation and the semi-analytic bound-
ary handling method [311] for boundary coupling. The time step length
is determined using the CFL condition with a scaling parameter of 0.5.
Surface reconstruction and rendering are conducted using Houdini and
Mantra with Intel Xeon Gold 5218. All simulations are coded using the
Taichi programming language [130] and run on an NVIDIA Tesla V100
GPU.

3.6.1 Efficiency Comparison

Efficiency is a crucial aspect of adaptive simulation mechanisms. We
show that our method can produce a similarly detailed result using
fewer particles than the surface-based adaptive mechanism [313] and
is more vivid than a low-resolution simulation.

Boat-sailing. In this scenario, a boat sails quickly across a calm fluid
surface, stirring up waves and splashes around and behind the body.

88

3.6 results

(a) Low-resolution. (b) High-resolution.

(c) Surface-based [313]. (d) Ours, 𝜏max
boat = 0. (e) Ours, 𝜏max

boat = 1.

Figure 3.3: Surface reconstruction result of the boat-sailing experiment: (a) and
(b) are uniform scale simulations with 𝑟 = 0.2 and 𝑟 = 0.063; (c), (d)
and (e) are adaptive simulations using max particle size 𝑟base = 0.2
and adaptive ratio 𝛼 = 1/32. Our method in (d) and (e) effectively
reduces the average particle count over time (shown in Figure 3.5)
when compared to the surface-based method used in (c).

For the adaptive methods, we use the max particle size 𝑟base = 0.2
and an adaptive ratio 𝛼 = 1/32 and choose 𝜙fine

𝑏∗ = 0 in our method.
For uniform size simulations, we perform a low-resolution and a high-
resolution simulation using 𝑟 = 0.2 and 𝑟 = 0.063, where the particle
size respectively equals the largest and smallest particle size in adap-
tive simulation. The particles are color-coded according to velocity in
Figure 3.4.
Figure 3.3 and Figure 3.4 show the experimental results renderedwith

reconstructed fluid surface and particles, respectively. Considering the
splashes around the ship, the visual level of detail is similar between the
previous surface-based method [313] (Figure 3.3c) and our method with
or without wake flow preservation (Figure 3.3e, 3.3d). The three adap-
tive results are all much more detailed than the uniform low-resolution
simulation (Figure 3.3a), though they may lack some detail compared
to high-resolution (Figure 3.3b). For the wake flow effect, the result
of our method without wake flow preservation (Figure 3.3d) is rela-

89

spatial adaptivity with boundary refinement for sph fluid simulation

(a) Low-resolution (𝑟 = 0.2m).

(b) High-resolution (𝑟 = 0.063m).

(c) Surface-based [313].

(d) Ours, 𝜏max
boat = 0.

(e) Ours, 𝜏max
boat = 1.

Velocity
[𝑚/𝑠]

0 20
Figure 3.4: Boat-sailing experiment. Adaptive methods use 𝑟base = 0.2 and

𝛼 = 1/32.

tively coarse, but when wake flow preservation is added to our method
(Figure 3.3e), the visual detail level is comparable to the surface-based
method (Figure 3.3c).

To evaluate the efficiency of the proposed method, the particle count
and time consumption using different methods are plotted in Figure 3.5.
The solid lines show the particle count, and the dashed lines show the

90

3.6 results

ours,𝜏max
boat = 0

ours,𝜏max
boat = 1

surface-based

low-resolution

high-resolution

Figure 3.5: Particle count and time consumption in boat-sailing experiment.
Solid lines denote particle count; dashed lines denote time consump-
tion. One frame equals 1/24s.

time consumption. We see that the uniform low-resolution simulation
uses the least particles, while our adaptive method with 𝜏max

boat = 0 in-
creases the particle count slightly. Further, our method with 𝜏max

boat = 1
begins with a low particle count, which increases since frame 65 when
the boat starts moving and producing wake flow, and decreases back to
a low value after frame 107 when the boat leaves the simulated zone be-
cause the duration to delay merging for the wake flow has expired. Un-
der both conditions, our method significantly reduces the average par-
ticle count over time compared to the surface-based method [313] and
the high-resolution simulation. The time consumption curves follow a
similar trend. This experiment shows that our method can reduce the
time cost compared to the state-of-the-art surface-based adaptive mech-
anism [313] with no or negligible negative influence on visual quality.

3.6.2 Evaluation of Complex Coupling Effects

Cylindermoving. Figure 3.6 shows an experiment where a cylinder
is moved horizontally through a water tank in a straight line to gener-
ate a wave pattern. The particles are colored according to whether their
initial positions are on one side of the moving path of the cylinder. A
jagged pattern can be seen from the vertical view (first column), and
curved patterns can be seen from the side view of a cross-section (sec-
ond column). Figure 3.6a shows the result of a uniformly scaled high-
resolution simulation performed using the smallest allowed particle size
in the two adaptive simulations, 𝑟 = 0.063, which should be the most
accurate among the three simulations. Figure 3.6c uses our boundary re-
finement method where particles are adaptively refined near the cylin-
der. We use 𝜏max

cylinder = 21, which is longer than the simulation dura-
tion, to prevent wake flow merging for the entire simulation to achieve
a high level of detail. Figure 3.6b uses surface-based refinement [313].

91

spatial adaptivity with boundary refinement for sph fluid simulation

(a) High-resolution (𝑟 = 0.063m).

(b) Surface-based [313].

(c) Ours, 𝜏max
cylinder = 21.

Figure 3.6: Cylindermoving experiment, where the cylindermoves horizontally
in the tank. The first column is the vertical view; the second column
is a cross-section of the side view. Our method better reproduces the
jagged (vertical view) and curved (side view) wave patterns in the
high-resolution simulation. Adaptive methods use max particle size
𝑟base = 0.2 and 𝛼 = 1/32.

ours,𝜏max
cylinder=21

surface-based
low-resolution
high-resolution

Figure 3.7: Particle count in cylinder moving experiment. Solid lines denote par-
ticle count. One frame equals 1/24s.

92

3.6 results

(a) High-resolution (𝑟 = 0.063m). (b) Only surface-based.

(c) Ours + surface-based.

Figure 3.8: A cross-section of the propeller spinning experiment where color
denotes velocity. Adaptive methods use 𝑟base = 0.1, 𝛼 = 1/32,
𝜏max

propeller = 0. In the zoomed-in areas, our method (b) generates a
more detailed vortex compared to (c), closer to the high-resolution
result (a).

The two adaptive simulations use 𝑟base = 0.2 and 𝛼 = 1/32. Compared
to the surface-based method, our method is more similar to the high-
resolution simulation in terms of the size and number of jags from the
vertical view and the shape of the curved pattern in the cross-section, in-
dicating our method can achieve a better accuracy compared to surface-
based method [313] under certain settings.
The particle count of the cylinder moving experiment is displayed

in Figure 3.7. Our method uses a larger number of particles compared
to the surface-based method [313] to achieve higher accuracy, but the
particle count is still considerably lower than the high-resolution simu-
lation.

Propeller spinning. In this experiment, a propeller is fully sub-
merged in the fluid and spins horizontally to generate turbulence. We

93

spatial adaptivity with boundary refinement for sph fluid simulation

use this scenario to demonstrate the ability of our method to be com-
bined with surface-based refinement [313].
Figure 3.8 shows the particle view of a cross-section of the propeller

spinning experiment. From Figure 3.8c, it can be seen that the parti-
cle size is refined both near the surface and around the propeller. Com-
pared with only using surface-based refinement as in Figure 3.8b, the
combined method can generate more details in a vortex, as shown in
the zoomed-in areas, and also has a more similar shape to the vortex
in a high-resolution simulation (Figure 3.8a). This experiment shows
that adding our method to the surface-based method [313] can enhance
dynamic details produced by boundary coupling.

3.7 discussion and conclusion

3.7.1 Summary

We proposed a new boundary refinement mechanism for adaptive SPH
to refine particles near the coupling boundary and retain resolution for
the flow generated by solid objects. Experiments show that, compared
to the surface-based only refinement mechanism, our method can im-
prove the computation efficiency significantly for enhancing fluid de-
tails when simulating fluid-solid coupling scenarios. Further, the pro-
posed method can produce more accurate visual results for underwater
coupling scenarios such as propeller spinning. Therefore, our method
can be widely applied to most fluid simulation scenarios to improve ef-
ficiency and visual quality since many fluid simulations focus on the
interaction between fluid and solid.
A limitation of our method is that when a solid particle leaves the re-

fined region due to splashing etc., it lacksmerge partners and remains in
the unrefined region, causing a slightly higher number of particles than
the ideal state. Also, the splitting and merging process of our method
may cause a potential violation of energy conservation and generate
visual artifacts such as unrealistic splashes.

In the future, we will explore a more stable and accurate particle
splitting-merging mechanism for adaptive SPH fluid simulation. The
critical issue is balancing the particles’ sizes close to each other and cre-
ating a progressive merging process to avoid a sudden change of local
density field.

3.7.2 Limitations

Visual effects. In the surface-based only SPH adaptive mechanism,
the sizes of the particles are always transformed smoothly in space ac-
cording to a continuous and stable distance. However, our boundary-
based adaptive method may encounter the difficulties of particle merg-

94

3.7 discussion and conclusion

refine
fluid

box

(a) Our method without wake
flow preservation (𝜏max

box = 0).

refine
fluid

box

wake flow

(b) Our method with wake
flow preservation (𝜏max

box = 1).

Figure 3.9: Moving box experiment. In this experiment, a box-shaped boundary
object moves close to the fluid surface but does not touch the fluid,
causing particle refinement near it but not disturbing it. The leftmost
column shows the experimental setup; the other columns show the
result. Color denotes particle size. Our method uses 𝑟base = 0.2 and
𝛼 = 32. The distance between the box and the fluid surface is 0.1.

ing. The divided small particles, as a part of the waves stirred up by the
solid boundary, may not have suitable 𝑠 or 𝑆 neighbor particles to be
merged when falling back to the fluid surface.
As shown in Figure 3.9, we make a solid box fly over the fluid surface

without substantive contact to demonstrate this issue. Only the sizes
of the fluid particle will be affected by the signed distance field from
the solid object. We carried out this experiment separately with and
without the wake flow preservation mechanism. The sizes of the parti-
cles are color-coded with smaller particles having brighter appearances.
Here we can see that our wake flow preservation mechanism delays the
merging process effectively.
However, we can also observe that when the solid object leaves the

fluid, some small particles are left unmerged on the surface. This is be-
cause our method only allows the merging procedure to take place be-
tween particles of class 𝑠 or 𝑆 . When small particles begin to merge,
there may be no 𝑠 or 𝑆 particles in the range of merging. On the other
hand, the surface-based adaptive mechanism naturally guarantees fluid
particles near each other obtain similar sizes as it only depends on parti-

95

spatial adaptivity with boundary refinement for sph fluid simulation

ours,𝜏max
boat=1

ours,𝜏max
boat=0

surface-based

high-resolution

low-resolution

(a) Boat-sailing experiment.

ours,𝜏max
boat=1

ours,𝜏max
boat=0

(b) Moving box experiment.

Figure 3.10: Statistical analysis of energy change (sum of total kinetic and grav-
itational potential energy) in the boat-sailing and moving box ex-
periments with a frame rate of 24 fps. The energy change in time
is expressed with the ratio of the current time’s energy to the first
frame’s.

cles’ distances to the fluid surface, so particles of suitable class are easier
to be found.

Energy conservation. The particle splitting and merging tech-
niques applied in our work may also introduce potential energy conser-
vation violations into the simulation. We measured the total energy (in-
cluding kinetic and gravitational potential energy) for the boat-sailing
experiment in Figure 3.4 and the moving box experiment in Figure 3.9
and drew the statistical diagram in Figure 3.10.
In Figure 3.10a, we can see that for the boat-sailing experiment, both

our method and the surface enhancement method [313] obtain energy
higher than both high-resolution and low-resolution simulation results.
This manifests in the random spatter of fluid particles during the simula-
tion, indicating the instability issue of the method. This issue is further

96

3.7 discussion and conclusion

demonstrated in Figure 3.10b, where, as the chart shows, the violation of
energy conservation happens during the merging process. The energy
cannot remain stable when the solid box starts to cause the fluid to split
and merge. Moreover, for the experiment applying wake flow preserva-
tion, the period of conserving energy performs worse. Although this in-
stability is relatively small (generally less than 1‰ energy fluctuation),
it can generate unexpected artifacts if the simulation scenario is not
carefully configured.

97

4IMPL I C I T LY STABLE M IXT URE MODEL FOR
DYNAM IC MULT I - F LU ID S IMULAT IONS

As pointed out in Section 2.5, particle-based simulations have become in-
creasingly popular for generating highly dynamic fluid effects. How-

ever, the swift and stable simulation of interactions among distinct fluids
continues to pose challenges for current mixture model techniques. When
using a single-mixture flow field to represent all fluid phases, numerical
discontinuities in phase fields can result in significant losses of dynamic
effects and unstable conservation of mass and momentum. To tackle these
issues, we present an advanced implicit mixture model for smoothed par-
ticle hydrodynamics. Instead of relying on an explicit mixture field for
all dynamic computations and phase transfers between particles, our ap-
proach calculates phase momentum sources from the mixture model to de-
rive explicit and continuous velocity phase fields.We then implicitly obtain
the mixture field using a phase-mixture momentum-mapping mechanism
that ensures the conservation of incompressibility, mass, and momentum.
In addition, we propose a mixture viscosity model and establish viscous
effects between the mixture and individual fluid phases to avoid instabil-
ity under extreme inertia conditions. Through a series of experiments, we
show that, compared to existing mixture models, our method effectively
improves dynamic effects while reducing critical instability factors. This
makes our approach especially well-suited for long-duration, efficiency-
oriented virtual reality scenarios1.

This chapter begins with an introduction to current methods of simu-
lating multiphase fluids using SPH, discussing their limitations and un-
resolved challenges in Section 4.1. We proceed by detailing the deriva-
tion of governing equations for multiphase fluid simulation through
a volume fraction scheme in Section 4.2, laying the groundwork for
our physical model. Before delving deeper into our proposed multi-
phase model, we present enhancements to the SPH simulation solver
for implicitly handling fluid interactions with high-density ratios in Sec-
tion 4.3. Our contributions to improving SPHmultiphase simulation are
proposed in Section 4.4. A series of experiments in Section 4.5 showcase
the efficacy of our method. The chapter concludes with a discussion on
the contributions made in this research area in Section 4.6.

1 Parts of this chapter were published in: Y. Xu, X. Wang, J. Wang, C. Song, T. Wang, Y.
Zhang, J. Chang, J. J. Zhang, J. Kosinka, A. C. Telea, and X. Ban. An Implicitly Stable
Mixture Model for Dynamic Multi-fluid Simulations. In SIGGRAPH Asia 2023 Conference
Paper. ACM, 2023. doi: 10.1145/3610548.3618215

99

https://doi.org/10.1145/3610548.3618215

implicitly stable mixture model for dynamic multi-fluid simulations

Figure 4.1: Tea diffuses from a teabag into a cup of water. After the teabag is
removed, the mixture is stirred with a (glass) rod.

4.1 introduction

Simulating multiphase flows [43] has gained interest in the graphics
community due to its ability to create distinct diffusion and stratifica-
tion effects, such as brewing tea bags (Figure 4.1) and crafting cocktails.
Simplified mixture models [196] have been widely adopted to produce
stunning visuals [155, 239] at lower computational cost. We discussed
related work in multiphase flows in Section 2.5. Here we refine that dis-
cussion with additional references which bring more insight into the
context of our work discussed in this chapter.
Mixture models deal with the coexistence of multiple phases within

a singular discretization unit. A distinctive drift velocity is leveraged
to illustrate the relative motion between the mixture and individual
phases. Thismovement stems from themultiphase governing equations,
which, in turn, find their roots in the single-phase Navier-Stokes equa-
tions. A significant challenge in this domain arises from the fact that
many fluid simulation techniques are tailored primarily for single-phase
fluids. Designing a suitable method that can integrate additional sub-
discretization unit dynamics computation is far from trivial.
A common workaround to this complexity has been the adoption of

the Local Equilibrium Assumption (LEA) [156, 238, 239]. While the LEA
simplifies simulations by forcing drift states back to non-drift states,
enabling compatibility with existing simulation models, it is not with-
out limitations. Such an approach can often introduce discontinuities

100

4.2 preliminaries

in phase velocities, compromising the transfer between phases during
time integration. Consequently, this diminishes the dynamism stem-
ming from multiphase interactions.
Alternatively, energy-based multiphase models have been ex-

plored [284, 334]. Although they can bypass the challenges of LEA and
drift velocity computations associated with phase-phase interactions,
these models often make concessions in numerical accuracy to align
with existing simulation structures.

Numerical instability is another challenge for multiphase flow simu-
lation. The standard SPH strategy [28] struggles to conserve mass and
momentum using the volume fraction scheme. Jiang et al. [155] aban-
doned LEA for improved dynamic performance but sacrificed mixture
incompressibility and mass conservation.
We propose an implicit mixture model to address dynamic and

stability issues in multiphase flow simulation. We construct inter-
phase momentum sources using no-slip and free-slip conditions among
phases, calculate the change rate of phase velocity fields, and conserve
divergence-free conditions for mixture flow and numerical consistency
for phase velocities. To avoid instability caused by excessive drift ve-
locities, we introduce a mixture viscosity model to smoothly limit drift
velocity while maintaining conservation. The main contributions of our
implicit mixture model are:

• A volumetric flux SPH solver that effectively alleviates numerical
instability and improves simulation efficiency for iterative PPE
solvers when dealing with interactions of high density ratio flu-
ids;

• An analytic form of interphase momentum sources describing
how the mixture flow affects the movement of individual fluid
phases;

• A phase-mixture momentum mapping mechanism that preserves
the incompressibility of the mixture and ensures numerical con-
sistency and accuracy of the phases;

• A mixture viscosity model to prevent instability arising from
overly dynamic interphase movement.

4.2 preliminaries

4.2.1 Volume Fraction Scheme

The volume fraction scheme [196] models the coexistence state of
phases within a single fluid parcel (see Figure 4.2). For each fluid parcel,
the mixture model divides each particle into several portions according
to the number of fluid phases. For each phase in each parcel, it has a

101

implicitly stable mixture model for dynamic multi-fluid simulations

∑
𝑘 𝛼𝑘 = 1

𝛼1

u1

u2

𝛼2

𝛼3

u3

u𝑚 =
∑
𝑘 𝛼𝑘 u𝑘

u𝑑
𝑘

= u𝑘 − u𝑚

u𝑚 u1

u𝑉 1

u2
u𝑚

u𝑉 2

u3

u𝑚

u𝑉 3

∑
𝑘 𝛼𝑘 u𝑉𝑘 = 0

u𝑉 1

u𝑉 2

u𝑉 3

(a) (b) (c)

Figure 4.2: An illustration of the concept of themixturemodel. The images show
a particle with mixed phases: (a) relationship between rest volume
fraction 𝛼𝑘 , phase velocity u𝑘 , and mixture velocity u𝑚 ; (b) relation-
ship between u𝑘 , u𝑚 and drift velocity u𝑉𝑘 ; (c) drift velocity u𝑉𝑘 .

volume fraction 𝛼𝑘 (corresponds to 𝑐𝑉𝑘 in Equation (2.17)), denoting the
portion it takes in the parcel. 𝑘 denotes the fluid phase. For a single fluid
parcel, all phases should conserve∑︁

𝑘

𝛼𝑘 = 1. (4.1)

Let u𝑘 denote the velocity field of phase 𝑘 . The mixture velocity giv-
ing the velocity of the volume center of a fluid parcel is

u𝑚 =
∑︁
𝑘

𝛼𝑘u𝑘 , (4.2)

where u𝑚 is called mixture velocity, or volume flux for it describes the
motion by volume rather than mass. The mixture velocity conserves
∇ · u𝑚 = 0 as it represents the mixture’s incompressibility [156].
The drift velocity further depicts the relative motion of a fluid phase

with respect to the velocity of the fluid parcel (u𝑚). The drift velocity of
phase 𝑘 is given by

u𝑉𝑘 = u𝑘 − u𝑚 . (4.3)

According to Equation (4.2), the drift velocity should further follow∑︁
𝑘

𝛼𝑘u𝑉𝑘 = 0. (4.4)

Similarly, the mixture density can be computed using the rest density
𝜌𝑘 of each phase as

𝜌𝑚 =
∑︁
𝑘

𝛼𝑘𝜌𝑘 . (4.5)

102

4.2 preliminaries

4.2.2 Governing Equations of the Mixture Model

The governing equations of the mixture model originate from the
Navier-Stokes model (Equation (2.6)), which considers the dynamic
computation of a single fluid field.

Conservation of mass. Starting from the continuity Equation (2.1),
compared to the conservation of mass for a single fluid phase (2.3),
the volume fraction as well as the coexistence states with other phases
should be taken into consideration. Taking 𝛼𝑘𝜌𝑘 into Equation (2.1) for
phase 𝑘 , we have

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + ∇ · (𝛼𝑘𝜌𝑘u𝑘) = 0. (4.6)

Note that we do not consider the conversion of one phase to another,
making the right-hand side of Equation (4.6) zero.

Mass transfer. By substituting Equation (4.3) into Equation (4.6), we
can transform Equation (4.6) into the form of

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + ∇ · (𝛼𝑘𝜌𝑘u𝑘) = 0

𝜌𝑘
𝜕𝛼𝑘

𝜕𝑡
+ ∇ · (𝛼𝑘𝜌𝑘 (u𝑉𝑘 + u𝑚)) = 0

𝜌𝑘
𝜕𝛼𝑘

𝜕𝑡
+ 𝜌𝑘 (u𝑚 · ∇) 𝛼𝑘 = −𝜌𝑘∇ · (𝛼𝑘u𝑉𝑘)

𝜕𝛼𝑘

𝜕𝑡
+ (u𝑚 · ∇) 𝛼𝑘 = −∇ · (𝛼𝑘u𝑉𝑘)

𝐷

𝐷𝑡
𝛼𝑘 = −∇ · (𝛼𝑘u𝑉𝑘) ,

(4.7)

which captures how the substance of fluid phase transfers from one fluid
parcel to another.

Conservation of momentum. Similar to Equation (2.5), the mix-
ture model replaces the single phase momentum term 𝜌u with 𝛼𝑘𝜌𝑘u𝑘 ,
leading to

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘u𝑘)+∇·(𝛼𝑘𝜌𝑘u𝑘 ⊗ u𝑘) = −𝛼𝑘∇𝑝𝑘+∇·(𝛼𝑘𝝉𝑘)+𝛼𝑘𝜌𝑘g+s𝐼

𝑘
, (4.8)

where 𝑝𝑘 , 𝝉𝑘 , g, and s𝐼
𝑘
are the pressure, viscous stress tensor, gravity,

and interphase momentum source, respectively. Equation (4.8) ensures
momentum conservation for all phases. Despite appending volume frac-
tion to all momentum terms for the right-hand-side of Equation (2.6),
an additional interphase momentum source needs to be taken into con-
sideration to analyse how a single fluid phase is affected by the others

103

implicitly stable mixture model for dynamic multi-fluid simulations

Traditional SPH error Corrected SPH error
𝜌1 > 𝜌𝑚1 ⇒ 𝑝1 > 0

10% compression

𝜌1 = 110
𝜌2 = 1100
↓

𝑝2 = 10𝑝1
𝜌𝑚1 = 100 𝜌𝑚2 = 1000

Figure 4.3: The pressure error of traditional SPH and corrected SPH [263] when
simulating fluids with different densities.

in the mixture model. This obeys a rigorous force balance model [196]
complying with∑︁

𝑘

s𝐼
𝑘
= 0. (4.9)

4.3 volume flux free sph

The state-of-the-art SPH implicit pressure solver, DFSPH [29], prevents
volume compression and enforces a divergence-free velocity field. This
method is significantly faster and more stable than previous SPH meth-
ods [139, 265] for incompressible fluids. DFSPH relates density compres-
sion and pressure via

𝑝𝑖 = 𝜅 (𝜌𝑖 − 𝜌𝑚𝑖
), (4.10)

where 𝜅 is the stiffness coefficient determined by the magnitude of com-
pressibility, and 𝜌𝑚𝑖

is the rest density of the particle 𝑖 in the mixture
model as computed by Equation (4.5). The pressure gradient can there-
fore be expressed using Equation (3.4) as

∇𝑝𝑖 = 𝜅𝑖∇𝜌𝑖 = 𝜅𝑖

∑︁
𝑗

𝑚 𝑗∇𝑊𝑖 𝑗 . (4.11)

However, in the simulation of fluids with non-uniform rest density
fields, the rest density of different particles would vary. As a result, DF-
SPH will have a large error when the densities of adjacent particles
are significantly different, as illustrated in Figure 4.3. There are two
types of particles, colored cyan and purple, with rest density either
𝜌𝑚1 = 100𝑘𝑔/𝑚3 or 𝜌𝑚2 = 1000𝑘𝑔/𝑚3. According to Equation (3.11),
although the particles are evenly distributed in space without overlap-
ping, the density near the interface between the two fluids is different
from the rest density. This causes one type of particles to move away

104

4.3 volume flux free sph

Algorithm 4.1: Volume flux free SPH solver
A. Attribute preparation

1. attributes from previous time step: u𝑚 , 𝛼𝑘
2. u∗𝑚𝑖

← u𝑚𝑖

3. compute𝑚𝑖 (4.5), 𝜒𝑖 (4.14), 𝑉𝑖 (4.15), 𝛽𝑖 (4.28)
B. Projection step: volume flux free solver

4. while avg
(
𝐷𝑉𝑖
𝐷𝑡

)
< 𝜂1

4.1 𝐷𝑉𝑖
𝐷𝑡

= −𝑉𝑖∇ · u𝑚𝑖
(4.24)

4.2 𝑘𝑖 =
𝐷𝑉𝑖
𝐷𝑡

Δ𝑡−1 (𝑉 0
𝑖

)−3
𝛽𝑖 (4.28)

4.3 u∗𝑚𝑖
← u∗𝑚𝑖

− Δ𝑡F𝑝
𝑖,total/𝑚𝑖 (4.30)

5. u𝑚𝑖
= u∗𝑚𝑖

(update velocity)
C. Advection step

6. u∗𝑚𝑖
← u𝑚𝑖

+ Δ𝑡
(
F𝑣𝑖𝑠𝑖 /𝑚𝑖 + g

)
(3.14)

D. Projection step: VFSPH constant volume solver
7. while avg(Δ𝑉𝑖) < 𝜂2
7.1 𝐷𝑉𝑖

𝐷𝑡
= −𝑉𝑖∇ · u𝑚𝑖

(4.24)
7.2 𝑉 ∗𝑖 = 𝑉𝑖 + Δ𝑡 𝐷𝑉𝑖𝐷𝑡

7.3 Δ𝑉𝑖 = 𝑉 ∗𝑖 −𝑉 0
𝑖

7.4 𝑘𝑖 = Δ𝑉𝑖Δ𝑡
−2 (𝑉 0

𝑖

)−3
𝛽𝑖 (4.28)

7.5 u∗𝑚𝑖
← u∗𝑚𝑖

− Δ𝑡F𝑝
𝑖,total/𝑚𝑖 (4.30)

8. u𝑚𝑖
= u∗𝑚𝑖

(update velocity)
9. x𝑖 ← x𝑖 + Δ𝑡u𝑚𝑖

(update position)

from those of the other type, which then leads to an unwanted gap be-
tween them.
Solenthaler and Pajarola [263] discussed this phenomenon in detail,

and provided a corrected version of the density computation in their
work as

𝜌𝑖 =
∑︁
𝑗

𝑚𝑖𝑊𝑖 𝑗 , (4.12)

where the density of all neighboring particles 𝑗 is replaced with the
density of particle 𝑖 itself when computing the density. However, the
limitation of this scheme is that it ignores the proportional relationship
between the volume and the pressure, resulting in unreasonable pres-
sure, which in turn makes the system more prone to instability.
To resolve the issue mentioned in Figure 4.3, we propose the Volume

Flux free SPH method (VFSPH). The concepts of the motion mass point
and density compression are replaced with volumetric flux and an ab-
stract notion which we call compression ratio.

105

implicitly stable mixture model for dynamic multi-fluid simulations

We first introduce the notion of rest volume 𝑉 0 representing the vol-
ume in the incompressible state, expressed as

𝑉 0
𝑖 =

𝑚𝑖

𝜌𝑚𝑖

. (4.13)

We then introduce the notion of compression ratio 𝜒 , which is defined
for a particle 𝑖 using the rest volume as

𝜒𝑖 =
∑︁
𝑗

𝑉 0
𝑗𝑊𝑖 𝑗 . (4.14)

The volume derived from SPH can be expressed using the compres-
sion ratio and the rest volume as

𝑉𝑖 = 𝜒𝑖𝑉
0
𝑖 = 𝑉 0

𝑖

∑︁
𝑗

𝑉 0
𝑗𝑊𝑖 𝑗 . (4.15)

Our VFSPH reduces to the traditional SPH method when all particles
share the same rest density

𝜌𝑖 = 𝜒𝑖𝜌𝑚𝑖
. (4.16)

However, the value of density approximation differs between VFSPH
and SPH when dealing with a non-uniform rest density field because
of the approximation error of the traditional SPH form. Hence, we use
Equation (4.16) to model density in the rest of our work.
In VFSPH, the original SPH approximation (2.7) becomes

𝐴𝑖 =
∑︁
𝑗

𝑉 0
𝑗

𝜒 𝑗
𝐴 𝑗𝑊𝑖 𝑗 , (4.17)

with the gradient given by

∇𝐴𝑖 =
∑︁
𝑗

𝑉 0
𝑗

𝜒 𝑗
𝐴 𝑗∇𝑊𝑖 𝑗 . (4.18)

Following Equation (3.6), another differential form, which can further
reduce the approximation error of Equation (4.18), is

∇ · 𝐴𝑖 =
1
𝜒𝑖

∑︁
𝑗

𝑉 0
𝑗 (𝐴 𝑗 −𝐴𝑖) · ∇𝑊𝑖 𝑗 . (4.19)

Based on the above model, we now adapt the fluid simulation SPH
solver of DFSPH [29] for VFSPH. We start by defining that pressure is
proportional to the compression ratio of the volume

𝑝𝑖 = 𝑘𝑖 (𝑉𝑖 −𝑉 0
𝑖) = 𝑘𝑖 (𝜒𝑖 − 1)𝑉 0

𝑖 , (4.20)

106

4.3 volume flux free sph

where 𝑘𝑖 is the stiffness coefficient, which we derive further below. The
gradient of the pressure via Equation (4.18) becomes

∇𝑝𝑖 = 𝑘𝑖𝑉
0
𝑖 ∇𝜒𝑖 = 𝑘𝑖𝑉

0
𝑖

∑︁
𝑗

𝑉 0
𝑗 ∇𝑊𝑖 𝑗 . (4.21)

The pressure force is then computed as

F𝑝
𝑖
= −𝑚𝑖

𝜌𝑖
∇𝑝𝑖 = −

𝑘𝑖

𝜒𝑖

(
𝑉 0
𝑖

)2 ∑︁
𝑗

𝑉 0
𝑗 ∇𝑊𝑖 𝑗 . (4.22)

For the conservation of momentum, the pressure force has the form

F𝑝
𝑖→𝑗

=
𝑘𝑖

𝜒𝑖

(
𝑉 0
𝑖

)2
𝑉 0
𝑗 ∇𝑊𝑖 𝑗 . (4.23)

The rate of change of the volumetric flux at the location of the parti-
cle 𝑖 can be expressed using divergence according to Equation (4.19) as

𝐷𝑉𝑖

𝐷𝑡
= −𝑉𝑖∇·u𝑚𝑖

= −𝑉 0
𝑖 𝜒𝑖∇·u𝑚𝑖

= 𝑉 0
𝑖

∑︁
𝑗

𝑉 0
𝑗 (u𝑚𝑖

− u𝑚 𝑗
) · ∇𝑊𝑖 𝑗 , (4.24)

where u𝑚𝑖
is the mixture velocity for particle 𝑖 . In the above, in contrast

to the original SPH method which uses u for the velocity of particles as
the velocity of their mass center, we use the volumetric flux u𝑚 [196] to
model the velocity of the volume center of each particle in VFSPH.
The volumetric flux and velocity share the same meaning if the fluid

is incompressible and no phase exchange happens between particles.
The velocity after the advection step (caused by forces except pressure
in Equation (2.6)) is

u∗𝑚𝑖
← u𝑚𝑖

+ Δ𝑡
(
𝜇𝑖

𝜌𝑖
∇2u𝑚𝑖

+ g
)
, (4.25)

where Δ𝑡 is the time step size, and u∗𝑚𝑖
is the mixture velocity of par-

ticle 𝑖 in the advection state. The pressure force is used to counteract
the compressibility introduced during the advection step. According to
Equation (4.24), we have that∑︁

𝑗

𝑉 0
𝑗 (u∗𝑚𝑖

− u∗𝑚 𝑗
) · ∇𝑊𝑖 𝑗 = −Δ𝑡

∑︁
𝑗

𝑉 0
𝑗

(
F𝑝
𝑖

𝑚𝑖

−
F𝑝
𝑖→𝑗

𝑚 𝑗

)
· ∇𝑊𝑖 𝑗 . (4.26)

Combining Equation (4.24) and Equation (4.26) yields

𝐷𝑉𝑖

𝐷𝑡
= Δ𝑡𝑉 0

𝑖

(
−

∑︁
𝑗

𝑉 0
𝑗

F𝑝
𝑖

𝑚𝑖

· ∇𝑊𝑖 𝑗 +
∑︁
𝑗

𝑉 0
𝑗

F𝑝
𝑖→𝑗

𝑚 𝑗

· ∇𝑊𝑖 𝑗

)

=
Δ𝑡𝑘𝑖

(
𝑉 0
𝑖

)3

𝜒𝑖

©«
1
𝑚𝑖

(∑︁
𝑗

𝑉 0
𝑗 ∇𝑊𝑖 𝑗

)2

+
∑︁
𝑗

(
𝑉 0
𝑗 ∇𝑊𝑖 𝑗

)2

𝑚 𝑗

ª®®¬ .
(4.27)

107

implicitly stable mixture model for dynamic multi-fluid simulations

Hence the stiffness coefficient 𝑘 is

𝑘𝑖 =
𝐷𝑉𝑖

𝐷𝑡

1
Δ𝑡

1
(𝑉 0
𝑖
)3

𝜒𝑖(∑
𝑗 𝑉

0
𝑗
∇𝑊𝑖 𝑗

)2

𝑚𝑖
+∑

𝑗

(
𝑉 0
𝑗
∇𝑊𝑖 𝑗

)2

𝑚 𝑗︸ ︷︷ ︸
𝛽𝑖

. (4.28)

Considering the conservation of momentum, the total pressure force of
particle 𝑖 is

F𝑝
𝑖,total = F𝑝

𝑖
+

∑︁
𝑗

F𝑝
𝑗→𝑖

= −𝑘𝑖
𝜒𝑖
(𝑉 0
𝑖)2

∑︁
𝑗

𝑉 0
𝑗 ∇𝑊𝑖 𝑗 −𝑉 0

𝑖

∑︁
𝑗

𝑘 𝑗

𝜒 𝑗
(𝑉 0
𝑗)2∇𝑊𝑖 𝑗 .

(4.29)

Finally, the change of volumetric flux caused by F𝑝
𝑖,total is

u∗𝑚𝑖
← u∗𝑚𝑖

−
Δ𝑡𝑉 0

𝑖

𝑚𝑖

(
𝑘𝑖

𝜒𝑖
𝑉 0
𝑖

∑︁
𝑗

𝑉 0
𝑗 ∇𝑊𝑖 𝑗 +

∑︁
𝑗

𝑘 𝑗

𝜒 𝑗
(𝑉 0
𝑗)2∇𝑊𝑖 𝑗

)
. (4.30)

The whole procedure of the VFSPH solver is summarized by
Algorithm 4.1. We now proceed to our multiphase model.

4.4 implicit mixture model for multiphase interac-
tions

We now introduce our implicit mixture model (see the bottom part of
Figure 4.4). To ease reading, Table 4.1 lists all momentum sources used
throughout our exposition. Note that the advection momentum source
in Table 4.1 is the advection caused by drift velocity, not the term in the
Navier-Stokes equation caused by fluid velocity; the latter is themixture
velocity in our work. We also adopt the notation 𝑝𝑘 = 𝑝𝑚 for all mixture
phases [196, 239].

Table 4.1: Notations of momentum sources (Section 4.4).

Phase momentum sources s𝑘
Corresponding mixture

momentum sources s𝑚

Corresponding interphase

momentum sources s𝐼
𝑘

Component Notation Value Notation & Values Notation & Values

pressure s𝑝
𝑘

−𝛼𝑘∇𝑝𝑘 s𝑝𝑚 =
∑

𝑘 s𝑝
𝑘
= −∇𝑝𝑚 s

𝐼𝑝

𝑘

viscosity s𝑣
𝑘

∇ · (𝛼𝑘𝝉𝑘) s𝑣𝑚 =
∑

𝑘 s𝑣
𝑘
= ∇ · 𝝉𝑚 s𝐼𝑣

𝑘

gravity s𝑔
𝑘

𝛼𝑘𝜌𝑘g s𝑔𝑚 =
∑

𝑘 s𝑔
𝑘
= 𝜌𝑚g —

advection s𝑎
𝑘

−𝛼𝑘𝜌𝑘u𝑉𝑘 · ∇u𝑘 s𝑎𝑚 =
∑

𝑘 s𝑎
𝑘

s𝐼𝑎
𝑘

drift s𝑑
𝑘

−𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

u𝑉𝑘 s𝑑𝑚 =
∑

𝑘 s𝑑
𝑘

—

108

4.4 implicit mixture model for multiphase interactions

4.4.1 Interphase Momentum

Considering the conservation of mass terms inherited from
Equation (4.6), the left-hand side of Equation (4.8) is subject to
a transformation. This revised representation, encompassing the
predefined momentum sources, is given by

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘u𝑘) + ∇ · (𝛼𝑘𝜌𝑘u𝑘 ⊗ u𝑘)

= u𝑘
𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + u𝑘∇ · (𝛼𝑘𝜌𝑘u𝑘)︸ ︷︷ ︸

Equals 0 according to Equation (4.6)

+𝛼𝑘𝜌𝑘
𝜕

𝜕𝑡
u𝑘 + 𝛼𝑘𝜌𝑘u𝑘 · ∇u𝑘

= 𝛼𝑘𝜌𝑘 (
𝜕

𝜕𝑡
u𝑘 + u𝑘 · ∇u𝑘)

= 𝛼𝑘𝜌𝑘 (
𝜕

𝜕𝑡
u𝑘 + (u𝑚 + u𝑉𝑘) · ∇u𝑘)

= 𝛼𝑘𝜌𝑘
𝐷

𝐷𝑡
u𝑘 − s𝑎

𝑘
.

(4.31)

Then, Equation (4.8) can be rewritten as

𝛼𝑘𝜌𝑘
𝐷

𝐷𝑡
u𝑘 = s𝑝

𝑘
+ s𝑣

𝑘
+ s𝑔

𝑘
+ s𝐼

𝑘
+ s𝑎

𝑘
. (4.32)

Here, 𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

u𝑘 can be further split as 𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

u𝑚 − s𝑑
𝑘
according to

Equation (4.3). By summing up Equation (4.32) for all phases under the
force balance model [196] condition

∑
𝑘 s𝐼

𝑘
= 0, the mixture’s momen-

tum is

𝜌𝑚
𝐷

𝐷𝑡
u𝑚 = s𝑝𝑚 + s𝑣𝑚 + s𝑔𝑚 + s𝑑𝑚 + s𝑎𝑚 . (4.33)

Subtracting Equation (4.33) from Equation (4.32) yields the change rate
of drift velocity

𝐷

𝐷𝑡
u𝑉𝑘 =

𝐷

𝐷𝑡
u𝑘 −

𝐷

𝐷𝑡
u𝑚 =

s{𝑝,𝑣,𝑔,𝑎,𝐼 }
𝑘

𝛼𝑘𝜌𝑘
− s{𝑝,𝑣,𝑔,𝑑,𝑎}𝑚

𝜌𝑚
, (4.34)

where {} denotes the sum of the specified momentum sources.
Since the standard mixture model does not explicitly define the inter-

phase momentum source s𝐼
𝑘
, various forms of it have been introduced

in previous works. Ren et al. [239] proposed a comprehensive term to
cover both inertia-induced drag and diffusion effects. Jiang et al. [156]
simplified it to model only the drag effect. However, these two terms
make it challenging to maintain stable simulation systems. The LEA
must ensure that the drift velocity returns to zero at the start of each
time step. Jiang et al. [155] further presented a more artificial, yet sta-
bler, approach to enable the continuity of drift velocity. In our work, we

109

implicitly stable mixture model for dynamic multi-fluid simulations

ka

Mixture Model

Dynamic
Procedure

Implicit Mixture Model

Phase 1
Phase 2

Whole
mixture

u𝑚mixture velocity u𝑉𝑘
drift velocity

u𝑘
phase velocity∑
𝑘 𝛼𝑘 = 1∑
𝑘 𝛼𝑘u𝑘 = u𝑚

u𝑘

u𝑚
𝜌𝑘

𝐷
𝐷𝑡

u𝑘 = s𝑘 s𝐼
𝑘

+
Phase Momentum

Source
Interphase

Momentum Source
𝜌𝑚

𝐷
𝐷𝑡

u𝑚 = s𝑚 Mixture
Momentum Source

Interphase

Pressure

Viscosity

Eqn. (4.37)

Eqn. (4.39)

Eqn. (4.41)

Analytic Interphase Momentum

Momentum Mapping Mechanism

Mixture Viscosity Model

s𝑖
𝑘
= 𝐶𝑑 s𝐼𝑛

𝑘

𝐷𝑝

𝐷𝑡
u𝑘 =

s𝑝𝑚
𝜌𝑚

(
𝐶𝑑 + (1 − 𝐶𝑑) 𝜌𝑚

𝜌𝑘

)
s̃𝑣
𝑘
(x) =

𝛼𝑘 (x)𝜇𝑘∇2
x

(∫
Ω

u𝑉𝑘 (x)𝛿 (x)𝑑x
)

Figure 4.4: Schematic diagram of our proposed implicit mixture model. We use
a volume fraction-based mixture model to illustrate the coexistent
state of multiphase flows (upper diagram, see Section 4.2). Unlike tra-
ditional approacheswhich use a unifiedmixture field to computemo-
tion for all phases, we employ a phase-specific interphase momen-
tum mechanism (lower-left diagram, Section 4.4.1) to allow individ-
ual phase motion computation. We derive each momentum source
for every fluid phase implicitly taking into account both no-slip and
free-slip conditions (lower-right diagram, Secs. 4.4.2 and 4.4.3, re-
spectively).

derive the interphase momentum source directly from Equation (4.6)
and Equation (4.8), which can overcome all above difficulties without
the need for LEA.
To investigate how interphase momentum affects phase-phase inter-

actions, we consider two extreme analysis scenarios.

No-drift scenario. In this scenario, all phases are tightly coupled, in-
dicating strong interphase momentum. This prevents the mixture from
separating, resulting in 𝐷

𝐷𝑡
u𝑉𝑘 = 0 and s𝑑

𝑘
= 0 being always true. We

denote next the interphase momentum as s𝐼𝑛
𝑘
and the drift momentum

as s𝑑0
𝑘
. Following Equation (4.34), the interphase momentum is given by

s𝐼𝑛
𝑘

=
𝛼𝑘𝜌𝑘

𝜌𝑚
s{𝑝,𝑣,𝑔,𝑑0,𝑎}
𝑚 − s{𝑝,𝑣,𝑔,𝑎}

𝑘

= 𝛼𝑘 (𝜌𝑘 − 𝜌𝑚)
(
𝐷

𝐷𝑡
u𝑚 − g

)
+

(
𝛼𝑘s{𝑝,𝑣,𝑎}𝑚 − s{𝑝,𝑣,𝑎}

𝑘

)
.

(4.35)

The no-drift interphase momentum can be interpreted as follows. The
first term on the second line of Equation (4.35) is the offset created to
reduce inertia-related drift, such as sand in water separated by grav-
ity. This term counteracts the acceleration causing sand and water to

110

4.4 implicit mixture model for multiphase interactions

stick together. The second term addresses the differences in momentum
sources between phase-level and mixture-level, caused by pressure, vis-
cosity, and advection.

Free-drift scenario. In this scenario, all phases move independently
without influencing each other, so the interphase momentum is al-
ways zero. The free-drift momentum source can be derived from
Equation (4.34) as

s𝑑𝑓
𝑘

= s{𝑝,𝑣,𝑔,𝑎}
𝑘

− 𝛼𝑘𝜌𝑘

𝜌𝑚
s{𝑝,𝑣,𝑔,𝑑𝑓 ,𝑎}𝑚

= 𝛼𝑘 (𝜌𝑚 − 𝜌𝑘)
(
𝐷

𝐷𝑡
u𝑚 − g

)
−

(
𝛼𝑘s{𝑝,𝑣,𝑎}𝑚 − s{𝑝,𝑣,𝑎}

𝑘

)
.

(4.36)

Analytic interphase momentum expression. An interesting rela-
tion between the no-drift and free-drift scenarios emerges from Equa-
tions (4.35) and (4.36) as s𝑑𝑓

𝑘
= −s𝐼𝑛

𝑘
. This says that the stronger the

interphase momentum source, the harder it is to generate drift veloc-
ity. Based on this observation, we further assume that s𝐼

𝑘
= −s𝑑

𝑘
, which

perfectly satisfies Equation (4.34). We next analytically express the in-
terphase momentum source using Equation (4.35) as

s𝐼
𝑘
= 𝐶𝑑s𝐼𝑛

𝑘
, (4.37)

where 𝐶𝑑 ∈ [0, 1] models the drift amount: 𝐶𝑑 = 0 yields free drift
and 𝐶𝑑 = 1 yields no drift. Similar forms of interphase momentum
sources have been earlier used to compute the change rate of drift veloc-
ity [156, 239]. Yet, while crucial for producing a divergence-free mixture
velocity field, a concise expression without any approximation during
derivation has been absent. In contrast, we provide phase-level opera-
tions that show how drift conditions can be altered using an interphase
momentum source without violating mixture-level incompressibility.

4.4.2 Phase-mixture Momentum Mapping

We next compute each phase’s motion changes by each momentum
source via Equation (4.37). Four main momentum sources influence s𝐼

𝑘

according to Equation (4.35), while 𝐷
𝐷𝑡

u𝑚 can be affected by all momen-
tum sources (see Equation (4.33)).
When computing s𝐼

𝑘
, we ignore advection and drift momentum

sources. This not only eliminates the computational demand for ∇u𝑎
𝑘

and the time derivative of u𝑉𝑘 but also crucially allows Equation (4.33)
to be treated as a single-phase fluid. This strategy enables the use of
an implicit pressure solver [29] throughout the simulation, facilitating
larger time steps compared to the explicit solver-based method [155],
and yielding a speedup of roughly 2–3 times in total. We next show

111

implicitly stable mixture model for dynamic multi-fluid simulations

how viscosity and pressure momentum sources influence each phase’s
motion.
Since viscosity affects each phase, the change rate of phase velocity

generated by viscosity can be derived from Equation (4.32) as
𝐷𝑣

𝐷𝑡
u𝑘 =

1
𝛼𝑘𝜌𝑘

(
s𝑣
𝑘
+ s𝐼𝑣

𝑘

)
=
𝐶𝑑𝛼𝑘 (𝜌𝑘 − 𝜌𝑚) 𝐷

𝑣

𝐷𝑡
u𝑚 +𝐶𝑑𝛼𝑘s𝑣𝑚 + (1 −𝐶𝑑) s𝑣𝑘
𝛼𝑘𝜌𝑘

= 𝐶𝑑
s𝑣𝑚
𝜌𝑚
+ (1 −𝐶𝑑)

s𝑣
𝑘

𝛼𝑘𝜌𝑘
,

(4.38)

where s𝐼𝑣
𝑘
= 𝐶𝑑𝛼𝑘 (𝜌𝑘 − 𝜌𝑚) 𝐷

𝑣

𝐷𝑡
u𝑚 +𝐶𝑑𝛼𝑘s𝑣𝑚 is the viscosity-related part

of the interphase momentum source according to Equation (4.37), and
𝐷𝑣

𝐷𝑡
u𝑚 = s𝑣𝑚/𝜌𝑚 is the viscosity-induced change rate of mixture velocity

from Equation (4.33).
Similarly, the change rate of phase velocity produced by pressure is

𝐷𝑝

𝐷𝑡
u𝑘 = 𝐶𝑑

s𝑝𝑚
𝜌𝑚
+ (1 −𝐶𝑑)

s𝑝
𝑘

𝛼𝑘𝜌𝑘
=

s𝑝𝑚
𝜌𝑚

(
𝐶𝑑 + (1 −𝐶𝑑)

𝜌𝑚

𝜌𝑘

)
, (4.39)

where s𝑝
𝑘
= −𝛼𝑘∇𝑝𝑘 . Again, we follow 𝑝𝑘 = 𝑝𝑚 for all phases [196].

Equation (4.39) is our proposed phase-mixture momentum mapping
mechanism which calculates the movement of phase flow using mix-
ture momentum sources.
Previous mixture models [156, 238, 239] focus on the solvable mo-

mentum equation, such as Equation (9) in Ren et al. [239], considering
interphase momentum as a consequence. This creates a causal relation
between momentum, mixture velocity change rate, and drift velocity
(Equations (4.37) and (4.35)). The change rate of mixture velocity, 𝐷

𝐷𝑡
u𝑚 ,

must occur first in a time step to ‘generate’ the interphase momentum
source that next alters drift velocity. This approach violates the relation
between phase velocity and mixture velocity in Equation (4.2), making
it impossible to obtain a stable mixture-level fluid description without
LEA. Although Jiang et al. [155] proposed to compute mixture-level
fluid motion from phase-level to abandon LEA, the introduced artifi-
cial momentum source term could result in weak compressibility for
the mixture flow; also, the volume fraction of fluid particles needs to be
re-normalized at each time step.

In contrast, our method simultaneously solves the velocity change
rate for all fluid phases and the mixture flow. According to
Equation (4.39), the phase velocity change rate can be implicitly ex-
pressed through the pressure component of the mixture momentum
source. The term − 1

𝜌𝑚
∇𝑝𝑚 is solvable using any standard fluid simu-

lation approach. This substitution in Equations (4.38) and (4.39) unifies
phase, drift, and mixture velocities, ensuring natural mass conservation
and consistent volume fraction summation for all particles.

112

4.4 implicit mixture model for multiphase interactions

4.4.3 Mixture Viscosity Model

The standard mixture model does not specify how phases interact with
each other. Since the mixture model uses the LEA, viscosity is assumed
to bind phases together, reverting to the mixture velocity. Jiang et
al. [155] designed their artificial interphase momentum source with this
idea inmind. In contrast, wemodify the viscousmomentum source from
a single-phase viscosity computation procedure to a viscosity computa-
tion between the phase and the mixture. For the entire computational
domain Ω, this is given by

s̃𝑣
𝑘
(x) = 𝛼𝑘 (x) 𝜇𝑘∇2

x

(
u𝑚 +

∫
Ω

u𝑉𝑘 (x) 𝛿 (x) 𝑑x
)
, (4.40)

where 𝜇 is the dynamic viscosity coefficient and 𝛿 denotes the Dirac
delta function. This derivation is consistent with the standard mixture
model: a single fluid phase interacts equally with all other phases. More-
over, this form conserves momentum for each fluid parcel while main-
taining

∑
𝑘 s̃𝑣

𝑘
= s𝑣𝑚 if the dynamic viscosities of all phases are the same.

4.4.4 Implementation

We integrate our implicit mixture model (Section 4.4) into the proposed
VFSPH as detailed in Algorithm 4.2. Following implicit SPH, we divide
a simulation time-step into two stages: advection and projection, as fol-
lows.

Advection. During advection, gravity and viscosity forces are ini-
tially used to alter the velocity of each fluid particle, yielding a com-
pressible fluid field. Our advection for each phase (Algorithm 4.2, step
C) computes our refined viscosity momentum source (Equation (4.40))
using an artificial SPH Laplacian approximation (Equation (3.8)) as

s̃𝑣
𝑘
(x𝑖) = 2(𝑑 + 2)𝛼𝑘𝑖 𝜇𝑘

∑︁
𝑗

𝑉 0
𝑗

(
u𝑘𝑖 − u𝑚 𝑗

)
· (x𝑖 − x𝑗)

∥x𝑖 − x𝑗 ∥2
∇𝑊𝑖 𝑗 , (4.41)

where 𝑑 denotes the dimension (𝑑 = 2 or 𝑑 = 3) of the scenario.

Projection. During projection, pressure forces are implicitly derived
to restore the fluid to an incompressible state. Following VFSPH, we
do two projection steps, before and after advection (Algorithm 4.2,
steps B and D). Step B uses pressure forces to make the velocity
field divergence-free. We denote the induced mixture-level momentum
source and change rate of phase velocity as

∑
𝑘 s𝑝div

𝑘
and 𝐷𝑝div

𝐷𝑡
u𝑘 , respec-

tively. Step D predicts the position of the fluid particle at the next time
step to make the fluid incompressible. We denote the momentum and

113

implicitly stable mixture model for dynamic multi-fluid simulations

Algorithm 4.2: Mixture model with VFSPH
A. Preparation

1. Calculate mixture velocity u𝑚 (4.2)
2. Calculate drift velocity u𝑉𝑘 (4.3)
3. Update particle rest density 𝜌𝑚 (4.5)

B. VFSPH divergence-free solver (Inherit Step B of
Algo. 4.1)

4. Calculate s𝑝div
𝑚 using VFSPH (4.29)

5. Update phase velocity (from s𝑝
𝑘
)

u𝑘 += Δ𝑡 𝐷
𝑝div
𝐷𝑡

u𝑘 (4.39)
6. Repeat Step A.1 to update u𝑚

C. Advection
7. Update phase velocity (from s𝑣

𝑘
)

u𝑘+=Δ𝑡 𝐷
𝑣

𝐷𝑡
u𝑘 with s𝑣

𝑘
as s̃𝑣

𝑘
(4.38), (4.40)

8. Update phase velocity (from s𝑔
𝑘
) u𝑘+=Δ𝑡g

9. Repeat Step A.1 to update u𝑚
D. VFSPH incompressible solver (Inherit Step D of
Algo. 4.1)

10. Calculate s𝑝inc
𝑚 using VFSPH

11. Update phase velocity (from s𝑝
𝑘
)

u𝑘 += Δ𝑡 𝐷
𝑝inc
𝐷𝑡

u𝑘 (4.39)
12. Repeat Steps A.1 and A.2 to update u𝑚 and u𝑉𝑘
13. Update particle position x += Δ𝑡u𝑚

E. Phase transfer
14. Update volume fraction

𝛼𝑘 += Δ𝑡 𝐷
𝐷𝑡
𝛼𝑘 + Δ𝑡∇2 (𝐷𝑚𝛼𝑘) (4.7), (3.6)

change rate of phase velocity in step D as
∑
𝑘 s𝑝inc

𝑘
and 𝐷𝑝inc

𝐷𝑡
u𝑘 , respec-

tively.

Phase Transfer. Two factors cause changes in the particles’ volume
fraction (Algorithm 4.2, step E). The first one is drift velocity. We use
the SPH approximation [156] to compute Equation (4.7) as

𝐷𝛼𝑘𝑖

𝐷𝑡
= −

∑︁
𝑗

𝑉 0
𝑗

(
𝛼𝑘𝑖 u𝑉𝑘𝑖 + 𝛼𝑘 𝑗 u𝑉𝑘 𝑗

)
· ∇𝑊𝑖 𝑗 . (4.42)

The second factor is the diffusion term. Similar to the previous
divergence-free mixture model [156], we use a diffusion coefficient 𝐷𝑚
to control the diffusion effect as

∇2 (
𝐷𝑚𝛼𝑘𝑖

)
= 𝐷𝑚

∑︁
𝑗

𝑉 0
𝑗

(
𝛼𝑘𝑖 − 𝛼𝑘 𝑗

) (x𝑖 − x𝑗) · ∇𝑊𝑖 𝑗

∥x𝑖 − x𝑗 ∥2 + 0.01ℎ2 . (4.43)

114

4.5 results

4.5 results

We evaluate our method under different scenarios both analytically and
visually (see Table 4.2) and compare it with a state-of-the-art dynamic
mixture model [155]. We implemented our physics simulation frame-
work using Taichi [130] and rendered results with Blender’s Cycles en-
gine [34].We ran our experiments on anNVIDIA 3090 Tensor Core GPU
for both simulation and rendering. Our implementation is available as
open source for replicability [324].

Table 4.2: Experiment configurations.

Scene Figure(s) Particle
count

Particle
size [𝑚]

Drag
coefficient

Diffusion
coefficient

Tea Fig. 4.1 499K 0.03 0.5 0.05

Collide Fig. 4.5 474K 0.0055 𝐶𝑑 : 0, 0.3, 0.7, 1
𝑘𝑑 : 0, 3, 7, 10

0

Hourglass Fig. 4.10 350K 0.03 𝐶𝑑 : 0.29; 𝑘𝑑 : 5 0.05

Rotate Fig. 4.6 473K 0.0075 𝐶𝑑 : 0, 0.3, 0.7, 1
𝑘𝑑 : 0, 3, 7, 10

0

Ink drop Fig. 4.9 509K 0.05 𝐶𝑑 : 1, 0.6; 𝑘𝑑 : 10 0
Phase

separation
Fig. 4.8, 4.7 49K 0.045 𝐶𝑑 : 0.61, 0.29, 0

𝑘𝑑 : 10, 5, 2.53
0

Cocktail 2 Fig. 4.13 1.09M 0.05 0.94 0.6
Propeller Fig. 4.11 555K 0.035 𝐶𝑑 : 0.95 0.5
Cocktail 1 Fig. 4.12 1.09M 0.05 0.6 0.1

4.5.1 Performance Analysis

4.5.1.1 Momentum conservation

We execute two experiments to evaluate the conservation of linear and
angular momentum. In each case, fluid particles are initialized with an
equal mixture of two fluid phases, depicted in red and blue, resulting in
a purple mixed color. These particles maintained a density ratio of 1 : 2
(see Figs. 4.5 and 4.6). We exclude any external momentum sources, e.g.,
gravity. Ourmethod is tested using drift coefficients𝐶𝑑 = 0.0 (free-drift),
0.3, 0.7, and 1.0 (no drift, VFSPH-only).We also assess themixturemodel
proposed by Jiang et al. using drift coefficients𝑘𝑑 = 0.0, 3.0, 7.0, and 10.0.
Although [155] does not mention free-drift, we use 𝑘𝑑 = 0.0 to denote
the most pronounced effects, which taper off with increasing values, in
tandem with WCSPH-only. We exclude viscosity in these tests, barring
two sets in the Collide experiment.

115

implicitly stable mixture model for dynamic multi-fluid simulations

(a) Jiang et al. [155] with 𝑘𝑑 = 10. Frame (from left to right) 1, 40, 60, 100

(b) Our method with𝐶𝑑 = 0.0. Frame (from left to right) 1, 40, 60, 100

(c) Comparison of linear momentum in the two blocks collision experiment be-
tween our method and the dynamics mixture model using various 𝐶𝑑 and 𝑘𝑑
coefficient values.

Figure 4.5: A collision experiment shows the pressure-induced phase separation
abilities of Jiang et al.’s method [155] (a) and our method (b). Our ap-
proach exhibits superior stability, especially in the absence of grav-
ity and viscosity, by consistentlymaintaining linearmomentum over
time (c).

Collision. The first experiment aims to test the conservation of lin-
ear momentum. A smaller fluid cube, initially having a velocity of 1𝑚/𝑠
moving to the right, is set to collide with a larger, stationary fluid cube
(Figure 4.5). As observed during the collision, the denser blue phase be-
gins to separate from the contact surface, a result of its heightened in-
ertia. In contrast, the lighter red phase, with its heightened sensitivity
to the collision dynamics, quickly congregates in the spherical region
of the fluid cubes. Over time, the phase separation between the red and
blue fluids becomes increasingly distinct.

116

4.5 results

The chart in Figure 4.5(c) shows that, in the absence of a multiphase
solver (negating drift effects), both VFSPH and WCSPH adeptly con-
serve momentum. When our implicit mixture model is activated at
𝐶𝑑 < 1, the phase separation intensifies, yet linear momentum remains
largely unaltered over time. In contrast, Jiang et al.’s model introduces
momentum discrepancies, as most trials using this approach exhibited
deviations from the benchmark, particularly over extended simulation
duration.

Rotation. Our second experiment focused on the conservation of an-
gular momentum and is set in a round pool containing a swirling fluid
ring (Figure 4.6). The fluid ring initially displays an irrotational coun-
terclockwise velocity field. Here, each particle’s velocity is tangential
to the center, with its magnitude being inversely proportional to its dis-
tance to the center. As the experiment progresses, the centrifugal effect
manifests itself. The denser blue fluid phase gradually settled in the pe-
ripheral regions, while the center became dominated by the pure red
phase.
Figure 4.6(c) shows that VFSPH and our method both experience sim-

ilar angular momentum reduction over time, reflecting the simulation’s
inherent dissipative nature without external energy. WCSPH dissipates
faster than VFSPH and could destabilize without viscosity. The dynamic
mixture model of Jiang et al. [155] intensifies this, hindering optimal
conservation. In our model, as𝐶𝑑 nears zero, angular momentum atten-
uation slightly surpasses the VFSPH-only case. We believe this is due to
updating the volume fraction at step E of Algorithm 4.2, causing minor
errors during phase exchanges among particles, especially with notable
phase separation. However, this does not adversely impact visuals or
stability.

Table 4.3: Time Statistics for the Collide Experiment

Method Procedure Time per time step [s] Time per second
of animation [s]

Jiang et al.

WCSPH 1.41 × 10−3 51.41

Neighbor search 2.18 × 10−3 79.12

Multiphase 0.249 × 10−3 905.33

Our method
VFSPH 0.175 × 10−3 63.65

Neighbor search 2.67 × 10−3 9.70

Multiphase 0.298 × 10−3 108.51

117

implicitly stable mixture model for dynamic multi-fluid simulations

(a) Jiang et al.’s method [155] with 𝑘𝑑 = 10. Frame (from left to right) 1, 10, 20, 40

(b) Our method with𝐶𝑑 = 0.0. Frame (from left to right) 1, 40, 850, 1800

(c) Comparison of angularmomentum in the fluid rotation experiment between ourmethod
and the dynamics mixture model using various𝐶𝑑 and 𝑘𝑑 coefficient values.

Figure 4.6: Under the centrifugal effect, the rotated fluid separates into two dis-
tinct phases. Jiang et al.’s method [155] struggles to maintain stabil-
ity without the constraints of gravity and viscosity, leading to un-
reasonable phase velocities (a). Conversely, our method (b) ensures
a stable conservation of angular momentum throughout the simula-
tion (c).

4.5.1.2 Simulation efficiency

We assessed the efficiency of our method against the existing approach
using performance statistics from the collide experiment in Figure 4.5.
For this experiment, time consumptionwasmeasured from two vantage
points: The average time consumed per segment of a single simulation
loop (referred to as the "time step"), and the average time needed to gen-
erate 1 second of simulation animation (which involves summing the
time cost of each time step up to a second). This distinction is pivotal,

118

4.5 results

given that VFSPH, an implicit fluid solver, permits a considerably larger
time step than the explicit WCSPH solver. As a result, VFSPH requires
significantly fewer simulation loops than WCSPH to produce an equiv-
alent duration of simulation. Notably, although each VFSPH loop might
individually take longer than a WCSPH loop, fewer loops overall lead
to time savings. Table 4.3 shows the average time taken to generate 1
loop/second of animation for our method and Jiang et al.’s model. Our
approach consistently required significantly less time. This efficiency
arises because VFSPH supports a considerably larger time step per sim-
ulation loop compared to WCSPH. With a particle size of 0.0055𝑚, our
method’s maximum time step is approximately 2.75 × 10−4𝑠 and about
2.75× 10−5𝑠 for WCSPH. Our multiphase solver requires a marginal 2%
more time per loop than Jiang et al.’s model but our substantial speedup
due to the time step difference makes this extra cost negligible.

(a) Experiment setup

(b) A cross-section (c) Our method with LEA

(d) Dynamic mixture model [155] (e) Our method

Figure 4.7: Our two-phase separation experiment. (a) shows the experiment
setup, (b) shows a visualization of phase velocity (c)–(e) using dif-
ferent methods.

119

implicitly stable mixture model for dynamic multi-fluid simulations

Ours, Cd=0
JL21, kd=2.53
Ours, Cd=0.29
JL21, kd=5
Ours, Cd=0.61
JL21, kd=10

(a) Phase-level kinetic energy

Ours, Cd=0
JL21, kd=2.53
Ours, Cd=0.29
JL21, kd=5
Ours, Cd=0.61
JL21, kd=10

(b) Compression

Ours, Cd=0
JL21, kd=2.53
Ours, Cd=0.29
JL21, kd=5
Ours, Cd=0.61
JL21, kd=10

(c) Volume fraction

Figure 4.8: Comparison of phase kinetic energy, compression, and volume frac-
tion in the two-phase separation experiment (Figure 4.7) between
our method and the dynamic mixture model of Jiang et al. [155] us-
ing various 𝐶𝑑 and 𝑘𝑑 coefficient values.

4.5.1.3 Mass conservation

Two phase separation. In this experiment, a fluid bulk with two
thoroughly mixed phases is left to separate under gravity (Figure 4.7(a)).
The volume fraction of the two phases is 1 : 1 and the density ratio is
1 : 2 (red : blue). This experiment tests the numerical performance of our
method, the implicit mixture model [155], and ours with LEA for two-
phase separation under gravity. The experiment also maps the relation
between the drag 𝑘𝑑 and 𝐶𝑑 .
All three methods are capable of simulating this scenario. Yet, our

method with LEA separates very slowly. Only a thin separation layer
is noticeable after 30 seconds, suggesting that the mixture model sub-
optimally handles this scenario. Our method and Jiang et al.’s method
separate at similar speeds, with𝐶𝑑 = 0, 𝑘𝑑 = 2.53 being the quickest; fol-
lowed by𝐶𝑑 = 0.29,𝑘𝑑 = 5; and𝐶𝑑 = 0.61,𝑘𝑑 = 10 being the slowest.We
compare these three coefficient sets because 𝑘𝑑 = 10 is recommended

120

4.5 results

(a) Our model with𝐶𝑑 = 1

(b) Our model with𝐶𝑑 = 0.6

(c) Jiang et al. [155] with 𝑘𝑑 = 10

Figure 4.9: Red ink drop falls into water along a parabolic trajectory.

in the dynamic mixture model [155] and𝐶𝑑 = 0 models free drift in our
method.
Figure 4.7(c)–(e) shows the phase velocity on the 𝑦-axis (𝑣𝑘,𝑦) with

𝐶𝑑 = 0,𝑘𝑑 = 2.53 under the status of Figure 4.7(b). Themethod proposed
by Jiang et al. retains some phase velocity at the far ends of the 𝑦-axis,
where the two phases are separated and no phase velocity should occur.
Our method avoids this issue and has the largest phase velocity near the
separated and mixed regions, where the gradient of volume fraction is
the greatest.
Figure 4.8 shows the variation of the incompressible state of the

mixture (Figure 4.8(a)), volume fraction of each phase (Figure 4.8(b)),
and phase-level kinetic energy measured through the phase velocity
(Figure 4.8(c)) over time. The dynamic mixture model [155] conserves
neither incompressibility nor mass of each phase as rigorously as our
method since they use a weakly-compressible pressure solver and reg-
ularize the volume fraction at each time step. Moreover, the kinetic en-
ergy of our method always manages to reach the same peak regardless
of the speed of the separation process. This means the transformation

121

implicitly stable mixture model for dynamic multi-fluid simulations

of energy from gravitational potential to kinetic is unconditionally con-
served, which is not the case for the method of Jiang et al. [155].

4.5.2 Comparisons of Effects

Ink drop. A drop of red ink (70% ink phase, 30% water phase) fol-
lows a parabolic trajectory into the water (Figure 4.9). The diffusion
coefficient is set to 0. Results show that our method’s drag coefficient
can produce more substantial and consistent turbulence effects due to
phase interactions. In contrast, in the dynamic mixture model [155], the
drag force reduces this effect.

Hourglass. A blue phase (10 times heavier than the transparent one)
flows through a narrow neck under the influence of both diffusion and
interphase momenta. As Figure 4.10 shows, our method better captures
the convection vortex. Also, the momentum does not dissipate dur-
ing convection, as shown by the lively bubbles in the third column of
Figure 4.10.

(a) Dynamic mixture model [155] with 𝐾𝑑 = 5

(b) Our method with𝐶𝑑 = 0.29

Figure 4.10: The blue phase in the hourglass is convected with the transparent
one causing vortexes and bubbling effects.

4.5.3 Effectiveness under Complex Scenarios

Propeller. We simulate the foam generated by a propeller spinning
underwater (Figure 4.11). The foam phase has half the density of the
water. Moreover, a strong interphase momentum is applied to make the

122

4.5 results

Figure 4.11: Propeller spinning in water. Foams are formed, especially at higher
propeller speeds.

two phases challenging to separate. As Figure 4.11 shows, the foam be-
comes more robust and more agitated as the propeller spins faster. The
centrifugal effect can also be seen with the foam being dragged by the
blades, demonstrating our method’s versatility.

Figure 4.12: A fully mixed cocktail with phase separation due to the lack of in-
terphase momentum.

Phase separation. Five phases of a cocktail with a density ratio of
1 : 2 : 4 : 8 : 16 are initially evenly mixed in a glass (Figure 4.12). Then,
the drag coefficient is applied to ease the separation of the five phases.
The significant density ratio makes the separation quite dramatic. Our
method can handle this process with ease.

Drag dominant. Building upon the previous settings, we show in
Figure 4.13 an extra strong coupling force and diffusion effect between
phases. Upon stirring, the mixture starts to separate as the significant
density variation creates a high drag force causing the phases to sep-
arate from one another (see also the accompanying video for detailed
differences between phase separation and drag-dominant experiments).

Diffusion dominant. In contrast to stirring-induced separation,
Figure 4.1 presents an experiment of brewing tea using a tea bag. The

123

implicitly stable mixture model for dynamic multi-fluid simulations

Figure 4.13: A tightly coupled cocktail gets separated after a stir.

tea diffusion into water is obtained by assigning volume fractions to
the solid and enabling diffusion between solid and liquid. After stirring
with a rod, tea and water become evenly mixed. The density ratio is
small enough (1.05) to make the diffusion effect more dominant than
the separation.

4.6 discussion and conclusion

4.6.1 Summary

This work introduces an implicit mixturemodel for incompressible fluid
simulation that seamlessly integrates phase-level and mixture-level de-
scriptions through a combination of interphase momentum sourcing
and a phase-momentum mapping mechanism, coupled with a mixture
viscosity model. This approach ensures both mass conservation for in-
dividual phases and overall volume conservation.

The dynamic of phase transfer introduces additional momentum
transfer between fluid parcels, yielding visually appealing results un-
der significant drift velocities. In the future, we plan to explore this phe-
nomenon and refine its integration within our model, aiming for more
precise and visually accurate simulations.

4.6.2 Limitations

Phase transfer. While the proposed method builds on phase trans-
fer mechanisms from previous works [155, 156, 239], shown in
Equation (4.42), it effectively ensures mass conservation across all fluid
phases. However, momentum conservation across time steps is not
guaranteed.
Our implicit mixture model maintains momentum conservation at

each time step by balancing the momentum sources between individ-
ual phases and the mixture field as per Equations (4.32) and (4.33). The

124

4.6 discussion and conclusion

experimental setup of colliding fluid cubes (Figure 4.5) demonstrates
this feature effectively.
Nevertheless, during phase transfers, as a fluid phase 𝑘 from particle

𝑖 with velocity u𝑘𝑖 merges into particle 𝑗 with a different phase velocity
u𝑘 𝑗 , the transferred momentum from particle 𝑖 adapts to u𝑘 𝑗 , leading
to a loss of the original momentum. This becomes pronounced with
significant drift velocities or larger time steps.
Addressing this via additional momentum computations during

phase transfer has introduced stability challenges to the SPH implicit
simulation solver in our tests, particularly under high drift velocities.
Future work will focus on refining the solver design to fully conserve
momentum.

Inclusion of diffusion. Our model currently employs a classical
Laplacian diffusion approach, applied directly to the volume fraction
of each phase at each fluid particle, independent of drift velocity. This
method, typical for simulations with Linear Elasticity Approximation
constraints, complicates integration with our implicit mixture model
and is treated as a post-processing step.
This limitation hampers our model’s ability to effectively represent

complex multiphase interaction effects, such as solubility and insolu-
bility, which are characterized by distinct phase separation and surface
tension-driven interfacial curvatures in nature.
Future developments will aim to incorporate advanced simulation

models for computing momentum sources to enhance the portrayal of
diverse interaction effects.

125

5AN I SOTROP IC SCREEN SPACE RENDER ING FOR
PART ICLE - BASED FLU ID S IMULAT ION

As we discussed in Section 2.7, the challenge of balancing efficiency
and realism in particle-based fluid simulation is significant, espe-

cially in scenarios demanding real-time rendering. Traditional explicit
mesh tracing methods, while capable of depicting precise fluid motion,
demand extensive computational resources, making them impractical for
real-time applications in large, complex environments. Conversely, screen
space rendering offers enhanced efficiency by bypassing the need for mesh
construction and utilizing particle data directly for fluid rendering. How-
ever, this approach often results in visual artifacts, such as glitching edges
and bumpy surfaces. To address these shortcomings, we introduce a novel
real-time fluid rendering technique that builds on the screen space ren-
dering framework for particle-based simulations. Our method implements
anisotropic transformations on point sprites, stretching them along the di-
rection of feature vectors to achieve smoother fluid surfaces. This process
leverages a weighted principal component analysis of the particle distri-
bution to guide the transformations. Additionally, we enhance the result-
ing visual fidelity by integrating our transformed point sprites with ad-
vanced screen space filters, including curvature flow and narrow-range
depth processing. Our experimental results demonstrate that this innova-
tive approach not only effectively mitigates the issues of jagged edges and
surface unevenness prevalent in previous methods but also retains sharp,
high-frequency details. This balance of efficiency and visual qualitymakes
it a promising solution for real-time fluid rendering in complex simula-
tions1.

This chapter begins with an overview of screen space rendering, dis-
cussing its advantages and limitations in Section 5.1. We then detail
the pipeline of screen space rendering and the application of smooth-
ing filters in Section 5.2. Our contribution, which involves the use of an
anisotropic smoothing kernel in conjunction with smoothing filters, is
detailed in Section 5.3. The results of our approach are demonstrated in
Section 5.4, and the chapter concludes with a summary of our findings
in Section 5.5.

1 Parts of this chapter were published in: Y. Xu, Y. Xu, Y. Xiong, D. Yin, X. Ban,
X. Wang, J. Chang, and J. J. Zhang. Anisotropic screen space rendering for particle-
based fluid simulation. Computers & Graphics, Volume 110, 118-124. Elsevier, 2023. doi:
10.1016/j.cag.2022.12.007

127

https://doi.org/10.1016/j.cag.2022.12.007
https://doi.org/10.1016/j.cag.2022.12.007

anisotropic screen space rendering for particle-based fluid simulation

(a) isotropic (b) anisotropic

Figure 5.1: Comparison of isotropic and anisotropic fluid particles.

5.1 introduction

Though particle-based approaches, such as SPH, are particularly fa-
vored for their algorithmic efficiency and flexible application scenar-
ios [140], a major challenge in particle-based simulations lies in the visu-
alization of simulation results. Specifically, tracing surfaces for particle-
represented fluids often becomes a computational bottleneck, making
efficient and high-fidelity visualization a crucial area of research.
Traditionally, to visualize the results of Lagrangian simulations, fluid

surfaces are first extracted as polygonmeshes using themarching cubes
algorithm [189, 302, 336]. These meshes are subsequently rendered to
represent the fluid visually. However, the major drawback of this two-
step process is that mesh generation requires considerable computa-
tional resources and can be exceedingly time-consuming, especially
when aiming for detailed results. Although some researchers have re-
fined the marching cubes algorithm to facilitate real-timemapping with
a minimal number of particles, the quality of the output often remains
below expectations [303].
Instead of the traditional method of tracing particle surfaces and con-

structing polygon meshes, the screen space rendering approach simpli-
fies the process by generating surfaces based on the camera’s perspec-
tive, using depth and thickness data. In this method, particles are treated
as point sprites—2D textures that face the camera [145], typically cir-
cular. Edges between these textures are seamlessly blended to create
the appearance of a continuous fluid surface on screen [205]. This tech-
nique bypasses the resource-intensive mesh construction process, en-
abling real-time fluid simulations suitable for gaming and cutting-edge
virtual reality applications [112].

Müller et al. [205] pioneered the application of this method for fluid
rendering, where the choice of the smoothing filter plays a crucial role
in the quality of the rendering. As depicted in Figure 5.1, the raw depth
information derived from fluid particles is often jagged and requires
smoothing to achieve a realistic fluid surface. While a simple Gaussian

128

5.2 real-time screen space fluid rendering

filter can smooth surfaces, it tends to introduce unwanted blurring ef-
fects and is generally suboptimal [205]. The bilateral Gaussian filter, al-
though it preserves sharp boundaries, can excessively flatten areas of
discontinuity and is not separable, leading to potential visual artifacts
when approximations are made [112, 211]. Truong and Yuksek [291] de-
veloped a narrow-range filtering technique that enhances surface qual-
ity by selectively smoothing using a limited depth range, effectively
maintaining boundary clarity near discontinuities. Recently, Oliveira
and Paiva [218] addressed the issue of particle deficiency identified by
Truong and Yuksek [291] through a particle classification mechanism,
further refining this approach. Additionally, Liu et al. [184] introduced
a cost-effective, differentiable screen-space rendering algorithm that is
particularly well suited for augmented reality applications, highlighting
the ongoing evolution and application of these techniques.
However, despite its advantages, several inherent artifacts of screen

space rendering limit its broader application. Common issues include
uneven surfaces derived from particles, which can appear excessively
blurred, obscuring clear distinctions between foreground and back-
ground elements. Inspired by the techniques proposed by Yu and
Turk [338], we propose an anisotropic transformation scheme for point
textures. This transformation is applied prior to filtering the depth im-
age, facilitating the creation of smooth surfaces in areas of discontinuity
while simultaneously preserving detailed, vivid textures.

5.2 real-time screen space fluid rendering

Fluid rendering in screen space circumvents the traditional requirement
of generating surface meshes by directly projecting 3D fluid dynamics
onto a 2D screen, a process intimately connected with image processing
techniques [112]. These steps involved in this rendering approach are
illustrated in the schematic diagram presented in Figure 5.2.
To perform screen space rendering, two attributes must be deter-

mined for each pixel on the screen: depth and thickness. The depth im-
age captures the distance from the camera to the closest fluid particle
at each pixel, providing crucial information about the fluid’s surface ge-
ometry. Conversely, the thickness image records the cumulative depth
of fluid along the line of sight, reflecting the volumetric density of the
fluid encountered by the light ray. This dual-image approach enables a
comprehensive depiction of fluid dynamics directly in screen space.
Due to the discrete nature of particle-based simulations, the depth

image often contains noise and discontinuities, which can lead to arti-
facts in the rendered image. To mitigate these issues, smoothing filters,
such as a Gaussian filter [175], are applied. These filters can effectively
smooth the depth data, reducing noise and improving the visual quality
of the fluid surface. It operates by averaging the pixel values within a lo-
calized kernel, weighted by a Gaussian distribution, thus preserving im-

129

anisotropic screen space rendering for particle-based fluid simulation

Particle
information

Get thickness information

Get depth
information

Processed by smoothing filter

Depth
image

Thickness
image

Transparency
image

Background
scene Final

image

Smoothed
depth image

Normal
reconstruction

Color Compute normal

Figure 5.2: Schematic diagram of our screen space rendering pipeline for fluid
rendering: First, transform fluid particles to screen space to capture
depth and thickness information. Second, post-process the depth im-
age to reconstruct surface normals and render the fluid surface using
the combined data of normals and thickness.

portant edges while smoothing out irregularities. Once the depth image
has been smoothed, the next step involves reconstructing the normals
to the fluid surface. Surface normals are vectors that are perpendicular
to the tangent plane at each point on the surface, and they are crucial for
lighting calculations such as in the Blinn–Phong reflection model [35].
With the smoothed depth and reconstructed normals, the rendering

engine can simulate realistic lighting effects based on the properties of
the fluid material. This approach, integrating advanced image process-
ing techniques into fluid rendering, results in a highly realistic depiction
of fluid dynamics directly in screen space. Belowwe detail the rendering
pipeline.

130

5.2 real-time screen space fluid rendering

5.2.1 OpenGL Transformation Pipeline

In this section, we discuss the rendering pipeline using OpenGL-
specific terminology, focusing on how fluid particle positions are trans-
formed through various coordinate spaces. In the context of fluid
simulations, the position of each particle is defined in object space.
Each position vector is represented as a homogeneous vector x𝑜 =

[𝑥𝑜 .𝑥, 𝑥𝑜 .𝑦, 𝑥𝑜 .𝑧, 𝑥𝑜 .𝑤]𝑇 . The fourth component 𝑥𝑜 .𝑤 is set to 1 to fa-
cilitate transformations involving translation.
The transformation of each particle’s position to camera space is

achieved through the combined Model-View matrix M. This matrix in-
tegrates both modeling and viewing transformations:

xcam = M · x𝑜 . (5.1)

Here, the Model-View matrix M accounts for both the position and ori-
entation of the camera relative to the scene’s geometry, setting the stage
for a viewpoint-centric rendering.
Subsequent to camera space transformation, the coordinates are pro-

jected into clip space via the projection matrix P, which is responsible
for perspective distortion typical in 3D rendering:

x𝑐 = P · xcam . (5.2)

In clip space, coordinates remain in a homogeneous form where the
actual position and depth of the particle are encoded relative to the
viewing frustum. Following this, vertices undergo a perspective divi-
sion by the 𝑤-coordinate, transforming them into normalized device
coordinates (NDC). This division scales the 𝑥 , 𝑦, and 𝑧 components by
1/𝑤 , normalizing them within the bi-unit cube. Below we treat all posi-
tions in clip-space as in NDC unless otherwise specified.
Finally, the NDC coordinates are mapped to screen space, which cor-

responds to the actual pixel locations on the rendering viewport. This
transformation is critical for the precise rendering of visuals on the
screen.
During screen space rendering, it is crucial to deter-

mine the clip space coordinates for each pixel, denoted by
y𝑐 = [𝑦𝑐 .𝑥,𝑦𝑐 .𝑦,𝑦𝑐 .𝑧,𝑦𝑐 .𝑤]𝑇 , to distinguish them from the parti-
cle positions x. These pixel positions are processed through the
fragment shader within OpenGL. The accurate handling of clip space
coordinates y is essential, as they govern how fragments are trans-
formed into screen space, directly influencing the visual outcome of
the fluid simulation.

Vertex shader process. In OpenGL, the vertex shader first allocates
a point sprite by receiving the vertex coordinate x𝑜 , which acts as the
center of the point sprite. The particle’s size in object space, 𝑟𝑜 , is also

131

anisotropic screen space rendering for particle-based fluid simulation

passed to the vertex shader to set the size of the point sprite. To display
the point sprite on the screen, the vertex shader transforms x𝑜 and 𝑟𝑜
into clip space. The NDC process is automatically handled by OpenGL,
resulting in x𝑐 and 𝑟𝑐 . A square point sprite of size 𝑟𝑐 is then initialized.
The fragment shader further processes y𝑐 for each pixel within the al-
located point sprite, ensuring that the rendering accurately reflects the
fluid particle’s appearance and dynamics as per the simulation data.

Fragment shader process. In the fragment shader stage of OpenGL,
each pixel within a point sprite, centered at x𝑐 , is processed. The screen
space coordinates of each pixel, accessed via the gl_FragCoord vari-
able, are used to reconstruct the clip space position y𝑐 . The fragment
shader calculates the Euclidean distance between the center of the point
sprite x𝑐 and the pixel’s position y𝑐 . If this distance ∥y𝑐 − x𝑐 ∥ exceeds
the radius 𝑟𝑐/2, with

∥y𝑐 −x𝑐 ∥ =
(
(𝑦𝑐 .𝑥 − 𝑥𝑐 .𝑥)2 + (𝑦𝑐 .𝑦 − 𝑥𝑐 .𝑦)2 + (𝑦𝑐 .𝑧 − 𝑥𝑐 .𝑧)2

)1/2
, (5.3)

the pixel is discarded. Note that the 𝑤 component is not involved in
the ∥ · ∥ operation in this work. This ensures that the sprite appears
circular rather than square by trimming off pixels outside the circular
boundary. This process is essential for maintaining the intended visual
characteristics of the particles, ensuring that they appear as rounded en-
tities, which is critical for the realistic representation of fluid dynamics
in the simulation.

5.2.2 Screen Space Rendering

With the above-mentioned OpenGL pipeline for handling point sprites,
we now detail its integration into the computation of the depth image,
the smoothing process, the thickness image, as well as the surface shad-
ing.

Depth image. To obtain the depth image, it is crucial to compute
the depth value 𝑦𝑐 .𝑧 in normalized device coordinates (NDC) for each
pixel. This value quantifies the distance from each particle to the cam-
era, viewed from the camera’s perspective [65]. Importantly, the depth
information for each particle is initially known as 𝑥𝑐 .𝑧, and each parti-
cle is modeled as a sphere with diameter 𝑟𝑐 . Thus, the actual depth for
each pixel can be calculated based on these parameters.
In scenarios where particles overlap from the camera’s view, it is

essential to render only the closest, non-occluded particles for each
pixel. OpenGL effectively resolves this occlusion challenge using z-
buffer techniques. By employing these techniques, OpenGL can selec-
tively render each pixel based on the calculated depth 𝑦𝑐 .𝑧 in the frag-
ment shader, ensuring that occluded particles are not visualized. This

132

5.2 real-time screen space fluid rendering

capability is critical for preserving the visual integrity of depth percep-
tion in the rendered image.

Smoothing depth image. The use of depth images where each par-
ticle is treated as a sphere can often lead to an uneven appearance of
the fluid surface. To mitigate this rugged effect, various filters are ap-
plied to the depth image to smooth out the abrupt particle contours by
averaging the 𝑦𝑐.𝑧 values across local pixel groups. A commonly used
smoothing filter is the Gaussian filter, which considers the influence of
neighboring pixels using the Gaussian function 𝑔(y𝑐𝑖 , y𝑐 𝑗) as

𝑦𝐺𝑐𝑖 .𝑧 =

∑
𝑗 𝑔(y𝑐𝑖 , y𝑐 𝑗)𝑦𝑐 𝑗 .𝑧∑
𝑗 𝑔(y𝑐𝑖 , y𝑐 𝑗)

, (5.4)

where 𝑗 represents neighboring pixels to 𝑖 . The Gaussian function
𝑔(y𝑐𝑖 , y𝑐 𝑗) is defined as

𝑔(y𝑐𝑖 , y𝑐 𝑗) =
𝜁𝑖

𝜋
𝑒
−∥𝑦𝑐𝑖 .𝑥𝑦−𝑦𝑐 𝑗 .𝑥𝑦 ∥

2𝜁𝑖 , (5.5)

where 𝜁𝑖 denotes the precision of the distribution, influenced by
𝑦𝑐𝑖 .𝑧 [175, 291]. While Gaussian convolution effectively smooths parti-
cle depth data, it can also lead to over-smoothing, which may blur crit-
ical discontinuities. For example, particles that are close in 2D screen
space but have significant depth differences should maintain sharp
boundaries. However, Gaussian convolution fails to detect these bound-
aries and tends to smooth them out. Consequently, variants such as the
bilateral Gaussian filter are frequently adopted to balance detail preser-
vation with smoothing.

Thickness image. To get the thickness of the fluid being penetrated
from the direction of each pixel, we can reuse the process of deriving
the depth image by disabling the z-buffer techniques and accumulating
thickness 𝑟𝑐 in fragment shader. To achieve this, we need to set the blend
function as glBlendFunc(GL_ONE, GL_ONE) for OpenGL, indicating
adding the source value from fragment shader and the destination value
that is already in the frame buffer together for each pixel.

Normal reconstruction and surface shading. Once the depth im-
age is derived and smoothed, the next crucial step involves reconstruct-
ing the surface normals from the depth image. These normals are es-
sential for accurately simulating light interactions such as reflection
and refraction on the fluid surface. In the fragment shader, normals are
computed by first linearizing the depth values retrieved from the depth
texture. These linearized values are then converted into camera space
coordinates. To estimate gradients, differences in positions between ad-
jacent pixels are computed. Normals are subsequently derived by taking

133

anisotropic screen space rendering for particle-based fluid simulation

the cross product of these gradients. The resulting normal vector is then
normalized and validated to ensure it does not contain invalid values,
with a fallback to a predefined normal if necessary.

After reconstructing the normals, the shading of the fluid surface is
addressed by calculating refraction effects as described in the work of
Conde [63], and employing Blinn-Phong illumination techniques [35]
to realistically model light interaction with the fluid surface. The Blinn-
Phong model is particularly effective in enhancing visual richness by
simulating the specular highlights and diffuse reflections typical of fluid
appearances. Additionally, the transmittance of the fluid, which signif-
icantly affects how light passes through and emerges from the fluid, is
determined using the Beer-Lambert law [276]. These steps not only en-
hance the visual quality but also contribute significantly to the realism
of the rendered scene by allowing the simulation to mimic the dynamic
interplay of light with the fluid’s surface.

5.3 anisotropic transformation of point sprites for
fluid particles

In Lagrangian fluid simulation, achieving a finer-grained spatial dis-
cretization often involves increasing the simulation resolution by using
smaller particles. This approach tends to produce smoother edges when
rendering the fluid. However, increasing the resolution for 3D fluid sim-
ulations can severely impact performance, especially in real-time appli-
cations. To strike a balance between efficiency and quality, we employ a
technique based on theWeighted Principal Components Analysis (WPCA)
of SPH.
Ourmethod involves calculating anisotropic kernel functions derived

from the distribution of fluid particles. By using the eigenvalues and
eigenvectors obtained from the WPCA, we can deform the fluid parti-
cles in an anisotropic manner. This deformation is guided by the magni-
tudes of the eigenvalues along their corresponding eigenvectors, allow-
ing for efficient smoothing while preserving crucial details of the fluid’s
dynamic properties. The transformative effects of this anisotropic ad-
justment on the particles are visually represented and can be seen in
the screen space rendering comparisons illustrated in Figure 5.1.
This anisotropic transformation method enhances the visual quality

of fluid simulations by more accurately modeling the fluid’s behavior
and interactionswithin its environment, leading tomore realistic and vi-
sually appealing results. By adjusting particle shapes based on their spa-
tial distribution, our approach significantly reduces the need for high-
resolution meshes while still capturing the essential dynamics and sur-
face characteristics of the fluid.

134

5.3 anisotropic transformation of point sprites for fluid particles

5.3.1 Tracing Surface Using Smoothing Kernels

For explicit surface reconstruction using the marching cubes algorithm,
a scalar field 𝜙 (x) is initially determined across the simulation do-
main. This field is computed using the smoothing kernel𝑊 defined in
Equation (3.9) as

𝜙 (x) =
∑︁
𝑗

𝑉𝑗𝑊 (∥x − x𝑗 ∥, ℎ). (5.6)

The computed color field 𝜙 (x) typically takes values in the range [0, 1].
For surface reconstruction, the marching cubes algorithm is then ap-
plied to this field with a chosen positive threshold value.
However, as𝑊 is isotropic, the reconstructed surface often exhibits

spherical behavior, which may not accurately capture smooth surfaces
and sharp features. To mitigate this limitation, Yu and Turk [338] sug-
gest employing an anisotropic transformation to the smoothing kernel.
This approach involves replacing the isotropic support radius ℎ with an
anisotropic transformation matrix G, as

𝑊 (r,G) = 𝜆 det(G)𝑃 (∥rG∥). (5.7)

The anisotropic form of the smoothing kernel retains the same func-
tional form as the cubic spline kernel used in Equation (3.9). When the
transformation matrix G is set to 1

ℎ
I𝑑 , where I𝑑 is the identity matrix

of dimension 𝑑 , the kernel behaves isotropically. This capability allows
the kernel to adapt effectively to local particle distribution variations,
enhancing surface reconstruction fidelity, particularly in regions with
sharp geometrical changes.
The anisotropy matrix G modifies the kernel by incorporating the

directional characteristics of r, the vector between particles. This ad-
justment improves the simulation’s capacity to capture detailed flow
dynamics and directional features within the fluid. As illustrated
in Figure 5.1(a), under standard isotropic conditions, particles ex-
hibit spherical behavior. In contrast, Figure 5.1(b) demonstrates how
anisotropic processing refines particle shapes, leading to more elon-
gated forms and smoother transitions at the fluid’s edges. These vi-
sual comparisons highlight the significant benefits of employing an
anisotropic kernel, particularly in enhancing edge definition and overall
surface smoothness in fluid simulations.

5.3.2 Deriving the Anisotropy Matrix

To enhance the smoothing kernel’s adaptability to the fluid dynamics,
particularly to extend the influence of the kernel along the tangential di-
rectionmore than the normal direction to the fluid surface,WPCA is uti-
lized. This process involves calculating eigenvalues and eigenvectors by

135

anisotropic screen space rendering for particle-based fluid simulation

Model-View
Matrix

Projection
Matrix

Parameter
Space

Isotropic sphere-
represented particle

Anisotropic
Transform

Camera
Space

Clip
Space

Object
Space

Projected ellipse

Position
Transform

Anisotropic ellipsoid

Screen
Space

NDC

T

M

P

y𝑝
x𝑝

x𝑝 = [0, 0, 0, 1]𝑇 ∥y𝑝 ∥ ≤ 1/2

x𝑜 = Tx𝑝 = [𝑥𝑜 .𝑥, 𝑥𝑜 .𝑦, 𝑥𝑜 .𝑧, 1]𝑇

y𝑜 = Ty𝑝 [
𝑏+𝑥 , 𝑏+𝑦, y𝑐 .𝑧

]
[
𝑏−𝑥 , 𝑏−𝑦, y𝑐 .𝑧

]
(P ·M · T)−1y𝑐=y𝑝

∥ (P ·M · T)−1y𝑐 ∥ ≤ 1/2

Figure 5.3: The pipeline of rasterizing fluid particles onto screen space with
anisotropic transformation. We introduce an additional parameter
space into the rendering pipeline, where particles are initiated as
unit spheres centered at the coordinate origin. The transformation
matrix T, constructed based on the anisotropic transformation ma-
trixG, converts particles into object space. In NDC, pixel coordinates
are inverted back to parameter space to determine whether they fall
inside the projected ellipses.

performing eigendecomposition on the covariance matrix, which is for-
mulated based on the positions of the particles. This matrix effectively
captures the spatial distribution and orientation of particles within the
fluid.
Initially, a weight value 𝜔𝑖 𝑗 is assigned to each pair of fluid particles.

Using these weights, a weighted covariance matrix is constructed, fol-
lowed by performing Singular Value Decomposition (SVD) on this ma-
trix. The eigenvectors and eigenvalues derived from the SVD are then
used to construct the anisotropy matrix G. The weighted average posi-
tion of the fluid particles is given by

x̄𝑖 =
∑︁
𝑗

𝜔𝑖 𝑗x𝑗 , (5.8)

136

5.3 anisotropic transformation of point sprites for fluid particles

where 𝜔𝑖 𝑗 represents the weight assigned to the neighbor particle 𝑗 rel-
ative to particle 𝑖 . In our work, 𝜔𝑖 𝑗 is calculated using

𝜔𝑖 𝑗 =
𝑊

(
∥x𝑖 − x𝑗 ∥, ℎ

)∑
𝑗𝑊

(
∥x𝑖 − x𝑗 ∥, ℎ

) . (5.9)

This formulation ensures that a greater normalized weight is as-
signed to closer particles. The displacement of x̄𝑖 from x𝑖 can indicate
the distribution trend of the fluid surface. Based on this trend, a covari-
ance matrix C𝑖 for the fluid particle 𝑖 is constructed as

C𝑖 =
∑︁
𝑗

𝜔𝑖 𝑗 (x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)𝑇 . (5.10)

An SVD of the covariance matrix C𝑖 is employed to obtain the de-
composition C𝑖 = WΣW𝑇 , where Σ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑑) is the diag-
onal matrix containing the eigenvalues. These eigenvalues are ordered
from the largest to the smallest, representing the principal directions
and scales of the data spread.
To ensure stability in the anisotropic deformation and prevent ex-

treme elongations or compressions, a limit is imposed on the minimum
eigenvalue relative to the largest eigenvalue. Specifically, eigenvalues
smaller than 𝜆1/𝑘 are adjusted upwards, resetting to 𝜆1/𝑘 and denoted
as 𝜆𝑟 . This adjustment ensures that the ratio between the largest and
smallest eigenvalues does not exceed a predefined threshold, maintain-
ing the structural integrity of the deformation. In our experiments, this
threshold, 𝑘 , is set to 4.
Moreover, if the number of neighboring particles is less than or equal

to 20, no anisotropic kernel function is applied. This decision is based
on the reliability of statistical measures in small samples. Additionally,
a scale control factor 𝑠 is introduced to adjust the magnitude of the co-
variance matrix such that 𝑠 det(C) ≈ 1, preventing significant changes
in particle volume. In our experiments, we use 𝑠 = 1400. The regularized
covariance matrix, accommodating these adjustments, is represented as

C̃ = 𝑠WΣ𝑟W𝑇 , (5.11)

where Σ𝑟 is the diagonal matrix of the adjusted eigenvalues. The final
transformation matrix G is the inverse of C̃ regularized by ℎ as

G =
C̃−1

ℎ
. (5.12)

For implementation in screen space rendering, the denominator in
Equation (5.12) is removed to be incorporated with the coordinate trans-
formation.

137

anisotropic screen space rendering for particle-based fluid simulation

5.3.3 Transforming Sphere Particles onto the Screen Space

As depicted in Figure 5.3, a critical implementation step in our work
involves the anisotropic transformation of spherical particles into el-
lipsoids. This transformation presents unique challenges for rendering
point sprites as ellipses in screen space, as discussed in Section 5.2.
The primary challenge is determining which pixels within the allocated
square area of each point sprite fall inside the ellipses. Unlike spherical
particles where inclusion within a radius 𝑟𝑐/2 can be easily checked
with ∥x𝑐 − y𝑐 ∥ ≤ 𝑟𝑐/2, ellipsoids require a more complex approach due
to their anisotropic projection onto the screen, which typically results
in elliptical shapes rather than circles. While theoretically, ellipsoids un-
der perspective projection can produce parabolic or hyperbolic shapes,
these occurrences are exceedingly rare in our settings. Therefore, our
discussion will focus exclusively on elliptical projections.
The first issue to resolve is the precise identification of pixels that lie

within these ellipses. Since the ellipsoids are transformed based on their
orientation and scale in 3D space, their 2D projections—ellipses—do not
conform to simple radial checks. Instead, the inclusion test must ac-
count for the orientation and aspect ratio of the ellipse, necessitating
a transformation of the coordinate check into the space defined by the
ellipse’s major and minor axes.
A second challenge involves initializing the point sprites with appro-

priate sizes to ensure all pixels representing the ellipse are captured
without incorporating excessive redundant pixels. Directly using 𝑟𝑐 as
the point sprite size may not suffice, as it does not account for the elon-
gation and orientation of the ellipse in screen space. A possible solu-
tion involves calculating the bounding rectangle of the ellipse in screen
space, ensuring the size of the point sprite encompasses this rectangle.
This approach guarantees that the sprite is large enough to cover the
ellipse but not excessively large to waste computational resources.
To address the challenges associated with rendering ellipsoids in

screen space, we integrate techniques proposed by Sigg et al. [260] that
utilize an additional parameter space prior to object space transforma-
tion, as depicted in Figure 5.3. In this parameter space, each fluid particle
is centered at the coordinate origin x𝑝 = [0, 0, 0, 1]𝑇 with a standardized
size 𝑟𝑝 = 1. Therefore, for pixels to be considered inside the spheri-
cal boundary in the fragment shader, they must satisfy the condition
∥y𝑝 ∥ ≤ 1/2.
To transition coordinates from parameter space to object space, a

transformation matrix T is utilized:

T =

 𝑟𝑜G

𝑥𝑜 .𝑥

𝑥𝑜 .𝑦

𝑥𝑜 .𝑧

0 0 0 1

. (5.13)

138

5.3 anisotropic transformation of point sprites for fluid particles

In this matrix, G, the anisotropic transformation matrix, modifies the
spheres in parameter space into ellipsoids, reflecting their orienta-
tion and scale. The scalar 𝑟𝑜 adjusts the particle size, while x𝑜 posi-
tions the particle appropriately within object space. Notably, when the
anisotropic transformation is not applied, G defaults to I, the identity
matrix, which is consistent with the isotropic transformation process
previously described.

Size of the point sprite. To accurately determine the dimensions
of the projected ellipse for an anisotropic point sprite in screen space,
we compute the extreme positions [𝑏−𝑥 , 𝑏−𝑦] and [𝑏+𝑥 , 𝑏+𝑦]. This is
achieved by inversely transforming the clip space positions back to
the parameter space. For a point y𝑐 within the point sprite, the in-
clusion condition is defined by the plane equation n𝑇𝑐 y𝑐 ≤ 0, where
n𝑐 = [1, 0, 0, 𝑏𝑥]𝑇 represents the boundary plane in clip space.
To trace the boundary values 𝑏𝑥 back to the parameter space, we ap-

ply the transformation:

n𝑝 = (P ·M · T)𝑇 n𝑐 . (5.14)

Since all particles are standardized as a unit sphere in parameter space,
the spherical quadratic function for any vector n𝑝 must satisfy:

𝑛𝑝 .𝑥
2 + 𝑛𝑝 .𝑦2 + 𝑛𝑝 .𝑧2 = 𝑛𝑝 .𝑤

2, (5.15)

which is summarized in the bilinear form:

n𝑇𝑝

1

1
1
−1

n𝑝 = 0. (5.16)

Using these relationships, the dimensions [𝑏−𝑥 , 𝑏−𝑦] and [𝑏+𝑥 , 𝑏+𝑦] of
the ellipse can be derived from Equations (5.14) and (5.15).

Determine ellipse in fragment shader. To ascertain whether each
pixel resides within the projected ellipse in clip space, we first trans-
form the position of each pixel y𝑐 back to the parameter space. This is
achieved through the inverse transformation of the coordinate system
transformations applied to the original point sprites as

y𝑝 = (P ·M · T)−1 y𝑐 . (5.17)

In the parameter space, the problem of determining whether the pixel
lies within the ellipse simplifies to checking whether it lies inside a
unit sphere. This conversion effectively reduces the complex geomet-
rical problem in clip space to a simpler geometric test in parameter

139

anisotropic screen space rendering for particle-based fluid simulation

space, where the inclusion within a sphere is determined by the con-
dition ∥y𝑝 ∥ ≤ 1/2. If this condition is satisfied, the pixel is considered
to be inside the projected ellipse, ensuring accurate rendering of the
anisotropic particle.

5.4 results

The experiments below are performed using an AMD Ryzen 7 5800H
@3.20 GHz, 32GBmemory, andNVIDIA RTX 3060. The 3D graphics API
OpenGL is used for particle rendering, and C++ is used for the coding
of all additional techniques. In addition, GLSL is used to calculate the
fluid optical effects on the GPU. The frame rate exceeds 25 frames per
second (FPS) in all tests when the particle count is below 500k.

(a) isotropic (b) anisotropic

Figure 5.4: Experimental comparison of isotropy and anisotropy in the dam
break scenario.

5.4.1 Anisotropic Processing Results

In this subsection, we adopt an anisotropic algorithm to process fluid
particles to reduce the roughness of the fluid depth map, which can
improve the final rendering effect of the fluid surface. As shown in
Figure 5.4, (a) and (b) respectively represent the surface rendering re-
sults when two water blocks collide under isotropic and anisotropic
conditions. It can be observed that the overall surface rendering results
processed by the anisotropic algorithm are smoother, and the illumina-
tion shading is more realistic with fine highlights.
In addition, experimental verification is conducted for a fluid-solid

coupling scenario, as shown in Figure 5.5. In this scenario, real-time
fluid rendering based on the anisotropic algorithm shows better surface

140

5.4 results

(a) isotropic (b) anisotropic

Figure 5.5: Experimental comparison of isotropy and anisotropy in the fluid-
soild coupling scenario.

results with smoother surfaces, especially at the interface between the
rigid body and liquid.

5.4.2 Combination with Popular Smoothing Filters

Here we combine our anisotropic algorithm with various popular
smoothing filters to verify the effectiveness and practicability of the
proposed scheme under actual application scenarios. The Gaussian fil-
ter, the bilateral Gaussian filter, and the narrow-range filter use the same
number of iterations (𝑖𝑡𝑒𝑟 = 2). The curvature flow filter uses more iter-
ations (𝑖𝑡𝑒𝑟 = 80) to obtain flat surface results at the cost of performance
loss.
Figure 5.6 shows a dam-break fluid colliding with multiple differ-

ently shaped solid objects. Complex boundary geometries can be ob-
served in this case. We conducted this experiment using various kinds
of smoothing filters considering both isotropic and anisotropic condi-
tions. Figure 5.6a and Figure 5.6b show the surfaces constructed using
isotropic and anisotropic point sprites respectively. It can be seen that
the proposed anisotropic transformation scheme can enhance surface
performance with almost every state-of-the-art smoothing filter. The
second to the third row of Figure 5.6 exhibit how anisotropic transfor-
mation reduces the unevenness of particle distribution on the free sur-
face and coupling boundaries. The fourth row shows that our method
can also help to gather the sparsely distributed fluid particles represent-
ing splashes into more well-organized structures.
Figure 5.7 presents an experiment comparing the anisotropic surface

generation effects of fluid under different filtering methods in a com-

141

anisotropic screen space rendering for particle-based fluid simulation

No filter Gaussian Curvature
Flow

Bilateral
Gaussian Narrow-Range

(a) isotropic point sprites representation

No filter Gaussian Curvature
Flow

Bilateral
Gaussian Narrow-Range

(b) anisotropic point sprites representation

Figure 5.6: Experimental comparison of isotropy and anisotropy in the dam
break scenario. Part (a) of this figure demonstrates the surface con-
structed without anisotropic transformation; part (b) of this figure
shows how anisotropic transformation works with and without dif-
ferent smoothing filters.

plex fluid-rigid coupling boundary scenario. This comparison focuses
on three main aspects: preservation of details on the wave crest (second
row), smoothness of the fluid surface (third row), and the visual effects
on thin films with sharp edges (fourth row). To evaluate these filters, we
conducted a detailed analysis focusing on critical areas of fluid dynam-
ics that are challenging to render accurately. The wave crest preserva-
tion is essential for capturing the dynamic behavior and realism of fluid
surfaces, especially in high-energy interactions. Smoothness of the fluid
surface ensures a visually appealing and physically accurate represen-

142

5.4 results

Gaussian Bilateral Gaussian Curvature Flow Narrow-Range
Figure 5.7: From left to right are the Gaussian filter, the bilateral Gaussian filter,

the curvature flow filter, and the narrow-range filter.

tation of fluid flow, avoiding artifacts that could detract from realism.
The appearance of thin films with sharp edges is crucial in scenarios in-
volving surface tension effects and small-scale fluid details, which are
often difficult to reproduce accurately in simulations.
The Gaussian filter, despite its computational efficiency, results in sig-

nificant surface noise, deviating from the desired smoothness and detail
preservation. The bilateral Gaussian filter addresses boundary issues
in particle-deficient areas and reduces surface noise. However, it intro-
duces an over-flattening effect on discontinuous surface details, leading
to the loss of edge information between particles. The curvature flow
filter, after 80 iterations, achieves good surface effects in certain regions.
Nevertheless, this method is both unstable and time-consuming, mak-
ing it less practical for real-time applications. On the other hand, the
narrow-range filter effectively mitigates these issues, providing supe-
rior surface effects and better time efficiency, making it a more viable
solution for rendering fluid surfaces with complex interactions.
Figure 5.8 shows the influence of different filtering algorithms with

transparent fluids. It can be seen that compared with other algorithms,
the narrow-range filter algorithm can produce a smoother fluid effect.
Moreover, the overall highlight can form an obvious bright area, which
is more consistent with the water highlight effect in the real world.

143

anisotropic screen space rendering for particle-based fluid simulation

Gaussian Bilateral Gaussian Curvature Flow Narrow-Range

Figure 5.8: From left to right are the Gaussian filter, the bilateral Gaussian filter,
the curvature flow filter, and the narrow-range filter.

5.4.3 Performance Analysis of the Anisotropic Transformation

To evaluate how the refined anisotropic transformation affects the effi-
ciency of the screen space rendering, we carried out the experiment
of Figure 5.4 using multiple configurations with various numbers of
fluid particles, alternative smoothing filters, and the on/off status of the
anisotropic transformation.

Figure 5.9: Frame rate comparison of different algorithms.

The relationship between particle number and corresponding frame
rate under different methods is shown in Figure 5.9. We can see that
the anisotropic transformation barely affects the efficiency of the whole
screen space rendering pipeline. Although the curvature flow filter can
achieve better surface effects with a higher number of iterations, its ren-
dering time also increases. In contrast, the narrow-range filter method
not only gives a better surface effect but also keeps the rendering time
almost linearly increased with respect to the number of particles.

144

5.5 discussion and conclusion

5.5 discussion and conclusion

5.5.1 Summary

This work introduced a novel anisotropic real-time surface rendering
scheme leveraging the screen space approach, which significantly en-
hances the visual quality of fluid simulations. Utilizing WPCA, this
method achieves an anisotropic transformation of particle point sprites,
effectively resolving issues related to jagged edges and uneven surfaces
typical in traditional screen space rendering. Through comparative ex-
periments, we have identified the narrow-range filter as the most effec-
tive smoothing technique, balancing superior surface rendering with
acceptable frame rates.
Looking ahead, we aim to extend this research to encompass the real-

time visualization of more complex phenomena, such as multiphase
fluid mixing. Our future work will explore advanced techniques for
screen-space mapping of material type information to accurately repre-
sent the dynamic interactions and visual characteristics of mixed fluids.
This advancement could potentially redefine the standards for real-time
fluid visualization in virtual environments and interactive applications.

5.5.2 Limitations

Anisotropy matrix computation. Although the application of
anisotropic transformations for fluid particles minimally impacts the
performance of the screen-space rendering procedure, as evidenced
in Figure 5.9, the computation of the anisotropy matrices is time-
consuming. Achieving real-time performance necessitates precomput-
ing and storing these matrices for each particle at each frame. This per-
formance bottleneck stems from two primary factors. Firstly, comput-
ing the anisotropy matrix requires an additional neighbor search pro-
cedure for every frame. Secondly, the computational pipeline for the
anisotropy matrix itself is inherently time-intensive.
To align this process with real-time demands of the screen space ren-

dering pipeline, further studies on optimizing computation targets are
necessary. By limiting the computation of anisotropy matrices to only
those particles near the surface and coupling areas— which represent a
minor fraction of the total particle count—we can significantly save on
both neighbor search and anisotropy computation processes.

Multiphase rendering. The current anisotropic transformation
scheme does not account for interphase coupling surfaces that emerge
in multiphase fluid simulations. Treating mixed fluid flows as a homoge-
neous entity without considering these interactions can result in visu-
ally bumpy surfaces during transitions between fluid phases. Applying

145

anisotropic screen space rendering for particle-based fluid simulation

anisotropic computations separately can create gaps at the interphase
areas, disrupting visual continuity and realism.

146

6CONCLUS ION

This chapter concludes the thesis, which began by identifying the
trilemma in fluid simulation—efficiency, accuracy, and versatility—as
outlined in Chapter 1. This trilemma served as the driving force behind
our studies, leading to the formulation of three research questions, each
aimed at balancing these critical factors. We started by revisiting fluid
simulation research through a comprehensive survey in Chapter 2, high-
lighting how current studies address these questions. In pursuit of these
research objectives within the context of SPH, we proposed a spatially
adaptive mechanism for boundary detail enhancement in Chapter 3,
which significantly improves the accuracy of SPH simulations. Further-
more, we introduced an implicit mixturemodel for multiphase fluid sim-
ulation using a volume flux-free SPH solver in Chapter 4, enhancing the
versatility of SPH applications while maintaining stability. Lastly, we fo-
cused on visualization, proposing an anisotropic screen space rendering
scheme in Chapter 5 to efficiently produce high-quality visualizations
of simulation results.

6.1 contributions of this thesis

6.1.1 A Survey on Fluid Simulation

We conducted a comprehensive survey of fluid simulation within com-
puter graphics (Chapter 2), exploring research trends and challenges by
classifying and discussing key works from the past decade. This survey
serves as a valuable resource for both novices, by providing an histori-
cal overview, an introduction to the physical principles behind the sim-
ulations, and the basic discretization schemes commonly employed. It
is also intended for seasoned researchers seeking a deeper and broader
perspective of the field. We analyze a selection of representative studies,
evaluating their methodologies and differences in approach.
However, the survey is limited to developments within the last

decade, focusing primarily on the most recent and relevant topics. This
temporal scope, while keeping the work concentrated on cutting-edge
issues, inadvertently neglects several classic and well-established top-
ics. Notably, an organized discussion on enhancements in various dis-
cretization schemes such as MPM, SPH, and Eulerian methods is miss-
ing. Such discussions are crucial for a thorough analysis of mathemat-
ical formulations and computational approaches in fluid simulation.
These older yet foundational topics, published over ten years ago, con-
tinue to hold significant relevance in the field.

147

conclusion

6.1.2 An Adaptivity Mechanism with Boundary Refinement for SPH

We introduced an innovative adaptive mechanism for SPH (Chapter 3)
that enhances simulation detail near fluid-solid boundaries. This mecha-
nism utilizes a boundary-distance-based approach, employing a signed-
distance field relative to these boundaries to modulate particle resolu-
tion across varying spatial positions. The resolution is precisely cali-
brated to be highest near the boundary, diminishing gradually with in-
creasing distance until it reaches a predetermined threshold. This dy-
namic adjustment of particle sizes is achieved through an efficient split
and merge process. Additionally, we incorporated a wake flow preser-
vation mechanism that temporarily maintains high particle resolution
after an interaction with a boundary object, thereby capturing intricate
flow dynamics more accurately.
However, the process of determining the appropriate timing and spa-

tial conditions for initiating particle splitting or merging is just one as-
pect of the broader adaptability challenge. Further research is required
to refine the split-merge mechanism and to effectively manage the cou-
pling of particles of varying sizes. Such improvements are critical to
prevent energy conservation violations and to mitigate the risk of in-
duced instability in simulations. Furthermore, developing suitable adap-
tive time-steppingmechanisms tailored for spatial adaptivity represents
a promising yet challenging area for future research. Techniques such as
local time stepping, error-based adjustment, and predictive-corrective
schemes have the potential to optimize the duration of time steps based
on the dynamic demands of the simulation, thereby enhancing both ac-
curacy and computational efficiency.

6.1.3 An Implicitly Stable Mixture Model for Dynamic Multi-fluid Sim-
ulations

We have developed an implicitly stable mixture model for multiphase
fluid simulation (Chapter 4) utilizing an implicit SPH solver. This model
innovatively calculates phase momentum sources directly from themix-
ture model, allowing for the derivation of explicit and continuous veloc-
ity phase fields. Crucially, it avoids the reliance on an explicit mixture
field for dynamic computations and phase transfers between particles.
Instead, the mixture field is obtained implicitly using a phase-mixture
momentum-mapping mechanism, which ensures the conservation of
key physical properties such as incompressibility, mass, and momen-
tum. Furthermore, we introduced a mixture viscosity model that effec-
tively manages viscous interactions between themixture and individual
fluid phases, enhancing stability under conditions of extreme inertia.
While our model operates effectively without requiring local equilib-

rium assumptions, it shows a propensity for instability as the drift ve-
locity magnitude increases, necessitating the addition of interface vis-

148

6.2 addressing our research qestions

cosity to stabilize the simulation. Additionally, our method currently
does not include mechanisms for incorporating diffusion calculations,
which limits its ability to simulate nuanced phase-phase interaction ef-
fects comprehensively. These areas present opportunities for further en-
hancement of the model’s capabilities and accuracy in simulating com-
plex multi-fluid dynamics.

6.1.4 An Anisotropic Screen Space Rendering Scheme

We have developed an anisotropic screen space rendering scheme that
applies anisotropic transformations to point sprites in particle-based
fluid simulations (Chapter 5). This technique utilizes an anisotropy ma-
trix to stretch the sprites along the direction of feature vectors, effec-
tively smoothing the fluid surfaces. To guide these transformations ac-
curately, we employ a weighted principal component analysis of the
particle distribution. Additionally, the visual fidelity of the simulations
is further enhanced by integrating advanced screen space filters, such
as curvature flow and narrow-range depth processing, with the trans-
formed point sprites.
Although the application of this transformation technique can

achieve real-time performance when combined with various smoothing
filters, its computation requires considerable computational effort. The
process involves extensive calculations to derive the transformationma-
trices for all fluid particles, which includes both neighbor search and
matrix computation steps. This computational intensity can be a signif-
icant consideration in scenarios where processing speed is critical.
However, an important observation is that only particles near the

fluid surface require transformation, which represents a relatively
sparse subset of the total particle count. This presents an opportunity
for optimization. Future research could focus on developing methods to
efficiently identify these surface-near particles prior to the transforma-
tion process. By refining the selection of particles for transformation, it
is possible to significantly reduce the computational load and enhance
the efficiency of the method, making it more viable for scenarios where
processing speed is paramount.

6.2 addressing our research qestions

Below, we revisit the research questions proposed in Chapter 1 and dis-
cuss the answers based on the contributions made in this thesis.

RQ1: How to enhance simulation accuracy without incurring pro-
hibitive computational cost?

Improving simulation accuracy directly for three-dimensional mod-
els typically requires a quadratic increase in computational resources,
not to mention additional overheads such as neighbor searching and

149

conclusion

cache management issues. Our survey in Chapter 2 demonstrates
that enhancing simulation accuracy effectively without incurring pro-
hibitive computational cost involves dynamically improving simulation
quality only in the most critical areas.
Though the simulation space can be vast, in most scenarios, the cru-

cial details and dynamic motions are present only sparsely within space
and time. This observation indicates that high-resolution simulation is
necessary only in select parts of the simulation domain, while the re-
maining areas can be adequately represented with lower resolution. To
achieve this in SPH simulations, we identified three key aspects that
require thorough investigation:

• Field evaluation: To determine whether the current resolution is
appropriate for the simulated region.

• Resolution transformation: To transition smoothly and accurately
between different particle resolutions.

• Particle coupling: To effectively manage the interaction between
particles of different sizes.

In Chapter 3, we particularly focused on the aspect of field evaluation
and proposed a boundary-optimized adaptive solution dedicated to re-
fining the details around fluid-solid interactions. This approach ensures
that computational resources are allocated efficiently, enhancing accu-
racy where it is most needed without overwhelming the system with
unnecessary computation.

RQ2: How to accommodate complex effects in simulations without sig-
nificantly compromising accuracy and stability?

Our survey in Chapter 2 has shown that discretization approaches
in computer graphics typically aim to integrate versatile effects into a
single simulation scenario efficiently, favoring general-purpose solvers
over specialized ones. Thus, the key to accommodating complex effects
within general solvers is to simplify the governing equations of these ef-
fects to be compatible with widely used simulation solvers.

In fields like computational fluid dynamics (CFD), accuracy often
emerges as the paramount concern. Various optimization schemes are
developed specifically to enhance accuracy for critical elements of fluid
simulations. In contrast, fluid simulation in computer graphics prior-
itizes the realism of the output, necessitating not only accuracy but
also a rich diversity of simulated elements and scenarios that resonate
with everyday experiences. This requires the simulation solver to re-
main simple and general yet capable of accommodating the governing
equations for multiple visual effects. We believe the essential strategies
for achieving this in SPH include:

150

6.2 addressing our research qestions

• Complexity reduction: For methods derived from CFD, it is crucial
to simplify these methods to balance accuracy and visual realism
effectively.

• Mutual non-interference: For the discretization of new governing
equations, it is essential to ensure that these do not compromise
the computation of the Navier-Stokes equations.

• Computing unification: To enhance computational efficiency, ef-
forts should be made to consolidate shared computational needs.

In the development of our implicit multiphase mixture model in
Chapter 4, we concentrated on ensuring the mutual non-interference
between the mixture model and the SPH solver. This focus ensured
that the established SPH solver remains unaffected by the integration
of additional volume fraction schemes. As a result, our approach not
only maintained stability but also eliminated the need for Local Equilib-
rium Approximation (LEA) to ensure stability, demonstrating that our
method could sustain the necessary simulation accuracy and stability
while incorporating complex effects.

RQ3: How to refine visualization techniques for enhanced accuracy in
an efficient manner?

Visualization techniques play a pivotal role in conveying the results
of simulations with both accuracy and realism. The same simulation can
demonstrate varied behaviors when different visualization approaches
are employed. Our survey in Chapter 2 has highlighted that while vi-
sualization techniques for fluid simulation in computer graphics have
advanced significantly, special attention is still needed for specific appli-
cations like Smoothed Particle Hydrodynamics (SPH). To enhance both
the accuracy and efficiency of visualizing SPH-based fluid simulations,
we identified several key factors:

• Surface smoothing: Managing to retain both sharp edges and
smooth surfaces in SPH simulations, due to their particle-based
nature, poses a significant challenge.

• Sparsity handling: High-frequency details such as splashing and
thin films, where fluid particles are sparse, require special care to
prevent visual artifacts.

• Temporal coherence: To avoid flickering effects across frames,
which do not align with the mass conservation principle of SPH
particles, it is crucial to maintain temporal coherence by tracking
each particle over time.

We focused specifically on surface smoothing by implementing an
anisotropic transformation of fluid particles combined with an efficient

151

conclusion

screen space rendering scheme in Chapter 5. This approach was sup-
plemented by applying additional smoothing filters during the depth
image derivation, ensuring both sharp detail and smooth transitions on
fluid surfaces. This method stands out for its balance of efficiency and
visual fidelity, making it a robust solution for enhancing visualization
in SPH simulations.

6.3 future work

As we conclude this thesis, we recognize that while several advance-
ments have been made in each contribution area, there is considerable
potential in integrating these contributions to develop a cohesive, adap-
tive multiphase simulation system supplemented with screen space ren-
dering techniques. Here, we outline the avenues for future research and
development that could bring these components together into a unified
framework.

6.3.1 Integration of Adaptive Mechanisms and Multiphase Simulations

A primary challenge in the integration of the adaptive mechanism with
the multiphase component is improving the stability of the split-merge
process. Currently, the split-merge mechanism experiences slight insta-
bilities, which we have mitigated through a blending method that tran-
sitions particle sizes gradually over multiple time steps. Despite these
efforts, the system still struggleswith stability, particularlywith implicit
incompressible fluids. Future work will focus on developing new adap-
tive mechanisms that can maintain stability throughout the split and
merge processes. Additionally, exploring more robust particle coupling
methods that can handle drastic size ratios between particles will be
crucial for advancing this integration.

6.3.2 Enhancing Screen Space Rendering for Multiphase Fluids

While the screen space rendering approach effectively handles parti-
cles of different sizes, rendering multiphase fluids presents unique chal-
lenges. Accurately representing colors after penetration through mul-
tiple, interactively complex fluid phases is particularly difficult, espe-
cially in real-time scenarios. This complexity is exacerbated by the non-
uniform distribution of particles in space, which diverges from the reg-
ularity of grids and necessitates additional regularization processes for
computation. To address this, we plan to investigate a fast screen space
rendering scheme that leverages the consistency of particle movements
across space and time, aiming to optimize both the efficiency and accu-
racy of rendering complex fluid interactions.

152

6.3 future work

6.3.3 Unified Framework Development

The ultimate goal of our future work is to develop a unified frame-
work that seamlessly combines adaptive simulation mechanisms with
advanced rendering techniques, thereby creating a robust and efficient
tool for simulating and visualizing complex fluid dynamics. This inte-
grated system would not only push the boundaries of what is currently
achievable in SPH simulations but also enhance the applicability and re-
alism of simulated scenarios, making them more valuable for both aca-
demic research and practical applications in visual effects and scientific
visualization.

153

B I B L IOGRAPHY

[1] Mridul Aanjaneya. An efficient solver for two-way coupling
rigid bodies with incompressible flow. Computer Graphics Forum,
37(8):59–68, 2018.

[2] Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty,
and Eftychios Sifakis. Power diagrams and sparse paged grids
for high resolution adaptive liquids. ACM Trans. Graph., 36(4),
July 2017.

[3] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J.
Guibas. Adaptively sampled particle fluids. ACM Trans. Graph.,
26(3):48–es, July 2007.

[4] George Biddell Airy. Tides and waves. B. Fellowes, 1845.

[5] Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shi-
nar. An extended partitioned method for conservative solid-fluid
coupling. ACM Trans. Graph., 37(4), July 2018.

[6] Nadir Akinci, Gizem Akinci, and Matthias Teschner. Versatile
surface tension and adhesion for sph fluids. ACM Trans. Graph.,
32(6), November 2013.

[7] Nadir Akinci, Markus Ihmsen, GizemAkinci, Barbara Solenthaler,
and Matthias Teschner. Versatile rigid-fluid coupling for incom-
pressible sph. ACM Trans. Graph., 31(4), July 2012.

[8] Iván Alduán, Angel Tena, and Miguel A. Otaduy. Dyverso: A
versatile multi-phase position-based fluids solution for vfx. Com-
puter Graphics Forum, 36(8):32–44, 2017.

[9] Ryoichi Ando and Christopher Batty. A practical octree liquid
simulator with adaptive surface resolution. ACM Trans. Graph.,
39(4), July 2020.

[10] Ryoichi Ando, Nils Thuerey, and ChrisWojtan. A stream function
solver for liquid simulations. ACM Trans. Graph., 34(4), July 2015.

[11] Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. Preserving fluid
sheets with adaptively sampled anisotropic particles. IEEE Trans-
actions on Visualization and Computer Graphics, 18(8):1202–1214,
2012.

[12] Ryoichi Ando, Nils Thürey, and Chris Wojtan. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Trans. Graph.,
32(4), July 2013.

155

bibliography

[13] Alexis Angelidis. Multi-scale vorticle fluids. ACM Trans. Graph.,
36(4), July 2017.

[14] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Do-
natella Marini. Unified analysis of discontinuous galerkin meth-
ods for elliptic problems. SIAM journal on numerical analysis,
39(5):1749–1779, 2002.

[15] S. Auer and R. Westermann. A semi-lagrangian closest point
method for deforming surfaces. Computer Graphics Forum,
32(7):207–214, 2013.

[16] Stefan Auer, Colin B Macdonald, Marc Treib, Jens Schneider, and
Rüdiger Westermann. Real-time fluid effects on surfaces using
the closest point method. Computer Graphics Forum, 31(6):1909–
1923, 2012.

[17] Omri Azencot, Orestis Vantzos, and Mirela Ben-Chen. An ex-
plicit structure-preserving numerical scheme for epdiff. Com-
puter Graphics Forum, 37(5):107–119, 2018.

[18] Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max
Wardetzky, and Mirela Ben-Chen. Functional fluids on surfaces.
Computer Graphics Forum, 33(5):237–246, 2014.

[19] Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira.
Preserving geometry and topology for fluid flows with thin ob-
stacles and narrow gaps. ACM Trans. Graph., 35(4), July 2016.

[20] Vinicius C. Azevedo andManuelM. Oliveira. Efficient smoke sim-
ulation on curvilinear grids. Computer Graphics Forum, 32(7):235–
244, 2013.

[21] Kai Bai, Wei Li, Mathieu Desbrun, and Xiaopei Liu. Dynamic
upsampling of smoke through dictionary-based learning. ACM
Trans. Graph., 40(1), September 2020.

[22] Kai Bai, Chunhao Wang, Mathieu Desbrun, and Xiaopei Liu.
Predicting high-resolution turbulence details in space and time.
ACM Trans. Graph., 40(6), December 2021.

[23] Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis,
Andreas Peer, and Matthias Teschner. Pressure boundaries for
implicit incompressible sph. ACM Trans. Graph., 37(2), February
2018.

[24] Héctor Barreiro, Ignacio García-Fernández, Iván Alduán, and
Miguel A. Otaduy. Conformation constraints for efficient vis-
coelastic fluid simulation. ACM Trans. Graph., 36(6), November
2017.

156

bibliography

[25] Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grin-
spun. Discrete viscous sheets. ACM Trans. Graph., 31(4), July
2012.

[26] Markus Becker and Matthias Teschner. Weakly compressible
sph for free surface flows. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’07, page 209–217, 2007.

[27] Markus Becker, Hendrik Tessendorf, and Matthias Teschner. Di-
rect forcing for lagrangian rigid-fluid coupling. IEEE Transactions
on Visualization and Computer Graphics, 15(3):493–503, 2009.

[28] Jan Bender and Dan Koschier. Divergence-free sph for incom-
pressible and viscous fluids. IEEE Transactions on Visualization
and Computer Graphics, 23(3):1193–1206, 2017.

[29] Jan Bender and Dan Koschier. Divergence-free sph for incom-
pressible and viscous fluids. IEEE Transactions on Visualization
and Computer Graphics, 23(3):1193–1206, 2017.

[30] Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler.
A micropolar material model for turbulent sph fluids. In Proceed-
ings of the ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, SCA ’17, 2017.

[31] Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier.
Implicit frictional boundary handling for sph. IEEE Transactions
on Visualization and Computer Graphics, 26(10):2982–2993, 2020.

[32] Jean-Pierre Berenger. A perfectly matched layer for the absorp-
tion of electromagnetic waves. Journal of Computational Physics,
114(2):185–200, 1994.

[33] John Biddiscombe, Jerome Soumagne, Guillaume Oger, David
Guibert, and Jean-Guillaume Piccinali. Parallel computational
steering for hpc applications using hdf5 files in distributed shared
memory. IEEE Transactions on Visualization and Computer Graph-
ics, 18(6):852–864, 2012.

[34] Blender Foundation, Stichting Blender Foundation, Amsterdam.
Blender - a 3D modelling and rendering package, 2018.

[35] James F. Blinn. Models of light reflection for computer synthe-
sized pictures. volume 11, page 192–198, New York, NY, USA,
July 1977. Association for Computing Machinery.

[36] Morten Bojsen-Hansen, Hao Li, and Chris Wojtan. Tracking sur-
faces with evolving topology. ACMTrans. Graph., 31(4), July 2012.

157

bibliography

[37] Morten Bojsen-Hansen and Chris Wojtan. Liquid surface track-
ing with error compensation. ACM Trans. Graph., 32(4), July 2013.

[38] Morten Bojsen-Hansen and Chris Wojtan. Generalized non-
reflecting boundaries for fluid re-simulation. ACM Trans. Graph.,
35(4), July 2016.

[39] Landon Boyd and Robert Bridson. Multiflip for energetic two-
phase fluid simulation. ACM Trans. Graph., 31(2), April 2012.

[40] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eck-
stein, et al. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

[41] J.U. Brackbill and H.M. Ruppel. Flip: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimen-
sions. Journal of Computational Physics, 65(2):314–343, 1986.

[42] Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and
Klaus Hildebrandt. The reduced immersed method for real-time
fluid-elastic solid interaction and contact simulation. ACM Trans.
Graph., 38(6), November 2019.

[43] Christopher E Brennen. Fundamentals of multiphase flow. Cam-
bridge University Press, 2005.

[44] Robert Bridson. Fluid Simulation for Computer Graphics. 2008.

[45] Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren.
Animating bubble interactions in a liquid foam. ACM Trans.
Graph., 31(4), July 2012.

[46] José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim,
Javier Portilla, and Miguel A. Otaduy. Dispersion kernels for wa-
ter wave simulation. ACM Trans. Graph., 35(6), November 2016.

[47] Yadi Cao, Yunuo Chen, Minchen Li, Yin Yang, Xinxin Zhang,
Mridul Aanjaneya, and Chenfanfu Jiang. An efficient b-spline
lagrangian/eulerian method for compressible flow, shock waves,
and fracturing solids. ACM Trans. Graph., 41(5), May 2022.

[48] Yue Chang, Shusen Liu, Xiaowei He, Sheng Li, and Guoping
Wang. Semi-analytical solid boundary conditions for free surface
flows. Computer Graphics Forum, 39(7):131–141, 2020.

[49] Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon,
David A. B. Hyde, and Joseph Teran. A momentum-conserving
implicit material point method for surface tension with contact
angles and spatial gradients. ACM Trans. Graph., 40(4), July 2021.

158

bibliography

[50] Xiao-Song Chen, Chen-Feng Li, Geng-Chen Cao, Yun-Tao Jiang,
and Shi-Min Hu. A moving least square reproducing kernel par-
ticle method for unified multiphase continuum simulation. ACM
Trans. Graph., 39(6), November 2020.

[51] Yi-Lu Chen, Jonathan Meier, Barbara Solenthaler, and Vinicius C.
Azevedo. An extended cut-cell method for sub-grid liquids track-
ing with surface tension. ACM Trans. Graph., 39(6), November
2020.

[52] Yixin Chen, Wei Li, Rui Fan, and Xiaopei Liu. Gpu optimization
for high-quality kinetic fluid simulation. IEEE Transactions on
Visualization and Computer Graphics, 28(9):3235–3251, 2022.

[53] Zhili Chen, Byungmoon Kim, Daichi Ito, andHuaminWang. Wet-
brush: Gpu-based 3d painting simulation at the bristle level. ACM
Trans. Graph., 34(6), October 2015.

[54] Nuttapong Chentanez andMatthias Mueller-Fischer. A multigrid
fluid pressure solver handling separating solid boundary condi-
tions. IEEE Transactions on Visualization and Computer Graphics,
18(8):1191–1201, 2012.

[55] Nuttapong Chentanez, Matthias Müller, Miles Macklin, and Tae-
Yong Kim. Fast grid-free surface tracking. ACM Trans. Graph.,
34(4), July 2015.

[56] Nuttapong Chentanez, Matthias Müller, and Tae-Yong Kim. Cou-
pling 3d eulerian, heightfield and particle methods for interactive
simulation of large scale liquid phenomena. IEEE Transactions on
Visualization and Computer Graphics, 21(10):1116–1128, 2015.

[57] Junghyun Cho and Hyeong-Seok Ko. Geometry-aware volume-
of-fluid method. Computer Graphics Forum, 32(2pt3):379–388,
2013.

[58] Alexandre Joel Chorin. The numerical solution of the navier-
stokes equations for an incompressible fluid. Bulletin of the Amer-
ican Mathematical Society, 73(6):928–931, 1967.

[59] JieyuChu, Nafees Bin Zafar, andXubo Yang. A schur complement
preconditioner for scalable parallel fluid simulation. ACM Trans.
Graph., 36(5), July 2017.

[60] Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke
flows with cnn-based feature descriptors. ACM Trans. Graph.,
36(4), July 2017.

[61] Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and
James F. OB́rien. Simulating liquids and solid-liquid interactions
with lagrangian meshes. ACM Trans. Graph., 32(2), April 2013.

159

bibliography

[62] A. Clebsch. Ueber die integration der hydrodynamischen gle-
ichungen. Journal für die reine und angewandteMathematik, 56:1–
10, 1859.

[63] MM Conde, C Vega, and A Patrykiejew. The thickness of a liq-
uid layer on the free surface of ice as obtained from computer
simulation. The Journal of chemical physics, 129(1):014702, 2008.

[64] Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias
Teschner. Iisph-flip for incompressible fluids. Computer Graphics
Forum, 33(2):255–262, 2014.

[65] N Cornells and Luc Van Gool. Real-time connectivity constrained
depth map computation using programmable graphics hardware.
In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 1099–1104. IEEE,
2005.

[66] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die
partiellen Differenzengleichungen der mathematischen Physik.
Mathematische annalen, 100(1):32–74, 1928.

[67] Qiaodong Cui, Timothy Langlois, Pradeep Sen, and Theodore
Kim. Spiral-spectral fluid simulation. ACM Trans. Graph., 40(6),
December 2021.

[68] Qiaodong Cui, Pradeep Sen, and Theodore Kim. Scalable lapla-
cian eigenfluids. ACM Trans. Graph., 37(4), July 2018.

[69] Fang Da, Christopher Batty, and Eitan Grinspun. Multimaterial
mesh-based surface tracking. ACM Trans. Graph., 33(4), July 2014.

[70] Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grin-
spun. Double bubbles sans toil and trouble: Discrete circulation-
preserving vortex sheets for soap films and foams. ACM Trans.
Graph., 34(4), July 2015.

[71] FangDa, David Hahn, Christopher Batty, ChrisWojtan, and Eitan
Grinspun. Surface-only liquids. ACM Trans. Graph., 35(4), July
2016.

[72] F. Dagenais, J. Gagnon, and E. Paquette. Detail-preserving ex-
plicit mesh projection and topology matching for particle-based
fluids. Computer Graphics Forum, 36(8):444–457, 2017.

[73] Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov,
and Mathieu Desbrun. Power particles: An incompressible fluid
solver based on power diagrams. ACM Trans. Graph., 34(4), July
2015.

160

bibliography

[74] Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid simu-
lation using laplacian eigenfunctions. ACM Trans. Graph., 31(1),
February 2012.

[75] Yitong Deng, Mengdi Wang, Xiangxin Kong, Shiying Xiong,
Zangyueyang Xian, and Bo Zhu. A moving eulerian-lagrangian
particle method for thin film and foam simulation. ACM Trans.
Graph., 41(4), July 2022.

[76] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles:
A new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics Workshop on Computer Animation
and Simulation ’96, pages 61–76, 1996.

[77] M.-L. Eckert, W. Heidrich, and N. Thuerey. Coupled fluid den-
sity and motion from single views. Computer Graphics Forum,
37(8):47–58, 2018.

[78] Marie-Lena Eckert, Kiwon Um, and Nils Thuerey. Scalarflow:
A large-scale volumetric data set of real-world scalar transport
flows for computer animation and machine learning. ACM Trans.
Graph., 38(6), November 2019.

[79] Essex Edwards and Robert Bridson. Detailed water with coarse
grids: Combining surface meshes and adaptive discontinuous
galerkin. ACM Trans. Graph., 33(4), July 2014.

[80] R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. Chimera
grids for water simulation. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’13, page 85–94, 2013.

[81] Abbas Fakhari, Diogo Bolster, and Li-Shi Luo. A weighted
multiple-relaxation-time lattice boltzmann method for multi-
phase flows and its application to partial coalescence cascades.
Journal of Computational Physics, 341:22–43, 2017.

[82] Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. A
temporally adaptive material point method with regional time
stepping. Computer Graphics Forum, 37(8):195–204, 2018.

[83] Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul
Aanjaneya, and Chenfanfu Jiang. Iq-mpm: An interface quadra-
ture material point method for non-sticky strongly two-way cou-
pled nonlinear solids and fluids. ACM Trans. Graph., 39(4), July
2020.

[84] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simu-
lation of smoke. In Proc. ACM SIGGRAPH, pages 15–22, 2001.

161

bibliography

[85] Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and
Changxi Zheng. A multi-scale model for simulating liquid-fabric
interactions. ACM Trans. Graph., 37(4), July 2018.

[86] Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and
Changxi Zheng. A multi-scale model for coupling strands with
shear-dependent liquid. ACM Trans. Graph., 38(6), November
2019.

[87] Yun (Raymond) Fei, Henrique Teles Maia, Christopher Batty,
Changxi Zheng, and Eitan Grinspun. Amulti-scale model for sim-
ulating liquid-hair interactions. ACM Trans. Graph., 36(4), July
2017.

[88] Fan Feng, Jinyuan Liu, Shiying Xiong, Shuqi Yang, Yaorui Zhang,
and Bo Zhu. Impulse fluid simulation. IEEE Transactions on Visu-
alization and Computer Graphics, pages 1–1, 2022.

[89] Florian Ferstl, Ryoichi Ando, ChrisWojtan, RüdigerWestermann,
and Nils Thuerey. Narrow band flip for liquid simulations. Com-
puter Graphics Forum, 35(2):225–232, 2016.

[90] Florian Ferstl, Rüdiger Westermann, and Christian Dick. Large-
scale liquid simulation on adaptive hexahedral grids. IEEE Trans-
actions on Visualization and Computer Graphics, 20(10):1405–
1417, 2014.

[91] Sean Flynn, Parris Egbert, Seth Holladay, and Bryan Morse. Fluid
carving: Intelligent resizing for fluid simulation data. ACM Trans.
Graph., 38(6), November 2019.

[92] Sean Flynn, David Hart, Bryan Morse, Seth Holladay, and Parris
Egbert. Generalized fluid carving with fast lattice-guided seam
computation. ACM Trans. Graph., 40(6), December 2021.

[93] Zahra Forootaninia and Rahul Narain. Frequency-domain smoke
guiding. ACM Trans. Graph., 39(6), November 2020.

[94] Nick Foster and Dimitri Metaxas. Realistic animation of liquids.
Graphical Models and Image Processing, 58(5):471–483, 1996.

[95] Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and
Joseph Teran. A polynomial particle-in-cell method. ACM Trans.
Graph., 36(6), November 2017.

[96] Makoto Fujisawa and Kenjiro T. Miura. An efficient boundary
handling with a modified density calculation for sph. Computer
Graphics Forum, 34(7):155–162, 2015.

162

bibliography

[97] Jonathan Gagnon, Julián E. Guzmán, David Mould, and Eric Pa-
quette. Patch erosion for deformable lapped textures on 3d fluids.
Computer Graphics Forum, 40(2):367–374, 2021.

[98] Jonathan Gagnon, Julián E. Guzmán, Valentin Vervondel,
François Dagenais, David Mould, and Eric Paquette. Distribution
update of deformable patches for texture synthesis on the free
surface of fluids. Computer Graphics Forum, 38(7):491–500, 2019.

[99] Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot,
Eftychios Sifakis, and Chenfanfu Jiang. Animating fluid sediment
mixture in particle-laden flows. ACM Trans. Graph., 37(4), July
2018.

[100] Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and
Eftychios Sifakis. An adaptive generalized interpolation material
point method for simulating elastoplastic materials. ACM Trans.
Graph., 36(6), November 2017.

[101] Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios
Sifakis, Cem Yuksel, and Chenfanfu Jiang. Gpu optimization of
material point methods. ACM Trans. Graph., 37(6), December
2018.

[102] Yang Gao, Shuai Li, Aimin Hao, and Hong Qin. Simulating multi-
scale, granular materials and their transitions with a hybrid euler-
lagrange solver. IEEE Transactions on Visualization and Computer
Graphics, 27(12):4483–4494, 2021.

[103] Yang Gao, Quancheng Zhang, Shuai Li, Aimin Hao, and Hong
Qin. Accelerating liquid simulation with an improved data-
driven method. Computer Graphics Forum, 39(6):180–191, 2020.

[104] Yue Gao, Chen-Feng Li, Bo Ren, and Shi-Min Hu. View-
dependent multiscale fluid simulation. IEEE Transactions on Vi-
sualization and Computer Graphics, 19(2):178–188, 2013.

[105] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrody-
namics: theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society, 181(3):375–389, Decem-
ber 1977.

[106] Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and
Matthias Teschner. Interlinked sph pressure solvers for strong
fluid-rigid coupling. ACM Trans. Graph., 38(1), January 2019.

[107] Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski,
Pradeep Dubey, and Ming Lin. Large-scale fluid simulation us-
ing velocity-vorticity domain decomposition. ACMTrans. Graph.,
31(6), November 2012.

163

bibliography

[108] Ryan Goldade, Mridul Aanjaneya, and Christopher Batty. Con-
straint bubbles and affine regions: Reduced fluid models for ef-
ficient immersed bubbles and flexible spatial coarsening. ACM
Trans. Graph., 39(4), July 2020.

[109] Ryan Goldade, Christopher Batty, and Chris Wojtan. A practical
method for high-resolution embedded liquid surfaces. Computer
Graphics Forum, 35(2):233–242, 2016.

[110] Ryan Goldade, YipengWang, Mridul Aanjaneya, and Christopher
Batty. An adaptive variational finite difference framework for
efficient symmetric octree viscosity. ACM Trans. Graph., 38(4),
July 2019.

[111] Prashant Goswami and Christopher Batty. Regional Time Step-
ping for SPH. In Eric Galin and Michael Wand, editors, Euro-
graphics 2014 - Short Papers, 2014.

[112] Simon Green. Screen space fluid rendering for games. In Pro-
ceedings for the Game Developers Conference. Moscone Center San
Francisco, CA, 2010.

[113] L Greengard and V Rokhlin. A fast algorithm for particle simula-
tions. Journal of Computational Physics, 73(2):325–348, 1987.

[114] James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich.
From capture to simulation: Connecting forward and inverse
problems in fluids. ACM Trans. Graph., 33(4), July 2014.

[115] Jie Guo, Mengtian Li, Zijing Zong, Yuntao Liu, Jingwu He, Yan-
wen Guo, and Ling-Qi Yan. Volumetric appearance stylization
with stylizing kernel prediction network. ACM Trans. Graph.,
40(4), July 2021.

[116] Yulong Guo, Xiaopei Liu, and Xuemiao Xu. A unified detail-
preserving liquid simulation by two-phase lattice boltzmann
modeling. IEEE Transactions on Visualization and Computer
Graphics, 23(5):1479–1491, 2017.

[117] Francis H Harlow. The particle-in-cell method for numerical so-
lution of problems in fluid dynamics. Technical report, March
1962.

[118] Francis H Harlow. The particle-in-cell computing method for
fluid dynamics. Methods Comput. Phys., 3:319–343, 1964.

[119] Francis H. Harlow and J. Eddie Welch. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface. The Physics of Fluids, 8(12):2182–2189, 1965.

164

bibliography

[120] S He and R. W. H. Lau. Synthetic controllable turbulence using
robust second vorticity confinement. Computer Graphics Forum,
32(1):27–35, 2013.

[121] Xiaowei He, Ning Liu, Guoping Wang, Fengjun Zhang, Sheng Li,
Songdong Shao, and Hongan Wang. Staggered meshless solid-
fluid coupling. ACM Trans. Graph., 31(6), November 2012.

[122] Xiaowei He, Huamin Wang, and Enhua Wu. Projective peridy-
namics for modeling versatile elastoplastic materials. IEEE Trans-
actions on Visualization and Computer Graphics, 24(9):2589–2599,
2018.

[123] Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang,
Guoping Wang, and Kun Zhou. Robust simulation of sparsely
sampled thin features in sph-based free surface flows. ACMTrans.
Graph., 34(1), December 2015.

[124] Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang,
Guoping Wang, Kun Zhou, and Enhua Wu. Simulation of fluid
mixingwith interface control. In Proceedings of the 14th ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation, SCA
’15, page 129–135, 2015.

[125] David J. Hill and Ronald D. Henderson. Efficient fluid simulation
on the surface of a sphere. ACM Trans. Graph., 35(2), April 2016.

[126] Hendrik Hochstetter and Andreas Kolb. Evaporation and conden-
sation of sph-based fluids. In Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, SCA ’17, 2017.

[127] Darryl D Holm, Tanya Schmah, and Cristina Stoica. Geometric
mechanics and symmetry: from finite to infinite dimensions, vol-
ume 12. 2009.

[128] Christopher Horvath and Barbara Solenthaler. Mass preserving
multi-scale sph. Pixar Technical Memo #13-04, 01 2013.

[129] Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre
Pradhana, and Chenfanfu Jiang. A moving least squares material
pointmethodwith displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph., 37(4), July 2018.

[130] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-
Kelley, and Frédo Durand. Taichi: A language for high-
performance computation on spatially sparse data structures.
ACM Trans. Graph., 38(6), November 2019.

[131] Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu,
Ye Kuang, Weiwei Xu, Qiang Dai, William T. Freeman, and Frédo

165

bibliography

Durand. Quantaichi: A compiler for quantized simulations. ACM
Trans. Graph., 40(4), July 2021.

[132] Libo Huang, Torsten Hädrich, and Dominik L. Michels. On the
accurate large-scale simulation of ferrofluids. ACM Trans. Graph.,
38(4), July 2019.

[133] Libo Huang and Dominik L. Michels. Surface-only ferrofluids.
ACM Trans. Graph., 39(6), November 2020.

[134] Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L.
Michels, and Chenfanfu Jiang. Ships, splashes, and waves on a
vast ocean. ACM Trans. Graph., 40(6), December 2021.

[135] Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu,
Chenfanfu Jiang, and Matthias B. Hullin. Chemomechanical sim-
ulation of soap film flow on spherical bubbles. ACMTrans. Graph.,
39(4), July 2020.

[136] M. Huber, B. Eberhardt, and D. Weiskopf. Boundary handling at
cloth–fluid contact. Computer Graphics Forum, 34(1):14–25, 2015.

[137] David A. B. Hyde, StevenW. Gagniere, Alan Marquez-Razon, and
Joseph Teran. An implicit updated lagrangian formulation for liq-
uids with large surface energy. ACM Trans. Graph., 39(6), Novem-
ber 2020.

[138] Hikaru Ibayashi, Chris Wojtan, Nils Thuerey, Takeo Igarashi,
and Ryoichi Ando. Simulating liquids on dynamically warping
grids. IEEE Transactions on Visualization and Computer Graphics,
26(6):2288–2302, 2020.

[139] Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christo-
pher Horvath, and Matthias Teschner. Implicit incompressible
sph. IEEE Transactions on Visualization and Computer Graphics,
20(3):426–435, 2014.

[140] Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas
Kolb, and Matthias Teschner. SPH Fluids in Computer Graphics.
In Sylvain Lefebvre and Michela Spagnuolo, editors, Eurograph-
ics 2014 - State of the Art Reports. The Eurographics Association,
2014.

[141] Jaeho Im, Hanwook Park, Jong-Hyun Kim, and Chang-Hun Kim.
A particle-grid method for opaque ice formation. Computer
Graphics Forum, 32(2pt3):371–377, 2013.

[142] T. Inglis, M.-L. Eckert, J. Gregson, and N. Thuerey. Primal-dual
optimization for fluids. Computer Graphics Forum, 36(8):354–368,
2017.

166

bibliography

[143] Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya
Hachisuka, and Chris Wojtan. A model for soap film dy-
namics with evolving thickness. ACM Trans. Graph., 39(4), July
2020.

[144] Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and
Toshiya Hachisuka. A hyperbolic geometric flow for evolving
films and foams. ACM Trans. Graph., 36(6), November 2017.

[145] Andrei C. Jalba, Jacek Kustra, and Alexandru C. Telea. Sur-
face and curve skeletonization of large 3d models on the gpu.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(6):1495–1508, 2013.

[146] Ondřej Jamriška, Jakub Fišer, Paul Asente, Jingwan Lu, Eli Shecht-
man, andDaniel Sýkora. Lazyfluids: Appearance transfer for fluid
animations. ACM Trans. Graph., 34(4), July 2015.

[147] Taekwon Jang, Heeyoung Kim, Jinhyuk Bae, Jaewoo Seo, and Jun-
yong Noh. Multilevel vorticity confinement for water turbulence
simulation. The Visual Computer, 26(6–8):873–881, 2010.

[148] S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-
Fischer, and C. Wojtan. Making procedural water waves
boundary-aware. Computer Graphics Forum, 39(8):47–54, 2020.

[149] Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nut-
tapong Chentanez, Miles Macklin, and Chris Wojtan. Water sur-
face wavelets. ACM Trans. Graph., 37(4), July 2018.

[150] Stefan Jeschke and Chris Wojtan. Water wave animation via
wavefront parameter interpolation. ACM Trans. Graph., 34(3),
May 2015.

[151] Stefan Jeschke and Chris Wojtan. Water wave packets. ACM
Trans. Graph., 36(4), July 2017.

[152] Chenfanfu Jiang, Theodore Gast, and Joseph Teran. Anisotropic
elastoplasticity for cloth, knit and hair frictional contact. ACM
Trans. Graph., 36(4), July 2017.

[153] Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran,
and Alexey Stomakhin. The affine particle-in-cell method. ACM
Trans. Graph., 34(4), July 2015.

[154] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stom-
akhin, and Andrew Selle. The material point method for sim-
ulating continuum materials. In ACM SIGGRAPH 2016 Courses,
SIGGRAPH ’16, 2016.

167

bibliography

[155] Y. Jiang and Y. Lan. A dynamic mixture model for non-
equilibrium multiphase fluids. Computer Graphics Forum,
40(7):85–95, 2021.

[156] Y. Jiang, C. Li, S. Deng, and S. M. Hu. A divergence-free mixture
model for multiphase fluids. Computer Graphics Forum, 39(8):69–
77, 2020.

[157] Richard Jones and Richard Southern. Physically-based droplet
interaction. In Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, SCA ’17, 2017.

[158] T. Keeler and R. Bridson. Ocean waves animation using bound-
ary integral equations and explicit mesh tracking. SCA 2014 -
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 11–19, 2014.

[159] Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara
Solenthaler. Transport-based neural style transfer for smoke sim-
ulations. ACM Trans. Graph., 38(6), November 2019.

[160] Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara
Solenthaler. Lagrangian neural style transfer for fluids. ACM
Trans. Graph., 39(4), July 2020.

[161] Jong-Hyun Kim, Jung Lee, Sungdeok Cha, and Chang-Hun Kim.
Efficient representation of detailed foam waves by incorporating
projective space. IEEE Transactions on Visualization and Com-
puter Graphics, 23(9):2056–2068, 2017.

[162] Theodore Kim and John Delaney. Subspace fluid re-simulation.
ACM Trans. Graph., 32(4), July 2013.

[163] Theodore Kim, Jerry Tessendorf, and Nils Thürey. Closest point
turbulence for liquid surfaces. ACM Trans. Graph., 32(2), April
2013.

[164] T. Koike, S. Morishima, and R. Ando. Asynchronous eulerian liq-
uid simulation. Computer Graphics Forum, 39(2):1–8, 2020.

[165] Dan Koschier and Jan Bender. Density maps for improved sph
boundary handling. In Proceedings of the ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, SCA ’17, 2017.

[166] Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias
Teschner. Smoothed particle hydrodynamics techniques for the
physics based simulation of fluids and solids. Eurographics 2019 -
Tutorials, 2019.

168

bibliography

[167] L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Polle-
feys, and Markus Gross. Data-driven fluid simulations using re-
gression forests. ACM Trans. Graph., 34(6), October 2015.

[168] Junyu Lai, Yangang Chen, Yu Gu, Christopher Batty, and
Justin W.L. Wan. Fast and scalable solvers for the fluid pressure
equations with separating solid boundary conditions. Computer
Graphics Forum, 39(2):23–33, 2020.

[169] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Fluid
Mechanics, volume 6. 2013.

[170] Timothy R. Langlois, Changxi Zheng, and Doug L. James. Toward
animating water with complex acoustic bubbles. ACM Trans.
Graph., 35(4), July 2016.

[171] Egor Larionov, Christopher Batty, and Robert Bridson. Varia-
tional stokes: A unified pressure-viscosity solver for accurate vis-
cous liquids. ACM Trans. Graph., 36(4), July 2017.

[172] Minjae Lee, David Hyde, Michael Bao, and Ronald Fedkiw. A
skinned tetrahedral mesh for hair animation and hair-water inter-
action. IEEE Transactions on Visualization and Computer Graphics,
25(3):1449–1459, 2019.

[173] Minjae Lee, David Hyde, Kevin Li, and Ronald Fedkiw. A ro-
bust volume conserving method for character-water interaction.
In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’19, 2019.

[174] Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. Mass
and momentum conservation for fluid simulation. In Proceedings
of the 2011 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pages 91–100, 2011.

[175] Anat Levin, Rob Fergus, Frédo Durand, and William T. Freeman.
Image and depth from a conventional camera with a coded aper-
ture. ACM Trans. Graph., 26(3):70–es, July 2007.

[176] Chen Li, Sheng Qiu, Changbo Wang, and Hong Qin. Learning
physical parameters and detail enhancement for gaseous scene
design based on data guidance. IEEE Transactions on Visualization
and Computer Graphics, 27(10):3867–3880, 2021.

[177] Wei Li, Kai Bai, and Xiaopei Liu. Continuous-scale kinetic fluid
simulation. IEEE Transactions on Visualization and Computer
Graphics, 25(9):2694–2709, 2019.

[178] Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xi-
aopei Liu. Fast and scalable turbulent flow simulation with two-
way coupling. ACM Trans. Graph., 39(4), July 2020.

169

bibliography

[179] Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei
Liu. Kinetic-based multiphase flow simulation. IEEE Transactions
on Visualization and Computer Graphics, 27(7):3318–3334, 2021.

[180] Wei Li, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. Efficient
kinetic simulation of two-phase flows. ACM Trans. Graph., 41(4),
July 2022.

[181] Xiaosheng Li, Xiaowei He, Xuehui Liu, Jian J. Zhang, Baoquan
Liu, and EnhuaWu. Multiphase interface tracking with fast semi-
lagrangian contouring. IEEE Transactions on Visualization and
Computer Graphics, 22(8):1973–1986, 2016.

[182] Xiangyun Liao, Weixin Si, Zhiyong Yuan, Hanqiu Sun, Jing
Qin, Qiong Wang, and Pheng-Ann Heng. Animating wall-
bounded turbulent smoke via filament-mesh particle-particle
method. IEEE Transactions on Visualization and Computer Graph-
ics, 24(3):1260–1273, 2018.

[183] Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and
Mathieu Desbrun. Model-reduced variational fluid simulation.
ACM Trans. Graph., 34(6), October 2015.

[184] C. Liu, L. Wang, Z. Li, S. Quan, and Y. Xu. Real-time lighting
estimation for augmented reality via differentiable screen-space
rendering. IEEE Transactions on Visualization & Computer
Graphics, (01):1–1, January 5555.

[185] Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios
Sifakis. A scalable schur-complement fluids solver for heteroge-
neous compute platforms. ACM Trans. Graph., 35(6), November
2016.

[186] Shusen Liu, Xiaowei He, Wencheng Wang, and Enhua Wu.
Adapted simple algorithm for incompressible sph fluids with a
broad range viscosity. IEEE Transactions on Visualization and
Computer Graphics, 28(9):3168–3179, 2022.

[187] Sinuo Liu, Xiaokun Wang, Xiaojuan Ban, Yanrui Xu, Jing Zhou,
Jiří Kosinka, andAlexandruC. Telea. Turbulent details simulation
for sph fluids via vorticity refinement. Computer Graphics Forum,
40(1):54–67, 2021.

[188] Xiaopei Liu, Wai-Man Pang, Jing Qin, and Chi-Wing Fu. Turbu-
lence simulation by adaptive multi-relaxation lattice boltzmann
modeling. IEEE Transactions on Visualization and Computer
Graphics, 20(2):289–302, 2014.

[189] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph., 21(4):163–169, August 1987.

170

bibliography

[190] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulatingwater
and smoke with an octree data structure. ACM Trans. Graph.,
23(3):457–462, August 2004.

[191] Jia-Ming Lu, Xiao-Song Chen, Xiao Yan, Chen-Feng Li, Ming Lin,
and Shi-Min Hu. A rigging-skinning scheme to control fluid sim-
ulation. Computer Graphics Forum, 38(7):501–512, 2019.

[192] Leon B Lucy. A numerical approach to the testing of the fission
hypothesis. The astronomical journal, 82:1013–1024, 1977.

[193] Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. Fast
and versatile fluid-solid coupling for turbulent flow simulation.
ACM Trans. Graph., 40(6), December 2021.

[194] Miles Macklin and Matthias Müller. Position based fluids. ACM
Trans. Graph., 32(4), July 2013.

[195] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-
Yong Kim. Unified particle physics for real-time applications.
ACM Trans. Graph., 33(4), July 2014.

[196] Mikko Manninen, Veikko Taivassalo, and Sirpa Kallio. On the
mixture model for multiphase flow. VTT Publications, (288):3–67,
1996.

[197] P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-
P. Cani. Adaptive physically based models in computer graphics.
Computer Graphics Forum, 36(6):312–337, 2017.

[198] OmidMashayekhi, Chinmayee Shah, Hang Qu, Andrew Lim, and
Philip Levis. Automatically distributing eulerian and hybrid fluid
simulations in the cloud. ACM Trans. Graph., 37(2), June 2018.

[199] Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore
Kim, and Derek Nowrouzezahrai. Surface turbulence for particle-
based liquid simulations. ACM Trans. Graph., 34(6), October 2015.

[200] Olivier Mercier and Derek Nowrouzezahrai. Local bases for
model-reduced smoke simulations. Computer Graphics Forum,
39(2):9–22, 2020.

[201] Marek KrzysztofMisztal, Kenny Erleben, AdamBargteil, Jens Fur-
sund, Brian Bunch Christensen, Jakob Andreas Bærentzen, and
Robert Bridson. Multiphase flow of immiscible fluids on unstruc-
tured moving meshes. IEEE Transactions on Visualization and
Computer Graphics, 20(1):4–16, 2014.

[202] Joe J Monaghan. Smoothed particle hydrodynamics. Reports on
progress in physics, 68(8):1703, 2005.

171

bibliography

[203] Joseph J Monaghan and John C Lattanzio. A refined particle
method for astrophysical problems. Astronomy and Astrophysics
(ISSN 0004-6361), vol. 149, no. 1, Aug. 1985, p. 135-143., 149:135–143,
1985.

[204] D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt. Ef-
ficient 2d simulation on moving 3d surfaces. Computer Graphics
Forum, 39(8):27–38, 2020.

[205] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa.
Point based animation of elastic, plastic and melting objects. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’04, page 141–151, Goslar, DEU,
2004. Eurographics Association.

[206] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John
Ratcliff. Position based dynamics. J. Vis. Comun. Image Represent.,
18(2):109–118, April 2007.

[207] Ken Museth. Vdb: High-resolution sparse volumes with dynamic
topology. ACM Trans. Graph., 32(3), July 2013.

[208] Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoor-
thi, and Albert Chern. Covector fluids. ACM Trans. Graph., 41(4),
July 2022.

[209] Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada,
and Yonghao Yue. Mixing sauces: A viscosity blending model for
shear thinning fluids. ACM Trans. Graph., 38(4), July 2019.

[210] Rafael Nakanishi, Filipe Nascimento, Rafael Campos, Paulo
Pagliosa, and Afonso Paiva. Rbf liquids: An adaptive pic solver
using rbf-fd. ACM Trans. Graph., 39(6), November 2020.

[211] Liordino dos S Rocha Neto and Antonio L Apolinário Jr. Real-
time screen space cartoon water rendering with the iterative sep-
arated bilateral filter. SBC Journal on Interactive Systems, 8(1):20–
32, 2017.

[212] Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. A level-set
method for magnetic substance simulation. ACM Trans. Graph.,
39(4), July 2020.

[213] Xiaoying Nie, Yong Hu, Zhiyuan Su, and Xukun Shen. Fluid re-
construction and editing from a monocular video based on the
sph model with external force guidance. Computer Graphics Fo-
rum, 40(6):62–76, 2021.

[214] Michael B. Nielsen and Ole Østerby. A two-continua approach
to eulerian simulation of water spray. ACM Trans. Graph., 32(4),
July 2013.

172

bibliography

[215] Michael BNielsen, Andreas Söderström, and Robert Bridson. Syn-
thesizing waves from animated height fields. ACM Transactions
on Graphics (TOG), 32(1):1–9, 2013.

[216] Young Jin Oh and In-Kwon Lee. Two-step temporal interpolation
network using forward advection for efficient smoke simulation.
Computer Graphics Forum, 40(2):355–365, 2021.

[217] Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio Onai.
Fluid volumemodeling from sparsemulti-view images by appear-
ance transfer. ACM Trans. Graph., 34(4), July 2015.

[218] Felipe Oliveira and Afonso Paiva. Narrow-band screen-space
fluid rendering. volume 41, pages 82–93, 2022.

[219] Jens Orthmann, Hendrik Hochstetter, Julian Bader, Serkan
Bayraktar, and Andreas Kolb. Consistent surface model for
sph-based fluid transport. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’13, page 95–103, 2013.

[220] Jens Orthmann and Andreas Kolb. Temporal blending for adap-
tive sph. Computer Graphics Forum, 31(8):2436–2449, 2012.

[221] Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and
Peter Schröder. On bubble rings and ink chandeliers. ACM Trans.
Graph., 38(4), July 2019.

[222] Zherong Pan, Jin Huang, Yiying Tong, and Hujun Bao. Wake
synthesis for shallow water equation. Computer Graphics Forum,
31(7):2029–2036, 2012.

[223] Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hu-
jun Bao. Interactive localized liquid motion editing. ACM Trans.
Graph., 32(6), November 2013.

[224] Zherong Pan and Dinesh Manocha. Efficient solver for spacetime
control of smoke. ACM Trans. Graph., 36(5), July 2017.

[225] Jonathan Panuelos, Ryan Goldade, and Christopher Batty. Effi-
cient Unified Stokes using a Polynomial Reduced Fluid Model. In
Dominik L. Michels, editor, Eurographics/ ACM SIGGRAPH Sym-
posium on Computer Animation - Posters, 2020.

[226] Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald
Fedkiw. A hybrid lagrangian-eulerian formulation for bubble
generation and dynamics. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’13, page 105–114, 2013.

173

bibliography

[227] Saket Patkar and Parag Chaudhuri. Wetting of porous solids.
IEEE Transactions on Visualization and Computer Graphics,
19(9):1592–1604, 2013.

[228] Andreas Peer, Christoph Gissler, Stefan Band, and Matthias
Teschner. An implicit sph formulation for incompressible linearly
elastic solids. Computer Graphics Forum, 37(6):135–148, 2018.

[229] Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias
Teschner. An implicit viscosity formulation for sph fluids. ACM
Trans. Graph., 34(4), July 2015.

[230] Andreas Peer and Matthias Teschner. Prescribed velocity
gradients for highly viscous sph fluids with vorticity diffu-
sion. IEEE Transactions on Visualization and Computer Graphics,
23(12):2656–2662, 2017.

[231] Stéphane Popinet. Gerris: a tree-based adaptive solver for the
incompressible euler equations in complex geometries. Journal
of Computational Physics, 190(2):572–600, 2003.

[232] Daniel J. Price. Smoothed particle hydrodynamics and magne-
tohydrodynamics. Journal of Computational Physics, 231(3):759–
794, 2012. Special Issue: Computational Plasma Physics.

[233] Hang Qu, Omid Mashayekhi, Chinmayee Shah, and Philip Levis.
Accelerating distributed graphical fluid simulations with micro-
partitioning. Computer Graphics Forum, 39(1):375–388, 2020.

[234] Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk.
Controlling liquids using meshes. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA
’12, page 255–264, 2012.

[235] Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk.
Blending liquids. ACM Trans. Graph., 33(4), July 2014.

[236] William T. Reeves and Ricki Blau. Approximate and probabilistic
algorithms for shading and rendering structured particle systems.
SIGGRAPH Comput. Graph., 19(3):313–322, July 1985.

[237] Stefan Reinhardt, Markus Huber, Bernhard Eberhardt, and Daniel
Weiskopf. Fully asynchronous sph simulation. In Proceedings
of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, SCA ’17, 2017.

[238] Bo Ren, Wei He, Chenfeng Li, and Xu Chen. Incompressibility
enforcement for multiple-fluid sph using deformation gradient.
IEEE Transactions on Visualization and Computer Graphics, pages
1–1, 2021.

174

bibliography

[239] Bo Ren, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and
Shi-Min Hu. Multiple-fluid sph simulation using amixture model.
ACM Trans. Graph., 33(5), September 2014.

[240] Bo Ren, Ben Xu, and Chenfeng Li. Unified particle system for
multiple-fluid flow and porous material. ACM Trans. Graph.,
40(4), July 2021.

[241] Bo Ren, Tailing Yuan, Chenfeng Li, Kun Xu, and Shi-Min Hu.
Real-time high-fidelity surface flow simulation. IEEE Transactions
on Visualization and Computer Graphics, 24(8):2411–2423, 2018.

[242] Bruno Roy, Pierre Poulin, and Eric Paquette. Neural upflow: A
scene flow learning approach to increase the apparent resolu-
tion of particle-based liquids. Proc. ACM Comput. Graph. Interact.
Tech., 4(3), September 2021.

[243] Liangwang Ruan, Jinyuan Liu, Bo Zhu, Shinjiro Sueda, BinWang,
and Baoquan Chen. Solid-fluid interaction with surface-tension-
dominant contact. ACM Trans. Graph., 40(4), July 2021.

[244] W. Rungjiratananon, Y. Kanamori, and T. Nishita. Wetting effects
in hair simulation. Computer Graphics Forum, 31(7):1993–2002,
2012.

[245] Michael Rusin. The structure of nonlinear blending models.
Chemical Engineering Science, 30(8):937–944, 1975.

[246] Steven J Ruuth and Barry Merriman. A simple embedding
method for solving partial differential equations on surfaces.
Journal of Computational Physics, 227(3):1943–1961, 2008.

[247] Marcos Sandim, Douglas Cedrim, Luis Gustavo Nonato, Paulo
Pagliosa, and Afonso Paiva. Boundary detection in particle-based
fluids. Computer Graphics Forum, 35(2):215–224, 2016.

[248] Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki
Nishita. Example-based turbulence style transfer. ACM Trans.
Graph., 37(4), July 2018.

[249] Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. Editing
fluid animation using flow interpolation. ACM Trans. Graph.,
37(5), September 2018.

[250] T. Sato, C.Wojtan, N. Thuerey, T. Igarashi, and R. Ando. Extended
narrow band flip for liquid simulations. Computer Graphics Fo-
rum, 37(2):169–177, 2018.

[251] Hagit Schechter and Robert Bridson. Ghost sph for animating
water. ACM Trans. Graph., 31(4), July 2012.

175

bibliography

[252] Arnaud Schoentgen, Pierre Poulin, Emmanuelle Darles, and
Philippe Meseure. Particle-based liquid control using animation
templates. Computer Graphics Forum, 39(8):79–88, 2020.

[253] Camille Schreck, Christian Hafner, and ChrisWojtan. Fundamen-
tal solutions for water wave animation. ACM Trans. Graph., 38(4),
July 2019.

[254] Camille Schreck and ChrisWojtan. Coupling 3d liquid simulation
with 2dwave propagation for large scale water surface animation
using the equivalent sources method. Computer Graphics Forum,
41(2):343–353, 2022.

[255] Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios
Sifakis. Spgrid: A sparse paged grid structure applied to adaptive
smoke simulation. ACM Trans. Graph., 33(6), November 2014.

[256] C. Shah, D. Hyde, H. Qu, and P. Levis. Distributing and load
balancing sparse fluid simulations. Computer Graphics Forum,
37(8):35–46, 2018.

[257] Han Shao, Libo Huang, and Dominik Michels. A current loop
model for the fast simulation of ferrofluids. IEEE Transactions on
Visualization and Computer Graphics, PP:1–12, October 2022.

[258] Han Shao, Libo Huang, and Dominik L. Michels. A fast un-
smoothed aggregation algebraic multigrid framework for the
large-scale simulation of incompressible flow. ACMTrans. Graph.,
41(4), July 2022.

[259] X. Shao, Z. Zhou, N. Magnenat-Thalmann, and W. Wu. Stable
and fast fluid–solid coupling for incompressible sph. Computer
Graphics Forum, 34(1):191–204, 2015.

[260] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross.
Gpu-based ray-casting of quadratic surfaces. In Proceedings of the
3rd Eurographics / IEEE VGTC Conference on Point-Based Graphics,
SPBG’06, page 59–65, Goslar, DEU, 2006. Eurographics Associa-
tion.

[261] Tom Sito. Moving Innovation: A History of Computer Animation.
The MIT Press, 2013.

[262] Tomas Skrivan, Andreas Soderstrom, John Johansson, Christoph
Sprenger, Ken Museth, and Chris Wojtan. Wave curves: Simulat-
ing lagrangian water waves on dynamically deforming surfaces.
ACM Trans. Graph., 39(4), July 2020.

[263] B. Solenthaler and R. Pajarola. Density contrast sph interfaces. In
Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’08, pages 211–218, 2008.

176

bibliography

[264] B. Solenthaler and R. Pajarola. Predictive-corrective incompress-
ible sph. ACM Trans. Graph., 28(3), July 2009.

[265] B. Solenthaler and R. Pajarola. Predictive-corrective incompress-
ible sph. ACM Trans. Graph., 28(3), July 2009.

[266] Barbara Solenthaler and Markus Gross. Two-scale particle simu-
lation. ACM Trans. Graph., 30(4), July 2011.

[267] Jos Stam. Stable fluids. In Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’99, pages 121–128, 1999.

[268] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous
phenomena. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’93, page
369–376, 1993.

[269] Matt Stanton, Yu Sheng, Martin Wicke, Federico Perazzi, Amos
Yuen, Srinivasa Narasimhan, and Adrien Treuille. Non-
polynomial galerkin projection on deforming meshes. ACM
Trans. Graph., 32(4), July 2013.

[270] Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence
Chai, Joseph Teran, and Andrew Selle. Augmented mpm for
phase-change and varied materials. ACM Trans. Graph., 33(4),
July 2014.

[271] Alexey Stomakhin and Andrew Selle. Fluxed animated boundary
method. ACM Trans. Graph., 36(4), July 2017.

[272] Haozhe Su, Tao Xue, Chengguizi Han, Chenfanfu Jiang, and
Mridul Aanjaneya. A unified second-order accurate in time mpm
formulation for simulating viscoelastic liquidswith phase change.
ACM Trans. Graph., 40(4), July 2021.

[273] Deborah Sulsky, Shi-Jian Zhou, and Howard L. Schreyer. Appli-
cation of a particle-in-cell method to solid mechanics. Computer
Physics Communications, 87(1):236–252, 1995. Particle Simulation
Methods.

[274] Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen.
A material point method for nonlinearly magnetized materials.
ACM Trans. Graph., 40(6), December 2021.

[275] Yunxin Sun, Tamar Shinar, and Craig Schroeder. Effective time
step restrictions for explicit mpm simulation. Computer Graphics
Forum, 39(8):55–67, 2020.

[276] D. F. Swinehart. The beer-lambert law. Journal of Chemical Edu-
cation, 39(7):333, 1962.

177

bibliography

[277] Tetsuya Takahashi and Christopher Batty. Monolith: A mono-
lithic pressure-viscosity-contact solver for strong two-way rigid-
rigid rigid-fluid coupling. ACM Trans. Graph., 39(6), November
2020.

[278] Tetsuya Takahashi and Christopher Batty. Frictionalmonolith: A
monolithic optimization-based approach for granular flow with
contact-aware rigid-body coupling. ACMTrans. Graph., 40(6), De-
cember 2021.

[279] Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki
Nishita, and Ming C. Lin. Implicit formulation for sph-based vis-
cous fluids. Computer Graphics Forum, 34(2):493–502, 2015.

[280] Tetsuya Takahashi, Yoshinori Dobashi, Tomoyuki Nishita, and
Ming C. Lin. An efficient hybrid incompressible sph solver with
interface handling for boundary conditions. Computer Graphics
Forum, 37(1):313–324, 2018.

[281] Tetsuya Takahashi and Ming C. Lin. A multilevel sph solver
with unified solid boundary handling. Computer Graphics Forum,
35(7):517–526, 2016.

[282] Tetsuya Takahashi and Ming C. Lin. A geometrically consistent
viscous fluid solver with two-way fluid-solid coupling. Computer
Graphics Forum, 38(2):49–58, 2019.

[283] Tetsuya Takahashi and Ming C. Lin. Video-guided real-to-virtual
parameter transfer for viscous fluids. ACM Trans. Graph., 38(6),
November 2019.

[284] Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár,
Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth.
Multi-species simulation of porous sand and water mixtures.
ACM Trans. Graph., 36(4), July 2017.

[285] Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and
Barbara Solenthaler. Honey, i shrunk the domain: Frequency-
aware force field reduction for efficient fluids optimization. Com-
puter Graphics Forum, 40(2):339–353, 2021.

[286] Michael Tao, Christopher Batty, Mirela Ben-Chen, Eugene Fiume,
and David I. W. Levin. Vempic: Particle-in-polyhedron fluid sim-
ulation for intricate solid boundaries. ACM Trans. Graph., 41(4),
July 2022.

[287] Yun Teng, David I. W. Levin, and Theodore Kim. Eulerian solid-
fluid coupling. ACM Trans. Graph., 35(6), November 2016.

[288] Jerry Tessendorf. Simulating ocean water. Simulating nature:
realistic and interactive techniques. SIGGRAPH, 1(2):5, 2001.

178

bibliography

[289] Nils Thuerey. Interpolations of smoke and liquid simulations.
ACM Trans. Graph., 36(1), September 2016.

[290] A. Treuille, A. Lewis, and Z. Popović. Model reduction for real-
time fluids. ACM Transactions on Graphics, 25(3):826–834, 2006.

[291] Nghia Truong and Cem Yuksel. A narrow-range filter for screen-
space fluid rendering. Proc. ACM Comput. Graph. Interact. Tech.,
1(1), July 2018.

[292] Nghia Truong, Cem Yuksel, Chakrit Watcharopas, Joshua Aaron
Levine, and RobertM. Kirby. Particle merging-and-splitting. IEEE
Transactions on Visualization and Computer Graphics, pages 1–1,
2021.

[293] Kiwon Um, XiangyuHu, and Nils Thuerey. Perceptual evaluation
of liquid simulationmethods. ACMTrans. Graph., 36(4), July 2017.

[294] R. Vacondio, B.D. Rogers, P.K. Stansby, and P. Mignosa. Variable
resolution for sph in three dimensions: Towards optimal splitting
and coalescing for dynamic adaptivity. Computer Methods in Ap-
plied Mechanics and Engineering, 300:442–460, 2016.

[295] Orestis Vantzos, Omri Azencot, Max Wardeztky, Martin Rumpf,
and Mirela Ben-Chen. Functional thin films on surfaces. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1179–
1192, 2017.

[296] Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. Real-time vis-
cous thin films. ACM Trans. Graph., 37(6), December 2018.

[297] Mauricio Vines, Ben Houston, Jochen Lang, and Won-Sook Lee.
Vortical inviscid flows with two-way solid-fluid coupling. IEEE
Transactions on Visualization and Computer Graphics, 20(2):303–
315, 2014.

[298] Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on
surfaces. ACM Trans. Graph., 24(3):921–929, July 2005.

[299] Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. Codi-
mensional surface tension flow using moving-least-squares par-
ticles. ACM Trans. Graph., 39(4), July 2020.

[300] Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad,
Shiying Xiong, and Bo Zhu. Thin-film smoothed particle hydro-
dynamics fluid. ACM Trans. Graph., 40(4), July 2021.

[301] Xiaojun Wang, Shiguang Liu, and Yiying Tong. Stain formation
on deforming inelastic cloth. IEEE Transactions on Visualization
and Computer Graphics, 24(12):3214–3224, 2018.

179

bibliography

[302] Xiaokun Wang, Xiaojuan Ban, Xu Liu, Yalan Zhang, and Lipeng
Wang. Effective reconstructing surfaces algorithm of anisotropic
kernels orienting sph fluids. Journal of computer-Aided Design &
Computer Graphics, 28(9):1497–1505, 2016.

[303] XiaoKun Wang, XiaoJuan Ban, Xu Liu, YaLan Zhang, and
LiPeng Wang. Efficient extracting surfaces approach employ-
ing anisotropic kernels for sph fluids. Journal of Visualization,
19(2):301–317, 2016.

[304] Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen
Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and
Chenfanfu Jiang. A massively parallel and scalable multi-gpu
material point method. ACM Trans. Graph., 39(4), July 2020.

[305] Daniel Weber, Johannes Mueller-Roemer, André Stork, and Di-
eter Fellner. A cut-cell geometric multigrid poisson solver for
fluid simulation. Computer Graphics Forum, 34(2):481–491, 2015.

[306] Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. A
physically consistent implicit viscosity solver for sph fluids. Com-
puter Graphics Forum, 37(2):145–155, 2018.

[307] Jakub Wejchert and David Haumann. Animation aerodynamics.
In Proceedings of the 18th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’91, page 19–22, 1991.

[308] S. Wiewel, M. Becher, and N. Thuerey. Latent space physics: To-
wards learning the temporal evolution of fluid flow. Computer
Graphics Forum, 38(2):71–82, 2019.

[309] S. Wiewel, B. Kim, V. C. Azevedo, B. Solenthaler, and N. Thuerey.
Latent space subdivision: Stable and controllable time predictions
for fluid flow. Computer Graphics Forum, 39(8):15–25, 2020.

[310] R. Winchenbach and A. Kolb. Multi-level memory structures
for simulating and rendering smoothed particle hydrodynamics.
Computer Graphics Forum, 39(6):527–541, 2020.

[311] Rene Winchenbach, Rustam Akhunov, and Andreas Kolb.
Semi-analytic boundary handling below particle resolution for
smoothed particle hydrodynamics. ACM Trans. Graph., 39(6),
November 2020.

[312] Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb.
Constrained Neighbor Lists for SPH-based Fluid Simulations. In
Ladislav Kavan and Chris Wojtan, editors, Eurographics/ ACM
SIGGRAPH Symposium on Computer Animation, 2016.

180

bibliography

[313] Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. In-
finite continuous adaptivity for incompressible sph. ACM Trans.
Graph., 36(4), July 2017.

[314] Rene Winchenbach and Andreas Kolb. Optimized refinement for
spatially adaptive sph. ACM Trans. Graph., 40(1), January 2021.

[315] Joel Wretborn, Sean Flynn, and Alexey Stomakhin. Guided bub-
bles and wet foam for realistic whitewater simulation. ACM
Trans. Graph., 41(4), July 2022.

[316] Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. Fast
fluid simulations with sparse volumes on the gpu. Computer
Graphics Forum, 37(2):157–167, 2018.

[317] XiaoyueWu, Xubo Yang, and Yang Yang. A novel projection tech-
nique with detail capture and shape correction for smoke simula-
tion. Computer Graphics Forum, 32(2pt4):389–397, 2013.

[318] Xiangyun Xiao, Hui Wang, and Xubo Yang. A cnn-based flow
correction method for fast preview. Computer Graphics Forum,
38(2):431–440, 2019.

[319] Xiangyun Xiao, Yanqing Zhou, Hui Wang, and Xubo Yang. A
novel cnn-based poisson solver for fluid simulation. IEEE Trans-
actions on Visualization and Computer Graphics, 26(3):1454–1465,
2020.

[320] Yuwei Xiao, Szeyu Chan, Siqi Wang, Bo Zhu, and Xubo Yang. An
adaptive staggered-tilted grid for incompressible flow simulation.
ACM Trans. Graph., 39(6), November 2020.

[321] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan:
A temporally coherent, volumetric gan for super-resolution fluid
flow. ACM Trans. Graph., 37(4), July 2018.

[322] Shiying Xiong, Rui Tao, Yaorui Zhang, Fan Feng, and Bo Zhu.
Incompressible flow simulation on vortex segment clouds. ACM
Trans. Graph., 40(4), July 2021.

[323] Shiying Xiong, Zhecheng Wang, Mengdi Wang, and Bo Zhu. A
clebsch method for free-surface vortical flow simulation. ACM
Trans. Graph., 41(4), July 2022.

[324] Yanrui Xu. Implementation of multiphase flow simulation.
https://github.com/sakamotoyan/TiSPH_multiphase,
2023.

[325] Tao Xue, Haozhe Su, Chengguizi Han, Chenfanfu Jiang, and
Mridul Aanjaneya. A novel discretization and numerical solver
for non-fourier diffusion. ACM Trans. Graph., 39(6), November
2020.

181

https://github.com/sakamotoyan/TiSPH_multiphase

bibliography

[326] Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. Interac-
tive liquid splash modeling by user sketches. ACM Trans. Graph.,
39(6), November 2020.

[327] X. Yan, C-F. Li, X-S. Chen, and S-M. Hu. Mpm simulation of inter-
acting fluids and solids. Computer Graphics Forum, 37(8):183–193,
2018.

[328] Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-
Min Hu. Multiphase sph simulation for interactive fluids and
solids. ACM Trans. Graph., 35(4), July 2016.

[329] Lipeng Yang, Shuai Li, Aimin Hao, and Hong Qin. Realtime two-
way coupling of meshless fluids and nonlinear fem. Computer
Graphics Forum, 31(7):2037–2046, 2012.

[330] Lipeng Yang, Shuai Li, AiminHao, andHongQin. Hybrid particle-
gridmodeling formulti-scale droplet/spray simulation. Computer
Graphics Forum, 33(7):199–208, 2014.

[331] Meng Yang, Juntao Ye, Frank Ding, Yubo Zhang, and Dong-Ming
Yan. A semi-explicit surface tracking mechanism for multi-phase
immiscible liquids. IEEE Transactions on Visualization and Com-
puter Graphics, 25(10):2873–2885, 2019.

[332] Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu,
and Bo Zhu. Clebsch gauge fluid. ACM Trans. Graph., 40(4), July
2021.

[333] Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang,
and Shi-Min Hu. A unified particle system framework for multi-
phase, multi-material visual simulations. ACM Trans. Graph.,
36(6), November 2017.

[334] Tao Yang, Jian Chang, Bo Ren, Ming C. Lin, Jian Jun Zhang, and
Shi-Min Hu. Fast multiple-fluid simulation using helmholtz free
energy. ACM Trans. Graph., 34(6), October 2015.

[335] Tao Yang, Ralph R. Martin, Ming C. Lin, Jian Chang, and Shi-Min
Hu. Pairwise force sph model for real-time multi-interaction
applications. IEEE Transactions on Visualization and Computer
Graphics, 23(10):2235–2247, 2017.

[336] Wencong Yang and Chengying Gao. A completely parallel sur-
face reconstruction method for particle-based fluids. The Visual
Computer, 36(10):2313–2325, 2020.

[337] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. ACM Trans. Graph., 32(1),
February 2013.

182

bibliography

[338] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. ACM Trans. Graph., 32(1),
February 2013.

[339] Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. Explicit mesh
surfaces for particle based fluids. Computer Graphics Forum,
31(2pt4):815–824, 2012.

[340] Yonghao Yue, Breannan Smith, Christopher Batty, Changxi
Zheng, and Eitan Grinspun. Continuum foam: A material point
method for shear-dependent flows. ACM Trans. Graph., 34(5),
November 2015.

[341] Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chan-
tharayukhonthorn, Ken Kamrin, and Eitan Grinspun. Hybrid
grains: Adaptive coupling of discrete and continuum simulations
of granular media. ACM Trans. Graph., 37(6), December 2018.

[342] Omar Zarifi and Christopher Batty. A positive-definite cut-cell
method for strong two-way coupling between fluids and de-
formable bodies. In Proceedings of the ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, SCA ’17, 2017.

[343] Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. An
advection-reflection solver for detail-preserving fluid simulation.
ACM Trans. Graph., 37(4), July 2018.

[344] Xiao Zhai, Fei Hou, Hong Qin, and Aimin Hao. Inverse modelling
of incompressible gas flow in subspace. Computer Graphics Fo-
rum, 36(6):100–111, 2017.

[345] Xiao Zhai, Fei Hou, Hong Qin, and Aimin Hao. Fluid simulation
with adaptive staggered power particles on gpus. IEEE Trans-
actions on Visualization and Computer Graphics, 26(6):2234–2246,
2020.

[346] Xinxin Zhang and Robert Bridson. A pppm fast summation
method for fluids and beyond. ACM Trans. Graph., 33(6), Novem-
ber 2014.

[347] Xinxin Zhang, Robert Bridson, and Chen Greif. Restoring the
missing vorticity in advection-projection fluid solvers. ACM
Trans. Graph., 34(4), July 2015.

[348] Xinxin Zhang, Minchen Li, and Robert Bridson. Resolving fluid
boundary layers with particle strength exchange and weak adap-
tivity. ACM Trans. Graph., 35(4), July 2016.

[349] Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and
Kun Zhou. A deformable surface model for real-time water

183

bibliography

drop animation. IEEE Transactions on Visualization and Computer
Graphics, 18(8):1281–1289, 2012.

[350] Yubo Zhang and Kwan-Liu Ma. Spatio-temporal extrapolation
for fluid animation. ACM Trans. Graph., 32(6), November 2013.

[351] Yi Zheng, Yanyun Chen, Guangzheng Fei, Julie Dorsey, and En-
hua Wu. Simulation of textile stains. IEEE Transactions on Visu-
alization and Computer Graphics, 25(7):2471–2481, 2019.

[352] Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. Codimen-
sional non-newtonian fluids. ACM Trans. Graph., 34(4), July 2015.

[353] Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and
Ronald Fedkiw. A new grid structure for domain extension. ACM
Trans. Graph., 32(4), July 2013.

[354] Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald
Fedkiw. Codimensional surface tension flow on simplicial com-
plexes. ACM Trans. Graph., 33(4), July 2014.

[355] Yongning Zhu and Robert Bridson. Animating sand as a fluid.
ACM Trans. Graph., 24(3):965–972, July 2005.

184

ACKNOWLEDGMEN TS

First and foremost, I extend my sincere gratitude to my supervisors,
Jiří Kosinka, Alexandru C. Telea, and Steffen Frey from the University
of Groningen, and Xiaojuan Ban from the University of Science and
Technology Beijing.

I am profoundly grateful to Jiří for orchestrating my entire study
within the SVCG group. Without your steadfast dedication, this thesis
would not have been possible. Your passion for detail and insightful
ideas have profoundly shaped my research approach.
I deeply appreciate Alexandru’s guidance throughout my studies.

Your fervor for articulating ideas has inspired me to ambitiously delve
deeper intomy research. Your feedback has been an invaluable resource,
providing new insights with each encounter.
Heartfelt thanks are also due to Steffen for his intelligent mentorship.

Your innovative ideas and insightful advice during our weekly meet-
ings have significantly contributed to my progress. Furthermore, your
grounded and rigorous approach to scientific research has deeply in-
fluenced me, enriching my academic journey beyond the acquisition of
knowledge.
I cannot thank Xiaojuan enough for your patience and support,

which have provided ample space for me to thrive in my research en-
deavors, enabling me to perform to the best of my abilities.
Further gratitude is extended to all members of the SVCG group. The

support I received from this incredible community has been invaluable.
We have consistently supported and assisted each other when needed,
and I am incredibly proud to be a member of such a collaborative and
encouraging group.
I also wish to express my gratitude to the University of Groningen

and the Chinese Scholarship Council for their financial support, which
enabled me to conduct my research. Special thanks go to the Faculty of
Science and Engineering and the Bernoulli Institute at the University of
Groningen for providing the necessary space and equipment. I am also
grateful for the continuous support from all staff members.
Lastly, my deepest gratitude goes to my parents, who have supported

me unconditionally in my pursuit of research. The credit for this work
is shared with you.

185

SHORT RÉ SUMÉ

Yanrui Xu
personal data

Name: Yanrui Xu
Email: xuyanruiedw@me.com
Orcid: 0000-0002-2154-1178

scientific education

Current PhD candidate in Computer Science (Joint-PhD program)
|

02/2023 University of Groningen, Groningen, the Netherlands
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

09/2020 University of Science and Technology Beijing, Beijing, China
School of Intelligence Science and Technology

07/2020 Master of Engineering in Computer Science and Technology
|

09/2018 University of Science and Technology Beijing, Beijing, China
School of Intelligence Science and Technology

07/2018 Bachelor of Engineering in Information Security
|

09/2014 University of Science and Technology Beijing, Beijing, China
School of Intelligence Science and Technology

selected publications

X. Ye, X. Wang, Y. Xu, J. Kosinka, A. C. Telea, L. You, J. J. Zhang, and J. Chang.
Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Tur-
bulent Flows. Computer Graphics Forum, Volume 43, Issue 2. Wiley, 2024. doi:
10.1111/cgf.15024

Y. Xiong, X. Wang, Y. Xu, Y. Zhang, J. Chang, J. J. Zhang, and X. Ban. Dual-
mechanism surface tension model for SPH-based simulation. The Visual Com-
puter, Volume 40, 4765–4776. Springer, 2024. doi: 10.1007/s00371-024-03474-4

187

https://orcid.org/0000-0002-2154-1178
https://doi.org/10.1111/cgf.15024
https://doi.org/10.1111/cgf.15024
https://doi.org/10.1007/s00371-024-03474-4

short résumé

X. Wang*, Y. Xu*, S. Liu, B. Ren, J. Kosinka, A. C. Telea, J. Wang, C. Song, J.
Chang, C. Li, J. J. Zhang, and X. Ban. Physics-based fluid simulation in Computer
Graphics: Survey, research trends, and challenges. Computational Visual Media.
Springer, 2024. doi: 10.1007/s41095-023-0368-y

T. Wang*, Y. Xu*, R. Li, H. Wang, Y. Xiong, and X. Wang. Simulating
hyperelastic materials with anisotropic stiffness models in a particle-based
framework. Computers & Graphics, Volume 116, 437-447. Elsevier, 2023. doi:
10.1016/j.cag.2023.09.007

X.Wang, T.Wang, J.Wang,Y. Xu, X. Ban, H. Huang, Z. Zhu, J. Chang, and J. J.
Zhang. Implicit smoothed particle hydrodynamics model for simulating incom-
pressible fluid-elastic coupling. Computer Animation and Virtual Worlds, Vol-
ume34, Issue5. Wiley, 2023. doi: 10.1002/cav.2146

Y. Xu, C. Song, X. Wang, X. Ban, J. Wang, Y. Zhang, and J. Chang. Spa-
tial adaptivity with boundary refinement for smoothed particle hydrodynamics
fluid simulation. Computer Animation and Virtual Worlds, Volume 34, Issue 5.
Wiley, 2023. doi: 10.1002/cav.2136

Y. Xu, X. Wang, J. Wang, C. Song, T. Wang, Y. Zhang, J. Chang, J. J. Zhang,
J. Kosinka, A. C. Telea, and X. Ban. An Implicitly Stable Mixture Model for Dy-
namic Multi-fluid Simulations. In SIGGRAPH Asia 2023 Conference Paper. ACM,
2023. doi: 10.1145/3610548.3618215

Y. Xu, Y. Xu, Y. Xiong, D. Yin, X. Ban, X. Wang, J. Chang, and J.
J. Zhang. Anisotropic screen space rendering for particle-based fluid sim-
ulation. Computers & Graphics, Volume 110, 118-124. Elsevier, 2023. doi:
10.1016/j.cag.2022.12.007

S. Liu, X. Wang, X. Ban, Y. Xu, J. Zhou, J. Kosinka, and A. C. Telea. Turbulent
Details Simulation for SPH Fluids via Vorticity Refinement. Computer Graphics
Forum, Volume 40, Issue 1. Wiley, 2021. doi: 10.1111/cgf.14095

X. Wang, S. Liu, X. Ban, Y. Xu, J. Zhou, and J. Kosinka. Robust turbulence
simulation for particle-based fluids using the Rankine vortex model. The Visual
Computer, Volume 36, 2285–2298. Springer, 2020. doi: 10.1007/s00371-020-01914-
5

* Equal contribution

188

https://doi.org/10.1007/s41095-023-0368-y
https://doi.org/10.1016/j.cag.2023.09.007
https://doi.org/10.1016/j.cag.2023.09.007
https://doi.org/10.1002/cav.2146
https://doi.org/10.1002/cav.2136
https://doi.org/10.1145/3610548.3618215
https://doi.org/10.1016/j.cag.2022.12.007
https://doi.org/10.1016/j.cag.2022.12.007
https://doi.org/10.1111/cgf.14095
https://doi.org/10.1007/s00371-020-01914-5
https://doi.org/10.1007/s00371-020-01914-5

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Ty-
pographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of December 11, 2024 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Publications
	Contents
	Notations
	 []Notations of Physical Quantities
	1 Introduction
	1.1 Challenges within the Trilemma
	1.2 Contents and Structure

	2 Survey on Fluid Simulation
	2.1 Fluid Simulation Overview
	2.1.1 Fluid Mechanics
	2.1.2 Navier–Stokes Equations
	2.1.3 Simulation Strategies
	2.1.3.1 Early developments
	2.1.3.2 Discretization strategies

	2.2 Advancements in Fluid Simulation
	2.2.1 Survey Structure
	2.2.2 Classification of Topics

	2.3 Advanced Computational Approaches
	2.3.1 Adaptive Solutions
	2.3.1.1 Temporal adaptivity
	2.3.1.2 Spatial adaptivity

	2.3.2 Parallelization
	2.3.2.1 Single processing unit
	2.3.2.2 Multiple processing units
	2.3.2.3 Distributed systems

	2.3.3 Data-driven Approaches
	2.3.3.1 Model reduction
	2.3.3.2 Machine learning

	2.4 Multi-material Fluid Coupling
	2.4.1 Meshless Methods
	2.4.2 Mesh-based Methods
	2.4.3 Coupling with Complex Boundaries

	2.5 Multiphase Liquids
	2.5.1 Non-mixing Fluids
	2.5.2 Mixing Fluids

	2.6 Gas–liquid Interfaces
	2.6.1 Free Surface Fluids
	2.6.2 Bubbles, Foam, and Glugging
	2.6.3 Spray and Splashing

	2.7 Fine Detail Enhancement
	2.7.1 Reduced-dimensional Simulation on the Fluid Surface Only
	2.7.2 Dynamical Methods for Reducing Numerical Dissipation
	2.7.3 Data-driven Methods for Detail Enhancement

	2.8 Fluid Control
	2.8.1 Scenario Editing
	2.8.2 Artificial Effects
	2.8.3 Media-directed Formation

	2.9 Special Fluids
	2.9.1 Highly Viscous Fluids
	2.9.2 Ferrofluids
	2.9.3 Thin Films

	2.10 Conclusion and Discussion

	3 Spatial Adaptivity with Boundary Refinement for SPH Fluid Simulation
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Theory of SPH
	3.2.2 SPH Approximation
	3.2.3 Explicit Form of Solving Navier-Stokes Equations with SPH

	3.3 Split-merge-redistribute Mechanism
	3.4 Semi-analytic Boundary Handling
	3.5 Adaptive Boundary Coupling
	3.5.1 Adaptive Boundary Mechanism
	3.5.2 Wake Flow Preservation by Delaying Merge

	3.6 Results
	3.6.1 Efficiency Comparison
	3.6.2 Evaluation of Complex Coupling Effects

	3.7 Discussion and Conclusion
	3.7.1 Summary
	3.7.2 Limitations

	4 Implicitly Stable Mixture Model for Dynamic Multi-fluid Simulations
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Volume Fraction Scheme
	4.2.2 Governing Equations of the Mixture Model

	4.3 Volume Flux Free SPH
	4.4 Implicit Mixture Model for Multiphase Interactions
	4.4.1 Interphase Momentum
	4.4.2 Phase-mixture Momentum Mapping
	4.4.3 Mixture Viscosity Model
	4.4.4 Implementation
	Phase Transfer.

	4.5 Results
	4.5.1 Performance Analysis
	4.5.1.1 Momentum conservation
	4.5.1.2 Simulation efficiency
	4.5.1.3 Mass conservation

	4.5.2 Comparisons of Effects
	4.5.3 Effectiveness under Complex Scenarios

	4.6 Discussion and Conclusion
	4.6.1 Summary
	4.6.2 Limitations

	5 Anisotropic Screen Space Rendering for Particle-based Fluid Simulation
	5.1 Introduction
	5.2 Real-time Screen Space Fluid Rendering
	5.2.1 OpenGL Transformation Pipeline
	5.2.2 Screen Space Rendering

	5.3 Anisotropic Transformation of Point Sprites for Fluid Particles
	5.3.1 Tracing Surface Using Smoothing Kernels
	5.3.2 Deriving the Anisotropy Matrix
	5.3.3 Transforming Sphere Particles onto the Screen Space

	5.4 Results
	5.4.1 Anisotropic Processing Results
	5.4.2 Combination with Popular Smoothing Filters
	5.4.3 Performance Analysis of the Anisotropic Transformation

	5.5 Discussion and Conclusion
	5.5.1 Summary
	5.5.2 Limitations

	6 Conclusion
	6.1 Contributions of This Thesis
	6.1.1 A Survey on Fluid Simulation
	6.1.2 An Adaptivity Mechanism with Boundary Refinement for SPH
	6.1.3 An Implicitly Stable Mixture Model for Dynamic Multi-fluid Simulations
	6.1.4 An Anisotropic Screen Space Rendering Scheme

	6.2 Addressing Our Research Questions
	6.3 Future Work
	6.3.1 Integration of Adaptive Mechanisms and Multiphase Simulations
	6.3.2 Enhancing Screen Space Rendering for Multiphase Fluids
	6.3.3 Unified Framework Development

	Bibliography
	Acknowledgments
	Short Résumé
	Colophon

