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Cover: automotive calibration engineers constantly search for
events of interest manifested as fuzzy patterns in sensor mea-
surements in the form of multivariate time series from the engine
control unit spontaneously and wish an accurate and prompt re-
trieval, e.g., for error root diagnosis.
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A B S T R A C T

This Ph.D. thesis focuses on the topic of (visual) pattern search
in multivariate time series. On this topic, we developed accurate,
efficient, and interpretable algorithms and designed tools for do-
main users. Traditional methods were designed primarily for uni-
variate time series pattern search with relatively distinctive and
unambiguous target patterns. They may not extend naturally to
multivariate cases, and their performance may deteriorate sig-
nificantly in the presence of distortions. If based on machine
learning, conventional techniques become inefficient and unin-
terpretable and the retrieval accuracy may stagnate. Because it is
unlikely that a single tool can fit all use cases, we proposed a tool-
box of multiple methods, including 1) a scalable, steerable, and
interpretable hashing-based representation for pattern search, es-
pecially in very high-dimensional time series; 2) an efficient tech-
nique capturing various pattern distortions, especially time shifts
between tracks; 3) an accuracy-centric model-agnostic machine-
learning-based framework that is simultaneously more accurate
and more efficient than the prevailing machine-learning-based
pattern search framework; and 4) an enhancement of user feed-
back for active-learning-based feedback-driven pattern search
striving for the highest possible retrieval accuracy. All our pro-
posed algorithms and tools work in and some even prefer multi-
variate cases. Extensive experiments verified the aforementioned
benefits regarding accuracy, efficiency, and if necessary the steer-
ability and interoperability of the proposed methods. Moreover,
case studies and expert studies validated the usability of the user
interfaces accompanying the proposed algorithms. Our tools are
helping automotive calibration engineers trace events of interest
and enable further domain-specific analysis. They are domain-
agnostic and applicable to use cases in other domains.
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S A M E N VAT T I N G

Dit proefschrift richt zich op het onderwerp (visueel) patroon-
zoeken in multivariate tijdreeksen. Voor dit onderwerp hebben
we nauwkeurige, efficiënte en interpreteerbare algoritmen ont-
wikkeld en tools ontworpen voor gebruikers in het domein. Tra-
ditionele methoden zijn primair ontworpen voor het zoeken naar
univariate tijdreekspatronen met relatief onderscheidende en on-
dubbelzinnige doelpatronen. Het is mogelijk dat ze niet van
nature toepasbaar zijn op multivariate gevallen en hun presta-
ties kunnen aanzienlijk verslechteren in de aanwezigheid van
vervormingen. Als ze gebaseerd zijn op machinaal leren, wor-
den conventionele technieken inefficiënt en oninterpreteerbaar en
kan de opvraagnauwkeurigheid stagneren. Omdat het onwaar-
schijnlijk is dat één enkele tool geschikt is voor alle gebruiks-
situaties, hebben we een gereedschapskist met meerdere me-
thoden voorgesteld, waaronder 1) een schaalbare, stuurbare en
interpreteerbare hashing-gebaseerde representatie voor het zoe-
ken naar patronen, vooral in zeer hoog-dimensionale tijdreek-
sen; 2) een efficiënte techniek voor het vastleggen van verschil-
lende patroonvervormingen, met name tijdsverschuivingen tus-
sen sporen; 3) een nauwkeurigheidsgericht modelagnostisch, op
machine-leren gebaseerd raamwerk dat tegelijkertijd nauwkeu-
riger en efficiënter is dan het gangbare, op machine-leren geba-
seerde patroonzoekraamwerk; en 4) een verbetering van gebrui-
kersfeedback voor actief-leren-gebaseerd feedback-gestuurd pa-
troonzoeken dat streeft naar de hoogst mogelijke zoeknauwkeu-
righeid. Al onze voorgestelde algoritmen en hulpmiddelen wer-
ken in multivariate gevallen en sommige hebben zelfs een voor-
keur. Uitgebreide experimenten verifieerden de bovengenoemde
voordelen met betrekking tot nauwkeurigheid, efficiëntie en in-
dien nodig de stuurbaarheid en interoperabiliteit van de voorge-
stelde methoden. Bovendien valideerden casestudies en expert-
studies de bruikbaarheid van de gebruikersinterfaces bij de voor-
gestelde algoritmen. Onze tools helpen autokalibratie-ingenieurs
bij het traceren van interessante gebeurtenissen en maken verdere
domeinspecifieke analyse mogelijk. Ze zijn domein-agnostisch en
toepasbaar op use cases in andere domeinen.
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L I S T O F A B B R E V I AT I O N S

AP Average Precision
A performance metric for measuring object detection
results in computer vision.

APCA Adaptive Piecewise Constant Approximation
A time series representation extending PAA with
adaptive/variable piece lengths.

AR Autoregressive
A time series model that estimates the current time step
value based on a linear combination of previous.

ARCH Autoregressive Conditional Heteroskedasticity
A time series representation for modeling variances (of
prediction error) with an AR model of previous errors.

ARIMA Autoregressive Integrated Moving Average
A time series model that replaces time step values with
their differences in ARMA models to model trend
nonstationarity in time series.

ARMA Autoregressive Moving Average
A time series model that combines AR and MA models.

CBIR Content-Based Image Retrieval
A discipline that studies methods to retrieve images from
an image database that are similar to a query image
given by the user.

CNN Convolutional Neural Network
A machine learning model featuring a regularized
feedforward neural network with convolution kernels.

DBA Dynamic Time Warping Barycenter Averaging
A technique for averaging time series with regard to time
shifts between them and is consistent with DTW.

DBSCAN Density-Based Spatial Clustering of Applications with
Noise
A clustering algorithm based on the concentration
densities of data items distributed in a space.
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list of abbreviations

DFT Discrete Fourier Transform
An integral transform that works as the counterpart of FT
for discrete time-limited signals.

DTFT Discrete-Time Fourier Transform
An integral transform that works as the counterpart of FT
for discrete infinite-time signals.

DSP Digital Signal Processing
A discipline that studies operations on sampled and
quantified signals that can be performed by digital
devices like computers.

DTW Dynamic Time Warping
An elastic time series distance measure that tries to align
time steps in two time series while calculating the
distance score.

DWT Discrete Wavelet Transform
An integral transform that works as the discrete
counterpart ofWT for discrete signals.

ECU Engine Control Unit
A device which controls multiple systems of an internal
combustion engine in a single unit.

ED Euclidean Distance
A time series distance measure.

ECG Electrocardiogram
A medical graph recording the heart’s electrical activity
through repeated cardiac cycles.

EEG Electroencephalogram
A medical graph recording electrical activity in the brain.

EMD Empirical Mode Decomposition
An integral transform that decomposes a time series into
a set of base / intrinsic mode functions that does not
need a prior kernel choice by the user.

FFT Fast Fourier transform
An integral transform for spectrum analysis for
time-limited discrete signals that produces the same
result as DFT but accelerated.

FT Fourier Transform
An integral transform decomposing a continuous signal
to sinusoidal components of different frequencies.
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list of abbreviations

GAN Generative Adversarial Network
a generative machine learning model featuring a
generator and a discriminator competing with each other
during training, after which the former can be used for
synthetic data generation and the latter for data
recognition.

GARCH Generalized Autoregressive Conditional
Heteroskedasticity
A time series model/representation that extends ARCH
models and models time series variances with an ARMA
model of the previous errors.

GP Gaussian Process
A time series model where a finite collection of time
steps (regarded as random variables) is multivariate
normal distributed.

GRU Gated Recurrent Unit
A machine learning model and a variation of RNN that is
simpler than LSTM with insignificant performance loss.

HHT Hilbert-Huang Transform
An integral transform that conducts EMD followed by
HSA to obtain instantaneous frequencies.

HMM Hidden Markov Model
A model that assumes that the current observation is
only determined by the current state, which not directly
observable and depends only on the previous state, not
on states before the previous state.

HSA Hilbert Spectrum Analysis
An analysis of the amplitude spectrum in the
time-frequency domain with the help of the Hilbert
transform.

i.i.d independent and identically distributed
A property of a collection of random variables, where the
random variables share the same probability distribution
and are mutually independent.

IMF Intrinsic Mode Function
One of the multiple functions resulted from Empirical
Mode Decomposition (EMD) that satisfies two defining
properties and generally represents a simple oscillating
mode in the original time series.
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list of abbreviations

IoT Internet of Things
The commutation of devices connected with each other
or with the internet.

IoU Intersection over Union
A metric for measuring how much two items overlap.

LLE Locally Linear Embedding
A manifold learning / nonlinear dimensionality
reduction technique that prioritizes preserving the local
neighborhood among the data items.

LSH Locality-Sensitive Hashing
A hashing algorithm that tries to generate the same hash
code for close data items and different hash codes for
distant data items.

LSTM Long Short-Term Memory
A machine learning model and a variation of RNN that
retains memory longer than plain RNN.

MA Moving-Average
A time series model that estimates the current time step
value based on a linear combination of previous
estimation errors.

MASS Mueen’s Algorithm for Similarity Search
The so far fastest time series similarity search algorithm.

MDS Multidimensional Scaling
A manifold learning / nonlinear dimensionality
reduction technique that tries to preserve the pairwise
distances as much as possible.

MTS Multivariate Time Series
A time series with more than one tracks.

MVP Minimum Viable Product
A prototype of a product with only core features, e.g., for
gathering feedback from early users.

NMS Non-Maximum Suppression
A technique to suppress multiple findings of the same
object, mainly in the discipline of computer vision.

NVH Noise, Vibration, and Harshness
A discipline that studies acoustic problems in
automobiles.
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list of abbreviations

PAA Piecewise Aggregate Approximation
A time series representation that splits a time series into
piece of fixed length and represent each piece with its
mean.

PCA Piecewise Constant Approximation
An obsolete name for PAA.

PCA Principal Component Analysis
A projection / linear dimensionality reduction technique
that linearly maps data items to a set of bases called
principal components that explain the data variances the
most.

PIP Perceptually Important Point
A time series representation that represents a time series
with the visually salient points, like the major peaks and
troughs in the time series curve.

PLR Piecewise Linear Representation
A time series representation that splits a time series into
piece of fixed length and represent each piece with a line
segment.

PPR Piecewise Polynomial Representation
A time series representation that splits a time series into
piece of fixed length and represent each piece with a
polynomial.

RNN Recurrent Neural Network
A machine learning model featuring a memory cells for
processing sequential data.

SAX Symbolic Aggregate approXimation
A symbolic time series representation based on PAA.

SOM Self-Organising Map
A manifold learning / nonlinear dimensionality
reduction technique that learns a special neural network
from competitive learning rather than minimizing error
and tries to preserve the topological structure in data.

SSM State Space Model
A model relating a set of input, output, and state
variables with first-order differential equations or
difference equations.
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list of abbreviations

QALSH Query-Aware Locality-Sensitive Hashing
A hashing algorithm based on LSH that generates hash
tables suitable centered around the query.

STFT Short-Time Fourier Transform
A time series representation that conducts DFT/FFT
piecewise.

SSA Singular Spectrum Decomposition
A time series representation based on Singular Value
Decomposition (SVD) that decomposes a time series into
interpretable components.

SVD Singular Value Decomposition
A technique for factorizing a matrix into a rotation
matrix, followed by a scaling matrix, followed by another
rotation matrix.

SVM Support Vector Machine
A machine learning model for classification and
regression, which separates data with a hyperplane in
the original space (linear), or a hyperplane in an
infinite-dimensional space with a kernel trick (nonlinear).

TF-IDF Term Frequency–Inverse Document Frequency
A feature describing the importance of a word to a
document in a corpus for text retrieval.

t-SNE t-distributed Stochastic Neighbor Embedding
A manifold learning / non-linear dimensionality
reduction technique that tries to reproduce pairwise
distances between data items in high-dimensional space
in low-dimensional space and is good at preserving local
structures.

UMAP Uniform Manifold Approximation and Projection
A manifold learning / non-linear dimensionality
reduction technique similar to t-SNE but based on
Riemannian geometry and algebraic topology and is
good at preserving global structures.

UTS Univariate Time Series
A time series with only one track.

VAE Variational Autoencoder
A generative machine learning model with similar
architectures to autoencoders but learns normal
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list of abbreviations

distributions in its embedding layers, capable of
generating new data by sampling the distributions.

VAR Vector Autoregressive
A time series model that extends the AR models for
Univariate Time Series (UTS) to multivariate cases.

VARIMA Vector Autoregressive Integrated Moving Average
A time series model that extends the ARIMA models for
UTS to multivariate cases.

VQS Visual Query System
A tool with a visual interface that allows users to specify
and search for desired time series patterns, typically in a
line chart.

WoS Web of Science
One of the world’s biggest interdisciplinary indexes and
search tools for academic literature.

WT Wavelet Transform
An integral transform that decomposes a signal into a
series of contracted, expanded, and translated versions of
a basis/kernel/wavelet function.
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L I S T O F S Y M B O L S

The symbols listed in this chapter have fixed meanings. Unlisted
symbols used in the main text may vary in meaning according to
the context. Nonetheless, unlisted symbols are rare cases.

We use uppercase letters for matrices and sets; lowercase letters
for scalers or functions; lowercase letters in boldface for vectors
and arrays. This rule applies to both Latin and Greek symbols.

Table 1: Latin Symbols

Symbol Meaning

A An alphabet or set of symbols (used in symbolic rep-
resentations for time series).

C A sampled found pattern candidate from the found
patterns {F} for user inspection and feedback.

C+ An accepted / positively labeled sample.

C− A rejected / negatively labeled sample.

C Sampled found pattern candidates from the found
patterns {F} for user inspection and feedback.

C+ Accepted / positively labeled samples.

C− Rejected / negatively labeled samples.

F A found pattern.

F All found patterns in a time series.

FN The number of false negatives.

FP The number of false positives.

G A ground truth.

G All ground truths in the time series. Please note that
a time series may have target patterns T, regardless
of whether ground truths G are provided or not.

IoU (., .) Intersection over union between two time series sub-
sequences.

N0 The set of non-negative integers.

N>0 The set of positive integers.

...

xxi



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 26PDF page: 26PDF page: 26PDF page: 26

list of symbols

Table 1: Latin Symbols – Continued

Symbol Meaning

P A pattern (not necessarily a found pattern, a found
pattern candidate, a ground truth, or a target pat-
tern).

Q Query to search for.

Rinterim Relevance of patterns starting at every time step
with every resampled version of the query Q after
averaging Craw over tracks during the rule-based ini-
tial search.

Rraw Relevance of patterns starting at every time step
in every track with every resampled version of the
query Q directly after similarity profile calculation
during the rule-based initial search.

R The set of real numbers.

S A time series.

S˜ A multivariate symbolic represented time series.

Si The scaler value at the i-th time step in the time
series considered as a random variable from the per-
spective of stochastic processes for univariate time
series.

S (α, β) Subsequence in S that starts with time step index α
inclusive and ends with time step index β exclusive.

T A target pattern.

T All target patterns in a time series.

TP The number of true positives.

Var (.) Variance of a random variable.

X A time series subsequence; S (α, β) is used instead
if the start time step index α and end time step β is
known.

aj Aggregated distance between the j-th track in a pos-
itively labeled sample C+ and the j-th track in the
query Q.

a∗j Normalized aggregated distance aj for j-th track.

aaa Aggregated distances for every track between a pos-
itively labeled sample C+ and the query Q.

...
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Table 1: Latin Symbols – Continued

Symbol Meaning

aaa∗ Normalized aggregated distances aaa.

b Index for feedback round.

cccj The j-th track in a positively labeled sample C+.

d Dimension (number of tracks) of the time series.

fdis (., .) Distance measure that takes two time series patterns
as input and returns their distance.

frel (.) A function that takes a subsequence S (α, β) of S as
the input and returns the relevance of S (α, β).

f̃rel (.) A function that takes a subsequence
S
(
i− ζα, i + ζβ + 1

)
around the time step si

and returns the relevance of ccci, e.g., the confi-
dence/probability that the time step si is in a target
pattern.

fsim (., .) Similarity measure that takes two time series pat-
terns as input and returns their similarity normal-
ized to [0, 1].

h (.) A hash function in a compound hash function in
Locality-Sensitive Hashing (LSH).

i Index of a time step.

i˜ Index of a symbol step in a symbolic represented
time series V.

j Index of a track.

k Number of hash functions in a compound hash func-
tion.

l Number of compound hash functions.

m Number of resampled versions of Q, we set m = 8.

n Length (number of time steps) of the time series.

p Order of an Autoregressive (AR) process.

q Order of an Moving-Average (MA) process.

qij The value at the i-th time step in the j-the track of
the query Q.

qqqi The i-th time step in the query Q.

qqqj The j-th track in the query Q.

...
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Table 1: Latin Symbols – Continued

Symbol Meaning

qqqju The j-th track in the u-th resampled version of Q.

ri Relevance of the pattern starting at the time step
index i.

riju Relevance of the univariate pattern starting at time
step index i in j-the track, calculated with j-th track
in u-th resampled version of the query Q.

riu Relevance of the pattern starting at time step index i,
calculated with u-th resampled version of the query
Q after averaging over j for riju.

rrrmerged Relevance of patterns starting at every time step af-
ter selecting the best resampled version of the query
Q with the highest relevance in Rinterim during the
rule-based initial search.

r̃i Relevance of the time step with index i, e.g., the con-
fidence/probability that it is located in a target pat-
tern.

r̃rr Relevance of every time step in a time series, e.g, the
confidence/probability of each time step in a time
series that it is located in a target pattern.

sij The value at the i-th time step in the j-th track of a
time series S.

sssi The time step at index i in time series S.

sssj The j-th track in the time series S.

u Index of a resampled version of Q.

v˜i˜j Symbol at the i˜-th time step in j-th track in a multi-
variate symbolic represented time series V.

v˜′i˜′ The i˜′-th symbolic step in a symbolic represented
time series with intertwined tracks vvv′.

vvv˜′ Symbolic represented time series V with inter-
twined tracks.

wj The j-th weight in the weights www used to update
hash functions, which corresponds to the impor-
tance of the j-th track.

...
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Table 1: Latin Symbols – Continued

Symbol Meaning

www Weights to update the parameters θθθ in hash func-
tions.

wwwh Weights to update the hash function parameters ac-
cording to relevance feedback on the hash functions.

wwwh,b Weights in the b-th feedback round to update the
hash function parameters according to relevance
feedback on the hash functions.

www∗h Interim unnormalized weights to update the hash
function parameters according to relevance feed-
back on the hash functions.

wwws,b Weights in the b-th feedback round to update the
hash function parameters according to relevance
feedback on the samples.

wwws Weights to update the hash function parameters ac-
cording to relevance feedback on the samples.

www∗s Interim unnormalized weights to update the hash
function parameters according to relevance feed-
back on the samples.

yi Whether the time step with index i is in a found
pattern. If yes, yi = 1, otherwise yi = 0.

yyy An array of the same length as the time series con-
taining boolean values of whether each time step in
the time series is in a found pattern (1 if time step
in a target pattern, else 0).

zi Whether the time step with index i is in a ground
truth. If yes, zi = 1, otherwise zi = 0.

zzz An array of the same length as the time series con-
taining boolean values of whether each time step in
the time series is in a ground truth (1 if time step in
a ground truth, else 0).
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Table 2: Greek Symbols

Symbol Meaning

Θ Parameter vectors of all hash functions.

Θ+ Parameter vectors of all hash functions accepted by
the user.

α Index of the start time step of a time series subse-
quence.

ααα f iltered Start time step indexes of potential found patterns
after filtering αnms with a relevance threshold τ.

αααnms Start time step indexes of potential found patterns
after non-maximum suppression in αraw.

αααraw Local maximum points in merged relevance profile
rrrmerged, which are start time step indexes of potential
found patterns.

β Index of the end time step of a time series subse-
quence.

γΔi The coefficient for the Δi-th past value in the MA
model. The common symbol is in the literature is θ
instead of γ. However, the former is occupied in the
thesis.

εi−Δi The Δi-th past innovation of the time series model.

ζ Lookaround. To classify a time step si, its proximity
S (i− ζ, i + ζ + 1) is used as input data.

ζα Lookbehind, number of historical time steps to con-
sider when classifying whether a time step as in a
target pattern or not. In practice, we set ζα = ζ.

ζβ Lookahead, number of future time steps to consider
when classifying whether a time step as in a target
pattern or not. In practice, we set ζβ = ζ.

ζ̃ Length of the neighborhood around a positively
labeled pattern S (α, β), within which the time
steps are considered negative, i.e., all time steps in
S
(
α− ζ̃, α

)
∩ S

(
β, β + ζ̃

)
are considered negative.

η Relevance threshold, which the relevance of a found
pattern candidate should reach to be recognized as
a found pattern.

...
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Table 2: Greek Symbols – continued

Symbol Meaning

θj The j-th parameter in a hash function corresponding
to the weight for the j-th track.

θθθ Parameters in a hash function.

θθθ′ Parameters in a retrained hash function after rele-
vance feedback.

ι Bin size for Piecewise Aggregate Approxima-
tion (PAA) and Symbolic Aggregate approXimation
(SAX).

λlower The lower bound of the horizontal scaling factor for
Q.

λupper The upper bound of the horizontal scaling factor for
Q.

ρ Learning rate for updating the track weights.

φ Window length (number of time steps in the win-
dow).

φu Length of the u-th resampled version of Q.

ϕΔi The coefficient for the Δi-th past value in the AR
model.

φ̃i Length of the chosen resampled version of Q for the
time step with index i.

φφφ Lengths of every resampled versions of Q.

φ̃φφ Lengths of the resampled version of Q chosen for
every time step.

φ˜ Word length of the symbolic represented query Q.

τττ Indexes of time steps estimated to be in a target pat-
tern.

υ Intersection over Union (IoU) threshold.

ϕ Radius used in Non-Maximum Suppression (NMS)
in the rule-based initial search.

ψ Hash collision threshold for LSH.

ω Projection collision threshold (hash bucket size)
within which project collisions happen for LSH.
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Table 3: Other Symbols

Symbol Meaning

.˜ In symbolic space.

� Element-wise product, aka Hadamard product,
entry-wise product, or Schur product.

�.� Floor function.

[.] A matrix.

{.} A set.

|.| Cardinality (number of entries) of a set or length of
a vector.

‖.‖ L2 norm.

Cov (., .) Covariance of two random variables.

E (.) Expectation of a random variable.

T (.) An integral transform.

Var (.) Variance of a random variable.

div Integer division.

mod Modulus.
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1I N T R O D U C T I O N

In this chapter, we will introduce the domain background that
motivated our research, followed by the challenges that prevail
in the academic discipline. Thereupon, we will pose our research
question and requirements. Based on them, we will derive con-
crete goals that envision the deliverables of our technical work.
Subsequently, we will lay out the contributions that we have
made or are making in our completed and ongoing projects. Fi-
nally, we will sketch an outline of the rest of this thesis. Table 12
in Chapter 9 summarizes the challenges, requirements, goals, and
contributions addressed in each chapter.

1.1 motivation

Searching for recurrences of a given event in chronologically
recorded data is a ubiquitous task in various domains, such
as discovering astronomical objects like supernovae or quasars
in brightness transient observations [155], locating pathogenic
fragments in genomic sequences [156, 239], tracking events in
Internet of Things (IoT) data collected from inertial measurement
units in mobile devices [153], and detecting similar market be-
havior in historical stock prices [2, 90, 97].

Our use cases come from our industrial partner IAV GmbH
Ingenieurgesellschaft Auto und Verkehr (hereinafter called IAV).
They are mainly in the automotive domain, where engineers fre-
quently and spontaneously search for event-induced patterns in
measurements from various sensors and control units, e.g., for
subsequent error root cause diagnosis. For instance, our engine
engineers await an indicating signal to pinpoint the best entry
point of their novel nozzle control algorithm for a smoother
air-fuel ratio control, which should be activated immediately af-
ter the indicating signal; our transmission engineers trace gear
change events to examine moments on different shafts to op-
timize the control strategy for the next-generation dual-clutch
transmission and reduce traction loss during gear shifts; Noise,
Vibration, and Harshness (NVH) engineers hunt for transition
phases when half of the cylinders are deactivated or reactivated
for automobiles with a variable displacement engine to analyze
and suppress acute vibrations during these periods.

1
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introduction

These real-world use cases are, at an abstract level, pattern
search in time series, one of the tasks in time series analysis il-
lustrated in Figure 1.1. Time series pattern search addresses the
problem of finding patterns along the time axis in a time series
that are similar to one or several given examples. It serves as a
frequent enabler for downstream domain-specific data analysis
that requires multiple examples or as many occurrences of the
interesting event as possible.

Our engineers from various departments, especially engine cal-
ibration, complain that they need to manually search for events in
measurements several times a week, each costing hours of work-
ing time. If failed to procure sufficient samples of the interesting
event from historical records, they have to commission new test
drives, incurring even more time and costs. In this regard, IAV
initialized this research project on Multivariate Time Series (MTS)
pattern search.

Anomaly Detection

Aliases: 

Typical Methods: 

Forecasting

Alias: 
Typical Methods: 

Motif Discovery

Typical Method: 

Segmentation

Related task: 
Typical Methods: 

Classification

Typical Method: 

Clustering

Typical Methods: 

Causality Discovery

Typical Method: 

Pattern Search

Summarization

Related tasks: 

Typical Methods: 

Aliases: 

Typical Methods: 

Figure 1.1: Tasks in Time Series Analysis. Time series analysis is the dis-
cipline that studies methods for extracting information and
knowledge from time series data. It subsumes (but not lim-
ited to) nine typical tasks [85, 89, 94, 138].

1.2 challenges

Multivariate time series pattern search faces nine challenges (ab-
breviated as Cs) illustrated in Figure 1.2.

C1 Temporal Length and C2 High Dimensions are dictated by
properties of the data and thus common for all tasks in time series
analysis.

C3 Duration Scaling, C4 Inter-Track Time Shifts, and C5 Con-
text Obliviousness relate to the query and the target patterns, and
are specific to time series pattern search.
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1.2 challenges

C6 Unexplainable Model and Its Training Process, C7 Ineffi-
cient Model (Re)training, and C8 Meager Labels affects model-
based time series pattern search with a machine learning model.

C9 Subjective and Task-Dependent Similarity and Relevance
denounces rule-based time series pattern search that does not
require optimizing parameters in the data processing pipeline
and is thus not steerable.

Figure 1.2: Challenges. The task, multivariate time series pattern search,
faces nine challenges. We will address all of them in this the-
sis.

C1 Temporal Length. Time series data can span numerous time
steps due to fine sampling rates or long measurement dura-
tions. For instance, our measurements from Engine Control Units
(ECUs) typically last several hours with a sampling rate of 1 mil-
lisecond, easily reaching ten million time steps; astronomical and
weather observations accumulate every year [166]; IoT and Indus-
trial 4.0 devices generate unprecedented big data, with an estima-
tion by 2025 of over 75 billion connected devices worldwide [183]
and a global economic impact of up to 11.1 trillion [64]. Research
in time series analysis has entered an era of trillions of time
steps [174, 175, 211]. When we conduct time series pattern search
on a standard laptop, processing a time series with one million
time steps typically costs several minutes for most algorithms im-
plemented in Python. Occasionally, out-of-memory errors occur.
In addition, most visualization libraries like PlotlyJS and Boke-
hJS become sluggish, making interactive exploratory search user-
unfriendly. Our work in Chapter 6 scans the time series data with
a regular expression along the time axis instead of the de facto
standard sliding window.

C2 High Dimensions. A time series can record multiple vari-
ables over time, each revealing the state of the observed object
or system from one perspective. Sometimes it is only after syn-

3
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introduction

thesizing information distributed across dimensions that it be-
comes possible to retrieve the events of interest [275, 276]. For
instance, a typical Electroencephalogram (EEG) uses no less than
64 electrodes to measure the electrical activity in the brain [221].
Our ECU data comprise more than nine thousand signals/dimen-
sions, although a specific analysis task may require only a subset
of them. Moreover, multiple dimensions also increase processing
time many times. All our works take multivariate suitability into
account. In addition, our work in Chapter 5 merges all tracks into
one with LSH, so that subsequent data processing scales sublin-
early/constantly with respect to the number of dimensions.

C3 Duration Scaling. The time spans of the target patterns may
differ. For instance, in the EEG Eye State dataset [221], the longest
periods of the target event (when the subject’s eyes are closed) are
more than ten times longer than the shortest ones. This is a non-
trivial challenge due to the de facto standard usage of sliding win-
dows to scan the time series [153, 156, 182]. A fixed-sized sliding
window can only retrieve patterns of the same length. Conversely,
a range of sliding windows of various lengths multiplies the pro-
cessing time. Our work in Chapter 6 exploits quantifiers in regex
to capture duration scaling. Furthermore, our work in Chapter 7
classifies time steps instead of time series windows, which scans
the time series only once with machine learning models and re-
trieves duration scaled patterns.

C4 Inter-Track Time Shifts. In practice, an event may delay its
manifestation in the data, and such delay may vary in different
tracks [276]. This is often the case with CAN-Bus data, where the
delays and their differences may be even greater than the pattern
duration in each track. Our work in Chapter 6 combines regex
techniques like quantifiers, character classes, and wildcards to
capture various time series pattern distortions, including inter-
track time shifts.

C5 Context Obliviousness. In some of our use cases, the target
patterns do not show distinctive internal characteristics, while
they form prominent patterns together with their immediately
preceding and succeeding data. This is especially the case when
the event is a phase in a multiphase process. Our unique ap-
proach of time-step-based classification in Chapter 7 is aware of
the pattern context during retrieval.

C6 Unexplainable Model and Its Training Process. It is ubiq-
uitous in academic work to train a machine learning model to
represent time series, estimate time series properties, and mea-
sure the relationships between time series [184, 190, 278]. How-

4
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1.3 research question

ever, domain users hesitate to apply machine learning due to the
inaccessibility to its mechanism. As a result, they are unable to
deduce the causes of the errors and are skeptical of its reliability.
Our work in Chapter 5 turns LSH into a model and trains it with
an explainable mechanism that returns feature/track importance
as a by-product.

C7 Inefficient Model (Re)training. Another challenge faced by
model-based time series pattern search is the computational costs
caused by expensive mathematical optimization for model train-
ing [275]. In our case, calibration engineers query measurements
spontaneously and often wish for an immediate answer. They ex-
pressed concern about waiting several hours for model training,
let alone hyperparameter tuning, before consuming the model.
Our work in Chapter 5 updates the model according to data vari-
ance instead of mathematical optimization, which allows instan-
taneous model adaptation.

C8 Meager Labels. Machine learning models are notorious for
their hunger for labeled data [81, 147, 177, 283]. In practice, our
engineers may not and usually cannot provide many examples
of the target patterns. Hence, the feasibility of machine learning
is in question. Our work in Chapter 5 and Chapter 8 solicits la-
bels from user feedback to train the model actively. Moreover, the
technique “nonmyopic search” proposed in Chapter 7 indulges
the model’s gluttony for labels because a user-labeled pattern
will be translated to hundreds and thousands of training labels.

C9 Subjective and Task-Dependent Similarity and Relevance.
Pattern similarity and relevance are fuzzy and hard to describe.
Worse still, they may contain domain knowledge or information
specific to use cases [147]. Consequently, by no means can one
set of fixed rules capture all kinds of pattern similarity/rele-
vance [65]. Our work in Chapter 5, Chapter 7, and Chapter 8
studies model-based pattern search which adapts to the needs of
the task and the user.

We acknowledge that a single solution to all of the challenges
is unrealistic. Therefore, we will try to address a subset of them
each time and propose a toolbox where our domain users can
choose methods according to the dominating challenges in con-
crete use cases.

1.3 research question

We interviewed 23 domain engineers and solicited 40 user stories.
After analyzing their user cases, we posed the following overarch-
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ing research question: How to query patterns in MTS accurately,
efficiently, and understandably?

This research question imposes four (business) requirements
conveyed by the adjectives and adverbs therein.

R1 Multivariate Suitability. It is an indispensable functional re-
quirement because the phenomena that interest our engineers re-
quire consideration of multiple signals, as mentioned in C2 High
Dimensions.

R2 Sufficient Accuracy. It is a standard non-functional require-
ment. Unlike safety/security-critical scenarios, e.g., medical diag-
nosis and security surveillance, our domain users typically need
a couple of examples of a target event, which does not need to be
exhaustive. Accordingly, we use the word “sufficient” instead of
“high”, implying diminishing user satisfaction growth after the
accuracy exceeds a certain threshold. Nonetheless, this require-
ment is nontrivial with C4 Inter-Track Time Shifts, C5 Context
Obliviousness, C8 Meager Labels, and C9 Subjective and Task-
Dependent Similarity and Relevance in the way.

R3 High Efficiency. Like accuracy, it is also a self-explanatory
non-functional requirement. C1 Temporal Length, C2 High Di-
mensions, C3 Duration Scaling, C4 Inter-Track Time Shifts, C5
Context Obliviousness and C7 Inefficient Model (Re)training may
call for extra computational resources. This requirement is espe-
cially relevant if we expect the query system to be interactive. R3
High Efficiency is often in conflict with R2 Sufficient Accuracy.
Our engineers are constantly under stress and wish for a prompt
outcome. Considering their moderate requirement of retrieval ac-
curacy, we incline slightly towards efficiency in the trade-off be-
tween R2 Sufficient Accuracy and R3 High Efficiency. Specifically,
we endeavor to be faster than the state-of-the-art methods with
comparable accuracy.

R4 Explainability. It is an optional functional requirement that
addresses C6 Unexplainable Model and Its Training Process. This
requirement urged our tool to expose its working mechanism to
our engineers so that they can reason the retrieval process, pre-
dict its behavior, explain its failures, and build trust in it. Among
others, our domain engineers wish that the algorithm can hint
at and rank the most important tracks/features that contribute
most to detecting the target event. For instance, our engineers
search for anomaly examples in measurements, followed by an
error root analysis based on the tracks that exhibit the strongest
causal relationship with the anomaly.

6



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

1.4 goals and scope

1.4 goals and scope

After deriving the research question and the business require-
ments from the 40 user stories from the 23 domain engineers
in Section 1.3, we broke them down into tangible and manage-
able technical requirements or features. Then, we converted them
into actionable and measurable goals, each catering to an atomic
technical requirement that cannot or had better not be broken
down. After that, we categorized them according to the MoSCoW
method [25, 59] into must-have goals, should-have goals, could-
have goals, and won’t-have goals.

The must-have goals (abbreviated to “MG”) aim to lay a foun-
dation for academic contributions and business impacts. We must
attain all of them to arrive at the Minimum Viable Product (MVP).

MG1 STAR Analysis. The Ph.D. student must review state-of-
the-art algorithms on time series pattern search.

MG2 Baseline Algorithms. The Ph.D. student must select and
implement representative state-of-the-art algorithms as
baselines if no suitable libraries of the selected algorithms
exist.

MG3 Basic Algorithm. Design and implement novel algorithms
for time series pattern search that are not necessarily suit-
able for multivariate cases.

MG4 Algorithmic Benchmark. Benchmark the developed algo-
rithms with the baselines in terms of retrieval accuracy and
speed.

MG5 Basic App. Design and implement web applications to as-
sist domain users with no coding experience in applying
the developed algorithms, which, at its bare minimum,
must support inputting data, calling the algorithm code,
and exporting found pattern intervals.

MG6 Basic Visualizations. The developed web application must
be able to visualize the whole measurements and the found
patterns.

MG7 Query-by-Example. The developed web application must
support query definition by marking an interval in a line
chart of a data file (query-by-example).

MG8 Case Study. Evaluate the usability of the web application
with case studies (without the involvement of users).

The should-have goals (abbreviated to “SG”) are natural ex-
tensions of the MGs, as illustrated in Table 4. They target the

7
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requirements in Section 1.3 and strive for significant academic
contributions as well as business impacts.

SG1 Multivariate Suitability. The developed algorithms should
apply to multivariate cases.

SG2 Single Example. The developed algorithms should support
beginning with one example of the target events, as the user
may not be able to provide many examples of the target
event.

SG3 Performance Gain. The developed algorithms should bring
significant performance improvement (functional, accuracy,
speed) against the state-of-the-art baseline algorithms under
certain nontrivial circumstances.

SG4 Adaptive Algorithm. The developed algorithms should be
adaptive and steerable to converge to the user’s notion of
pattern relevance.

SG5 Streamlined Workflow. The developed web application
should have a distinctive and streamlined workflow that the
user can follow easily.

SG6 Click & Run. The developed web application should have
as few as possible mandatory configurations and interactions
(ideally click & run), but optional ones (e.g., collapsible pan-
els or an expert mode) are allowed.

SG7 Expert Studies. The usability of the web application should
be validated through expert studies with domain users.

Like the SGs, the could-have goals (abbreviated to “CG”) also
extend the MGs, as illustrated in Table 4. Although they also
contribute to academic research and business valorization, they
approach the border of our scope. Some CGs study alternative
and complementary techniques, e.g., query-by-sketch in contrast
to our query-by-example query definition approach. Some CGs
consolidate our side work, e.g., a survey for time series repre-
sentations and an evaluation framework for time series pattern
search. Others are speculative and nice-to-have features that do
not affect the essential functionality of our method, e.g., track im-
portance estimation and intelligent assistance. Due to the time
constraint, we consider them optional.

CG1 Transformation Survey. The Ph.D. student could survey
problem space transformations for time series and create a
taxonomy for them, discussing their merits and drawbacks,
as well as suggesting their proper use cases.

8
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CG2 Track Importance. The developed algorithms could be ex-
plainable, especially in terms of track importance (which
tracks contribute more to the detection of the target event).

CG3 Evaluation Framework. The Ph.D. student could design
and implement a unified evaluation framework.

CG4 Query-by-Sketch. The developed web application could
support query definition by drawing a prototype of the de-
sired patterns in a canvas (query-by-sketch).

CG5 Intelligent Assistance. The developed web application
could provide helpful, ideally intelligent, suggestions to the
user.

Similar to the situation in Section 1.2, we cannot fulfill some
goals simultaneously. Instead, we provide a toolbox with multi-
ple methods designed to meet different subsets of the goals. Com-
bined, the toolbox strives to cover all MGs, SGs, and as many CGs
as possible.

We consider the following points (won’t-have goals, abbrevi-
ated to “WG”) out of the scope of our work and will forgo them.

WG1 Engineering. Heavy engineering work, product design,
or application of existing technology, e.g., indexing with
Apache Lucene, parallel computing with Hadoop or Spark,
or user management, since they do not contribute academ-
ically.

WG2 Models for Marginal Gain. Devising new machine learn-
ing models, improving the architectures of existing models,
or testing new combinations of existing machine learning
models and existing data processing pipelines, for the sole
purpose of marginal performance gain (as in Kaggle com-
petitions or publications resulting from competitions for
specific datasets), unless the changes enable new functions
useful in our use cases.

WG3 Hyperparameter Optimization. Excessive hyperparameter
optimization during algorithm evaluation, because exten-
sive offline model training before inference/production
is infeasible in and the optimal performance achieved
this way does not apply to our spontaneous and highly
dynamic use cases. Pertaining to SG6, the performance
should be robust to hyperparameter setting, and a set of
default values should generally work well.

Apart from the goals, our work must comply with regulatory
conditions in IAV irrelevant to the research work. For instance,

9
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MG1:
STAR
Analy.

MG2:
Baselin.
Alg.

MG3:
Basic
Alg.

MG4:
Alg.
Benchm.

MG5:
Basic
App

MG6:
Basic
Vis.

MG7:
Query-
by-Ex.

MG8:
Case
Studies

SG1:
Multivar.
Suitability

SG2:
Single
Example

SG3:
Performance
Gain

SG4:
Adaptive
Alg.

SG5:
Streamlined
Workflow

SG6:
Click &
Run

SG7:
Expert
Studies

CG1:
Trans.
Survey

CG2:
Track
Importance

CG3:
Eval.
Framework

CG4:
Query-
by-Sketch

CG5:
Intelligent
Assistance

Table 4: Relationships between SGs/CGs and MGs. One dark blue
square indicates the extension of a must-have goal by a
should/could-have goal. The MGs lay the foundation of the re-
search and their fulfillment leads to the MVP. In comparison, the
SGs and CGs target significant academic contributions and busi-
ness impacts. The goals focus more on the algorithmic side and
less on visualizations and interactions.

10



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

1.5 contributions

choices of programming language (e.g., Python instead of MAT-
LAB) and libraries (e.g., Django instead of FastAPI), interface de-
sign (e.g., formats of input/output artifacts), corporate identity
design (e.g., color scheme), software tests and coverage, and li-
cense checks (e.g., restricted usage of copy-left open-source soft-
ware), which we omit to enumerate in this academic thesis.

1.5 contributions

In the course of working towards the goals laid out in Section 1.4,
we completed three major research projects on novel algorithms
(distributed from Chapter 5 to Chapter 8), are working on the
fourth project on a taxonomy for time series representations
(Chapter 3), and planned a fifth project on an evaluation frame-
work for time series pattern search (discussed briefly under the
point “Unified Evaluation” as future work in Chapter 9). They
deal with all challenges in Section 1.2; they center around the
same research question posed in Section 1.3 and cover all four re-
quirements prescribed by it; they have attained all MGs and SGs
plus CG2 and are working on CG1 as well as CG3. The remaining
CG4 and CG5 are in our backlog as future work.

Our work intended to contribute to algorithm development
and visual analytics for multivariate time series pattern search,
with emphasis on the algorithmic side. The contributions and
their significance in the three aspects are listed in Table 5.

Our tools are deployed in IAV and Volkswagen and are help-
ing automotive calibration engineers trace events in massive mea-
surements.

1.6 thesis outline

We organize the subsequent chapters in this doctoral thesis ac-
cording to the contributions listed in Section 1.5. Please refer to
Table 12 for the addressed challenges, requirements, and goals in
each chapter.

Chapter 2 provides necessary technical background and re-
views the state-of-the-art methods in this research field. It goes
from the data (time series), over the task (time series analysis and
pattern search), to essential techniques.

Chapter 3 addressing CO 1 establishes a taxonomy for time
series representations and provides guides for effective choices
among them in practice.

11
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No. Ch. Contributions Alg. Vis. Int.

CO1 3 A taxonomy for time series repre-
sentations (ongoing)

+++ - -

CO2 4 A unified evaluation framework for
time series pattern search (ongoing)

++ +++ +

CO3 5 An efficient, steerable, and inter-
pretable representation for very
high-dimensional time series

+++ + +

CO4 6 Description of pattern distortion &
retrieval invariance, especially for
inter-track time shifts

+++ + +

CO5 7 Nonmyopic Machine-Learning-
based pattern search capturing
duration scaling and pattern con-
text

+++ + +

CO6 8 Multi-feature feedback for captur-
ing user’s notion of relevance

+ - ++

Table 5: Contributions. This thesis makes six distinctive contributions.
We assessed their significance in terms of algorithms, visualiza-
tions, and interactions (abbreviated as Alg., Vis., and Int., respec-
tively, in the table). “-” means no noteworthy overlap, “+” means
application of established techniques but no contributions, “++”
means tangential or minor contributions, and “+++” means ma-
jor contributions.

Chapter 4 originates from the ongoing CO 2 and introduces the
evaluation metrics that we propose for benchmarking retrieval ac-
curacy. We will use them from Chapter 5 to Chapter 8 throughout.
The visual analytics part of the metrics proceeds as an ongoing
master thesis.

Chapter 5 is devoted to CO 3 and presents our extension of
a hashing-based data representation for very high-dimensional
time series. It steers the representation to align with the user’s no-
tion of relevance with an understandable model updating mecha-
nism while retaining the efficiency of the original representation.

Chapter 6 dedicated to CO 4 proposes our extension of a sym-
bolic representation for UTS to multivariate cases. Based on the
extended representation, we formulate the query, i.e., the target
event, as a regular expression and exploit techniques in regex
to describe various distortions in time series patterns, especially
heterogeneous duration scaling and inter-track time shifts.
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1.6 thesis outline

While Chapter 5 and Chapter 6 aim to push back the fron-
tiers of rule-based pattern search that does not involve machine
learning, Chapter 7 and Chapter 8 attempt to advance (machine-
learning)-model-based pattern search.

Chapter 7 tackling CO 5 put forward a data processing pipeline
called “nonmyopic search” that combines time-step-based clas-
sification and density-based-clustering. It alters how (the same)
machine learning models are used for time series pattern search
to capture duration scaling and pattern context, ultimately lead-
ing to higher accuracy and speed simultaneously.

Chapter 8 concerning CO 6 enhances the existing relevance
feedback used in feedback-driven pattern search with other fea-
tures of the retrieved patterns besides relevance. It collaborates
closely with nonmyopic search and drives accuracy to an even
higher level.

Finally, Chapter 9 concludes our work and discusses future
work.
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2R E L AT E D W O R K

This chapter systematically covers the technical background and
reviews state-of-the-art methods related to the central topic MTS
pattern search, while we defer related work that only pertains
to a specific chapter to the related work section of that chapter.
For instance, we will introduce time series representation in this
chapter because it is an essential technique for the central topic.
Whereas, we will elaborate on SAX, a special time series represen-
tation, in Section 6.2, because it is fundamental to Chapter 6 but
would disturb the information flow in this chapter.

This chapter will begin with dissecting the studied data type,
i.e., time series in Section 2.1. Then, Section 2.2 introduces the
research field time series analysis, followed by Section 2.3 that
zooms in on the task time series pattern search. The remaining
sections focus on essential techniques for this task, including data
representations, similarity measures, traversing approaches, re-
trieval invariance, active learning, and user interface design.

2.1 time series

Time series, like tabular data, graph data, image data, text data,
etc., is one of the most common and basic data types. Subse-
quently, we will define time series and dissect its two dimensions.

2.1.1 Definition of Time Series

A time series is a sequence of real-valued observations recorded
chronologically [32, 94, 109, 186]. It is one of the most ubiq-
uitous data types which describes, for example, sales develop-
ment [10, 200], energy consumption [70, 241], stock price fluctu-
ations [78, 97], IoT measurements [64, 152], audio recordings [86,
135], concentration changes during chemical processes [16, 60],
genetic sequences [17, 156], medical graphs like EEG [195, 280]
and Electrocardiogram (ECG) [178, 245].

Formally, we define a time series

S =
[
sssi ∈ Rd

]
0≤i<n

=
[
sij
]

0≤i<n
0≤j<d
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of length n (number of time steps) and dimension (number of
tracks) d as a permutation of n real-valued vectors, each of which
has d entries. We adopt the matrix notation with square brackets
for an array of indexed elements with duplicate allowed. We im-
pose simple constraints (e.g. “∈ Rd” in this case) directly with a
representative element in the square brackets. The subscription
describes the ranges of the indexes for the elements. We use the
set notation with curly brackets {.} for a group of not necessarily
ordered elements without duplicates, such as all found patterns.
Please refer to List of Symbols for all symbols used consistently
in this thesis.

2.1.2 Two Axes in Time Series

The data values in a time series span two axes, i.e., the time axis
and the attribute axis.

Time Axis

Along the time axis lies the essential property of time series, i.e.,
the time steps / data samples are dependent or ordered [31, 250],
and the dependency or order carries information, as indicated by
the word “permutation” instead of “combination” in our defini-
tion of a time series. This property differentiates time series from
tabular data containing a combination of rows / data samples.
Interestingly, this order does not necessarily depend on the no-
tion of time, let alone the existence of time stamps; and the data
values are not strictly required to be real numbers readily. For
instance, researchers also regard genomic sequences [156] and se-
quences representing two-dimensional shapes [141, 269] as time
series. It is reasonable and beneficial to subsume such sequen-
tial data under the data type time series, because they respect
the essential property of time series, and methods for time series
analysis often apply to them as well.

Data processing along this axis is prone to C1 Temporal Length.
To avoid scanning along the time axis, one may consider apply-
ing a transform like Fast Fourier transform (FFT) or model the
temporal dynamics to work outside the time domain, providing
the time series is stationary, i.e., its statistics like mean, variance,
etc. do not change over time [230, 238]. If a time series is non-
stationary but the dynamic of the non-stationary component is
known, it is possible to remove the non-stationarity or extend
the model. If such transformations or modeling are infeasible,
one may consider methods without many assumptions of the an-

16



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

2.1 time series

alyzed time series, e.g., indexing [2, 44, 46] and computational
techniques [174, 188] to alleviate C1 Temporal Length.

We will review techniques for traversing the time axis and men-
tion our work in this respect briefly in Section 2.6.

Attribute Axis

If d > 1 and the time series comprises multiple dimensions, it
is multivariate, high-dimensional, or multichannel. Various dis-
ciplines have diverse terminologies referring to a dimension in
a time series. Literature on time series analysis favors the terms
“channel” and “multivariate time series”. “Channel” is also the
language of our engineers. Consequently, we use it in the user in-
terfaces designed for them. Audio data are recorded in “tracks”.
This thesis adopts this terminology, following the tradition in
our research group studying multimedia data. The graph library
Plotly uses the word “trace” Other aliases include “signal”,
“variable”, “attribute”, “feature”, “dimension”, and “series”.

Data processing across this axis is subject to C2 High Dimen-
sions [166]. Each track may depict the measured object or process
from one perspective [250]. Synthesizing information distributed
across multiple tracks can proceed, succeed, or even accompany
data processing along the time axis. For instance, [237] suggested
two possibilities to extend Dynamic Time Warping (DTW), one
of the most popular distance measures between two UTS, to MTS:
1) by regarding each time step, that was previously a scalar, as
a point or vector, and performing the very same calculations on
them, replacing scalar subtraction with Euclidean Distance (ED);
2) by computing conventional univariate DTW for each track inde-
pendently, and averaging them subsequently. They call the first
extended version DTWD (the subscript “D” stands for “depen-
dent”) and the second DTWI (the subscript “I” stands for “in-
dependent”). Furthermore, their experiments concluded that nei-
ther version is universally superior. Another example is the exten-
sion of AR models to Vector Autoregressive (VAR) models, where
the observations / time steps are vectors instead of scalars, and
the previously scalar coefficients before the historical observa-
tions in the equation become matrices, allowing a description of
temporal dynamics and inter-track relations simultaneously.

R1 Multivariate Suitability dictates that we confront C2 High
Dimensions face to face. All our proposed algorithms apply to
MTS. Particularly, we designed PSEUDo for very high-dimensional
time series and SAXRegEx for simultaneously analyzing temporal
and inter-track information.
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2.2 time series analysis

The term “time series analysis” [32, 111, 238], also known as
“time series data mining” [85, 89, 94], refers to the process of
information and knowledge discovery from time series data. In-
trinsically, it is studied roughly in nine tasks; extrinsically, it is
closely related to several other disciplines, which we will present
in the subsequent subsections.

2.2.1 Tasks in Time Series Analysis

There are many established problems/tasks in the research field
of time series analysis [94, 138]. We pick the nine most typical
ones illustrated in Figure 1.1. Based on the use case, analysts may
want to conduct

pattern search / query by content / indexing , etc .
Locating patterns that are similar to a given one, which
represents an event of interest and is worthy of further
investigation [6];

anomaly detection Detect extraordinary events that may re-
late to errors or novelties [26, 157, 234];

prediction / forecasting Extrapolate future development
of the data [21, 50, 184];

motif discovery Unearth previously unknown recurrent be-
havior, e.g., for association rule learning [4, 212, 249];

segmentation / change detection Split the data into
consecutive pieces that are homogenous internally and het-
erogeneous with each other, e.g., to analyze phases individ-
ually [102, 171];

classification Categorize time series and thereby the items
that they measure to known groups [189, 190];

clustering Divide multiple time series into (previously un-
known) groups, each with characteristics shared by group
members but unique to other groups, in order to reveal pat-
terns in common behavior [5, 121, 163];

causality discovery Recognize causal relationships be-
tween two tracks or two time series with the same time
axis [13, 191], which is less mentioned in many surveys on
tasks in time series analysis [85, 89, 138]; and
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2.2 time series analysis

summarization Summarize and usually visualize the essen-
tial features of long time series [138, 196, 243].

During our literature review, we found that a systematic analy-
sis of the state-of-the-art algorithms for time series segmentation
and pattern search is missing, especially the latter, albeit with an
abundance of methods proposed.

Our work falls into the category pattern search. Strictly speak-
ing, we consider indexing a (preprocessing) step for pattern
search. However, many works use the term time series indexing
to address pattern search and even define this term explicitly this
way. Therefore, we include it as an alias for pattern search. We
will introduce the task time series pattern search and review its
state-of-the-art methods in Section 2.3.

2.2.2 Intersections with Other Disciplines

Observed in a broader scope, time series analysis intersects mul-
tiple other disciplines, where (temporal) sequential data analy-
sis is of concern. Specifically, a considerable portion of the meth-
ods in time series analysis originate from other disciplines. They
interpret time series dynamics differently and sometimes make
domain-specific assumptions. Figure 2.1 shows four disciplines
closely related to time series analysis and time series pattern
search. We will review these interpretations and assumptions in
detail in Chapter 3.

Figure 2.1: Intersections of Time Series Analysis Including Pattern
Search With Other Disciplines. Observed in a broader scope,
time series analysis and time series pattern search assimi-
late methods from multiple intersecting disciplines, which
observe the data from different perspectives, solve distinctive
issues, and propose unique techniques.
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2.3 time series pattern search

As illustrated in Figure 1.1, time series pattern search addresses
the problem of locating sub-sequences, which are similar to a
target example, in a time series. It appears in the literature un-
der the aliases of pattern search [156, 219], time series index-
ing [44, 109, 138], query by content [86, 104, 129, 132, 136, 138,
140, 143, 210], similarity search [104, 193], subsequence match-
ing [90, 106, 139], subsequence search [92], twin search [46, 47],
time series querying [182], and so on. In our reviewed literature,
“similarity search” appears most frequently. However, we slightly
prefer “pattern search” because it is most clear and accessible to
us.

For a precise description, we define

• a subsequence S (α, β) of S, starting at α-th time step inclu-
sive and ending at β-th time step exclusive as

S (α, β) = [sssi]α≤i<β (2.1)

• a query as

Q =
[
qqqi ∈ Rd

]
0≤i<φ

=
[
qij
]

0≤i<φ
0≤j<d

(2.2)

of length φ; and

• a relevance function

frel : R(β−α)×d → [0, 1] (2.3)

which takes a subsequence S (α, β) of S as its input and
returns the relevance of S (α, β), i.e., the confidence/proba-
bility that it is a desired pattern (we will use “relevance” in
the thesis, which is from our perspective more precise, and
“confidence” in our user interfaces preferred by our users).

We define the task time series pattern search formally as follows:
given a time series S and a query Q, return all subsequences
S (α, β) of S whose relevance is no less than a threshold η, namely,
return

{S (α, β) | frel (S (α, β)) ≥ η}
Researches on time series pattern search mainly focus on two

directions: 1) novel relevance functions frel , including rule-based
similarity measures and machine learning models, which better
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describe the notion of relevance/similarity and focus on accu-
racy [103, 107, 201, 284]; 2) indexing techniques focusing on effi-
ciency [2, 47, 202].

We made contributions in both directions and will mention
them in Section 2.5 and Section 2.4, respectively, among other
contributions.

2.4 time series representations

Time series representations are ubiquitous during time series
analysis. General data preprocessing includes data cleansing, fea-
ture & sample selection, outlier removal, normalization, and data
transformation [230]. In time series analysis, data transformation
is synonymous with time series representation. It transforms a
time series into another form to compress data volume, reduce di-
mensionality, or reveal latent features, ultimately enabling more
effective or efficient data analysis.

We define a time series representation as a transformation tech-
nique (rather than, rigorously speaking, the outcome of this tech-
nique) that converts a time series into another form while retain-
ing information on its salient dynamics, with which it is viable to
reconstruct the original data or synthesize data possessing simi-
lar characteristics.

It is inconsequential that the transformed time series stays in
the time domain, as with most piecewise representations [44, 136].
Naturally, it is also plausible for a representation to transform a
time series into another domain, like the frequency domain, as
with FFT, or an embedding space, as with a dimensionality re-
duction technique. A representation is valid, as long as the in-
formation loss or distortion does not prohibit an inverse trans-
formation to reproduce the original time series. Such reproduc-
tion extends to the generation of synthetic data with similar
characteristics, as with generative machine learning models like
Variational Autoencoder (VAE) and Generative Adversarial Net-
work (GAN), and with models describing system dynamics like
Autoregressive Integrated Moving Average (ARIMA) and Hidden
Markov Model (HMM). It is also irrelevant whether such an in-
verse transformation formally exists. For instance, inverse trans-
formations for many manifold learning / nonlinear dimensional-
ity reduction techniques may not have been proposed or recog-
nized officially. Nonetheless, they are theoretically possible [87].

A counterexample would be indexing techniques like R-Tree
and its variants, also commonly used in time series analysis, es-
pecially in retrieval tasks [2, 90]. We are skeptical of qualifying
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them as time series representations because they may not pre-
serve sufficient information on data characteristics, obstructing
a meaningful data reconstruction. Similar to our consideration,
Esling et al. treat the time series representation and indexing as
two separate topics. Together with the similarity measure, they
are the three major issues in time series data mining [85]. How-
ever, this is admittedly controversial. For instance, Fu does not
differentiate representation and indexing [94], and Koegh explic-
itly includes trees as a time series representation [138].

Due to the same reason, we refrain from regarding transforma-
tions like Box-Cox transform [29], detrending, and differencing as
time series representations, which Salles et al. feature in their sur-
vey on non-stationary time series transformation methods [230].

Furthermore, a time series representation can

• prescribe a set of operations, as with integral transforms,
piecewise representations, and dimensionality reduction
techniques, or model the time series, as with stochastic pro-
cesses and machine learning models;

• be deterministic as with a linear regression model, or
stochastic as with a stochastic process model;

• make assumptions about the data like normal distribution,
as with SAX [165], and stationarity as with Autoregressive
Moving Average (ARMA) [32], or agnostic about the data
properties, as with most machine learning models;

• be geared towards certain tasks like ARCH only for pre-
dicting variance/heteroscedasticity/volatility [82], or be
general-purpose like dimensionality reduction techniques;

• serves in complex pattern discovery or rule mining, or just
for data smoothing or compression spontaneously.

• incur consequential overhead like model training, or basi-
cally computationally free to use like piecewise representa-
tions.

We will comprehensively survey time series representations in
Chapter 3 and hereby omit a deeper related work analysis.

Time series representations play a cardinal role in our work.
In Chapter 5, we will employ and enhance the time series repre-
sentation LSH (to be elaborated in Section 5.2) as the foundation
for the high efficiency, especially for very high-dimensional time
series. In Chapter 6, we will utilize and extend the time series
representation SAX to capture pattern distortions in time series.
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2.5 time series similarity measures

Measuring similarity (alternatively distance) between two time
series is a common subroutine in many time series analysis algo-
rithms. In the task time series pattern search, the rule-based (not
involving machine learning models) algorithms heavily rely on
a similarity measure to gauge the similarity between a pattern
and the query Q. The similarity measure is decisive for retrieval
accuracy.

Subsequently, we will define the term “similarity measure” in
time series analysis and explain its two forms (rule-based and
model-based).

2.5.1 Definition of Time Series Similarity Measure

We define a similarity measure as a function

fsim : Rφ1×d ×Rφ2×d → [0, 1]

which takes two time series (segments) P1 of length φ1 and P2 of
length φ2 and outputs their similarity. In this thesis, we assume
that the similarity score is normalized to [0, 1].

In general, applications favor distance measures (e.g., ED and
DTW) over similarity measures (e.g., cosine similarity), especially
in rule-based cases. We define a distance measure as

fdis : Rφ1×d ×Rφ2×d → [0,+∞)

The conversion between fsim and fdis can be nontrivial. Undoubt-
edly, (normalized) similarity 1 is equivalent to distance 0. Both
of them denote a pair of identical patterns. However, it is contro-
versial what similarity 0 means. For instance, it could correspond
to distance +∞, in which case the conversion is nonlinear. We
choose to map the highest distance (between the query and the
pattern in the time series that is most dissimilar to the query) to
similarity 0 and keep the conversion linear. Moreover, we prefer
the notion of similarity measure because it aligns well with the
output from machine learning classification models used to esti-
mate the relevance of patterns. Nonetheless, as we will mention
later, the scores of similarity or distance are secondary; what mat-
ters is the ranking of the found patterns. As such, we will use the
term “similarity measure” by default and use “distance measure”
if the context makes it more appropriate.

As mentioned in Section 2.3, time series pattern search needs
a relevance function frel . This is where fsim enters the data pro-
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cessing pipeline for pattern search. Depending on whether a ma-
chine learning model is involved, we can divide time series pat-
tern search approaches coarsely into rule-based and model-based
techniques. Rule-based pattern search often begins with the sin-
gle target pattern example, i.e., the query Q. In this case, we can
regard frel as a partial function of fsim, i.e., frel (P) = fsim (P, Q).
Normally, the user does not know the optimal relevance thresh-
old η (equivalently the desired number of top hits) a priori and
needs to adjust η after seeing the search results. In contrast,
model-based pattern search is often driven by multiple target
patterns, either ground truths or labels from user feedback. In
this case, frel takes the form of a model and does not rely on a
similarity measure directly, while η is usually 0.5.

As a side note, we call it “measure”, instead of “metric”, be-
cause in mathematics, a metric (in a metric space) has to possess
the following three properties:

1. Non-negativity:

fdis (P1, P2) ≥ 0 , P1 = P2 ⇔ fdis (P1, P2) = 0

2. Symmetry:
fdis (P1, P2) = fdis (P2, P1)

3. Triangle inequality:

fdis (P1, P2) + fdis (P2, P3) ≥ fdis (P1, P3)

Please note that the properties were proposed for distance met-
rics, not similarity measures. There are issues translating them
to similarity measures, especially regarding the triangle inequal-
ity. These properties are desirable for indexing and fast querying.
Many popular similarity/distance measures do not satisfy these
criteria. For instance, one of the most popular distance measure
DTW violates the triangle inequality. Nonetheless, we use phrases
like “evaluation metric” or “quality metric”, e.g., in Chapter 4,
because they are widely accepted, and it is clear that the word
“metric” in this context does not have the mathematical connota-
tion.

2.5.2 Rule-Based Similarity Measure

Rule-based similarity measures do not have trainable parameters
in fsim. Common basic options of the rule-based similarity mea-
sure include cosine similarity [66], Mahalanobis distance [208],
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and variants of the Lp norm, such as the L2 norm aka ED [36, 188]
and the L∞ norm aka Chebyshev distance [47]. To capture tem-
porally warped patterns, researchers proposed elastic similarity
measures, where DTW and its variants [23, 237] are the most
widely used and proven hard to beat among 20 methods in
the task time series classification [15]. Lines and Bagnall bench-
marked eleven rule-based similarity measures, also for time se-
ries classification, and found no significant performance differ-
ences among the elastic similarity measures [167]. Therefore, we
will use DTW if our method requires a rule-based similarity mea-
sure, as in Chapter 5; or use DTW to benchmark our rule-based
method if our method prescribes another similarity measure or
works without an explicit similarity measure, as in Chapter 6. ED,
DTW, etc. are distance measures. In our experiments, we invert
the distances and normalize them, as indicated earlier. In prac-
tice, the absolute value of the similarity is unimportant; what
matters is the ranking of the pattern candidates. Hence, any ma-
nipulation of the similarity or distance, that does not change the
ranking of the pattern candidates, also does not change the per-
formance of the method. For instance, theoretically, we can scale
the similarity heterogeneously so that the top hits stand out. This
will not affect the pattern-interval-based metrics (Section 4.3) at
any rate; also not the time-step-based metrics (Section 4.2) if the
threshold υ is transformed along with the similarity scores. In
Chapter 6, we even eliminate the need for an explicit similarity
measure in rule-based pattern search and innovatively use a reg-
ular expression to capture similarity in the presence of various
distortions.

2.5.3 Model-Based Similarity Measure

The notion of similarity is fuzzy and hard to describe concretely
and mathematically. Worse still, it can be subjective and differ in
each use case, as C9 Subjective and Task-Dependent Similarity
and Relevance states. Research has already acknowledged that
different use cases favor different similarity measures [15], and
“no single algorithm accounts for human judgments of time se-
ries similarity” [65]. Rule-based similarity measures lack train-
able parameters to model complex similarity notions and adapt
to changing use cases. To solve this problem, many works pro-
pose machine learning models in place of fixed rules to assess
time series similarity, i.e., granting fsim trainable parameters.
Recent representative model-based similarity measures include
Siamese networks [122, 201] and NeuralWrap [107]. Some time

25

https://chapter6.ed/


668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

related work

series representations (Section 2.4) bring their unique similarity
measures, like SAX’s distance measure between symbols [165]
and ShapeSearch’s scoring system defined upon their shape
primitives [239]. We have not used model-based similarity mea-
sures or machine learning models as fsim. Instead, we use models
as frel directly, so that we do not need to input Q every time we
use the model, and the model learns from multiple samples, not
only Q.

2.6 time series traversing approaches

Time series pattern search algorithms require a traversing ap-
proach to scan the time series data. We coined the term “travers-
ing approach” because this problem reminded us of traversing
data structures (trees or graphs). This is an essential yet less vis-
ited area.

The majority of the methods in the literature scan the time
series data sequentially, while some try to improve the accuracy
or speed issues associated with this approach. In the following
subsections, we will briefly discuss them.

2.6.1 Sequential Scanning

The classic traversing approach uses a sliding window to check
every temporal position in the time series. At each position, it
calculates the relevance of the pattern that starts from the posi-
tion and spans the length of the sliding window. Faloutsos et
al. called this traversing approach “sequential scanning” [90]. It
converts the problem to the more studied task time series classi-
fication, a common practice among similar works [153, 156, 182].

2.6.2 Accuracy-Oriented Traversing Approaches

Before introducing the techniques, let us first discuss two weak-
nesses of sequential scanning related to accuracy.

Hard-to-Set and Fixed Window Length. Finding the optimal
window length is nontrivial. Ermshaus et al. reviewed six algo-
rithms for configuring the window length [83]. However, they
only work for anomaly detection, motive discovery, and segmen-
tation. Apart from the issue with the optimal window length, this
approach cannot directly retrieve patterns of variable lengths. It
relies on a series of sliding windows of different lengths, adding
a new dimension of computational complexity and increasing ex-
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ecution load multiple times. As a result, the trade-off between
accuracy and efficiency becomes acute when the pattern lengths
vary significantly. Specifically, adding differently-sized sliding
windows increases accuracy at the cost of more processing time,
as mentioned in C3 Duration Scaling. In practice, if our proposed
algorithm (i.e., Section 5.3.1 and Section 7.3.1) or benchmark al-
gorithms require sequential scanning, we used a series of eight
sliding windows of logarithmically increasing lengths to capture
patterns with varying duration.

Context-obliviousness. A typical sliding window assesses the
relevance of a pattern based on the characteristics of the pattern
located in the window. It cannot consider the pattern context.
Sometimes, the target event does not manifest itself in rich fea-
tures within the time period during which it happens but may
precede or succeed distinctive signals, of which the user may not
be aware. In this case, considering the data surrounding the pat-
tern to examine contributes to the retrieval.

Researchers have proposed various solutions for rule-based
algorithms to address the first weakness. For instance, some
works match individual pieces in the query with pieces in the
time series with the same characteristic (e.g., monotonicity) and
a matching pair of pieces may differ in length [136, 182]. It is
also possible to formulate the query as a regular expression that
scans a symbolic representation of the time series, where quan-
tifiers in the regex can capture pattern scaling along the time
axis [219]. There are also works proposing computational tech-
niques [104, 229]. However, these approaches work only with
rule-based pattern search. In model-based pattern search, sequen-
tial scanning with a sliding window is currently the only option
in the literature [156, 275].

The second weakness remains untouched.
Our work in Chapter 6 extends the technique that queries sym-

bolic represented time series with a regular expression, thus in-
heriting its capability to deal with the first weakness. Moreover,
our work in Chapter 7 breaks the yoke that model-based pattern
search must use sliding windows to traverse data, addressing
both weaknesses without tampering with the models, raising ac-
curacy and speed simultaneously.

2.6.3 Speed-Oriented Traversing Approaches

In terms of speed, Mueen’s Algorithm for Similarity Search
(MASS) is so far the fastest similarity search algorithm [187, 188].
It uses computational techniques to accelerate the calculation of
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similarities between all subsequences of a certain length in a
time series. Nonetheless, it still suffers from the aforementioned
two weaknesses regarding accuracy. We used it constantly for
benchmarking speed with our rule-based algorithms. Admittedly,
MASS outperforms our methods in speed in general. However,
under certain circumstances, like pattern search in very high-
dimensional time series (Section 5.5.2) or in the presence of du-
ration scaling among other distortions (Section 6.5.3), our algo-
rithms overtake.

2.7 pattern distortions and retrieval invariance

Though less considered this way, time series pattern search
is, from our perspective, an instance of information retrieval,
which addresses the problem of retrieving information in un-
structured data like text documents or images according to a
search query [43, 56]. In time series pattern search, the query is
usually a target example extracted from the data or a prototype
of the target drawn by the user (please refer to Section 2.9.2 for
more details). The goal is to retrieve patterns in the time series
similar to the given query. This implies that the target patterns
in time series differ in some aspects. We call these dissimilarities
pattern distortions. Algorithms that contrive to retrieve relevant
patterns despite these distortions are said to have retrieval invari-
ance [101, 199].

Besides random noise, patterns in the time series exhibit vari-
ous forms of distortions. MTS inherits all distortions affecting UTS
while plagued by unique distortions. As such, subsequent sub-
sections explain distortions in UTS first, followed by that in MTS.

2.7.1 Pattern Distortions in Univariate Time Series

Horizontal translation, i.e., earlier arrival or delay of a pattern
along the time axis, is trivial in time series, when the de facto
standard traversing approach, sequential scanning (Section 2.6),
is applied.

Horizontal scaling, i.e., dilation and contraction of the pattern
duration along the time axis, is only addressed in a few works,
such as [137, 181]. They are tightly bound with certain time se-
ries representations or methods that may not collaborate with
the techniques that the user wants to use in the first place. As
mentioned in Section 2.5, model-based pattern search relies on
sequential scanning and does not possess horizontal scaling in-
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variance directly. Our work in Chapter 7 solves this problem irre-
spective of the used model.

Vertical translation and scaling, i.e., bias and amplitude expan-
sion/compression along the value axis, is often handled by nor-
malizing time series windows so that each window spans the
value range [0, 1] in case of min-max normalization (sometimes
simply called normalization) [156] or has mean 0 and standard
deviation 1 in the case of Z-score normalization (also called stan-
dardization) [47].

Time warping, which can be regarded as a heterogeneous re-
sample of different fragments of a pattern with unequal scaling
factors, is captured by a variety of elastic similarity measures [48,
244], among which DTW is the most popular [23, 237, 284]. In
Chapter 6, we propose a unique way to address warping with
quantifiers in a regular expression.

2.7.2 Pattern Distortions in Multivariate Time Series

In multivariate cases, most methods handle the temporal dynam-
ics and inter-track relationships independently and assume that
the tracks are synchronized, i.e., a pattern begins and ends in
all tracks simultaneously. Like the cases for general time series
analysis mentioned in Section 2.1, in time series pattern search,
some methods like DTWI calculate distance profiles along the
time axis for each track individually and merge them subse-
quently for each time step [237]; other methods like DTWD and
LSH merge tracks first, followed by univariate processing along
the time axis [272]. We have not found a time series pattern
search method, that naturally integrates the temporal and inter-
track information, as with VAE mainly for time series prediction.
All approaches that we reviewed and claimed to be suitable in
multivariate cases assume that every target pattern is synchro-
nized across all tracks. Driven by our domain problems, espe-
cially those related to CAN Bus data, we discard this assumption
and scan the temporal dynamics as well as inter-track relations
jointly in Chapter 6.

2.8 active learning for time series pattern search

Model-based pattern search requires training machine learning
models with sufficient labels. In practice, there are usually insuffi-
cient ground truths of the target patterns to use as training labels.
To deal with this problem, the technique relevance feedback [226]
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from information retrieval and the active learning [216, 247] from
machine learning invite users to label the retrieved items inter-
actively, possibly in multiple iterations. During this interaction,
domain knowledge flows into the data processing pipeline. Ac-
tive learning has witnessed success in processing of tabular [20],
text [226, 235], and image data [74, 160]. Since its introduction in
time series analysis in [142], this technique has gained attention
in time series pattern search [156, 232, 275], where researchers ad-
vocate the acquisition of labels by inviting users to verify found
patterns.

Classic active learning in information retrieval consists of four
techniques, i.e., feature extraction, classifier, query strategy, and
balance strategy [235]. For instance, [235] shows that a typical
constellation for text retrieval may use Term Frequency–Inverse
Document Frequency (TF-IDF) for feature extraction [255, 277],
Support Vector Machine (SVM) as the classifier [51, 197, 209],
(un)certainty-based query strategy [197, 209], and undersampling
as the balance strategy [235, 255, 277].

However, we cannot attribute our contributions to these four
techniques. Instead, we are more interested in the relatively
lower-level prerequisites and machinery of active learning, which
has three essential components from our perspective.

Firstly, trainable parameters, such as those in a model, form
the foundation. We show in Chapter 5 that parameters can even
be as broad as initially random numbers in hash functions that
no work has thought of training.

Secondly, it requires understandable features of the outcome
as an interface between users and the model. Until now, active
learning has only considered the relevance of the found pattern
by asking users to accept relevant found patterns and reject ir-
relevant ones. It is understandable because traditional relevance
feedback techniques serve mainly in text and image retrieval, and
there are not many understandable features on which users can
provide feedback. It remains a question if feedback on relevance
alone contains sufficient information for capturing the user’s no-
tion of relevance and steering the algorithm to converge to rele-
vant time series patterns. We propose to include other features
specific for time series pattern search, namely positions and sizes
of the found patterns in Chapter 8, which leads to significant ac-
curacy improvement. Accordingly, we differentiate in this thesis
the often interchangeable terms “active learning” and “relevance
feedback”, i.e., relevance feedback acquires user feedback only
on relevance and is a subset of active learning.
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Thirdly, active learning needs a mechanism to steer the train-
able parameters based on the user feedback to the understand-
able features of the outcome. Traditionally, this mechanism is
based on mathematical optimization, which is inefficient and not
interpretable. We show a mechanism in Chapter 5 that works
both instantaneously and interpretably.

We call model-based pattern search driven by human-in-the-
loop active learning “feedback-driven pattern search”. Whereas,
general model-based pattern search may begin with sufficient la-
beled data and may not involve active learning.

2.9 visual query systems

Data scientists design time series pattern search algorithms
mainly for domain experts, who do not have coding skills and,
according to our survey, are also reluctant to learn the algorithm.
Therefore, there is a need for tools that execute the developed al-
gorithm and that users interact with. Such tools are called Visual
Query Systems (VQSs).

In the following, we will define the term VQS, introduce its
dominant categorization, and present representative VQSs from
the literature.

2.9.1 Definition of Visual Query System

According to [155], the term VQS was first introduced by [227] to
refer to “systems that allow users to specify and search for de-
sired line chart patterns via visual interfaces”. For clarification,
the term Visual Query System (VQS) has been used even earlier,
e.g., by [9, 42], but in a broader sense. We have designed a ded-
icated user interface for each proposed algorithm and delivered
them together as a VQS to assist the user in applying the devel-
oped algorithm, including functions like query definition, param-
eter tuning, result inspection, and primitive error diagnosis.

2.9.2 Categorization of Visual Query System

Literature categorizes VQSs primarily based on the approach to
specifying the query. There are two prevailing approaches, viz.
query-by-example and query-by-sketch. The former defines a
query by providing an example, e.g., marking an interval in the
line chart showing the time series, like in the VQS design pioneer
TimeSearcher [119] and the recent PEAX [156]. This query defini-
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tion approach is preferable if the query is complex and an exam-
ple is accessible [156]. On the debit side, query-by-example can be
brittle [129]. Query-by-sketch specifies a query by drawing a pro-
totype, e.g., on a canvas. Examples range from QuerySketch [259]
over QueryLines [227] to Zenvisage++ [155]. It gives users more
freedom, especially when the initial example is hard to find [225].
It is an active research area, as capturing the unbiased concept
from the user’s drawing is challenging [155]. Other query def-
inition approaches include formulas, regular expressions [239],
and natural language [129, 239]. All our VQSs adopt the query-by-
example approach because it is too overwhelming for our users to
draw or describe in other ways their patterns with complex tem-
poral dynamics, let alone considering multiple tracks and some-
times with time shifts between tracks. On the other hand, our
engineers usually can provide at least one example of the target
event.

2.9.3 Pioneering and Recent Visual Query Systems

We list pioneering (old), recent, and our VQSs in Table 6. This table
is based on Table 3 in [275] (PB3) and Table F.1 in [276] (PB5).
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related work

We have designed three VQSs, PSEUDo (Chapter 5), SAXRegEx

(Chapter 6), and NOOPS (Chapter 7 and Chapter 8). They are tai-
lored to the proposed algorithms. For instance, PSEUDo visual-
izes the specific hashing-based classifiers to explain its behav-
ior; SAXRegEx supports the definition of multivariate queries with
time shifts between tracks, during which users also see the recon-
structed query in the symbolic space; NOOPS visualizes the rele-
vance of each time step (important interim results of the data
processing pipeline) for error diagnosis and supports feedback
on features more than pattern relevance, among other visualiza-
tions and interactions for parameter tuning and error diagnosis.

Until now, our work has focused primarily on the algorithmic
side, while our VQSs do not intend to make major academic con-
tributions to user interface design. They mainly serve to assist
the user in applying the proposed algorithms.
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3T I M E S E R I E S R E P R E S E N TAT I O N S : A S U RV E Y

Figure 3.1: Taxonomy of Time Series Representations. We categorize
time series representations into six categories based on their
essential techniques.

In this chapter, we present a taxonomy of time series represen-
tations. As far as we know, it is more comprehensive than state-
of-the-art surveys on the same topic in terms of academic disci-
plines (e.g., statistics, signal processing, machine learning, where
the methods originate), application domains (e.g., economics/fi-
nance, meteorology, engineering, where the methods serve), and
tasks (e.g., compression, prediction, anomaly detection, which
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time series representations : a survey

the methods solve). The taxonomy categorizes the representa-
tions based on essential technical affinities and respects existing
disciplines. 1

3.1 introduction

In retrospect, during our four-year research in time series pattern
search and time series analysis in general, we have reviewed, ana-
lyzed, utilized, and proposed several time series representations.
We would like to share our knowledge and experience in the
form of a survey on time series representations and discuss their
effective choices.

Time series embraces many kinds of data in various domains,
as enumerated in Section 1.1. Likewise, perhaps half of the al-
gorithmic advancements in time series analysis emerge from re-
lated disciplines, as indicated in Section 2.2.2 However, various
domains view time series data from diverse perspectives, make
distinctive assumptions, and serve different tasks, which restricts
method transfer. Therefore, it is meaningful to survey interdis-
ciplinary time series representations while issuing their caveats.
During our literature review for time series representations in
Section 2.4, we found that most surveys [72, 230, 250, 264] of
time series representations concentrate on one or a selection of
disciplines and research fields. Moreover, they emphasize the
state-of-the-art analysis while focusing less explicitly on the con-
straints and limitations of the representations. Lastly, they some-
times present methods as isolated knowledge nodes instead of a
graph with clusters of nodes, which we strive to achieve.

Please refer to Section 2.4 for our definition and clarification of
the term “time series representation”.

In this chapter, we will propose a taxonomy of time series rep-
resentations with six categories. Table 7 compares the existing re-
views with ours. In general, our taxonomy is much broader than
the state-of-the-art analyses in terms of the involved disciplines.
It also does not focus on one downstream task.

Our review features a unique ontology in the following three
aspects.

First, unlike, e.g., [72] primarily for stochastic processes, [264]
solely for time-domain representations, or [154, 250] mainly for
deep learning methods, we subsumed a broader genre of time

1 This chapter is largely based on our ongoing publication PB7 with textual modi-
fications for a coherent information flow.
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3.1 introduction

series representations and categorized them based on their essen-
tial technical affinities and named the categories accordingly.

Second, unlike, e.g., [111] chiefly from the aspect of economet-
rics, [31] with an emphasis on system and control engineering,
[238] from the perspective of statistics, our domain-agnostic work
surveyed techniques from various domains, from econometrics
and meteorology, over signal processing and control engineering,
to data science and computer science.

Third, unlike, e.g., [76] for pattern search, [230] for prediction,
or [53] for compression, we reviewed methods for multiple tasks,
mainly those explained in Section 2.2.
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3.2 literature selection

In this chapter, we present a survey on time series representa-
tions in the literature, combining them with our experience. We
will begin by explaining our literature selection in Section 3.2.
Then, Section 3.3 will introduce our broad taxonomy for time se-
ries representations. Next, Section 3.4 will discuss the factors to
consider when choosing a time series representation. It follows a
comprehensive list of time series representations with their data
assumptions, limitations, and typical use cases in Section 3.5. Fi-
nally, Section 3.6 will suggest directions for future research.

3.2 literature selection

This section explains the criteria and queries for our literature
selection.

3.2.1 Inclusion Criteria

According to the definition in Section 2.4, we include works that
convert time series into a representation and solves the down-
stream task by working on this proxy.

Otherwise, we did not confine:

• Data Format and Application domain: it can be stock
prices in finance, precipitation in meteorology, genetic se-
quences in biology, and audio signals in engineering, as ex-
plained in Section 2.2.2.

• Downstream Task: whether it is anomaly detection, classi-
fication, prediction, as presented in Section 2.2.1, or task-
agnostic.

• Publication Year: because we would like to include clas-
sic methods and exploit established knowledge systems;
whereas, recent publications are preferred.

• Venue: the most prominent are ACM SIGKDD, IEEE ICDM,
Springer DMKD, SIAM SDM, and ECML PKDD.

We used Scopus and Web of Science (WoS) core collection as
the literature search tools. They provide the world’s biggest inter-
disciplinary scientific citation indexes covering multiple venues.

3.2.2 Queries

Our literature selection began with reviews on time series repre-
sentations, including works on general time series analysis. The
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Figure 3.2: Queries and Results During Literature Selection. Our lit-
erature selection began with review articles on time series
representations and works on general time series analysis.
Through snowballing, we cover the essential technique pa-
pers for individual methods.

technique papers for individual methods proliferate after snow-
balling, as Figure 3.2 illustrates.

To begin with, we searched for survey papers on time series
representations. We started with survey papers to avoid rediscov-
ering existing typologies. Our scope is much broader than other
surveys on time series representations. As a result, we would
have lost the overview had we begun by reviewing individual
technique papers.

In the first query, we searched for survey papers, whose title
contains both “time series” and “representation” (or their vari-
ants and synonyms). Specifically, the query for Scopus reads “TI-
TLE ( time-series AND representation OR transform* OR model
) AND ( LIMIT-TO ( DOCTYPE , "re" ) )”. In WoS, we used the
query “TI=(time-series AND (representation OR transform* OR
model))” and refined the document type to “Review Article” (WoS
does not support specification of document types in the query
string directly). In both queries, “time-series” subsumes “time se-
ries”; “transform*” also captures “transformation”. Scopus and
WoS take care of lemmatization like plural forms. Please note that
the boolean operator OR precedes AND in Scopus but the other
way around in WoS. Scopus retrieved 95 documents and WoS 76.

There are three potential problems with these first queries.
Firstly, it is likely that we would overly rely on existing knowl-
edge introduced in the survey papers instead of proposing our
own. However, due to our much broader scope, no existing tax-
onomy exists on this level. In fact, it would be even more effi-
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cient and thus preferable to reuse existing reviews or taxonomies
as sub-systems in our larger one. Second, survey papers may not
cover up-to-date publications and recent advancements. Whereas,
we focus primarily on established methods and knowledge sys-
tems. Thirdly, this query misses survey papers and monographs
on general time series analysis, which also present time series
representations. Therefore, we reviewed also publications for gen-
eral time series analysis with the query “TITLE ( time-series AND
analysis OR mining ) AND ( LIMIT-TO ( DOCTYPE , "re" ) OR
LIMIT-TO ( DOCTYPE , "bk" ) )” in Scopus and “TI=(time-series
AND (analysis OR mining))” (refined to review articles and book
chapters) in WoS. They returned 274 and 139 entries, respectively.

After tidying and merging, we manually inspected the docu-
ments and selected the ones describing representative time series
representations/transformations/models. During the review, we
used snowballing to get even more publications, including those
introducing one method, but pioneering, impactful, and estab-
lished.

Finally, we include publications based on our experience
gained during the Ph.D. study, such as [44, 156], which bench-
marked various important representations while presenting their
own.

3.3 a new taxonomy of time series representations

We propose a new taxonomy for time series representations, illus-
trated in Figure 3.1. Our categories include stochastic process, in-
tegral transform, pieceswise representation, machine learning
model, dimensionality reduction, and miscellaneous. When in-
troducing the representations in each category, we emphasize the
relationships between them to create a system of connected rather
than disjoint knowledge nodes. They are categorized according
to the dominant fundamental technique. There are two reasons
for this choice of classification criterion. First, please consider the
alternatives like functions (e.g., classification model, regression
model, generation model), tasks (e.g., forecast model, data com-
pression technique, denoising technique), or certain properties
(e.g., deterministic/stochastic model, time-domain / frequency-
domain representation). A representation may have several func-
tions, serve various tasks, and possess multiple properties. They
may have variants and evolve as the technique develops. In con-
trast, the fundamental technique or mathematical operation for
a representation is relatively unique and stable. Consequently,
there is less ambiguity when assigning a representation to a cate-
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gory. Second, the resulting categories are mostly already treated
as established and self-contained disciplines that are studied as
individual subjects anyway. There is no need for defining new
concepts or explaining extensively. Subsequent divisions can also
simply inherit the existing taxonomy in each discipline.

In order to avoid obscuring the main thread of this section,
we eschew recent variations based on these root ones because
there are overwhelmingly many new but less proven devel-
opments. For instance, there are more than 100 extensions of
the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model alone, and none of them seems to dominate. Nor
do we claim to be exhaustive in the root representations, because
our goal is to establish a taxonomy, into which most time se-
ries representations including the unlisted, unnamed, and un-
born can fit according to their technical affinity. For instance, the
stochastic process representation HMM is omitted. Nonetheless,
we try to mention as many influential time series representations.
Please refer to Section 3.5 for a comprehensive list of common
time series representations.

3.3.1 Stochastic Process

Statistics, especially econometrics, often view a time series as
the realization of a stochastic process. Roughly speaking, a
stochastic process, also known as a random process, is a se-
quence of random variables, whose index is usually interpreted
as time [39, 110].

Introduced in the monumental work from the first edition [30]
to the fifth [32], the most influential model in this discipline is
ARIMA together with its multivariate extension Vector Autoregres-
sive Integrated Moving Average (VARIMA). In a nutshell, it draws
on the information from past data and errors to model the cur-
rent value, usually in the form of a (possibly high-dimensional)
difference equation. ARIMA estimates the mean of time steps
and assumes a constant variance for each time step, also called
homoscedasticity in econometrics. To estimate a variable vari-
ance, also known as heteroscedasticity or volatility in economet-
rics, [82] introduced Autoregressive Conditional Heteroskedas-
ticity (ARCH) to model current variance with past data, similar to
AR, which [27] later extended to GARCH to include past variances
and reduce the number of past steps needed. Stochastic volatility
models bring it to the next level and assume that the variance
itself is randomly distributed [19, 99], which is beneficial when
modeling highly dynamic derivative securities like options. The
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State Space Models (SSMs) provide a more generalized represen-
tation than ARIMA among others, that introduces hidden states in
addition to observed data. It allows handling missing data and
incorporating time-varying parameters [11, 63]. If quantification
of uncertainty is desired, Gaussian Process (GP) is a promising
choice.

Most stochastic process representations are used for predic-
tion/regression [32, 77].

3.3.2 Integral Transform

Signal processing and control engineering often view a time se-
ries as the signals in the time domain and prefer processing it in
the frequency domain for more manipulative operations. Integral
transform is a mathematical operation that maps a function (in
our case a time series) from its original space (usually the time
domain) into another space (typically the frequency domain or
time-frequency domain) [71], where properties of the system pro-
cessing these time series can be better described, typically in the
context of signal processing and control engineering.

Fourier Transform (FT) with its variants and Wavelet Trans-
form (WT) are the most widely adopted integral transforms in
time series analysis. FT uses harmonic waves as the integral ker-
nel and converts the time series into its frequency spectrum,
where the manipulations become more straightforward, e.g., for
data compression and denoising. FT was invented for continu-
ous functions/data, while time series, as well as digital signals,
are discrete in time. Therefore, we need the discrete version of
FT called Discrete-Time Fourier Transform (DTFT) [214]. However,
DTFT still requires knowing the entire and thus infinite data. In
practice, we can assume that the measurements that are limited
in time repeat iteratively and arrive at Discrete Fourier Trans-
form (DFT), or its accelerated version FFT [214]. FT assumes a time-
invariant frequency spectrum. This assumption does not always
hold, and analysts sometimes want to know the temporal con-
text of an event. Short-Time Fourier Transform (STFT) approaches
this problem by conducting FT in a sliding window of fixed size
along the time axis so that the result lies in a time-frequency
domain. Unfortunately, STFT suffers from the mathematically in-
solvable trade-off between the resolutions in time and in fre-
quency [214]. WT fills this gap by conceptually scanning the data
with a scalable and shiftable prototype wavelet that enables multi-
resolution analysis in time-frequency domain [217]. While WT re-
lies on the practitioner’s expertise in choosing a base/wavelet
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function, EMD decomposes a time series into a set of Intrinsic
Mode Functions (IMFs) determined in a data-driven way without
prior setting of the user [126, 179, 279]. Unlike WT, EMD does not
leave the time domain. Hilbert-Huang Transform (HHT) extends
EMD with an Hilbert Spectrum Analysis (HSA) on the IMFs to get
the amplitudes/energy of various frequency components at each
time so that a time-frequency analysis is possible [124, 242].

Most integral transform representations are mainly used for
data compression, filtering, denoising, and feature extraction
since they originate from signal processing, but they are also
seen in other tasks like anomaly detection [62], clustering [80],
and pattern search [207].

During our review, we found that the dominating transforma-
tion in Digital Signal Processing (DSP), Z-transform, is seldom
mentioned in time series analysis. In the future, we expect more
applications and development of Z-transform in time series anal-
ysis. For example, Z-transform may serve in causality discovery
explained in Section 2.2 because it excels at analyzing the rela-
tionships between output and input signals through a system. It
is also likely that it can serve to check the stationarity of time se-
ries required by some stochastic process models like ARIMA and
its variants. Because we find that the stationarity check in time
series analysis is mathematically similar to stability concerns dur-
ing digital filter design.

3.3.3 Piecewise Representation

Various piecewise representations are inventions of the discipline
of time series analysis itself, which remains in the time domain.
Piecewise representations assume piecewise homogeneity along
the time axis in the data and describe each piece with a simpler
representation like a constant, a line segment, a polynomial, and
so on.

The simplest piecewise representation is Piecewise Constant
Approximation (PCA) [143], later renamed as PAA [140], which
uses the mean value to represent each piece. As a kind reminder,
down-sampling the data seems to have a similar effect, but it is
subject to aliasing effect [34]. The piece length in PCA is fixed.
Adaptive Piecewise Constant Approximation (APCA) [140] ex-
tends PAA by making the piece length variable and adaptive so
that it can fit the temporal shapes better. Instead of mean values,
Piecewise Linear Representation (PLR) uses a linear segment to
represent each piece. The next logical extrapolation is Piecewise
Polynomial Representation (PPR) [98], which uses a polynomial
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to represent each piece. Based on PAA, SAX [164, 165] assumes nor-
mal distributions of the data values and quantifies them. Then, it
assigns each value range bin a symbol to convert a time series
track into a string. It soon became one of the most popular sym-
bolic representations for time series and witnessed many exten-
sions [258]. Some surveys on time series representations feature
a separate category called “symbolic representation” [264]. How-
ever, in our opinion, the dominant technique behind SAX is PAA
and quantization, and it is secondary whether the quantified data
in each quantization bin are assigning a symbol or left numerical.

Piecewise representations make few assumptions on the data
and are general-purpose. They are extremely efficient in that they
can compress data massively and have an edge in capturing tem-
poral dynamics [136, 140]. Therefore, piecewise representations
can be used all the time, especially when analysts need to smooth
the data, remove outliers, or compress the data.

3.3.4 Machine Learning Model

According to [149], [Machine learning models are] statistical al-
gorithms that can learn from data and generalize to unseen data,
and thus perform tasks without explicit instructions.

Among machine learning models, Recurrent Neural Network
(RNN) and its variants like Long Short-Term Memory (LSTM) [120]
and Gated Recurrent Unit (GRU) [54] are designed for sequen-
tial data like time series. RNN and its variants are typically used
for prediction [172, 266, 282], but are also capable of tackling
other tasks like classification [128] Otherwise, one-dimensional
Convolutional Neural Network (CNN) is an alternative to RNN
with considerably less computational costs [55]. In 2017, [252]
proposed the transformer model based solely on the attention
mechanism without convolution or recurrence, which achieved
state-of-the-art performance for language translation. Because
the essential concept of transformer/attention also applies to
time series data, researchers have tried it on time series analy-
sis like anomaly detection, prediction, and classification [3, 260].
As the representative representation learning model in machine
learning, autoencoder [150] learns an identity function with an
encoder-decoder structure. The former learns to represent the
data with an embedding in a latent space, and the latter tries
to recover the data from the embedding. Autoencoder and its
variants are typically used for anomaly detection [248, 270] and
denoising / missing data imputation [123, 228], though not pre-
cluded in other tasks like prediction [194], classification [273],

47



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

time series representations : a survey

and pattern search [156] after modifications or with the help of
other techniques. Noteworthy is an autoencoder variation called
VAE [146], which tries to encode the data as normal distributions
in the embedding by learning the means and standard deviations
of these normal distributions in its embedding layer (output layer
of the encoder or the central hidden layer of the whole autoen-
coder). Not only are the latent features more explainable, but
the VAE becomes particularly suitable for synthetic data genera-
tion [75, 112, 159]. It also inherits from the vanilla autoencoder
the talent for anomaly detection [49, 161, 271] and is occasion-
ally seen in time series prediction [38, 114]. VAEs have witnessed
great success in synthetic image generation especially, but was
soon overshadowed by GANs [54]. It features a generator and a
discriminator competing with each other during training, after
which the former can be used for synthetic data generation and
the latter for data recognition. In time series analysis, GANs are
used primarily for generating synthetic time series, but also in
anomaly detection and denoising [35, 281], like autoencoders.

Machine learning models make few assumptions on the data,
but generally require sufficient training data, and even ample
labels depending on the task. They often also specialize in certain
tasks, as we will discuss in Section 3.4.3. Therefore, choosing a
machine learning model usually depends on the task and the
availability of ample (labeled) training data.

3.3.5 Dimensionality Reduction

Dimensionality reduction techniques transform data points from
a high-dimensional space to a lower-dimensional space for re-
vealing patterns in data that are conceived by the curse of dimen-
sionality and for data visualization that are only possible when
data points are in a 2D or 3D space [100]. There are two types
of dimensionality reduction techniques, namely projection and
manifold learning [8, 100] The first class, also known as linear di-
mensionality reduction, maps the data space linearly to another;
while the second, also known as nonlinear dimensionality reduc-
tion, endeavors to reproduce the pairwise distances between data
items.

The most popular project technique Principal Component
Analysis (PCA) [134] reduces and rearranges the coordinate sys-
tem axes called principal components so that the axes capture
as much data variance as possible. PCA has been a popular
time series representation in various tasks, including but not
limited to prediction [198], segmentation [16], clustering [158],
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and pattern search [132]. The mathematically more general tech-
nique SVD also has a long history serving in time series analy-
sis [37, 145, 262]. Koegh et al. proposed the first implementation
of SVD for time series indexing, where each column in the matrix
to decompose is a segment in a univariate time series segmented
by a sliding window [140]. Based on SVD and well established in
meteorology [224], Singular Spectrum Decomposition (SSA) [224],
which decomposes a time series into interpretable components
(e.g., trend, periodic components, and noise), has gained much
popularity in general time series analysis [28, 113]. The time se-
ries representation LSH that we use in Section 5.3 and explain in
Section 5.2 is essentially also a linear projection technique that
emphasizes efficiency.

Manifold learning techniques, e.g., Multidimensional Scaling
(MDS) [170, 215, 254], Isomap [67, 261], Locally Linear Embed-
ding (LLE) [180, 285], Self-Organising Map (SOM) [95, 115], and so
on, also contribute actively to time series analysis. Interestingly,
t-distributed Stochastic Neighbor Embedding (t-SNE) [117] and
Uniform Manifold Approximation and Projection (UMAP) [185],
perhaps the most popular dimensionality reduction techniques
for data visualization, are less used in time series analysis and
their applications are still mostly in visualization [73, 265]. In
fact, [156] benchmarked seven representations involving UMAP
on their data and conjectured that while useful for visualization,
t-SNE and UMAP, are not effective in capturing visual patterns in
time series.

Because time series can be multivariate, analysts may apply di-
mensionality reduction to the temporal domain, possibly piece-
wise (without overlapping) or with a sliding window (with over-
lapping) [95], as well as to multiple tracks within each time
step [16, 132], or to both simultaneously [268].

As a side note, autoencoders are also good at manifold learn-
ing. However, we categorize them as machine learning models
because dimensionality reduction is not its single and dominant
function. Please also note that while virtually all piecewise repre-
sentations and Perceptually Important Point (PIP) (Section 3.3.6)
claim explicitly that they conduct dimensionality reduction, we
only register linear projection or distance-preserving techniques
in this category, because, as mentioned at the beginning of this
section, our categorization is based on technical affinities, rather
than functions, which each technique can serve many.

Dimensionality reduction techniques are relatively general-
purpose and serve in many tasks. However, techniques in this
category have different mathematical or technical backgrounds,

49



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

time series representations : a survey

leading to different data assumptions. For instance, projections
like PCA assumes that the linear combination of the axes in the
original data space explains data variances, but real data may
exhibit nonlinear interrelationships between dimensions. There
seems to be no clear hints about how to choose the best dimen-
sionality reduction technique to represent a time series. There-
fore, it makes sense to try several and choose the empirically best
in specific use cases.

3.3.6 Miscellaneous

Lastly, we subsume representations that are hard to categorize,
e.g., because they combine techniques from multiple previous
categories, under the category “miscellaneous”.

One of the most impactful representations in this category is
Prophet from Meta (Facebook back then) [246]. It is basically the
combination of PLR for describing the trends, Fourier series for
capturing the seasonal fluctuations, and a binary “holiday” com-
ponent accounting for impulses in the data due to short events
like big limited-time discounts when modeling sales. As already
implied, it is most active for prediction [1, 231].

Another influential representation in this category is PIP [58]. It
represents a time series with visually salient points like the major
peaks and troughs in the time series curve. PIP centers around
the temporal dynamics. It is versatile and finds applications in
prediction [251], classification [267], and motif discovery [96].

3.4 factors to consider during representation se-
lection

According to our literature review and experience, there are four
primary factors when considering employing a time series rep-
resentation: 1) physical dynamics, 2) data assumptions, 3) task
suitability, 4) technique transfer, and 5) computational resources.
We will explain them individually and provide examples.

3.4.1 Physical Dynamics

The first factor suggests that the best data representations ideally
model the physical dynamics, e.g., derived from differential equa-
tions backed up by physical rules behind the data. This factor is
especially relevant for integral transforms (Section 3.3.2).
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Nature tends to reward representations that respect the under-
lying physical dynamics of the observed system. For instance, the
physical properties of audio signals encourage the use of FFT be-
cause the sound is by nature a linear combination of vibrations of
a range of time-invariant frequencies that may trace back to dif-
ferent physical sources. The energy consumption data typically
consists of and can be thus represented with ARIMA [30, 32] or
Prophet [246] as a trio of 1) a trend implying the technological
advances, behavior shifts, and long-term environment changes;
2) a seasonal fluctuation reflecting the cyclic alternations of days
and nights as well as the seasons; and 3) a “holiday” component
or random residuals capturing unusual events or unexplained
errors.

Since physical dynamics are primarily domain-specific, it fol-
lows that there may not be a universally (i.e., domain-agnostic)
optimal representation for all tasks in time series analysis, just
like that no time series similarity measure consistently outper-
forms the other, as stated in [65] and verified by our experiments
in Section 5.5.2 and Section 6.5.2. As [44, 140] show, simple time
series representations like PAA may outperform complex ones
like FFT, Discrete Wavelet Transform (DWT), and SVD in captur-
ing temporal dynamics / shapes in the time domain in the time
series. In these cases, the usage of the two integral transforms
is physically not justified and thus not many benefits cannot be
expected.

3.4.2 Data Assumptions

The second factor requires that the analyst check the fulfillment
of the data assumptions made by the representation and make
adjustments if necessary. Compared with the first factor, physical
dynamics, which entails essential assumptions on the domain-
specific physics of the observed system or process, the second
factor assumes certain properties of the data itself, e.g., stationar-
ity, linearity, etc. This factor is most prevalent among stochastic
process models (Section 3.3.1).

A typical example is when a model type has a parametric vari-
ant with a fixed number of parameters and a nonparametric vari-
ant that adds parameters as data increase, e.g., linear SVMs vs.
nonlinear SVMs, or neural networks vs. GPs [192, 263]. When pos-
sible, the former is preferable due to its efficiency and ease of use,
while the more computationally expensive latter may be resorted
to when the performance of the former is insufficient.
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In our work, we encountered the constraint that the values
in the time series should be normally distributed, as required
by SAX [164, 165]. In essence, SAX’s breakpoints for quantization
are based on this assumption so that each quantization bin has
roughly the same number of data points. Unfortunately, our data
deviated much from this assumption. We could have, e.g., simply
applied Box-Cox transformation [29] to bring the value distribu-
tion closer to a normal distribution. However, considering that
the goal is to distribute the data points roughly evenly into the
bins, we can arrange the breakpoints according to the real data
distribution, as we have proposed in Section 6.3.2.

We extracted eight data assumptions and examined them for
each time series representation to create Table 8, a collection of
the most representative time series representations in each cate-
gory of our taxonomy. We select these data assumptions because
they are the most common and essential ones influencing the
choice and usage of time series representations. These common
data assumptions are

stataionarity (When regarding a time series as a stochastic
process) the time series has a time-invariant mean, and the
autocovariance of the time series depends only on the time
lag.

linearity (When regarding a time series as a stochastic pro-
cess) a value in the time series can be described as a linear
combination of values at other time steps plus independent
and identically distributed (i.i.d) random variables; (re-
garding dimensionality reduction techniques) data are ex-
plained by a linear combination of latent variables.

markov property The value(s) of the next step time step
depends only on the values(s) of the current time step.
Namely, the observed system is memoryless.

(a)periodicity The values in the time series repeat after a
fixed number of time steps (or the time series should have
this property).

univariance There is only one track in the time series.

normality The values, errors, or other components are nor-
mally distributed.

kernel function The time series representation requires a
prior choice of a kernel function, which, in turn, assumes
certain properties of the time series data.
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t+s+x The time series can be decomposed as the sum of trend
components, seasonal components, and some other compo-
nents (noise, residual, holiday, etc.)

Most of the selected common data assumptions are unequivo-
cal. However, the definition of stationarity and linearity requires
delineation because they are overloaded with various meanings,
especially when crossing the borders of disciplines.

Stationarity

We adopt the weak stationarity stating that the time series has a
time-invariant mean and the autocovariance depends only on the
time lag [77, 238].

Stationarity is mainly assumed by some stochastic process
models. Stochastic processes conceive a time series as one real-
ization of a series of random variables [Si ∈ R]0≤i<n, where Si
is a random variable. The means and autocovariance refer to the
random variables, namely, E (Si) = E (S0) and Cov (Si, Si+Δi) =
Cov (S0, SΔi). Otherwise, even the notion of “mean” and “vari-
ance” does not make sense. Let the time lag be 0, it follows that
the variance of the time series should also be time-invariant.

In contract to the weak stationarity, the strict stationarity re-
quires that the joint distribution of the random variables in any
same-sized subsequence of the time series to be the same / time-
invariant [77, 238]. To be precise,

P (Si ≤ c0, Si+1 ≤ c1 . . . Si+Δi ≤ cΔi) =

P (Si′ ≤ c0, Si′+1 ≤ c1 . . . Si′+Δi ≤ cΔi)

where P represents probability, and c0, c1, . . . , cΔi ∈ R [238].
Strict stationarity is less used since real-world applications do
not often see data with this property, and its verification is also
costly.

Many stochastic processes requires the data to be station-
ary. Therefore, it is necessary to conduct statistic tests like the
Dickey–Fuller test for AR model to examine the existence of a
unit root [238]. In non-stationary cases, the time series must be
specially treated to remove the non-stationarity, e.g., through dif-
ferencing [230].

Please note that the term “stationarity” is overloaded with mul-
tiple meanings. For instance, it is common to see the comparison
between FT, STFT, WT in the literature, where the first only ap-
plies to “stationary” data and the other two to “non-stationary”
data [125]. The stationarity here means time-invariant spectrum.
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In fact, DFT can be applied to non-stationary (in the sense of our
adopted meaning) time series. Consequently, time series repre-
sentations like DFT are not marked as requiring data stationarity
in Table 8.

Linearity

Linearity in this thesis means that the time series representa-
tions can only describe linear dynamics or linear relationships
between latent factors. This data property is mainly assumed
by some stochastic process models and dimensionality reduction
techniques.

Linear stochastic process models assume that the random vari-
able at a time step can be expressed by a linear combination of
i.i.d random variables, each corresponding to a time step, i.e.,

Si =
+∞

∑
Δi=−∞

cΔiZi−Δi

where [Zi] is zero-mean and i.i.d, the coefficients cΔi are square-
summable with c0 = 1 [22]. As a typical case, a linear time series
is modeled as a linear combination of historical values and some-
times also historical and current innovations (an innovation is
the difference between the observed value at a time step and its
predicted value), i.e.,

Si =
p

∑
Δi=1

ϕΔiSi−Δi +
q

∑
Δi=0

γΔiεi−Δi

where εi−Δi represents the Δi-th past innovation (εi is the current
innovation), ϕΔi and γΔi are coefficients with γ0 = 1, p and q
are the order of the autoregressive process and the order of the
moving average process, respectively.

Linear dimensionality reduction techniques assume that the
time series to represent can be explained by a linear combina-
tion of latent components. Linear dimensionality reduction can
be regarded as a linear projection of the data from a higher-
dimensional space to a lower-dimensional one. However, the data
man form complex manifolds that cannot be disentangled lin-
early from any perspective.

The additive linear decomposition of a time series into trend,
seasonal, and other components, as described by the last data
assumption, does not automatically count as linear because the
determination of these components may describe nonlinear be-
havior themselves.
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3.4 factors to consider during representation selection

Similar to the case with stationarity, many integral transforms,
like FT and WT are considered linear. However, this linearity refers
to the transform operation T themselves, i.e.,

T (ax(t) + by(t)) = aT (x(t)) + bT (y(t))

The linearity of the operation does not imply the linearity of the
time series data. In fact, DFT and WT can be applied to nonlinear
(in the sense of our adopted meaning) time series. Consequently,
time series representations like DFT and WT are not marked as
requiring data linearity in Table 8.

3.4.3 Task Suitability

The third factor implies that representations may not be general-
purpose. Namely, they may (be verified to) perform well in some
tasks (Section 2.2) but are unproven or possibly even fail in oth-
ers. In the latter case, we may not know because the failed results
tend to remain undisclosed and potentially found repeatedly by
different researchers unaware of each other’s work. This factor
influences stochastic process models (Section 3.3.1) and machine
learning models (Section 3.3.4) most. However, we attribute dif-
ferent reasons to their flair for particular tasks.

For instance, many representations/models emerging from
econometrics are geared to prediction, like ARIMA for forecasting
the mean, and ARCH for the variance/heteroscedasticity/volatil-
ity. They are seldom used in other tasks like classification [257].
Such representation-task-combination could result from histori-
cal backgrounds or domain needs and may not reflect the gen-
eral competence of the representations themselves. It is likely a
promising research direction to benchmark the aptness of vari-
ous representations commonly used for one task also in others,
which are conceptually not exclusive to one task. The deliverable
can be in the form of a skill matrix, where each column denotes a
task and each row a time series representation, which also shows
cells of ineffective matches and warns other researchers of poten-
tial resource waste in these directions.

Different machine learning models may favor different tasks.
Therefore, we mention the suitable tasks for each model in Sec-
tion 3.3.4. For instance, we mentioned in Section 3.3.4 that autoen-
coders are typically for anomaly detection and denoising while
VAEs for data generation, though not really prohibited in other
tasks. In contrast to the stochastic process models, in our view,
the reason for the concentrated usage of some machine learning
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models in certain tasks lies in the model function and structure
itself. We believe that the structure of the model determines its
function and ultimately influences its suitable tasks. Pertaining to
the same example with autoencoders, its output layer reproduces
the data, whose dissimilarity to the original data measured by
the reconstruction error reflects the novelty of the input data and
thus naturally relates to anomaly detection. The embedding layer
of an autoencoder has much fewer neurons than the input, which
can be interpreted readily as dimensionality reduction and po-
tentially used for data visualization after further dimensionality
reduction into a two-dimensional space if necessary. Should the
analyst stick to the model for other tasks due to its certain merits
that the alternatives lack, either the task needs to be formulated
or the model modified so that they align with each other.

3.4.4 Technique Transfer

The penultimate factor is to enable techniques that solve similar
problems in another discipline.

For instance, describing time series as a difference equation
or state space representation is a common practice in economet-
rics [111]. They are standard models in signal processing and
control engineering and enables analysis akin to techniques in
these disciplines, e.g., stability analysis [32].

In Chapter 6, we utilized a symbolic representation, SAX, with
nice properties like an ordered alphabet and the numerosity re-
duction [165], which can be exploited by text retrieval techniques,
in this case, regular expression, to describe the distortions in time
series patterns.

3.4.5 Computational Resources

The last factor considers execution time and memory consump-
tion. It is especially relevant in sensor monitoring and especially
IoT, where the data volume is huge. For instance, a Boeing 787
may generate half a terabyte of sensor data per flight [220];
Moreover, data processing is sometimes partially performed
on portable devices with limited computing resources. On one
hand, this factor concerns the representation itself, especially for
machine learning models (Section 3.3.4) when model training
should be taken into consideration (Problem 1). On the other
hand, analysts may want to accelerate subsequent operations on
the representation (Problem 2).
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3.5 list of representative time series representations

There are three avenues to alleviate this problem. To begin
with, many time series representations have parameters control-
ling the data compression rate, e.g., the resolution of the fre-
quency spectrum for FFT, the number of the states and transi-
tions in a HMM, the number of hidden units in an autoencoder,
and so on. This may ameliorate Problem 2. Secondly, there are
techniques designed to boost efficiency instead of effectiveness,
like various indexing [6, 46, 202]. This may also mitigate Prob-
lem 2. Last but not least, dimensionality reduction techniques
(Section 3.3.5) and piecewise representations (Section 3.3.3) can
compress the data significantly, drastically lower the needs for
computational resources. The LSH used in our Chapter 5 into this
category. This tackles Problem 2 without introducing Problem 1.

3.5 list of representative time series representa-
tions

Based on our literature review and experience, we provide the
following table listing the most representative time series repre-
sentations, their data assumptions/limitations, as well as their
typical use cases.

The common data assumptions are explained in Section 3.4.2.
We elaborate on them together with unique data assumptions in
free-text form next to the common data assumptions.

The use cases reflect classic and established applications, rather
than the newest research. We emphasize but do not limit the use
cases to time series analysis, because 1) many representations do
not have typical use cases in time series analysis, rather, their
typical use cases lie in, e.g., image or language processing; 2)
listing a broader portfolio of use cases inspires their application
in time series analysis since a major portion of methods in time
series analysis are transferred from other disciplines themselves,
as indicated in Section 2.2.

Due to the space limit, we abbreviated the categories, i.e., SP:
stochastic process, IT: integral transform, PR: piecewise represen-
tation, ML: machine learning model, DL: dimensionality reduc-
tion technique, Mi: miscellaneous.
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3.5 list of representative time series representations

Ta
bl

e
8:

R
ep

re
se

nt
at

iv
e

Ti
m

e
Se

ri
es

R
ep

re
se

nt
at

io
ns

–
C

on
ti

nu
ed

R
ep

re
se

nt
at

io
n

Category

Stationary*

Linear**

Markov

(A)periodic

Univariate

Normal

Kernel

T+S(+X)***

A
nn

ot
at

io
ns

to
D

at
a

A
ss

um
pt

io
ns

an
d

O
th

er
Li

m
it

at
io

ns
Ty

pi
ca

l
U

se
C

as
es

in
Ti

m
e

Se
-

ri
es

A
na

ly
si

s

(H
id

de
n)

M
ar

ko
v

M
od

el
((

H
)M

M
)

SP
×

1
1

M
ar

ko
v

Pr
op

er
ty

:t
he

ne
xt

fu
tu

re
st

at
e

(s
ta

te
is

hi
dd

en
fo

r
H

M
M

)
de

pe
nd

s
on

ly
on

th
e

cu
rr

en
t

st
at

e
an

d
no

t
on

th
e

st
at

es
th

at
oc

cu
rr

ed
be

fo
re

it
.

O
bs

er
va

ti
on

In
de

pe
nd

en
ce

(f
or

H
M

M
):

th
e

cu
rr

en
t

ob
se

rv
at

io
n

(t
im

e
se

ri
es

va
lu

e)
do

es
no

t
de

pe
nd

on
pr

ev
io

us
or

fu
tu

re
ob

se
rv

at
io

ns
bu

t
on

ly
on

th
e

cu
rr

en
t

st
at

e.
Fi

ni
te

St
at

es
an

d
O

bs
er

va
ti

on
s:

th
e

nu
m

be
r

of
st

at
es

an
d

po
ss

ib
le

ob
se

rv
at

io
ns

ar
e

fin
it

e.
Ti

m
e-

In
va

ri
an

t
Tr

an
si

ti
on

Pr
ob

ab
il

it
ie

s:
th

e
pr

ob
ab

ili
ty

of
m

ov
in

g
fr

om
on

e
st

at
e

to
an

ot
he

r
do

es
no

t
ch

an
ge

ov
er

ti
m

e.
It

ca
n

al
so

be
re

ga
rd

ed
as

a
ki

nd
of

st
at

io
na

ri
ty

.

H
an

dw
ri

ti
ng

/
sp

ee
ch

/
gu

es
-

tu
re

re
co

gn
it

io
n,

te
xt

/
au

-
di

o
ge

ne
ra

ti
on

,
ob

je
ct

tr
ac

ki
ng

,
st

oc
k

pr
ic

e
fo

re
ca

st
,

D
N

A
se

-
qu

en
ce

m
od

el
in

g

St
at

e
Sp

ac
e

M
od

el
(S

SM
)

SP
×

1
×

2
1

Li
ne

ar
it

y:
no

t
st

ri
ct

ly
re

qu
ir

ed
,b

ut
it

is
of

te
n

as
su

m
ed

th
at

th
e

ob
se

rv
ed

sy
st

em
is

lin
ea

r
or

ca
n

be
lin

ea
ri

ze
d

(a
nd

ti
m

e-
in

va
ri

an
t,

i.e
.,

LT
I

sy
st

em
),

na
m

el
y,

1)
tr

an
si

ti
on

eq
ua

ti
on

is
lin

ea
r,

i.e
.,

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

st
at

e
va

ri
ab

le
in

th
e

ne
xt

fu
tu

re
st

ep
an

d
th

e
st

at
e

va
ri

ab
le

in
th

e
cu

rr
en

t
st

ep
is

lin
ea

r)
;2

)
ob

se
rv

at
io

n
eq

ua
ti

on
is

al
so

lin
ea

r,
i.e

.,
re

la
ti

on
sh

ip
be

tw
ee

n
th

e
ob

se
rv

ed
va

ri
ab

le
in

th
e

cu
rr

en
t

st
ep

an
d

st
at

e
va

ri
ab

le
in

th
e

cu
rr

en
t

st
ep

is
lin

ea
r.

2
M

ar
ko

v
Pr

op
er

ty
:t

he
ne

xt
fu

tu
re

st
at

e
de

pe
nd

s
on

ly
on

th
e

cu
rr

en
t

st
at

e
an

d
no

t
on

th
e

st
at

es
th

at
oc

cu
rr

ed
be

fo
re

it
.

fo
re

ca
st

in
ec

on
om

ic
s

/
fin

an
ce

/
m

et
eo

ro
lo

gy
,n

oi
se

fil
te

ri
ng

in
si

gn
al

pr
oc

es
si

ng
,s

en
so

r
fu

si
on

(K
al

m
an

Fi
lt

er
),

sy
st

em
an

al
ys

is
an

d
co

nt
ro

l
in

co
nt

ro
l

en
gi

ne
er

-
in

g

··
·

59



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

time series representations : a survey

Ta
bl

e
8:

R
ep

re
se

nt
at

iv
e

Ti
m

e
Se

ri
es

R
ep

re
se

nt
at

io
ns

–
C

on
ti

nu
ed

R
ep

re
se

nt
at

io
n

Category

Stationary*

Linear**

Markov

(A)periodic

Univariate

Normal

Kernel

T+S(+X)***

A
nn

ot
at

io
ns

to
D

at
a

A
ss

um
pt

io
ns

an
d

O
th

er
Li

m
it

at
io

ns
Ty

pi
ca

l
U

se
C

as
es

in
Ti

m
e

Se
-

ri
es

A
na

ly
si

s

G
au

ss
ia

n
Pr

o-
ce

ss
(G

P)
SP

×
1
×

2
1

N
or

m
al

it
y:

va
lu

es
at

an
y

su
bs

et
of

ti
m

e
st

ep
s

fo
llo

w
a

m
ul

ti
va

ri
at

e
no

rm
al

di
st

ri
bu

ti
on

.
2

K
er

na
l

Fu
nc

ti
on

:a
ss

um
pt

io
ns

m
ad

e
w

he
n

ch
oo

si
ng

th
e

ke
rn

el
fu

nc
ti

on
/

co
va

ri
an

ce
fu

nc
ti

on
(h

ow
st

ro
ng

ly
po

in
ts

in
th

e
pr

oc
es

s
sh

ou
ld

co
rr

el
at

e
w

it
h

ea
ch

ot
he

r)

G
en

er
al

re
gr

es
si

on
,

pr
ed

ic
ti

on
,

fil
lin

g
ga

ps
in

da
ta

,
ba

ye
si

an
op

ti
m

iz
at

io
n

(e
.g

.,
hy

pe
rp

ar
am

-
et

er
op

ti
m

iz
at

io
n

in
M

L)
,l

ea
rn

-
in

g
co

nt
ro

l
po

lic
ie

s,
m

od
el

in
g

sy
st

em
dy

na
m

ic
s

D
is

cr
et

e
Fo

ur
ie

r
Tr

an
sf

or
m

(D
FT

)

IT
1

×
2
×

3
1

Ti
m

e-
In

va
ri

an
t

Sp
ec

tr
um

:t
he

fr
eq

ue
nc

y
co

m
po

ne
nt

s
do

no
t

ch
an

ge
ov

er
ti

m
e.

Th
is

is
w

hy
th

e
lit

er
at

ur
e

cl
ai

m
s

D
FT

re
qu

ir
es

st
at

io
na

ri
ty

.B
ut

th
e

co
lu

m
n

"s
ta

ti
on

ar
y"

re
fe

rs
to

ti
m

e-
in

va
ri

an
t

m
ea

n
an

d
va

ri
an

ce
.T

hi
s

is
no

t
an

as
su

m
pt

io
n

of
D

FT
.

2
Pe

ri
od

ic
it

y:
th

e
in

pu
t

si
gn

al
is

pe
ri

od
ic

an
d

co
nt

in
ue

s
in

de
fin

it
el

y.
Th

e
in

pu
t

of
D

FT
is

a
pe

ri
od

.A
fin

it
e

ap
er

io
di

c
ti

m
e

se
ri

es
is

th
us

as
su

m
ed

to
re

pe
at

it
se

lf
in

fin
it

el
y.

3
U

ni
va

ri
an

ce
:t

ho
ug

h
no

pr
ob

le
m

w
it

h
m

ul
ti

di
m

en
si

on
al

da
ta

(e
.g

.i
m

ag
es

),
D

FT
fo

r
m

ul
ti

va
ri

at
e

ti
m

e
se

ri
es

is
le

ss
es

ta
bl

is
he

d,
th

ou
gh

th
er

e
ar

e
re

se
ar

ch
in

th
is

di
re

ct
io

n,
lik

e
[2

06
].

Si
gn

al
fil

te
ri

ng
,

co
m

pr
es

si
on

,
sp

et
ru

m
an

al
ys

is
,

sy
st

em
id

en
-

ti
fic

at
io

n,
id

en
ti

fy
in

g/
m

od
el

in
g

cy
cl

ic
pa

tt
er

ns

Sh
or

t-
Ti

m
e

Fo
ur

ie
r

Tr
an

s-
fo

rm
(S

TF
T)

IT
×

1
1

U
ni

va
ri

an
ce

:w
e

di
d

no
t

fin
d

an
y

m
ul

ti
va

ri
at

e
ve

rs
io

n
of

ST
FT

.
R

es
ol

ut
io

n
Tr

ad
e-

O
ff

:t
im

e
an

d
fr

eq
ue

nc
y

re
so

lu
ti

on
s

ca
nn

ot
be

hi
gh

si
m

ul
ta

ne
ou

sl
y.

La
rg

er
w

in
do

w
si

ze
le

ad
s

to
hi

gh
er

fr
eq

ue
nc

y
re

so
lu

ti
on

bu
t

lo
w

er
ti

m
e

re
so

lu
ti

on
,a

nd
vi

ce
ve

rs
a.

Sp
ee

ch
re

co
gn

it
io

n,
de

te
ct

an
d

tr
ac

k
ta

rg
et

in
ra

da
r/

so
na

r
si

g-
na

ls
,

an
om

al
y/

no
ve

lt
y

de
te

c-
ti

on
in

m
ac

hi
ne

vi
br

at
io

n
an

d
se

is
m

ic
da

ta

··
·

60



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

3.5 list of representative time series representations

Ta
bl

e
8:

R
ep

re
se

nt
at

iv
e

Ti
m

e
Se

ri
es

R
ep

re
se

nt
at

io
ns

–
C

on
ti

nu
ed

R
ep

re
se

nt
at

io
n

Category

Stationary*

Linear**

Markov

(A)periodic

Univariate

Normal

Kernel

T+S(+X)***

A
nn

ot
at

io
ns

to
D

at
a

A
ss

um
pt

io
ns

an
d

O
th

er
Li

m
it

at
io

ns
Ty

pi
ca

l
U

se
C

as
es

in
Ti

m
e

Se
-

ri
es

A
na

ly
si

s

W
av

el
et

Tr
an

sf
or

m
(W

T)

IT
×

1
×

2
1

U
ni

va
ri

an
ce

:t
ho

ug
h

no
pr

ob
le

m
w

it
h

m
ul

ti
di

m
en

si
on

al
da

ta
(e

.g
.i

m
ag

es
),

W
T

fo
r

m
ul

ti
va

ri
at

e
ti

m
e

se
ri

es
is

le
ss

es
ta

bl
is

he
d,

th
ou

gh
th

er
e

ar
e

re
se

ar
ch

in
th

is
di

re
ct

io
n,

lik
e

[1
62

].
2

K
er

na
l

Fu
nc

ti
on

:a
ss

um
pt

io
ns

m
ad

e
w

he
n

ch
oo

si
ng

th
e

ke
rn

el
fu

nc
ti

on
.

C
on

ti
nu

ou
s

w
av

el
et

tr
an

sf
or

m
(C

W
T)

:t
im

e-
fr

eq
ue

nc
y

an
al

ys
is

D
is

cr
et

e
w

av
el

et
tr

an
sf

or
m

(D
W

T)
:

co
m

pr
es

si
on

(e
.g

.
JP

EG
20

00
an

d
M

PE
G

-4
),

de
no

is
-

in
g,

si
gn

al
fil

te
ri

ng
,

fe
at

ur
e

ex
tr

ac
ti

on
,p

at
te

rn
re

co
gn

it
io

n

H
ilb

er
t-

H
ua

ng
Tr

an
sf

or
m

(H
H

T)

IT
×

1
1

U
ni

va
ri

an
ce

:w
e

di
d

no
t

fin
d

an
y

m
ul

ti
va

ri
at

e
ve

rs
io

n
of

H
H

T.
Su

ffi
ci

en
t

O
sc

il
la

ti
or

y
B

eh
av

io
r:

H
H

T’
s

fir
st

st
ep

,E
m

pi
ri

ca
lM

od
e

D
ec

om
po

si
ti

on
(E

M
D

)
re

ui
qr

es
su

ffi
ci

en
t

os
ci

lla
to

ry
be

ha
vi

or
in

th
e

ti
m

e
se

ri
es

fo
r

th
e

ex
tr

ac
ti

on
of

m
ea

ni
ng

fu
li

nt
ri

si
c

m
od

e
fu

nc
ti

on
s.

It
m

ay
no

t
w

or
k

w
el

lo
n

m
on

ot
on

ic
or

ve
ry

sm
oo

th
da

ta
.

R
ev

ea
lin

g
pa

tt
er

ns
in

sc
ie

nc
e

(e
.g

.,
se

is
m

ic
an

d
m

et
eo

ro
lo

gi
-

ca
l,

as
tr

on
om

ic
al

da
ta

),
m

ed
ic

al
(e

.g
.,

an
om

al
y

de
te

ct
io

n
EC

G
an

d
EE

G
),

en
gi

ne
er

in
g

(e
.g

.,
fa

ul
t

an
al

ys
is

fo
r

re
vo

lv
in

g
m

a-
ch

in
e,

e.
g.

,
fo

r
be

ar
in

g)
;

as
pr

e-
pr

oc
es

si
ng

st
ep

fo
r

pr
ed

ic
ti

on
in

fin
an

ci
al

da
ta

;
im

ag
e

en
ha

nc
e-

m
en

t

Pi
ec

ew
is

e
A

gg
re

ga
te

A
pp

ro
xi

m
a-

ti
on

(P
A

A
)

PR
×

1
1

U
ni

va
ri

an
ce

:P
A

A
ca

n
be

ap
pl

ie
d

to
ea

ch
tr

ac
k

in
di

vi
du

al
ly

.H
ow

ev
er

,t
he

in
te

rr
el

at
io

ns
hi

ps
be

tw
ee

n
tr

ac
ks

ar
e

no
t

co
ns

id
er

ed
.

Ti
m

e
se

ri
es

sm
oo

th
in

g,
co

m
-

pr
es

si
on

,a
nd

in
de

xi
ng

··
·

61



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

time series representations : a survey
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3.5 list of representative time series representations
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3.6 discussion

3.6 discussion

The topic of this thesis is MTS pattern search. However, we do not
confine the scope of this chapter to this task alone. Instead, we
surveyed as broadly as possible disciplines and tasks regarding
general time series representations deliberately. On the one hand,
we would like to share our experience that exceeds this task. On
the other hand, it is beneficial to have a toolbox of diverse meth-
ods originally designed for various tasks. As Section 2.2 men-
tioned, the majority of methods in time series analysis are “not
invented here”.

Our taxonomy claims to reflect and respect the essential tech-
nical affinity and mathematical operations of the time series rep-
resentations. Ironically, in this chapter, we have not used many
formulas. However, mathematical descriptions would probably
more than double the number of pages in this chapter. Had
more space, we would especially like to mathematically describe
stochastic processes, integral transforms, and piecewise represen-
tations. Because the formulas also reflect the advancements of
the methods in each of these three categories that we described
in Section 3.3 in natural language.

We include a category called “miscellaneous” accommodating
time series representations that do not fit into other categories.
It implies that the other categories fail to cover all time series
representations. This is especially the case when 1) some repre-
sentations like Prophet are ensembles of equally important com-
ponents from multiple categories in the taxonomy; 2) some repre-
sentations like PIP are unique, and it is trivial to define a singleton
category for it. Moving forward, new representations may derive
from such methods to form new categories.

There is some ambiguity concerning the categorization of some
models. For instance, we categorize GP under stochastic pro-
cesses. However, it is also a valid machine learning model. In
fact, we are not entirely satisfied with the category machine
learning models because it fails to address technical essentials
directly. Nonetheless, we could not find a better way to incorpo-
rate general-purpose models like Autoencoder, CNN, and LSTM.

Some time series representations in our taxonomy solve the
task directly, e.g., LSTM for time series prediction, while others
are essentially preprocessing, whose output undergoes another
method dedicated to the task. For instance, SAXRegEx in Chap-
ter 6 uses SAX as the data representation. SAX does not retrieve
the patterns, which is the responsibility of regular expression. Al-
though this could be controversial, we do not consider it a prob-
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time series representations : a survey

lem for such representations bundled with certain functions, as
also mentioned in Section 2.4. Please consider the example of
large language models. They are widely recognized as representa-
tions of languages. However, they are technically prediction mod-
els, whose basic job is to fill missing words in sentences. Whereas,
they can be adapted to hold conversations.

Finally, while this chapter has reviewed many time series rep-
resentations and introduced their typical use cases, admittedly,
practitioners may still feel overwhelmed by the myriad repre-
sentations at their disposal. For instance, should the user prefer
ARIMA, LSTM, or Prophet for time series prediction? The user can
only try a limited number of them. It would be much more help-
ful if there are a set of rules for choosing the best representation,
ideally in the form of a decision tree, but each node may have
more than two children. Moreover, we envision this decision tree
to begin with the task selection (pattern search, anomaly detec-
tion, etc.) in the root node. Because the task (explained in Sec-
tion 2.2) is usually clear to the user and influences the choice of
representations greatly.

3.7 conclusion

In this chapter, we surveyed time series representations system-
atically. We created a taxonomy of time series representations
based on their essential technical affinity, analyzed the factors
to consider when choosing a time series representation, and pre-
sented a list of common time series representations with their as-
sumptions/limitations as well as typical use cases. Interestingly,
we found a divergence of time series pattern search research
in statistics/econometrics favoring stochastic processes and ma-
chine learning. We believe that they are complementary, and we
are eager to see their reconciliation in research. Our taxonomy
should help data scientists and others working on time series
analysis choose an effective data representation that solves or sim-
plifies their problems. While such guidance does exist, it tends to
focus on a narrower and sometimes domain-specific perspective.
Our taxonomy bridges the gap between time series representa-
tions from diverse disciplines for various tasks. In prospect, we
can expect the enrichment of each category in our taxonomy and
even the formation of new categories. In the future, we would
like to examine and propose a set of practical criteria and rules
for practitioners to choose the optimal time series representations
for their use cases.
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4E VA L U AT I O N M E T R I C S F O R T I M E S E R I E S
PAT T E R N S E A R C H

Figure 4.1: Time-Step-Based vs. Pattern-Interval-Based Metrics. We
propose two types of accuracy metrics for evaluating the per-
formance of time series pattern search algorithms. The time-
step-based metrics are easier to understand and use; while
the pattern-interval-based metrics align better with the goal
of the task. In some cases, the found patterns do not match
the target patterns well, yet the time steps are all correctly
classified, as in b©. In this case, the pattern search algorithm
fails to recognize a target pattern as a whole piece. The time-
step-based metrics will arrive at high scores despite this prob-
lem. Pattern-interval-based metrics punish such errors.

We would like to preface the exposition of our work on devis-
ing new techniques by introducing our evaluation metric. There
are two reasons for this unconventional arrangement. For one
thing, it is the major evaluation metric in Chapter 5, Chapter 6,
Chapter 7, and Chapter 8. Whereas, we cannot explain the metric
in Chapter 2 because we are the first to transfer it from object
detection in computer vision to pattern search in time series. For
another, pedagogically, it may evoke an intuitive feeling of what
time series pattern search outputs, and what a good retrieval
looks like. It primes the reader with our major work. 1

1 This chapter is based on the evaluation metrics used in our (released or ongoing)
publications PB1-PB6 with textual modifications for a coherent information flow.
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evaluation metrics for time series pattern search

4.1 introduction

Interestingly, although researchers have proposed numerous al-
gorithms and tools for time series pattern search, a unified evalu-
ation approach is missing. In particular, it is imperative to estab-
lish an accuracy metric on the quality of the found patterns.

Suppose a time series S = [sssi]0≤i<n comes with the ground
truths G, and the pattern search algorithm retrieves found pat-
terns F. The evaluation metric on retrieval accuracy should gauge
how well F aligns with G.

To be rigorous, we differentiate the notion of ground truths G

from target patterns T. The ground truths are labels provided by
domain experts according to empirical evidence. A time series
may contain target patterns, regardless of whether ground truths
are provided. In practice, we assume G = T, if our engineers
claim that they have labeled the whole dataset.

It faces two challenges. For one thing, there are few labeled
public datasets for time series pattern search. So, G is often un-
available. Luckily, this problem does not affect our case. Nonethe-
less, we would like to mention this challenge that exists in gen-
eral. For another, the matching degree of G and F is not straight-
forward. Unlike classic classification, the correctness of the found
patterns is not black and white. We cannot simply subtract the
outcome F from the ground truth G to measure their difference,
as in the case of regression / time series prediction; nor can we di-
rectly apply standard classification metrics like precision, recall,
or confusion matrix.

In the case of the first challenge, researchers resort to visual
inspection of the found patterns [2, 92, 136, 156]. Another possi-
bility is to measure performance decrease using found patterns
from a more accurate baseline method, kind of as pseudo-ground-
truths [104, 239, 272], which is suitable when the proposed al-
gorithm is an accelerated version of the baseline method. Fortu-
nately, our engineers have provided ground truths, so, the first
challenge does not stand in our way. However, we still need to
face the second challenge.

Our solutions embrace the classic classification metrics like pre-
cision and recall. However, they necessitate the nontrivial defini-
tion of true positives, false positives, and false negatives. We view
this problem (measuring the aligning between F and G) from two
perspectives and propose two classes of metrics, namely time-
step-based metrics and pattern-interval-based metrics. The for-
mer is more straightforward, while the latter aligns better with
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4.2 time-step-based metrics

the alignment problem. The subsequent two sections will elabo-
rate on the two classes of metrics.

4.2 time-step-based metrics

The time-step-based metrics formulate the problem as the binary
classification of each time step, i.e., whether the time step is in-
side or outside a target pattern. Specifically, we first need to de-
rive whether each time step in S is located in a found pattern,
i.e.,

yyy =

⎡⎣yi =

⎧⎨⎩1, if α ≤ i < β, S (α, β) ∈ F

0, otherwise

⎤⎦
0≤i<n

Likewise, we can derive whether each time step in S is in a
ground truth

zzz =

⎡⎣zi =

⎧⎨⎩1, if α ≤ i < β, S (α, β) ∈ G

0, otherwise

⎤⎦
0≤i<n

Moreover, we can count

• the number of true positives defined as time steps both in
a ground truth and a found pattern

TP = |{i | yi = zi = 1}|

• the number of false positives defined as time steps in a
found pattern but not in a ground truth

FP = |{i | yi = 1, zi = 0}|

• the number of false negatives defined as time steps in a
ground truth but not in a found pattern

FN = |{i | yi = 0, zi = 1}|

where the operator |.| returns the cardinality of a set. Finally, we
can calculate

precision =
TP

TP + FP

recall =
TP

TP + FN
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F1 =
2 · precision · recall
precision + recall

Pattern search algorithms usually return multiple found pat-
tern candidates with their relevance. To obtain the actual found
patterns F required by the time-step-based metrics, the user has
to provide a relevance threshold η. Only found patterns candi-
dates with relevance higher than this threshold are recognized as
found patterns. Alternatively, the user may specify the desired
number of found patterns. This configuration of the strictness
of the metric is nontrivial because it depends on the data and
task, which is usually only possible after the user has inspected
the found patterns. It has a major impact on the scores of time-
step-based metrics and must be configured sensibly. In our ex-
periments, we tuned the relevance threshold to achieve the best
possible F1-score.

Asides from the above inconvenience, time-step-based metrics
may lead to the pitfall illustrated in Figure 4.1 b©, where the al-
gorithm fails to recognize the target pattern as a single piece,
despite the correct classification of every time step and perfect
scores according to the metrics.

4.3 pattern-interval-based metrics

As mentioned in Section 2.2, time series analysis heavily draws
on expertise from other disciplines. To solve the problems of
the time-step-based metrics, we propose to transfer the metric
Average Precision (AP) from object detection in computer vision
to pattern search in time series analysis in favor of a perspective
of the intervals.

This metric requires a threshold υ for IoU between a found
pattern F and a ground truth G for judging whether F is relevant
or a true positive, based on the ground truth G∗ that overlaps
(the most among all ground truths G) with it. This IoU of two
patterns P1 and P2 is defined as

IoU (P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|

The metric AP pronounces a found pattern F∗ true positive if

• F∗ overlaps with G∗ by at least υ, i.e., IoU (F∗, G∗) ≥ υ; and

• the ground truth G∗ does not overlap with another found
pattern F′ of higher relevance by at least υ (otherwise, the
more confident F′ has already consumed G∗), i.e., ∀F′ ∈ F

such that IoU (F′, G∗) ≥ υ, it follows frel (F′) < frel (F∗).
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The IoU threshold υ can regulate the strictness of the metric.
The choice of υ not standardized. In computer vision, υ for AP is
usually at least 50% and can be as high as 90%. For instance, PAS-
CAL challenge chooses 50% and COCO challenge a range from
50% to 95% with 5% increment. However, we found the degree
of overlapping between F and G in time series pattern search, at
least in our cases, is generally much smaller than in the cases
in computer vision. Accordingly, these thresholds are too strict
for time series pattern search, and the scores of most results (in-
cluding and especially results from baseline methods) would be
too low and not well separated in [0, 1], making method compar-
ison difficult. Therefore, We decided to use primarily 30% and
50% and denote the metrics AP30 as well as AP50, respectively.
Moreover, we interpret the more lenient metric AP30 as “roughly
caught” and the stricter AP50 “precisely located”. Figure 4.1 a©
shows a series of IoUs. In the example Figure 4.1 c©, the found
pattern has 33% IoU with a ground truth that does not overlap
with another found pattern. The found pattern is, consequently,
a true positive according to AP30, but a false positive according
to AP50. Figure 4.2 further clarifies the data science terms true
positive, false positive, and false negative in our special problem,
time series pattern search.

Please also note that AP does not necessarily need the found
patterns, which survive the filtering with a relevance threshold
η. Instead, it requires the ranked pattern candidates before fil-
tering. Pattern candidates of low quality but also low relevance
will not pollute the high-quality candidates or diminish AP. This
is desirable because the decision on η or the number of top hits
is not necessarily a responsibility of the pattern search method,
especially for rule-based pattern search, where the user needs to
adjust η upon seeing the tentative result. Thus, η is better absent
from the metric gauging the performance of the methods.

In general, pattern-interval-based evaluation metrics better re-
spect the desired outcome format of the task time series pattern
search. Namely, the outcome should be found patterns in whole
pieces rather than individual time steps. Pattern-interval-based
evaluation metrics also satisfy the target of the evaluation met-
ric defined in Section 4.1 (measuring the aligning between F and
G). In practice, we talk about correct/relevant found patterns,
incorrect/irrelevant found patterns, and missing patterns heuris-
tically by measuring their overlapping. Accordingly, the defini-
tions of true positives, false positives, and false negatives for
pattern-interval-based metrics match these heuristic notions. We
omit perhaps the more useful domain-specific definitions of rele-
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evaluation metrics for time series pattern search

Figure 4.2: True/False Positive/Negatives. pattern-interval-based met-
rics define true positives as found patterns with match-
ing ground truths; false positives as found patterns with-
out matching found patterns; and false negatives as ground
truths without matching found patterns. Compared with
comparable definitions with time-step-based metrics, they
align better with the notion of desired found patterns for true
positives, undesirable found patterns for false positives, and
missing patterns for false negatives.
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4.3 pattern-interval-based metrics

vance because it is often unavailable. Otherwise, we prefer to use
it as the similarity measure to conduct the search.

Paradoxically, we will criticize pattern-interval-based classifi-
cation and advocate time-step-based classification when using
in model-based time series pattern search later in Chapter 7.
Whereas, for evaluation, we prefer a pattern-interval-based met-
ric to measure retrieval accuracy, as explained in this chapter.
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5E F F I C I E N T, S T E E R A B L E , A N D I N T E R P R E TA B L E
D ATA R E P R E S E N TAT I O N F O R
H I G H - D I M E N S I O N A L T I M E S E R I E S

Figure 5.1: PSEUDo. We present PSEUDo for pattern search in very high-
dimensional time series. It creates a representation model
for MTS based on locality-sensitive hashing, conducts scalable
pattern retrieval with few initial labels, and evolves with in-
terpretable relevance feedback to capture subjective pattern
similarity.

In this chapter, we present PSEUDo. It features a speed-oriented
hashing-based time series representation. We designed it to be
adaptive and steerable. Besides improving the retrieval, it pro-
vides the added benefits of estimating track importance. PSEUDo
is especially efficient for very high-dimensional time series. 1

5.1 introduction

Very high-dimensional (e.g., with more than ten tracks) time se-
ries emerge on an unprecedented scale due to increasing sensor
usage and data storage. Visual pattern search is one of the most
frequent tasks on them. The general problem is well understood
and studied. However, very few solutions focus on the practi-
cal, real-life challenge that oftentimes multiple sensors or obser-
vation angles have to be taken into consideration in unison to
understand a problem. In accordance, we formulate the research
question for this chapter: how to retrieve patterns in very high-

1 This chapter is based on our publications PB1, PB2 (awarded Best Paper in VDS
2022), and PB3 with textual modifications for a coherent information flow.
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dimensional MTS? Moreover, driven by our domain requirement
R4 Explainability, we propose an additional research question:
how to assess the importance of dimensions/tracks?

On one hand, this problem is interesting and important, be-
cause relevant information is often distributed in multiple at-
tributes. In extreme cases, our ECU data contains around 10 thou-
sand tracks, though our engineers can often select 10 to 20 rel-
evant ones before analysis. They also wish to know the fea-
ture/track importance, as mentioned in R4 Explainability. On the
other hand, this problem is challenging, because high dimensions
mean multiple times of data volume for efficient processing, as
well as the challenge of interpreting distributed information. In
general, automatic pattern retrieval methods suffer from efficient
and transparent training algorithms, as mentioned in Section 1.2.

In this chapter, we propose PSEUDo (Pattern Search, Exploration
and Understanding in Multivariate Time Series Data), a tool for
visual pattern retrieval in MTS, especially very high-dimensional
time series. It aims to overcome the uneconomic and unin-
terpretable (re-)training problem accompanying deep-learning-
based methods. PSEUDo is based on Query-Aware Locality-
Sensitive Hashing (QALSH) [272] to create a representation of the
MTS. In a nutshell, LSH linearly maps all tracks into one with
groups of hash functions, achieving sublinear training and in-
ference time with respect to data dimensions. This performance
gain allows an instantaneous relevance-feedback-driven adaption
to converge to users’ relevance/similarity notion. Our major con-
tribution is making LSH trainable and extending it with an effi-
cient, steerable, and interpretable relevance feedback mechanism.
We have also implemented a prototypical user interface to assist
users with the algorithm.

As shown in Figure 5.1, the overall pipeline works as follows:
Stage 1 in Figure 5.1: preprocessing the time series with slid-
ing windows and window normalization; Stage 2 : marking by
the user a pattern in the time series as the query to search for
Stage 3 : initial search based on the standard LSH; Stage 4 : sam-
pling results for relevance feedback; Stage 5 : inspecting results
and providing relevance feedback by the user; back to Stage 3 :
updating the LSH model and rerunning search. This process iter-
ates between Stage 3 and Stage 5 until the user is satisfied with
the result.

We evaluated PSEUDo’s performance in terms of accuracy,
speed, and steerability, through quantitative benchmarks with
representative time series retrieval methods, and its usability
through a case study. Firstly, we benchmarked PSEUDo’s “open-
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5.2 related work

loop” accuracy and speed without relevance feedback against
four representative benchmarking methods on four labeled
datasets with different characteristics. Disappointingly, we found
that the methods worked differently on different datasets, and
there was no universally best method in terms of accuracy. In
the speed benchmark, PSEUDo was slightly worse than MASS (the
state-of-the-art algorithm for time series pattern search in terms
of speed) on univariate and low-dimensional datasets. Still, it
started to overtake the latter on a relatively high-dimensional
dataset. To verify this finding, we benchmarked the scalability
with respect to the number of tracks with an unlabeled very high-
dimensional dataset. Next, we evaluated the effectiveness of the
relevance feedback mechanism, where we used an agent simu-
lating sensible user feedback as the experimental group and two
agents simulating extreme user feedback as control groups. We
witnessed an increasing accuracy within five feedback rounds,
which happened instantaneously. Furthermore, we noticed that
PSEUDo attaches higher weights to informative tracks and lower
to less helpful ones, confirming its feature selection mechanism.
Finally, we invited an expert to test PSEUDo in his use case. In con-
clusion, PSEUDo detected patterns in high-dimensional time series
efficiently, improved the result with relevance feedback through
feature selection, and allowed an understandable as well as user-
friendly retrieval process.

5.2 related work

This chapter centers around an active-learning-based time series
representation. We have elaborated on time series representations
in Section 2.4 and active learning in Section 2.8. In this chapter,
we use Locality-Sensitive Hashing (LSH) as the time series rep-
resentation due to its high efficiency when dealing with very
high-dimensional time series facing C2 High Dimensions. Sub-
sequently, we will briefly introduce this base technique.

Generally, hashing-based algorithms aim for a significant
speed boost with tolerable information loss. Classic hashing algo-
rithms highlight the smallest differences in objects, e.g., for data
integrity check [52]. First introduced in [130], LSH inherits the ef-
ficiency while differing from other hashing algorithms in that it
maps similar objects to close hash codes and induce hash colli-
sion. This feature enables its application in a wide range of data
mining problems, such as nearest neighbor search [127, 130], hi-
erarchical clustering [61, 148], and near-duplicate detection [68].
Conceptually, LSH conceives data objects in the database as points
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in a high-dimensional space. This space is cut into sub-regions by
a group of random hyperplanes. Each hyperplane is described by
a hash function [130]. Each sub-region corresponds to a bucket in
the hash table, and the object points in the same sub-region fall
into the same bucket in the hash table. To reduce false negatives,
multiple hyperplane groups or multiple hash function groups are
used. All objects colliding with the query under at least one hash
function group are treated as candidates. Subsequently, the candi-
dates can be filtered with a similarity measure to suppress false
positives. Since LSH is considerably fast, it can be repeated for
every new query with query-centric bucketing, namely QALSH,
yielding better accuracy[127]. Recently, LSH received attention for
time series indexing, where it achieves up to 20 times faster pro-
cessing speeds with a minor accuracy sacrifice [176]. Later, the
query-centric QALSH is introduced for MTS [272].

Our work in this chapter is based on QALSH (hereinafter called
LSH for brevity). We extend the idea by making LSH trainable and
explainable while maintaining its high efficiency for processing
very high-dimensional time series even with iterative model re-
taining.

5.3 method

This section describes PSEUDo’s relevance-feedback-driven learn-
ing algorithm based on LSH. LSH allows querying large MTS effi-
ciently for real-time user interaction. We extended it with an also
efficient and interpretable relevance feedback algorithm.

We derive our conceptual model, depicted in Figure 5.2, from
FDive, the feedback-driven preference learning method [20]. In-
spired by the conceptual model, we assume that the randomly
initialized parameters in the LSH hash functions are trainable to
combat the ambiguity of time series similarity.

In the conceptual model, input MTS data are modeled with
LSH functions and stored in query-aware hash tables, significantly
speeding up the processing. Striving for a sensible data modeling
on top of LSH’s probabilistic nature and converging to the subjec-
tive similarity, we draw a sample set from the hashed time series.
The user then checks the samples as well as their "average" shape
and variance per bucket, i.e., how much uncertainty/volatility
the time series windows in a hash bucket expose. This mecha-
nism actively contributes to the querying process in that PSEUDo
learns to understand the user’s similarity notion and interprets
it as feature/track importance. Due to the size and complexity of
MTS data, such an open and adaptable exploration process was
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5.3 method

Figure 5.2: Conceptual Model. PSEUDo is (1) an instantiation of
FDive [20] for MTS retrieval. (2) It models data with LSH,
(3) samples the outcomes, (4) invites the user to review the
model’s similarity understanding, and (5) optimizes the LSH

functions based on user feedback.

unfeasible before within our self-imposed performance limits.
Moreover, we can see that such a human-in-the-loop active learn-
ing approach improves the overall retrieval performance and re-
mains explainable.

For a detailed and precise description, we will use the nota-
tions defined in List of Symbols. Namely, we use lowercase let-
ters for scalars and uppercase for matrices. i, j, and r denote
time step index, track index, and feedback round index, respec-
tively. We denote vectors as lowercase letters with arrows, like θθθ.
Complex vector or matrix operations may require the vectors and
matrices denoted as their entries, like

{
θj
}

. we use C to denote
sampled candidates from all found patterns, with C+/− being
positively or negatively labeled found patterns. Next, we will ex-
plain how to transform the conceptual model into the concrete
PSEUDo pipeline in Figure 5.3.

5.3.1 Initial Modeling: A High-Speed Foundation

The initial modeling follows the procedures proposed in the work
from [272]. As Figure 5.3 shows, the input data include a query

Q =
[
qij
]

0≤i<φ
0≤j<d

=
[
qqqi ∈ Rd

]
0≤i<φ

of length φ aligning with Equation 2.2 and a MTS

S =
[
sij
]

0≤i<n
0≤j<d

=
[
sssi ∈ Rd

]
0≤i<n
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Similar to
pattern
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Figure 5.3: PSEUDo’s Data Processing Pipeline. Following the conceptual
model in Figure 5.2. (1) PSEUDo receives a query and prepro-
cessed time series windows as inputs, (2) hash them into hash
table buckets representing the distribution of similarity to the
query (green depicts similar, red dissimilar), (3) draw repre-
sentatives from both similar and dissimilar buckets, (4) re-
ceive user feedback, and (5) update the hash functions and
the query pattern accordingly.

of length n in accordance with Equation 2.1. The output data are
the time series windows F filtered by LSH and by their similar-
ity to Q. Because the method is extensive and established, we
describe only the essentials in this section.

As the red box in Figure 5.3 indicates, the method preprocesses
S by sequentially scanning (Section 2.6) it with a sliding window
of length φ (length of Q). Optionally, we can use a range of differ-
ently sized sliding windows for patterns with variable duration.
Subsequently, the windows and the query are normalized and
prepared for hashing.

In the next step, LSH initializes l compound hash functions.
Each compound hash function consists of k hash functions
h(xxx), xxx ∈ Rd. Each hash function h is independently initialized
with a parameter vector θθθ =

[
θj
]

0≤j<d containing d elements
drawn independently from the standard normal distribution, i.e,
θj ∼ N (0, 1).

Figure 5.4 illustrates the details during the modeling process.
Each h calculates the dot product between its θθθ and every time
step xxxi in a time series window X = [xxxi]0≤i<φ, thus merging the
d tracks in X to a univariate hash code of length φ. A projection
collision for xxxi happens when |h(qqqi)− h(xxxi)| ≤ ω

2 holds with a
given error band / hash bucket size ω. Further, a hash collision
for X happens when the number of projection collisions between
the query Q and X under an h exceeds a threshold ψ. A group
hash collision for X happens when X and Q have hash collisions
under all k hash functions in a compound hash function. Finally,
X is considered a candidate similar to Q when X and Q have

82



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

5.3 method

compound hash collision under at least one of the l compound
hash functions. How l, k, and other parameters can be optimally
configured is referred to [272].

In the next step, the pipeline uses a similarity measure like DTW
or ED to calculate the similarity of all candidates to Q. PSEUDo
modifies the pattern relevance assessment [272] by applying the
similarity measure on the hash code of the candidates rather than
on their original MTS form in this stage. This modification has
two advantages: 1) the complexity with respect to the number of
tracks is reduced from linear to constant; 2) the similarity mea-
sure is based on the representation from LSH, which is updated
later, reflecting the user’s emphasis rather than being purely al-
gorithmic. Although the model building appears complex, it can
be computed instantaneously and allows rapid adaption.

Query

Windows

1. Hashing 2. Find similar
windows

3. Calculate distance to
query

4. Bucketing

h(x)

Hashed
windows

Pruned
windows

Ranked
windows

Hashed
query

Figure 5.4: Modeling Process (Detail). 1) PSEUDo hashes all MTS win-
dows including the query to univariate hash codes, 2) prunes
the windows outside the hash bucket containing the query,
3) rank the similarity of the remaining windows to the query
based on a similarity measure like DTW or ED.

Retrieval Invariance. Our modeling scheme allows us to ac-
count for various types of retrieval invariance (Section 2.7). While
the sliding-window-based sequential scanning (Section 2.6) cov-
ers horizontal translational invariance (translation along the time
axis) (Figure 5.4.1), it fails to capture horizontal scaling (pattern
duration scaling) efficiently, a problem also mentioned in Sec-
tion 2.6. Vertical translational invariance and scaling invariance
(bias and amplitude scaling in the y-axis) are handled by nor-
malizing all windows in the first step (also Figure 5.4.1). If nec-
essary, the warping invariance, i.e., time shifts in the pattern, is
approached with an elastic measure like DTW.

Parameters. LSH has nearly twenty parameters to set. The user
needs to set three of them, and the algorithm derives the rest. We
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inherit the setting of the three parameters from the experiments
in [272].

• Approximation ratio: 1.3;

• False negative rate: 0.05;

• Hash bucket size: ω = 0.75× envelop_radius;

5.3.2 Relevance Feedback: Injecting Domain Knowledge

We achieve the model steering in our conceptual model (Fig-
ure 5.2) through the representative selection and relevance feed-
back steps. They allow users to incorporate their domain ex-
pertise and guide how the model should alter its current state.
This process has two components: 1) it is inherently a visual-
interactive (interface) problem and will therefore be elaborated
on in Section 5.4, and 2) we need to decide which representative
samples to show the user. In PSEUDo, users can give feedback on
samples and hash tables.

Relevance Feedback on Found Patterns. We draw samples
from the found patterns F (windows surviving filtering by LSH as
explained in Section 5.3.1) and invite the user to label them. The
number of candidates can be large, even after filtering with LSH.
Users can not process more than possibly a few dozen without be-
ing stuck in a tedious labeling process. Following the central idea
of (visual) active learning [12, 74, 79], we choose representatives
based on the trade-off between exploitation and exploration. On
the exploitation side, PSEUDo includes the top five found patterns
with the highest similarity scores. However, if we restrict our-
selves to top hits, the learning process tends to reinforce the cur-
rent knowledge while refusing to learn something new. Hence,
we also draw five random found patterns that may not have top
similarity scores.

Relevance Feedback on Hash Tables. Besides candidate sam-
ples, we visualize the hash tables and allow the user to provide
feedback on them. The details are kept in Section 5.4.2. The whole
LSH model ranks patterns and sorts them into ranked buckets.
Therefore, we can represent the individual hash tables as his-
tograms. A histogram visualizes the similarity distribution per-
ceived by a hash table. We interpret the commonly occurring his-
togram patterns in the following manner: a positively skewed
shape points to a hash function, which observes many win-
dows similar to the query, while a negatively skewed shape
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means the opposite. Unitary or bi-modal distributions
refer to undecided or decisive hash functions.

5.3.3 Updating Model: Encoding Knowledge into Parameters

Conventional LSH does not contain trainable parameters and can-
not be optimized directly by relevance feedback. However, the
randomly initialized parameters in the hash functions do not
have to persist. As described in Section 5.3.1, a hash function h
performs dot product θθθ · xxxi between its hashing vector θθθ and the
i-th time step xxxi in a window X =

[
xxxi ∈ Rd

]
0≤i<φ

. This operation

can be interpreted as a weighted merge of d tracks in X with the
track weights given by θθθ.

To capture relevance feedback, we propose to modify θθθ with a
learned weighting vector www and use the updated vector θ′θ′θ′ = www�
θθθ in place of θθθ, where � denotes the Hadamard product. Given
two matrices A =

[
aij
]

and B =
[
bij
]

of the same dimensions, the
Hadamand product outputs a matrix

[
aij · bij

]
of the same shape.

To avoid vanishing or exploding parameters, we want to retain
the expectation of the magnitude of θθθ, namely E

(
‖θ′θ′θ′‖

)
= E (‖θθθ‖).

It is achieved by normalizing the magnitude of www to
√

d, where
d is the dimension (number of tracks) of the time series first ap-
peared in Section 2.1.1. We normalize www instead of θ′θ′θ′ directly
because there are multiple θθθ′ but only one www.

Recall that θj ∼ N (0, 1), where θj is the j-th element of θθθ corre-
sponding to the j-th track (Section 5.3.1). The squared magnitude
of θθθ is

E
(
‖θθθ‖2

)
= E

(
d

∑
j=1

θ2
j

)
=

d

∑
j=1

E
(

θ2
j

)
=

d

∑
j=1

E
((

θj − 0
)2
)

=
d

∑
j=1

E
((

θj − E
(
θj
))2
)
=

d

∑
j=1

Var
(
θj
)
=

d

∑
j=1

1 = d

(5.1)

Likewise, since θ′j = wj · θj ∼ N
(

0, w2
j

)
, it follows

E
(
‖θ′θ′θ′‖2

)
= ... =

d

∑
j=1

Var
(

θ′j
)
=

d

∑
j=1

w2
j = E

(
‖www‖2

)
Aiming at E

(
‖θ′θ′θ′‖2) = E

(
‖θθθ‖2), we set

E
(
‖www‖2

)
= E

(
‖θ′θ′θ′‖2

)
= E

(
‖θθθ‖2

)
= d
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adaptive representation for high-dimensional time series

As a result, we need to normalize ‖www‖ to
√

d.
PSEUDo allows two types of relevance feedback, namely, feed-

back on the found pattern samples and the hash tables. Accord-
ingly, we maintain two weight vectors wwws and wwwh for samples and
hash tables, respectively.

Sample Relevance Adaption. The feedback on the positively
labeled samples, C+ = {C+}, is transformed to track impor-
tance wwws. We calculate a distance function fdis based on DTW or
ED between the tracks of each positively labeled sample C+ =[
cccj
]

0≤j<d and these of the query Q =
[
qqqj
]

0≤j<d. We define aaa =[
∑C+∈C+

fdis
(
qqqj, cccj

)]
0≤j<d as the aggregate distances between the

corresponding tracks in C+ and Q. Next, we normalize the entries
in aaa to between [0, 1] with aaa∗ =

[
a∗j = aj/ ∑d

j=1 aj

]
0≤j<d

. Then

we convert distances to their negatively correlated weight vector
yielding www∗s =

[
1− a∗j

]
0≤j<d

, which is subsequently normalized

to wwws = www∗s
√

d
‖www∗s ‖ .

Hash Table Relevance Adaption. The feedback on the hash ta-
bles can be implemented likewise. Let Θ+ = {θθθ+} be the param-
eter vectors of all hash functions labeled as positive by the user.
Then, we can define www∗h =

[
∑θθθ+∈Θ+

θ2
j+

]
0≤j<d

. After normalizing

the vector magnitude to
√

d, we get wwwh = www∗h
√

d
‖www∗h‖

Finally, we merge wwws,b, wwwh,b in b-th feedback round and wwwb−1
into wwwb through a linear combination with a learning rate ρ,
which can be gradually modified to enforce exploration stabil-
ity [20].

www∗b = (1− ρ)wwwb−1 +
ρ

2
(wwws,b +wwwh,b)

wwwb = www∗b

√
d

‖www∗i ‖
Query Adaption. As shown by the backward arrow in Fig-

ure 5.3, we update not only the LSH hash functions but also
the query because the initial query does not necessarily repre-
sent the generally desired shape of the pattern. In each training
iteration, we integrate the query Q and the set of positively la-
beled samples C+. This operation is known to be nontrivial [204]
and impacts future exploration direction. After the trial with the
naïve element-wise average yields unsatisfactory results, because
the average often resembles none of the original windows, we
decided for Dynamic Time Warping Barycenter Averaging (DBA)
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5.4 user interface

[205], as it takes distortion and time shifts during averaging into
consideration [93, 204, 205].

5.4 user interface

a Tracks View b Dataset Overview cQuery View

d Feedback View e Results View

b1

b2

b3

d3

d1

Tracks Dataset Overview Query

Feedback
d2

Results

e1 e2

Figure 5.5: Interface Overview. We plot the selected tracks from the
Tracks View (a) in the Dataset Overview (b) along with the user-
defined query in (c). The Feedback View (d) depicts classifi-
cation result samples and information about the hash tables
and is used to receive relevant feedback. The Results View (e)
displays the result distribution and provides search history
management.

We designed PSEUDo’s visual interface depicted in Figure 5.5.
It comprises five interlinked views facilitating data exploration,
query definition, process monitoring, result inspection, rele-
vance feedback, and state management. A REST API connects
the web-based user interface to PSEUDo’s backend algorithm.
The backend (in Python and C++) and frontend (with Angu-
lar) code are available under https://git.science.uu.nl/vig/

sublinear-algorithms-for-va/pseudo. The video https://www.

youtube.com/watch?v=oJfXoDyZRPY demonstrates the user inter-
face as well as a concise workflow.

5.4.1 Dataset Overview, Track View, and Query View.

The Dataset Overview, Tracks View, and Query View collaborate
closely. The Dataset Overview (Figure 5.5.b) plots tracks selected
in the Tracks View (Figure 5.5.a) together with the window la-
bels (Figure 5.5.b3 dots in the range slider Figure 5.5.b1 and
marked intervals in the line chart Figure 5.5.b2). Besides direct
panning and zooming, a range slider (Figure 5.5.b1) above the
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adaptive representation for high-dimensional time series

track curves (Figure 5.5.b2) serves as a mini-map for navigation
and an overview of predictions and labels.

The Query View (Figure 5.5.c) shows the user-defined multi-
variate query. The user defines the query in a query-by-example
(Section 2.9) manner by selecting a region in the Dataset Overview.
The user can change the query on the fly, but PSEUDo must repeat
the hashing process whenever the query length varies. Typically,
users have to wait several seconds for LSH parameter estimation.
While not focused on in this project, PSEUDo’s query definition in-
terface currently lacks the option to define patterns shifted across
tracks (inter-track time shifts explained in Section 2.7). We will
investigate better query interfaces for MTS data following recent
examples, such as [40], in Section 6.4.2.

5.4.2 Feedback View

The Feedback View (Figure 5.5.c) shows representatives of all
found patterns F, visualizes hash tables, and keeps track of la-
beled data. We differentiate three respective tabs for different
purposes.

The Samples Tab (Figure 5.5.d1) lists samples of the classified
windows. They are surrounded by frames color-encoded from
green over yellow to red, indicating decreasing relevance or sim-
ilarity to the query. Right above the line charts of the samples,
PSEUDo invites the user to label the windows by clicking for
acceptance, for abstain, and for rejection, as described in
Section 5.3.3 (Sample Relevance Adaption).
PSEUDo visualizes the hash tables in the Tables Tab (Fig-

ure 5.5.d2). Each hash table is visualized as a histogram, showing
the relevance distribution perceived by the hash function. Like
the frames surrounding the samples in the Samples Tab, the bars
in the histograms here are also color-encoded from green to red,
indicating decreasing pattern relevance or similarity to the cur-
rent query. To help understand how well the hash functions work,
we plot each time step’s mean, minimum, and maximum values
among the top-20 similar windows for each hash function. The
mean value curves portray the pattern shape perceived as simi-
lar by the hash function, while the minimum and maximum val-
ues form the lower and upper bound of the pattern. The band’s
tightness implies the certainty or importance of the track during
classification. Based on this visual encoding, the user can mod-
ify the hash tables’ importance by clicking for acceptance and

for rejection, as described in Section 5.3.3 (Hash Table Rele-
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5.5 evaluation

vance Adaption). In the future, we plan to implement a ranking
or sampling mechanism to avoid showing all hash tables.

The accepted samples C+ and the rejected samples C− labeled
in the current feedback round are kept in the Labeled Data Tab (Fig-
ure 5.5.d3). Users can revise decisions before clicking the Train
button. PSEUDo will consider the labeled sample windows and
labeled hash tables in the next training round.

5.4.3 Results View

The Results View (Figure 5.5.e) shows the outcome statistics and
provides git-like version management.

In the Classifier Tab (Figure 5.5.e1), we use a result histogram
to visualize the distribution of similarity between the query and
all windows that survive LSH’s pruning. Clicking a bin in the
histogram shows the reconstructed visual pattern analogous to
the ones in the Feedback View. Rather than using the top-20, this
pattern result view summarizes all windows in the chosen bin.
The mean curves also show the average form within this bin,
bounded by each time step’s minimum and maximum values to
illustrate the variance within tracks. The histogram and the recon-
structed shape help the user better understand the classification
result and provide guidance on the strictness during the labeling
process. Besides, users can set the number of top candidates and
display them in the dataset overview.

5.5 evaluation

We evaluated PSEUDo through three distinct evaluation threads.
First, we benchmarked accuracy and speed/scalability with rep-
resentative techniques for time series pattern search. Second, we
verified the steerability of the relevance feedback mechanism.
Third, we validated the usability, including understandability,
through an interview with an expert from the energy consump-
tion domain. Please note that accuracy and speed evaluation for
LSH has already been conducted in [272]. We extend the accuracy
evaluation with labeled datasets and the speed evaluation with a
scalability test with respect to data dimensions.

89



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

adaptive representation for high-dimensional time series

5.5.1 Experiment Setup

We conducted all experiments on a standard laptop running 64-
bit Windows 10 Enterprise with an Intel i7-8650U CPU, 16 GB
RAM, and 1 TB HDD.

We used six datasets with different characteristics, namely

• Deep Valve2: electrical current through a solenoid valve,

• EEG Eye State [221]: electroencephalogram with labeled
eye state (close/open) of a subject,

• Filling Prediction: relative air filling in a petrol engine,

• Variable Displacement: rotational speed and acceleration
of a petrol engine,

• EEG Schizophrenia [218]: electroencephalogram of a sub-
ject taking a button pressing test for diagnosing Schizophre-
nia, and

• Intelliekon [233]: household energy consumption.

The first four datasets have ground truths. Therefore, we could
use them in the accuracy benchmark. While the speed benchmark
also uses these four, we would like to evaluate PSEUDo’s scalability
with respect to even higher data dimensions. Hence, we included
the unlabeled EEG Schizophrenia dataset with 70 tracks because
the speed/scalability test does not require labels. The last dataset
is from our interviewed expert and used in the expert study.

We used the following four representative and state-of-the-art
methods for benchmarking.

Correlation. It is one of the standard similarity
measures. We used our own python implementation
float(numpy.dot(*normalize(np.vstack((seq_1, seq_2)) + bias)))

where seq_1 and seq_2 are two time series segments and bias

is a small term to tackle constant segments and avoid numerical
problems.

DTW [23, 237]. It is the most popular elastic distance
measure for time series with “hard-to-beat” accuracy for
time series classification [15] mentioned in Section 2.5. We
used dtw.dtw(seq_1, seq_2, dist_method="sqeuclidean",

step_pattern="symmetric1", distance_only=True).distance

with the library dtw-python from https://dynamictimewarping.

github.io/python/.

2 Datasets without a reference are proprietary house-internal datasets that cannot
be published.

90

https://github.io/python/.2Datasets
https://github.io/python/.2Datasets


668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

5.5 evaluation

MASS [187, 188]. The so far fastest similarity search algorithm
mentioned in Section 2.6. Ultimately, it uses ED. We used the ver-
sion from https://github.com/matrix-profile-foundation/

mass-ts, specifically mass\_ts.mass2(ts, query) to calculate
the distance profile. GPU support is deactivated. We would like
to clarify that though already fast, the Python version of MASS
is still much slower than its MATLAB version. The speed dif-
ference of the two versions could result from the implementa-
tion or the efficiency difference between Python and MATLAB.
MASS in different programming languages can be found in https:

//www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.
SAX [164, 165]. A popular time series representation mentioned

in Section 2.4. Together with its dedicated similarity measure, SAX
can be used for similarity search. We used our own implementa-
tion. The authentic SAX assumes that the values in the time series
are normally distributed. Based on this assumption, it calculates
quantiles to discretize the values. Our data are not normally dis-
tributed. Therefore, we calculate the genuine value distribution
then the quantiles accordingly. Furthermore, we fit the SAX (esti-
mate distribution and calculate quantiles) with the query instead
of the time series in the database, which significantly improves
the accuracy, because sometimes, the query has a much smaller
value range as the time series in the database. On a side note,
SAX uses PAA as a necessary preprocessing step, which reduces
data volume. To ensure a fair comparison, we apply PAA with the
same resolution for other methods.

Table 9 lists the complexities of the similarity measures.

Similarity Measure Complexity

Correlation O (dnφ)

ED (MASS)) O (dnlog (n))

DTW O
(
dnφ2)

SAX O (dnφ)

LSH (PSEUDo) O (nφ)

Table 9: Complexity of Common Similarity Measures. d denotes the
dimension or number of tracks, n the time series length or num-
ber of windows after preprocessing with sliding windows, and
φ the query length. Note that the query length φ is irrelevant for
MASS’s complexity, and d does not influence LSH’s complexity.
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adaptive representation for high-dimensional time series

5.5.2 Accuracy and Speed

We benchmarked PSEUDo’s accuracy with deactivated relevance
feedback against the benchmark methods. During accuracy
benchmark, we used not only the time-step-based metrics includ-
ing accuracy, balanced accuracy, precision, recall, and F1 score,
but also the pattern-interval-based metrics including AP30 and
AP50, as explained in Chapter 4.

Figure 5.6 shows the result of the accuracy benchmark. It im-
plies that each method performs well on some datasets while
poorly on the other. This result implies that the notion of rele-
vance/similarity may vary in different use cases, which leads to
the need for adaptive similarity measures.

Next, we measured the average elapsed time over five repeti-
tions for all methods on the same four labeled datasets and report
the results in Figure 5.7. PSEUDo, in our slow DTW configuration,
is comparable with MASS, the fastest similarity search algorithm
so far, and even surpasses the latter in high-dimensional cases
like the EEG eye state dataset. In low-dimensional datasets, the
pruning effect of LSH plays a major role by reducing the num-
ber of candidates. Whereas in high-dimensional cases, LSH’s
weighted track merging provides sublinear scalability.

To further verify PSEUDo’s scalability, we measured the elapsed
time with an increasing number of tracks in the high-dimensional
EEG Schizophrenia dataset. The result in Figure 5.8 confirms
PSEUDo’s good scalability for high-dimensional data. While other
methods scale linearly with the data dimensions, PSEUDo scales
sublinearly

5.5.3 Steerability

While Section 5.5.2 measures the “open-loop” performance with-
out relevance feedback, this section verifies the effectiveness and
mechanics of relevance feedback through accuracy and track im-
portance evolution.

In general, it is challenging to evaluate active learning systems
objectively. Inspired by [235], we evaluated PSEUDo’s steerability
with three agents simulating user behavior. The first agent sim-
ulated normal user feedback and labeled the samples according
to the ground truths. If a sample had at least 50% IoU with a
ground truth, the sample was accepted, otherwise rejected. The
second agent accepted all samples, and the third rejected all. They
formed the control groups. We used the EEG Eye State dataset
to demonstrate PSEUDo’s steerability because this dataset is high-
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adaptive representation for high-dimensional time series

Method Deep Valve EEG Eye State Filling Prediction Variable Displace.
Correlation 5.53 ± 0.45 9.89 ± 0.40 3.32 ± 0.06 51.16 ± 1.02

DTW 3.74 ± 0.06 20.67 ± 0.32 3.81 ± 0.10 34.72 ± 0.86

SAX 1.62 ± 0.10 4.16 ± 0.07 1.67 ± 0.04 11.95 ± 0.44

ED (MASS) 0.68 ± 0.03 0.56 ± 0.04 0.36 ± 0.03 4.45 ± 0.06
LSH (PSEUDo) 0.93 ± 0.04 0.30 ± 0.02 0.70 ± 0.05 9.21 ± 0.16

Figure 5.7: Speed Benchmark. Search time is in seconds and averaged
over five repeats (± standard deviations). The shortest exe-
cution time for each dataset are highlighted bold and red.
PSEUDo is comparable in speed with the so far fastest simi-
larity search algorithm MASS and surpasses the latter in the
high-dimensional case (the EEG Eye State dataset).
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Figure 5.8: Scalability Benchmark. PSEUDo’s speed stands out as the
data dimensions increase. Left: linear scale; right: logarith-
mic scale.

dimensional and has ground truths. The target patterns corre-
spond to the time periods when the subject’s eyes are closed. This
dataset contains 14 tracks. They are not equally informative for
the pattern search. Figure 5.10 plots the 14 tracks with target pat-
terns / ground truths in gray. We can notice that the patterns
in some tracks, e.g., “F8” and “AF4”, are much more prominent,
while some, e.g., “T7” and “P7”, are not as helpful.

We ran PSEUDo on the dataset with five feedback rounds and
recorded the evolution of the accuracy as well as the track
weights. Figure 5.9 shows the accuracy metrics AP30 and AP50
in five feedback rounds with the three agents. We witnessed an
accuracy increase with the normal agent and no improvement in
the control groups. It confirmed that sensible feedback helped
improve PSEUDo’s accuracy.

To further verify PSEUDo’s feature-selection-based relevance
feedback mechanism, we plotted the evolution of the track
weights (www in Section 5.3.3) in Figure 5.10. As expected, the more
instructive tracks were attached more weights, and the less infor-
mative tracks got down-weighted. In contrast, the track weights
from the “all accepted” agent group evolved randomly because
the feedback contained no useful information. The track weights
from the “all rejected” agent group stayed the same because

94



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

5.5 evaluation

PSEUDo currently cannot exploit the rejected samples, which is
one of its limitations.

0 1 2 3 4 5
Feedback Round

0 1 2 3 4 5
Feedback Round

normal feedback all accepted all rejected
0.5
0.4
0.3
0.2

A
P3

0

0.5
0.4
0.3
0.2

A
P5

0

Figure 5.9: Accuracy Evolution. During relevance feedback, accepting or
rejecting all samples yields no accuracy improvement, while
faithful user feedback contributes to the accuracy. Left: AP30;
right: AP50.

5.5.4 Expert Study

We conducted an in-person expert study to show PSEUDo’s usabil-
ity in a real-world use case in the energy domain. The invited
expert leads the business unit of demand response and smart
grids. He has over 19 years of experience with smart meter data.
In an individual one-hour session, we first introduced PSEUDo’s
functionality, discussed the primary use cases for smart meter
data, and provided a brief demonstration. The expert expressed
great interest in PSEUDo: "It is a quite interesting tool to analyze time
series." and mentioned: "I can imagine we can use it to try to recog-
nize specific characteristics." We brainstormed multiple use cases
for smart meter data analysis. Then, we selected one of the brain-
stormed application scenarios to show how PSEUDo can help him
identify shifts in energy consumption behaviors in households.
Energy consumption behavior is the response to complex envi-
ronments that should be analyzed on several temporal scales.
However, our expert currently lacks a tool to identify the changes
in energy consumption behaviors in high resolution. Instead, his
team calculates the means of smart meter data in specific peri-
ods, which is inflexible and cannot capture minor changes in the
periods.

For our data expert’s use case (depicted in Figure 5.5), we
conducted experiments on a smart meter dataset collected from
a field study between 2009 and 2010 within the German re-
search project Intelliekon [233]. For two of 1720 randomly picked
households, the expert decomposed the one-year hourly energy
consumption into the trend, seasonal, and residual components
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Figure 5.10: Track Weight Evolution. The target patterns are not equally
prominent in all tracks. For instance, the patterns in the
tracks “F8” and “AF4” are visually more pronounced, while
less informative i “T7” and “P7”. In the steerability experi-
ment, PSEUDo attached higher weights to the former, namely,
the more helpful and relevant features/tracks.
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5.6 discussion

based on a Bayesian structural time series model. These three
tracks are loaded as our MTS input (Figure 5.5 (a)). During the
visual exploration with PSEUDo, the shifts in user behaviors can
be identified by searching for characteristic patterns in various
temporal scales (monthly, weekly, and daily).

During the study, the expert operated PSEUDo. It helped the ex-
pert identify shifts in user behavior and inspect the behavior dif-
ferences between user groups. Overall, the expert spoke highly of
PSEUDo. The expert highlighted the interaction during querying
and exploration: "It is very useful to have a view of similarities among
searched results to help pick up the thresholds of similarity."; i.e., Fig-
ure 5.5(e). In the above use case, the expert did not address any
significant usability issues. Only when we imagined the broader
use cases with multiple households, the expert suggested that it
would be more convenient to support visualizing multiple files
as track groups. From his perspective, a nice add-on for PSEUDo

would be a textual explanation of the hashing algorithm and its
visualizations because it can help him avoid explaining the re-
sults to customers without a deep technical background.

5.6 discussion

PSEUDo goes beyond the state-of-the-art in interactive MTS analy-
sis by incorporating three aspects to make MTS data exploration
more tractable for real-world applications. First, it implements
an adaptive classification making it a user-centric Visual Analyt-
ics approach, in contrast to static deep-learning-based methods.
Second, our method utilizes one of the most scalable and efficient
data processing techniques: hashing-based algorithms. Third, the
implemented concept of “buckets” is easy to understand, allow-
ing for a fast adaption of PSEUDo in less ML-savvy application
environments. However, during the project, we came across con-
ceptual, design, and implementation challenges, that we would
like to discuss in the following.

On the conceptual side, we found that a thorough task taxon-
omy for MTS analysis is missing. We can map PSEUDo’s high-level
tasks into Brehmer and Munzner’s typology [33], e.g., our tool
implements browse, explore, locate, and lookup tasks. However,
we did not focus on MTS tasks like finding patterns with signif-
icant cross-track time shifts or tasks that assess the invariance
properties of specific patterns as these tasks are conceptually on
a different level of abstraction. We will deal with this problem in
the subsequent chapters.
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adaptive representation for high-dimensional time series

We invested much effort in the scalable and fast search back-
end but did not focus much on the visual interface. Our rather
simplistic use of standard visualizations and the implemented
query-by-example system, though work flawlessly and effort-
lessly, demonstrate this aspect distinctively. We admit that the
visualization does not scale to very high-dimensional data. We
are considering reactive switching between line charts, horizon
diagrams [116], and color-encoded pixels [105]. We are also con-
sidering distorting the time series in the plot, e.g., using different
heights for tracks with varied importance and distorting the time
to compress unimportant time regions. In the future, we plan to
extend our Visual Analytics contributions in two directions: First,
we will tackle query-definition challenges, like How can users spec-
ify a) multi-track queries or b) queries with a temporal relationship be-
tween them?, with new query definition panels and plan to apply
interactive augmentation, like Shadow Draw [236], to help with
this process.

A limitation within PSEUDo is that we model MTS data as nu-
merical vectors with a fixed temporal resolution and assume the
tracks in the target patterns are synchronized. However, we can
envision more complex application scenarios, such as in crime
analysis, where MTS tracks are a) not synchronized and b) con-
tain categorical or even complex data types, such as surveillance
webcam images.

Another interesting challenge for Visual Analytics is tracking
biases and convergence in exploration processes. Currently, we in-
clude negative and indecisive labels to promote target class sepa-
ration, which inevitably adds to a potential confirmation bias in
every iteration. We could, however, also regard every new posi-
tive label, which is distinct from the current set of positive labeled
items, as a novel exploration thread or fork. This enables quality
metrics to quantify task change(s), i.e., a strong difference between
positive labels could signal a transition from exploitation to ex-
ploration.

Finally, we will address the evaluation of more PSEUDo’s com-
ponents in the future. Specifically, we plan to run a study on the
proposed relevance feedback on the hash tables (Section 5.3.2) fo-
cusing on proving the usability and effectiveness of this feedback
mechanism. Second, we calculate the similarity based on the hash
codes rather than the original time series windows as described
in Section 5.3.1. Although it shows no problem in the accuracy
evaluation, it is sensible to measure the potential accuracy sacri-
fice brought by this modification.

98



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

5.7 conclusion

5.7 conclusion

In this chapter, we have proposed PSEUDo, an efficient, adaptive,
and interpretable tool for visual pattern retrieval in MTS based
on LSH and relevance feedback. We found PSEUDo impressively
efficient for very high-dimensional time series. It works well in
use cases where initial labels are meager and the promptness of
the result counts. These properties make it particularly useful
for user interaction in VQSs. Furthermore, we found that PSEUDo
improves results with an also efficient relevance feedback mecha-
nism based on feature selection. This property helps capture sub-
jective task-dependent relevance/similarity and hints for further
domain-specific analysis. In the future, we expect an increasing
collaboration between hashing algorithms and machine learning
due to the explosion of data size, e.g., for massive video pro-
cessing. As future work for PSEUDo, we are especially interested
in visualizing high-dimensional time series with different track
importance and examining more possibilities for relevance feed-
back.
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6D E S C R I B I N G T I M E S E R I E S R E T R I E VA L
I N VA R I A N C E S I N S Y M B O L I C S PA C E

Figure 6.1: SAXRegEx’s Data Processing Pipeline. We propose SAXRegEx

for pattern search in MTS in the presence of various distor-
tions. It undergoes five steps. 1) Stringify the time series to
allow text retrieval methods; 2) zipping tracks to enable mul-
tivariate retrieval; 3) extract regex from the stringified query;
4) expand the query to tackle distortions; 5) search with regex
engine.

In this chapter, we present SAXRegEx. It formulates the query
as a regular expression and searches for the regex in the sym-
bolically represented time series. Like PSEUDo, SAXRegEx also pri-
oritizes speed over accuracy. The highlight of SAXRegEx is query
expansion that enables describing multiple pattern distortions.
Among them, SAXRegEx is particularly good at capturing patterns
that scale heterogeneously among time axis, or exhibit time shifts
between tracks. 1

6.1 introduction

In information retrieval, the relevant pieces seldom fit the query
perfectly. Specifically in time series pattern search, the target pat-
terns in the time series database are seldom identical to the query
/ the example of a target pattern. Instead, the patterns in time se-
ries are plagued with various distortions. Figure 6.2 illustrates
some distortions, such as duration scaling (down-sampled or up-
sampled), warped (heterogeneous duration scaling), and inter-
track time shifts, also introduced in Section 2.7.

Unfortunately, all the distortions in Figure 6.2 exist in our data.
Our target signals constantly vary in duration and are often dis-

1 This chapter is based on our publications PB4 (awarded Best Paper in EuroVA
2022) and PB5 with textual modifications for a coherent information flow.
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describing time series retrieval invariances in symbolic space

tributed in several tracks with significant time shifts between
tracks. The distortions call for corresponding retrieval invariance
of the search algorithm. In accordance, we formulate the research
question for this chapter: How to retrieve patterns with various
distortions in multivariate time series?

Query Nearly 
the same

Down-
sampled

Up-
sampled

Warped 
(heterogen. resampled)

Inter-track
time shifted

Figure 6.2: Distorted Patterns. The query on the left is searched for in
the MTS on the right. Target patterns in the time series exhibit
distortions in various forms.

On one hand, this problem is interesting and important, be-
cause distortions are a major hindrance to an accurate retrieval.
Conversely, distortions are a burden for computation, especially
when distortions need to be described in a brute-force way. On
the other hand, this problem is challenging, because some dis-
tortions are tricky to deal with, particularly in multivariate cases.
Numerous time series indexing techniques [47, 90, 109] can al-
ready find UTS patterns with minor distortions efficiently. Uni-
variate retrieval with certain distortion types, especially warping
and sometimes horizontal scaling along the time axis, is also ad-
dressed [103, 137, 284]. Horizontal length scaling and warping
within a track can be regarded as heterogeneous horizontal re-
sampling. Recently, multivariate cases have received increasing
attention [153, 237], because an event can reveal itself in multi-
ple signals. For UTS pattern search, current methods do not suf-
ficiently address the duration scaling problem. Heterogeneous
horizontal scaling is hard to capture, due to the de facto prepro-
cessing step with a sliding window, usually assuming a fixed
pattern length silently, as mentioned in Section 2.6. Multivari-
ate distortion-invariant time series retrieval remains largely un-
touched, in particular, for inter-track time shifts. It is challenging
above all due to the complexity when considering temporal dy-
namics and attribute interrelation simultaneously.

In this chapter, we present SAXRegEx, a method for pattern
search in MTS in the presence of various distortions described in
Section 2.7, such as duration variation, warping, and time shifts
between signals. It is based on symbolic representation to enable
text retrieval methods and regular expressions as our search en-
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6.2 related work

gine. Thereupon, we design query expansion to deal with the
mentioned distortions.
SAXRegEx shows comparable accuracy, sometimes minor accu-

racy loss, to state-of-the-art techniques on datasets without these
distortions and better performance in multivariate datasets with
mentioned distortions. On the other hand, even for data with-
out such distortions, SAXRegEx outperforms the benchmarking
methods in terms of speed1. We designed a user interface with
an emphasis on multivariate query definition with inter-track
time shifts and algorithm parameter setting. A case study demon-
strated its usability. While we designed the method primarily for
automotive data, it is well transferable to other domains.

6.2 related work

The method proposed in this chapter is based on the time series
representation SAX and attacks the problem of pattern distortions
in MTS. Please refer to Section 2.4 and Section 2.7 for more in-
formation on time series representations and pattern distortions,
respectively. In this section, we will explain SAX and query expan-
sion, the methods on which we base our proposal.

Symbolic Aggregate approXimation (SAX). Introduced in [164]
and extensively explained in [165], SAX converts a UTS into a
string to reveal certain patterns in the data and enables text pro-
cessing methods. SAX goes through three major steps. Firstly, it
applies PAA to merge temporally consecutive time steps piece-
wise into one by averaging them. The non-overlapping piecewise
mean of PAA reduces data volume and smooths the curves. Next,
it partitions the value range with quantiles as breakpoints to dis-
cretize the values. It uses quantiles so that each value range par-
tition has roughly the same number of pieces. Finally, it assigns
each value range partition a symbol, typically starting with “a”,
followed by “b”, and onwards. In addition, SAX proposes a dis-
tance measure between symbols. It creates a lookup table, which,
given two symbols, outputs their distance. Our method runs the
search directly in the symbolic space with regex matching instead
of a direct distance calculation, yielding a speed boost. We exploit
SAX’s less utilized “numerosity reduction” property (combining
repetitive symbols) through regex quantifiers to add elasticity (re-

1 The MATLAB version of MASS is significantly faster than SAXRegEx. We were
unaware of the issue in the previous work [274], which used a slower Python
version in the experiments.
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describing time series retrieval invariances in symbolic space

garding horizontal scaling along the time axis) to the query to
deal with distortions.

Query Expansion. One highlight of our work is query expansion
to address various distortions exhibited in time series patterns.
Originating from information retrieval, it refers to techniques that
reformulate the query given by the user to retrieve more precise
or broader information [253], especially in the context of text re-
trieval. Many techniques strive to achieve this goal, by following
linguistic rules, mining corpus-specific patterns, utilizing search
logs, referring to other sources from the web, or relevance feed-
back [14, 41]. Notwithstanding some terms like “query by con-
tent” (Section 2.3) and “relevance feedback” (Section 2.8), time
series pattern search differs from classic information retrieval
in that we cannot parse time series patterns semantically, espe-
cially when approaching the problem in a domain-agnostic way.
Nonetheless, our query expansion technique in some sense co-
erces a time series (the equivalent of the “corpus” in text retrieval)
into repetitive patterns with SAX and formulate the query accord-
ingly. It may fall into the category of corpus-based approaches,
which typically involve statistical techniques to analyze corre-
lated terms in the corpus in case of text retrieval [14, 41].

6.3 method

--G … --I --- … A-- … CD- CD- CE- CE- -F- …

BDHBDHCDHCDH ……

Track 1: ----------------AAAABBCCBBCCCCCC------
Track 2: ----------------------------DDEEFFEEDD
Track 3: GGGGGGHHHIII--------------------------
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(..G){6} …… (..I){3}(...){4}(A..){4} …… (CD.){2}(CE.){2}(.F.){2} ……

Symbolic Aggregate 
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Figure 6.3: SAXRegEx’s Data Processing Pipeline. It undergoes six stages.
1) convert with SAX each track with a different alphabet to en-
able text retrieval methods; 2) intertwine tracks in the query
and in the time series to process multiple tracks with a sin-
gle regex, while leaving wildcards “.” for “gaps” to capture
inter-track time shifts; 3) extract regex from the query string
by combining consecutive repetitive symbols; 4) augment the
regex with character classes and quantifiers to deal with dis-
tortions; 5) search for the query regex in the time series string;
and 6) reconstruct the numerical data in each track.
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6.3 method

SAXRegEx consists of six stages illustrated in Figure 6.3. First,
it encodes with SAX each track in the query and in the time se-
ries in Stage 1 . It reduces data volume, smooths curves, and en-
ables methods for text retrieval, as mentioned in Section 6.2. Next,
SAXRegEx intertwines tracks in the query and in the time series
in Stage 2 . This stage enables simultaneous processing of mul-
tiple tracks through a single regex. The word “intertwine” refers
to the time-step-wise “zipping” of sequences. Namely, a multi-
variate symbolically represented time series S˜ =

[
s˜i˜j ∈ A

]
0≤i˜<n
0≤j<d

is transformed to

sss˜′ =
[
s˜′i˜′ = s˜i˜ div d, i˜ mod d

]
0≤i˜′<d·i+j

where i˜ denotes the index of the symbol step in the symbolic
represented time series S˜, i˜′ the index of the symbol step in the
symbolic represented time series after intertwining the tracks sss˜′,and A the alphabet of SAX. In Stage 3 , repetitive symbol groups
are merged through regex quantifiers, which exploits SAX’s "nu-
merosity reduction" property [165]. Subsequently, Stage 4 con-
ducts query expansion to cope with distortions. As shown in
Figure 6.3, it adds a tolerance band to the query by allowing
character classes rather than individual characters; thereupon, it
makes the query elastic along the time axis by substituting the
fixed quantifier with ranges. The penultimate Stage 5 searches
for the query regex in the time series string. Finally, Stage 6
reconstructs the pattern in each track by a fine regex matching
in the predicted intervals. In the following sections, we motivate
the method choices, explain our modifications to the established
method in Stage 1 , and describe Stage 3 and Stage 4 in detail
with examples.

6.3.1 Motivations of Method Choices

The choices for the time series representation and the search tech-
nique are based on the following motivations.

We opted for the state-of-the-art symbolic representation SAX
for time series due to its two properties. On the one hand, the
symbols in SAX’s alphabet have an order, allowing a tolerance
band needed for our subsequent search. For instance, we may
define a tolerance bound “E-I” of four around the symbol “G”.
Symbolic representations of time series do not necessarily have
an ordered alphabet. For example, SDA [7] and SSTS [219] use
symbols to represent features like upward/downward/constant
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describing time series retrieval invariances in symbolic space

trends rather than value ranges, resulting in unordered alphabets.
On the other hand, SAX’s numerosity reduction property (consec-
utively repeated symbols can be merged) [165] inspired us to the
query expansion for duration-scaling-invariant search.

We decided on regex, because it naturally handles duration-
scaling-invariant search, together with other possible tricks, from
which distortion-invariant pattern search in time series may bene-
fit. Furthermore, it is potentially very fast, because it stops match-
ing immediately when the pattern partially mismatches. On the
other hand, regex is a well-established technique for simple and
robust usage. Lastly, SAXRegEx may also benefit from future de-
velopment of regex.

6.3.2 Symbolic Encoding: Representing Data for Text Retrieval

We use the established time series representation SAX introduced
in Section 6.2 to convert the numerical time series into strings.
However, we modified this base representation for our needs in
the task pattern search.

Query-Aware SAX. While it is common practice to conduct index-
ing (SAX) on the whole time series dataset, we fit SAX (parameters:
bin size horizontally along the time axis and breakpoints along
the value axis) with the query and then transform the time series
dataset with the fitted SAX. We make such a modification because
there is no clue about the appropriate bin size and breakpoints.
Especially when the target patterns in the time series are quite
small, either in terms of temporal length (relates to bin size) or
value range (relates to breakpoints), compared to other events,
or the background. This is exactly the case in our APST dataset.
In this dataset, the “w”-shaped target patterns (a flag signal re-
lated to lambda control in the engine) are fairly small in terms
of value range compared with the background. If applied to the
whole time series dataset, SAX would have an insufficient resolu-
tion in the interesting value ranges or waste too many symbols in
unimportant value ranges. In fact, [127, 272] proposed a similar
practice, where the hash tables are tailored to the query, not the
dataset. They call the new query-centric LSH query-aware and the
database-centric one query-oblivious. Though hashing is needed
every time the query changes, it significantly improves accuracy.
On the other hand, the query-aware setting may raise concerns
on its efficiency. However, SAX’s execution time is actually negligi-
ble compared with regex’s search time. In the speed benchmark,
the execution time is end-to-end, including SAX’s execution time.
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Bin Size for Aggregation. For aggregation horizontally along the
time axis, we do not set the bin size ι (how many time steps
are merged to one symbol) of SAX directly. Instead, we set the
final length of the SAX-encoded query φ˜, called word size [165].
Because the user may find it difficult to estimate how many time
steps should correspond to one symbol. Whereas, it is relatively
intuitive to say how many pieces/symbols along the time axis
are needed to present the query. Furthermore, we visualize the
reconstructed query from the symbolic representation to help the
user set φ˜, as will be explained in Figure 6.4.2. By default, we set
φ˜ = 20, which is enough for all our datasets. ι is inferred with

ι = φ div φ̃. This arrangement aims to have some control over the
regex length because we find empirically that our regex does not
scale well with its length (this drawback also limits the number
of tracks). We leave a scalability test as future work.

Breakpoints for Quantification. We do not work on the assump-
tion of the original SAX that the values within each track follow a
normal distribution. Based on this assumption, the original SAX
calculates quantiles to quantify the values and categorize them
into symbols, so that each symbol has approximately the same
number of values. This helps to zoom in on the value ranges
where the values concentrate. The values in the tracks in many
of our datasets are clearly not normally distributed. Therefore,
we calculate the quantiles based on the true value distribution in
each track, exactly as in Section 5.5.2. Again, we do not calculate
the value distribution based on the whole time series dataset but
on the query. Because we want to focus on the value range of
interest, which is given by the query.

6.3.3 Regex Extraction: Formulating Query for Pattern Description

The first two stages of our processing pipeline typically leave
repetitive symbols in the text sequences. They can be bundled
with quantifiers. For instance, the string ACCCCGGGBAAA can be
rewritten as AC{4}G{3}BA{3}. As we will see later, these quan-
tifiers also enable horizontal-scaling-invariant search.

Generally, regex is meant for exact search instead of “fuzzy”
search like pattern search in time series, which resembles more in-
formation retrieval, as mentioned in Section 6.2. It can only match
patterns strictly satisfying the restrictions imposed by the regex.
To allow fuzzy search, we add a tolerance band to the query with
character classes analogous to the L∞ norm. For instance, the
previously encoded query AC{4}G{3}BA{3} can be further aug-
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mented as [A-B][B-D]{4}[F-H]{3}[A-C][A-B]{3}. In this exam-
ple, we allow a tolerance band with a two-symbol width.

6.3.4 Query Expansion: Capturing Pattern Distortions for Retrieval
Invariances

We conduct query expansion to address the necessary retrieval
invariance required in our use cases, particularly heterogeneous
horizontal scaling and inter-track time shifts.

For heterogeneous horizontal scaling, we use value ranges
rather than fixed regex quantifiers. Pertaining to our run-
ning example, we can further augment the query to
[A-B]{0,2}[B-D]{2,8}[F-H]{1,6}[A-C]{0,2}[A-B]{1,6}. This
modification captures similar patterns with a half to double du-
ration. Moreover, it allows different fragments in the pattern to
have different scaling factors, thus capturing heterogeneous hori-
zontal scaling or time warping.

For inter-track time shifts, we use a different alphabet per track
and intertwine the tracks to a single string. As shown in Fig-
ure 6.3 Stage 2 , we intertwine the query while taking time shifts
between the shapes in different tracks into consideration. We can
add this flexibility by introducing the wildcard character “.” for
“gaps”. This way, the query ignores the potentially interfering
context in each track and focuses only on the given shape in the
track. As a result, the shape in a track within the query does not
have to span the whole query length. Note in Figure 6.3, the term
(...){2,6}, which captures the elastic gap between the shapes in
Track 3 and in Track 1.

6.4 user interface

We have designed a user interface to assist domain users, espe-
cially during query definition and parameter setting. It also en-
ters the untouched area in VQS design, namely the definition of
multivariate time-shifted query.

We derived our design from the requirements of our domain
users, who request a tool with a streamlined workflow, little con-
figuration overhead, and quick response. In line with the findings
in [240], our domain users disapprove of visualizations for under-
standing the algorithm’s internal mechanism. They are reluctant
to learn the algorithm itself but appreciate intuitive visual assis-
tance, especially during query definition and parameter setting.
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Figure 6.4: User Interface. assists the user with a streamlined workflow.
It highlights the specification of track-wise time-shifted query
and the on-the-fly visualization of the expanded pattern per-
ceived by the algorithm with the current parameter setting.

We used React as the frontend library, BokehJS to render charts,
and Django to access the algorithm presented in Section 6.3. In
the following, we will describe individual features of the user
interface and present a coherent workflow in a case study in Sec-
tion 6.5.4.

6.4.1 Sidebar and Input View

To satisfy our workflow requirements, we chose a layout allow-
ing the user to proceed sequentially through the workflow steps
“Input Data”, “Query Definition”, and “Result Analysis” shown
in the sidebar. The accomplished steps are in blue, in-processing
steps in the highlighting color pink, as well as coming steps in
gray, as shown in Figure 6.4 1©. In our proprietary system, more
workflow steps are listed in the sidebar and SAXRegEx’s algo-
rithm acts as the first quick search. We have removed prepro-
cessing steps like dataset description, resampling, and steps af-
ter SAXRegEx like the accuracy-centered feedback-driven pattern
search based on the user’s feedback because they are outside
the scope of this chapter. In the depicted user interface, the user
needs to provide the dataset and relevant tracks in the Input View
in Figure 6.4 2©.
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6.4.2 Query Definition View

As the primary visual component of the user interface, the Query
Definition View in Figure 6.4 3© assists the user in specifying the
desired query and setting the algorithm parameters.

Providing An Example

As explained in Section 2.9, we opted for the query-by-example
approach. Based on this premise, we found the most efficient way
to define an inter-track time-shifted query is to approximately
mark one interval for all tracks simultaneously first, then fine-
tune the interval in each track individually. The process is de-
picted in Figure 6.5. To define an approximate query without
time shifts, the user activates the box select tool . It is config-
ured to allow marking a box along the time axis, and the selec-
tion will be synchronized across all tracks. A box is technically
a Bokeh range tool , which is automatically activated in all
tracks after marking the first query without time shift. This al-
lows the user to move the box and fine-tune its left and right
time stamps in each track, i.e., to modify the spread of a pattern.
This design emphasizes the relationship between the patterns in
different tracks. Compared with drawing boxes in each track in-
dividually, the user gets a sense of the positions of the patterns
in different tracks relative to each other, as the user moves the
box, that was marked for the pattern in another track, to align its
left edge with the start time of the pattern in the current track.
Likewise, the user feels the difference between pattern durations
when adjusting the box size from the length of the first pattern
to that of the next. If there are no inter-track time shifts between
the patterns in several tracks, the user does not need to mark the
same time interval multiple times. The edge positions or the time
intervals are listed additionally as numbers in the input fields
below.

Algorithm Parameters

The user can tune six parameters shown in Figure 6.6. They con-
trol the resolutions, the query expansion, and thus the fuzziness
or strictness of the search. They have default values explained in
the next paragraphs, which fit our use cases. The user may begin
with the default and adjust them if necessary.

The parameters introduced by SAX, namely word size φ˜ (called
word length in the UI) and cardinality, regulate the horizontal
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Figure 6.5: Labeling an Example as the Query. The user draws a box
in any track to define a query without inter-track time shifts,
then fine-tune the boxes in different tracks individually by
moving it or adjusting its left and right edges.

Figure 6.6: Algorithm Parameters. They influence the strictness of the
search by controlling the resolutions and query expansion.

(along the time axis) and vertical (along the value axis) resolu-
tions, respectively. For instance, the default φ˜ = 20 explained in
Section 6.3.2 encodes the pattern in the first track to a string of
length 20. The patterns in other tracks are converted to strings
with proportional lengths. We find a word size 20 usually suffi-
cient. The default cardinality 10 means discretizing the values
in each track with 10 symbols. According to the experiments
in [165], cardinality 10 is enough.

The lower and upper bounds along the time axis determine
the horizontal elasticity of the query. The default lower bound 0.5
means that the lengths of the found patterns are not allowed to
be shorter than half of the query length, while the default upper
bound 2 means that the lengths of the found patterns cannot
exceed the doubled length of the query. Namely, ∀F ∈ F, 0.5φ ≤
|F| ≤ 2φ. These two parameters are task-dependent, but users
can often set them before starting the search. Note that the scaling
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can be heterogeneous, i.e., some fragments in the query can be
down-scaled while others up-scaled.

Vertical tolerance refers to the allowed deviation of symbols.
For example, the deviation between A and D is 3 in the sym-
bolic space. It resembles the Chebyshev distance, or L∞ norm,
and plays a filtering role analogous to a relevance/similarity/-
confidence threshold or the desired number of found patterns. It
is difficult to estimate this parameter a priori. The best setting is
affected by how similar the target patterns are compared to the
query (homogeneity within the positive class) and how dissim-
ilar the rest of the data are with the query (difference between
positive and negative classes). Users may need to adjust this pa-
rameter to find fewer or more patterns.

The last parameter regex overlapping is boolean and controlled
by a switch. It handles cases when the patterns can overlap, like
Pattern 3 and Pattern 4 in Figure 6.10 (last row for SAXRegEx). The
same pattern will likely be found multiple times if this feature is
activated. Nonetheless, this feature is less used and deactivated
by default.

To assist users with parameter tuning, we overlay the query
with its reconstruction from the symbolic space and a pair of
bounds visualizing the most dynamic parameter, namely verti-
cal tolerance if the user activates the switch “Show reconstructed
query and bounds”, as shown in Figure 6.7. The reconstruction
and the bounds will update automatically when the user adjusts
the query boxes, the word size, the cardinality, or the vertical
tolerance. Figure 6.8 shows the resulting reconstruction and tol-
erance bounds with different parameter settings.

Figure 6.7: Query Reconstruction and Tolerance Bounds. The original
query is overlaid with its reconstruction from the symbolic
space and the tolerance bounds, if the user activates the
switch “Show reconstructed query and bounds”. They assist
the user with parameter setting.

The reconstruction and tolerance bounds are generated by con-
verting a symbol with the mean of its lower and upper break-
points. A breakpoint is the borderline between two symbols. If
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Figure 6.8: Query Reconstruction and Tolerance Bounds With Differ-
ent Parameter Settings. The query reconstruction and the
tolerance bounds are updated whenever the original query
or the parameters change. They help the user gain an intu-
ition of the effects of the parameter setting before starting the
search.

a symbol does not have a lower or upper breakpoint, we use
the minimum or maximal value in the track of the query in-
stead. For instance, a track in the query has a minimum value
of 0 and a maximal value of 10. Supposing that we use A, B,
and C to discretize the tracks, the breakpoint between A and
B is 4, and between B and C 6. Then, the reconstructed value
for A is (0 + 4) ÷ 2 = 2, for B is (4 + 6) ÷ 2 = 5, and for C is
(6 + 10) ÷ 2 = 8. Because we use the mean of the breakpoints
rather than the breakpoints themselves, the tolerance bounds ap-
pear visually tighter than the actual bounds. Nonetheless, the
imprecise visualization of the tolerance bounds helps the user
obtain an intuition of the vertical tolerance before starting the
search.

113



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

describing time series retrieval invariances in symbolic space

6.4.3 Result View

The Result View in Figure 6.4 4© shows all data files and the found
patterns in each data file. For each input data file, we show a
large overview plot and small plots of each individual found pat-
tern beneath the overview plot. An overview plot shows the en-
tire data in a data file and the found patterns in the data file.
The overview plot and the found patterns can communicate with
each other. Clicking a plot for an individual found pattern will
highlight the plot with a pink frame. The corresponding pattern
in the overview plot will also be highlighted in pink. Likewise,
clicking a found pattern in the overview plot will trigger the same
highlighting in the overview plot and the plot for the individual
found pattern.

6.5 evaluation

We evaluated the accuracy and speed of SAXRegEx’s algorithm as
well as the usability of its VQS.

6.5.1 Experiment Setup

For algorithm evaluation, we used eight labeled datasets, in-
cluding the labeled four datasets in Section 5.5.1. The rest four
datasets were

• APST: the relative air-fuel ratio in a petrol engine measured
by the engine control unit.

• Cable cutter: the simulated power consumption of a cable
cutting machine.

• CAN 1 and CAN 2: synthesized CAN bus data.

These four datasets are proprietary house-internal datasets that
cannot be published. The CAN 1 and CAN 2 datasets contain pat-
terns with heterogeneous horizontal scaling or inter-track time
shifts. They are mainly automotive measurement data provided
by different engineers in our industrial collaborator IAV. While
the datasets show different characteristics like the number of
tracks, the pattern shape, and the extent of duration variation,
by no means do they cover all possible cases, like high-frequency
audio patterns.

For benchmarking SAXRegEx, we used the same four repre-
sentative and state-of-the-art methods in Section 5.5.1, namely,
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correlation, DTW, MASS, SAX. Finally, we conducted a case study to
demonstrate, how SAXRegEx’s VQS assists users in applying the
algorithm.

We conducted all experiments with the same hardware and
system setting described in Section 5.5.1.

For regex, we used regex.compile(query).finditer(time_series)

from https://github.com/mrabarnett/mrab-regex. We used
this library because the parameter overlapped can be set to True

to find overlapping patterns, though this feature is less used.
Whereas, the native Python library re does not support this
feature.

6.5.2 Accuracy Benchmark

We benchmarked the accuracy of all methods quantitatively and
attempted to explain the pitfalls of the baseline methods with a
visual inspection. Like in Section 5.5.2, we used not only time-
step-based metrics introduced in Section 4.2 including accuracy,
balanced accuracy, precision, recall, F1-score, but also pattern-
interval-based metrics including AP30 and AP50 elaborated in
Section 4.3.
SAXRegEx enjoys retrieval invariance for inter-track time shifts

and can locate varied intervals in different tracks within a found
pattern. Namely, rather than starting and ending at the same time,
the shape in each track can have different start and end time. For
a consistent accuracy benchmark with other methods, we use the
earliest start time and the latest end time within a pattern as the
found pattern interval for SAXRegEx. To find horizontally scaled
patterns, we used a set of eight sliding windows of exponentially
increasing window lengths to deal with the scaling problem for
the benchmark methods.
SAXRegEx does not calculate relevance/confidence/similarity.

However, the pattern-interval-based metric AP requires a rele-
vance score for each found pattern. To solve this problem, we
calculated a pseudo-relevance score for the found patterns. The
idea was that we ran SAXRegEx with a range of tolerance bands
of increasing widths (the allowed number of symbol deviations
explained in Section 6.3.3). Each pattern was found starting with
a tolerance band. The narrower the tightest band for finding a
pattern, the higher the relevance score. We inverted and normal-
ized the band width as the pseudo-relevance score. As mentioned
Section 2.5, the absolute similarity value is not important for the
metrics, as long as the similarity ranking between the found pat-
terns remains.
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Dataset Method Accuracy Balanced
accuracy Precision Recall F1 score AP30 AP50

Correlation

DTW

ED (MASS)
SAX

SAXRegEx

Correlation
DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX
SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx
Correlation

DTW

ED (MASS)

SAX
SAXRegEx

Correlation
DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx
Correlation

DTW

ED (MASS)

SAX

SAXRegEx

0.99 ± 0.01 0.98 ± 0.03 0.80 ± 0.16 0.97 ± 0.07 0.88 ± 0.12 0.89 ± 0.25 0.89 ± 0.25

0.98 ± 0.02 0.98 ± 0.03 0.65 ± 0.22 0.98 ± 0.04 0.76 ± 0.19 0.87 ± 0.30 0.87 ± 0.30

1.00 ± 0.01 0.98 ± 0.03 0.87 ± 0.07 0.97 ± 0.07 0.92 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
0.99 ± 0.02 0.97 ± 0.03 0.57 ± 0.28 0.96 ± 0.07 0.69 ± 0.23 0.57 ± 0.33 0.57 ± 0.33

0.88 ± 0.27 0.92 ± 0.14 0.47 ± 0.37 0.95 ± 0.10 0.55 ± 0.36 0.64 ± 0.39 0.64 ± 0.39

0.98 0.93 0.79 0.86 0.82 0.89 0.56
0.94 0.96 0.48 0.98 0.64 0.84 0.19

0.93 0.74 0.36 0.52 0.43 0.27 0.18

0.97 0.85 0.74 0.71 0.72 0.69 0.31

0.96 0.92 0.55 0.87 0.67 0.89 0.55

0.89 0.73 0.88 0.47 0.61 0.82 0.29

0.79 0.85 0.46 0.94 0.62 0.46 0.19

0.90 0.76 0.88 0.53 0.67 0.85 0.28

0.96 0.95 0.87 0.93 0.90 0.73 0.66
0.88 0.86 0.62 0.84 0.71 0.83 0.50

0.79 0.78 0.76 0.77 0.76 0.57 0.40

0.80 0.80 0.73 0.87 0.79 0.57 0.43

0.69 0.70 0.63 0.77 0.69 0.58 0.36

0.65 0.66 0.58 0.80 0.67 0.40 0.37

0.68 0.70 0.59 0.92 0.72 0.62 0.62
0.97 0.80 0.91 0.61 0.73 0.88 0.88

0.95 0.89 0.57 0.82 0.67 0.75 0.75

0.97 0.80 0.91 0.61 0.73 0.84 0.84

0.97 0.92 0.69 0.87 0.77 0.95 0.95
0.90 0.81 0.37 0.72 0.49 0.58 0.47

1.00 ± 0.00 0.96 ± 0.02 0.98 ± 0.01 0.92 ± 0.03 0.95 ± 0.01 0.88 ± 0.33 0.88 ± 0.33
1.00 ± 0.00 0.91 ± 0.05 0.95 ± 0.05 0.82 ± 0.10 0.88 ± 0.07 0.83 ± 0.32 0.81 ± 0.33

1.00 ± 0.00 0.96 ± 0.01 0.97 ± 0.04 0.92 ± 0.03 0.94 ± 0.02 0.87 ± 0.33 0.87 ± 0.33

1.00 ± 0.00 0.95 ± 0.03 0.96 ± 0.03 0.90 ± 0.06 0.93 ± 0.04 0.84 ± 0.33 0.84 ± 0.33

1.00 ± 0.00 0.95 ± 0.03 0.96 ± 0.06 0.89 ± 0.07 0.92 ± 0.05 0.83 ± 0.32 0.83 ± 0.32

0.73 0.70 0.68 0.93 0.79 0.79 0.75

0.95 0.95 0.93 1.00 0.96 1.00 1.00
0.73 0.70 0.68 0.93 0.79 0.90 0.78

0.76 0.75 0.74 0.86 0.80 0.90 0.81

0.99 0.99 0.99 0.99 0.99 1.00 1.00
0.88 0.88 0.82 0.99 0.90 0.97 0.97

0.77 0.77 0.80 0.75 0.77 0.89 0.70

0.88 0.89 1.00 0.78 0.87 0.94 0.94

0.81 0.81 0.76 0.93 0.84 0.84 0.84

1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 6.9: Accuracy Benchmark. Best performance of all methods. We
highlighted the best F1-score, AP30, AP50, and method for
each dataset in bold and red. Each method performed well
in some datasets, while poorly in the other.
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Figure 6.10: Visual Inspection. Result on the dataset CAN 2. SAXRegEx
perfectly finds inter-track time-shifted patterns, while the
benchmark methods suffer from false negatives and false
positives.
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describing time series retrieval invariances in symbolic space

The table in Figure 6.9 depicts our evaluation metrics (Chap-
ter 4) for all methods on various datasets. The result suggests
that different data favor different methods and no method con-
stantly outperforms the other, confirming the finding in [65].
However, SAXRegEx can better capture heterogeneous horizontal
scaling and inter-track time shifts. We could observe this specifi-
cally on the last two datasets in Figure 6.9.

We plotted the found patterns and ground truths with all meth-
ods on all datasets for a visual inspection. Due to space limit, we
show an example in Figure 6.10. From the visual inspection, we
could infer the pitfalls of the methods.

Figure 6.10 shows the query on the left side and the time series
database on the right. The blue curves stand for the original data.
The benchmark methods calculate similarity profiles, which are
delineated with the gray curves. The similarity profile at a time
step for a track records the similarity of a potential predicted
interval starting at the time step. The length of the interval corre-
sponds to the sliding window size. As explained in this subsec-
tion, we used a range of sliding windows with increasing win-
dow sizes. The similarity profile keeps records of the window
size with the highest similarity for a time step. The similarity
profiles are averaged over all tracks and the merged similarity is
shown in a separate sub-figure (as an additional track for each
method) under all time series tracks. The user can tune a thresh-
old marked as red lines in the plots. If a similarity peak reaches
the threshold, a predicted interval denoted as a green area is
found. We conducted NMS to remove intervals with large over-
lapping. SAXRegEx works differently as the benchmark methods
in that 1) it does not have similarity profiles as explained in this
subsection, thus missing the additional track with the merged
similarity profile and the dashed red line for the threshold; 2)
it accepts inter-track time-shifted patterns as the query and can
find such patterns in the time series (please note the difference
between the query for SAXRegEx and the benchmark methods).

We found that the benchmark methods spread focus evenly
over all time steps rather than critical transitions (usually large
steps/ramps). This led to, e.g., the false positive Pattern 7 with ED.
Pattern 7 did resemble the query in terms of the general shape,
but missed an upward ramp at the beginning in the first track
and a downward ramp at the end in the second track. Next, the
benchmark methods took the context of the pattern shape in each
track into account. Consequently, the search could be misled by a
changing context, as implied by the missing / ill-detected ground
truth 2 for all benchmark methods. In this case, the target pattern
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contained a distracting plateau in each track. Finally, while DTW

captured warping or time shifts within a track well, as proven by
the performance on the CAN 1 dataset in Figure 6.9 (and in the
unshown visual inspection for the dataset), it had a hard time
when it came to time shifts between tracks. In fact, it tended to
regard inter-track time-shifted patterns as not shifted, as indi-
cated by Prediction 2 and 3. In the presence of such distortions,
SAXRegEx outperformed the benchmark methods and fulfilled our
needs. On the flip side, SAXRegEx may find excessively long pat-
terns when they do not have unclear boundaries, as in the EEG

Eye State dataset. Because the quantifiers in regex are greedy
by default. Thus, the regex tries to match the longest possible
patterns.

6.5.3 Speed Benchmark

We calculated the execution time of all methods on all datasets.
Every experiment was repeated five times.

SAX’s first step PAA aggregates several time steps, calculates
their average, and merges them into one, which will be trans-
formed into one symbol in subsequent steps. As mentioned in
Section 6.3.2, SAXRegEx down-scales the query of a certain length
to 20 symbols because regex does not scale well with the pat-
tern length. Accordingly, the time series is down-scaled with the
same bin size horizontally along the time axis. This reduces the
data volume and accelerates the subsequent processing. To en-
sure a fair speed comparison, we conducted PAA with the same
resolution for other benchmark methods to accelerate them. This
only affected the speed benchmark. In the accuracy comparison,
we did not conduct PAA for the benchmark methods. Rather, we
used the finest possible resolution to achieve the highest possible
accuracy for the benchmark methods.

Figure 6.11 shows the result of the speed benchmark. In Fig-
ure 6.12, we report on the relative performance gain compared to
DTW.

As shown in Figure 6.12, SAXRegEx is nearly 50 times faster
than DTW and 4.6 times faster than MASS (please note the clarifica-
tion in Section 5.5.1 that the Python version of MASS may not re-
flect its true potential), the so far fastest similarity search tool for
time series retrieval. We attribute this speed boost to two reasons.
First, SAXRegEx naturally captures horizontally scaled patterns.
In contrast, the benchmark methods use eight sliding windows
with varying window lengths, costing roughly 8 time the exe-
cution time compared with one sliding window with the same
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Method APST Cable
Cutter

Deep 
Valve

EEG Eye
State

Filling 
Prediction

Variable
Displ. CAN 1 CAN 2

DTW

Correlation

SAX

ED (MASS)

SAXRegEx

24.54±2.29 43.56±3.39 9.98±0.37 2.00±0.57 1.36±0.07 94.66±5.25 0.320 ± 0.031 0.410 ± 0.028

27.90±3.25 55.09±4.11 12.35±1.24 3.61±0.38 1.41±0.03 107.44±7.57 0.644 ± 0.636 0.542 ± 0.288

2.59±0.21 7.89±1.83 1.26±0.04 0.20±0.01 0.23±0.01 8.28±0.83 0.222 ± 0.016 0.282 ± 0.006

15.05±0.87 27.18±1.48 6.19±0.29 1.23±0.30 0.83±0.06 48.36±2.36 0.062 ± 0.003 0.074 ± 0.005

0.65±0.03 4.39±0.55 0.22±0.01 0.05±0.00 0.04±0.01 1.36±0.16 0.022 ± 0.003 0.022 ± 0.007

Figure 6.11: Speed Benchmark. Unit: seconds. The methods/rows are
arranged in descending order of elapsed time. We repeated
the same experiment five times and recorded their mean
as well as standard deviation. SAXRegEx outperformed the
other methods for all datasets.
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Figure 6.12: Speed Benchmark in Factor. The mean execution time of
each method was divided from that of DTW. SAXRegEx was
on average 50 times faster than DTW in our experiments. This
figure was derived from Figure 6.11.

method. However, even reducing the sliding window numbers
to four, which is already too coarse, SAXRegEx still outperformed
all benchmark methods. Second, regex terminates a matching as
soon as the search engine notices a partial mismatch.

The speed ranking of correlation and DTW is inconsistent
among all datasets. Because the synthesized datasets CAN 1 and
CAN 2 are fairly small. Therefore, the searching time was not
dominant during the processing. The used DTW library seems to
have a better implementation and outperforms correlation im-
plemented by ourselves. However, as Table 9 shows, when the
query length grows, its relatively inferior scalability (O(dnφ2m))
compared with that of correlation (O(dnφm)) starts to take its
toll, where d stands for the number of tracks, φ the query length,
n the length of the time series, and m the number of sliding win-
dows of different sizes for horizontally scaled patterns. Due to
this reason, we excluded the datasets CAN 1 and CAN 2 when
making Figure 6.12, where we averaged the results on all other
datasets.
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6.5.4 Case Study

In this section, we will demonstrate a use case with a real-world
dataset but without real users. Please also refer to the video
https://www.youtube.com/watch?v=pb8ZUCjl_8Q for details of
interactions.

We use the Variable Displacement dataset for demonstration.
Unfortunately, it is proprietary and cannot be published. The
dataset contains measurements of a car switching between the
four-cylinder and two-cylinder drive modes. The used tracks are
domain-specific extracted features but roughly correspond to the
engine rotational speed and acceleration. The time spans and
value ranges of all tracks were normalized to the range [0, 1] for
(partial) anonymization. This is required when using the screen-
shots, but not a prerequisite of SAXRegEx.

When the user starts the user interface, only the Input View is
visible. After providing input data and clicking the button “Plot
data”, the Query Definition View appears. It has a line chart plot-
ting the chosen tracks in the given data file and input fields pop-
ulated with default algorithm parameters.

The user interacted with the line chart by panning and zoom-
ing to take a quick look at the data and spotted a pattern that
was characteristic of the traditional event between the two drive
modes. As shown in Figure 6.5.a, there was a period with an
abrupt increase of amplitude in the second track (acceleration).
This turbulence could be the cause of the uncomfortable jerks that
the driver sensed, and that our engineers were investigating. Af-
ter the acceleration turbulence, the engine rotational speed track
shows a damped oscillation. The user clicked and dragged a box
with the Bokeh box select tool to label it (Figure 6.5.b). There
appeared boxes with the same labeled range in both tracks (Fig-
ure 6.5.c). Just for this use case, the user could use this label as the
query. Let us assume that the user was interested in the pattern
in the first track shown in Figure 6.5.f. The user moved the box
in the first track so that the left edge of the box matched the left
side of the desired pattern (Figure 6.5.d). Next, the user adjusted
the right edge of the box (Figure 6.5.e). The corresponding Bokeh
range tool is activated automatically after the first marking to
allow these interactions. When moving the box in the first track,
the user sensed that the pattern in the first track lagged behind
for a certain time; when adjusting the right edge of the box, the
user noticed that the pattern in the first track lasted longer to
some extent.
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Then, the user moved on to the algorithm parameters shown
in Figure 6.6. The user turned on the switch “Show reconstructed
query and bounds” and noticed the reconstructed query together
with the tolerance bounds, as in Figure 6.7. Without a deep un-
derstanding of the algorithm, the user could interpret the thicker
pink line in the middle, right on the blue query curve, as a reflec-
tion of how the algorithm perceived the pattern and the thinner
pink curve pairs as a tolerance band. The user found the reso-
lution sufficient and decided not to change the word size or the
cardinality. The user also kept the lower bound 0.5 and upper
bound 2 for horizontal scaling. So the query or any part of it
could be compressed or stretched maximal with the factor 2. The
user was unsure about the vertical tolerance and tried multiple
values (last row in Figure 6.8). With the help of the visualized tol-
erance bound, the user found the preset reasonable. Finally, the
user clicked the “Start search” button. The Result View appeared
and eight panes corresponding to eight data files appeared in
a second. The user opened one pane, skimmed the six found
patterns, clicked interesting ones, and inspected the clicked ones
highlighted in the overview chart. We show a mediocre result in
Figure 6.4.4 as a common first outcome. Please refer to the video
https://www.youtube.com/watch?v=pb8ZUCjl_8Q for a better re-
sult.

In Figure 6.4.4, the user noticed that some patterns indeed re-
sembled the query, like Pattern c, e, and f. Pattern b and d passed
for the desired pattern to some extent, but might indicate a dif-
ferent event because the acceleration shows different dynamics.
Pattern a indicates a potentially desired pattern, but the found
interval in the acceleration track does not align well with the pat-
tern. If only in search of some samples of a target event, the user
might check several files and collect the desired patterns. If aim-
ing at all similar patterns in all data files with high recall and
precision, the user might take further steps. Specifically, the user
might add more relevant tracks (but possibly without visually
similar patterns), provide feedback on the found patterns, run a
supervised-learning-based search with the labeled findings, and
finally conduct domain-specific analysis with the refined result,
which will be the topic in the next two chapters.

6.6 discussion

Our industrial collaborator IAV applies SAXRegEx to data from
engine control units, transmission control units, and CAN bus,
where heterogeneous horizontal scaling of the pattern and inter-
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6.6 discussion

track time shifts occur regularly. It satisfactorily meets automo-
tive engineers’ flexible needs for prompt search.

One shortcoming of SAXRegEx is the neglect of vertical transla-
tion (bias) and vertical scaling (amplitude scaling) of the pattern
(please refer to Section 2.7 for an introduction to various retrieval
invariance). The user should ensure that they do not affect the
patterns in the database. Ideally, query expansion should be able
to cover them.

Notwithstanding the limitation above regarding query expan-
sion, there is still potential for further augmentation of the regex.
For instance, groups in regex can be used to denote a pattern with
multiple phases; positive/negative lookarounds allow retrieving
patterns with/without certain preceding or following patterns;
conditionals in regex allow a part of the pattern to vary accord-
ing to another part. However, their usefulness and effectiveness
remain to be examined.
SAXRegEx does not calculate similarity profiles. On the one

hand, it accelerates the algorithm because the regex search stops
immediately when a part of the pattern does not match the query.
On the other hand, it is not possible to tune a similarity threshold
to improve the found patterns. Therefore, it functions better as
the first quick-and-dirty search. The user can improve the search
results with fine-grained methods, especially model-based pat-
tern search methods, e.g, techniques from Chapter 7 and Chap-
ter 8, with user-labeled found patterns from SAXRegEx.

We plan to investigate the time complexity of SAXRegEx and
carry out experiments to study its scalability with increasing
query sizes (regex length) and the increasing number of tracks
in a contour plot. We would also like to examine the degree of
distortions that SAXRegEx can bear.

We use one vertical tolerance for all tracks, providing that the
characteristics of the tracks do not differ significantly. However,
this assumption does not always hold. We could allow an individ-
ual vertical tolerance for each track but still need a way to avoid
overwhelming the user with too many parameters to tune.
SAXRegEx lacks the steerability to meet C9 Subjective and Task-

Dependent Similarity and Relevance in Section 1.2. We imagine
that there is room for adaptiveness. For instance, we may refine
the SAX parameters like bin size and breakpoints in each track
based on track importance inferred from user feedback, exactly
the same as the feedback mechanism used in Section 5.3.3 for
PSEUDo. Moreover, the quantifiers and character classes are also
potential trainable parameters. A heuristic is to tighten the tol-
erance band described by the character classes for pattern frag-
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ments with low variance in positively labeled patterns, again,
similar to PSEUDo’s technique.

Overall, our evaluation of the user interface for SAXRegEx is
incomplete. We will extend the user interface in Chapter 7 and
Chapter 8, and evaluate it more rigorously with case studies and
expert studies.

6.7 conclusion

In this chapter, we have proposed SAXRegEx, an algorithm for
MTS pattern search based on SAX, regex, and query expansion. It
excels in capturing distorted patterns of various types. In particu-
lar, it is ideal for retrieving patterns scaled horizontally along the
time axis heterogeneously or patterns showing inter-track time
shifts, while remaining efficient. We have also presented a user
interface featuring multivariate query definition with inter-track
time shifts and parameter setting, assisting users in applying the
algorithm. SAXRegEx helps automotive engineers quickly find pat-
terns related to various events in the measurements. Nonetheless,
the method itself is not limited to any domain-specific prerequi-
sites and can be used in other domains as well. In the future,
we plan to extend the evaluation with a scalability test for the
algorithm and expert studies for the user interface as well as the
overall VQS.
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7A M O D E L - A G N O S T I C F R A M E W O R K F O R
M A C H I N E - L E A R N I N G - B A S E D T I M E S E R I E S
PAT T E R N S E A R C H

Figure 7.1: Traditional Search vs. Nonmyopic Search. We propose non-
myopic search for model-based time series pattern search.
The traditional pattern search in time series scans the time
series data with a sliding window to calculate a relevance
profile, where top local maxima correspond to the found pat-
terns. The traditional method has problems with patterns of
variable duration and is oblivious to the pattern context. We
propose nonmyopic search. It classifies whether each time
step is in a target pattern or not and clusters the “in-target-
pattern” time steps to retrieve pattern intervals. Nonmyopic
search finds patterns of variable lengths in one scan and is
aware of the pattern context.

In this chapter, we present nonmyopic 1 search for model-
based pattern search. Instead of classifying time series pattern-
s/windows directly, it advocates the classification of time steps
first. This change brings multiple benefits, especially duration-

1 According to Oxford Learner’s Dictionary, the word “myopic” means
“unable to see things clearly when they are far away” (https://www.
oxfordlearnersdictionaries.com/definition/english/myopic?q=myopic). It is
synonymous with “short-sighted”. We add the prefix “non-”, which is seen in
many works [118, 133, 151], though the meaning of “nonmyopic” differs in each
use case. We call our algorithm “nonmyopic” because it sees patterns of various
sizes in one scan and even peeks into the pattern context.
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scaling-invariant search and context-awareness. Ultimately, non-
myopic search improves accuracy and speed simultaneously. 2

7.1 introduction

The previous chapters Chapter 5 and Chapter 6 have primarily
dealt with rule-based pattern search. While they are fast and in-
terpretable, they have limited capability in capturing the subjec-
tive and task-dependent notion of pattern relevance, which is the
strength of (machine-learning-)model-based pattern search. How-
ever, model-based pattern search suffers from two weaknesses,
namely, fixed retrieved pattern lengths and context-obliviousness,
as explained in Section 2.6. In accordance, we formulate the re-
search question for this chapter: How to retrieve patterns with
variable durations in MTS in model-based pattern search while
taking the pattern context into consideration?

On one hand, this problem is interesting and important, be-
cause as explained in Section 2.6, fixed retrieval pattern length
requires scanning the data with the model in different scales,
costing multiple times of execution time; and the context-
obliviousness hinders retrieval accuracy. On the other hand, this
problem is challenging, because most machine learning models
except sequence models like LSTM have a fixed input vector size,
e.g., the number of input neurons in a neural network. While
there are exceptions for rule-based pattern search, existing meth-
ods for model-based pattern search invariably scan time series
data with a sliding window and classify the pattern currently in
the window, making the weaknesses nearly inevitable.

We propose a novel data processing pipeline for model-based
pattern search in MTS. Instead of classifying the patterns / time
series windows as relevant or not, which is referred to as sequen-
tial scanning in Section 2.6, nonmyopic search classifies whether
each time step in the time series is located in a target pattern or
not. Then, it merges the “in-target-pattern” time steps into inter-
vals of found patterns with density-based clustering. We call this
approach “nonmyopic search”, because, as we will show, during
the search it can detect patterns of different lengths and even
peek into their context. Namely, this improvement overcomes the
two weaknesses associated with sequential scanning.

Nonmyopic search works theoretically with all classification
models and does not require specific transformations of the

2 This chapter is mainly based on our ongoing publication PB6 with textual modi-
fications for a coherent information flow.
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time series. Experiments showed that nonmyopic search outper-
formed traditional search in retrieval accuracy and speed. To be
precise, it increased retrieval accuracy by 0.19 and decreased ex-
ecution time by 68% according to our experiments (with the best
model in traditional search, averaged over all use cases). We ex-
tended the user interface in Section 6.4 and named the overall
VQS NOOPS, Nonmyopic Multivariate Time Series Pattern Search.

7.2 related work

The nonmyopic search put forward in this chapter highlights the
combination of time-step-based classification and density-based
clustering. It can be regarded as a novel traversing approach
for time series, which breaks the curse that model-based pattern
search relies on sequential scanning. Please refer to Section 2.6 for
an introduction to traversing approaches for time series. Next, we
will review methods for time-step-based classification and clus-
tering.

Time-Step-Based Classification. Time-step-based classification is
a relatively established task in time series analysis. Differing from
time series classification mentioned in Section 2.2, which clas-
sifies whole time series, time-step-based classification classifies
each time step in a time series. However, we have not nomi-
nated it in Section 2.2, because until now, we have only seen
this task for a single dataset, i.e., the famous EEG Eye State

dataset [221, 222], where algorithms classify whether the subject’s
eyes are open or closed at each time step. Researchers have pro-
posed numerous classification methods and reached nearly per-
fect results [144, 195, 280]. This success inspired us to transfer the
technique to pattern search in time series.

Time-Step-Based Clustering. Time series clustering is also a well
addressed task in time series analysis, as Section 2.2 describes.
Classic time series clustering takes a set of time series as input
and divide them into several groups, each is a subset containing
multiple time series [5, 121]. In our time-step-based clustering,
the input is a set of (relevant) time steps, which are clustered
based on their index/time along the unidimensional time axis.
Methodologically, this time-step-based clustering resembles time
series segmentation, where a time series is split into consecutive
segments, as mentioned in Section 2.2.1. Time series segmenta-
tion can be formulated as clustering all time steps in a time series
based on the value(s) at the moment of each time stamp. From
this clustering-based perspective, time series segmentation may
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begin with the whole time series and split it (the top-down ap-
proach akin to partition-based clustering) [84, 108], or begin with
each time step as a cluster and merge them (the bottom-up ap-
proach akin to hierarchical clustering) [16]. Otherwise, time series
segmentation may scan the time series for change points with a
sliding window, which is not from the clustering-based perspec-
tive [57, 168]. Our time-step-based clustering clusters only some
(generally a small portion of relevant) time steps in a time se-
ries; and it is based on the position/index/time of each time step
along the time axis, rather than the value(s) at each time step.
From this perspective, density-based clustering is the most suit-
able clustering method in our use case.

7.3 method

Figure 7.2: NOOPS’s Data Processing Pipeline. NOOPS combines time-step-
based classification and density-based clustering to retrieve
patterns of variable duration and be aware of their context.
Moreover, NOOPS extends traditional binary relevance feed-
back to positions and sizes of the found patterns, improving
retrieval accuracy even further, which is the topic of Chap-
ter 8.

We propose a four-stage data processing pipeline for feedback-
driven pattern search in MTS, illustrated in Figure 7.2.

Stage 1 searches for the query Q based on an established fast
rule-based method MASS to get initial results. Although our work
focuses on feedback-driven pattern search, we still need this stage
because there are usually insufficient labels at the beginning to
train a model. If the found patterns in this stage fail to reach the
user’s desired retrieval accuracy, they serve as label candidates
for the subsequent feedback-driven pattern search.

Stage 2 gathers user feedback. During this stage, domain
knowledge flows into the pipeline to steer the model to converge
to the user’s notion of relevance. Compared to traditional feed-

128



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

7.3 method

back on the relevance of the found patterns alone, we allow the
user to correct their positions and sizes and call this type of aug-
mented user feedback “multi-feature feedback”. This will be the
topic of Chapter 8. But in a nutshell, with multi-feature feedback,
the user can confidently accept a found pattern F that partially
matches a target pattern T after correcting its position and size,
so that Fnew := T.

Stage 3 and Stage 4 form the proposed “nonmyopic search”.
Stage 3 uses the user labels obtained in Stage 2 to train a

model. Traditional search uses the model to classify patterns di-
rectly as relevant or not. The input of the model is a pattern P,
and the direct output of the model is the probability that P is
relevant frel (P). In contrast, nonmyopic search trains a model
to classify whether each time step in the time series is in a tar-
get pattern or not. The input of the model is the local proximity
S (i− ζ, i + ζ + 1) around the time step sssi to classify. The direct
output of the model is the probability that sssi is in a target pattern
f̃rel (S (i− ζ, i + ζ + 1)), where we use the relevance function for
each time step

f̃rel : R(2ζ+1)×d → [0, 1]

instead of frel defined in Equation 2.3 to indicate that the model
is used to estimate the relevance of time steps, rather than the
relevance of patterns. This alteration brings many benefits, which
we will elaborate in Section 7.3.2.

Because the user expects relevant patterns in whole pieces,
rather than time steps in relevant patterns, Stage 4 performs
density-based clustering to merge (the indexes of) the time steps
classified as “in-target-pattern” {i | α ≤ i < β, S (α, β) ∈ F} into
intervals of found patterns {(α, β) | S (α, β) ∈ F}, where F de-
notes all found patterns.

7.3.1 Initial Search: Suggesting Label Candidates

NOOPS’s pipeline begins with a rule-based initial search (Stage 1
in Figure 7.2). We need this stage because the user often can only
provide one target pattern example at the beginning. It is insuf-
ficient for model training, and the rule-based search is the only
viable option. However, if the user can provide multiple target
pattern examples, the user can start with Stage 3 directly. Con-
versely, if the rule-based initial search has already , it is unnec-
essary to proceed with the subsequent feedback-driven pattern
search.
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Figure 7.3: Rule-Based Initial Search. In a nutshell, it scans the time se-
ries data to find the most probable temporal positions of the
target patterns; at each temporal position, it finds the most
plausible size of the target pattern.

Our work aims to contribute to feedback-driven pattern search.
Stage 1 is rule-based and does not contain academic contribu-
tions. Nonetheless, we explain it in detail in this section for three
reasons. First, we have used this technique, and it is not self-
explanatory. Second, nowhere else have we found a complete and
detailed description of how it works. Third, the rule-based initial
search illustrated in Figure 7.3 is basically the same as the tra-
ditional model-based feedback-driven pattern search after model
training, which classifies time series patterns directly and is the
baseline for the proposed nonmyopic search.

Figure 7.3 illustrates the pipeline of the rule-based initial
search. Given a d-dimensional time series S of length n and
a query Q of length φ, it undergoes seven steps and out-
puts found pattern intervals together with their relevance
{((α, β) , frel (S (α, β))) | S (α, β) ∈ F}.

Step 1 calculates the similarity between Q and every pattern
[S (i, i + φ)]0≤i≤n−φ in S. We adopt the fastest similarity measure
algorithm MASS [188] to carry out the task, which computes the
similarity profile with ED in high speed, the primary concern for
the initial search. Like many other methods, MASS does not sup-
port MTS directly. So, we run MASS for each track and merge the
results over all tracks in Step 2 . In practice, we use m resam-
pled (temporally scaled) versions of Q of lengths φφφ = [φu]0≤u<m
to find patterns of variable sizes. MASS calculates distance rather
than similarity. We inverse the distances and normalize them to
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range [0, 1] to get raw relevance for each time step i in each track
j with each resampled version u of the query

Rraw =

⎡⎣riju =

⎧⎨⎩ fsim
(
sssj (i, i + φu) , qqqju

)
if 0 ≤ i ≤ n− φu

0, if n− φu < i < n

⎤⎦
0≤i<n
0≤j<d

0≤u<m

where sssj is the j-th track in S, and qqqju is the j-th track in u-
th resampled version of Q. We pad Rraw with 0s, such that
∀i ∈ (n− φu, n), riju = 0. Padding ensures that all m resampled
versions of Q produce a relevance profile of the same size n along
the time axis indexed by i and simplifies subsequent calculations.

Step 2 merges the raw relevance Rraw by averaging over tracks
to get the interim relevance for each time step i with each resam-
pled version u of the query

Rinterim =

[
riu =

1
d

d

∑
j=0

riju

]
0≤i<n

0≤u<m

Step 3 merges Rinterim by choosing the highest relevance over
u for each time step i to get the merged relevance

rrrmerged =

[
ri = max

0≤u<m
(riu)

]
0≤i<n

During Step 3 , the lengths of the chosen u-th resampled version
of Q for each time step index i are kept

φ̃φφ =

[
φ̃i = φargmax

0≤u<m
(riu)

]
0≤i<n

so that we can retrieve the found pattern lengths later in Step 7 .
Step 4 retrieves all strict local maximum points in rrrmerged to

get potential start positions of the found patterns

αααraw = {i | ri−1 < ri, ri > ri+1}

To avoid finding the same pattern as several separate overlap-
ping ones, Step 5 conducts NMS,

αααnms =

{
i ∈ αααraw | ri = max

i−ϕ≤t≤i+ϕ
rt

}
where ϕ is the radius within which the highest local maximum
suppresses the nearby lower local maxima.
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Step 6 filters αααnms with the relevance threshold η

ααα f iltered = {i ∈ αααnms | ri ≥ η}
The user usually cannot set an optimal η a priori but needs to ad-
just it after inspecting the results and repeat Step 6 and Step 7 .

Finally, Step 7 retrieves the intervals of the found patterns as
well as their relevance{

((i, i + φ̃i) , ri) | i ∈ ααα f iltered

}
Because this chapter is dedicated to nonmyopic search (the

combination of Stage 3 and Stage 4 ), we will explain them
in subsequent subsections and defer multi-feature feedback
(Stage 2 ) to Chapter 8.

7.3.2 Time-Step-Based Classification: The Adaptive Core

In the proposed data processing pipeline in Figure 7.2, the time-
step-based classification (Stage 3 ) serves as the adaptive core.

Traditional model-based pattern search classifies time series
patterns directly. To find patterns of different sizes, the model
has to go through multiple resampled versions of the time series
S. Otherwise, the input size of the model would dictate the length
of the found patterns. The input of the model is straightforwardly
the pattern to classify.

We propose to use the model to estimate the probability that
a time step si in S is in a target pattern or not. Let us call the
“in-target-pattern” time steps positive time steps and the “not-in-
target-pattern” time steps negative time steps. The relevance of
all time steps are

r̃rr =

⎡⎣r̃i =

⎧⎨⎩ f̃rel
(
S
(
i− ζα, i + ζβ + 1

))
, if ζα ≤ i < n− ζβ

0, otherwise

⎤⎦
0≤i<n

where we pad the relevance with 0 (especially for 0 ≤ i < ζα) so
that the indexes of time steps do not change. The indexes of the
positive time step are

τττ =
{

i | f̃rel
(
S
(
i− ζα, i + ζβ + 1

))
≥ η

}
Recall that f̃rel introduced at the beginning of Section 7.3 esti-
mates the probability that a time step is located in a target pat-
tern or not, based on its proximity. ζα and ζβ are hyperparame-
ters that we call “lookbehind” and “lookahead”, respectively, be-
cause they resemble the positive lookbehind and positive looka-
head in regular expression. In practice, we set ζα = ζβ = ζ
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and call ζ “lookaround”. It is set to the average length of the
positively labeled found patterns C+ from Stage 2 , namely,
ζ = 1

|C+ | ∑C+∈C+
|C+|.

For each model, the concrete implementation of f̃rel dif-
fers slightly. For instance, some models, like CNN and
LSTM, support multiple channels/tracks out of the box and
can take S

(
i− ζα, i + ζβ + 1

)
as their input directly. Other

models, like random forest and XGBoost, require flattening
S
(
i− ζα, i + ζβ + 1

)
before inputting it into the model. How to

properly use each model to calculate the relevance of a pattern is
out of the scope of our work, which proposes a model-agnostic
data processing pipeline. The configuration of the models can be
found in Section 7.5.1.

The proposed change from pattern-interval-based classifica-
tion to time-step-based classification brings three benefits.

Firstly, it can retrieve patterns of variable sizes in one scan. The
traditional search uses a sliding window of size φ to retrieve pat-
terns of the same size φ. If target patterns in the data vary in size
considerably, they need a series of sliding windows of different
sizes. The time-step-based classification breaks the connection be-
tween the model input size and the sizes of the found patterns.
It still uses a sliding window of size ζα + ζβ + 1 to scan the data.
However, this size does not dictate the sizes of the found patterns.
And the sliding window scans the time series only once.

Secondly, it is aware of the pattern context. As illustrated in
Figure 7.1 (please note the arrow for “context”), when the sliding
window is at the start time step of a target pattern, the look-
behind juts out to the historical time steps on the left side of
the pattern. Likewise, the lookahead will gradually capture the
future time steps after the end time step of the pattern, as the
sliding window approaches the end of the pattern. Therefore,
when retrieving a found pattern F = S (α, β), the search takes
the subsequence S

(
α− ζα, β + ζβ

)
into consideration, including

the context S (α− ζα, α) and S
(

β, β + ζβ

)
. This context-awareness

can be helpful when there is characteristic information preceding
or succeeding the target patterns. This is for example the case
where the target patterns represent a phase in a process, e.g. in
our Deep Valve Linear Phase use case illustrated in Figure 7.10.
Whereas, if the context is not informative, the model learns to ig-
nore it during training anyway, as we will see in the experiments
with our other use cases.

Thirdly, model training becomes more robust. In traditional
search, one labeled pattern S (α, β) is also used as a single train-
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ing instance. S (α, β) is the input of the model and the label (a
relevant pattern or not) is the output of the model. In contrast,
the time-step-based classification uses a labeled pattern S (α, β)
as β − α positive training instances

[
S
(
i− ζα, i + ζβ + 1

)]
α≤i<β

.
These training instances depict the pattern from different tempo-
ral perspectives. It greatly increases the robustness of the train-
ing, reflected in the much smaller standard deviation of the re-
trieval accuracy over multiple runs in our experiments in Sec-
tion 7.5.2. Moreover, it enables us to perform certain data aug-
mentation to further increase the number of labeled training in-
stances. If S (α, β) is a positively labeled pattern and its start
time step index α and its end time step index β are precise, its
context should have negative time steps. Consequently, we can
use

[
S
(
i− ζα, i + ζβ + 1

)]
α−ζ̃≤i<α or β≤i<β+ζ̃

as negative training

instances during training, where ζ̃ is a hyperparameter which we
set as ζ. Not only does this data augmentation further increase
training instances, but it also makes it optional for the user to
provide negative labels. Whereas, the traditional feedback-driven
pattern search forces the user to provide negatively labeled pat-
terns because the model cannot be trained only with positive
training instances. On the debit side, training costs more time
due to the increase of training instances. However, training time
is less of a concern compared to inference time, as we will see
in Section 7.5.2, because training time depends on the number of
labels, which is typically small; while the inference time scales
linearly with the length of the time series, which is generally
large.

Regarding the first two benefits, because the proposed search
method sees patterns of different sizes in one scan and peeks
into the context beyond the patterns during retrieval, we name it
“nonmyopic search”.

7.3.3 Density-Based Clustering: From Steps to Intervals

Identifying all time steps in relevant patterns τττ from Stage 3
is one step closer to the desired output. However, the user ex-
pects found patterns in whole pieces, not the time steps in them.
Accordingly, Stage 4 converts the positive time steps τττ into
found pattern intervals {(α, β) | S (α, β) ∈ F}, where F denotes
all found patterns.

We cannot blindly merge consecutive positive time steps, since
misclassification is inevitable. For instance, in Figure 7.4, it is
likely that Stage 3 misclassified Time Step 2 and 3 as positive,
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Figure 7.4: A Canonical Example of Clustering Time Steps. We merge
the positive time steps to found pattern intervals because the
user expects found patterns in whole pieces rather than indi-
vidual time steps in target patterns. Because the positive time
steps from the same pattern concentrate along the time axis,
we can achieve the merging using density-based clustering.

and misclassified Time Steps 12 and 23 as negative. False positive
time steps would result in incorrect found patterns, and false neg-
ative time steps would split a target pattern into several smaller
found patterns. The merging process must tolerate such errors.

We formulate this problem as a one-dimensional density-
based clustering problem. Density-based clustering [24], espe-
cially Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) introduced by [88], the algorithm that we use,
is well established. Its data assumptions and properties suit our
case very well. On the one hand, density-based clustering as-
sumes that the data items inside a cluster are densely located,
and the clusters are separated by “vacuums” only sparsely dotted
with data items. In our case, the number of clusters corresponds
to the number of found patterns. Along the time axis, a target
pattern reveals itself as a group of densely located “in-target-
pattern” time steps. While between target patterns, the density
of “in-target-pattern” time steps (resulting from misclassification
in Stage 3 ) is much lower in comparison. In our case, the num-
ber of target patterns is usually unknown before the search. On
the other hand, density-based clustering supports outlier (occa-
sional false positives in low-density regions) removal off the shelf.
In our case, we would like to ignore time steps misclassified as
“in-target-pattern”.

The input of DBSCAN contains the indexes of the positive
time steps τττ, and the output gives the found pattern intervals
{(α, β) | S (α, β) ∈ {F}}, where {F} denotes all found patterns.
Finally, the relevance of a found pattern F = S (α, β) is the av-
erage relevance of all time steps in F, i.e., frel (F) = 1

β−α ∑
β−1
i=α r̃i,

where r̃i ∈ r̃rr is the relevance of i-th time step, explained in Sec-
tion 7.3.2.

Unlike partition-based clustering [18] (typically k-means intro-
duced by [169]) and hierarchical clustering [213], density-based
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clustering does not require a priori knowledge of the number
of clusters or the number of levels. However, it is admittedly
not an advantage of density-based clusteirng in our case due
to other parameter settings indirectly related to the number of
clusters / found patterns. Specifically, DBSCAN has two stan-
dard parameters, eps and min_samples. We set them as follows.
The scikit-learn documentation explains eps as “the maximum
distance between two samples for one to be considered as in
the neighborhood of the other.” Conceptually, the higher the
value, the more likely for the algorithm to retrieve long found
patterns. We estimate that this parameter should be compara-
ble and smaller to the average length of the positive labels in
feedback-driven pattern search. Empirically, we set it 2

3 · ζ. For
min_samples, the scikit-learn documentation explains that it
is “the number of samples (or total weight) in a neighborhood
for a point to be considered as a core point. This includes the
point itself.” Conceptually, the higher the value, the denser the
positive time steps in a found patterns need to be. Theoreti-
cally, this parameter is conditioned by the similarity between
the target patterns in the time series data. Empirically, we set
it �2 × eps × min_proportion�, and min_propotion = 0.1. Other
parameters use defaults from sklearn.cluster.DBSCAN.

7.4 user interface

We extended the user interface in Section 6.4 to assist users in
application of the developed data processing pipeline highlight-
ing nonmyopic search. Because Section 6.4 has already explained
some details like data input and query specification, we explain
only the extensions and the unique visualizations as well as in-
teractions designed for nonmyopic search.

7.4.1 Result Inspection

To allow the user both to explore the data freely and to inspect
the found patterns readily, we opt for two views to display the
results. First, an Overview shown in Figure 7.5 provides a broad
context of the events for (further) analysis. We plot the data in
line charts and events as boxes, including blue found patterns,
green positive labels, red negative labels, and pink highlighted
patterns. The colors are consistently used throughout our user in-
terface. Second, a Found Patterns View shown in Figure 7.6 lists the
extracted patterns in descending order of their relevance so that
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the user does not need to zoom in on them individually in the
Overview and can compare them with each other easily. Double-
clicking a found pattern in either view will highlight the pattern,
i.e., by filling the pattern pink in the Overview, adding a pink
frame to the pattern in the Found Patterns View, and highlighting
it in other views that will be described soon.

Figure 7.5: Overview. In this view, the user can explore the data file
freely and examine the context of the events.

Figure 7.6: Found Patterns View. In this view, the user can easily in-
spect and compare the extracted found patterns in their own
charts.

Below the original data tracks, we depict the relevance scores
of all pattern candidates. As explained in Section 7.3.1, the rule-
based initial search uses a relevance threshold η to filter out
found patterns from pattern candidates. Correspondingly, the
user can drag a horizontal line representing η to adjust it. This
is useful when the user intends to include or exclude certain pat-
tern candidates.

The Found Patterns View displays the found patterns in their
own value range by default to expose their details to the maxi-
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mal extent. The user can change the y-axis range by scrolling the
mouse wheel, or clicking a button in the button group
under the chart to zoom to the range of the pattern itself (default),
of the query, or of the whole time series data. The same button
group is also available globally so that the user can change the
displayed value ranges of all found patterns with one click, e.g.,
for a better comparison among found patterns with the same
value range.

7.4.2 Result Analysis

To facilitate result analysis, e.g., discovering false positives / neg-
atives and diagnosing the problematic stage, we propose multiple
visualizations in the Analysis View shown in Figure 7.7.

Figure 7.7: Analysis View. This view helps with relevance threshold tun-
ing, suggests false negatives / positives for examination, and
hints at the erroneous stage.

The histogram in Figure 7.7.a shows the relevance distribution
of all candidates. It aids the user in tuning the relevance thresh-
old η, a nontrivial subproblem in pattern search. The user can
move the slider to the left of the histogram to adjust the thresh-
old. It is equivalent to tuning the threshold in the last track in
the Overview, as explained in Section 7.4.1. Empirically, we find
that a small cluster of top relevance scores after the initial search
indicates a good result, and η fits right below the cluster. Alter-
natively, the user can adjust the number of found patterns in the
input field below the histogram, and η will fit accordingly. This
feature is convenient when the user knows roughly the number
of occurrences of the target event or wants to remove the found
patterns with the lowest relevance.

The dimensionality reduction scatter plot in Figure 7.7.b vi-
sualizes the (relative) similarities of the candidates, including
the found patterns, the positive / negative labels, and the high-
lighted pattern. The user can switch between UMAP, t-SNE, and
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PCA to exclude artifacts caused by specific dimensionality reduc-
tion techniques. This visualization intends to help find false nega-
tives (missing patterns). The false negatives manifest themselves
as gray points (candidates) that are close to the yellow query or
the green positive labels. We would have calculated the numer-
ical distances and made suggestions without this visualization.
However, there are potentially interesting phenomena that such
a visualization can reveal. For instance, the user may find false
negatives next to a found pattern far away from the query, sug-
gesting that the query is not representative, or the false negatives
form a distinctive strain. The user can double-click a candidate
to highlight it in all other views for inspection. If there are many
such potential false negatives, indicating a potentially too high η,
the user can use the Bokeh lasso select tool . η can be lowered
accordingly to include all of them as found patterns.

Similar to the scatter plot for false negatives, the force-directed
graph in Figure 7.7.c aims to reveal false positives (irrele-
vant found patterns). We use the library react-force-graph.
Besides the default forces, we have added a new force
related to the pairwise pattern/node similarities, i.e.,
d3.forceLink().distance((link) => 10 ** forceStrength *
(1 - link.similarity)). In this line of code, link represents an
edge between two nodes/patterns A and B. link.similarity

is the similarity between the two patterns, i.e., fsim (A, B).
f orceStrength is given by the slider beneath the force-graph so
that the user can regulate the strength and thus the distances
between the pattern nodes. Ideally, false positives are distant
from the cluster containing true positives. The user can highlight
potential false positives and inspect them in other coordinated
views. Although the scatter plot provides similar functions, we
find empirically that the force graph complements it. When there
are few candidates, the former’s performance deteriorates, while
the latter works well. Moreover, the user can drag nodes in the
force graph to sense the “robustness” of the result. Because target
events usually occur sparsely in the data, we do not observe
scalability issues with the force layout in all our real-world use
cases.

The feedback-driven pattern search outputs found patterns di-
rectly. There are no candidates and no need to filter candidates
with η. Therefore, we have removed the dimensionality reduc-
tion scatter plot due to the small number of found patterns and
introduced new visualizations to diagnose the problematic stage.
Figure 7.8.a shows a found pattern in the Overview (cut short
drastically). We can see not only the elements explained in Sec-
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tion 7.4.1, but also the relevance of the time steps as a dark yellow
area chart in the lowest / third track. Based on the relevance of
the time steps, clustering successfully detects a single found pat-
tern, tolerating incorrectly classified time steps in the narrow rele-
vance valley between the two plateaus. Had the clustering found
two separate patterns corresponding to the two plateaus or only
the larger one on the right, the user could adjust the clustering
parameters accordingly. By contrast, if the user encounters the
problem in Figure 7.8.b, where only a concentrated small portion
of the time steps in the target pattern are correctly classified, the
problem lies in the classification stage, not in clustering. In this
case, the user may label the found pattern as a positive label, ad-
just its boundaries (we did this exactly in Figure 7.8 to help the
reader recognize the target pattern, and the user interface showed
a green box around the label), and update the model with a new
feedback round, as will be explained in Section 8.4. Nonetheless,
user feedback is the topic of Chapter 8.

Figure 7.8: Time-Step-Based Analysis: The time-step-based pipeline
opens new possibilities for visual analysis. It helps to find
the problematic stage and dominant temporal regions.

Finally, a heatmap shown in Figure 7.8.c depicts the relevance
of each time step in the found patterns. Here, each row repre-
sents one found pattern, and each column is one time step. The
patterns are resampled to have the same number of time steps
so that the relative positions of the regions inside the patterns
are aligned. The found patterns in Figure 7.8.c show two dom-
inant regions with high time step relevance. They are more sig-
nificant features of the event because they contribute more to
the detection of the patterns than the recessive region between
them, where the patterns usually show more variance and incon-
sistency. One limitation of this visualization is that the bound-
aries of the found patterns should be relatively precise or at least
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similarly imprecise; otherwise, the regions in different patterns
may not align well.

7.5 evaluation

We evaluated the proposed nonmyopic search against the base-
line, traditional (myopic) search, with a quantitative benchmark
on retrieval accuracy and speed. We defer the evaluation of the
VQS to Section 8.5.3 and Section 8.5.4 because the multi-feature
feedback to be presented in Chapter 8 extends nonmyopic search
in this chapter, and the two chapters share the same user interface.
Nonetheless, we evaluated the distinctive algorithmic proposals
separately.

7.5.1 Experiment Setup

We used the same three labeled datasets, namely, Deep Valve,
Variable Displacement, and EEG Eye State, as in Section 5.5.1
and Section 6.5.1. Because this experiment was much more com-
plex and time-consuming than those in previous chapters, we
used fewer but the most challenging datasets that we have. The
Deep Valve dataset has two use cases, each with unique target
patterns. In previous chapters (Section 5.5 and Section 6.5), we
used only the simpler use case because neither our proposed
method (PSEUDo and SAXRegEx) nor the state-of-the-art bench-
mark methods performed reasonably in the harder use case re-
quiring context-awareness. In this chapter, we will use both use
cases of this dataset to showcase NOOPS’ advantageous context-
awareness.

We included four models in this experiment: 1) Random forest:
the winner of retrieval accuracy in traditional search accord-
ing to [156]; 2) XGBoost: the winner both in terms of retrieval
accuracy and speed in our quick-and-dirty model selection; 3)
LSTM: one of the most popular models for time series analysis;
4) 1D-CNN: a common alternative to RNNs for time series analy-
sis [55]. Nonetheless, we did not intend to find the best model.
Rather, we included multiple models to avoid judgments biased
by the model choice.

The algorithm involves many (hyper-)parameters, e.g.,
lookaround of time-step-based classification, the hyperparame-
ters of the classification models, and the parameters of DBSCAN.
It is not our intention to analyze the influence of all parameters
and optimize them (WG3). Instead, we would like to verify the
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advantages of nonmyopic search over traditional search. We set
the (hyper-)parameters with reasonable values (mostly defaults
provided by the library) and leave them unchanged throughout
the entire evaluation.

We conducted all experiments with the same hardware and
system setting described in Section 5.5.1.

For rule-based initial search, we set the number of sliding win-
dows m = 8, as mentioned in Section 2.6. The lengths of these
sliding windows φφφ = [φu]0≤u<m scaled logarithmically between
a lower bound φ0 and an upper bound φm−1. The sliding window
sizes were

φφφ =

[
φi =

⌊
φ×

(
λupper

λlower

) u
m−1
⌋]

0≤u<m

where the operator �.� denotes the floor function, λlower and
λupper are the scaling factors for φ0 and φm−1, respectively. For
instance, λlower = 0.5 and λupper = 2.0 mean that the lengths of
the found patterns should be at least half and at most double of
the query length φ.

The lower and upper scaling factors λlower and λupper are deter-
mined by how much the durations of the target patterns in the
time series scales. Specifically for each use case, we set

• Deep Valve Whole Signal: λlower = 0.5, λupper = 3.0;

• Deep Valve Linear Phase: λlower = 0.5, λupper = 3.0;

• Variable Displacement: λlower = 0.5, λupper = 2.0; and

• EEG Eye State: λlower = 0.5, λupper = 12.0 (the durations of
the target patterns vary substantially in this use case).

We set the NMS radius ϕ to the same as the query length φ.
We configured the models as follows.

• Random forest: default parameters from
sklearn.ensemble.RandomForestClassifier.

• XGBoost: tree_method = "hist", otherwise default param-
eters from xgboost.XGBClassifier.

• LSTM: first layer tf.keras.layers.LSTM with 20 units, re-
turn sequence; second layer tf.keras.layers.LSTM with 20
units; third layer tf.keras.layers.Dense with one unit and
activation tf.keras.activations.sigmoid; other parame-
ters use defaults.
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• CNN: first two layers tf.keras.layers.Conv1D with
20 filters of size 5 and “same” padding, activa-
tion tf.keras.activations.selu, kernel initializer
tf.keras.initializers.LecunNormal, followed by a
flatten layer tf.keras.layers.Flatten and a dense layer
tf.keras.layers.Dense with one unit and activation
tf.keras.activations.sigmoid; other parameters use
defaults.

Early stopping was set to 10 epochs, except for random forest,
which does not support early stopping.

Model training requires labels. For positive labels, we used
the first (sorted in ascending order of start time) several ground
truths as positive labels for both nonmyopic search and tradi-
tional search. For negative labels, due to their different mecha-
nisms of label usage, we provided different negative labels for
nonmyopic search and traditional search. For nonmyopic search,
we simply provide two or three relatively long negative labels.
This is the desired way of providing negative labels for non-
myopic search, basically to show what the background looks
like. Otherwise, negative labels are optional anyway due to the
data augmentation specific to nonmyopic search explained in Sec-
tion 7.3.2. For traditional search, negative labels are mandatory.
Moreover, meaningful negative labels should have similar sizes
as the positive labels / target patterns. Therefore, we provided
at least five and up to twenty negative labels chosen randomly,
depending on the total number of ground truths.

7.5.2 Performance Comparison Between Nonmyopic Search and Tra-
ditional Search

Figure 7.9 shows the experiment results, one diagram for a use
case. We omitted LSTM because it was much slower than the other
models, causing a skewed visual representation of results from
other faster models. The abscissae represent wall-clock time, and
the ordinates retrieval accuracy measured by AP30. Accordingly,
the overall performance increases from bottom right to top left
in a diagram. We chose AP30 because it spread the metric scores
in the diagrams relatively well between 0 and 1. The light blue
points represent the models in nonmyopic search, while the dark
blue (nearly black) linked points the same models in traditional
search. Similar to the rule-based initial search in Section 7.3.1, the
performance of traditional (model-based) search also depends on
a number of sliding windows to retrieve patterns of different
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sizes. Hence, we measured the performance of a model in tra-
ditional search with different numbers of sliding windows and
used linked points or lines to represent them. Each line repre-
sents one model. We repeated every accuracy measurement five
times, averaged the scores, and drew vertical error indicator bars
in the diagrams to show the standard deviations over the five
runs. Each speed measurement was averaged over ten repetitions.
We did not conduct accuracy and speed measurements simulta-
neously because the former contained more tasks like generating
plots and saving results, which were not interesting to the latter.

Figure 7.9: Benchmark on Retrieval Accuracy and Speed. Compared
with the linked dark blue points denoting traditional search
with different sliding windows, the light blue points denot-
ing nonmyopic search are located more to the top left in each
plot, indicating better retrieval accuracy and speed overall.
(RF: Random Forest, XGB: XGBoost)

With the same model, the light blue points denoting nonmy-
opic search are generally higher than the dark blue lines denot-
ing traditional search, indicating a consistently higher retrieval
accuracy with nonmyopic search. In fact, many dark blue lines
are fairly low, suggesting that traditional search does not work
with certain models in certain use cases.

Furthermore, nonmyopic search is more robust (in terms of re-
trieval accuracy) because 1) we can hardly discern the error indi-
cator bars around the light blue points, while the error indicator
bars are prominent around some dark blue points, implying that
traditional search may produce more inconsistent results in dif-
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ferent runs; 2) the light blue points of different models in the
same diagram are relatively of the same height while the dark
blue lines of different models in the same diagram are more dis-
tributed vertically, hinting at the robustness of nonmyopic search
with regard to the model choice. We attribute the huge improve-
ment in robustness primarily to the increase in the number of
training samples elaborated in the third benefit of nonmyopic
search in Section 7.3.2.

In the Deep Valve Linear Phase use case, all models in tradi-
tional search performed poorly. Figure 7.10 illustrates a typical
pattern in the dataset. The Deep Valve dataset records the elec-
tric current through a solenoid valve used in a cooling system
test bench. The illustrated pattern captures a complete valve op-
erating cycle, which consists of a maximum of five phases (some-
times, an operating cycle may skip some phases). In the first
phase, the pattern starts with a peak when the valve is turned
on. At this time, the movable part in the valve is still stationary,
the electrical impedance is low, and thus there is a current surge.
In the second phase, the electromagnetic force overcomes the me-
chanical force, and the movable part starts to move. The current
plummets and bounces to form a “J”-like shape, which is under
the hood the response of an underdamped second-order linear
system excited by a step function signal in control engineering.
In the third phase, the linear phase, the movable part moves from
one end to another. The valve changes from completely closed to
completely open. In the fourth phase, after reaching the stop, the
current may deviate a bit from the linear phase. In the fifth phase,
the current drops back to zero, and the valve closes. The duration
of the operating cycle varies substantially; the duration of the
same phase in different operating cycles may also vary greatly
(heterogeneous scaling or warping), even disappear. The patterns
in the Deep Valve Whole Signal use case include a complete op-
erating cycle. Whereas, the Deep Valve Linear Phase use case
requires retrieving the linear phase titled “Move”. The internal
characteristics of this pattern (simply a linear phase) are not dis-
tinctive enough, resulting in poor performance of all traditional
search methods. However, together with its preceding and suc-
ceeding phases, the pattern becomes distinctive and easier to de-
tect, which explains the high performance of nonmyopic search
that is aware of the pattern context.

Not only is nonmyopic search more accurate and robust, but it
is also faster because it needs to scan the data only once, while tra-
ditional search multiple times to find patterns of different sizes.
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Figure 7.10: An Operation Cycle of The Deep Valve Linear Phase use
case. It undergoes five phases. The target pattern is the lin-
ear phase titled “Move” in the plot. The linear phase per
se is not distinctive enough during retrieval. However, the
context (phases before and after the target phase) has rich
features and helps identify the target pattern.

As shown in Figure 7.9, the light blue points are generally more
left than the dark blue lines.

7.5.3 Further Insights From Analysis of Training and Inference Time

Figure 7.11 shows the training and inference time with random

forest in nonmyopic search and traditional search with vari-
ous numbers of sliding windows, which reveals more insights.
Due to space limits, we show only the result with random forest.
Nonetheless, it exposes the typical qualitative relationships be-
tween different parts of execution time that experiments with
other models also exhibit. We choose random forest because it
is the best model in terms of retrieval accuracy and speed for
traditional search, and it has also shown strong performance in
nonmyopic search.

In Figure 7.11, the inference time of nonmyopic search (39.92±
0.73 seconds in Deep Valve Whole Signal use case) is compara-
ble with traditional search with one sliding window (48.74± 1.47
seconds in the same use case), which can only find patterns of
a fixed size. They both scan the data only once. Compared with
traditional search with five sliding windows (237.15 ± 4.31 sec-
onds in the same use case), which is coarse enough (we use eight
sliding windows in production in rule-based initial search), non-
myopic search saves much time. On the other hand, nonmyopic
search requires considerable training time (45.73 ± 0.91 in the
same use case) seconds, due to the massive increase of training
instances, while training time is negligible for traditional search
(only 0.16 ± 0.01 seconds in the same use case). However, in-
creased training time in nonmyopic search is not a serious prob-
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lem for larger data. Because training time is mainly determined
by the number of labels, which is usually small, while inference
time scales linearly with the size of the time series data, which is
generally large. Therefore, for larger datasets, the inference time
will dominate and should be the major concern in terms of exe-
cution time. For traditional search, the low training time implies
insufficient training, leading to its low retrieval accuracy.
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Figure 7.11: Training and Inference Time with Random Forest. This se-
ries of diagrams show the relationships between training
and inference time in nonmyopic and traditional search. For
one thing, the inference time of nonmyopic search is compa-
rable with traditional search with one sliding window, both
scanning the data only once; whereas, the execution time in
traditional search scales roughly proportional to the number
of sliding windows. For another, while the training time in
traditional search is negligible compared to inference time,
the training time in nonmyopic search is considerable due
to the massive increase of training instances.

From a simplified perspective, if restricting the experiment re-
sults to random forest (the best model in terms of retrieval accu-
racy and speed for traditional search) and the number of sliding
windows to five, nonmyopic search brought 0.19 retrieval accu-
racy boost (absolute difference) in 68% less execution time, as
shown in Table 10 derived from the first sheet in “evaluation.xlsx”
under https://osf.io/36kf2.

7.5.4 Secondary Findings

In addition to the main findings, we present secondary obser-
vations. Firstly, no model consistently outperforms the other.
Nonetheless, random forest proves both highly accurate and fast
(GPU acceleration deactivated for all models), both in nonmy-
opic search and in traditional search, showing its general suit-
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Use Case
Retrieval Acc. with AP30 Execution Time in Sec.

Nonm. Trad. Acc. Gain Nonm. Trad. Reduc.

DV-Whole 0.93 0.76 0.17 86 237 64%

DV-Linear 0.82 0.41 0.41 72 234 69%

VD 0.43 0.46 -0.03 19 130 85%

EEG 0.59 0.39 0.20 60 136 56%

Average 0.69 0.50 0.19 68%

Table 10: (Oversimplified) Performance Gain with Nonmyopic Search.
If restricting to random forest (the most accurate and fastest
model in traditional search) and to five sliding windows
(which should be coarse enough), nonmyopic search in-
creased retrieval accuracy by 0.19 (absolute difference) and re-
duced execution time by 68% on average. (DV-Whole: Deep

Valve Whole Signal, DV-Linear: Deep Valve Linear Phase,
VD: Variable Displacement, EEG: EEG Eye State)

ability for time series pattern search. XGBoost, particularly with
GPUs enabled, is likely to offer the fastest performance. Con-
versely, neural networks like CNN have significantly lower mem-
ory consumption since they support training in batches. Secondly,
adding the number of sliding windows does not necessarily im-
prove retrieval accuracy, but execution time increases proportion-
ally. It is very likely that some models in some use cases in tra-
ditional search fail to learn sufficient useful information during
training anyway, regardless of the resolution (number of sliding
windows) during inference.

In summary, nonmyopic search improves retrieval accuracy
and speed for feedback-driven pattern search.

Nonmyopic search can best unleash its power when used to-
gether with multi-feature feedback to be present in Chapter 8.
Thus, we designed a single VQS incorporating both techniques.
However, we have to defer the evaluation of the user interface
including a case study and an expert study to Section 8.5.3 and
Section 8.5.4, respectively, after we present the UI components for
multi-feature feedback.

7.6 discussion

NOOPS helps automotive calibration engineers trace events of inter-
est in sensor measurements, especially when the fast rule-based
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pattern search techniques presented in previous chapters fail.
While we focus on the general data processing pipeline highlight-
ing nonmyopic search, further research, especially into the com-
ponents of the pipeline, will help consolidate the methodology
and optimize its effectiveness.

Nonmyopic search does not work for overlapping patterns. If
several target patterns overlap, it will find a long pattern and
cannot separate them, similar to semantic segmentation in com-
puter vision. In practice, the target patterns are manifestations of
a target event. It is often meaningless for our target event, e.g.,
the periods when components in a valve physically move as in
our Deep Valve Linear Phase use case, or cylinder deactivation
in a gasoline engine as in our Variable Displacement use case,
to have overlapping occurrences.

There are several (hyper-)parameters involved in the pro-
posed data processing pipeline, e.g., hyperparameters of the ma-
chine learning models and parameters in DBSCAN. We set them
once with reasonable values, but defer a comprehensive analy-
sis of their influence on the search performance to future work.
Notwithstanding (hyper-)parameter optimization, it is evident
through our experiments that the proposed nonmyopic search
improves the performance of the traditional search.

The rule-based initial search is based on a similarity measure.
The provided tracks should reveal the event of interest as visually
distinguishable patterns. In contrast, a model-based search can
capture subtler features. Therefore, it makes sense to allow the
user to add tracks after the rule-based initial search for the sub-
sequent model-based feedback-driven pattern search. Because
some tracks, informed by domain knowledge, may be relevant to
the event of interest. However, the event of interest may not man-
ifest itself as recognizable visual patterns in those tracks. Still,
they may help the model identify task-specific or system-interval
dynamics.

7.7 conclusion

In this chapter, we have proposed a data processing pipeline and
a tool called NOOPS for model-based pattern search in MTS. It fea-
tures nonmyopic search that combines time-step-based classifica-
tion and density-based clustering, enabling finding patterns of
variable sizes, taking context of the patterns into consideration
during retrieval, and makes model training more robust. Inter-
estingly and disappointingly, we found that traditional (model-
based pattern) search that features sliding windows scanning the
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data with a machine learning model actually does not work very
well and fails to satisfy our industrial needs. With nonmyopic
search, we can raise retrieval accuracy and speed significantly
and simultaneously. Our method is in production and helps auto-
motive calibration engineers trace events of interest. In prospect,
we can expect nonmyopic search to be the standard approach in
model-based pattern search. In the future, we plan to study the
effects of various (hyper-)parameters in the individual stages in
the nonmyopic search data processing pipeline on retrieval accu-
racy and speed.
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8M U LT I - F E AT U R E F E E D B A C K F O R E F F E C T I V E
F E E D B A C K - D R I V E N PAT T E R N S E A R C H

Target pattern

Time series data

Found pattern

Accept: introduce errors 
in position and size

Reject: disregard the
partial correctness

Abstain: lose a valuable label

Figure 8.1: Pitfall of Traditional Relevance Feedback. Traditional rele-
vance feedback is confined to acceptance, rejection, and ab-
stention, which may place the user in a dilemma, where a
found pattern is partially correct, and all options are con-
troversial. We propose additional feedback on the positions
and sizes of the found patterns for feedback-driven pattern
search.

In this chapter, we present multi-feature feedback for feedback-
driven pattern search. Besides feedback on relevance alone, it ad-
vocates feedback also on the positions and sizes of the found pat-
terns. The additional feedback significantly raises the converged
accuracy of the retrieved patterns. 1

8.1 introduction

Chapter 7 has looked into model-based pattern search while as-
suming that sufficient labels required during model training are
already available. In reality, they are seldom at the user’s disposal.
Feedback-driven pattern search with relevance feedback / active
learning aims to solve this problem. However, when we thought
deeply and worked practically on this issue, the following ques-
tions struck us.

1. Is relevance the only form of feedback that the user can
provide in the feedback-driven pattern search?

2. Is relevance alone sufficient for the retrieval results to im-
prove to the user’s satisfaction?

1 This chapter is mainly based on our ongoing publication PB6 with textual modi-
fications for a coherent information flow.
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This chapter tries to answer these questions.
This problem is interesting and important because, in our in-

dustrial practice, we find that existing research may have an over-
optimistic view of performance improvement brought by rele-
vance feedback. On the other hand, we believe that existing so-
lutions have not exploited the specialties of the use cases. Ex-
isting methods confine user feedback on the found patterns to
choices between acceptance, rejection, and abstention, which is
ineffective if a found pattern is relevant but imprecisely bounded.
Namely, when a found pattern partially overlaps a target pattern,
for example, in Figure 8.1, none of the options is satisfactory. The
idea of relevance feedback originates from information retrieval,
especially text retrieval. However, time series have more structure
to utilize than text. The relevance feedback originally designed
for text retrieval may benefit from such structures.

We propose “multi-feature feedback”, a technique that is based
on nonmyopic search proposed in Chapter 7 and takes it to the
next level. To overcome the limitation of binary feedback on the
relevance of found patterns alone, we propose to solicit feedback
not only on the relevance of the found patterns but also on more
features, specifically, the positions and sizes of the found patterns.
Then, we examined the effectiveness of this augmented feedback.
In our experiments, multi-feature feedback raised retrieval accu-
racy by 0.35 according to the least strict metric (even more with
stricter ones), averaged over all use cases in our experiments. Be-
cause multi-feature feedback works seamlessly with nonmyopic
search in Chapter 7, we extended the user interface for NOOPS, as
a necessary auxiliary work. We note that the focus here was not
to drive the research in the direction of visual contributions, but
rather to explore how to make effective use of active learning in
multivariate time-series exploration scenarios. A case study and
an expert study validated the usefulness of the VQS and revealed
problems for future work.

8.2 related work

This chapter extends traditional active learning or relevance feed-
back with feedback on multiple features of the retrieved result
in addition to pattern relevance. Like query expansion reviewed
in Section 6.2, relevance feedback is yet another essential tech-
nique in information retrieval. Please refer to Section 2.8 for an
introduction to active learning / relevance feedback and its appli-
cation in time series pattern search. Next, we will review works

152



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

8.3 method

that transgress conventional binary relevance feedback in infor-
mation retrieval.

We have not discovered works on similar notions of multi-
feature feedback yet. Instead, after reviewing the advancements
of relevance feedback especially in Content-Based Image Re-
trieval (CBIR), we found some tangentially related works. Wang
and Zhu concluded that considering multiple features like col-
ors, textures, and shapes significantly improves retrieval accu-
racy compared with relying solely on one feature in CBIR [256].
Not only is the consideration of multiple features beneficial but
also proper treatment of features on different levels. Lu et al. pro-
posed creating a semantic network and taking into account the
semantic contexts besides low-level features for CBIR [173]. Al-
beit multiple and multi-level features as the algorithm input, user
feedback was still a choice between yes, no, and unsure for a sam-
pled outcome. Ishikawa et al. broke this convention by requiring
a score in [0, 1] to drive their relevance feedback algorithm [131];
while Rui and Huang actually designed a slider in the user in-
terface for this kind of analog 0-1 relevance feedback [223]. Peng
criticized such continuous scale for relevance feedback because
the user may not rate the samples of the retrieval results so pre-
cisely [203]. Instead, they put forward multi-class relevance feed-
back extending the classic binary relevance feedback (called “two-
class relevance feedback” in their work), where the user assigns
a class to each sampled retrieval result.

While existing methods in information retrieval integrate mul-
tiple features and learn feature importance based on information
from relevance feedback, we advocate direct relevance feedback
on multiple features in time series pattern search. Features like
TF-IDF for text retrieval, or color/texture/shape for CBIR are prim-
itive, and it is formidable to formulate feedback to them. How-
ever, the positions and sizes of the found patterns in time se-
ries pattern search are both user- and machine-friendly features.
The user can easily make sense of and correct them, while the
active learning algorithm can readily understand and adapt to
such feedback. According to our experiments, our multi-feature
feedback is feasible and favorable.

8.3 method

The chapter proposes the distinctive user feedback type in
Stage 2 in Figure 7.2, which closes the data processing pipeline
for feedback-driven pattern search. It provides training labels for

153



668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu668042-L-sub01-bw-Yu
Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024Processed on: 17-12-2024 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

multi-feature feedback for feedback-driven pattern search

the classification model while infusing the user’s domain knowl-
edge into the pipeline.

Conventional active learning allows user feedback on relevance
alone. For each found pattern, it asks the user to accept it, reject it,
or abstain. Then, it uses the accepted found patterns as positive
labels and the rejected ones as negative labels during model train-
ing. It ignores the indecisive ones. This can lead to a dilemma. As
illustrated in Figure 8.1, if accepted, the found pattern as a posi-
tive label may baffle the model with its imperfection; conversely,
if rejected, its partial correctness could be confusing; if ignored,
the partial correctness of the found pattern is wasted.

Specifically for time-step-based classification as the essential
stage in the nonmyopic search presented in Chapter 7, this im-
precision in user feedback introduces incorrectly labeled training
instances directly. As explained in Section 7.3.2, the labeled found
patterns are not directly training instances fed into the model
in time-step-based classification. Suppose that the user accepts a
found pattern F = S (α, β). This single user label provides β− α
positive training instances

[
S
(
i− ζα, i + ζβ + 1

)]
α≤i<β

. However,
by accepting F, the user may actually want to credit the target
pattern T = S (γ, δ) that overlaps F. Suppose α < γ < β < δ, i.e.,
F starts and ends too early. To be precise, F overlaps with T on
S (γ, β), but F incorrectly detects the fragment S (α, γ) and misses
S (β, δ). This user feedback correctly labels all time step in S (γ, β)
(corresponding to training instances

[
S
(
i− ζα, i + ζβ + 1

)]
γ≤i<β

)
as positive, but also incorrectly labels all time step of S (α, γ)
(corresponding to training instances

[
S
(
i− ζα, i + ζβ + 1

)]
α≤i<γ

)
positive.

To solve this problem, we propose multi-feature feedback, not
only on the relevance of the found patterns but also on their
positions and sizes. Pertaining to the same example above. If the
algorithm suggests F, the user should be able to notice T in the
user interface as well, otherwise, the user would not accept F. The
user can adjust the position and size of F to align with T, so that
αnew := γ, βnew := δ, and Fnew := T. In this way, we resolve the
predicament caused by the imprecision of the traditional binary
relevance feedback.

Now that such adjustments are possible, the user may even
accept a found pattern of low quality that overlaps only a little
with a target pattern and that should be rejected by conventional
binary relevance feedback. As long as the user notices the target
pattern, the user can basically use the target pattern as a positive
label, instead of the imprecise found pattern.
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8.4 user interface

Although multi-feature feedback is also applicable to traditional
feedback-driven pattern search in time series, it works best to-
gether with nonmyopic search presented in Chapter 7. Therefore,
we reused and extended NOOPS’s VQS. In this section, we explain
the feature closely related to user feedback and particularly to
multi-feature feedback.

Figure 8.2: User Labels View. This view lists the positive and negative
labels from the user for inspection and fine-tuning, before
they are used in the next round of feedback-driven pattern
search.

We have outlined various ways to adjust the relevance thresh-
old η, e.g., dragging the threshold line in the additional track in
the Overview explained in Section 7.4.1, moving a slide in a rele-
vance score distribution histogram, and circling the desired pat-
terns in the candidate dimensionality reduction scatter plot, both
in the Analysis View explained in Section 7.4.2. Unfortunately, tun-
ing η can potentially introduce false positives and false negatives.
In such cases, the initial search cannot perfectly separate the tar-
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get patterns from the background, calling for user feedback and
the feedback-driven pattern search.

By clicking the corresponding button in the button group
shown in Figure 7.6, the user can mark an irrel-

evant found pattern as a negative label, or a relevant one (prefer-
ably with low relevance to help the model adjust the relevance
perception) as a positive label. The labels are listed in the User
Labels View shown in Figure 8.2. The user can fine-tune the green
/ red box representing the positive / negative label by moving
it or dragging its left and right edges. A fixed blue box indicates
the original found pattern as a reference, as the first two patterns
in Figure 8.2 show.

Sometimes, the user may want to add labels spontaneously.
When encountering a missing pattern in the Overview, the user
can add it as a positive label. In particular, the user can also
add one or two long negative labels to inform the model of the
background, e.g., the right two negative labels in Figure 8.2. Be-
cause each user label already contains many training labels, as
explained in the third benefit of time-step-based classification in
Section 7.3.2. This was previously not possible because one user
label used to correspond to only one training sample. Accord-
ingly, it does not make sense to add a long negative label tra-
ditionally, because it, as a whole, cannot be a relevant pattern
anyway. To add a label spontaneously, the user can draw a box
with the box selection tool , fine-tune it, mark it as positive or
negative, and commit it, as shown at the bottom of Figure 7.5.
In the User Labels View, the spontaneously added labels do not
have the blue box representing the originating found pattern, as
the third positively labeled pattern and the last two negatively
labeled patterns in Figure 8.2 show.

8.5 evaluation

We evaluated the proposed multi-feature feedback on the po-
sitions and sizes of the found patterns besides their relevance
against the baseline, binary relevance feedback, with a quanti-
tative benchmark on retrieval accuracy. Then, we evaluated the
usability of the VQS with a case study and an expert study.
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8.5.1 Experiment Setup

In this experiment, we have used the same datasets / use cases as
specified in Section 7.5.1. Moreover, we used nonmyopic search
with random forest due to its strong performance in Section 7.5.

Designing experiments involving user feedback is challenging
due to the subjectivity of user feedback. We propose to simulate
user behavior, similar to works facing the same problem [235,
275]. Specifically, we created two agents, the BR-Agent and MF-
Agent, to emulate Binary Relevance and Multi-Feature feedback,
respectively.

The BR-Agent accepts a found pattern F = S (α, β) as a posi-
tive label if it satisfies the following two criteria. 1) F overlaps a
ground truth G = S (γ, δ) no less than an IoU threshold (set to
30%), i.e., ∃G ∈ G, such that IoU (F, G) ≥ 0.3, where G denotes
all ground truths; 2) To avoid duplicate found patterns, F should
not overlap an already added positive label F′ no less than the
same IoU threshold, i.e., ∀F′ ∈ F, it follows IoU (F, F′) < 0.3,
where F denotes all found patterns before adding F as a new
positive label. If F fails to fulfill the first criterion, the BR-Agent
labels F negative. If F meets the first criterion but not the second,
the BR-Agent ignores it.

The MF-Agent adds a positive label as long as a found pattern
F intersects with a ground truth G, regardless of their IoU, i.e.,
∃G ∈ G, such that F ∩ G �= ∅. We designed this behavior be-
cause we assume that the user can notice the target pattern upon
seeing the found pattern. However, instead of the found pattern
F, MF-Agent adds the ground truth G as a positive label if G is
not already added, which simulates the user’s corrections on the
position and size of the found pattern. The MF-Agent only label
a found pattern negative when it does not overlap any ground
truth at all.

The experiment began with the imperfect found patterns from
the rule-based initial search in Section 7.3.1. Each agent assessed
the found patterns based on the ground truths and returned five
labels. Because random forest and XGBoost do not support itera-
tive training only with new labels, we combined the new labels
with the old to retrain all models. We conducted ten rounds of
feedback-driven pattern search, which is sufficient for the results
to converge to a stable retrieval accuracy in all our use cases.
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IoU = 20%

Case 2: the found pattern aligns 
poorly with a target pattern

IoU = 0%

Case 3: the found pattern does 
not align with a target pattern

Target 
pattern

IoU = 60%

Case 1: the found pattern aligns 
well with a target pattern

Found 
pattern

Time series data BR-
Agent

MF-
Agent

BR-
Agent

MF-
Agent

BR-
Agent

MF-
Agent

Note: pattern 
mirrored

Figure 8.3: BR-Agent vs. MF-Agent. In a nutshell, the BR-agent labels a
found pattern positive, when it sufficiently overlaps a ground
truth; otherwise, it labels the found pattern negative. The MF-
agent labels a found pattern positive, as long as it overlaps
a ground truth (no matter how small the overlap is), and it
adjusts the position and size of the found pattern to match
the target pattern (using the ground truth as the positive label
instead of the found pattern); the MF-agent labels a found
pattern negative when it does not overlap any ground truth
at all.

8.5.2 Performance Comparison Between Multi-Feature and Binary
Relevance Feedback

Accuracy Evolution

Figure 8.4 shows the retrieval accuracy according to AP30 and
AP50 after the rule-based initial search and after each of the ten
feedback-driven pattern search rounds in all use cases. While
both feedback types may improve accuracy, as indicated by the
rising AP30 in the Deep Valve Whole Signal use case, multi-
feature feedback significantly outperforms binary relevance feed-
back, as verified by the light blue curves denoting multi-feature
feedback above the dark blue (nearly black) curves denoting bi-
nary relevance feedback.

As indicated by the rising AP30 in the Deep Valve Whole

Signal use case, both feedback types may improve the search
result from rule-based initial search (Feedback Round 0 in Fig-
ure 8.4). The improvement occurred mainly in the first feedback
round, but this was not always the case. For instance, in the
Variable Displacement use case shown in Figure 8.4, retrieval
accuracy only smoothed after six feedback rounds.

The light blue curves denoting multi-feature feedback are con-
sistently above the dark blue curves denoting binary relevance
feedback, verifying that multi-feature feedback outperforms bi-
nary relevance feedback. In fact, binary relevance feedback does
not always work, as, for instance, the low dark blue lines in the
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Figure 8.4: Evolution of Retrieval Accuracy. Both feedback types can
improve retrieval accuracy, as indicated, for instance, by the
rising AP30 in the Deep Valve Whole Signal use case. The
improvement mainly happens in the first feedback-driven
pattern search round. Multi-feature feedback outperforms bi-
nary relevance feedback, both in terms of the correct hits ac-
cording to AP30 and the quality of the found patterns ac-
cording to AP50. In fact, binary relevance feedback fails to
improve retrieval accuracy if measured by the stricter metric
AP50.

Deep Valve Linear Phase use case show. In this use case, the
temporal context of the target patterns needs to be taken into
consideration during pattern search. Hence, correction of posi-
tions and sizes can be especially helpful in this case. The EEG Eye

State use case provides another example, where multi-feature
feedback also significantly outperforms the binary relevance feed-
back. In this use case, boundaries between the target patterns
and the background are relatively difficult to locate, requiring
the user’s help with delineation.

Not only does multi-feature feedback catch more target pat-
terns correctly, as indicated by the higher AP30 in all use cases,
but the true positives are also of higher quality (more precise loca-
tions and sizes), as indicated by the higher AP50 in all use cases.
In fact, binary relevance feedback with IoU 30% as the boundary
between true positives and false positives never really improves
AP50, suggesting that training with low-quality labels may not
result in a high-quality outcome.

Another finding is that the retrieval accuracy is not guaranteed
to increase monotonically; it may deteriorate, not only for binary
relevance feedback but also for multi-feature feedback, as in the
Deep Valve Linear Phase use case.

A worse result was observed after the first feedback round in
the Variable Displacement use case. This was probably due to
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the limit we set for the feedback. Specifically, we allowed only
five new labels in each feedback round. The rule-based initial
search worked already relatively well in this case. However, the
first feedback round only has five labels to begin with, which
can be challenging for model training, leading to worse retrieval
accuracy.

Finally, even multi-feature feedback may stagnate, as in the
EEG Eye State use case, where the search result converges to a
suboptimal state.

Converged Accuracy

According to Figure 8.4, the retrieval accuracy converged to a
stable metric score in all our use cases after ten feedback-driven
pattern search rounds. To better compare the destination or stable
state to which the feedback-driven pattern search led, we plotted
this converged retrieval accuracy with a series of APs in Figure 8.5.
In all use cases, the light blue bars representing multi-feature
feedback are taller than the dark blue bars representing binary
relevance feedback, showing the general performance gain with
multi-feature feedback. When looking at the leftmost pair of bars
in the four bar charts (with the lowest metric strictness), we can
see that the multi-feature feedback led to higher retrieval accu-
racy, implying that the multi-feature feedback catches the target
patterns better. Furthermore, the stricter the metric, the larger the
performance gain appears. To be precise, the metric scores with
binary relevance feedback dwindle rapidly with increasing strict-
ness of the metric but slide only mildly with multi-feature feed-
back, suggesting better quality of the found patterns with multi-
feature feedback, indicating the higher quality of the found pat-
terns, albeit potential missing patterns as in the EEG Eye State

use case. In fact, binary relevance feedback does not work at all
in the more challenging Deep Valve Linear Phase use case and
EEG Eye State use case. The target patterns in the Deep Valve

Linear Phase use case, as illustrated in Figure 7.10, represent
a linear phase in a process. The internal characteristics of this
phase do not contain rich features for detection. Luckily, the sur-
rounding phases, e.g., the “J”-shaped phase, are distinctive and
can contribute to the search. However, if the labeled found pat-
terns are poorly bounded, as in binary relevance feedback, model
training may not benefit much from this advantage because the
characteristic context is sometimes in the training instances and
sometimes not, making this regularity that could have been re-
lied on for detection irregular. In the EEG Eye State use case, the
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start and end time steps of the target patterns are very blunt. It
is challenging for the model if the labeled found patterns do not
have sharp bounds because there is basically no clear informa-
tion for the model to learn how to locate the start and end time
steps. Moreover, the special data augmentation that labels the
time steps surrounding a positive label, introduced as the third
benefit in Section 7.3.2, requires that the labeled found patterns
have correct start and end time steps. Otherwise, it may cause
incorrect negative training instances. All in all, we can witness
that the adjustment of the pattern positions and sizes contributes
greatly to the detection of the target patterns.
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Figure 8.5: Converged Retrieval Accuracy. After ten feedback-driven
pattern search rounds, multi-feature feedback lifted the re-
trieval accuracy to a higher level than binary relevance feed-
back. The stricter the metric, the larger the performance gain
appears, implying that the found patterns are of high quality,
notwithstanding possible missing patterns (as in the EEG Eye

State use case).

As shown in the simplified Table 11 derived from the second
sheet in “evaluation.xlsx” under https://osf.io/36kf2, multi-
feature feedback raised retrieval accuracy by 0.35 according to
AP30 and by 0.59 according to AP50 on average in our experi-
ment.

In conclusion, multi-feature feedback outperforms binary rele-
vance feedback and should be the preferred choice for feedback-
driven pattern search in time series, especially in combination
with the nonmyopic search.
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Use Case
AP30 AP50

MF BR Acc. Gain MF BR Acc. Gain

DV-Whole 0.97 0.92 0.05 0.97 0.32 0.65

DV-Linear 0.78 0.04 0.75 0.76 0.00 0.75

VD 1.00 0.76 0.24 1.00 0.54 0.46

EEG 0.55 0.18 0.36 0.55 0.05 0.50

Average 0.83 0.48 0.35 0.82 0.23 0.59

Table 11: (Oversimplified) Performance Gain with Multi-Feature Feed-
back. Multi-feature feedback raised retrieval accuracy by
0.35 according to AP30 and by 0.59 according to AP50 on
average in our experiment. (DV-Whole: Deep Valve Whole

Signal, DV-Linear: Deep Valve Linear Phase, VD: Variable
Displacement, EEG: EEG Eye State)

8.5.3 Case Study

Lastly, we conducted a case study to demonstrate the features
of the user interface and an expert study with two calibration
engineers to validate its usability. Please note that they are not
limited to multi-feature feedback presented in this chapter, but
also for the previous Chapter 7 because they share the same VQS.

This section outlines a cohesive workflow. We used the
Variable Displacement use case for demonstration. Its two
tracks roughly represent engine rotational speed and accelera-
tion. The target patterns signify the reactivation of deactivated
cylinders, harboring NVH issues of interest to our engineers.
We omit screenshots in this subsection because there are too
many interactions and large areas of visualizations with small
details. However, we deliberately captured screenshots pertain-
ing to this use case in Section 7.4 as well as Section 8.4 and
will refer to them in this subsection. Please refer to the video
under https://www.youtube.com/watch?v=7-MPiC7asBg for the
complete workflow.

We loaded and explored files, designated a target pattern as
the query, and launched the initial search. After obtaining results,
we checked the sanity of the found patterns in the Found Pat-
terns View in Figure 7.6. Notably, the force graph in Figure 7.7.c
displayed two nodes distant from the cluster around the yellow
query node. Upon perturbation, we observed swift restoration
of the stable layout, indicating that these nodes were likely false
negatives. To highlight them in all views, we clicked on them
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in the force graph. In the Found Patterns View in Figure 7.6 (the
rightmost two patterns), we observed their partial resemblance
to the query in terms of shape. After clicking to scale all
found patterns to the query’s value range, we discovered that the
shapes fluctuated in a much smaller value range and could not
relate to NVH issues. To remove these two false positives, we re-
duced the number of found patterns by two in the first input field
below the relevance score distribution histogram in Figure 7.7.a.
The relevance threshold slider left to the histogram was adjusted
automatically. We went on to examine the candidates near the
yellow query in the scatter plot Figure 7.7.b for potential false
negatives. Fortunately, there were no false negatives in this case;
however, if any existed, we could mark them as positive labels.
To enhance recognition of the background, we added a long red
negative label in the Overview in Figure 7.5. In the User Labels
View in Figure 8.2, we adjusted the label positions and sizes and
began the feedback-driven pattern search. In the improved re-
sult set, we found two patterns shown in Figure 7.8. The rele-
vance profiles indicated problems during classification. We chose
them as positive labels and modified the position and size of the
one in Figure 7.8.b. Following another feedback-driven pattern
search, we obtained a nearly perfect result. Finally, we systemati-
cally examined the found patterns in the Found Patterns View and
analyzed them with more context in the Overview.

8.5.4 Expert Study

We conducted expert studies with two experts to validate the
usability of NOOPS. Due to space limits, please refer to Appendix I
under https://osf.io/f6phs for more details like the procedure,
pre-defined tasks, questionnaire, protocol, screenshots, and our
analysis as well as reflection.

Expert A is a senior technical consultant with 15-year expe-
rience in function development and calibration for gasoline en-
gines. Expert B is an on-board diagnostics engineer with one-year
experience in air, fuel, and thermal-related features of gasoline
engines. Each study lasted one hour, began with a five-minute
introduction, continued with a 15-minute live demonstration it-
erating the use case in Section 8.5.3, followed by a 30-minute
hands-on test with predefined tasks, and concluded with a 10-
minute interview. During the demonstration and the hands-on
test, we encouraged the experts to provide feedback.

While we cannot report on all the findings, we will highlight
here expert feedback centered around our three core analysis
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goals: the handling of 1) false negatives (missing target patterns),
2) false positives (irrelevant found patterns), and 3) validating
true positives (relevant found patterns).

Both experts were initially unfamiliar with our dimensionality
reduction scatter plot and its applicability to searching for false
negatives. However, they quickly adapted during the hands-on
test. Expert A stated: “While it [dimensionality reduction] is a tough
and sophisticated concept; I think this is helping me to understand the
similarity between events”. They expressed both concerns about the
learning curve. Expert A continued: “[...] It is critical to embed your
explanation during and after the live demo somehow in the app itself.”.
Overall, the feedback on our visual mapping of pattern candidate
positions (in the scatter plot) was positive. Before NOOPS, they had
no way to find false negatives. The experts understood that sim-
ilar patterns / points are closer, and the judgment based on the
relative distance to the query helped them to spot false negatives
more efficiently.

As for the false positives, the feedback was less conclusive. The
tasks were primarily designed to be accomplished with the assis-
tance of the force graph. Expert B states: “While I get the general
idea, this is still a gimmick for me. I can faster gauge the similarity by
looking at the line charts of the found patterns in the Found Patterns
View directly.”.

NOOPS’s user interface excelled in the validation of true posi-
tives. Both experts successfully deduced that showing only true
positives by tuning the relevance threshold η is impossible if
there were false positives with higher relevance (the model can-
not separate the relevant and irrelevant patterns perfectly). Ex-
pert B stated: “Finding automatically a perfect separation [between the
two classes] might be impossible, but the draggable horizontal line [for
adjusting η] is an effective solution.” Combining this interactive fil-
tering with our coordinated view system and, more importantly,
with the feedback-driven pattern search, was perceived by both
experts as a core solution to the problem.

Our experts validated that NOOPS effectively addresses their use
cases and the user interface supports our feedback-driven pattern
search effectively.

8.6 discussion

Multi-feature feedback is primarily an add-on for nonmyopic
search presented in Chapter 7, though also compatible with the
traditional search techniques. It aims to improve the effectiveness
of user feedback in feedback-driven pattern search.
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We are curious if feedback on even more features or more fine-
granular feedback is possible and beneficial. For instance, we can
model a found pattern as a coarse spline and invite users to mod-
ify individual support points. We can also invite the user to rate
the quality of a found pattern in a Likert scale, or even continu-
ous by moving a slider. It remains to be examined whether such
features contributes to the improvement of retrieval rather than
causing confusion and overhead.

Currently, we show found patterns with high relevance to the
user for feedback. This is suboptimal because the notion of rele-
vance may narrow down to a few subclasses instead of subsum-
ing a mix of subclasses in the target class, i.e., confirmation bias.
We would like to examine the idea of suggesting moderately con-
fident pattern candidates that are dissimilar to other very confi-
dent found patterns for feedback.

8.7 conclusion

In this chapter, we have proposed a new type of user feedback
for feedback-driven pattern search in MTS called multi-feature
feedback. It advocates feedback not only on the binary relevance
of the found patterns alone, as existing methods suggest, but
also on their positions and sizes. To our surprise and dismay,
we found the traditional binary relevance insufficient for the re-
trieval results to improve significantly. On the other hand, multi-
feature feedback worked in all our real-world industrial use cases
and achieved 0.35 higher accuracy. In prospect, we expect the
establishment of multi-feature feedback in feedback-driven pat-
tern search. In the future, we will optimize individual stages in
NOOPS’s pipeline, study visualizations especially for the time-step-
based relevance, and examine possibilities of intelligent recom-
mendations for user feedback.
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9C O N C L U S I O N

In this thesis, we have studied the research question How to
query patterns in MTS accurately, efficiently, and understand-
ably? Centering around this question, we have proposed three
tools/VQSs (PSEUDo, SAXRegEx, and NOOPS) incorporating four
techniques (steerable LSH, query expansion in SAX, nonmyopic
search, and multi-feature feedback) and established a taxonomy
for time series representations.

We have achieved all four requirements collected in Section 1.3.
All our proposed methods work for multivariate time series, and
some (PSEUDo and SAXRegEx) even prefer multivariate cases, com-
plying with R1 Multivariate Suitability. We improve accuracy
through retrieval invariance of the algorithm (SAXRegEx), through
a traversing approach that utilizes the structure of the data (non-
myopic search), and through active learning that better respects
the task (multi-feature feedback), trying to satisfy R2 Sufficient
Accuracy. We accelerate the search through an efficiency-oriented
data representation (PSEUDo) for rule-based pattern search and
through a more efficient data traversing other than sequential
scanning (SAXRegEx and nonmyopic search) for model-based pat-
tern search, striving to meet R3 High Efficiency. We achieve inter-
pretability of the algorithms through a feature-importance-based
model update mechanism (PSEUDo) and an explicit description of
desired pattern distortions (SAXRegEx), endeavoring to fulfill R4
Explainability.

We addressed all challenges in Section 1.2, attained all goals
except the last two could-have/nice-to-have goals in Section 1.4,
made the last four contributions, and are working on the first two
contributions listed in Section 1.5.

We summarize the challenges, requirements, goals, and contri-
butions addressed by each major chapter in Table 12.
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Table 12: Challenges, Requirements, Goals, and Contributions Ad-
dressed in Each Chapter. empty: no meaningful overlap or
function not supported, “+”: established techniques used or
function (trivially) supported, “++”: tangential or minor contri-
butions, “+++”: major contributions.

Chapter 3
Survey

4
Metrics

5
PSEUDo

6
SAXRegEx

7
NOOPS 1

8
NOOPS 2

Challenges

C1 Temporal Length + +

C2 High Dimensions +++ +++

C3 Duration Scaling +++ +++ ++

C4 Inter-Track T. Shifts +++

C5 Context Oblivious. +++

C6 Unexplainability +++ + +

C7 Inefficient Training +++

C8 Meager Labels ++ ++

C9 Subj. Relevance ++ ++ +++

Requirements

R1 Multivar. Suitability + +++ +++ + +

R2 Sufficient Accuracy + +++ +++

R3 High Efficiency +++ +++ ++

R4 Explainability ++ + +

Goals

MG1 STAR Analysis +++ + + + + +

MG2 Baseline Alg. + + + +

MG3 Basic Algorithm + + +

MG4 Alg. Benchmark + + + +

MG5 Basic App + + + +

MG6 Basic Vis. + + + +

MG7 Query-by-Exam. + + +

MG8 Case Study + +

SG1 Multiv. Suitability +++ +++ + +

SG2 Single Example + + +

SG3 Performance Gain +++ +++ +++ +++

SG4 Adaptive Alg. +++ +++ +

SG5 Streaml. Workflow + + + +

SG6 Click & Run + +

...
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Table 12: Challenges, Requirements, Goals, and Contributions Ad-
dressed in Each Chapter – Continued

Chapter 3
Survey

4
Metrics

5
PSEUDo

6
SAXRegEx

7
NOOPS 1

8
NOOPS 2

SG7 Expert Studies + +

CG1 Transf. Survey +++

CG2 Track Importance +++

CG3 Eval. Framework +++

CG4 Query-by-Sketch

CG5 Intelligent Assist.

Contributions

CO1 Taxonomy +++

CO2 Eval. Framework +++

CO3 Adap. Scal. Repr. +++

CO4 Search Invariance +++

CO5 Nonmyopic Sear. +++

CO6 Multi-Feat. Feed. +++

The theoretical findings of our research are published in two
major works [275, 276], submitted and to be submitted in another
two publications. The developed codes are deployed in our indus-
trial collaborator IAV and its customers, actively helping automo-
tive engineers trace events of interest in various measurements.

In prospect, we expect 1) a surge of extensions of existing
methods for univariate time series analysis to multivariate cases
because of the solid practical need and the potential of many
methods; 2) closer collaboration of hashing algorithms and data
science methods due to the exploding data volume to process;
3) standardization of nonmyopic search and multi-feature feed-
back for model-based and feedback-driven pattern search, as they
bring sheer benefits and cause no harm.

Due to limited resources, our work forgoes exploration in the
following interesting directions, which opens avenues for future
research.

Comprehensive Search Invariance. We have endeavored to cap-
ture as many time series pattern distortions and enable as much
retrieval invariance as possible while remaining efficient and un-
derstandable. At present, no algorithm captures all distortions,
especially in multivariate cases. Articulating the idea in Chap-
ter 5 (scalable representation) with Chapter 6 (query expansion),
we would like to extend multivariate DWT [45, 207, 217] because
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it is a scalable representation (like LSH in PSEUDo) exploiting an in-
tegral transform and supports capturing horizontal scaling (dura-
tion variation) out of the box (like regex quantifiers in SAXRegEx).
Nonetheless, we believe that it still has a long way to go before
the invention of a method that can accurately and efficiently ad-
dress all common pattern distortions. Currently, a method ensem-
ble could be a practical workaround.

Versatile Method. Apropos of a method ensemble, we have ad-
dressed the challenges, requirements, and goals with different
algorithms and tools. Accordingly, we provide our users with a
toolbox of methods including the state-of-the-art approaches in
a single platform web application, with guidelines on the typi-
cal use cases for each method. It would be ideal if there were
a method fitting most use cases. Alternatively, it would be rosy
to have a set of criteria for choosing methods systematically and
automatically based on the data and the query. For instance, is
something like “large time series models” for time series retrieval
possible, just like large language models for natural language pro-
cessing that have witnessed huge success recently?

Unified Evaluation. As mentioned in Section 4.1, the research
field MTS pattern search lacks a standard evaluation framework.
We consider three gaps to fill: 1) a repository of labeled datasets
for time series pattern search, like the dataset repository [69] for
time series classification, which fuels an explosion of research
for this task; 2) unified performance metrics, which we have
addressed in Chapter 4 and are going to extend with our on-
going visual analytics approach; 3) a leaderboard site for col-
lecting methods and ranking them according to their perfor-
mance on various datasets measured by diverse metrics, like
https://www.kaggle.com and https://huggingface.co/, which
our ongoing project contemplates.

Scalable Visualization. While all our algorithms support multi-
variate time series, our visualizations do not scale to large time
series. We can see three avenues. 1) In terms of temporal length
(C1 Temporal Length), we can scale the time series along the time
axis heterogeneously, e.g., enlarging the patterns of interest and
shrinking the space between them. 2) In terms of the dimensions
(C2 High Dimensions), we can utilize visualizations that demand
less vertical screen space, like horizon diagrams [116], and color-
coded pixels [105]. 3) Since scalable visualizations may distort the
data or weaken the expressiveness of details, we can examine co-
ordinated views showing overviews and undistorted zoomed-in
details simultaneously.
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Intelligent Interactions. Our work focuses more on data mining
than visual analytics. We envision three research directions in
terms of intelligent visualizations and interactions. 1) Intelligent
assistance during query definition: for instance, during query-by-
sketch, the VQS could provide typical patterns in the time series
database that match the user’s ongoing drawing, as mentioned
in Section 5.6. 2) Intelligent result analysis: instead of showing
domain users scatter plots or other data-science-savvy visualiza-
tions, which our users criticized, the VQS could analyze such di-
agrams algorithmically and only expose simple interactions for
the user, e.g., alerting the user that a pattern is a potential false
negative, as it appears close to the query even more than some
found patterns in a latent space, as the case study in Section 8.5.4
inspired us. 3) Unbiased found patterns selected to be shown to
the user for feedback: the VQS should not only draw samples
for user feedback from highly confident found patterns, but also,
e.g., from the ones that the algorithm is unsure about, or from
the found patterns that differ much from the rest, as Section 8.6
has pointed out.

Knowledge Externalization. Finally, while we strive to infuse do-
main knowledge into the data processing pipeline seamlessly,
knowledge-assisted visual analytics inspires us to externalize
tacit expert knowledge into explicit knowledge [91], e.g., through
semantic interaction analysis. We can imagine that certain data
processing operations, such as the necessity of data normaliza-
tion, can be inferred from user feedback. The VQS can extract,
derive, and manage them as explicit knowledge/rules.
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