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Abstract 1 Introduction

Static code analysis is one of the most powerful, scal-
able, robust, and accepted techniques for program under-
standing, software maintenance, reverse engineering, and
reengineering activities. Static analysis encompassédea w
set of operations ranging from code parsing and fact extrac-

Static code analysis offers a number of tools for the tion. fact i d . o int i
assessment of complexity, maintainability, modularitg an lon, fact aggregation and querying, up to Interactive pre-
sentation. In contrast to dynamic (run-time) analysis tech

safety of industry-size source code bases. Typically, such’. . . T .
scenarios include three main phases. First, the code i 11ques, which require program compilation, instrumenta-

parsed and 'raw’ data is extracted and saved, such as syn-tion. and exepution and a §uitaple selection of input data,
tax trees, possibly annotated with semantic (type) inferma static analysis can be applied d|rec_tly on, ar_ld needs solely
tion. In the second phase, the raw data is queried to checkth_e source code of a system. S_t_at|c ana_lly5|s can support a
the presence or absence of specific code patterns WhichWIOIe range of code maintainability, quality, and safety as-
supports or invalidates specific claims on the code. In the sessments, based on methods such as dependency and im-

third and last phase, the query results are presented (visu—paCt analysis, type inference, and program slicing. Static

alized) such that correlations between code structure and pode analysis is gaining wider acceptance, as the tools it

query results are emphasized in an easily understandable'nVOIVes are reachin_g the scal_ability and maturity Te_‘*“"e
way. Whereas parsing source code is largely stand:’;\rdized,lt_O be afpphgablLeoog industry-size code bases of millions of
using several existing parsers, querying the outputs dfisuc INes-of-co € ) ): L

parsers is still a complex task. The main problem resides in 4 tyPical static analysis pipeline includes three types of
the difficulty of easilytranslating high-level, cross-cutting tools, as follows: _

concerns in the problem domaininto queries in the raw data 1. Parsersare used to analyze the input source code and
domain. We present here an open framework for construct- ~ Produce a raw, low-level, representation thereof. This
ing and executing queries on industry-size C++ code bases. ~ comes usually as a syntax tree, optionally annotated
Our query system adds several so-called query primitives with type information.

atop a flexible C++ parser, offers options to combine these 2. Queryengines are used to check the presence (or ab-

primitives into arbitrarily complex expressions, has altiig sence) of various facts in the code, by scanning the an-
efficient way to evaluate such expressions on syntax trees of ~ notated syntax trees for the occurrence of correspond-
millions of nodes, and presents the query results in a vjsual ing patterns. Such queries can range from simple ones,
compact, intuitive way. We demonstrate our query frame- e.g."is a variablex of typeT used in functionf” up
work, integratd in theSoLIDFX C++ reverse-engineering to sophisticated one®.g. "select all variables used
environment, with several real-world analyses on indastri before initialized” or "extract the system'’s call graph”.
codebases. Queries are related toetrics i.e. numerical values as-

sociated to code elementsg.cyclomatic complexity,



2 code modularity, or class hierarchy debth and software meBCEHYIHE AhT theFack BREE Wit Frocus
3. Presentationengines are used to visualize the query on the query and metric engines. Section 4 presents several
results in context. These range from simple tabular applications of our query and metric engines on three real-
listings of the query results, up to complex interactive life code bases. Section 5 discusses our experience with us-
visualizations of multiple attributes such as software ing our solution in industrial practice and feedback otadin
graphs, source code, and metrics. from actual users. Section 7 concludes the paper with future

In this paper, we focus on users interested in static anal-Work directions.
ysis for the C and C++ languages. C++ is one of the most
widely spread programming language in the software indus-2  Previous Wor k
try [1]. However, its complexity poses several non-trivial

problems to the construction of a trugffectivestatic C++ To understand the challenges of interactively querying
analyzer. Considering the static analysis pipeline meetio  C++ code during static analysis, we present a brief overview
above, these problems are: of results related to fact extraction, the fact queryinger

1. Parsers:While several C++ parsers exist, few can out- and fact visualization, with a focus on C and C++. We fol-
put complete annotated syntax trees. Complete treedow the three-stage pipeline as in Sec. 1.
are required for a flexible query system.
2. Query: Query engines and parsers are often monolith- 2.1  Parsers
ically merged in a single tool. However, users need
custom queries for custom problems. We needjzen C++ parsers can be roughly grouped into two classes:
query systerwith Lightweight parsers do only partial parsing and type-
« a flexible, but simple to learn, way to build a wide checking pf the mp.ut code,.and thus prpduce only a fraction
range of queries by composing existing queries; of the entire static information. These include@iL [2],
SNIFF+, GCCXML, MCC [3], and several custom ana-
lyzers constructed using the ANTLR parser-generator [4].
i _ ) . Typically, such analyzers use a limited C++ grammar and
3. Presentation: Queries and their results can be quite g ot perform preprocessing, scoping, type resolutiod, an
complex, So users need ways to pose a query on SOMeyerjgading. This makes them quite fast and relatively sim-
given code and examine its results easily and intu- pie o implement and maintain. However, such analyzers
itively. Ideally, we would like aclick-to-querysystem  gjmpny cannot deliver the detailed information that we need
working directly with the source code in an editor. for our queries, as we shall see later. Worse, lightweight
In this paper, we present the design challenges, architecanalyzers cannot guarantee the correctness of all the pro-
ture, implementation, and use of such an open query systemgyced facts, as they do not perform full parsing and/or type
We start with an existing C++ parser that generates syntaxanalysis.
trees annotated with type information. Secondly, we extend In contrast to these,heavyweight parsers perform
the parser to make it applicable in an interactive query con-(nearly) all the steps of a typical compiler, except code
text, and design an open query system atop the parser’s outgeneration, and hence are able to deliver highly accurate
put, which satisfies the requirements outlined above. Next,gnd complete static information. Well-known heavyweight
we add a query management mechanism consisting ofqueryjlna|yzers with C++ support include DMS [5],0CUM-
(de)serialization and query archiving in libraries. Fipal  gys[6], ASF+SDF [7], E.sA [8], the EDG front-end [9],
we integrate our query system im8IDFX, a fully fledged  and CPPX [10]. However more powerful, heavyweight an-
Interactive Reverse-engineering Environment (IRE) for C alyzers are also significantly (typically over one order of
and C++, which combines code analySiS and Visualization,magnitude) S|ower, Considerab|y more Comp|ex to imp|e_
offering to reverse engineers the same look-and-feelthat| ment, and hardly customizable.
tegrated Development Environments (IDEs) such as Visual  Heavyweight analyzers can be further classified into
C++ or Eclipse offer to software developers. strict ones, typically based on a compiler parser which halts
This paper is structured as follows. In Sec. 2,we presenton lexical or Syntax errorg(g_ CPPX), andolerantones,
related work in the context of interactive static analysid a  typically based on fuzzy or Generalized Left-Reduce (GLR)
reverse engineering, with a focus on C++. Section 3 de-parsing, which do a tolerant parsing followed later by the
scribes the architecture ofo8IDFX in rough lines. We  strict disambiguation and type checking.d. COLUM-
next detail the main components: the C++ parser, the queryBUS). Our earlier work to design the Visual Code Navi-

o ; . . . gator, an interactive query tool for C++, used a stgict-
Since we are using a common engine to compute queries anitsnetr

(Sec. 3.3), following statements about queries also appiydtrics unless pas_ed parser [11]. We quickly noticed the practical lim-
specifiedotherwise. itations of strict parsers: Many users do not have a fully

o efficient execution for arbitrarily complex queries
on code bases of millions of LOC;




BEMRPTRAN LS e e SHPR B ANsING headers, unsupportediork [19]. SOLIDFX has several advantages compated to
dialects, or simply errors in the code. Yet, one still wantst other similar solutions:

be able to query such code, or at least its parseable subset.
Consequently, we concluded that a tolerant C++ analyzer is
to be preferred.

e is based on a heavyweight, tolerant, and extensible
C++ parser;

¢ offers both line-level and architecture-level visualiza-
2.2 Query engines tion plug-ins;
There is very little available in terms of a generic, open * is easily extensible with new analysis plug-ins.
static query system for C++. Various analyzers, such as Given the above, we chose to integrate our open C++
CoLumBus and CPPX, provide a limited set of built-in  query system in SLIDFX. The integration process, and its
queries, which aim to cover several code standards conresults, are detailed next.
formance and 'good coding practice’ checlesg. that a
baseclass should declare a virtual destructor, or thatidver
ing a method should not change its access specifier. Abx-3 System Architecture
soft's CodeCheck [12] offers a scripted C-like query lan-
guage. Although flexible, the query language effective-
ness is bounded by the quite limited set of facts that can  To understand the operation of our proposed open query
be checked, which is in turn limited by the built-in parser. system, described next in Sec. 3.3, we first outline the ar-
ASF+SDF goes probably the furthest in query design flex- chitecture of ®LIDFX; the Integrated Reverse-engineering
ibility, proposing a formalism to define (and check) com- Environment (IRE) into which the query system is com-
plex assertions on syntax trees. However, ASF+SDF is still bined with parsing and visualization.oBIDFXis a com-
very far from full C++ support - for example, it does not Mmercial tool [19], the result of a design process of sev-
offer complete lookup and scoping. Also, its generic char- €ral years, combining our previous experience with a sim-
acter makes its rapid applicability to the complex specifics ilar IRE called the Visual Code Navigator (VCN) [11] in
of C++ quite challenging. projects involving commercial, open-source, and academic
None of the above query systems is directly integrated C++ code, as well as our experience witb LMBUS.

with interactive data presentation. Queries are posed in SoLIDFXuses dolerantparser, as we noticed that most
batch-mode, using script files, which makes rapid 'what- users would not accept a tool that halts upon (trivial) synta
if’ exploration of large code bases difficult and time- errors. Aheavyweighparser was chosen, for several rea-
consuming. A second serious problem of the current state-sons. First and foremost, we need all the facts in the code,
of-the-art in static analysis is the extremely limited ambu  i.e. a complete syntax tree annotated with type information,
of detailed implementation information that many papers in order to design an open query system, since we do not
provide. This is especially true for C++ analyzers, which know upfront which facts one will need to include in one’s
are notoriously complex. However, such ’details’ are of queries. Secondly, in order to pose queries on-the-fly on
paramount importance when implementing a complete, ef-source code and also present their results in code-level vi-
ficient static query system, as we shall see in Sec. 3 and 3.3sualizationsg.g. click-to-query in a code editor, we need

fine-grained information such as the location, scope, and
2.3 Presentation type of each code identifier. This requires a heavyweight

extractor.

The most frequent way to present static analysis query A second consequence of this tight integration of pars-
results is in tabular or (hyper)textual form [13, 6]. Visu- ing, querying, and visualization required by a click-tcequ
alization tools are more effective than plain text, as they tool, we need a fine-graineahd efficient interface (API)
can depict higher amounts of information, and also mul- to access all the parsed static information on-the-fly. Un-
tivariate and/or relational information. Many visualiza- fortunately, no heavyweight tolerant C++ extractor that we
tion tools exist, ranging from line-level, detail visuaiz ~ were aware of offered such an interface, so we had to build
tions such as SeeSoft [14] up to architecture visualiza- one atop of our tolerant C++ parser. In the following, we
tions which combine structure and attribute presentation,describe the design of our query system and its tight inte-
e.g. Rigi [15], CodeCrawler [16], or SoftVision [17]. An  gration with the C++ parser and data visualization in the
extensive overview of software visualization technigues i SoLiDFXenvironment. We refer to Figure 1 which shows
provided by Diehl in [18]. the arcitecture of our system and its four main elements:

A recent attempt to combine visualization and C++ the fact database, the fact extractor, the query and metric
static analysis is the @.IDFX reverse-engineering frame- engine, and the visualization components.



( ‘project fact - — thousands lines RFEBER YHS stEAGArGAMBSLS &% pc.
3 . setlings ARaann libraries The (small) speed fluctuations are mainly dependent on the
“system Rnded By / - v—— database file caching performed by the SQL engine and the
headers [ BalidFR % fact o ol operating system. Moreover, it is illustrative to note that
g || sxior | files | | puyquery & metric| complexgueries takdesstime, since they have stricter con-
C/C++ (C+r parsefl ) L oe el ditions which lead quicker to early query termination, and
. = Treterto also generate less database traffic.
: -selections =
user-selecled elaments ‘sa ve results 3.2 Extracting Facts With an Extended
Parser
et J]
coniesiaindr As outlined in Sec. 3, we use a C and C++ heavyweight
analyzer of own construction. We based our analyzer on
T e e o o ELSA, an existing C++ parser designed using a GLR gram-
code view [ metricview || UMLview || exporters mar [8]. We chose EsA as it is the only open-source heavy-
oo h weight tolerant C++ analyzer we are aware of.sE pro-
=4 oy duces a parse forest of all possible input alternatives;hvhi
| ( o, are next disambiguated to a single Annotated Syntax Graph

(ASG) using the C++ scoping and lookup rules. In the dis-
ambiguation phase, type information is added to the parse
tree,i.e. information linking each symbol with its declara-
tion. The ASG contains two types of nodes: abstract syntax
tree (AST) nodes, creating during parsing; and type nodes,
3.1 Fact Database created during disambiguation, which are attached to the
typed AST nodes.

All parsed or queried static data is stored in a so-called  Although it comes closest to our architectural and user
fact databaseThis includes theaw facts produced by the  requirements outlined earlier in this section,. 9a still
parser from source code, but alderivedfacts, produced lacks features needed in our interactive click-to-quetyse

Figure 1. Dataflow architecture of SoLIDFX

by the query and metric engines (Sec. 3.3). (Sec. 3). These limitations are as follows:
A fact database is created by analyzing a given code o | 1: ELsa requires preprocessed input, so it cannot un-
project Similar to a makefile, a project contains a set of derstand or query preprocessor facts;

C/C++ files, include paths, preprocessor defines, and lan-
guage dialect settings, and is created either by hand or by
automatic translation of makefiles or Visual C++ project . . .
files, using a technique similar to the ‘compiler wrapping’  ® L3: Error recovery is lacking, so incorrect code gener-
described for ©LumBUS [6]. For each source file (trans- ates no outputat all. . o .
lation unit), the parser saves four kinds of data elements in ® L4: ELSA dumps the entire AST of its input, which

e L2: Exact (row, column) locations for all AST nodes,
needed for click-to-query, are lacking;

the database: syntax, type, preprocessor, and locatich. Ea causes large overhead making real-time querying im-
data element is assigned a unique id. The database is struc-  POssible;
tured as a set of binary files, one per translation unit. We have extendedlBA to eliminate limitations.1 —

The IRE components (parser, query engine, visualiza- L4, as described next. Our extended C++ extractor works
tions) communicate with each other by lightweight sets of in five phases (see Figure 2 and [20] for full details).
ids, calledselectionswhich resemble table views in a SQL First, the parser reads the token stream from the lexer as
database. The database creation, which involves parsng thit performs reductions and builds the AST. Traditionalhg t
source code, is by far the most consuming time of static lexer of a C parser would simply get tokens from an already
analysis. After database creation, queries and visusdizmt ~ postprocessed file. In our setup, however, the lexer gets to-
do not change the annotated syntax trees, but only modifykens bydirectly calling back the preprocessor, which pre-
selections, a process which can be done at near-interactiv@rocesses the input on-the-fly. For this, we succesfullduse
rates (Sec. 3.3,3.4). To be concrete, queries ranging fromboth the Boost [21] andibcpp preprocessors, which we
simple ones ("select all functions whose name matches apatched to output token locations along with the tokens and
regular expression”) up to complex ones ("extract a call also to save preprocessor information in the fact database.
graph involving only non-virtual functions”) take between This setup barely modifies the originaL & parser, and
one and 3-4 seconds on a code base of a few hundrediddresses limitatioh1 and L2.
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Figure 2. Architecture of the  SoLIDFX C++ parser (main components shown in bold)

A second extension of ISA allows us to handle incor-  Finally, the filtered output is written to the fact database u
rect and incomplete C++ input, as follows. When a parse ing a custom binary format. Filtering effectively addresse
error is encountered, we switch the parser to a so-called limitation 4.
ror recoverygrammar rule, which will match all incoming The several design choices made for the parser front-
tokens up to the corresponding closing brace (if the error oc end,i.e. using the EsA highly-optimized, hand-written,
curs in a function body or class-declaration scope) or semi-parser; providing error-recovery at global declaratiod an
colon (if the error occurs in a method, namespace, or global-function/class scope levels; filtering unreferenced sylsbo
declaration scope). Besides skipping the erroneous codefrom the parser output; and writing the output in an op-
we also remove the corresponding parts from the AST. Thetimized binary format, make our modifiedLEA parser
net effect is as if the code containing the error up to the roughly three to six times faster tharoCumBuUsS, one of
matching }’ or ’;” was not present in the input. This solu- the fastest heavyweight C++ parsers that we could test, on
tion required adding only six extra grammar rules tsE's projects of millions of lines of code [20].
original C++ GLR grammar. Our approach, where error-
handling grammar rules get activated on demand, resembleg.3  Query and Metrics Engine
the hybrid parsing strategy suggested by [22]. Compared to
ANTLR, our method lies between ANTLR’s basic error-
recovery (consuming tokens until a given one is met) and its ) o )
more flexible parser exception-handling (consuming tokens The query and metrics engine is the core of our static code
until a state-based condition is met). This design balancesnalysis system, and is described in detail next.
well implementation simplicity with a good error-recovery ~ Formally, a query implements the function
granularity, thereby addressing limitatids3, and adds less
than 10% overhead to the parsing. Sout = {x € Sinlq(z, pi) = true} (1)

The error-recovery-enhanced parsing is followed by
ELsA’s original AST dismbiguation and type-checking.
Next, we filter the extracted preprocessor, AST, and type
nodes, and keep only those which originate in, or are re-
ferred from, the project source files (Sec. 3.1). This elim-
inates all code from includetieaders e.g. declarations  3.3.2 Design and Implementation

and preprocessor sym_bols_, which is not referred_by code inoyr query engine is designed as a C++ API (class library)
the analyzedsources Filtering the parsed output is essen- \hich implements several specializations of the above

tial for performance and scalability, as it reduces the outp  query interface, as follows (see also Fig. 3 which depicts
with one up to two orders of magnitude, and makes the factthe architecture of our query system).

database queryiable in near-real-time, as we shall se next  There are four main subclasses of the Query inter-

2This is not surprising, considering that a typical "Hello N pro- face: PreproQuery, TypeQuery, LocationQuery, and Visi-

gram includingst di 0. h ori ost r eamcontains 100000 LOC after pre- tonggry. PreproQuery offers a simple way tC? Sear_Ch for
processing, of which only a tiny fraction is actually used specific preprocessor construatsy. comments including

3.3.1 Preliminaries

that is, finds those preprocessor, syntax, or type elements
x from a selectionS;,, which satisfy a predicate(x, p;),
wherep; are query-specific parameters.
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a given text, macros, macro calls, or conditionals. Since Accumulator class. When a chilgd of a querygq yields a
the C preprocessor grammar is quite flat, PreproQuery hasit, ¢ calls its Accumulator'siccumulate() method, which
a straightforward implementation. returns true when the Accumulator’s condition has been
TypeQuery offers a way to search the type information met, else false. By default, all query nodes usedanD-
produced during the disambiguation of an extracted ASG. accumulator, which returns true when all queries in its
This interface supports queries such as "what is the typequery-tree are satisfied. We implemented Accumulator sub-
of this given variable?”, but also queries to determine the classes for different operatoes,g. AND, OR, <, =, and
relation between two given types (identity, subtyping,-sub similar. These let us easily implement complex queries by
suming, etc). combining simpler ones. For example, to find all functions
LocationQuery is a simple interface that queries all sym- whose name begins with "Foo” and have at least two pa-
bols within a given code location range (file, row, column). rameters of type "Bar”, we set the FunctionQuenyigne
The most complex (and useful) of the Query interface attribute to "Foo*” (using regular expressions or wildcsyd
implementations is VisitorQuery. For AST nodesVisi- the name attributes of the Type nodes of the function’s
torQuery visits the syntax tree rootedhafind searches for ~ parameter children-queries to "Bar”, and use an AtLeas-
nodes of a specific syntax-ty(1& e.g. function, optionally tAccumulator with a default-value of 2 on the function’s
checking for attributese.g. the function’s name. For each signature child-query.
of the approximately 170 syntax typ&sin our C++ GLR As outlined earlier in this section, VisitorQuery applies a
grammar [8], we generate a query-class containing childrengiven query-treg on a given input element by using the
queries fof's non-terminal children and properties, or data visitor pattern to find those elements$n the AST rooted at
attributes, fofl"'s terminal children. For instance, the Func- = which match the type of’s root, followed by an appli-
tionQuery has a propertgame for the function’s name  cation ofg(y) based on recursion ove's children-queries.
(which is an identifierj.e. terminal, in the grammar), and This design decouples the search implementation from the
two children queriesody andsignature for the function’s  specification of what to search for: The former is imple-
body and signature (which are non-terminals). All above mented in the VisitorQuery class, while the latter is imple-
guery-classes are generated automatically from our C++mented in the particular query-tree instance used. Overall
GLR grammar, using a modified version of the Elkhound the query composition can be modified transparently by dif-
parser-generator which comes along with Elsa [8]. In this ferent accumulators, without having to change the query
way, any modification to the C++ grammar used is automat- classes.
ically reflected in the query API. Although flexible, the VisitorQuery design outlined
To perform more complex analyses, the above Query in-above cannot go beyond matching a semi-fixed structural
terfaces can be composed in query-trees. The query compattern (the query-tree) on the input code (the AST). In
position semantics is controlled by a separate custongzabl some cases, one wants to query patterns which have a more



(5Praih AtElR rar 28 G tRU TR ¥RAL 2% riable has been ini-  dard library headers, as these contain (tens of) thous&nds o
tialized before being used. To support such queries, weglobal-scope symbols.
added a set oterators over the parsed AST to out query A second optimization provides a cache mechanism
API. These offer inorder code traversal and full access towhich loads and keeps entire parsed translation units in
the additional type information. Using the iterators APl, memory on a most-recently-used policy. This improves
any static query that we are aware of can be implemented. query speed even further by a factor between 3 and 7, at
The system stores query-trees in XML, and provide a the expense of more memory, roughly one megabyte per
query editor, so users can edit queries on-the-fly, witheutr 5000 parsed-LOC. A third simple and effective speed-up
compilation, and organize queries in custom query libgarie uses early query termination when evaluating the query-
We have so far designed over 70 queries that cover a numbeiree accumulators. All in all, these mechanisms allow us to
of static analyses, such as identifying basic code sreails  query millions of ASG nodes in a few seconds on a 3GHz
case branches without break, class member initializationsPC with 2 GB RAM. This gives us the desired performance
differing from the declaration order, changing access-spec for our interactive click-to-query scenarios.
ification of a class member when overriden, base classes
with constructed data members and no virtual destructors;3 3 4 code Metrics

and extracting class hierarchy, include, and call graphs. T ) ) _ )
query API allows a flexible specification of a wide set of Several code metrics can be implemented directly using the

static queries, ranging from "find all variables callet ~ duery engine. For example, the metrics of the type "number
to "find all classes inheriting fronBase and containing a  ©f 0ccurrences of code patteftt can be implemented as

method which throws exactly two exceptions of typé
Several examples of queries and their applications are pre-
sented in Sec. 4.

m(z) = |q¢(x,p;)| € R,V € Sip. 2

This associates a numeric valugx) to each element
of a selectionS;,, based on the number of hits of a corre-
sponding query; which searches patter. Interestingly,
many typical static-analysis metrics, such as McCabe’s cy-
Queries can be executed on both in-memory and on-diskclomatic complexity, class interface sizes, coupling istr
fact databases. On-disk queries are very efficient and haveand most of the object-oriented metrics discussed in [23]
a negligible memory footprint. However, in our click-to- can be implemented in this way. For more complex met-
query scenario (Sec. 3), we require near-real-time queryrics, one can always implement them by directly calling the
response, even for large fact databases of hundreds ofuery API described above.
megabytes. To achieve this, we designed a few additional
mechanisms, as follows. 3.4 Queries and the Data Views

Typical C++ syntax trees are shallow. A translation unit
(the root of the syntax tree) contains thousands of rela- 114 third and final component ofd&IDFX  provides
tively limited-depth subtrees, one per global symbol. The 5 et of interactive dataisualizations or views. These
largest such trees occur for namespaces and class decIarQﬁewS serve both as input and output to the query opera-

tions, which in turn may contain hundreds of shallow sub- 4, sers can click-to-select code fragments in the siew
trees for their symbolse(g. methods in a class). Exten- 44 hass them as input to queries or metric engines, whose
sive testing confirmed that the largest part of the time Spentoutputs can be further displayed in the views.

in a query is in iterating over all these subtrees to find the Figure 4 shows several data views. Toteject viewlets
requested one(s), during the VisitorQuery visit process de users set up an analysis project, much like one sets up a

scribed earlier. Hence, we can accelerate the query Procesgiid project in Visual Studio or Eclipse. Thaitput view

by precomputing hash-maps that store all global symbols 0f gy, s the fact database files created by the parser, while the

agien k'”d-e-g- functions, clags decla_rat|0ns, gnd global selection viewshows all selections in the database. In the
variables. We implemented this technique during the fact selection view, one can specify which selections are to be

database extraction, right after the filtering and before se 0 in the other views and how to color their elements
aI_gann (Sgc. 3.1). US'”‘-?J these_ precomputed hash—maps(as discussed next) The query viewshows all available
VisitorQueries can now directly iterate over global-scope queries in the XML query library (Sec. 3.3)

;subtrleet_s of a'?“\ll\?'rt]hl'(mtﬂ, wnt;)(t)ut he;vmgi tg \I”S't thte ﬂir;tlre Code viewsshow the actual source code in the desired
ransiation unit. Vvithin the subtree ota giobal constriees, files. Selected code is highlighted in the respective selec-

ugual_wsﬂmg process is used. This relatively simple -opti tions’ colors, thereby enabling one to spot the occurrence
mization accelerates the query process by a factor between

8 and 10 on typical C++ code bases which include stan-  3we recommend viewing this document in full color

3.3.3 Performance considerations
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Figure 4. Overview of the SoLIDFX Integrated Reverse Environment

of particular events. We now see that, to construct suchsult of a "select all functions” query. Understanding such a
highlights, we need the exact (row,column) locations of ev- table can be difficult. To facilitate the creation of ovewg

ery AST node and preprocessor directive from the parsingwe use the well-known 'table lens’ technique [24]: When
phase (Sec. 3.2). Code views can be zoomed out by dezoomed in, the table lens looks like a usual Excel table.
creasing the font size, up to the point when one code lineWhen zoomed out, each row becomes a pixel row colored
becomes a (colored) pixel line, thereby allowing one to and scaled to show the code metric values, so the entire table
overview larger amounts of code than using standard edi-becomes a set of vertical graphs. Clicking on the table col-

tors. umn headers sorts the respective columns on their values,
Queries can be applied in two ways, as follows. To per- ther_eby engt_)ling one to_quickly find th0f5e code _elements
form a querye.g.”select all function definitions with. pa- having a minimal or maximal value of a given metric.

rameters”, one first selects the query in the query view, fills ~ TheUML viewis a custom view showing UML class dia-
in the desired attribute®.g. the value forn in the query grams. The diagrams themselves are extracted from the fact
GUI, and clicks on the selection to query in the selection database using queries which search for classes, inhegitan
view. A new selection, containing the query’s output, is au- relations, and associations. Associations can be dediged
tomatically added to the selection view. Secondly, one canas function calls, variable uses, or type uses. The extiacte
right-click on any code element in the code view, exposing diagrams can be laid out by hand or automatically using
a menu with all queries which can take the clicked code el- the GraphViz library [25] or a custom graph-layout library
ement as input. Upon selection of a query, this is applied we developed. Moreover, class and method metrics can be
on the clicked code, and its result is added to the selectiondrawn atop of the laid out diagrams using icons scaled and
view. colored to show the metric values, following an extension
To browse the elements in a selection and their code met-Of the technique described in [26]. The combination of dia-
rics, if any, we provide a separate view calgadection mon- ~ 9rams and metrics enables users to perform various types of
itor. The selection monitor is essentially a table having the c0de quality and modularity assessments, as shown further
selection elements as rows and their textual representatio N S€c. 4.
code location, and various code metrics (if any) as columns. Besides these built-in views, external visualization $ool
Some selections can have thousands of elemetshe re- can be integrated within our IRE by writing appropriate data



BRI A 9 e iREE i HG 2 2Rt uch an external view(CAST). Next, we group the functions by file and %ort
which uses the SQLite database browser executable, withthe groups on descending value of th& C LO metric, us-

no modification, to visualize the data in a selectios, the ing the selection monitor widget. Figure 5 bottom shows a
code element ids, their actual code, and the metrics com-zoomed-out snapshot of this widget, focusing on two files
puted on it, saved as a SQL database table by a data exand B (more files can be examined, we only selected these
porter. This type of integration allows us to extend our IRE two for presentation clarity). Each pixel row shows the met-
by reusing several existing software analysis and visaaliz rics of one function. The long red bar at the top of fike
tion tools with a minimal amount of effort. External views indicates the most complex function in the system (denoted
are preferred when the interaction between the fact dagabas f1). Although complex, we see thit is also the best doc-
and the view is rather loose, and when the amount of dataumented (highest' LOC), largest (highest OC), and, in-

to be passed to the view is limited. In contrast, the built-in terestingly, in the top-two as number of C-cast&A(ST).
views are preferred in scenarios which heavily access theClearly, f1 is a highly complex function, but the developers

fact database at a fine-grained level. took extra care to comment it well.
Double-clicking the table row off1 opens up a code
4 Applications view showing all the selected function definitions and our

clicked f1 flashing (Fig. 5 top, see also the video). The

functions in this code view are colored to shtwo metrics

simultaneously, using a blue-to-red colormap:¢heC LO
metric (highlightfill color) and th&’ AST metric (highlight
border color). We see thdtl stands out as having both the

] ) fill and border in red (or dark gray in a monochrome print-

e Input: A given C++ code base developed by a third- ) i & being both compleandhaving many casts. In the
party teami(e. not the persons doing the analysis).  ggjaction monitor, we also see that the function having the

o Aim: Assess a given quality attribute.g.modularity, o5t castsf2 (located in file A), is also highly complex
maintainability, complexity) of a given C++ code base, (high CY C'LO), but is barely commented (Io@LOC).
and answer quality-related questions specific to eachthis may point to a redocumentation need (confirmed at
code base. _ . close code inspection).

e Method: The code base is analyzed using our C++  The exponential decrease of complexity shown by the
parser; several queries and metrics are computed OrcoloredC’y' CLO bar-graph at the bottom of Fig. 5 is typ-
the extracted fact database; the results are interactivelycy) 1o the entire wxWidgets code base. Its interpretation
examined using the G IDFX views and discussed s easy: there is a very small percentage of highly-complex
with the project stakeholders. code, the vast majority being of moderately low complex-

e Duration: Atypical analysis session takes a few hours ity The highly-complex code is well documented. All in

fron:] the initial code hand-over until the results al‘e. a”, we conclude that WXWidgetS has just a few Comp|exity
available. A complete code base assessment typi-hot-spots, and these are well explained.

cally takes three to six such sessions, where increas-
ingly refined questions and hypotheses are tested dur-4.2
ing the later sessions by means of specific queries on
narrowed-down parts of the code base.

In the following, four such code assessments are de-
scribed.

We illustrate now the usage of the query and metrics en-
gines added to &LIDFX with several examples from a
number of industrial projects The main characteristics of
the applications discussed here are as follows:

Modularity Assessment

In this second application, the stakeholders were inter-
ested to assess the overall modularity of two given subsys-
tems of a commercial database solution. The assessment
Lo . was needed as a first step in a subsequent porting process,
4.1 Finding Complexity Hot-Spots i.e. deciding which subsystems (if any) can be decoupled

] o ) . and ported in an incremental approach.

In the first application, we examine the complexity of oy this, we first extracted the static call graphs from the
the wxWidgets code base, one of the most popular C++5qe, ysing a custom designed query that looks for func-
GUlI libraries having over 500 classes and 500 KLOC [27]. tion definitions and function calls, and links calls to thé-de
After extraction, we query all function definitions and jnitions using a technique which basically reproduces the
compute several metrics on them: lines of code(), working of a classical linker. This query also naturally and
comment lines € LOC), McCabe’s cyclomatic complgx- easily handles constructor, conversion-operator, and-ove
ity (CYCLO), and number of C-style cast expressions |gaded operator calls, since our C++ parser extracts and

“A video showing our tool is available atwv. sol i dsour ce. nl / saves all this information in the AST. Using our query API,

vi deo/ Sol i dFX/ Sol i dFX. ht m the complete code for the call graph extraction is under
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Figure 5. Finding complexity hot-spots in the wxWidgets cod e base

100 LOC of C++. Besides the call graphs, we also extract databaseand that emphcore does not chlfiraries. This
the system hierarchy, seen as methods-classes-filegdolde information can be directly used in the design of a phased
The call graph and hierarchy trees are next exported and vi-porting plan. In contrast, the right subsystem, albeit of a
sualized by Call-i-Grapher, a third-party tool designed to similar size in terms of methods and classes, is far less mod-
display large hierarchical graphs [28]. The hierarchy is ular. Here, we basically have two files which call each other
shown as a set of concentric rings, the sectors of which in-in a highly complex way. There is little call structure to see
dicate methods, classes, and files (from inside to the out-so little hope that one can easily split these files into senall
side) (Fig. 6). Call relations are drawn as splines, bundledloosely coupled units and port these incrementally. Here,
to indicate relations emerging from, or going to, the same we used the edge color to show the call type: green indicates
hierarchy ancestor, as described in [28]. static calls, whereas blue shows virtual calls. This infarm
Figure 6 shows immediately a striking difference. The tion is immediately available from a FunctionQuery where
left subsystem shown is quite modular. We can easily dis-we ask for functions having the r t ual attribute set. The
cern the way its five subsystems (indicated by labels) call blue edges appear to be somewhat bundled, so there is still
each other. Edge colors indicate the call direction: cgller some hope we can locate some interface classes (containing
are red (medium-gray in a monochrome print-out), callees mainly virtual functions) in this way.
are blue (dark gray in a monochrome print-out). We imme-  Overall, the stakeholders concluded that the left system
diately see, for example, thlbraries is only called from is modular and envisaged a phased porting with relatively
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it is not modular, and the porting should be not attempted attooltips (not shown in the image), allow us to quickly locate

this stage. the names of the most complex methods of the entire sys-
tem, found of the clasX. The most complex method has
4.3 Maintainability Assessment a McCabe value of 40, which is very large. Looking in de-

tail at the code ofX using a code view (Sec. 3.4), we could
later see that it was indeed very complex. However, there is

maintainability of a C++ code base implementing an editor &7 essential observation that the UML view lets us perform:

using OpenGL, wxWidgets, and the Standard Template Li- 1€ diagram shows us also that classs not referred to
brary (STL). The application was developed over a period diréctly from outside the visualization plug-in. Plug-ae

of several years by three persons. The last developer, thppthnal in this system, so their maintainability is fardes
worked for the second half of the period, did not have in the crucial than that of the system core. The lead developer rec-

end a clear idea of the entire code architecture. His manag°9nized the complex class as containing his own code,

ing architect was concerned about the code maintainability Which was indeed not yet cleaned up and refactored. Hence,
for which this developer could not give a clear indication. although maintaining this class is indeed hard, this proble
We started the analysis by extracting a number of classVill not propagate to the entire system, but stay confined

diagrams from the source code. The classes were Ioosely}'\"th'n the plug-in. Overall, the architect concluded tha t

grouped into diagrams manually by the developer, based Onentire system is in a satisfactory maintainability state] a

his intuition and insight as to which belong together (func- f€commended clean-up and refactoring work on the plug-in.

tionally or otherwise). As association relations, we cdnsi

ered method calls and referring to class types. Next, we4.4 Change Propagation Assessment

computed three metrics on the methods: the lines-of-code

(LOC), lines-of-comment-code({LOC), and McCabe’s We consider now the same editor code base as for the

cyclomatic complexity 'Y C LO). maintainability assessment (Sec. 4.3). During its develop
Figure 7 shows one of the extracted class diagrams, laidment, its architect noticed that coding due to change prop-

out automatically using GraphViz. Class heights are propor agation €.h. modifying an interface or data field that is

tional to their number of methods. Inheritance relatiores ar used frequently) consumed a higher-than-expected amount

drawn as black (bold) lines, while associations are drawn of time. In this fourth and last analysis, we want to assess

as light-gray (thin) lines, in order to reduce the visual<lu whether our system is resilient to changes. In other words:

ter. On this picture, the architect recognized three mdin su would a change in the code of a class trigger lots of changes

systems of the considered code base, along a Model-View-n other classes, due to data-dependencies?

In the third application, we are interested to assess the

Controller pattern: thelata modelcontaining the main ap- Figure 8 shows a UML diagram extracted from source
plication data structures; thasualization corecontaining code, as explained earlier in Sec. 4.3. For each method,
the control functions; and thesualization plug-incontain- we now compute two new metrics: the number of variables

ing rendering (viewing) functions. The diagram also shows read (NPUTS, respectively writenQUTPUTS. Metrics
that these subsystems are quite decoupled, which suggestsare sorted in decreasing order IBfPUTS and visualized
good maintainability. Further, we see the heavy use of a fewwith scaled bars, blue (dark gray in a monochrome print-
STL classes, mainly for the data model. This does not poseout) forINPUTSand purple (medium gray) f@UTPUTS
any maintenance problems, as it was agreed to use STL irBoth ranges ofNPUTSandOUTPUTSare set to the same
the system implementation from the beginning, and STL is value, since the metrics have the same dimensionality.
stable and well-documented software. We quickly see that there is no correlation betwéén
Atop the class icons, we visualized the compuie&C' PUTSandOUTPUTSvalues, but also discover some inter-
andCY C'LO metrics using colored bar-graphs. Long, red esting outliers. The class markedreads and writes a lot.
(medium gray) horizontal bars indicate high values. Thin, This class is responsible for the rendering of UML model
blue (dark gray) bars indicate low values. Within each ¢lass elements. Following the UML diagram, we discover it in-
the bar graphs are sorted from top to bottom in decreas-herits from aVisitor interface. Looking at its method signa-
ing order of theCY C'LO metric. Looking at Fig. 7 top, tures, we understand that it accepts objects of UML Data
we quickly discover an outlier class, marké&d in the vi- Model types through itd/isitor interface. A quick code
sualization plug-in subsystem. This class has the highestrowse of this class shows that the high read and write met-
CYCLO and LOC values in the entire system, and has rics are actually due to tHéisitor pattern implementation.
also many methods. All other classes have relatively smallSince this is a clean design pattern, we assess that thgstron
CYCLO andLOC values, as indicated by the thin bars.  dependency ot/MLModelVisualizerfrom the Data Model
Figure 7 bottom shows a zoomed-in view of the visual- subsystem is a safe, acceptable one.
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Figure 6. Call graph visualizations. Modular system (left) versus 'spaghetti code’ (right)

We also discover the clagsthat reads a lot of data (high  preprocessor expands it. Location information is needed
INPUTSmetrics on most of its methods). Looking at its as- to perform the code highlights (seeg. Fig. 5) and click-
sociation relations (arrows on the UML diagram), we dis- to-query mechanism. Error recovery is needed since all of
cover that this class hassinglerelation, which is actually  the four code bases considered here contained syntax errors
an arrow (read) pointing to thstd::pair class, which be-  and/or missing includes at the analysis time. Finally,filte
longs to the STL library. Since STL can be considered as aing improved the query speed by one order of magnitude
very stable component, we conclude that our clas$s also (Sec. 3.3.3).
resilient to change. It is interesting to consider whether all these features

Overall, our system’s classes have a low number of exter-could be offered by, or added to, another C++ parser than
nal data-dependencies. For those few with numerous readELSA. The set of mature available parsers for C++ is how-
and/or write dependencies as clasgeand B), we could ever extremely limited (Sec. 2). More importantly, even
examine these dependencies, by following the diagram’s re-fewer of those are open source and/or modularly designed to
lationships, and see that they point to stable componentseasily incorporate additions. At the present moment, we do
Allin all, we conclude that the system is stable with respect not know of any other C++ parser that could provide (with
to change propagation. or without additions) all the functionalities required byro

context.
5 Discussion 5.2 Querying

To assess the effectiveness of our proposed solution for
static analysis of C++ code bases, we refer again to its thre
main ingredients introduced in Sec. 1.

The query engine, designed using the visitor pattern and
Ghe user-designed query-trees, was extremely effective in
writing new queries. Once a basic set of around 40 queries
was developed, subsequent queries were coded quickly in
5.1 Parsing a matter of minutes, as a query takes on the average 40-50
XML lines. The query composition was used less than ex-
The extension of the tolerant heavyweightda parser pected, one preferring simply to cut-paste-modify exgstin
with preprocessor data, location information, error recov queries. This can be explained by the small code size of a
ery, and filtering was essential for its success in an inter- query. Also, it is fair to say that, so far, the stakeholders
active click-to-query environment such a®ISDFX. In- did not design their own queries, but relied on one of the
tegrating the preprocessor was needed since users want tauthors to do that, given that he was very fast in this task.
analyze the code as they have written it, and not as theThe efficiency of the query system proved to be sufficient
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for our interactive click-to query functionality. able space and is beyond the scope of this paper. We plan to

The examples presented in this paper involve only rel- do this in an upcoming publication.

atively simple metrics: lines of code, lines of comments,

cyclomatic complexity, number of read and written vari-

ables, and number of C casts. In turn, these involve sev- Although powerful, the visitor and query-tree combina-
eral queries: select comments, control statements, locakion is essentially a (flexible) pattern matching engine. As
and global variables and function parameters, functioh cal already noted in Sec. 3.3, more complex, context-dependent
graphs, class inheritance relations, and C cast expression queries, or fuzzy queries, suchas needed to support the
The selection of the examples and their subsequent querieMISRA standard [29], have to be implemented manually
and metrics was done on purpose to illustrate our enginesbased on the AST iterators which are part of our query API.
on relatively simple scenarios that are relevant and applyHowever, since all these queries essentially subclass-a sin
to a large audience, and demonstrate the generic charactegle Query interface (Fig. 3), they are directly available to
of our solution. It is important to stress again that we can be composed with existing queries. As our experience pro-
design more complex queries, metrics, and scenarios withgresses, we plan to work on higher-level refinements of the
the same ease as for the simpler cases. However, detailingiuery API, such as detection of more complex design pat-
such scenarios (and their code bases) would take considerterns, and possibly program slicing and dataflow analysis.
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5.3 Presentation of a proposed static analysis tool or technique were the high
difficulty of setting up an analysis project, the steep learn
The basic views already existing im8IDFX, i.e. the ing curve of a set of hybrid tools, and the need to program

code view, selection view, and UML view, seem so far to (be it even only as scripting) in order to use a toolset. Few
be sufficient to allow a simple but effective usage of the stakeholders in the software industry are willing to invest
query and metric facilities solely via the GUI. The single the effort required in all the above, and few tools offer the
largest request for a new presentation interface from userghree-element integration we propose here.

was to allow presenting relations and source code in a sin- For theextractionphase, we also noticed that using the
gle view, e.gto show the declaration locations of various SOLIDFX IRE was not much more effective than using

symbols directly in the code editor, at the locations where scripted command-line tools, which is often performed in
they are used. As we are not aware of the existence of suctbatch mode [6, 7, 5, 10]. However, for the exploration
a technique, we are working in the direction of designing a phase, where new queriesd presentations need to be

new visualization to support this. specified and combined on-the-fly, the IRE and its tight tool
integration were considerably more productive than using

5.4 General remarks the same tools standalone, connected by small scripts and
data files.

All'in all, we believe that the integration of our query-
and-metrics engine in thedBIDFX IRE largely improved 6 Acknowledgements
the usefulness of this tool, which can now do full C++
parsing, custom analyses, and visualization, all in one en- The work presented here on the design ofL.® FXhas
vironment. As noticed during the applications described started in early 2005. As for most real-world software tpols
here (and others), this integration considerably shottems feedback from a wide range of software engineers, includ-
time needed from code-base acquisition to assessing speing potential users and customers, is crucial for our work.
cific questions related to its static analysis. We beliega® th We are truly grateful to the discussions fostered by prof.
this tight feature integration is paramount to the success.Derrick Kourie on our work on software visualization, his
During numerous pilot projects, as early as [17], we ob- generous support that made it possible for us to present our
served that some of the greatest obstacles in the acceptanagork on visual C/C++ software analysis at three consec-
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strong support that has enabled us to start several joint

projects on static software analysis with several banking

and insurance industry companies in the course of the year [6]
2008.

7 Conclusions

(7]

8
We have presented the design of an open query frame- 18]

work for static C++ code analysis and its integration in
SoLIDFX, an Integrated Reverse Engineering environment

for C and C++. Our query framework involved the mod-

ifications of an existing heavyweight C++ parser to add

preprocessor support, location information, parse egor r

covery, and output filtering, and the design and imple-

(9]

[10]

mentation of a new composable query APl based on altll
pattern-matching visitor architecture. The integratibthe
modified parser and query API in theoSIDFXintegrated
reverse-engineering environment offers a simple, but pow-[12]

erful, way to execute a number of code analyses pertaining

to maintenance, refactoring, and software understaniing,

a visual manner, by simple point-and-click operations on

[13]

the code artifacts. Due to the high integration of querying [14]

with parsing and visualization, our solution enables users

to conduct reverse-engineering sessions with the same ease

as software development is traditionally done in IDEs. We [15]
illustrated the application of our solution to four typice-
sessments involving static analysis of C++ code bases.

We are currently working on extending our C++ static

query framework in several directions. Refined static infor [16]
mation can be queried from the basic facts, such as con-
trol flow and data flow graphs, leading to more complex [17)

and useful safety analyses. Secondly, we are working to
implement a number of predefined ready-to-use analysis

packages atop our query system, such as checking for the
MISRA C Standard [29], thereby making our framework [1g]

more readily applicable in a number of industry use-cases.
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