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Abstract 

Configuration management tools have become well and widely accepted by the software industry. 
Software Configuration Management (SCM) systems hold minute information about the entire evolution of 
complex software systems and thus represent a good source for process accounting and auditing. However, it is 
still difficult to use the entire spectrum of information such tools maintain. Currently, significant effort is done in 
the direction of mining this kind of software repositories for extracting data to supports relevant assessments. 

In this article we propose a concerted set of visualization tools and techniques for the assessment of 
software evolution based on the information stored into SCM systems. Firstly, we introduce a generic way to 
obtain models of source code at different levels of detail and from different perspectives. Secondly, we propose a 
set of visual representations and techniques to efficiently and effectively depict the evolution of these code 
models. These techniques target specific questions and assessments, from the detailed code developer perspective 
to the overview required by system architects and project managers. We detail the concrete implementation of 
two such code models and corresponding visual representations. The file view describes code change at line level 
across multiple versions of a single file, or small number of files. The project view shows changes at file level 
across complete software projects. All our views share the same visual and interactive techniques, enabling users 
to easily switch among and correlate between them. We implement our visual techniques to quickly and 
compactly display and navigate the evolution of tens of thousands of artifacts on a single screen. 

We demonstrate our techniques with several use cases performed on real world, industry-size code bases 
and outline the concrete findings and ways our visualizations helped understanding various types of code changes. 
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1 Introduction 
Software Configuration Management (SCM) systems are an essential ingredient of effectively 

managing large-scale software development projects. Due to the growing complexity and size of 
industry projects, management systems that automate, help and/or enforce a specific development, 
testing and deployment process, have become a “must have” [5].  

One of the main characteristics of a SCM system is that it maintains a history of changes done in 
the structure and contents of the managed project. This serves primarily the very precise goal of 
navigating to and retrieving a specific version in the evolution of the project. However, SCM systems 
and the information they maintain enable also a large variety of possibilities that fall outside the above 
very precise goal. The intrinsically maintained system evolution information is a very convenient 
starting point for empirically understanding the software development process and structure. One of 
the main areas that can benefit from this information is the software maintenance of large projects. 

Industry surveys show that, in the last decade, maintenance and evolution exceeded 90% of the 
total software development costs [11], a problem referred to as the legacy crisis [30]. It is, therefore, 
of paramount importance to bring these costs down. This challenge is addressed on two fronts, as 
follows. The preventive approach tries to improve the overall quality of a system upfront, at design 
time. Many tools and techniques exist to assess and improve the design-time quality attributes 
[10][18]. However, the sheer dynamics of the software construction process, its high variability, and 
the quick change of requirements and specifications make such an approach either cost-ineffective or 
even inapplicable in many cases. Increasingly popular software development methodologies, such as 
extreme programming [3], explicitly acknowledge the high dynamics of software and thus fit the 
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preventive approach to a very limited extent only. The corrective approach aims to facilitate the 
maintenance phase itself, and is supported by program and process understanding and fault 
localization tools (e.g. [9], [20], [35]). In most projects, however, it is often the case that appropriate 
documentation does not exist, or it is ‘out of sync’ with the implementation. In such cases, the code 
evolution information maintained on a SCM system (assuming such a system is used) is the one and 
only up-to-date, definitive reference material available. Efficiently exploiting this information can 
greatly help the maintainers to understand and manage the evolving project.  

Many tools have been designed to help revealing the structure of software systems starting from 
source code (e.g. [9], [33], [35], and [36]). Most such tools focus on visualizing high-level software 
abstraction, such as classes, modules, and packages, extracted from source code in a reverse 
engineering process. However, such tools do not show lower-level software changes, such as the 
many, minute source code edits done during debugging. Moreover, such tools often focus on a fixed 
system structural view that does not show all changes the code has undergone in time. Various graph-
drawing techniques, such as the one proposed by Collberg et al. [6], tried to overcome this limitation 
by showing also the temporal dimension of software structures and mechanisms evolution. However, 
this still to be validated approach does not seem to scale well on real-life code bases. Moreover, the 
visual graph representations used are often perceived as too abstract by the actual developers who 
think in terms of the source code itself. At the other end of the granularity spectrum, the SeeSoft tool 
[9] uses a line-based visual approach. Source files are seen as a set of code lines, each of which is 
drawn as a pixel line. This allows visualizing many thousands of lines on a single screen. Several such 
techniques and tools have been proposed, such as Aspect Browser [17], Bee / Hive [29], sv3D [24] 
and Augur [14]. While these approaches succeed in revealing structure and change dependencies 
between code fragments, they only offer snapshots in time, and do not reveal changes in the global 
context of an entire project life span. A global overview would allow discovering that problems in a 
specific part of the code appear after another part was changed. This kind of insight is easier to get 
when visualizing the context of an entire project evolution. In contrast, intensive debugging and 
runtime analysis is needed to get it from a single code snapshot. Another, useful case of global 
investigations is to identify the files that contain tightly coupled implementations. Such files can be 
easily identified in a global context as they most likely have a similar evolution. In contrast, detailed 
manual cross-file analysis has to be performed in order to achieve the same result using a static system 
visualization.  

In this paper, we propose and discuss a set of new techniques for visually assessing the entire 
evolution of software projects using the evolution information contained in SCM systems. Typical 
questions we try to answer with our techniques are: 

- What code was added, removed, or altered and when? Where did the changes take place? 
- Who performed these modifications of the code? 
- Which parts of the code are unstable? 
- How are source code changes correlated? 
- How are the development tasks distributed among the programmers? 
- What is the context in which a piece of code appeared?  
- What are the project files that belong and/or are modified together? 

We validated our techniques by implementing them in a toolset that seamlessly combines SCM 
data extraction with analysis and visualization. We present in this paper results of using our toolset for 
the assessment of several industry-size software projects: the FreeBSD Linux distribution [13], the 
ROBOCOP component framework [19], and the VTK library [39]. 

In Section 2 we overview existing efforts in analyzing the evolution information encapsulated in 
SCM systems. Section 3 gives a formal description of the software evolution data that we explore 
using visual means. Section 4 presents the visual techniques and methods we propose for the 
assessment of evolution. In sections 5, 6, 7 we present three user studies we performed to validate the 
proposed techniques, and detail the types of questions our toolset was able to answer. Section 8 
reflects on the open issues and possible ways to address them. 
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2 Background 
The huge potential of the information stored on SCMs, as a starting point for empirical studies on 

software development, has been only recently acknowledged by the research community. The massive 
growth in popularity and spread of SCM systems, greatly influenced by open source projects like CVS 
[8] and Subversion [34], opened new possibilities in the areas of project accounting, auditing and 
understanding. The efforts have been concentrated so far in two directions of research: data mining 
and data visualization. 

Data mining research focuses on processing and extracting relevant information from the evolution 
data stored into SCM systems. However, these systems have not been designed with the support for 
empirical studies in mind, so they often lack direct access to important evolution information. Most of 
this kind of information is usually inferred from the “raw” information that the SCMs contain, by the 
data mining tools themselves. Many methods have been proposed to offer access to higher level, 
aggregated information about the project evolution. Fischer et al. propose in [12] a novel method to 
extend the evolution data contained in the SCMs with information about file merge points. 
Additionally, they present the benefits of integrating SCM evolution data with specific information 
about bug tracking.  Śliwerski et al. [32] propose a similar integration to predict the introduction of 
defects in the code. Recovering of SCM transactions has been more extensively addressed. Gall [15], 
German [16] and Mockus [25] propose transaction recovery methods based on a fixed time windows. 
Zimmermann and Weißgerber built on this work, and propose in [45] better mechanisms that involve 
sliding windows and information acquired from the commit mails. Ball proposes in [2] a new metric 
for class cohesion based on the SCM extracted probability of classes being modified together. 
Relations between classes based on the change similarities have been proposed also by Bieman et al. 
[4] and Gall et al. [15]. Relations between finer grained building blocks, like functions, are also 
addressed by Zimmermann et al. in [43][44] and by Ying et al. in [40]. Lopez-Fernandez et al. [23] 
apply general social network analysis methods on the information stored in SCMs to characterize the 
development process of industry size projects and find similarities between them. Ohira et al. [27] 
exploit the user information stored in SCMs to build cross process social networks for easy sharing of 
knowledge. 

Data visualization, the second research direction, takes a different path. Here, the focus is on how 
to make the large amount of evolution information effectively available to the user. Data visualization 
techniques make few or no assumptions about the data – the goal is to let the user discover patterns 
and trends by himself rather than coding pattern models to be searched for in the mining process. 
Consequently, visualization tools strive to present the data in a form that is as intuitive and familiar as 
possible to users. SeeSoft [9] is the first tool that uses a direct ‘code line to pixel line’ visual mapping. 
Color is used to show code fragments that correspond to a given modification request. The Aspect 
Browser [17] uses regular expressions to locate specific artifacts (e.g. key words) and then it 
visualizes their distribution. Augur [14], combines in a single visual frame information about both 
artifacts and activities of a software project at a specific moment. The above tools are successful in 
revealing the line-based structure of software systems, and uncover code line-level change 
dependencies at given moments in time. However, they do not provide insight into code attributes and 
structural changes made throughout an entire project duration. 

As a first step in this direction, UNIX’s gdiff and its Windows version WinDiff visualize code 
differences between only two versions of a given file by depicting the line insertions, deletions, and 
modifications computed by the diff utility. However effective for comparing pairs of file versions, 
such tools cannot give an evolution overview of real-life projects that have thousands of files, each 
with hundreds of versions. Furthermore, they do not exploit the entire information potential of SCMs, 
such as information related to the time and author of changes between two versions. 

Recent efforts try to overcome these shortcomings. The technique proposed by Collberg et al. [6] 
visualizes the software structures and mechanisms evolution using a sequence of graphs. However, 
their approach does not seem to scale well on real-life data sets. Lanza proposes in [21] a technique to 
visualize the evolution of object-oriented software systems at class level. Closely related, Wu et al. 
[42] visualize the evolution of entire projects at file level and visually emphasizes the moments of 
evolution. These methods scale very well with industry-size systems and provide comprehensive 
evolution overviews.  Still, they do not offer an easy way to determine the classes and files that have a 
similar evolution. Furthermore, they address a relatively high granularity level and provide less insight 
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into the lower-level system changes, such as the many, minute source code edits done during 
debugging. 

We generalize the above ideas and advocate the visualization of software evolution at different 
levels of detail and from different perspectives. Our approach is described next. 

3 Data model 
The examples presented in this paper contain data extracted from public CVS servers. CVS [8] is 

one of the most popular SCMs. Our approach and techniques are, nevertheless, generic, as we use 
concepts and structures that naturally exist in most SCM systems we are aware of. In this section, we 
describe our assumptions of these concepts and structures by means of a data model. 
The central element of a structure-based SCM system is a repository that stores all versions of a given 
file. A repository R is a finite set of files. Let NF be the size of R , then: 

 { }NFiFR i ..1==  

Each file iF is defined as a set of iNV versions: 

{ }iiji NVvVF .. , 1==  

Each version is a tuple containing several attributes: the unique version id, the author who 
committed it to the repository, the time when it was committed, a log message and its source code: 

ge,codedate,messaauthoridV ij ,,, =  

The first four elements of the above tuple (id, author, date and message) are unstructured attributes. 
A file version V can have any number of such attributes as the SCM system chooses to store, each 
attribute having some value. To keep the notation simple we drop the file index i in the following 
definitions. The fifth element (code) is modeled as a sequential structure, i.e. as a set of entities: 

{ }ii NEientitycode ..| 1==  

These entities can have different granularity levels, i.e. they can be code lines, scopes, functions, 
classes, namespaces, or even entire files, i.e. there can be different, alternative code data models. We 
make no assumptions whatsoever on how the versions are internally stored on the server. Our 
approach to modeling the evolution of this type of data is straightforward and maintains a generic 
form that makes it suitable for instantiation at different levels of detail.  
Clearly, to visualize evolution, we need a way to measure change. We say two versions Vi and Vj of 
the same file differ if any element of their tuples differs from the corresponding element. Finding 
differences in the id, author, date, and message attributes is trivial. For the code attribute, we must 
compare the source code )( jVcode and )( 1+jVcode of two consecutive versions jV  and 1+jV . For 

this, we consider both jV  and 1+jV  at the same granularity level, as it makes little sense to compare 
e.g. classes with code lines. If we choose the code line granularity level, we can use for comparison a 
tool like UNIX’s diff, which reports the inserted and deleted entities in 1+jV with respect to jV . All 

entities not deleted or inserted in 1+jV are defined as constant (not modified). Finally, entities reported 
as both deleted and inserted in some version are defined as modified (edited). We denote by li the ith 
entity of the version we talk about in some given context. Using diff, we can also find which 
entities in 1+jV match constant (or modified) entities in jV . For one such entity, we call the complete 
set of matching occurrences in all versions, i.e. the transitive closure of the above match relation, a 
global entity l. For every li in some version i, )( ilL  denotes the global entity associated with li. Note 
that this technique can be applied at any granularity level, as long as we avail of a diff operator for 
the entity types of that level. Indeed, in Section 6, we shall demonstrate it for the component 
granularity level. 
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From these data, we next build several functional characterizations of the source code evolution. 
The most important is the global entity position: 

( ) NNN →×:, iljG  

The purpose of this characterization is to assign to each entity a unique global position identifier 
that respects the local (i.e. inside one version) order relation. We can explain ),( iljG  by a graph 

analogy as follows. For every global entity l, we build a graph node )(lN . Nodes are created by 

scanning versions jV in increasing order of j, and entities li in each version in increasing order of i. 
For each consecutives entities li and li+1 in one version, we set a directed arc from 

))(( ilLN to ))(( 1+ilLN . Finally, when a node N is inserted between two other nodes AN  and 

BN , we set an arc from any already existing node between AN  and BN  to N . Figure 1 shows three 
versions of a file with lines as entities and their corresponding graph. This graph is directed and 
acyclic, and gives a total order relation between all code lines in all versions of a given file. The node 
corresponding to the global line l before which no other line existed during the whole project is the 
only one having only outgoing arcs.  

We label this ‘start node’ (e.g. node “i” in Figure 1) with zero and all other nodes with the maximal 
path length (defined as number of arcs) to the start node, e.g. by doing a topological sort of the graph 
(see [7]). We obtain then, for every line li in every version jV , that ( ) ))((, lNlabelljG i = , where 

)( ilLl = . This gives a unique label to all code lines written during development, keeps the partial 
line orders implied by the different versions in the project, and ensures that lines in different versions 
identified by diff as instances of the same global line have the same label. 
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Figure 1 Global line position and corresponding graph analogy 

A second functional characterization is the entity status 
( ) STATESijS →×NN:,  

which characterizes the status of entity with global position i in version jV . S is computed by 

comparing the current entity lC at global position i in version jV with entities lP and lN having the same 

global position i in the previous and next versions 1−jV  and 1+jV  respectively. The STATES set 
contains the values: 

Value Condition 
constant { lP exists in 1−jV and is identical with lC } 
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modified { lP exists in 1−jV  but differs from lC, or lN exists in 1+jV but differs from lC } 

deleted { lP exists in 1−jV and lC does not exist in jV or ),1( ijS −  = deleted} 

inserted { lN exists in 1+jV and lC does not exist in jV or ),1( ijS +  = inserted} 

modified by deletion { lC is modified, and )1,( +ijS = deleted OR modified by deletion} 

Note: 
This signals that modification occurred in conjunction with deletion, and 
therefore it may have a larger impact. That is, the modified entity might be 
a completely new one. 

modified by insertion { lN is modified, and )1,( +ijS = inserted OR modified by insertion} 

Note: 
This signals that modification occurred in conjunction with an insertion, 
and therefore it may have a larger impact. That is, the modified entity might 
be a completely new one. 

Further information can be extracted from the source code. Using an appropriate parser one can 
extract structural information at each granularity level. We use for example a fuzzy parser with a user 
customizable grammar to extract information about constructs such as blocks, comments, 
preprocessor macros, at line level. This produces the construct attribute 

( ) GrammarljC i →×NN:,  

which describes, for every entity li in every version jV , the grammar construct that entity belongs to. 
We will use this information to visualize the structure of a given version in Section 4. 

Finally, the last functional characterization we introduce is the file position: 
( ) { } { }NFNFiP ....: 11 →  

This gives the position of a file in its corresponding project. Various instances of this 
characterization may exist, each offering a specific type of insight in the evolution of the system. In 
the examples we present in this paper, we use as file position the results inferred from different 
continuous or discrete metrics such as the file creation time, or the change activity measure (see 
Section 7). This enables the user to easily make correlations between the project files based on the 
metric values and the other entity-based functional characterizations. 

Multiple levels of detail can be modeled using the functional characterizations presented in this 
section, by assigning various granularity levels to the entities. The examples we present in this paper 
address two extreme cases: the lowest granularity level, i.e. the line level, and the highest, i.e. the file 
level. The same mechanisms apply, nevertheless, when visualizing the project evolution at scope, 
function, class, namespace, package, or some other desired level.  
We next detail the techniques used to map the data model described in this section on visual elements.  

4 Visualization model 
Our work builds on the assumption that developers are most comfortable with visualizations that 

present the code in the same spatial context in which they construct it [9]. Since software maintenance 
is mainly done at code level, we decided to use a code-based approach to visualize the software 
evolution. Our main concern was to allow users to easily perform investigations by minimizing the 
cognitive overhead of multiple representations for the same data. For this, all our visualization 
techniques use a single-screen dense-pixel display for visualizing evolution at any given level of 
detail. Moreover, we integrated our techniques as separate views in the same toolset, so that users can 
easily switch between tasks such as opening a new repository, browsing through it, and requesting a 
detailed code-level view. We have implemented the above as an integrated toolset for SCM data 
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extraction, analysis and visualization. Currently, this tool set contains two applications: CVSscan and 
CVSgrab. CVSscan visualizes the evolution of code lines as entities across a small number of files 
(i.e. it offers a file view on software evolution). CVSgrab visualizes the evolution of files as entities, 
across entire software projects (i.e. it offers a project view on software evolution). In the following, we 
detail the visualization techniques and methods used in CVSscan and CVSgrab. In sections 5, 6, and 
7, we use CVSscan and CVSgrab to validate the presented methods and techniques on real-life, 
industry-size software projects. 

4.1 Dimensions 
Similarly to previous code-based software representations ([9], [17], [14]) we represent every 

entity (e.g. code line) as a pixel line on the screen. We took the decision to use a 2D representation. 
Our need to visualize many attributes together may first suggest using a 3D view. However, we chose 
for 2D in order to have a simple and fast user interface, no occlusion problems and viewpoint choice 
problems, and a visual layout perceived as simple for code developers. The main questions we next 
had to answer were how to layout the entity representations in a plane, and how to use color and other 
visual cues for encoding data attributes. 

Our layout approach is different in one major respect from previous code-based layouts. We 
visualize on the same screen all versions that an entity has during its evolution (Figure 2), instead of 
all entities in a project at a given time. The horizontal axis encodes the time. The vertical one the 
entity position li and the position of the containing file in the project. 

 Two main sampling strategies are possible on the time axis: version-uniform sampling and time-
uniform sampling.  In the version-uniform sampling, each version is shown as a vertical stripe 
composed of horizontal pixel bars depicting entities (Figure 2.a). This generates uniform incremental 
views on the evolution that are more compact and offer the same resolution both for ‘punctuated’ 
evolution moments, i.e. sharp variations of project size denoting important changes [42], and for 
equilibrium periods. This kind of sampling is more efficient for a set of entities that have many 
common change moments, such as all entities that belong to the same file, but it works as well for 
entities that belong to different files. For time-uniform sampling, each entity appears as a horizontal 
stripe, segmented according to its change moments (Figure 2.b).  This generates views that are more 
suitable for placing the project evolution in the overall context, with punctuated and equilibrium 
periods, but makes correlation more difficult in the punctuated evolution area, due to lack of visual 
resolution. Both samplings are illustrated by examples in Figure 5 and Figure 7. 

 

 a) 

V1 V2 V3 V4 V5
File A 

 Time 

 Entity position in file
b)

V1 V2 V3
V4

V5
File A

Time 

 Entity position in file

 
Figure 2: Use of horizontal time axis in code-based visualizations 
a) version-uniform time sampling b) time-uniform time sampling 

The vertical axis has a double role. First, it gives locally the position of an entity inside the 
containing file (e.g. the local entity position). Second, it gives globally the position of the file in the 
project it belongs to (i.e. file position) when the contents of more files are displayed in one image. 
Figure 3 depicts an example of usage for the vertical axis for two files “a.cpp” and “b.cpp” in 
combination with a time-uniform sampling on the horizontal axis. The entities are arranged according 
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to their position in the containing file. The files are arranged in alphabetical order. For a concrete 
example, see Figure 7. 

 Time 

 Entity position in file

File 1 
(a.cpp) 

File position / order 

File 2 
(b.cpp) 

 Entity position in file

 
Figure 3: Vertical entity/file position axis: enitites are arranged according to their position in 

the file; files are arranged in alphabetical order 

For the vertical layout of entities within one file strip, we propose two approaches. The first one, 
called file-based layout, uses as y coordinate the local entity position li (Figure 4.a). This layout offers 
an intuitive ‘classical’ view on file organization and size evolution, similar to [9]. The second 
approach, called entity-based layout, uses as y coordinate the global entity position ( )iljG ,  (Figure 
4.b). While this preserves the order of entity of the same version, it introduces empty spaces where 
entities have been previously deleted or will be inserted in a future version. In this layout, each global 
entity l has a fixed y position throughout the whole visualization. This allows easy identification of 
software entities that stay constant in time, or get inserted or deleted. Both approaches are illustrated 
by real data in Figure 5. 

To show various attributes, different color encodings may be used for the entity status, construct 
and author functional characterizations of a version. We use a customizable color map to indicate the 
status of entities in a given version. For the construct attribute (e.g. blocks, comments) we use a 
customizable color map, and modulate luminance to encode the nesting level. Finally, we use a fixed 
set of perceptually different colors to encode the entity authors. At each moment, one color scheme is 
active, such that the user can study the time evolution of its corresponding data attribute. When 
interesting patterns are spotted, one can switch to another scheme to get more detailed insight in the 
matter. 

 

a) 

Deleted  
 entities Entities to be 

inserted

b)

 Constant enity  New entity Legend 

 Local entity position

Versions 

Global entity position

Versions 

 
Figure 4: Entity layout with a version-uniform time sampling: 

 a) file-based b) entity -based 

Next we present two examples of concrete implementations for the techniques we propose: the file 
view, which describes code changes at line level across multiple versions of a single file (or a small 
number of files), and the project view, which shows changes at file level across complete software 
projects. 
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File view 

Figure 5 shows the visualization of a file evolution through 65 versions using CVSscan. CVSscan 
provides a file view on the software evolution. It uses the code line as level of detail for the entity 
granularity, and a version-uniform sampling of the time axis. In this example color encodes line (i.e. 
entity) status: green denotes constant, yellow modified, red modified by deletion, and light blue 
modified by insertion respectively. Additionally, in the line-based layout (bottom), light gray shows 
inserted and deleted lines. The file-based layout (top) clearly shows the file size evolution and allows 
spotting the stabilization phase occurring in the last third of the project. Here, the file size has a small 
decrease corresponding to code cleanup, followed by a relatively stable evolution corresponding to 
testing and debugging. Yellow fragments correspond to areas that need reworking during the 
debugging phase. 

  

stabilization phase 

 
Figure 5: Line status visualization with a version-uniform time sampling.  

File-based (top) and line (i.e. entity)-based layouts (bottom) 

Figure 6 illustrates different color encodings on a zoom-in of the line-based layout in Figure 5 
(bottom). In Figure 6.a, we use yellow to encode lines that suffer modifications when passing from 
one version to another, as shown in the highlight. Since the modified state is symmetric (see Section 
3), yellow lines always appear in pairs. Switching to the color scheme that encodes the construct 
attribute (Figure 6.b) enables the user to discover that the modified piece of code is in a comment, 
encoded by the dark green color. This means the modification does not actually alter the code 
functionality. Finally, the author attribute (Figure 6.c) shows the developer that performed the 
modification, (e.g. the purple one in our highlight). 

 

a) b) c)  
Figure 6: Attribute encoding: 

 a) line status; b) construct; c) author 
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Project view 

Figure 7 uses CVSgrab to visualize the evolution of a project containing 28 files across up to 20 
version spanning 4 development years. CVSgrab provides a project view on the software evolution. It 
uses the file as level of detail for the entities and a time-uniform sampling of the horizontal axis. In the 
depicted example color encodes the author responsible for a given commit – different colors show 
different authors. Files are arranged in order of creation time, from top to bottom. One can easily 
identify in Figure 7 the main contributors and the punctuated evolution moment that occurs around the 
middle of the development period. 

 

Punctuated evolution

creation 
time 

 
Figure 7: File author visualization with a time-uniform sampling and files arranged in order of 

creation time 

4.2 Metric Views 
A key factor in understanding the patterns revealed by evolution visualization is to correlate them 

with other information about the software. Besides the code-based visualization of code evolution we 
presented so far, we propose using additional metric views and a novel text view on selected code 
fragments (Figure 8). 

 
 
  

Evolution view

Code view 

Vertical  
metric view Horizontal 

metric view 

 
Figure 8: Multiple code views in CVSscan 

The metric views encode time and entity-dependent data and show these with vertical, respectively 
horizontal color bars to complement the evolution visualization. Different metrics are available. In 
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Figure 9, we show three proposed horizontal metric bars that illustrate, for each version, its number of 
entities or its author for a version-uniform sampling on the time axis, and the activity density for a 
time-uniform sampling. The top-most metric (version size) uses a classical blue-to-red colormap, 
where blue indicates low values, green average ones, and red high values. The middle metric (version 
author) uses a simple hue-to-author encoding: every author gets a distinct hue from a predefined 
palette. The lowermost metric (activity density) uses a simple graph plot where the graph height 
indicates the metric value. 

Similarly, the vertical metric bars can display various metrics computed on the entire evolution of 
an entity for a given global entity position, e.g. the entity life time, the entity similarity to a reference 
entity, the entity activity intensity, and so on. Concrete examples of using metric bars are given 
throughout the paper (e.g. Figure 12, Figure 13, Figure 21). 

  Version uniform
sampling  a) 

 b) 

 c) 

Version uniform
sampling 

Time uniform
sampling 2000 2001 

 
Figure 9: Horizontal metric bars: a) version size; b) version author; c) activity density 

4.3 Code View 
The code view offers a detailed text look at the actual source code. Users can select the code to be 

displayed by sweeping the mouse in the evolution view. Vertical brushing, i.e. moving the mouse 
over, the code evolution area scrolls through the program code at a specific moment, whereas 
horizontal brushing, for example over the entity-based layout (Section 4.1), goes through a given 
entity’s evolution in time. 

An important issue we address in our work is how to correlate the code and evolution views, when 
the latter uses an entity-based layout. The question is what to display when the user brushes over an 
empty space in the evolution view. This space corresponds to deleted or inserted entity status values, 
i.e. the code at the mouse position was deleted in a previous version or will be inserted in a future 
version (e.g. the light gray areas in Figure 5). Freezing the code display would create a sensation of 
scrolling disruption, as the mouse moves but the text doesn’t change. Displaying code from a different 
version than the one specified by the mouse position would be wrong. 

We solve this problem by a new type of code display. We use two text layers to display the code 
around the brushed global entity position both from the version under the mouse and from versions in 
which this position does not refer to an empty space (Figure 10).  

  

evolution 
view 

mouse 
position 

Layer 
A 

Layer
B  

Figure 10: Two-layered code view correlated with a version-uniform sampling entity layout 

While the first layer (A) freezes when the user brushes over an empty region in the evolution view, 
the second layer (B) pops-up, and scrolls through the code that has been deleted, or will be later 
inserted at the mouse location. This creates a smooth feeling of scrolling continuity during browsing. 
At the same time, it preserves the context of the selected version (layer A) and gives also a detailed, 
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text level peek, at the code evolution (layer B). The three motions (mouse, layer A scroll, layer B 
scroll) are shown also by the captions 1, 2, and 3 in Figure 12. 

We must now consider how to assess the code evolution shown by layer B. The problem is that 
lines of code corresponding to consecutive global entity positions might not coexist in the same 
version. In other words, layer B consecutively displays code lines that may not belong to one single 
version. We need a way to correlate this code with the evolution view. We achieve this by showing 
the entities’ lifetimes as dark background areas in layer B (Figure 11). Finally, we indicate the author 
of each line by colored bars along the vertical borders of the code view (Figure 10). 

Summarizing, the code view offers a detailed look on a specific global entity position in a selected 
version, including information about its evolution and the developers that make it happen. We use this 
view in CVSscan to correlate the line evolution with detailed line information. 

 
 
 

2
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versionlifetime

of line 1
lifetime
of line 2

 
Figure 11: Code view, layer B. Line 1 is deleted before line 2 appears, i.e. they do not coexist 

4.4 User Interaction 
In addition to the described visualization techniques, our toolset offers a wide range of interaction 

means to facilitate the navigation of data. We describe below, using the well-accepted perspective 
proposed by Shneiderman [31], the palette of interactive exploration instruments we provide. All 
instruments use a point-and-click approach, making the entire exploration very simple to use. Tool 
snapshots illustrating these mechanisms are shown in Figure 12 and Figure 13. 

Our toolset offers an intuitive overview on the evolution of software in a single 2D image, even 
when the number of entities is larger than the available screen resolution of the monitor. To get more 
detailed insight in a specific region of the evolution, zoom and panning facilities are provided. This 
enables the user to drill down to more detailed representations, in which the evolution of each 
entity/file may be assessed. The tools offers also preset zoom levels: global overview (fit all code to 
window size) and one entity-per-pixel-line level. 

In order to support the file evolution analysis from the perspective of one given version, CVSscan 
offers a filtering mechanism by means of which all lines that are not relevant are removed from the 
visualization (i.e. lines that will be inserted after the selected version, or lines that have been deleted 
before the selected version). Filtering enables the user to assess a version, selected by clicking on it, 
by clearly identifying its lines that are not useful and will be eventually deleted, and the lines that have 
been inserted into it since the beginning of the project. In other words, filtering provides a version-
centric visualization of code evolution. Additionally, the tool gives the possibility to extract and 
select only a desired interval to study the program evolution. This mechanism is controlled by two 
sliders (Figure 12, top) similar to the page margin selectors in word processors. By choosing the 
starting and finishing version, one can remove from visualization the code that is not relevant (i.e. 
code deleted before the starting version, or code inserted after the finishing one). This mechanism 
proved to be useful in projects with a long lifetime (e.g. over 50 versions) in which one usually 
identifies distinct evolution phases that should be analyzed separately. The distinct phases were 
identified using a project view similar to the one presented in Figure 7, after which detailed file views 
were opened and the time span of interest was selected using the version sliders described above. 

Both CVSscan and CVSgrab enable the user to correlate information about the software evolution 
with overall statistic information (by means of the metric views) and with specific details. By means 
of metric bars, users can visually get statistical information about lines (e.g. the lifetime of a line at a 
given global position), or versions (e.g. a version’s author or size). The bi-level code view (Section 
4.3; Figure 12, captions 2 and 3) offers details-on-demand in CVSscan about a code fragment: the 
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text body, the line authors and the text evolution. The user can select the fragment of interest by 
simply brushing the file evolution area. Similarly, in CVSgrab, the user can obtain detailed 
information about the brushed version in the form of user commit comments (Figure 13, caption 2). 
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1

Mouse position

 
Figure 12: CVSscan tool overview. The file version and line number under the mouse (1) is 

shown in detail in the text views (2,3) 

Although CVSscan and CVSgrab are purely exploration tools that do not alter the visualized data, 
they maintain a collection of state variables that can be externalized. This enables the user to keep a 
history of his actions and let him recover and reuse specific visualization settings at a later time. In 
this direction, a simple extension our users suggested was to add an annotation facility by which they 
can add their own comments, and visualize added comments, to a given time and entity position. This 
enables a quick and effective way to store insights gained during visualization sessions. 

We next present the results of three informal studies performed using the CVSscan and CVSgrab 
tools. These studies show how the interaction mechanisms and the visualization techniques described 
so far can be efficiently used to investigate the evolution of real-life software systems. 
 



 

 

14

Detailed commit information Project evolution view 

Zoom controls 

Zoom preset 

Pan controls Pan controls 

Mouse position

File position axis 

Time axis 

1

2 

 
Figure 13: CVSgrab tool overview. The detailed comments of the version selected by the mouse 

(1) are displayed in a correlated view (2) 

5 User study 1: Evolution of files 
The main target audience of the techniques we describe in this paper is the maintenance 

community. The maintainers perform their tasks outside the primary development context of a project, 
and most often long after the initial development ended. Therefore, the main activities a maintainer 
performs are related to context recovery, such as program understanding and team network building. 
CVSscan facilitates this process by visualizing file evolution from the perspective of different 
attributes and features, such as file structure, modifications, and authors. 

In order to validate the visualization techniques and methods in CVSscan, we organized a number 
of informal studies. The aim was to record and analyze the experiences of software maintainers when 
they investigate completely new programs, i.e. programs of whose development they did not 
participate to, with no other support than CVSscan itself. The task to be accomplished was to quickly 
get familiar with the overall code and give a description of several important changes that took place 
during the evolution. We present below the outcome of two such studies of the larger set we 
organized. In both cases, the users participated first in a 15 minutes training session. During the 
session, the tool’s functionality was demonstrated on a particular example file. After that, each user 
was given a file for analysis, but no information about its contents whatsoever. A silent observer 
recorded both user actions and findings. 

Case study 1: analysis of a Perl script file 
In the first case, the user was given a script file from the FreeBSD distribution of Linux, containing 

457 global line positions and spanning 65 versions. The user was familiar with scripting languages, 
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but had no advanced knowledge about Perl. The user started CVSscan using the default file-based 
layout to visualize the evolution of file structure. The navigation steps the user took during the study 
are sketched in Figure 14 with half-transparent arrows. 

 

 a)  b)  c)  
Figure 14: Case study 1 - Analysis of a Perl script 

The user brushed first over the green areas in the evolution view:  “These are comments… Let’s 
see first what they say”. He started to brush from the beginning of the file, choosing first the 
comments that spanned over the entire evolution. In the same time he read the code fragments 
displayed in the code view. 

“This is Perl. All Perl scripts have this path on the first line. This one looks like a file description. It 
reads that this script handles pre commits of files…“ 

Then while brushing over the comment fragments (Figure 14.a top →  bottom ): 
“These are annotated textual dividers: Configurable options, Constants, Error messages, 

Subroutines, Main body. I use these too in my programs… Here are also some annotations…” 
Further on, the user investigated also the large comment fragments that did not span over the whole 
evolution: 

“It looks like the implementation was either not completed or the developers left a lot of garbage. 
There are some code fragments over here that are commented out.” 

The user next selected the last version and brushed over the Subroutines area 
“It looks like these lines do not belong to any block. Here is a blank line before the write_line 

procedure. Here a blank line before exclude_file. So there are white lines before every 
procedure? Yes, indeed: check_version, fix_up_file. So there are four procedures. It seems 
exclude_file is the most complex one as it has the highest nesting level” 

At this point, the user had a high-level understanding of the file structure. He started to make 
inquiries about the developers that had worked on the file. For that, he switched back and forth 
between the construct and author attributes using shortcut buttons: 

“The yellow developer, Dawes, did most of the work. However, the orange one, Robin, wrote that 
complex exclude_file procedure. He did that towards the end of the project, so probably that 
adds some extra functionality to the core. I see also that the cyan developer, Eich, did some significant 
work towards the end in the check_version procedure (Figure 14.b top →  bottom). It seems that 
his concern was to rule out files containing DOS line breaks... So this script doesn’t handle DOS 
files?” 
The user then dismissed the authors that had only small contributions and switched to the line status 
visualization: 

“Apparently a major change took place in the middle of the project. It mainly affected the 
check_version procedure”.  
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Then, selecting the version that followed the modified by insertion lines of the major change, the 
user started to concentrate on the areas where modifications took place: 

“I see a number of modifications between these two versions (Figure 14.c top →  bottom). The 
first one replaces a file reference with a fully qualified name; the second does the same, the third too, 
the fourth, the fifth. Oh, they should have kept that file name in a separate variable!“ 

“Here they tuned the regular expressions” 
“Here they replaced a constant string with a variable” 
The user continued to brush all areas where modifications appeared and tried to correlate them with 

the code and the authors that committed them. We interrupted the experiment after 15 minutes. At the 
end of the exercise, the user was familiar with the overall organization of the file, the focus of each 
individual contributor, the places that had gone through important modifications and what these 
modifications referred to. 

Case study 2: analysis of a C code file 
In the second case, an experienced C developer was asked to analyze a file containing the socket 

implementation of the X Transport Service Layer in the FreeBSD distribution of Linux. The file had 
2900 global line positions and spanned across 60 versions. The user was not involved in any way in 
the development of, or familiar with, the examined software. We provided the user with a CVSscan 
version able to highlight C grammar and preprocessor constructs (Section 3), such as #define, 
#ifndef, etc. The user started the tool in the default mode too, and tried first to look for commented 
fragments: “This is the copyright header, pretty standard. It says this is the implementation of the X 
Transport protocol, pretty heavy stuff… It seems they explain in this comments the implementation 
procedure…” 

The user next switched his attention to the compiler directives: 
“A lot of compiler directives. Quite complex code, this is supposed to be portable on a lot of 

platforms. Oh, even Windows“. 
Next, the user started to evaluate the inserted and deleted blocks: “This file was clearly not written 

from scratch, most of its contents has been in there since the first version. Must be some legacy 
code… I see major additions done in the beginning of the project that have been removed soon after 
that… They tried to alter some function calls for Posix thread safe functions (Figure 15.a top →  
bottom)… I see major additions also towards the end of the project… A high nesting level, could be 
something complex… It looks like code required supporting IPv6. I wonder who did that?” 

 

a) b) c)  
Figure 15: Case study 2 - Analysis of a C code file 

The user switched then to the author visualization: 
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“It seems the purple use, Tsi, did that (Figure 15.b top →  bottom). But a large part of his code 
was replaced in the final version by… Daniel. This guy committed a lot in the final version... And 
everything seems to be required to support Ipv6. The green user, Eich, had some contribution too… 
well, he mainly prints error messages.” 

Eventually, the user switched to the evolution of line status and used the predefined “Fit to line” 
setting to zoom in. 

“Indeed, most work was done at the end… Still, I see some major changes in the beginning 
throughout the file...  Ah, they changed the memory manager. They stepped to one specific to the X 
environment I assume. All memory management calls are now preceded by x (Figure 15.c top →  
bottom)… And they have given up the TRANS macro”. 

The user spent the rest of the study assessing the modifications and the authors that committed 
them. We interrupted the study after 15 minutes. At the end, the user did not have a very clear image 
of the file’s evolution. However, he concluded that the file represented a piece of legacy code adapted 
by mainly two users to support the IPv6 network protocol. He also pointed out a major modification: 
the change of the memory manager. All findings were checked by subsequent detailed code analysis. 

6 User study 2: Evolution of components 
Component based software engineering is regarded as a promising approach towards reducing the 

software development time and costs. While it has proven to be successful in many application 
domains such as office and distributed internet-based applications, the component-based approach 
toward development is still to be validated in the area of dependable systems, which have special 
requirements on the quality attributes. Möller et al. [26] have elaborated a set of such requirements, 
and classified a number of existing component models according to their conformance to the set. 
However, as the number of component models increases, a new challenge arises: how to discriminate 
among models that satisfy the same set of requirements such that the best suited one is selected as 
development base for a given system. Using the evaluation methodology proposed in [4], one can 
easily reach the conclusion that for example the Koala [28], and PECOS [41]component models offer 
similar benefits from the point of view of testability, resource utilization, and availability of a 
computational model. When these are the only important nonfunctional requirements for the 
component framework, the selection of the best suited model can be further refined with information 
on which model fits better with the software development process that will be further used during the 
project’s lifecycle.  

We next show how CVSscan was used to asses the development process associated with a given 
component model, by studying history recordings about the component structure evolution. We 
present two mechanisms for distinguishing among component models based on information about 
component structure evolution, as follows: assessment of the component development process 
(Section 6.3); and assessment of change propagation from framework to components (Section 6.4). 
We illustrate the above techniques with examples from the ROBOCOP component framework [19]. 

6.1 Component System Assessment 
Given the data model and visual mappings supported by our toolset (Sections 3 and 4), the 

question comes how to use them to assess component-based software. We are interested in assessing 
the component development process for a given component model. To use our toolset, or similar ones 
such as its predecessor SeeSoft [9] for component-based source code, several assumptions implied by 
the toolset’s data model must hold, as described in Section 3. First, the code should be describable by 
a sequential entity structure. In our current case, these are the components. Secondly, information 
about entity changes should be available, i.e. we should be able to say when a component was 
modified, inserted, or deleted. 

Assessing a component development process is, in this respect, a conceptually simple task. Indeed, 
virtually all component models have a clear mapping between components and their source code. 
Additionally, many software projects use software configuration management systems, similar to 
CVS, which hold history records about code evolution and offer mechanisms for code comparison.  

We next present three mechanisms for assessing a component model based on visualizations built 
with the CVSscan tool. We illustrate these mechanisms with real life examples. All these examples 
have been obtained from the ROBOCOP framework for component-based software development [19].  
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6.2 Context of assessment 
To understand our results, we first sketch the use context. ROBOCOP was developed on a period 

of four years by an international consortium of several industry and academic partners. Its focus is on 
providing a generic, flexible, and resource-efficient set of mechanisms and tools for implementing, 
composing, deploying, and monitoring component-based software applications with a focus on high 
volume embedded appliances such as mobile phones, set-top boxes, and embedded controllers. In this 
respect, the ROBOCOP component model is similar to Koala [28], Rubus [1] and PECOS [41]. 
ROBOCOP’s core, the run-time environment (RRE), acts as a virtual machine providing application-
specific component library management, component instantiation and destruction, and inter-
component communication and control interfaces.  

Component interfaces are described in the ROBOCOP Interface Description Language (RIDL). 
Just as in most component frameworks, this language can be translated to generate classical C 
skeleton code. Developers can next add component implementation code to this skeleton and compile 
it on a variety of platforms. 

For both the RRE and the component libraries, several tens of versions exist, developed by the 
different consortium partners during its four-year history. These versions emerged either due to 
changes in the framework and/or component interfaces or due to implementation changes when 
porting these to different hardware platforms.  

Finally, we mention that CVSscan was used in assessing the ROBOCOP framework by different 
people than the component framework developers. We had thus the added difficulty of understanding 
a third-party large software system mainly through the perspective of our CVSscan visualization tool. 

6.3  Assessment of component development 
The choice of the component development process is an important issue when selecting the base 

component model on which a software system should be built. Investigating history recordings can 
give an indication about the effort required to have a minimal working component for testing 
purposes, the effort for modifying component interface and/or implementation, and the overhead 
related to maintaining framework compliance during development. Questions such as “how hard is to 
build a minimal component?” or “how much component code was changed when some framework 
interface got added?” can be answered by CVSscan. Once we have been able to answer several such 
questions concerning the past evolution of our system, we attempt to extrapolate the results to the 
future. Most partners of the ROBOCOP consortium have expressed their high interest in being able to 
answer, even if only qualitatively, the above questions. 

Figure 16 depicts several CVSscan visualizations of a real-life ROBOCOP component evolution 
along 15 versions. We use a line-based layout, so the evolution of each source code line can be easily 
followed along the horizontal time axis. The upper part (Content view) shows three snapshots of the 
entire system evolution from the perspective of three different versions: version 4, version 7 and 
version 13. Color encodes line content, extracted by our custom-grammar based parsing (Section 3): 
black shows function headers, yellow shows function bodies. The three snapshots in the Change view 
part of Figure 16 correspond to the ones in the Content view, but use a different color encoding: black 
indicates lines that do not change from one version to the next one, while yellow encodes changing 
lines. In all snapshots, white shows gaps in the code, i.e. places where code was deleted in a previous 
version or will be inserted in a future version, as described in Section 4. We can use Figure 16 to 
understand our component development process. In the beginning (A), the developer tries to build a 
stable component interface. He edits the RIDL component description file and then generates a C 
source code skeleton using the RIDL compiler. In the first three versions of the considered use case, 
the developer does not add implementation code to the generated C skeleton, but tries to refine the 
RIDL interface description. This is apparent in Figure 16 (J), as no code is inserted in the visualized 
file besides the C function headers automatically generated by the RIDL compiler, i.e. the thin dark 
lines inserted in versions 2 and 3. Additionally, we see that the code is automatically generated, since 
the function headers in region K are changed. Generated function headers have an automatically 
created textual reference to the line number in the RIDL description file that corresponds to that 
function. Inserting new interface specifications causes the textual references to the interface 
specifications following after them to change, since the specification location in file changes. 
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Figure 16: Visualization of ROBOCOP component development process 

As depicted in Figure 16, however, this can lead to misunderstandings, due to the current skeleton 
generation process, as follows. Every time the developer adds new specifications to the RIDL file, he 
needs to run it through the RIDL compiler in order to generate appropriate function headers, which 
cannot be created by hand. However, once developers start to manually fill in this generated skeleton, 
adding new interfaces can be a very cumbersome process. This is mainly caused by the RIDL 
compiler, which cannot merge new skeleton information with existing one, but generates the entire 
skeleton anew, discarding any hand-coded additions done by the developer. To prevent this, users 
maintain copies of the old code, and every time new interfaces are added, the generated function 
headers are manually merged by cut-and-paste in the saved copy. In this way, however, textual 
inconsistencies are introduced in the existing function headers as they reference invalid locations in 
the RIDL specification file. This can be seen also in Figure 16, by comparing area (K) and (N). The 
introduction of new interfaces in version 2 and 3 (J) causes existing function headers to be updated 
(K). However, in version 7, the developer manually inserts automatically generated headers in the 
previous file version (E), which causes no update in the existing headers (N). 

Figure 16 shows also the amount of effort required to have a minimal component running for 
testing purposes. Version 4 of the considered component was also the first functional one.  We 
identify the main effort to achieve that as writing the code in the (B) area. From the Change view, we 
also see that the code required for a minimal component does not change in time except for some 
additional interface additions like the one highlighted in (E).  

The evolution of the ‘useful’, not automatically generated, component code can be seen in the areas 
D, G and I, where most of the code inserted during component refinement (versions 4 to15) goes 
away. Areas C, F, and H in the Content view and the corresponding regions L, M, and O in the 
Change view refer to empty function stubs, i.e. unimplemented interfaces.  These give the code 
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overhead required for compliance with the ROBOCOP framework and have no other useful purpose 
for the component functionality. 

Summarizing Figure 16, we concluded that developing ROBOCOP components requires very 
careful code architecting. Subsequent interface changes are difficult to accommodate or lead to 
inconsistencies.   Additionally, the effort required to have a minimal ROBOCOP component running 
is relatively high, accounting for almost 50% of the code in the presented example. However, once we 
have this code, it does not change significantly during further refinement of the component. 
Eventually, ROBOCOP components must always have several pure ‘overhead’ functions with empty 
implementations for compliance with the framework. 

6.4 Assessment of change propagation 
When component frameworks are not yet mature, it is often the case that new framework versions 

are not compatible with previous ones. In such cases, existing components need to be re-architected to 
various degrees in order to be supported by the new framework. The effort required for this step may 
be so high that migrating to a totally different, more mature, component framework or staying with 
the old framework may be better alternatives. A good estimation of the transition cost at framework 
change is therefore of great importance. CVSscan can help make such estimations, based on history 
recordings for components that have been already re-architected to comply with new framework 
versions. 

Figure 17 shows four CVSscan visualizations for the evolution of the same component as 
discussed in Section 6.3, but including two additional versions that correspond to the transition from a 
first framework version to a second one. In Figure 17 (top row), we use a file-based layout in 
conjunction with a version filter (see [37][38]) to depict the amount of code from one version that can 
be found in other versions. Color encodes change: yellow (light) areas are lines that did not change 
during development; black (dark) areas show line changes. From this image, we infer that a lot of 
code had to be changed when passing from component version 16 to version 17. Additionally, only 
about 75% of the component implementation code from version 16 is found in version 17. 
Furthermore, the top right image shows that about 40% new code had to be written for version 17 in 
addition to what was preserved from version 16. Overall, about 50% of the component code in version 
17 differs from the one in version 16. This signals a quite high effort to adapt components cope with 
changes in the ROBOCOP framework.  

Figure 17 (bottom row) uses a line-based layout (Section 4.1) together with a version filter to show 
what interfaces have been removed and what was inserted during re-architecting. Color encodes line 
content: black (darker) = function headers; yellow (lighter) = function bodies; white = deleted or 
inserted code, just as in Figure 16 (see Section 6.3). Correlating the lower left image (A) with the 
content evolution images from Figure 16, we easily see that a major benefit of migrating to the new 
version 2.0 of the ROBOCOP framework was to decrease the number of mandatory interfaces that a 
component must implement to be compliant with the framework. 

CVSscan allows also more in-depth analysis of the re-factoring a component passes through. This 
allows us, when browsing the code, to separate framework-induced code changes from those 
attempting to achieve a better design for the component itself. Figure 18 depicts such a case. We use 
here a line-based mapping to show the evolution of a component’s code over 10 versions. The same 
color scheme as in Figure 16 and Figure 17 is used to display line changes. In Figure 18, we can 
quickly see an abrupt change performed in version 8. At a first look, we believe to see the addition of 
several component interfaces (blue stripes, A) and deletion of some of the existing ones (blue stripes, 
D). However, a closer analysis of the image (B) shows that all function declarations from version 7 
are also found in version 8, and the actual code deletions refer only to parts of the implementation 
(function bodies). Moreover, the newly introduced functions (A) are not interface implementations. 
Using the code view (Section 4.3), we can easily investigate the declarations of the newly added 
functions and see that they do not have a ROBOCOP signature. Hence, the major re-factoring 
performed in version 8 does not change the component interface but is rather an attempt to factor out 
common implementation code (C) in order to make the component code more readable. 
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Figure 17: Migrating a component from ROBOCOP 1.0 to ROBOCOP 2.0 
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Figure 18: ROBOCOP component re-factoring:  factorizing common functionality 

Two final issues emerged at the end of the ROBOCOP component framework assessment. First, 
our concrete findings, e.g. “component interfaces stayed unchanged for the following n versions”, 
were confirmed by the developers as known, correct facts. Second and more interesting, some 
findings led us to hypotheses, e.g. “the patterns seen here denote code re-factoring”, that were 
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unknown to the developers, but, at further detailed code inspection, were found correct. Thus, our 
visualizations let the users see known information and also discover new facts about a given 
component structure and implementation.  

7 User study 3: Evolution of projects 
As CVSscan helps spotting correlations at line level, it clearly cannot be able to display all lines in 

all files of a million lines of code, industry-size project. Typical limits for CVSscan are visualizing the 
evolution of one up to five files together. To show correlations across a larger set of files, we must use 
higher granularity entities than lines. CVSgrab uses the highest granularity level, i.e. one file = one 
entity, to support cross-file correlations across the evolution of entire projects. 

In order to validate the visualization techniques proposed by CVSgrab, we organized a number of 
informal user studies. These studies record and analyze the experiences of software developers when 
they investigate new code bases with no other support than CVSgrab. Additionally, we compare their 
findings with the real state of affairs. The methodology and the promising outcome of such a study are 
described next. 

Case study: analysis of the VTK library  
Three developers participated first in a 15-minute training in which the functionality of CVSgrab 

was explained on a small example project containing the evolution of 28 files across up to 22 versions 
along 4 years, with several generic use cases that could be easily reproduced on other input data. Next, 
the users had to analyze an industry-size project and reason about their findings. In parallel, a fourth 
developer, with over seven years of development and use experience with the system under 
investigation, checked the findings of the three developers against his knowledge. To better simulate a 
real-life project assessment, the knowledgeable developer did not give any feedback during the study.  
At the end of the study, the experienced developer commented on the findings. The analyzed system 
was VTK, the industry-leader data visualization library of hundreds of C++ classes in over 2700 files, 
spanning over 100 versions, developed by more than 40 programmers over 10 years.  

The users started CVSgrab in default mode, displaying the evolution of the entire VTK on one 
screen, (Figure 19). Each file is represented as a horizontal blue pixel strip, divided in a number of 
segments by small bright yellow dots. The horizontal time axis has a uniform time sampling with one-
second resolution. A version is thus implicitly represented as the blue horizontal segment delimited by 
two bright yellow commit events. Color encodes the version status: white = before creation of first 
version; dark blue = current version; light blue = after creation of last version. In Figure 19, files are 
arranged on the vertical axis in the order they are stored in the CVS repository, thus implicitly 
grouped on folders.  

This layout is interesting for several reasons. First, it is able to compactly display hundreds up to 
thousands of files across hundreds of versions on a single screen with no or little scrolling. Second, it 
quickly lets users find the main directories, which appear as large, contiguous groups of files on the 
vertical axis. In our case, the users quickly identified that VTK consists of the following main 
directories: Common, Contrib, Graphics and Imaging. Since the latter two take the most Y-axis space 
(Figure 19), they were correctly identified as containing the core of the VTK project. Third, it lets one 
quickly spot file with correlated evolutions, i.e. files that were created and changed at roughly the 
same time instants. These files appear as horizontal pixel strips having the bright commit events at 
roughly the same X-axis positions. If these files also share the same directory, the visual correlation is 
even stronger, as the pixel strips appear close to each other along the Y-axis. Two examples hereof are 
visible in Figure 19. These are the VTK Python examples in the graphics and imaging directories.  

Cross-file evolution correlation, shown by the bright dotted vertical stripes of similar commit 
times, is clearly visible across the whole project, not just single directories. In out study, these stripes 
invariably caught the users’ attention and one tried out to find more about the nature of these project-
wide events. However, these stripes are not continuous, as files are sorted in the Y-axis according to 
directory location, not to commit similarity. Different file orders on the Y-axis can help this problem 
by putting files close to each other that have similar evolutions. The first alternative is to arrange the 
files according to creation time, starting from the assumption that files created at the same moment 
may have a similar evolution. The resulting visualization (Figure 20) proved to be better for 
investigating the vertical commit event stripes. 
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Figure 19: VTK system evolution; files are displayed in the order in which they are available in 

the repository (i.e. implicitly grouped on folders) 

By brushing with the mouse to get detailed information about these events from the commit log, 
the users discovered that most system-wide changes addressed copyright text modifications in all 
files’ heading sections. However, they detected also an important architectural change: the 
introduction of a new design pattern for a widely used type of static methods. This visualization has a 
second advantage: It lets one quickly discover the moments when many of files were suddenly 
introduced in the project, i.e. so-called moments of punctuated evolution. Four such moments are 
clearly visible in Figure 20. A closer look at the file names led us conclude that only one such moment 
(highlight 3, Figure 20) was related to the framework functionality, the other three (highlights 1, 2, 4, 
Figure 20) being just massive additions of use examples. The second alternative for ordering files 
along the Y-axis uses the activity measure, i.e. the total number of commits a file has, and is shown in 
Figure 21. Here, files with highest activity are at the top of the visualization. This alternative proved to 
be also efficient in assessing the nature of the commit event vertical stripes, associated with system-
wide changes, especially in the later phases of the project. Additionally, this visualization brought new 
insights in the project evolution. The users identified a number of outliers, i.e. files whose commit 
activity did not match the average activity of the files created in the same period. We identified late 
outliers, i.e. files that have come later in the project but had a very high commit activity, and early 
outliers, i.e. files that have come early in the project but had a low commit activity. The users’ 
assumption was that the early outliers corresponded mainly to stable interfaces and the late outliers to 
unstable implementations. Using the details-on-demand feature the users started to identify these 
outliers. As early outliers they identified mainly header files, e.g. vtkRender.h, vtkCellType.h 
vtkMarchingCubesCases.h, but also implementation files vtkStack.cxx, vtkIndent.cxx. As late outliers 
the users identified mainly implementation source code files, e.g. vtkRenders.cxx, vtkPolyData.cxx, 
vtkImageData.cxx, vtkRenderWindow.cxx but also paired header-implementation files, e.g. 
vtkDataObject.cxx/.h, which they correctly associated with architectural patches. 
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Figure 20: VTK system evolution; files displayed in order of creation time 
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Figure 21: VTK system evolution. Files are shown in the increasing order of activity 
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Next the users tried to get insight in the network of VTK developers, or authors. For this, they 
changed the color encoding to an author id-based one, i.e. all versions committed by the same author 
get the same unique color (similarly to Figure 7). They also used the creation time ordering along the 
vertical axis. From the result depicted in Figure 22, they concluded the main work was done by just 6 
of the more than 40 developers. They also identified their names:  

 
(1) = schroede Qualified as the project initiator. His contribution seems however to 

stop about the middle of the project 
(2) = martink The second major developer. 
(3) = lawcc More active towards the middle of the project 
(4) = hoffman One major contribution in the middle of the project. From detailed 

information it appears he performed the major architectural change 
related to the introduction of a new type of static methods, identified 
in Figure 20. 

(5) = lorensen Started to contribute about the same time as martink. However, he 
becomes more active towards the middle of the project. 

(6) = will Started to contribute after the middle of the project. Apparently he 
replaces schroede. 
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3
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5

6 7 8
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Figure 22: VTK system evolution. Files are shown in order of creation time, color encodes 

author IDs 
The three users further identified two other authors who appear to have a significant contribution to: 

(7) = heiland and (8) = prabhu. However, at a closer look using the details-on-demand mechanism, 
they concluded these authors had done only small modifications, i.e. added a variable, in the library 
usage example files. They appear as important because they modify many files. 

We stopped the study after 2 hours. At the end, we summarized the three users’ observations and 
checked them against the knowledge of the expert developer. The latter validated the largest part of 
the observations as fully correct. Moreover, he was particularly surprised by the ease with each the 
users identified the main people behind VTK, and the problematic / active areas of development, 
without any prior knowledge about this code. One aspect he found interesting was the higher-than-
expected ratio between the ‘project core’ and rest of the project activity. He identified also one 
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misinterpretation concerning the authors. He declared that schroede and will refer actually to the same 
contributor (Will Schroeder, one of the parents of the VTK project) who changed his user name about 
mid-project. Still, this correctly matches with the users’ observation that will replaces schroede. 

8 Discussion 
We have presented a set of techniques and tools for visually assessing the evolution of source code 

in large software projects. Our work builds on the main assumption that developers are most 
comfortable with visualizations that present the code in the same spatial context in which they 
construct it [9]. Therefore, our approach has the source code in focus, whenever this is possible 
(CVSscan). At lower, coarser, levels of detail, it is however not possible to visualize every line of 
code, so we keep the same visual metaphor but change the entity under scrutiny from code line to an 
entire file (CVSgrab). Our approach and code model (Section 3) is generic and can be applied to any 
type of source code. 

 CVSscan’s line-based code model currently uses the UNIX-like diff used by the CVS repository 
itself to compare code. Although this makes CVSscan applicable to any type of source code, a weak 
point is the accuracy of the diff operator. The visualization accuracy depends on the heuristics 
behind this operator, which can lead to data misinterpretations, e.g. when too many changes occur 
between consecutive versions. However, our techniques and data model can support any user-
provided diff operator. For example, one can use a syntactic, instead of line-based, code model, 
where the central entity is a component’s interface, defined e.g. as a list of methods. Once a diff 
mechanism is provided for such a model, e.g. by interface comparison via method signatures, the 
visualization techniques presented here can be straightforwardly used. Instead of a code line, users 
would see a method, class, or component. The larger granularity of the entities would also make the 
methods applicable to larger projects. Yet another step in this direction would be to use a diff 
operator with support for semantic, instead of purely lexical or syntactic, comparisons. Note, however, 
that the existence of such more advanced diff operator possibilities does not invalidate the 
usefulness simpler ones, such as the classical line-based one presented here. Simpler diff operators 
are fast, easy to implement, work on any source code or even plain text, and perform surprisingly well 
in many situations.   

Another point of improvement in our work is the methodology of the user studies. All studies we 
organized so far involved mainly users who were not familiar with the systems under investigation. In 
the first studies we organized (Section 5), we tried to involve users outside the CVSscan and CVSgrab 
developers, not to bias the judgment by the expert tool-user point of view. However, we could only 
assess the validity of their findings using available means, as we were also not familiar with the 
systems under investigation. In the second type of studies we organized (Section 6), we used the 
knowledge of expert users to verify the validity of the findings, but we performed the studies inside 
our development community, which has extensive expertise with the tools. In the last studies we 
performed (Section 7) we involved both users outside our community and an expert user to verify the 
validity of their findings at the end. Still, the users performed the investigation as a team, so they 
benefited also from the intense discussions they had. For the future, we would like to organize user 
studies with more users outside our community. Additionally we would like the users to carry on the 
studies without interaction, and eventually to have their findings always validated by an expert. 

9 Conclusion 
We have presented a new approach for the visualization of large-scale software evolution using 

code-oriented displays. We presented a generic code data model that can describe change at various 
levels of granularity. Next, we introduced several visual mappings and interaction techniques for 
efficiently and effectively visualizing this code model. All work presented here was implemented by 
two tools developed by us, CVSscan and CVSgrab, in order to validate the proposed techniques. 
These tools, as well as several example source code datasets, are available for download at 
http://www.win.tue.nl/~lvoinea/VCN.html. 

The main audience we target with our work is the software developer and maintenance community, 
ranging from programmers to system architects and technical project managers. The goal is to provide 
them with effective support for program and process understanding by exploiting the evolution 
information contained in SCM repositories such as CVS or Subversion. 
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Our novel approach uses multiple correlated views on the evolution of a software project. We use 
dense pixel displays to show the overall evolution of code structure and attributes of tens of thousands 
of elements on a single screen, and we integrate them in an orchestrated environment to offer details-
on-demand.  

We have also presented in this paper the typical outcome of a number of user studies we did to 
validate our approach on data from real-life, industry-size CVS repositories. Although informal, the 
studies show that our proposed code-based evolution visualization of software supports a quick 
assessment of the important activities and artifacts produced during development, even for users that 
had not taken part in any way in developing the examined projects. The subjects of our user studies 
valued most the compact overview coupled with easy access to detailed information such as source 
code or developer comments. These enabled them to easily spot issues at a high level and then get 
detailed information for further refinement of their assessments. An extremely important acceptance 
point was the simplicity of use of our tools: To produce most of the visualizations shown here, or 
similar ones, one needs only to start the tool, type in the location of a CVS repository, and wait for the 
screen to be populated with visual information about the downloaded data. Most subsequent 
manipulations, such as sorting entities, changing color attributes, getting details on demand and so on, 
are reachable via just a few mouse clicks.  

In the future, we plan to extend and refine our set of methods and techniques for visual code 
evolution investigation in two main directions. First, we work to refine the code data model to 
incorporate several higher-level abstractions (classes, methods, namespaces) and their corresponding 
diff operators. Second, we are actively researching novel ways to display the existing information 
in more compact, more suggestive ways. We plan to actively conduct user tests to assess the concrete 
value and effectiveness of such visualizations, which is the ultimate proof of our proposed techniques. 
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