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Abstract—Understanding how a classifier partitions a high-
dimensional input space and assigns labels to the parts is an im-
portant task in machine learning. Current methods for this task
mainly use color-coded sample scatterplots, which do not explic-
itly show the actual decision boundaries or confusion zones. We
propose an image-based technique to improve such visualizations.
The method samples the 2D space of a dimensionality-reduction
projection and color-code relevant classifier outputs, such as
the majority class label, the confusion, and the sample density,
to render a dense depiction of the high-dimensional decision
boundaries. Our technique is simple to implement, handles any
classifier, and has only two simple-to-control free parameters. We
demonstrate our proposal on several real-world high-dimensional
datasets, classifiers, and two different dimensionality reduction
methods.

I. INTRODUCTION

Machine learning (ML) methods are showing huge success
when solving problems in many application areas, such as
medical diagnosis [1], [2], recommendation systems [3], text
classification [4], and image classification [5], [6]. However,
many such methods work largely as “black boxes”, so ap-
proaches that aim to shed insights into their operation are
becoming increasingly important [7], [8].

One particular task in this context regards understanding
how an ML classifier separates the input space in which
its observations live into distinct regions which are next
assigned different (discrete) labels. We consider here the case
when this input space can be modeled by a (compact) subset
D ⊂ Rn – that is, every observation xi is described by n so-
called features. Most ML classification techniques use such
a representation [9]–[11]. Formally put, such a classifier can
be described by a function f : D → C, where C is a set of
class labels. f is learned from a discrete training set T ⊂ D,
and extrapolated to the entire input space D. A particularly
important aspect of a classifier f is its so-called decision
boundaries, i.e., sets of points in D where f changes value. In
other words, decision boundaries partition D into a set of areas
∪iDi = D;Di ∩ Dj = ∅,∀i 6= j, so that f takes the same
value over all points in a given Di. Such decision boundaries
are compact, typically continuous, subsets of D, due to the
construction of the classifier function f .

Although very important for understanding a classifier,
reconstructing decision boundaries for (visual) inspection is far
from trivial [12], [13]. To extract the analytical descriptions
of such boundaries, one would need to study the explicit
representation of f , which is hard to reverse-engineer from the

parameter values learned by a trained classifier. Depicting such
boundaries is challenging, since in general they are complex
manifolds embedded in Rn. In general, such boundaries are
implicitly shown by drawing 2D scatterplots of the training
set with observations colored by assigned class labels, using
dimensionality reduction methods [14]. However, since such
sets are sparse (have relatively few observations), decision
boundaries are only implied as the 2D areas where points with
different labels meet. This leaves many open questions, the
most important being what does a classifier precisely do for
observations which fall between the labeled samples – that is,
are not part of the training set.

In this paper, we propose to address the problem of ex-
tracting and visualizing decision boundaries of ML classifiers,
as follows. First, we represent decision boundaries in a 2D
(image) space, using the dimensionality reduction idea that
underlies 2D scatterplot visualizations. However, in contrast
to scatterplots, we propose a dense visualization, where each
pixel encodes information relating to the n-dimensional sub-
space it maps, combining direct and inverse mappings (projec-
tions) from Rn to R2. Next, we adapt the sampling density of
D so as to guarantee a user-specified degree of confidence per
drawn pixel, which also handles the non-uniform density of
the training set. Finally, we propose several visual encodings
to depict sample density, classifier confusion, and actual labels
assigned to decision areas Di, and how these extrapolate the
information learned from a training set T . Our method is
generic, i.e., can handle any feature-based classifier method f ;
does not depend on the dimensionality of the feature space;
scales computationally well to large datasets; and has only two
user-settable parameters with intuitive meanings.

The remaining of this paper is organized as follows. In
Section I-A, we briefly review related work on dense maps
in ML. Section II details the construction of our dense map
visualization. Section III presents the results of our technique
for real world datasets and classifiers. Section IV discusses our
method. Section V outlines directions for future improvements.

A. Related Work

As outlined in Sec. I, the simplest and still most popular
way to get insight in decision boundaries is to draw a 2D
projection of a (discrete) training set T ⊂ D, where points
are categorically colored to show class labels. Projections
reduce the samples xi ∈ D to points yi ∈ R2, P (xi) = yi,
by applying dimensionality reduction, which in turn aims to



preserve either distances [15]–[17] or neighborhoods [18]. A
full discussion of projection methods is out of our scope here,
and for this we refer to a recent survey [19].

While such scatterplots are simple and efficient to compute,
they have a major drawback: depending on the size of T
(sample count), how T is distributed over D, and how well
the projection P preserves distances or neighborhoods, gaps
will appear between the points of the resulting 2D scatterplot.
One can only guess where the actual decision boundary passes
through the labeled samples. Since such boundaries can, in
general, have complex shapes, inferring them from the sparse
sampling of a scatterplot is very challenging and error-prone.

To mitigate this general issue of scatterplots, the so-called
image-based methods, or dense maps, have been proposed.
The key idea is to color every pixel y ∈ R2 of the target image
to represent information pertaining to it in D. This approach
is, for instance, used by the well-known TensorFlow toolkit
[20]: Every pixel y of an image is color-coded to indicate the
class label, and corresponding weight, that a neural network
achieves for a sample x. However, this works only because
the input space (for the toy examples used in [20]) is two-
dimensional, so the Rn to R2 mapping is trivial.

Image-based dense maps have been used for other tasks than
decision boundary inspection in ML. For instance, Martins
et al. propose several dense maps to encode the per-pixel
errors created by dimensionality reduction methods [21], [22].
Similar per-pixel methods are used to encode the (categorical)
identity of dimensions that make close points in a projection
similar to each other [23]. Variants of this idea have been
proposed to handle categorical data, using a Voronoi cell
sampling of the image space, rather than a uniform pixel
grid [24]. Key advantages of image-based methods are their
ability to use every available pixel to show information,
which increases the chance that complex data patterns are
spotted without the need for the user to “guess” what happens
between discrete samples; the lack of occlusion present in
discrete methods; and the ability to handle large datasets by
aggregating data over the available pixels. While such methods
can handle arbitrary high-dimensional datasets, none of them
was adapted to show actual classifier decision boundaries.

Closer to our scope, Hamel has proposed dense self-
organizing image-based maps to visualize classifier deci-
sions for high-dimensional feature spaces [12]. However,
this method only handles support vector machine (SVM)
classifiers; more importantly, the actual decision boundaries,
while plotted on the respective maps, seem to be manually
constructed by the user rather than by the method. Migut et
al. actually construct and visualize such decision boundaries
for high-dimensional data classification [13]. However, they
use for this a sequence of 2D projections, each along a pair
of dimensions; hence, the user has to mentally infer the actual
position of the high-dimensional boundaries by interactively
correlating multiple projections.

II. DENSE MAP CONSTRUCTION

We denote by I the resulting color image (dense map)
generated by the method described in this section.
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Fig. 1. Scatterplot problem (a). Dense map construction by scattering (b) and
gathering (c) approaches.

Ideally, the image of D through P , denoted P (D), would
cover the entire I , thereby delivering (at least) one label
f(x)|x ∈ D for any pixel y ∈ I . However, training set
T ⊂ D only sparsely sample D. Visualizing P (T ) yields a
typical class-label color-coded scatterplot rather than a dense
map (Fig. 1a). To construct a dense map that covers all pixels
of I , two approaches can be taken. First, we can create new
observations xj ∈ D by densely sampling the neighborhoods
νn(xi) of all samples in T , computing their labels f(xj),
projecting xj to 2D, and color-coding the pixels yj = P (xj)
by the labels f(xj) (Fig. 1b). This method of scattering data



from Rn to R2 does not guarantee that all pixels of I get
covered, unless potentially very large neighborhoods νn are
used, which is expensive. Alternatively, we can supersample
I with N ≥ 1 samples per pixel y; compute the point x ∈ D
that projects to y, by using an (approximate) inverse projection
function P−1; and color y to summarize all labels of points
that project onto that pixel (Fig. 1c). This gathering method
guarantees that every pixel depicts information from at least
N high-dimensional samples.

We choose for our goal the gathering strategy, as follows.
Let N be the user-specified minimal number of samples per
pixel desired. Larger N values increases the confidence of our
visualization, as we have more information to decide the value
of each pixel. Given a sparse labeled set of samples T , we
first compute its scatterplot P (T ). This delivers n(y) labels
per pixel y, where n(y) = 0 for most pixels, given the above-
mentioned sparsity. To ensure our target of N samples per
pixel, we synthesize max(N − n(y), 0) 2D points randomly
spread over each pixel y, and compute their Rn counterparts
using P−1. Pixels which are already densely covered by points
in P (T ) need fewer additional samples, whereas pixels not at
all covered by P (T ) receive N additional samples each.

At this point, every pixel is covered by at least N labels.
We next encode the sample density, classifier confusion, and
classifier decision at each pixel, as follows.

Decision: We define the decision d for a pixel y as the majority
class label for all samples yi in y, i.e.

d(y) = argmaxk∈C
∑
yi∈y

[f(P−1(yi)) = k] (1)

where [] denotes Iverson’s bracket. We encode d in the hue
H(y) via a categorical color map, as follows. For each class
label k ∈ C, we define a basic hue HT (k) and a slightly
lighter version thereof Hsynth(k). If a pixel y has the majority
label k, and there are points in the original input dataset T
that project over y, we set H(y) = HT (k), otherwise, we set
H(y) = Hsynth(k). This way, we can distinguish between
pixels covered by the scatterplot P (T ), which use HT (k),
and pixels for which we needed to synthesize additional
samples, which will use Hsynth(k).

Confusion: We define the confusion c(y) for all samples of
a pixel y as the ratio between the number of samples of the
class label having most instances over y and the total sample
count for that pixel, i.e.,

c(y) =
maxk∈C

∑
yi∈y[f(P

−1(yi)) = k]

n(y)
. (2)

Higher c values indicate more consensus for the samples over
a pixel, whereas lower values indicate that the respective
pixel is close to, or on, a decision boundary. We encode
confusion into the saturation S(y): Colorful pixels indicate
areas where f chooses consistently a single label (depicted
by hue, see above), whereas gray pixels indicate areas close
to decision boundaries.

Density: We define the density of samples, ρ, for a pixel, y, as
the total number of samples covering this pixel’s extent. These
can be either samples in T or additionally generated samples
created as described above. Visualizing ρ is useful as it tells
us which dense-map areas have more information (samples),
thus, we can be more confident about. Let ρmax be the highest
sample density over all pixels of I . We could directly encode
ρ into the value (brightness) V (y) = ρ/ρmax. However, a
problem of this design is that inherently darker hues, e.g. blue,
will exhibit less brightness variation than brighter hues, e.g.,
yellow, so density variations for the dark-hue labels will be
hard to see. Hence, we choose to encode ρ in both brightness
and saturation, as follows. First, we normalize ρ to [0, 1] by
computing

ρ = max

(
1

20

ρ

ρavg
, 1

)
(3)

where ρavg is the average sample density over all pixels in I .
Next, if ρ ∈ [0, 0.5], we compute V by linearly interpolating
between a low brightness value Vmin = 0.1 and the maximal
V = 1. If ρ ∈ [0.5, 1], we set V = 1 and compute the
saturation S by linearly interpolating between full saturation
S = 1 and a low saturation Smin = 0.2. The net effect is that
low densities will appear as darker hues; average densities will
show the full brightness of the corresponding hue; and high
densities will increasingly brighten the respective hue towards
white. The values Vmin and Smin are chosen so that we do not
reach pure black or pure white, so the user does not confuse
the emerging colors with those corresponding to maximal
confusion values (grays). The decision zones of f will appear
as “shaded cushions” whose domes indicate high density areas,
akin to the results shown (by a different implementation and
for a different goal) in [23].

confusion c

d
e

n
s
it
y
 ρ_

0 1

0

0.5

1
low confusion,

high density

(S = Smin, V = 1)

low confusion,

low density

(S = 1, V = Vmin)

low confusion,

average density

(S = 1, V = 1)

high confusion,

high density

(S = 0, V = 1)

high confusion,

high density

(S = 0, V = 0.5)

high confusion,

high density

(S = 0, V = Vmin)

Fig. 2. Color scheme encoding decision, confusion and density values.

Figure 2 summarizes the HSV color synthesis proposed
above to encode decision, confusion, and density for a class
label mapped to the hue red (for illustration purposes). Along
the y axis, we see how brightness increases to map higher



density values. When the normalized density ρ is equal 0.5
and confusion is zero, we get a pure fully saturated red
color. Lower density values map to darker reds, while higher
densities map to increasingly whitish reds. Along the x axis,
we see how saturation decreases to map increasing confusion
values. When confusion is maximal, we only see gray tints.

A. Parameter setting

Our proposed dense map depends on two free user param-
eters: the resolution R of the target image I and the minimal
desired number of samples per pixel N . We next explore the
insights delivered by varying these parameters on a simple
two-class dataset. This dataset is a subset of the well-known
MNIST benchmark [25], created by keeping only the images
of the digits 0 and 1 (for further details on MNIST, see
Sec. III-B). For illustration purposes, we trained a Logistic
Regression classifier (f ) on this dataset, achieving a 99.8%
accuracy. Any other classifier could be used – leading, of
course, to different dense maps showing the behavior of that
classifier. For projection, we used LAMP [15].
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Fig. 3. The effect of varying both resolution R (rows) and number of
minimum number of samples per pixel N (columns).

Figure 3 shows the impact of varying R and N on the dense
map. Several observations follow, first and foremost, we see
that the differences between dense maps for different parame-
ter values are small and, more importantly, vary continuously
with the parameters. This tells that our dense map construction
is stable with respect to parameter choice, which is very
important for its practical usability. Secondly, we see how
the brightness bump, visible on the top-left image (N = 1,
R = 50 × 50 decreases as either R or N increase. This is
expected, and interpreted as follows: for low N and R values,
density variations of the raw input dataset D are visible, since

there are no additional samples needed to construct the dense
map. For our example, the red brightness bump tells that the
“red” class samples are overall much denser than the “blue”
class samples. Such images can be seen as a direct, depiction
of D. As either N or R increases, the number n(y) of samples
in D per pixel y will decrease becoming eventually lower
than N (the minimal number of desired samples per pixel), so
we need to synthesize additional samples. When adding these
extra samples, the overall spatial density of samples over the
image becomes relatively constant, converging to N in the
limit, so we see less brightness variation. We can interpret
such high-N , high-R images as converging to the actual
continuous decision boundaries in the limit. As R increases,
we also see how the decision boundaries become more refined,
showing more fine-scale details. Separately, the fact that we
see few desaturated (gray) colors in the images tells us that
the depicted classifier is quite consistent – that is, it assigns
the same class to close samples.

To better understand confusion zones, Fig. 4 shows a
zoomed-in view on the same dataset, but uses a simpler
color coding than Fig. 3 – hue encodes the majority class
label per pixel d(y) (Eq. 1) and saturation encodes confusion
c(y) (Eq. 2). Hence, whitish pixels indicate zones where the
classifier has a high confusion. As we increase the sampling
density N , confusion bands appear more pronouncedly along
the red-blue decision boundary, which is expected, since close
to this boundary the classifier needs to change decisions.
We also see small confusion areas within the compact blue
zone, which indicate that this classifier has likely “drawn” the
decision boundary in a too simple and inaccurate way.
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N=10 N=15

Fig. 4. Confusion zones (bright pixels) along the decision boundaries as
function of minimum samples per pixel N .

B. Implementation details

We implemented our dense maps in Python using t-
SNE [18] and LAMP [15] for the direct projection P and
iLAMP [26] for the inverse projection P−1. LAMP and
iLAMP are simple to implement, and, as shown in several
works, achieve higher accuracies in preserving distances than



similar-type projection methods [15], [21]. In contrast, t-
SNE has a better ability to separate high-dimensional clusters
[18] than LAMP. LAMP and t-SNE are further compared in
Sec. III-B.

III. EXPERIMENTS AND RESULTS

We illustrate our technique by applying it to two high-
dimensional datasets, four classifiers, and two dimensionality
reduction techniques, as follows.

A. Segmentation dataset

The Image Segmentation Dataset [27] contains 2310 im-
age instances with 19 features each, divided into 7 classes.
Features measure image attributes, e.g., color intensity mean,
contrast, hue, and saturation. Classes relate to types of outdoor
images, i.e., brickface, sky, foliage, cement, window, path
and grass. We trained three different classifiers, i.e. Logistic
Regression (LR), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN), all implemented in scikit-learn
[28], on this dataset, with the aim of comparing their decision
boundaries. As parameters, we used the default ones in scikit-
learn, except radial basis functions (SVM), and k = 5 nearest
neighbors (KNN). Data was split into 70% training samples
and 30% test samples. The obtained accuracies were 89%
(LR), 87% (SVM), and 95% (KNN).

Figure 5 (top row) shows three LAMP projections for the
three classifiers, each categorically colored by the training and
test-set labels. This is a typical way that ML practitioners
use to assess how the classifiers “divide” the data space into
different zones for different classes. From these images, we
only see small-scale differences between the three classifiers.
Moreover, as already explained, such images are subject to
occlusion and overplotting. Also, from these images, it is not
clear what a classifier would decide for a sample which is rela-
tively far away from existing ones. The dense maps, generated
at a resolution R = 5002 pixels, and with a minimum number
of N = 5 samples per pixel, attempt to overcome these issues
(Fig. 5, bottom row). They show us several insights. First, there
is no overplotting in these images, so we are sure that each
pixel carries the exact information pertaining to the samples
that fall over it. Secondly, the differences between the decision
zones corresponding to the seven classes are now much easier
to see. For instance, for all classifiers, class 1 (orange) has
a quite smooth and clear decision boundary touching mainly
classes 3 (dark blue) and 5 (yellow-green). However, subtle
differences between the classfiers also show up – for instance,
the class-1 decision zone of LR contains a few isolated islands
for class 2 (green) and class 3 (dark blue). These islands
are different for SVM and KNN. Separately, we see that the
decision boundaries for the other classes, most notably class
0 (blue) and class 5 (yellow-green) are much more jagged, for
all classifiers. Verifying the actual classification results shows,
indeed, that instances in these classes are harder to classify
than in e.g. class 1 or class 6. Finally, we see some interesting
differences between the dense map of KNN and the other
two (Fig. 5, white stippled lines): the decision boundary of

class 4 (purple) is visibly stretched upwards in zone A for
KNN, whereas for LR and SVM, the purple zone is much
smaller and does not protrude upwards through the class-0
(blue) area. Similarly, the decision boundary of the same class
4 protrudes significantly upwards in the green area in zone B
for KNN, but not for the other two classifiers. Finally, the
decision boundary for class-0 (blue) protrudes significantly
downwards in the purple area for KNN, but not for the other
two classifiers. Note that these differences cannot be explained
by the projection, since we use the same projected points for
all three classifiers. Overall, the decision boundaries of KNN
show larger, and more mixed, per-class areas, except for class
1. This explains both the increase in accuracy of KNN vs
the other two classifiers, but also for which regions (types of
images) of the data space these differences occur. Note, again,
that spotting such differences using only standard color-coded
projection scatterplots is very hard, or even impossible.

B. MNIST dataset

Our second dataset, MNIST, is a standard dataset in ML
consisting of 70K handwritten digit images, commonly em-
ployed to evaluate the performance of machine learning image
classifiers, split into 60K training and 10K testing images [25].
Each 28 × 28 pixels grayscale image can be interpreted as
a point in a 784-dimensional space. We use this dataset to
explore two other questions, as follows.

First, we show that dense maps can also be used for deep
learning classifiers, apart from the more classical ones such as
LR, SVM, or KNN. For this, we built a simple Convolutional
Neural Network (CNN) composed of two convolutional layers,
one max-pooling layer and two densely connected layers. This
CNN was implemented and trained using Keras [29], and
obtained an accuracy of 99.2% on the test data after 14 training
epochs. We next computed a 2D projection from a subset of
2000 samples of the training dataset using t-SNE (Figure 6).
We did not use the full training dataset as t-SNE is quite slow
(quadratic in the number of data points). If we had only this
projection to analyse the decision boundaries assigned by the
classifier, what would then be the conclusions to be drawn?

For instance, consider the top-right class-2 (green) and
class-0 (blue) groups (marked A and B in Fig. 6). These appear
equally well separated from the rest of the projection, equally
compact, and have a similar (low) number of other-class points
embedded in them. As such, with only the sparse projection
information, we would likely conclude that the decision areas
and boundaries for these two classes are quite similar. Likely,
the user seeing this projection would draw the decision zones
corresponding to A and B much like the dashed lines shown in
Fig. 6. Let us look at the dense map for this dataset. Figure 7
shows it, at a resolution R = 3002 pixels, computed for four
different values of the per-pixel sample density N . We see now
that the decision zones and boundaries of class-2 and class-0
are, in fact, much more complex than we could infer from
the scatterplot. In particular, we see a non-negligible number
of small “islands” corresponding to other labels than 0 and
2 embedded in the zones for these two labels. Also, we see
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Fig. 6. MNIST projected using t-SNE, color coded by class labels.

that the class-0 zone is much more compact than class-2 – it
contains a single small island for class 5 (Fig. 7, marker C).

Separately, let us consider the question of what happens
close to outlier training samples. Take, for instance, the point
marked X in the scatterplot (Fig. 6). What label would be
assigned to a digit image that projects there? We see that we
have an isolated class-3 outlier and the closest samples are the
relatively large class-8 group (orange). So, based on the scat-
terplot, one would reckon that some class-3 decision boundary
surrounding the outlier point will be created. However, what is
the exact shape and size of this decision boundary? We cannot
answer this question using only the scatterplot. The dense map
gives us precisely this answer: the point X falls within an
“island” decision zone that corresponds to class 3 (dark blue).
This island is quite large, so it tells us that the impact of a
single outlier in the training set is important in such sparsely-
sampled areas. Note that this is not an approximate result: our
method indeed synthesized a group of samples that project

around (and on) the point X, ran it through the classifier, and
obtained class 3 as a result. Moreover, we see that the dense
maps are practically identical for different per-pixel sample
densities, which increases the confidence that the class-3 island
we see is indeed there. We could not have obtained this insight
using the scatterplot only.

Another use of our dense maps is in showing how the deci-
sion boundaries change during training of a classifier. Figure 8
shows four such dense maps, for four different epochs (E)
of training the CNN for the MNIST dataset, using stochastic
gradient descent, with a learning rate of 0.001. For the first
epoch (Fig. 8a), we see how the decision boundaries are highly
jagged, while clear decision zones are mainly visible for the
outlier samples. This confirms the insight that during a deep
neural network training, outliers are handled the easiest, as
surrounding them by decision boundaries is far easier than
“drawing” such boundaries through a compact area of very
similar samples [14]. From epoch 5, decision boundaries get
significantly more refined in the central dense-sample region.
The dense maps for epochs 10 and 15 clearly show how
the training converges, as the decision boundaries basically
stabilize. The dense maps correlate very well with the testing
accuracies reported in Fig. 8. Such images generalize the
simple 2D animations of 2D dataset classifications provided
by TensorFlow [20] to nD datasets and arbitrarily complex
networks. They help directly seeing when further training does
not bring added value (in our case, from E = 10 onwards).

Finally, let us consider the projection algorithm choice. In
Sec. II-A, we have shown that LAMP is a good choice for
a simple two-class dataset. Above, we have shown that t-
SNE works well for the high-dimensional MNIST dataset.
We consider the same MNIST dataset (and classifier), but use
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Fig. 7. dense maps for MNIST dataset classified by CNN, different sample
density values N .

LAMP for the 2D projection instead of t-SNE. The resulting
projection (Fig. 9a) shows clearly more class mixing than the
t-SNE projection (Fig. 6). The explanation follows: t-SNE
aims to preserve the high-dimensional nearest neighbors in
the projection. Also, t-SNE pre-processes the data by PCA
dimensionality reduction prior to projection, to make the 2D
embedding task easier [18]. In contrast, LAMP aims to pre-
serve high-dimensional Euclidean distances between points.
So, for hundreds of dimensions (like the 784 ones in MNIST),
LAMP yields far less cluster separation in the projection,
even if the high-dimensional data is well separated. A poor-
separation projection leads, next, to a dense map showing
fragmented decision zones with complex borders (see Fig. 9b,
which uses the same N and R values as Fig. 7d). So, we
conclude that for low-dimensional datasets, LAMP and t-SNE
are comparably good (with LAMP being significantly faster);
for high-dimensional datasets, t-SNE should be definitely used
instead of LAMP.

IV. DISCUSSION
We discuss next several important aspects of our image-

based visualization of classifier decision boundaries.

Genericity: Our dense maps work for any classifier and
dataset, as long as the data can be represented by a feature
vector. No specific constraints on data dimensionality, type,
classifier internals, or classifier training, exist. For instance,
we can visualize the decision boundaries of an insufficiently
trained classifier and compare them with those of a better
trained one, to tell us how training shifts these boundaries

(see example in Sec. III-B).

Robustness: We have shown that our method is robust
even for sparsely-sampled data spaces (limited number of
training samples). Our dense map construction guarantees a
user-specified number of labeled samples N per pixel, at a
user-given resolution R. As N increases, every point of the
2D image becomes equally densely sampled, meaning that we
also have the same confidence everywhere on our dense maps.

Projection: Our dense maps obviously depend on the
quality, of the projection being used. A projection that, for
instance, does not respect well high-dimensional distances
or neighborhoods will also yield an artificially confused
dense map. Yet, two key observations must be made.
First, this (well known) limitation of projections applies
equally to using scatterplots when visualizing a classifier’s
results, so our dense maps do not add any extra problem
here. Secondly, the projection space should be seen as an
abstract, and not Euclidean, space, in which decision zones
are depicted. That is, topological tasks like finding the
neighbors of a decision zone along its boundary, finding
islands, and finding confusion zones, can be completed
well even if a projection doesn’t perfectly preserve point
neighbors and/or inter-point distances. All our experiments
showed that t-SNE is a good projection in this respect, in
line with earlier findings in the same direction [14], [18], [19].

Limitations: Our current implementation cannot handle tens
of thousands of points at interactive rates. The reason hereof
is the already-mentioned high computational complexity of
t-SNE. Yet, recent t-SNE accelerations could be used [30],
[31], when such techniques become publicly available. Also,
we need to compute the projection only once for a given
dataset. Separately, we only tested our method with two
projections (t-SNE and LAMP) and one inverse projection
technique (iLAMP). Considering additional techniques is an
important aspect for future investigations.

V. CONCLUSION

We have presented a technique to visualize decision bound-
aries of arbitrary machine learning classifiers. For this, we use
an image-based approach where every pixel of the 2D output
space is attributed a color to show the exact behavior of the
classifier in the corresponding region of the high-dimensional
space. For this, we use a combination of direct and inverse
dimensionality-reduction methods, and we also propose sev-
eral visual encodings of the classification result, confusion,
and sample density. Our method is simple to implement and
can handle any classifier and feature-based dataset with no
changes. We demonstrate our method on several datasets,
classifiers, and using two different projection techniques.

Several future work directions are possible. The dense maps
can be augmented to show more information, such as explicit
misclassification regions, and high-dimensional distances or
neighborhoods. This would help understanding why a classifier
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Fig. 8. dense maps for four training epochs E, CNN classifier, MNIST dataset.
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Fig. 9. LAMP projection and dense map for MNIST dataset, CNN classifier.

constructed its decision boundaries in a certain way and,
thus, help in improving them. Separately, dense maps can
be extended in an active learning approach to propose to the
user areas where new labels would be needed to e.g. reduce
confusion or increase classification accuracy.
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