Towards evaluating FLLIM attention regions
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Abstract—FLIM (Feature Learning from Image Markers) has
been used to interactively train convolutional networks from user-
defined attention regions. Although FLIM has shown competitive
results with large deep models, resulting in shallow networks
trained with very few weakly annotated images, the performance
of FLIM models is related to those attention regions. Much effort
has been made to improve the FLIM framework itself, but no
investigation has been conducted into these marked locations
and their relationship to model performance. In this work, we
propose to open ways to evaluate the image markers’ location
impacts on FLIM. For that, we exploit multiple marker positions,
determine their relevance, and create a color code for each
location, resulting in a heatmap of marker locations that reflects
the FLIM performance from those image regions. From our
results, we showed how the FLIM performance differs depending
on the background marker location, which provides some trends
for better/worse marker scenarios.

I. INTRODUCTION

Even with many advances in computer vision from Convo-
lutional Neural Networks (CNNs) [1] to Visual Transform-
ers (ViT) [2], such techniques still have many challenges.
Both models rely on dozens of layers in their architectures,
thousands hyper-parameters for tuning [3], and large image
annotated datasets [4], [S]. Due to these, the cost for training
such models is high, demanding more powerful hardware, and
asking for much human effort in data annotation.

Different strategies have been explored to mitigate such
problems, as transfer learning, data annotation, and other
alternatives to training. Between them, Feature Learning from
Image Markers (FLIM) have been proposed to interactively
extract convolutional filters from attention regions of only
a few images (1 or 2 per class), and few layers (from 1
to 3) without backpropagation. User-drawn markers define
the attention regions. This framework has been explored for
image classification [6] and segmentation [7] tasks, resulting
in smaller and competitive networks [7], [8]. FLIM considers
the user as a key element in the designing of neural networks,
i.e., by empowering the user to control from where the model
should learn its weights [9], [10].

Fig. 1. Schema of different markers position: (a) a marker in the bee stripes
and one marker in the cloud, (b) other background marker in the mountains,
and (c) other object marker at the edge of stripes and wings.

However, FLIM still has some unaddressed points. Its suc-
cess directly relies on where the network attention is focused,
and because of that, on where the markers are drawn by the
user. Figure 1 shows an example of how markers can be placed
in different positions in an image. These regions are used to
extract information for convolutional filters. Due to this, colors
and textures of these regions are used as a step of FLIM.
Markers are a core element when designing FLIM networks.

Recent studies have investigated different aspects of such
networks. First, some of them have studied how to choose
images to add markers can be selected [6], [11]-[13]. Other
have proposed different approaches for choosing the convolu-
tional filters [14], [15]. Marker imbalance [15] and marker
normalization [12] are also addressed. Different users are
evaluated in [6], but their markers are not compared. However,
none of these studies have investigated the impact of different
markers positions in FLIM networks. We are mainly concerned
to the segmentation task. The study of classification purposes
is left as future work.

In this work, we propose to open ways to evaluate image
marking positions when using FLIM networks. Different ques-
tions related to image marking are raised when designing such
networks as follows.

e RQI: Where the user should draw markers?

e RQ2: How marker position and segmentation perfor-

mance are correlated?

We address questions RQ/ and RQ2 in this work. To
answer them, we propose a strategy to evaluate distinct marker
positions when using FLIM networks. First, we evaluate FLIM
performance by computing the DICE score related to each
marker. We also evaluate the resulting FLIM feature spaces.
We proposed a random over-sampling strategy with five and
thirty object and background markers, respectively. From that,
we create a heatmap with segmentation performance color-
coded in the marker position in the original image. With
that, we can visualize both performance and marker position
variation over each marked image. To investigate that, we
consider three image datasets of different applications.

II. RELATED WORK

Feature Learning from Image Markers (FLIM) exploits
the user knowledge to learn convolutional filters by learning
those filters directly from user markers with a clustering
algorithm [6]—[8]. The FLIM learning process is direct and
does not require a backpropagation algorithm. It has been



employed in multiple 2d natural image classification tasks [6],
[7] and for detecting COVID-19 from chest CT images [11].
For segmentation, FLIM was used to assist a graph-based
segmentation method [8], to expand the segmentation in aerial
images [14], and for medical image tasks [12], [13], [15].

The works also differ in terms of their methodology. For
the image selection, some used the inspection of the training
set, either visually [11]-[13], using a 2d projection tool [7] or
interactively [16]. As for the annotation of the markers, most
works used unlabeled markers. Regarding the filter estimation
process from the markers, most studies employed clustering,
and one study combined clustering with PCA [14].

FLIM’s previous work shows that it is possible to use a
reduced number of weakly labeled images to learn a shallow
feature extractor (1-3 layers) with a descriptive procedure
while maintaining its performance compared to standard deep
learning models. Even though FLIM offers competitive and
compact networks, its performance is related to a series of
user actions. Although some studies have used multiple users
in their work, showing differences in performance between
them [6], [13], and one study has shown the impact of marker
size on normalization [12], further research is needed to
explore how marker location affects FLIM’s performance and
to compare those different markers.

III. METHOD

In this work, we investigate the problem of how markers in
different positions impact filter learning with FLIM. Therefore,
we focus our analysis on the scenario where there are only
two markers, one for the object and one for the background,
allowing the analysis to be more controlled. Therefore, by
fixing the object marker and varying the background marker,
we can measure the impact of each background position.

Figure 2 shows a schema of this evaluation. From an Image,
we (1) sample the marker positions for the background (three
in this schema), (2) and by varying the background marker,
(3) we learn different FLIM models for each combination
of background/object markers. (4) Each of these models will
have a performance which could be (5) exploited visually in
the original with a color range associated with the model’s
performance. Therefore, our method can be divided into a
few parts: (I) marker over-sampling, and (II) estimation of
the importance of each marker. By running this method over
multiple images and datasets, we can analyze the heatmaps to
gain insights into marker locations for FLIM.

A. Marker over-sampling

To evaluate the position of markers for FLIM, we employ a
random sampling strategy for sampling marker centers given
an image I, its ground-truth image L, a desired number of
background markers ny,, and a marker size r. We chose
to use random sampling because our goal is to analyze
diversity marker positions in images without imposing any
restrictions beyond background/object. This approach avoids
the limitations of deterministic sampling methods [12], which
can reduce the diversity of these markers.

1) Sampling markers centers: Our marker sampling is done
by initially sampling a unique pixel that will be the center of an
object marker, then over-sampling 74, centers of background
pixels. For this, we use a safety margin of 1.5 times the marker
size r. Therefore, marker centers that are close to other centers
or that are close to the image edges are rejected, and a new
center selection is made respecting this safety margin (using
L2 distance). This approach ensures diversity among marker
centers without excluding markers that are close to each other.

2) Drawing markers size: Given a marker center (., y.) €
R? and marker size r, we enlarge the center to its adjacency.
Therefore, the marker set M of one image is composed of the
centers (., y.) and their adjacency. For a given a marked pixel
Pm With coordinates (z.,y.), we use an adjacency relation A
between two given pixels (p,q), with A : (p,q)||lp —¢|| <,
therefore A(p,,) is the adjacency of the marked pixel p,,
according to the marker size 7.

It is worth mentioning that in this work, there is no
restriction on whether a pixel is on an edge of the object, that
is, if there is a pixel ¢ in the adjacency A(p,,) from another
label (label(p.,) # label(q)). This is because we are interested
in evaluate markers on the edge of the objects, whether internal
or external to the objects of interest.

B. Estimating markers importance

Once we obtained the set of background markers My, and
the set of object markers, composed of one marker per image,
M, = {M,}, we train a FLIM model f; for each combination
of object/background markers {M,,, MZS;)}, Mb(;) € My, then
we evaluate this model on the validation set obtaining a metric
o(?. We then used this metric as the relevance of marker Mb(;)
and repeated the process for the remaining markers of My,.

In order to get a visual feedback from the marker, we create
a heatmap for each a® related to the background marker
MZS;). Instead of only setting every pixel p = (x,y) € Mb(;)
with the value of a¥, we used a function to have a spatial
decay of ¥, considering the marker’s adjacency relationship
A. Therefore, for a heatmap image I, given a pixel ¢ in
the adjacency of the center of marker p, the value of I(q)
will follow I(q) = 2 — ||p — q||?/r?. Finally, to a better
representation we apply a colormap on I(g) to get a colored
image ranging from blue to reddish.

IV. EXPERIMENTAL SETUP
A. Datasets

We employ three segmentation datasets in this work:

« Fish: A subset of Fish segmentation dataset [17], compos-
ing 181 images of Pomacentrus moluccensis. The dataset
was collected from live video, showing the animals in
different positions and with differences in background.

o Schisto: An in-house dataset from microscopy imaging
of parasite Schistosoma mansoni eggs. The dataset was
manually labeled by clinical experts and we used only
the images with eggs, resulting in 632 labeled images.

+ Refuge: The refuge dataset, composed of 1200 annotated
retinal fundus images [18]. The dataset consist of two
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Fig. 2. Our evaluation method: Sampling markers position for image, obtain a FLIM model for each pair of object/background marker and evaluate the

marker (in this case background) according to the models performance.

labels from, the optical disc/cup segmentation. In this
work, we are focused in segmenting the optical disc,
which is the outer part of the object.

For all datasets, we split the samples into a 50% holdout
for testing. From the remaining 50%, we remove three images
for marking, which we denote as ‘marked images’, and use
the remaining images as a validation set.

B. Model

We employ a simple model f for evaluation, a 1-layer FLIM
convolutional block followed by a decision layer (Figure 3).
We trained the FLIM block with the marked image and using
the pair of object/background markers, M, and M, é;). For all
datasets we used a convolutional FLIM block composed of
3 x 3 kernels and with output of C' = 16 channels, followed
by ReLU and an average pooling with 3 x 3 and stride = 2.
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Fig. 3. Our evaluated model: A FLIM block followed by a decision layer.

We then interpolate and use a decision layer. As for the
decision layer, we trained a 1 x 1 layer with batch normal-
ization using only the marked image for tuning the decision
layer weights. It is worth mentioning that we freeze the
convolutional FLIM block, training only the decision layer.

We initialize the weights of the decision layer using Xavier.
The weights were tuned using Adam optimizer with [r = 0.1
for 20 epochs, and using a mean of Cross entropy and Dice
loss. We took the best weights for decision layer according
to the validation set. The goal here is to evaluate the capacity
of segmentation from a FLIM block trained with the pair M,
and Mé;). Also, we employ a single block (or layer) trained
with FLIM because it is not very clear if the same markers
position should be used for every layer (block) of FLIM.

C. Markers Parameters

We have two marker parameters, their size  and the number
of background markers ny4. For the Schisto dataset we used
r =5 and nyy = 30, for the Fish we used r = 3 and np, = 10,
and for Refuge we used r = 4 and ny, = 30. Both parameters
were adjusted based on the image’s spatial size and the size
of objects within it. For example, Refuge and Schisto used
images were 400 x 400 and had objects around 2 — 3% of that
size. For Fish, we used images of 128 x 128.

V. RESULTS

A. Correlation of marker position and segmentation perfor-
mance

In order to evaluate the impact of different maker positions
in the FLIM performance, we evaluate the feature space
produced by FLIM and its segmentation performance using
the DICE similarity.

Figure 4 presents (a) object (blue) and background (red)
markers in the original image, (b) the 2d projection of image
patches extracted from marker positions of (a), (c) the 2d
projection feature space produced by FLIM over validation
set, and DICE values from the validation set. Three different
results are presented: a high, a medium, and a low DICE
value. For computing the 2d projections, we use t-SNE [19]
algorithm with perplexity of 5 for projection of (b) and 15
to (c), and other parameters as default. Worth to mention that
projecting the all pixels of validation set would be unfeasible.
Therefore, in (c) we took the center of image superpixels
projected on their feature maps and project those centers
of features using t-SNE. We used DISF [20] as superpixel
method, with number of superpixels of 10,25,30 for Fish,
Schisto, and Refuge dataset.

There are several aspects to analyze from this experiment.
First, for Fish, it is possible to see how different marker
positions impact DICE values: image 1 shows background
marker in a texture region with the highest DICE value,
while image 3 shows background marker in a region without
any texture with the lowest DICE value. In image 2, even
though the background marker is in a texture region, is
a region with texture and color very similar to the object
marker. Another aspect is that the defined markers (a), the
2d feature space produced by FLIM (c), and DICE values



(d) are correlated, thereby answering RQ2. Whenever there
is a clear visual separation between all extracted centers of
superpixels of object (orange) and background (blue) in the
projection, the higher the DICE performance in segmentation
(see image 1). The opposite is also seen: the little the visual
separation between center of superpixels of object (orange)
and background (blue) in the projection, the lower the DICE
(see image 3). Additionally, one can notice that there is a clear
separation of points of marked patches in (b), from object
(orange points) and background (blue points) markers in all
images, and for different performances of DICE, i.e., there is
no correlation between them.

Another important aspect is how the FLIM performance
for segmentation can vary significantly depending on the
marker. For example, for Fish dataset values of DICE are
[0.315,0.846], for Schisto dataset values are [0.331,0.623],
and for Refuge dataset values are [0.000,0.679].

B. Over-sampling of markers

Given that we have shown the correlation between marker
positions and segmentation performance, we now intend to
explore and compare many different marker positions for
object and background, thereby answering RQ1. For that, we
create a heatmap relating the different marker positions to
their relevance. The performance of each background marker
is computed individually and then placed in the same heatmap
image for comparison. For example, in Figure 5, Position
illustrates the distribution of random background markers
across images. Also, we show their corresponding Heatmap.
For Heatmap, a colormap from blue to red defines low to high
DICE values, respectively. A single object marker is colored
as solid red on the object. The diameter of each circle is the
same size as the marker. In the following results, we present
only the Heatmap due to page limit constraints.

Given that, we intend to evaluate different positions of
background markers for different images. We present this
evaluation in Figures 6, 7, and 8. For that, we randomly
sample background markers for three different images (rows)
and five splits of objects markers (columns). We present
correspondent heatmaps and minimum and maximum DICE
values for all marker combinations per image.

First, for the Fish dataset, Figure 6 shows a trend in which
background markers are red (higher DICE values) at the corals
and blue/cyan (lower DICE values) in other areas of the
water. This trend is observed for all three images. Given that
there is more texture and color patterns in the corals, FLIM
can extract relevant information for segmentation from these
regions. Another important observation is related to the lack of
texture and high pixel intensity in corals. Notice how markers
on plain white areas of the corals tend to lower metrics, shown
as blue/cyan discs at the heatmaps, for example, in image 2.

Heatmaps for the Schisto dataset are presented in Figure 7.
The same trend of the last dataset is noticed: background
markers are reddish (higher DICE values) at textured regions
compared to plain areas, which present more blue/cyan (lower
DICE values). Images with more texture in the background,

such as images 1 and 3, show more cyan circles than blue
as lower values as in image 2. Another interesting aspect
is related to markers in the border of (i) the object and (ii)
background markers. For (i), one can note that whenever there
is an object marker on the border of the object —for example,
in the first column of image 3— the higher the values of the
background markers. For (ii), in the first column of image
1, background makers at the border of background textures
(impurities) show better results when the object marker is in
the middle of the object. Additionally, for image 1, in the
second column, the marker at the border of the parasite yielded
better overall metrics (0.523 vs 0.581, the maximum value).

Figure 8 presents results for Refuge dataset. It is possible
to observe a trend where reddish background markers (higher
DICE values) are present whenever an object marker is located
on the border of the outer object (optic disc) rather than in
the central region of the object (optic cup, the brighter area).
For example, see the second column of image 1, and the first
column of image 2: there is an object marker in the middle of
the object, and all other background markers are blue/cyan
(lower DICE values). Another interesting point is related
to background marker positions. Background markers with
higher DICE values are located near retinal vessels —especially
regions with high contrast from vessels to background— and
lower ones are in regions with little texture.

VI. CONCLUSION

In this paper, we propose to investigate the impact of
different positions of markers on the performance of FLIM net-
works for segmentation. We proposed a strategy to oversample
background markers, evaluate each marker individually, and
display their performance in a single image as a heatmap,
where marker positions and colors indicate the quality of
FLIM performance when sampling this location as a marker.
We evaluated our experiments in three different datasets, with
five and thirty random samples for object and background
markers, respectively. We also evaluated the feature space
resulting from FLIM and its performance when using different
marker positions.

Several key findings are as follows. First, we show how
FLIM performance values may differ depending on the marker
position. This indicates how FLIM performance is susceptible
to the localization of markers in the original image. Second,
both the position of the object and background makers also
affect FLIM performance. Object markers on the border of
the object can assist FLIM in capturing differences from the
background. Background markers in the border of textures in
the background can also improve the performance. Object and
background markers within regions of similar texture/color can
not guarantee a good performance. Third, using the projection
of marked patches from object and background markers is
not discriminative for choosing suitable markers for higher
performance values.

Given these findings, we expect that the proposed method
can be used as part of an FLIM experimental setup whenever a
new dataset is used and finding suitable markers is needed. As
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single object marker is colored as solid red on the object.

future work, we plan to use our insights to recommend marker
positions, investigate the combination of markers, evaluate
additional datasets, and assess the classification task. We also
intend to address other questions, for example, how many
markers/images to draw and if there are differences between
object/background markers, while comparing our results with
other attention methods.
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Fig. 6. Heatmap for Fish dataset. Different images 1, 2, and 3 with different random samplings of object and background markers per image are presented
per line. In each Heatmap, circles define marker position, and colors define low (blue/cyan) to high (red with green border) DICE values. A solid red circle
on the fish is the only object marker. High DICE values relate to better segmentation performance. Minimum and maximum DICE values are presented per
image.
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Fig. 7. Heatmap for Schisto dataset. Different images 1, 2, and 3 with different random samplings of object and background markers per image are presented
per line. In each Heatmap, circles define marker position on each image, and colors define low (blue/cyan) to high (red with green contour) DICE values. A
solid red circle on the parasite is the only object marker. High DICE values relate to better segmentation performance. Minimum and maximum DICE values
are presented per image.
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Fig. 8. Heatmap for Retinal dataset. Different images 1, 2, and 3 with different random samplings of object and background markers per image are presented
per line. In each Heatmap, circles define marker position, and colors define low (blue/cyan) to high (red with green border) DICE values. A solid red circle
on the brighter region is the only object marker. High DICE values relate to better segmentation performance. Minimum and maximum DICE values are
presented per image.



