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Abstract

We present an effective framework for segmenting 3D
shapes into meaningful components using the curve skele-
ton. Our algorithm identifies a number of critical points on
the curve skeleton, either fully automatically as the junc-
tions of the curve skeleton, or based on user input. We use
these points to construct a partitioning of the object surface
using geodesics. Because it is based on the curve skele-
ton, our segmentation intrinsically reflects the shape sym-
metry and topology. By using geodesics we obtain segments
that have smooth, minimally twisting borders. Finally, we
present a hierarchical segmentation of shapes which reflects
the hierarchical structure of the curve skeleton. We describe
a voxel-based implementation of our method which is robust
and noise resistant, computationally efficient, able to han-
dle shapes of complex topology, and which delivers level-
of-detail segmentations. We demonstrate the framework on
various real-world 3D shapes.

1. Introduction

Shape segmentation is the task of decomposing a 3D
shape into its meaningful components. In this context,
meaningful components are those that a human being in-
tuitively perceives as distinct, logical parts of the shape.
Segmentations are useful in shape analysis, shape match-
ing, medical imaging, collision detection, and other geo-
metric processing methods employing divide-and-conquer
strategies.

In defining what characterizes meaningful components,
several directions have been pursued in the past. One of
these is to use curve skeletons. The curve skeleton is a
compact shape descriptor, much like a stick-figure repre-
sentation. The curve skeleton of a 3D shape is a connected
1D structure that is centered within the shape, reflects its
circular symmetries, and efficiently captures its topological
and geometrical properties [4]. The structure of the curve

skeleton, consisting of branches and junctions, reflects the
hierarchy of the meaningful components. The branches are
associated with the components, whereas the junctions re-
flect the relationship between components.

In this paper we present a new framework for hierarchi-
cal shape segmentation using the curve skeleton. The curve
skeleton is formally defined in terms of geodesics on the
object’s surface [19]. For each curve skeleton point these
geodesics divide the boundary into a set of connected com-
ponents, providing a natural skeleton-to-boundary mapping
that is intrinsic to the definition of the curve skeleton. Be-
ing geodesics, segment borders are smooth and minimally
twisting. After computing the meaningful components, we
combine them into a hierarchical level-of-detail segmenta-
tion. Although we use the curve skeleton junctions to pro-
vide the meaningful components, other points can be used
as well, depending on the target application. Besides the
segmentation framework, this paper contributes a robust al-
gorithm for computing the curve skeleton of voxelized ob-
jects which enhances the method in [19], and a method to
robustly detect junctions.

Figure 1 provides an overview of our approach, consist-
ing of four stages. First, the curve skeleton is computed
from the voxelized input shape. Second, the critical points
are chosen either automatically as the junctions of the curve
skeleton, or manually by the user. Third, we compute the
component sets of the critical points. Finally, a level-of-
detail segmentation is created from the component sets.

The outline of this paper is as follows. In the next sec-
tion we review related work. In Section 3 we present some
preliminary definitions. In Section 4 we provide the de-
tails of the curve skeleton definition and computation. In
Section 5 we elaborate on the computation of the compo-
nent sets, and how based on them junctions can be detected
robustly. Section 6 deals with creating the hierarchical seg-
mentation from the component sets. In Section 7 we present
the results of the algorithm. Section 8 presents a discussion
and we conclude in Section 9.



Figure 1. Overview of our segmentation framework.

2. Related Work

Shapes can be segmented by considering their bound-
ary or interior. Approaches that are based on the boundary
usually define segment borders at object-surface concavi-
ties. Katz and Tal [11] use fuzzy clustering on geodesic and
angular distances between surface elements to obtain a hier-
archical mesh decomposition with non-jaggy borders. They
show that their segmentation can be used to compute a (con-
trol) curve skeleton. In [10], pose-invariant segmentations
are produced by extracting feature points and cores. In [3],
a fuzzy clustering on quasi-flat surface features separated
by curvature extrema is used to obtain a multiscale segmen-
tation of point sets. In [14], an automatic scissoring scheme
is proposed based on 3D snakes.

Segmentation methods using the curve skeleton consider
the shape’s interior. Our approach falls into this category.
To obtain meaningful components, these methods require
a mapping from the curve skeleton to the object boundary.
Various mappings have been proposed. In [15] for example,
a combination of planar cross-sections and space sweeping
is used. The approach in [5] uses force-following of bound-
ary particles onto the curve skeleton. A comparative study
of some of the latest segmentation methods can be found
in [2].

Our segmentation approach is similar to that of
Li et al. [15], in which the segmentation is also based on
curve skeletons. However, there are some important differ-
ences. Our curve skeleton algorithm has a more fundamen-
tal underpinning (see [19] for details), is more noise resis-
tant, and is connected by default. Li et al. use a planar
cross-section sweeping along the curve skeleton between
critical points to obtain components. The definition of our
curve skeleton is such that it provides a natural skeleton-
to-boundary mapping. Instead of taking the planar cross-
section as borders between components, we use the actual
curve skeleton definition and take the shortest geodesics be-
tween feature points as borders. This makes for more nat-
ural borders between segments (compare e.g. the Hand ob-
ject in Fig. 11 with [15, Fig.13]). Furthermore, our frame-
work provides a hierarchical segmentation.

Figure 2. The surface skeleton with rainbow
color map indicating geodesic length (blue is
short, red is long) (a). The curve skeleton C,
a selected point p ∈ C, and Γ(p) = {γ1, γ2, γ3}
(b).

3. Definitions

The surface skeleton S of a 3D object Ω with bound-
ary ∂Ω is defined as those points in Ω having at least two
boundary points at minimum distance:

S ={p ∈ Ω|∃a, b ∈ ∂Ω, a 6= b,

dist(p, a) = dist(p, b) = min
k∈∂Ω

dist(p, k)}, (1)

where dist is the Euclidean distance in R3. Points a, b are
the points at minimum distance of p and are called the fea-
ture points of p. Let F : Ω → P(∂Ω) be the feature
transform which assigns to each object point its set of fea-
ture points, where P denotes the power set. The surface
skeleton consists of 2D manifolds, called sheets, and of 1D
curves [8]. The sheets intersect in sheet-intersection curves.
Points on these intersection curves have at least three feature
points. The algorithms we present in this paper all work in
binary voxel space [13]. When used in a discrete-space con-
text, Ω denotes the set of foreground, or object voxels.

4. Curve skeleton computation

First, we define the curve skeleton C for the generic
case, namely when the curve skeleton is not (partly) inci-
dent with a sheet-intersection curve, so that there are exactly



two feature points for each point p ∈ C. The curve skele-
ton is defined as those points having at least two shortest
geodesics γi, γj between their two feature points F (p):

p ∈ C ⇔ ∃ two shortest geodesics γi 6= γj between F (p)
(2)

A similar definition was first presented in [7], and in [19].
This definition ensures that the curve skeleton is centered
in two ways. First, the curve skeleton is included in the
surface skeleton, as the surface skeleton is defined as those
points having at least two feature points. Second, it is also
centered within the surface skeleton structure, as the two
shortest geodesics γi, γj necessarily have the same length.

In the non-generic case, the curve skeleton is partly inci-
dent with a sheet-intersection curve, and there are more than
two feature points for a point p ∈ C. For example, Figure 2a
depicts the surface skeleton of a box with a vertical ridge.
Figure 2b depicts the curve skeleton of the same object.
Point p lies on the sheet-intersection curve of the box’s sheet
and the ridge’s sheet, and has three feature points. Point p
clearly is a curve skeleton point, but definition (2) does not
detect this. Consequently, this definition cannot be used to
detect all curve skeleton points, so we modify it as follows.
With each intersecting sheet a feature-point pair a, b is as-
sociated and thus a shortest geodesic γi between a, b. For
example, for three intersecting sheets there are three short-
est geodesics (Fig. 2b), not necessarily of the same length.
We call the combination of these shortest geodesics for a
surface skeleton point p ∈ S the shortest-geodesic set Γ(p):

Γ(p) = {γi}i, (3)

where γi is a shortest geodesic between the feature-point
pair a, b ∈ F (p) associated with a sheet.

Both in the generic and non-generic case, the union of
shortest geodesics form a Jordan curve on the object sur-
face ∂Ω. Hence, detecting a curve skeleton point p comes
down to detecting whether Γ(p) contains a ring, i.e. com-
puting the genus of Γ(p). By the genus of Γ, we mean the
genus of the surface that is obtained by taking a infinitesi-
mal dilation of Γ on ∂Ω. The new definition of the curve
skeleton replaces (2) and becomes:

p ∈ C ⇔ genus
(
Γ(p)

)
≥ 1 (4)

Additionally, the genus of Γ can be used to differenti-
ate between junction and non-junction points, called regular
points. A junction is a point on the curve skeleton where at
least three branches come together. The shortest-geodesic
set of such a junction is the union of the Jordan curves of
the neighboring regular points. Hence, if the genus of Γ(p)
is larger than 1, p is a junction:

p ∈ junctions(C) ⇔ genus
(
Γ(p)

)
≥ 2 (5)

As mentioned, a similar curve skeleton definition was
first presented by Dey and Sun [7], namely as the set of sin-
gular points of the the so-called medial geodesic function,
which assigns to each surface skeleton point the length of
the geodesic between its two feature points, and they show
that this curve skeleton is homotopy equivalent to the orig-
inal shape. In contrast, we detect the curve skeleton by
performing a topological analysis of the shortest geodesic
set. This definition allows us to compute the curve skele-
ton without first detecting the surface skeleton, and read-
ily allows junction detection. At an implementation level,
whereas [7] uses polygonal representations, our implemen-
tation of the curve skeleton detection is voxel-based, as de-
tailed in the next section.

4.1. Algorithm

Based on the above definitions, we now present our algo-
rithm for computing the curve skeleton of a voxelized object
Ω. The algorithm consists of several steps that can be exe-
cuted in parallel for each object voxel. The different stages
are depicted in Figure 3. In the first step, we compute the
feature transform F and extended feature transform F of
Ω. The extended feature transform merges the feature set
of each voxel p with that of its first octant 26-neighbors:
F =

⋃
x,y,z∈{0,1} F (px + x, py + y, pz + z). The result is

that a regular curve skeleton point has two (compact) groups
of feature voxels (Fig. 3a), one on each side of the sur-
face skeleton. The extended feature transform solves two
problems. First, it solves the well-known problem that in
discrete space the feature set of a surface skeleton voxel
might contain only one feature voxel, since there might
be no voxel exactly in the center of the voxelized bound-
ary [6, 18]. Second, it solves the related problem that on a
voxelized object surface, there is typically only one short-
est path between the two feature voxels of a curve skeleton
voxel, although there are two on the underlying continuous
surface.

After computing F , we compute the shortest-geodesic
set Γ(p). Because we perform our computations in discrete
voxel space, we compute the shortest geodesics as short-
est paths in the boundary graph in which the surface vox-
els are the nodes and their neighborhood relations repre-
sent the edges. The shortest paths are represented as 3D
chain codes [12] in the boundary graph. For computing a
shortest path we use the A* algorithm [9], a modification of
Dijkstra’s algorithm, with Euclidean distance as the search
heuristic. We compute a shortest path between each two
feature voxels in F (p). Because F (p) contains groups of
voxels, we will find numerous shortest paths for a regular
point having only two feature points. Together, they form a
discrete (noisy) Jordan curve on the object surface (Fig. 3b).

After computing the path set Γ(p), we determine its



Figure 3. Curve skeleton computation and junction detection.

Figure 4. The boundaries of two dilated path-
sets.

genus on ∂Ω, as follows. First we dilate Γ(p) so that we
obtain a surface band Γ′(p) centered at the 1D structure
Γ(p) (Fig. 3c). Conveniently, small holes from the path set
that are caused by the discrete nature of the shortest paths
(Fig. 3b) are removed by the dilation. The dilation is per-
formed by propagating the voxels in Γ(p) a short distance
outward using a distance-ordered flood fill. Next, we de-
termine the number of compact boundary pieces that the
area Γ′(p) has. If two or more boundaries are found, p is
concluded to be a curve skeleton voxel (Fig. 3d). When
only one boundary is found, the voxel is concluded to be
a non-curve skeleton voxel (Figure 4a). Empirical studies
on an extensive family of real-world 3D shapes show that a
(geodesic) dilation distance of 5.0 is enough to obtain two
disjoint boundaries if Γ(p) is the discrete representation of
a Jordan curve. In principle, when three or more boundaries
for Γ′(p) are found, p is a junction. In Figure 4b for exam-
ple, three boundaries are found for the junction voxel. How-
ever, due to the discrete nature of the shortest paths, curve
skeleton voxels might be incorrectly classified as junctions,
i.e., junction detection by analyzing the genus of Γ is con-
servative. This is problematic if we want to use the junc-
tions in segmentation (Sec. 6). We address this problem in
Section 5.4.

The steps described above (Fig. 3a-d) are executed for all
object voxels in parallel, resulting in the curve skeleton C
(Fig. 3e). Figure 5 shows four curve skeletons as computed

Figure 5. The curve skeleton C of several ob-
jects.

by our algorithm. We stress that these results are obtained
without any post-processing, and that our algorithm does
not perform any thinning or erosion step. The curve skele-
tons, and consequently their junctions, are up to 2 voxels
thick, due to the extended feature transform. We observe
that the curve skeleton is homotopic to the object, and is
connected, although some noise is present. In Section 5.3
we present an importance measure for C that can be used to
obtain noise-resistant, simplified skeletons. This measure is
based on the component sets that are associated with each
point p ∈ C, as explained in the next section.

5. Component Sets

In the previous section we described the detection of a
curve skeleton point p by analyzing the genus of its as-
sociated geodesic set Γ(p). In this definition of the curve
skeleton lies a natural skeleton-to-boundary mapping. For
objects of genus 0, the Jordan curve theorem states that the



Figure 6. The component sets (bottom) of two
selected points p, q (top).

Jordan curve Γ associated with a regular point divides the
object surface ∂Ω into two connected components. For a
junction point, Γ is the union of Jordan curves of neigh-
boring regular points, dividing the boundary into multiple
components. The component set of a point p is denoted
C(p). Let the k components in C be ordered by their areas:
∀1≤i<k |Ci| ≤ |Ci+1|. The area of a component Ci(p) is
determined simply by counting its voxels: the cardinality of
the set Ci(p). Although we could use a more sophisticated
surface estimator, the cardinality is sufficient for our pur-
poses. In our voxel space representation, the component set
C(p) for a voxel p is computed by labeling the connected
components in the boundary graph from which the voxels
from the path set Γ(p) are removed. The labeling is sped up
using a simple spatial-subdivision scheme.

Figure 6 shows the component sets for two selected
curve skeleton points p, q, where p and q are a junction and
regular point respectively. The component sets of the junc-
tions are used to obtain a segmentation in Section 6.

5.1. Topological Properties

It is important to note that the number of components
|C(p)| for a point p ∈ C is related to whether the shape Ω
has tunnels, as this will affect the final segmentation. For
shapes without tunnels or holes (genus 0), the curve skele-
ton has a tree structure. For objects with tunnels (genus ≥
1), the curve skeleton is a graph that contains a loop around
each tunnel. Since there is a skeleton-to-boundary mapping
through the use of Γ, whether Γ(p) divides the boundary
into multiple components is equivalent to whether p divides
the graph into multiple components. In graph theory, a point
p dividing the graph into multiple connected components is
called a cut vertex [22]. The number of components |C(p)|
is related to the genus of Γ(p) and the amount of loops L(p)
that p is on:

|C(p)| = max
(
genus(Γ(p)) + 1− L(p), 1

)
. (6)

Figure 7. An object with two tunnels and Γ of
four selected points.

Figure 7 shows an example shape with two tunnels and four
selected points. Points p, q are regular (non-junction) points
(genus(Γ(p)) = 1, genus(Γ(q)) = 1), whereas r, s are junc-
tions of three branches (genus(Γ(r)) = 2, genus(Γ(s)) =
2). Point p is not on a loop, points q, r are both on one loop,
and s is on two loops. Indeed, we verify that the cardinality
of the component sets generated by p, q, r, s is 2, 1, 2, 1 re-
spectively. Points p, r are cut vertices in the curve skeleton
graph, whereas q, s are not.

5.2. Inclusion Property

An important property of the component sets for the pur-
pose of hierarchical segmentation is that any two compo-
nents Ci(p), Cj(q) for two points p, q ∈ C cannot partly
overlap:

Ci(p) ∩ Cj(q) ∈ {∅, Ci(p)} if |Ci(p)| ≤ |Cj(q)|
(7)

In order to prove (7) for two regular points p, q, we have
to prove that the Jordan curves Γ(p) and Γ(q) cannot inter-
sect. The proof can be roughly sketched as follows. Take
that subset Cpq ⊂ C that is between p and q. It is reason-
able to assume that the feature points F (Cpq) generate two
curves L1, L2 on ∂Ω, one on each side of the surface skele-
ton. Each geodesic γ ∈ Γ has one endpoint on L1 and the
other endpoint on L2. Such a geodesic γ does not intersect
L1 or L2 in any other point as it would no longer be the
shortest geodesic. Now, if a geodesic γp ∈ Γ(p) intersects
γq ∈ Γ(q), it needs to have (a multiple of) two intersec-
tion points. But if γp intersects γq in two points a, b, the
shortest geodesic between a, b would not be unique, which
is impossible.

5.3. Importance Measure

The component sets can be used to define an importance
measure for computing simplified curve skeletons that are
robust to noise, as follows. The importance measure ρ(p)



for a point p ∈ C is defined as the importance of p in rep-
resenting the original shape. One way of expressing ρ(p)
is in terms of the component areas associated with p. Re-
call that the components in C are ordered by their areas,
or voxel count: ∀1≤i<k |Ci| ≤ |Ci+1|. We call the largest
component Ck the background component. The others are
called foreground components. The importance measure ρ
for a point p is defined as the total area of the foreground
components:

ρ(p) =
1

|∂Ω|

∣∣∣ ⋃
1≤i<k

Ci(p)
∣∣∣ (8)

We normalize ρ by the total object surface area |∂Ω|. Note
that this importance measure can only be computed for non-
loop points. A regular loop-point has only one component
and no foreground components (e.g. Fig. 7, point q), so that
ρ is undefined. Simplified curve skeletons can be computed
from a noisy curve skeleton C by discarding all points with
an importance below a certain threshold τ :

Cτ = {p ∈ C | ρ(p) ≥ τ} (9)

The threshold τ is a user-parameter which controls what is
considered noise. The meaning of this parameter is intu-
itive: all C-points representing a smaller surface area than
τ are discarded. Furthermore, Cτ can be considered a mul-
tiscale representation of the curve skeleton. The simplified
skeletons are connected by default at all scales, because ρ
is monotonic, which follows from (7). The simplified curve
skeletons Cτ of several shapes are shown in Figure 11, with
τ = 10−3. Thus, curve skeleton points representing an area
less than 0.1% of the object surface are discarded.

This definition of ρ has been presented in [19]. There,
the curve skeleton detection was integrated with the com-
putation of ρ. In contrast, the skeletonization method pre-
sented here computes a curve skeleton by analyzing the
genus of Γ, making it much faster to compute, and mak-
ing it possible to handle objects with tunnels. Furthermore,
in this paper we also present a method to robustly detect
junctions, as detailed in the next section.

5.4. Robust Junction Detection

As indicated in Section 4.1, the genus of Γ(p) is a conser-
vative criterion for detecting junctions, which is problem-
atic if we want to use them for segmentation. Inspired by
the importance measure from the previous section, we dis-
card junctions which have small components among their
foreground components. These junctions are likely the re-
sult of noise on the object boundary, or due to discretization
artifacts. A point p is a junction, p ∈ Jτ , at a certain scale τ
if and only if it has at least two foreground components Fτ

Figure 8. Conservative junctions J0 (a). Ro-
bust junctions Jτ (b).

that are larger than τ :

Jτ =
{
p ∈ J0

∣∣ |Fτ (p)| ≥ 2
}

(10)

Fτ (p) =
{
Ci(p)

∣∣ 1 ≤ i < k ∧ 1
|∂Ω| |Ci(p)| ≥ τ

}
, (11)

where J0 is the set of conservatively detected junctions from
Section 4.1. Although related to the computation of ρ, we
do not have to compute ρ to compute Jτ : We only have to
compute the component sets for the conservative junctions
J0. Equivalent to the computation of Cτ , the scale τ is used
to distinguish between small-scale noise and signal. For all
objects we tested, a value of τ = 10−3 gives good results.
Like the importance measure, a limitation of this method is
that junctions on C-loops are discarded, as these junctions
have only one foreground component (Sec. 5.1).

In Figure 8a, the conservative junctions J0 on C are
shown for an object with noise on its boundary, computed
by analyzing the genus of Γ. Figure 8b shows the robust
subset selected by applying (10).

6. Segmentation

We now present two methods for computing a shape seg-
mentation from the critical points. By segmentation we
mean the final segmentation S of the object into disjoint
and connected segments Si. In order to obtain a segmenta-
tion into meaningful components, the junctions of the curve
skeleton are detected and used as critical points. Alterna-
tively, we can pick critical points by some other (semi) au-
tomatic process. The first segmentation method (Sec. 6.1)
we present is the most straightforward. It is based on the
geodesic sets of the critical points, and produces a flat (non-
hierarchical) segmentation at the finest scale. The second
method (Sec. 6.2) is based on the component sets generated
by the critical points, and produces a hierarchical, level-of-
detail segmentation.



1: F ← {Ci(p)|p ∈ P, 1 ≤ i < k} ∪ {C′(p)|p ∈ P}
2: F ← F ∪ {∂Ω}
3: procedure computeS(τ )
4: S ← ∅
5: for each f ∈ F in ascending order of |f | do
6: if 1

|∂Ω| |f | ≥ τ then
7: s← f \ S
8: if f ∩ S 6= ∅ ⇒ |s| > 0.1 · |f ∩ S| then
9: S ← S ∪ {s}

10: end if
11: end if
12: end for
13: end procedure
14: procedure computeLevelsOfDetail()
15: for each fi, fi+1 in F in ascending order of |f | do
16: if |fi+1| − |fi| > 0.1 · |fi| then
17: computeS( 1

|∂Ω| |fi|)
18: end if
19: end for
20: end procedure

Figure 9. Algorithm for computing a level-of-
detail segmentation.

6.1. Flat Segmentation

We produce a simple, flat segmentation by considering
the shortest-path sets Γ of all critical points P at once.
The connected components in the boundary graph due to
all these shortest paths are labeled. A segmentation that
is obtained in this way is shown in Figure 10b, using the
shortest-path sets of the critical points shown in Fig. 10a.
One property of this segmentation is that it splits tunnel-
parts of the object into multiple segments.

6.2. Hierarchical Segmentation

In order to produce a hierarchical, level-of-detail seg-
mentation, we consider the component sets C of the critical
points P . In Section 5.3 we distinguished between fore-
ground and background components. In a component set
C consisting of k components C1..k, the largest component
Ck is called the background component, the remaining ones
are called foreground components. The foreground compo-
nents are those that one would consider meaningful and in-
tuitively associate with the critical point. The background
component is merely the remaining surface area. In Fig-
ure 6 for example, the background components are light
gray. Furthermore, we observe that the foreground compo-
nents combined also form a meaningful component. We de-
note this compound component by C ′(p) = ∪1≤i<k Ci(p).

Let F be the set of meaningful components of all criti-
cal points combined. The segmentation S should be based
on F , but the components in F are not disjoint. We now
present an algorithm for creating a segmentation S from F

Figure 10. Critical points and their path sets
(a). Flat segmentation (b). Finest level of the
hierarchical segmentation (c).

consisting of disjoint segments Si at a certain scale τ . The
pseudo code of the algorithm is shown in Figure 9.

The idea is that we consider all components f ∈ F in
ascending order of their area (line 5), but only those com-
ponents that are larger than the specified scale τ (line 6).
The potential segment s is computed as the set difference
between f and the existing segments in S: s = f \ S
(line 7). Before adding the potential segment s to S, we
check whether f overlaps any existing segments from S. If
not, s is added without restriction. If f overlaps, we only
add s if it contributes enough to the segmentation, that is, if
it adds at least 10% of the area that it overlaps (line 8). This
is to prevent tiny segments due to different junctions having
similar components among their component sets. This oc-
curs for example due to the fact that junctions computed by
the algorithm in Section 4 may consist of multiple voxels,
having almost the same component sets. After processing
all components in F , because the background components
have been left out in the segmentation, the object surface
might not be fully covered. Therefore, we add to F the
whole boundary as the largest component (line 2), which
ends up as a single segment filling up the remaining part.

In order to compute multiple segmentations from fine to
coarse (line 14), we can simply consider all components
from F in ascending order of area, and produce a segmen-
tation for each of those areas. To limit the amount of gener-
ated hierarchy levels, in our implementation we only com-
pute a hierarchy if two consecutive areas differ by at least
10% from the smaller area fi (line 16). The different seg-
mentations produced at the various scales actually form a
hierarchy, because every segment is included in a segment
from a coarser scale, by (7). Besides being hierarchical, an-
other difference between this segmentation method and the
flat one is that tunnel-parts are not segmented and are left
intact (see Fig. 10c).

7. Results

We have implemented our framework in C++ and have
run it on a Pentium 4, 3GHZ with 1GB of RAM. In comput-
ing the shortest paths we used a cache to prevent comput-
ing the same shortest path twice. As input we used several
polygonal meshes from [1, 20], voxelized using binvox [16]



for various resolutions. We used both organic and geomet-
ric objects. Figure 11 shows for four objects the simpli-
fied curve skeleton Cτ and robust junctions Jτ , both with
τ = 10−3, and three selected levels from the hierarchical
segmentation. Figure 12 shows for several objects the seg-
mentation at the finest scale. We observe that our method
is able to extract fine details, such as the toes and fingers
of the Armadillo and Dinopet objects, and it does not suffer
from over-segmentation. The use of geodesics as borders of
the surface segments has the very beneficial effect of pro-
ducing sharp, non-jagged separations, since geodesics are
minimally twisting curves on the surface. Additional results
are available online [17].

Table 1 shows performance measurements on our frame-
work for several objects that are shown in this paper.
Columns “object”, “dim”, “|Ω|”, “|∂Ω|” denote object
name, voxel-grid dimensions, number of object voxels, and
number of boundary voxels respectively. Column “C time”
denotes the time in seconds to compute the non-simplified
curve skeleton C, including preprocessing (Sec. 4.1). Col-
umn “seg time” denotes the time for computing all levels in
the hierarchical segmentation. This time strongly depends
on the amount of levels generated. Column “ρ time“ de-
notes the time required to compute ρ on C (Sec. 5.3), that is,
to obtain simplified curve skeletons. Note that computing ρ
is not needed for obtaining a segmentation. Column “mem”
gives an indication of the peak memory usage. Comput-
ing the curve skeleton takes the most time, which can be
attributed to the computation of the shortest paths and di-
lations. It takes relatively long for the Plane, which can be
explained by the fact that the Plane has a high surface area
to volume ratio, meaning that the average shortest-path be-
tween feature voxels is relatively long. The time needed to
compute the robust junctions Jτ is not shown as it is negli-
gible: up to 5 seconds for the considered objects.

8. Discussion

Following from the curve skeleton definition, the bor-
ders of the segments are piecewise geodesic. They do not
necessarily follow local surface-concavities, but instead find
the minimal-length path between feature points. Hence, the
borders exhibit minimal twist on the surface, look natural,
and are robust to noise, as shown by the Noisydino object
(Fig. 12). For segmentation methods based on surface cur-
vature, this noise could be problematic [3].

Segment borders are not based on boundary features but
on the curve skeleton, capturing global geometrical (e.g.
symmetrical) and topological properties. This has a number
of advantages. The segmentations respect the object’s cir-
cular symmetry and are invariant for different poses of the
same object. This is because the curve skeleton structure
in general remains stable under deformations of the object.

Figure 13. Pose-invariance

Figure 14. Manual segmentation of the Octo-
pus.

Figure 13 shows the segmentations for two poses of the Cat
(poses from [21]).

Borders are not necessarily found at curvature extrema.
In the H-shape object for example, borders are found on
flat parts of the surface, segmenting the tips of the H-shape.
These segments are ascribed to the fact that the tips have
sharp convex corners, which generate branches and junc-
tions in the curve skeleton. A consequence of choosing
only the junctions as critical points is that we do not find
segment borders for curvature extrema in tubular-like parts
of the object. In Figure 12 for example, the Dinopet object
has no segment borders on its knees. In order to consider
more the object’s geometry in addition to its topology, we
could choose extra critical points on the curve skeleton at
curvature extrema, computed either on the curve skeleton
or original surface.

As mentioned earlier, our framework supports manual
selection of critical points. In Figure 14a, we manually se-
lected three such points on each tentacle of the Octopus.
The resulting segmentation containing three segments per
tentacle is show in Fig. 14b.

9. Conclusion

We have presented a novel framework for hierarchical
segmentation of 3D shapes. Being based on the formally
defined curve skeleton, our framework has a solid under-
pinning. The produced segmentations inherit several de-
sirable properties, such as pose-invariance, from the curve



Figure 11. Simplified curve skeletons Cτ , and three levels of the hierarchical segmentation.

Figure 12. Segmentations at the finest scale.



Table 1. Table with measurements. See the text for details.
object dim |Ω| |∂Ω| C time (s) seg time (s) ρ time (s) mem (MB)
Armadillo 188x245x207 905k 80k 42.9 41.0 7.50 447
Dinopet 334x366x180 1,810k 136k 98.3 54.2 40.0 707
Hand 366x154x257 1,300k 94k 91.8 20.5 5.57 540
Horse 366x316x171 2,038k 119k 105 33.7 10.2 660
Noisydino 125x346x365 1,421k 114k 55.2 19.4 14.0 552
Plane 217x304x98 545k 110k 228 20.5 38.5 492
Octopus 366x259x335 1,860k 154k 28.5 9.47 10.5 600

skeleton and reflect the symmetry of the object. The defi-
nition of the curve skeleton in terms of shortest geodesics
gives rise to a natural skeleton-to-boundary mapping. The
meaningful components are found using the curve skele-
ton junctions and are combined into a hierarchical, level-
of-detail segmentation. Being piecewise geodesic, the seg-
ment borders are smooth and non-twisting. Interestingly,
because our method is based on the curve skeleton repre-
senting the object’s interior, our method produces both a
surface segmentation and a corresponding volumetric seg-
mentation. The framework supports segmentations based
on the critical points defined as the curve skeleton junc-
tions, but also defined in other ways. A voxel-based imple-
mentation is provided. Besides the segmentations, it com-
putes multiscale curve skeletons that are robust to boundary
noise, and performs robust junction detection. We showed
that our framework delivers good results on both organic
and geometric objects. In future work, we would like to de-
tect additional critical points to obtain segment borders at
curvature extrema of the object surface.
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