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Fig. 1. Taxonomy of Time Series Representation Techniques.We classify time series representation techniques for
multiple analysis tasks, studied in diverse disciplines, and applied in various domains into six categories based on their
essential technical affinities.

Existing State-of-the-Art Reports (STARs) on time series representations/transformations/models are confined to limited downstream
tasks, academic disciplines, and application domains, such as deep learning models or forecasting models in econometrics. They
typically collect and group Time Series Representation Techniques (TSRTs) loosely, by describing the properties of each TSRT
individually while analyzing group properties up to a limited extent. We propose a taxonomy of TSRTs which is interdisciplinary,
domain-agnostic, and covers more techniques than existing STARs. We classify TSRTs into six categories based on their technical
affinities. The TSRTs in each category are presented in such a logical order that the latter ones fill the gaps of the former ones. Also,
we extract and survey nine common data assumptions and analyze the factors affecting the effective choice of TSRTs. Our taxonomy
helps researchers and practitioners enter the field Time Series Analysis (TSA) by providing an overview of TSRTs with clear technical
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lineages, rich examples, intuitive explanations, and practical tips. Experienced readers may benefit from the comprehensive method
collection during a quick search of method candidates and from the suggested research directions.

CCS Concepts: •Mathematics of computing → Time series analysis; • Information systems → Data mining.

Additional Key Words and Phrases: Time Series Representations, Time Series Models, Time Series Transformations

ACM Reference Format:
Yuncong Yu, Tim Becker, Wolfgang Aigner, Alexandru C. Telea, and Michael Behrisch. 2018. Time Series Representation Techniques:
A Survey. ACM Comput. Surv. 37, 4, Article 111 (August 2018), 48 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

A time series can be defined as a sequence of real-valued observations recorded chronologically [37, 56, 80, 100, 176],
TSA or time series data mining addresses the tasks of information extraction and knowledge discovery from time
series. During analysis, time series are represented in different ways in distinct spaces, under diverse assumptions, and
targeting various tasks, by what is known as Time Series Representation Technique (TSRT). TSRTs play key role in
TSA. For instance, without AutoRegressive Integrated Moving Average (ARIMA) and its variants, econometrics may
not exist; without Fast Fourier transform (FFT) and its followers, signal processing and control engineering would not
have achieved considerable progress.

A vast array of TSRTs exists, prompting several key inquiries: Are they interconnected? What common properties do
they possess, and how do they differ? Which factors should or could analysts consider when selecting these TSRTs for
applications? Our work tries to answer these questions.

Answering such questions is necessary because analysts carrying out TSA may get lost in the huge amount of work
in this area. Indeed, TSRTs are separately studied and applied in many disciplines and domains, e.g., stochastic process
models (statistics and econometrics) and integral transforms (signal processing). Such fields view time series from
distinctive perspectives, make different data assumptions, and serve various downstream tasks, leading to multiple
lineages of TSRTs. Separately, we found that most STARs on TSRTs [69, 220, 239, 259] focus on one or a few domains.
They also emphasize the analysis of state-of-the-art methods and focus less on their development and inter-relationships.
Lastly, surveys explain the most relevant and unique, thus diverse and inconsistent, properties for individual TSRTs,
making method and category comparison challenging. For all the above reasons, we believe that an interdisciplinary

survey on TSRTs is of added value for helping practitioners and researchers with the application, transfer, and innovation
of TSRTs.

Our taxonomy classifies TSRTs into six categories:

(1) stochastic process, e.g., ARIMA, ARCH, and HMM;
(2) integral transform, e.g., FFT, STFT, and WT;
(3) piecewise representation, e.g., PAA, PLR, and SAX;
(4) machine learning model, e.g., SVM, random forest, and ANN;
(5) dimensionality reduction, e.g., PCA, SOM, and t-SNE; and
(6) miscellaneous, e.g., Prophet and PIP.

We also propose five factors to consider when choosing a TSRTs for concrete applications:

(1) physical dynamics, e.g, some TSRTs decompose a time series into different components to model different
system dynamics;

(2) data assumptions, e.g, some TSRTs presume normality and stationarity;
Manuscript submitted to ACM
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Time Series Representation Techniques: A Survey 3

(3) task type, e.g., some TSRTs are designed for forecasting, while others geared to anomaly detection;
(4) technique transfer, e.g., some TSRTs represent a numerical-valued time series with a symbolic string, enabling

text processing techniques; and
(5) computational resources, e.g., some TSRTs consumes excessive CPU or RAM when handling high-dimensional

time series.

Our proposed taxonomy makes three distinctive contributions: 1) we unite groups of techniques developed in
different disciplines to foster method transfer and combination; 2) we list factors to consider when applying TSRTs,
helping analysts with effective TSRTs choice; 3) we list the most representative TSRTs with eight common properties
and properties unique to each method explicitly, as well as typical use cases, helping again practitioners with method
choice.

Our STAR is organized as follows. We begin by comparing our STAR with other related state-of-the-art STARs
(Section 2). Section 3 adds important concepts and needed background knowledge. Section 4 outlines our literature
selection method. Section 5 presents our taxonomy formally. Section 6 introduces the factors to consider when choosing
a TSRT. We next provide a comprehensive list of the most representative TSRTs with their data assumptions and typical
use cases (Section 7). Finally, Section 8 discusses the limitations of our work and suggests future research directions.
Section 9 concludes our survey.

2 COMPARISONWITH OTHER STARS

Table 1 compares representative STARs with ours regarding the six categories we propose. We further elaborate on
these differences.

First, our taxonomy is technically diverse. Unlike, e.g., [69] (focus on stochastic processes), [259] (focus on time-
domain representations from data mining), or [147, 239] (focus on deep learning), we cover a wider set of TSRTs in
different technical lineages.

Second, our taxonomy is interdisciplinary and domain-agnostic. Unlike, e.g., [104] (focus on econometrics), [36]
(focus on econometrics as well as system and control engineering), or [229] (focus on statistics), our domain-agnostic
work surveys techniques from different academic disciplines and application domains including statistics in econo-
metrics/economics/finance/business, signal processing in meteorology/geology/biology/engineering, and general data
mining / machine learning.

Third, our taxonomy is versatile andmulti-functional. Unlike, e.g., [74] (focus on retrieval), [220] (focus on forecasting),
or [53] (focus on compression), we reviewed methods for multiple tasks, see further Section 3.2.

Besides a broader scope, our exposition of the TSRTs in each category outlines how gaps in earlier methods are
covered by succeeding ones, highlighting the lineage of technical advancements. Furthermore, we extracted eight
common properties of TSRTs along with unique ones, underscoring a more direct comparison between the methods.
Finally, we propose five factors to consider during the selection of TSRTs for practical applications.

3 THEORETICAL BACKGROUND

3.1 Time Series

A time series is a sequence of real-valued observations recorded chronologically [37, 91, 176]. Many real-world data
can be modeled as time series – sales development [14, 194], energy consumption transitions [66, 231], stock price
fluctuations [76, 91], Internet of Things (IoT) measurements [60, 146], audio recordings [81, 132], concentration changes

Manuscript submitted to ACM
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STAR Stochastic
Process

Integral
Transform

Piecewise
Represent. ML Model Dimension.

Reduction Miscell.

Keogh [136] ✓ ✓ ✓
Ding et al. [74] ✓ ✓
Längkvist et al. [147] ✓
Box et al. [37] ✓
Chatfield [48] ✓ ✓
Wilson [259] ✓ ✓1

Salles et al. [220] ✓ ✓ 2

Hamilton [104] ✓ ✓
Deistler et al. [69] ✓ ✓
Mertins [177] ✓
Triat et al. [239] ✓
Our STAR ✓ ✓ ✓ ✓ ✓ ✓
1 Perceptually Important Point (PIP).
2 There are diverse primitive transformations like logarithmic transform, Box-Cox transform, and simple differencing, which we exclude from TSRTs, explained in Section 3.3.

Table 1. Representative STARs on TSRTs. While most works focus on one or several technical lineages, our work has a
broader scope.

in a chemical process [19, 57], genetic sequences [20, 148], andmedical charts like Electroencephalogram (EEG) [189, 277]
and Electrocardiogram (ECG) [170, 234].

Formally, we define a time series [
𝑦𝑦𝑦𝑡 ∈ R𝑚

]
0≤𝑡<𝑛 =

[
𝑦𝑡,𝑣

]
0≤𝑡<𝑛
0≤𝑣<𝑚

(1)

with 𝑛 time points and𝑚 recorded variables as a sequence of 𝑛 real-valued,𝑚 dimensional, vectors. Here, we adopt the
square bracket notation for a matrix. The time axis is indexed with 𝑡 = 0, . . . , 𝑛 − 1 (equidistant sampling assumed), and
the variables are indexed with 𝑣 = 0, . . . ,𝑚 − 1. Please refer to Appendix A for a list of symbols.

Throughout this STAR, we use uppercase letters for matrices and random variables, lowercase letters for scalars,
lower- or uppercase letters in boldface for vectors, uppercase letters in special fonts for functions or operations, Two
exceptions are the error term 𝜀𝑡 and the conditional heteroscedasticity 𝜎2𝑡 in stochastic process models, which are
random variables but in lowercase due to convention. We strive to avoid overloading one symbol with multiple meanings.
In rare cases, the same symbol may have different meanings, e.g., the symbol 𝑗 is used as the imaginary unit and an
index in different formulas. Nonetheless, the usage should be well distinguishable.

Figure 2 illustrates an example time series (unfaithful hand-drawn based on measurements) from an engine control
unit in a car.

Fig. 2. An Example Time Series. A time series consists of sequentially
ordered real-valued (potentially multidimensional) time points. The values
of the same dimension ordered in ascending order of time in all time points
form a channel.

Along the time axis lies the essential prop-
erty of time series, i.e., the time points are
sequentially ordered [36, 239], and the or-
der carries information. Some sequential data
(like genomic sequences [148]) and even
some two-dimensional shapes [138, 268] are
sequentially ordered, similar to time series
and can be addressed with methods in TSA.

If𝑚 > 1 and the time series records multi-
ple variables, it is called a multivariate, mul-
tidimensional [248], high-dimensional [21],
multichannel [265] time series, or multiple
Manuscript submitted to ACM
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Time Series Representation Techniques: A Survey 5

time series [167]. We adopt the term “multivariate” that is established in statistics/econometrics [37, 104, 229, 255] and
data mining / data science [53, 80, 239]. A variable in a time series is also referred to by many names, like “channel” [105],
“track” [273], “dimension” [80], “signal” [280], “trace” [199], “series” [36], “variable” [167], and “attribute” [127]. We did
not find a prevailing term and will use “channel” in this STAR. Unlike the time points, the channels are unordered. They
may be homogeneous, like the closing prices of multiple stocks in consecutive days or signals in an EEG measurement.
A time series may also consist of heterogeneous channels, like engine speed, fuel injection, and exhaust temperature
from various sensors monitoring the same process in a powertrain, illustrated in Figure 2, which may require scaling or
normalization when analyzed jointly.

3.2 Time Series Analysis

The term “Time Series Analysis (TSA)” [37, 104, 229], also known as “time series data mining” [56, 80, 84], refers to the
process of information extraction and knowledge discovery from time series data [84]. Conceptually, a time series can
be conceived as a discrete-time measurement of the manifestation of certain aspects of a physical process. The ultimate
goal of TSA is to ascertain the rules governing the physical process.

Fig. 3. Tasks in TSA. TSA studies methods for information extraction and knowledge discovery from time series data. We
found nine typical tasks [56, 80, 84, 136]. Note: the methods mentioned in this figure are not necessarily TSRTs.

Many established problems exist in the research field of TSA. Figure 3 shows nine typical problems [56, 80, 84, 136].
These are:

(1) Locating patterns similar to a given one, e.g., to trace an event of interest (retrieval, query by content, similarity
search, pattern search, indexing) [12].

(2) Detect abnormal events that may relate to errors or novelties (anomaly/outlier/novelty detection) [27, 150, 224];
(3) Extrapolating future development of the data (forecasting/prediction) [23, 52, 174];
(4) Unearth previously unknown recurrent behavior, e.g., for association rule learning (motif discovery) [5, 205, 238];
(5) Splitting the data into consecutive pieces that are internally homogenous and heterogeneous with each other,

e.g., to analyze phases in a process individually (segmentation / change detection) [96, 165];
Manuscript submitted to ACM
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(6) Categorizing time series and thereby the items they measure to known classes (classification) [178, 179];
(7) Dividing multiple time series into previously unknown groups, with characteristics shared by group members

but different across groups, to reveal common behavior patterns (clustering) [8, 114, 158];
(8) Finding causal relationships between two channels (causality discovery) [15, 181], which is less mentioned in

many surveys on tasks in TSA [80, 84, 136]; and
(9) Summarizing (usually also visualize) the key features of large time series (summarization) [136, 190, 233].

Figure 3 also lists representative methods addressing individual problems, which we find potentially helpful for readers.
But we omit their detailed explanation, as it would go beyond the scope of this STAR.

As Figure 4 shows, TSA, viewed in a broader scope, integrates knowledge and techniques from many fields where
sequential data analysis is of concern. These fields interpret the data from different perspectives, solve distinctive issues,
and propose different techniques.

3.3 Time Series Representation Techniques

Fig. 4. Intersection With Other Disciplines and Domains. TSA in-
tersects other disciplines and domains with different interpretations of the
data, tasks, and methods.

We define a TSRT as a method that converts
a time series into another form while retain-
ing information on its salient dynamics. The
transformed form usually exposes the pat-
terns of interest more prominently or sim-
plifies further data processing. Based on the
retained information, many TSRTs support
exact, approximate, or even trained [82] in-
verse transformation.

The transformed time series may stay in
the time domain, as with many time-domain
piecewise representations [45, 135]. It is also
common to see a time series transformed into
another domain, like the frequency domain,
as with Discrete Fourier Transform (DFT), or an embedding space, as with a Dimensionality Reduction (DR) technique.
A TSRT can describe system dynamics explicitly, such as ARIMA and Hidden Markov Model (HMM). It can also
generate synthetic data with the same properties as given examples, as with generative machine learning models
like Generative Adversarial Network (GAN). Furthermore, a TSRT can prescribe a set of operations, as with integral
transforms, piecewise representations, and some DR techniques, or model the time series, as with stochastic processes
and machine learning models. It can be deterministic as with a linear regression model, or stochastic as with a stochastic
process model. It can make assumptions about the data like following a normal distribution, as with Symbolic Aggregate
approXimation (SAX) [161], and stationarity as with AutoRegressive Moving-Average (ARMA) [37], or agnostic about
the data properties, as with many machine learning models. It can be geared towards certain tasks explained in
Section 3.2 like ARCH only for predicting variance/heteroscedasticity/volatility [79], or be general-purpose like many
DR techniques. It may serve in modeling complex system dynamics, or in data denoising and compression. It may incur
consequential overhead like model training, or be very fast like many piecewise representations.
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Time Series Representation Techniques: A Survey 7

However, we exclude indexing techniques like R-Tree and its variants, also commonly used in TSA, especially in
retrieval [2, 85]. Their design purposefully targets a universal and drastic data reduction. We are skeptical of qualifying
them as TSRTs because they may not preserve sufficient information on data characteristics. Similar to our consideration,
Esling et al. treat TSRT and indexing as two separate topics [80]. Together with the similarity measure, they consider
TSRT one of the three major issues in time series data mining [80]. For instance, Fu does not differentiate representation
and indexing [56], and Keogh explicitly includes trees as a TSRT [136].

We also omit transformations like Box-Cox transform [34], differencing, etc., which Salles et al. feature in their
STAR [220]. Their primary purpose is to make a time series stationary, enabling other TSRTs, especially stochastic
process models, which require stationarity. They are relatively simple operations that do not need much explanation.
They are useful and extract some features well, but may not preserve the overall general dynamics in the data.

4 LITERATURE SELECTION

4.1 Inclusion Criteria

We include works that convert time series into a representation and solve the downstream task by working on this
representation. Apart from this, we did not confine:

Data format, academic discipline, and application domain: Time series data can be e.g. stock prices in finance,
precipitation in meteorology, genetic sequences in biology, and audio signals in engineering.
Downstream task: We consider all tasks in Section 3.2.
Publication year: We include old works, especially those introducing classic methods; we also check recent publica-
tions, especially to get an overview of the most frequent method applications.
Venue: ACM SIGKDD, IEEE ICDM, Springer DMKD, SIAM SDM, ECML PKDD, among others.

We used Scopus and the Web of Science (WoS) core collection for our literature search as these sources provide the
world’s largest interdisciplinary, domain-agnostic, and cross-venue scientific citation indexes which one can analyze
externally.

4.2 Queries

Our literature selection began with review articles (including tutorial papers) and monographs (including book chapters)
on TSRTs, including works on general TSA. The technique papers for individual methods proliferate after snowballing,
see Figure 5.

We started with searching of survey papers on TSRTs to avoid rediscovering existing ontologies. As explained in
Section 2, our scope is much broader than other surveys on TSRTs. Therefore, existing surveys on a high level help as
the initial step.

We first searched for survey papers whose title contains “time series” and “representation” (or variants and synonyms).
Specifically, the query for Scopus reads “TITLE ( time-series AND representation OR transform* OR model ) AND (
LIMIT-TO ( DOCTYPE , "re" ) )”. In WoS, we used the query “TI=(time-series AND (representation OR transform* OR
model))” and refined the document type to “Review Article” (WoS does not support specifying document types in the
query string directly). In both queries, “time-series” subsumes “time series”; “transform*” also captures “transformation”.
Scopus and WoS take care of lemmatization like plural forms. Note that the boolean operator OR precedes AND in
Scopus but the other way around in WoS. Scopus retrieved 95 documents and WoS 76.

There are four potential problems with these first queries.
Manuscript submitted to ACM
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Fig. 5. Queries and Results During Literature Selection. Our literature selection began with review articles on TSRTs
and works on general TSA. Through snowballing, we cover the essential technique papers for individual methods.

First, we likely overly rely on knowledge introduced by existing reviews instead of proposing our own. Yet, due to
our much broader scope, no existing taxonomy exists on this level. In fact, it would be even more efficient and thus
preferable to reuse existing reviews or taxonomies as sub-systems in our larger one.

Second, review articles may not cover up-to-date publications and recent advancements. However, it is not a big
problem in our case, because we are not focused on recent advancements but on established technology and knowledge
systems. We will search for recent publications on individual methods, especially for discussing their typical applications.

Third, our queries only examined titles but omitted keywords and abstracts. However, if we had loosened the query to
also include abstracts and keywords in Scopus alone with “( TITLE-ABS-KEY ( time AND series ) AND TITLE-ABS-KEY
( representation OR transform* OR model ) ) AND ( LIMIT-TO ( DOCTYPE , "re" ) )”, the resulted 5428 documents would
become unmanageable for us (also consider snowballing).

Fourth, our search misses survey papers and monographs on general TSA, which also present TSRTs. Therefore,
we reviewed also publications for general TSA with the query “TITLE ( time-series AND analysis OR mining ) AND (
LIMIT-TO ( DOCTYPE , "re" ) OR LIMIT-TO ( DOCTYPE , "bk" ) )” in Scopus and “TI=(time-series AND (analysis OR
mining))” (refined to review articles and book chapters) in WoS. They returned 274 and 139 entries, respectively.

After tidying and merging, we manually inspected the documents and selected those describing time series repre-
sentations/transformations/models. During the review, we used snowballing to get even more publications, including
those introducing a single method frequently seen in the review articles.

Finally, we also paid attention to technique papers, such as [45, 148], which benchmarked various representative
TSRTs while presenting their own.

5 TAXONOMY OF TIME SERIES REPRESENTATION TECHNIQUES

We propose a new taxonomy for TSRTs, see Figure 1. Our categories include stochastic process, integral transform,
pieceswise representation, machine learning model, dimensionality reduction, and miscellaneous. They are
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Time Series Representation Techniques: A Survey 9

created according to the fundamental dominant technique and described further starting with Section 5.1. Two reasons
exist for this choice of classification criteria.

First, consider alternative taxonomies like ‘’functions (e.g., classification model, regression model, generation
model), tasks (e.g., forecast model, data compression technique, denoising technique), and certain properties (e.g.,
deterministic/stochastic model, time-domain / frequency-domain representation)‘’. A TSRT may have several functions,
serve various tasks, and possess multiple properties. In contrast, the fundamental technique for a TSRT is relatively
unique and stable over time. Hence, there is less ambiguity creating categories for TSRTs. Second, the resulting categories
are mostly already treated as established and self-contained disciplines studied as individual subjects. There is no need
to define new concepts or explain them extensively. Subsequent divisions can also inherit the existing taxonomy in
each discipline.

While technique-oriented, we present the motivations and concepts behind methods. Furthermore, we emphasize
relationships between methods in each category so as to create a system of connected rather than disjoint knowledge
nodes.

As there are overwhelmingly many new but less proven developments, we skip recent method variations of core,
establishedmethods. For instance, there are hundreds of extensions of the AutoRegressive Conditional Heteroskedasticity
(ARCH) model alone [29], and none seems to dominate. Nor do we claim to be exhaustive with our TSRTs, as our goal
is to establish a taxonomy with different technical lineages. Overall, we try to mention as many representative TSRTs
as possible.

5.1 Stochastic Process

Statistics, especially econometrics, often view a time series as a realization of a stochastic process. A stochastic (random)
process is a sequence of random variables, whose index is usually interpreted as time [43, 102]. Most stochastic process
representations are forecasting models.

Established by the work of Box et al. [35, 37], the most influential models in this discipline are the family of
AutoRegressive Integrated Moving Average (ARIMA) models, namely, AutoRegressive (AR), Moving-Average (MA),
ARMA, ARIMA, Seasonal AutoRegressive Integrated Moving Average (SARIMA), Vector AutoRegressive (VAR), and
AutoRegressive Integrated Moving Average with eXogenous inputs (ARIMAX), discussed next.
AR Model. The essential property of time series, namely, the dependency between time points (Section 3.1), is often
reflected in the predictive power of preceding time points to explain the next time point. An AR (𝑝) model estimates
the value 𝑌𝑡 of a univariate time series at timestamp 𝑡 as a linear combination of 𝑝 lagged values with

𝑌𝑡 =

𝑝∑︁
𝑖=1

𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 (2)

where 𝑌𝑡 is seen as a random variable (therefore with uppercase letter Y); 𝜙1, . . . , 𝜙𝑝 are constant coefficients; and
𝜀0, 𝜀1, . . ., called errors or innovations, arewhite noise, usually assumed to be independent and identically distributed (i.i.d)
random variables following a zero-mean normal distribution [37]. This approach resembles linear regression, hence the
word “regression” in AR. AR uses an observed variable to predict the same variable, hence the prefix “auto-”. Some
works feature a constant bias 𝑐 in Equation 2. For simplicity, we assume that 𝑌𝑡 is centered (i.e., 𝑐 has already been
subtracted, resulting in 𝑌𝑡 ).
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MAModel. Instead of historical values, this model relies on current and past errors 𝜀0, . . . , 𝜀𝑡 to estimate 𝑌𝑡 as

𝑌𝑡 =

𝑞∑︁
𝑖=0

𝜃𝑖𝜀𝑡−𝑖 (3)

where 𝜀𝑡 has the same meaning as in the AR model; and 𝜃0, ..., 𝜃𝑞 are constant coefficients with 𝜃0 = 1. The MA model
captures recent short-term effects, as the information carried in 𝜀𝑡−(𝑞+1) disappears after 𝑞 + 1 time points in Equation 3.
In contrast, the AR model keeps track of long-term effects, as the first observation 𝑌0 still exerts some influence on 𝑌𝑡 ,
potentially after decaying over time through recursion according to Equation 2,
ARMAModel. The combination of an ARmodel describing long-term system dynamics and anMAmodel incorporating
short-term shocks yields the ARMA (𝑝, 𝑞) model [37, 182] defined as

𝑌𝑡 =

𝑝∑︁
𝑖=1

𝜙𝑖𝑌𝑡−𝑖 +
𝑞∑︁
𝑖=0

𝜃𝑖𝜀𝑡−𝑖 (4)

Using the lag operator B defined as B𝑖𝑌𝑡 = 𝑌𝑡−𝑖 , Equation 4 can be rewritten as(
1 −

𝑝∑︁
𝑖=1

𝜙𝑖B𝑖

)
𝑌𝑡 =

(
𝑞∑︁
𝑖=0

𝜃𝑖B𝑖

)
𝜀𝑡 (5)

ARIMA Model. The AR, MA, and ARMA models presume data stationarity (see Section 6.2). If nonstationarity exists,
it must be removed by e.g., differencing. In a ARIMA (𝑝,𝑑, 𝑞) model, an ARMA (𝑝, 𝑞) model is preceded by direct
differencing to remove the trend via (

1 −
𝑝∑︁
𝑖=1

𝜙𝑖B𝑖

)
(1 − B)𝑑 𝑌𝑡 =

(
𝑞∑︁
𝑖=0

𝜃𝑖B𝑖

)
𝜀𝑡 (6)

where 𝑑 is the degree of differencing.
SARIMA Model. The SARIMA (𝑝,𝑑, 𝑞)

(
𝑝, 𝑑, 𝑞

)
𝑠̃
model addresses seasonal nonstationarity by seasonal differencing as

©­«1 −
𝑝∑︁
𝑖=1

𝜙𝑖B𝑖𝑠̃ª®¬
(
1 −

𝑝∑︁
𝑖=1

𝜙𝑖B𝑝

)
𝑌𝑡 =

©­«
𝑞∑︁
𝑖=0

𝜃𝑖B𝑖𝑠̃ª®¬
(
𝑞∑︁
𝑖=0

𝜃𝑖B𝑞

)
𝜀𝑡 (7)

where 𝑝 is the seasonal AR order; 𝑑 the seasonal differencing degree; 𝑞 the seasonal MA order; 𝑠̃ is the length of a
season; 𝜙1, . . . , 𝜙𝑝 are constant factors of the seasonal AR component; and 𝜃0, . . . , 𝜃𝑞 are constant factors of the seasonal
MA component with 𝜃0 = 1.
VAR Model. The above models describe univariate time series. In multivariate cases, one regards a previously scalar
time point as a vector and the previously scalar coefficients as matrices, so that temporal dynamics and inter-channel
relationships can be described simultaneously. The VAR (𝑝) model extends the AR (𝑝) model with

𝑌𝑌𝑌 𝑡 =

𝑝∑︁
𝑖=1

Φ𝑖𝑌𝑌𝑌 𝑡−𝑖 + 𝜀𝜀𝜀𝑡 (8)

where 𝑌𝑌𝑌 𝑡 ∈ R𝑚 are the values of the𝑚 observed variables at time 𝑡 in a multivariate time series; Φ𝑖 ∈ R𝑚×𝑚 , the
counterpart of the scalar 𝜙𝑖 in Equation 2, is now a matrix; 𝜀𝑖𝜀𝑖𝜀𝑖 ∈ R𝑚 , the counterpart of the scalar 𝜀𝑡 , is now a white
noise vector following a zero-mean multivariate distribution; in case of non-zero-mean observations, Equation 8 needs
an extra bias vector 𝑐𝑐𝑐 . More complex models like Vector AutoRegressive Moving-Average (VARMA) have much higher
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computational costs during parameter estimation than VAR [168], making the VAR model practically attractive in
multivariate cases.
VARX Model. Sometimes, observations of additional variables

[
𝑋𝑋𝑋 𝑡 ∈ R𝑚

′ ]
0≤𝑡<𝑛 (exogenous variables) provide infor-

mation on the variables of interest [𝑌𝑌𝑌 𝑡 ]0≤𝑡<𝑛 (endogenous variables) that appear on both side of the system dynamic
equation. The ARIMA models above can be extended with exogenous variables, yielding the ARIMAX model [24]. A
Vector AutoRegressive eXogenous (VARX) model of order 𝑝 and 𝑝′, i.e., VARX (𝑝, 𝑝′), is given by

𝑌𝑌𝑌 𝑡 =

𝑝∑︁
𝑖=1

Φ𝑖𝑌𝑌𝑌 𝑡−𝑖 +
𝑝′∑︁
𝑖=0

Γ𝑖𝑋𝑋𝑋 𝑡−𝑖 + 𝜀𝜀𝜀𝑡 (9)

where Γ0, . . . , Γ𝑝′ are constant coefficient matrices of size𝑚 ×𝑚′.
SSM. Control engineering often uses deteministic differential equations to describe continous signals. Because time
series are usually sampled in discrete time with stochastic error, TSA is more interested in the following form of
difference equations with stochastic terms

𝑆𝑆𝑆𝑡 = 𝐴𝑆𝑆𝑆𝑡−1 + 𝐵𝑈𝑈𝑈 𝑡 + 𝜀𝜀𝜀𝑡 (10)

𝑌𝑌𝑌 𝑡 = 𝐶𝑆𝑆𝑆𝑡 + 𝐷𝑈𝑈𝑈 𝑡 + 𝜖𝜖𝜖𝑡 (11)

where 𝑆𝑆𝑆𝑡 is a vector describing the system state and 𝑆𝑆𝑆0 is often assumed to follow a multivariate normal distribution;
𝑈𝑈𝑈 is a vector describing the system inputs; 𝜀𝜀𝜀𝑡 and 𝜖𝜖𝜖𝑡 are white noise, usually assumed to following zero-mean i.i.d
multivariate normal distributions; and 𝐴, 𝐵, 𝐶 , and 𝐷 are constant coefficient matrices. This form is also called the
linear Gaussian state space model or Dynamic Linear Model (DLM) [229]. Equation 10 describes the system dynamics
and Equation 11 the relationship between the system state and observed variables. For instance, the VARX (𝑝) model in
Equation 9 can be reformulated as a State-Space Model (SSM) with

𝑆𝑆𝑆𝑡 =


𝑌𝑌𝑌 𝑡

.

.

.

𝑌𝑌𝑌 𝑡−𝑝

 𝑈𝑈𝑈 𝑡 =


𝑋𝑋𝑋 𝑡

.

.

.

𝑋𝑋𝑋 𝑡−𝑟

 𝐴 =



Φ1 Φ2 . . . Φ𝑝

𝐼 0 . . . 0
0 𝐼 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 𝐼


𝐵 =

[
Γ0 . . . Γ𝑟

]
𝐶 =

[
𝐼 0 . . . 0

]
𝐷 = 0 (12)

where 𝐼 is the identity matrix and the boldface 0 is the zero matrix. One motivation of this representation is the use of
the Kalman filter, which can be used to estimate the most plausible 𝑠𝑠𝑠𝑡 , both for 𝑡 < 𝑛 (potentially containing unobserved
variables or missing data in 𝑆𝑆𝑆𝑡 ) and 𝑡 ≥ 𝑛 (forecasting). State-space representations also lay the foundation for more
complex stochastic process models like HMM.
ARCH Model. The previous models estimate the mean of time points and assume for each time point a constant
variance, also called homoscedasticity in econometrics. To model variable variance, aka heteroscedasticity or volatility in
econometrics, [79] introduced the ARCH (𝑞) model

𝜎2𝑡 = 𝛼0 +
𝑞∑︁
𝑖=1

𝛼𝑖𝜀
2
𝑡−𝑖 (13)
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where 𝜀𝑡 ∼ N
(
0, 𝜎2𝑡

)
still means the error, but not time-invariant and not i.i.d anymore; 𝜎2𝑡 is the variance of 𝜀𝑡 ; 𝛼𝑖 are

constant coefficients with 𝛼0 > 0 and 𝛼𝑖 ≥ 0 ∀ 1 ≤ 𝑖 ≤ 𝑞, so that 𝜎2𝑡 is positive [37]. “Conditional heteroscedasticity”
refers to the conditional time-variant variance 𝜎2𝑡 = Var

(
𝜀𝑡 | 𝜀𝑡−1, . . . , 𝜀𝑡−𝑞

)
.

GARCH Model. The ARCH model (Equation 13) parallels the AR model (Equation 2). This was was later extended to
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) akin to ARMA [28]. This extension reduces the
otherwise large 𝑞 needed by ARCH models [37]. A GARCH (𝑝, 𝑞) model is defined as

𝜎2𝑡 = 𝛼0 +
𝑞∑︁
𝑖=1

𝛼𝑖𝜀
2
𝑡−𝑖 +

𝑝∑︁
𝑖=1

𝛽𝑖𝜎
2
𝑡−𝑖 (14)

with 𝛼0 > 0, 𝛼𝑖 ≥ 0 ∀ 1 ≤ 𝑖 ≤ 𝑞, and 𝛽𝑖 ≥ 0 ∀1 ≤ 𝑖 < 𝑝 , so that 𝜎2𝑡 is positive.
Nonlinear Models. We have exdposed so far only linear stochastic process models (linearity is defined in Section 6.2).
Nonlinear stochastic process models are also rich in variety, e.g, bilinear models [11], Threshold AutoRegressive (TAR)
models including the popular Self-Exciting Threshold AutoRegressive (SETAR) model [237], HMMs including the well-
known Markov switching model [103], and various nonlinear derivations of the linear (G)ARCH model [29, 226]. Many
nonlinear stochastic process models emerge from linear counterparts by making the previously constant coefficients
stochastic and conditional on previous information [37].

During application of ARIMA faimily, the Box-Jenkin method systematically prescribes the procedure [37]: 1) model
identification including the orders like 𝑝 and 𝑞 based on the data nonstationarity (trend or seasonality), Autocorrelation
Function (ACF), and Partial Autocorrelation Function (PACF); 2) parameter estimation for 𝜙𝑖 , 𝜗𝑖 , etc. with likelihood
estimation or Bayesian methods; 3) diagnostic checking to verify the convergence of the parameterized model.

Compared with linear stochastic process models, nonlinear ones are less well studied, especially vs the types of
nonlinearity to tackle and the methodology for systematic model selection. In practice, this issue can be eased by
machine learning models at the expense of explainability. It is potentially interesting to study the possible treatment
of nonlinearity in stochastic process models. Are there dominant types of nonlinearities in individual domains? Can
common types of nonlinearity be found and then removed through certain operations, like differencing for removing
some types of nonstationarity? Finally, how can models be parameterized and validated? Admittedly, the best (nonlinear)
models mimic the physical dynamics of the observed system, which may not be fully accessible. Still, the modeling may
benefit from prior knowledge when possible.

5.2 Integral Transform

Signal processing and control engineering often treat a time series as signals in the time domain. Before further data
processing, the signal often undergoes an integral transform. The integral transform is defined as an operation that maps
a function from its original space to another image space via integration [68]. Mathematically, an integral transform I
applied to a function 𝑦 (𝑡) on an interval [𝑡1, 𝑡2] is defined as

I (𝑦,𝑘𝑘𝑘) =
∫ 𝑡1

𝑡0

𝑦 (𝑡) K (𝑡,𝑘𝑘𝑘) 𝑑𝑡 (15)

where K is called the kernel of the transform and 𝑘𝑘𝑘 are the parameters of the transform I. In TSA, the function to map
by the integral transform is the time series itself, i.e., 𝑦 (𝑡) = 𝑦𝑡 , and 𝑡0 = 0, 𝑡1 = 𝑛 − 1. Since 𝑡 is in this case discrete, we
are more interested in the form

I (𝑦,𝑘𝑘𝑘) =
𝑛−1∑︁
𝑡=0

𝑦𝑡K (𝑡,𝑘𝑘𝑘) (16)
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Strictly speaking, this discrete form no longer performs (but can approximate) integration and is thus ineligible for the
title integral transform. Other terms, such as discrete integral transform [16, 17] and discrete transform [86, 123], exist
in the literature, though not well established and sometimes ambiguous. Consequently, we cling to the term integral
transform. Unlike stochastic process representations that are models with trainable parameters, integral transforms are
a set of operations with fixed rules. Integral transforms help especially with signal analysis, compression, and filtering.
DFT. The most foundational integral transforms in TSA are the Fourier Transform (FT) and its variants. FT uses
harmonic waves as the integral kernel, i.e., K (𝑡,𝑘𝑘𝑘) = 𝑒− 𝑗2𝜋 𝑓 𝑡 in Equation 15, and converts the time series into its
frequency spectrum, i.e., the parameter 𝑓 has the physical meaning of frequency. FT is intended for continuous signals
that have a time-invariant frequency spectrum and span infinitely to the past and to the future, i.e., 𝑡0 → −∞, 𝑡1 → +∞,
and 𝑡 ∈ R. Its discrete counterpart is the Discrete-Time Fourier Transform (DTFT) withK (𝑡,𝑘𝑘𝑘) = 𝑒− 𝑗2𝜋𝑘𝑡 in Equation 16
(assuming sampling rate once per time unit). However, DTFT still requires the knowledge of the whole data before
and after measurements, i.e., the summation limits are not 0 to 𝑛 − 1 as in Equation 16, but −∞ to +∞. By assuming
repetition of the time-limited measurement, this problem is circumvented by DFT

F (𝑦, 𝑘) =
𝑛−1∑︁
𝑡=0

𝑦𝑡𝑒
− 𝑗2𝜋 𝑘

𝑛
𝑡 (17)

where 𝑗 is the imaginary unit and 0 ≤ 𝑘 < 𝑛 [177]. In practice, DFT is usually executed efficiently as FFT via the
Cooley-Tukey algorithm [61].
STFT. DFT still assumes a time-invariant frequency spectrum. In other words, DFT measures the presence of trigono-
metric components of various frequencies, while the temporal information of when these components occur is lost.
Short-Time Fourier Transform (STFT) approaches this problem by conceptually conducting FT in a sliding window
along the time axis to analyze time-variant frequency in the time-frequency domain. Specifically, it uses the kernel
K (𝑡,𝑘𝑘𝑘) = 𝑤 (𝑡 − 𝜏) 𝑒− 𝑗2𝜋 𝑓 𝑡 , where the extra parameter 𝜏 shifts the window function𝑤 (𝑡) along the time axis. Since
STFT focuses on temporally localized features, a limited-time version is obsolete. For TSA, it is more relevant to examine
its discrete form

F (𝑦, 𝑓 , 𝜏) =
𝜏+𝑛𝑤/2∑︁

𝑡=𝜏−𝑛𝑤/2
𝑦𝑡𝑤 (𝑡 − 𝜏) 𝑒− 𝑗2𝜋 𝑓 𝑡 (18)

The summation limits consider the valid time interval of the window function 𝑤 (𝑡) centered at 𝑡 = 0. There are
multiple window functions to choose from, such as the Rectangle window𝑤 (𝑡) = 1, 0 ≤ 𝑡 < 𝑛𝑤 , the Hann window

𝑤 (𝑡) = sin2
(
𝜋𝑡
𝑛𝑤

)
, 0 ≤ 𝑡 < 𝑛𝑤 and the Gaussian window 𝑤 (𝑡) = 𝑒

− 1
2

(
𝑡−(𝑛𝑤−1)/2
𝜎 (𝑛𝑤−1)/2

)2
, where 𝑛𝑤 is the window length

and 𝜎 in the Gaussian window is a preset parameter for window length. STFT is often implemented using FFT [177].
DWT. There is a trade-off between the resolution in the time and the frequency domain: If STFT uses a longer window to
increase frequency resolution (more values for 𝑘 due to larger 𝑛 = 𝑛𝑤 in Equation 17), this yields a “less instantaneous”,
or temporally less localized, frequency spectrum at a time point, because a longer window averages varying dynamics in
larger proximity. A logical next step is to use windows of different sizes. Wavelet Transform (WT) introduced by Morlet
et al. [183] for seismic data analysis attacks this problem by conceptually scanning the data with temporally scaled
versions of a prototypical time-limited signal𝜓 (𝑡) called (mother) wavelet. In the framework given by Equation 15,
K (𝑡,𝑘𝑘𝑘) = 𝜓𝑎,𝑏 (𝑡) = |𝑎 |−1/2𝜓 ((𝑡 − 𝑏) /𝑎) holds, where𝜓𝑎,𝑏 (𝑡) is the wavelet, the parameter 𝑎 scales the time span of
𝜓 , and the factor |𝑎 |−1/2 scales its amplitude to preserve energy (integration of the squared signal); the parameter 𝑏
translates𝜓 along the time axis, conceptually scanning the data, like 𝜏 for STFT. Because𝜓 is time-limited, it captures
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temporally localized information at each time point. This form of WT for continuous-time signals is called Continuous
Wavelet Transform (CWT). For the discrete-time and time-limited cases, Discrete Wavelet Transform (DWT) proposed
by Mallat et al. initially for image processing [171, 172] is more rele. By degenerating a space-limited two-dimensional
image into a time-limited one-dimensional time series, DWT for time series is defined as By degenerating a space-limited
two-dimensional image into a time-limited one-dimensional time series, DWT for time series is defined as

W
(
𝑎, 𝑏

)
=

𝑛−1∑︁
𝑡=0

𝑦𝑡𝜓𝑎,𝑏
(𝑡) and𝜓

𝑎,𝑏
(𝑡) = 2−

𝑎
2𝜓

(
𝑡 − 2𝑎𝑏

2𝑎

)
(19)

where the temporal scaling parameter is 𝑎 = 2𝑎 and the temporal shifting parameter is 𝑏 = 2𝑎𝑏. The algorithm will
therefore scan the data with higher resolution (smaller 𝑏) for higher frequency (smaller 𝑎). This adaptive sampling
strategy based on the power of 2 is called dyadic sampling [177]. There are multiple wavelets to choose from. Some of
them are more suitable for CWT, such as the Morlet wavelet in Equation 20 (where 𝑓0 is the central frequency set by
the user) that is used most frequently in time-frequency analysis [177]; some are more geared to DWT, such as the
popular Haar wavelet [212]

𝜓 (𝑡) = 𝜋− 1
4 𝑒 𝑗2𝜋 𝑓0𝑡𝑒−

𝑡2
2 (20) 𝜓 (𝑡) =


−1 if 1

2 ≤ 𝑡 < 1

1 if 0 ≤ 𝑡 < 1
2

0 otherwise

(21)

Similar to DFT and FFT, DWT also has an accelerated implementation called Fast Wavelet Transform (FWT) [172].
HHT.WT relies on the practitioner’s expertise to choose a fixed kernel function which can be demanding and inflexible.
The Hilbert-Huang Transform (HHT) [116, 117] fills this gap by deriving kernels from the data. This is achieved by
Empirical Mode Decomposition (EMD) that splits a time series into a set of complete and orthogonal Intrinsic Mode
Functions (IMFs) in a data-driven way, as indicated by the word “empirical”. Yet, as in the time-frequency analysis,
instead of the waveforms in the time domain, the analyst is more interested in their intensity at each time. Hilbert
transform bridges the gap. It models the measured signal (IMFs in this case) as the real part of a complex signal
and derives the hidden imaginary part of the signal. With the real and imaginary part, the energy and phase of the
complete complex signal are readily available. Visually, it is like drawing the envelope of the original oscillating IMFs.
Mathematically, the Hilbert transform uses the kernel K (𝑡,𝑘𝑘𝑘) = 𝑝.𝑣 . 1

𝜋 (𝑘−𝑡 ) in Equation 15, where 𝑝.𝑣 . stands for
Cauchy principal value for skipping the non-integrable point 𝑘 = 𝑡 . The kernel has the property of shifting all frequency
1
𝜋 radius back (e.g., cosine becomes sine). Like WT, HHT emerges from the need for seismic data analysis [118],
but established as a time-frequency analysis method in various domains, such as analyzing vibration in mechanical
engineering, climate patterns in metrology, medical data (like ECG and EEG), etc [65, 116]. Some scientists consider it
the most appropriate tool to deal with nonstationary and nonlinear signals [65].

Unlike the stochastic process models with clear lineage, integral transforms have many branches that we cannot
cover in the limited space in this section. For instance, we omit the preeminent Laplace transform for continuous signals
and Z-transform for discrete signals because they are more geared towards analyzing systems processing signals, e.g.,
for control system design and digital filter design. They are also seldom seen in TSA. Readers are referred to literature
on integral transforms [68, 86, 192] or (digital) signal processing [177, 207] for more information.

Most integral transform representations are mainly used for data compression, denoising, and feature extraction
since they originate mainly from signal processing, but they are also seen in other tasks like anomaly detection [59],
Manuscript submitted to ACM
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clustering [77], and retrieval [201]. Method choice is often driven by domain knowledge. For instance, the diagnosis of
a bunch of rotation parts in a machine would motivate an analysis in the frequency domain. If the spectrum varies
over time, and the variation carries information relevant to the domain, the analyst may go for an analysis in the
time-frequency domain.

5.3 Piecewise Representation

With piecewise representations, we are mainly limited to the time-domain representations that are studied much in
TSA. Piecewise representations assume piecewise “homogeneity” along the time axis in the data and describe each
piece with a simpler representation like a constant, a line segment, a polynomial, and so on.

The simplest piecewise representation is Piecewise Aggregate Approximation (PAA) [137, 139], which uses the mean
value to represent each piece. The piece length in Piecewise Constant Approximation (PCA) is fixed. Adaptive Piecewise
Constant Approximation (APCA) [137] extends PAA by making the piece length variable and adaptive, so that there
can be more and shorter pieces in temporal regions with a concentration of high volatility, while fewer and longer
pieces in relatively stationary temporal regions. Instead of mean values, Piecewise Linear Representation (PLR) [135]
uses a linear segment to represent each piece. The next extension is Piecewise Polynomial Representation (PPR) [93]
which uses a polynomial to represent each piece. Based on PAA, SAX [160, 161] assumes normal distributions of data
values and quantifies them. Then, it maps each value-range bin to a symbol to convert a time series into a string to
enable methods for text processing like regular expression [273]. This soon became one of the most popular symbolic
representations for time series and witnessed many extensions [228, 252]. Some surveys on TSRTs feature a separate
category called “symbolic representation” [259]. From our perspective, the dominant technique behind SAX is PAA and
quantization. Notwithstanding methods transfer from other domains, assigning symbols does not alter the information
much.

Piecewise representations are initially designed for time series retrieval with much consideration of indexing
capabilities like lower-bounding existing distance measures [45, 137, 161]. Nonetheless, they make few assumptions on
the data and are general-purpose. They are very efficient in terms of compressing data massively and have an edge in
capturing temporal dynamics [135, 137]. Hence, piecewise representations can be used especially when analysts need
to smooth the data, remove outliers, or compress the data.

5.4 Machine Learning Model

According to [144], Machine Learning (ML) models are statistical algorithms that can learn from data and generalize to
unseen data, and thus perform tasks without explicit instructions. Strictly speaking, many models, especially stochastic
process models, are also ML models. Yet, we include in this category only the most general ML models, like random
forests, Support Vector Machine (SVM) and LSTM. These are applied to time series but also other data, e.g., tabular, text,
image, audio, and video.
SVM. A classification model conceptually draws boundaries separating the classes. The initial idea of SVM is to draw
linear boundaries [32]. Linear SVMs enjoy good explainability [97]. However, some classes are entangled and cannot be
separated linearly in the original feature space. Contrary to the idea of reducing dimensionality in Section 5.5, nonlinear
SVM maps samples / data points to a higher-dimensional space, even theoretically up to an infinite-dimensional space
with the so-called kernel trick [32]. The new dimensions/features may enable a linear separation of the classes. SVM
is mainly used for classification, such as text classification [126], image classification [44], speech recognition [232],
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though also applicable to regression, such as power load forecasting [262]. Likewise, it finds applications in time series
classification [129, 278] and forecasting [223].
Decision Tree Ensembles. Another ML model, namely the decision tree, assigns a sample recursively to two [38] or
more subgroups [204]. Visually, it looks like going from the root node of a tree, over several in-between nodes, to one
of the leaf nodes. A node is split based on the feature that can result in the cleanest division of samples among the
child nodes in the case of classification. For regression, a node is assigned a value, and the node is split to minimize
errors between data values and the corresponding child node value. Visually, a decision tree recursively partitions the
feature space with hyperplanes, each of which is perpendicular to the axis of a dimension in the original feature space.
Like the linear SVM, the decision tree is also well interpretable, but quickly reaches its limitation as data complexity
increases. The prediction power increases when combining multiple decision trees to form an ensemble. One variant of
such ensembles is random forest [112]. It trains multiple decision trees with different data subsets. During inference,
predictions from individual decision trees are aggregated by frequency count (for classification) or averaging (regression).
Random forest is particularly effective when the number of features is large compared with the number of training
samples [33, 286]. Another common ensemble option is boosting. It trains the decision trees one after another, each
improving the result from the predecessor. For instance, the two most popular boosting methods AdaBoost [89] and
gradient boosting(e.g., XGBoost [51]) achieve this by overweighting incorrectly predicted samples and minimizing
the prediction errors when training the successor, respectively [95]. One noteworthy benefit of tree ensembles is the
readily available feature importance estimated based on the usage frequency and effect (reduction of class impurity in
nodes) of the features in all trees. It adds to explainability and helps with feature selection [286]. Random forest and
boosting methods are frequently used in image classification from remote sensing [22], fraud detection [106, 188, 211],
variable estimation in hydrology [187, 242]. In TSA, they have been competing with other ML models in various
classification [124, 148] and regression [169, 185, 241] tasks.
MLP. The recent AI tsunami witnesses the great success of ANN, especially in computer vision and natural language
processing. An Artificial Neural Network (ANN) usually consists of multiple stacked layers. The most common layer
type, the fully connected layer, first linearly transforms the input data sample, weighting various features in the
input data sample. The output undergoes an activation function, such as SELU, ReLU, sigmoid, etc, which imbues the
transformation with nonlinearity. Visually, the linear hyperplane in the original feature space described by the linear
transform bends or curves by the nonlinear activation function, making it a better building block for approximating the
function to model. A sequential stack of fully connected layers is called a Multilayer Perceptron (MLP) [215]. In TSA, it
is most seen in forecasting [31, 78, 227]
CNN. One issue with MLP is that its number of parameters grows quickly as the layer size and number of layers
increase. This issue is alleviated by the convolutional layers used in Convolutional Neural Networks (CNNs). It scans
the data with multiple convolution kernels, analogous to multiple biological neurons in the visual cortex stimulated
only by specific patterns in local regions of the image from the visual perception. This technique uses fewer parameters,
compared to assigning an individual weight to each feature as with a fully connected layer. The efficient parameter
usage exploits the spatial translation invariance of a pattern in an image, or the temporal translation invariance of
a pattern in a time series. CNNs are predominant in computer vision [283], and 1D CNNs are established in TSA for
classification [162, 282] and forecasting [143, 245, 251].
RNN.MLPs and CNNs allow only fixed input data size. In addition, they are memoryless, producing the same output
when providing the same input. When modeling an evolving process, as is often the case in TSA, it is sensible to allow
a variable input data length and store historical information for future inference. Recurrent layers in Recurrent Neural
Manuscript submitted to ACM
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Networks (RNNs) address these issues. A recurrent layer feeds the output back to itself. The input is the observed values
of one time point, and the RNN makes inference for each time point iteratively. This way, RNNs accept a long sequence
of data and considers historical data when making predictions. Modern recurrent layers like the LSTM layers in Long
Short-Term Memorys (LSTMs) [113] and the GRU layers in Gated Recurrent Units (GRUs) [54] employ more complex
mechanisms to manage the retaining, referencing, and forgetting of historical information, leading to longer memory
and better performance. RNN variants are commonly used to process data with a notion of order, such as time series
(especially forecasting) [9, 197, 253, 263], text [119, 155], and speech [119]. Regular RNNs predict the present values
based on information up to the current input. This is reasonable for, e.g., time series forecasting. However, looking into
the inputs in the future is sometimes desired, as in language translation. Bidirectional RNNs solve this problem with
two RNNs reading data from both directions. It helps in TSA with interpolation [42] and classification [25, 140].
Attention. RNNs are computationally expensive to train, and their retention of information reaches limitations in
challenging tasks like long-text translation. The attention mechanism [18] used extensively in transformers [244] solves
this problem by accessing all previously seen data but focusing more on important ones according to the weights
estimated by a small sub-model trained with the whole model. Compared with RNN, not only does attention mechanism
improve memory and training efficiency, but also explainability as the analyzer can examine it the model is paying
attention to the correct part of the information during inference [213, 235]. Initially designed in Natural Language
Processing (NLP) [10, 193] and permeating into computer vision [141, 163], the attention mechanism and Transformers
are gradually being tested in TSA [3, 276].
Autoencoder and VAE. The previous ANNs are mainly used in supervised learning for classification and regression.
Their advancements lie in the design of special layers. In contrast, the unsupervised learning technique autoencoder [145,
218] learns a data representation with the help of its symmetric encoder-decoder architecture. The encoder consists
of layers with a decreasing number of neurons, and the decoder layers with an increasing number of neurons. It
is trained with the same data both as input and output, so that it learns an identity transform. The output of the
encoder is effectively a lower-dimensional latent representation of the original data, which can be used for feature
extraction or visualization. The decoder output is a reconstruction from the latent representation, which can be used as
denoised/repaired data. The deviation of the reconstruction from the input data is indicative of whether the input data
is similar to the training data, which can be used for anomaly detection. Inheriting the basic architecture and functions
of the autoencoder, the Variational Autoencoder (VAE) lets the encoder output the meanings and standard deviations
of a multivariate normal distribution. The decode draws its input from this random distribution. This alteration
grants VAE the power to generate synthetic data by drawing samples from the random distribution and feeding the
samples to the decoder. In TSA, autoencoders and VAEs serve similar functions, e.g., anomaly detection [41, 50, 154],
feature extraction [148, 261], denoising [115, 219], synthetic data generation [73, 153], but also classification [271] and
forecasting [109, 186].
GAN. Though capable of generating synthetic data, the images generated by VAEs are of lower quality than the original
data. GAN [99], another ANN for generative learning, is able to generate images of similar quality as the original
data. It features two ANNs competing with each other. One of which is called a generator, which creates synthetic
data samples based on the input drawn from a random distribution. Another is called a discriminator, which judges
if a data sample is from the original data or created by the generator. They are trained one after another in turns.
When the discriminator is under training, it receives half of the training samples from the original dataset with labels
1 and another half synthesized by the generator with labels 0. When training the generator, the whole GAN draws
samples from the random distribution with all labels being 1. Meanwhile, the parameters of the discriminator are
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frozen. The training iterates, until the generator creates realistic samples and the discriminator is forced to guess. After
successful training, the generator can be used for data synthesis. In addition to data generation [128, 159], GANs are also
well-known for style transfer. In TSA, GANs have already contributed to various tasks [39] like data generation [122],
classification [249], anomaly detection [149, 281], data augmentation [157], and denoising [166, 166].

Many above techniques can be combined, e.g., convolutional recurrent autoencoder [269, 284], self-attention
GAN [279]. ML models make few assumptions on the data, but generally require large amounts of (labeled) training data.
They may specialize in certain tasks, as we discuss in Section 6.3. The difference in task suitability notwithstanding, many
machine learning models, though diverse in mechanism, architecture, and training method, are often interchangeable
in application. Indeed, many ML models listed in Table 5 share similar use cases.

In practice, ML models require organizing the inputs and outputs for the model as columns in a table, where each row
corresponds to a sample/instance, and each column an input variable or an output variable. In the case of time series, a
row in such a table can correspond to 1) a whole time series, e.g., for time series classification and clustering [8, 120, 178];
2) a fragment of the time series, perhaps segmented by a sliding window, e.g., for pattern retrieval [148, 274]; 3) a time
point in a time series, e.g., for pointwise anomaly detection and time point classification [216, 275]. The time series may
need to be flattened in the first two cases if the model does not support multiple channels. Once the data is formatted in
such a tabular way, given the similar model API, many models can solve the problem. According to our experience,
model selection is not necessarily the primary concern during the application of machine learning, nor is architecture
search or hyperparameter optimization. Instead, it is the formulation of the problem, i.e., what to choose as the model
input and output. For instance, a classic method for time series retrieval scans the data with a sliding window and
classifies patterns in the window as relevant or not. This approach can only retrieve patterns of one size in one scan.
Also, the classification is based on the pattern alone, oblivious of its background. If the analyst aims at retrieving the
stationarity phases in the data with fewer distinctive features for recognition, it is challenging to pinpoint the start and
end time moments of the stationarity phase without context knowledge. An alternative approach [272] is to classify
time points in the middle of the sliding window as relevant (in a target pattern) or not; and merge relevant time points
with density-based clustering to get the intervals of relevant patterns. The model and its inputs are retrained, but the
output – and with this the formulation of the problem for the model – change, raising accuracy and speed significantly
and jointly. As such, instead of model comparison with the same model inputs and outputs for already framed problems,
we encourage more research in the direction of modeling the problem itself.

5.5 Dimensionality Reduction Technique

Dimensionality Reduction (DR) techniques transform samples / data points from a high-dimensional space to a lower-
dimensional one. This helps with discovery and/or visualization of data patterns that are otherwise hard to detect in
the original space [95]. Similar to the case with the category Machine Learning Models, we confine the scope of this
category to general DR techniques like Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor
Embedding (t-SNE) while excluding techniques that can be used for dimensionality reduction but technically more
affiliated to other technical lineages, like autoencoder and most piecewise representations. There are two types of
DR techniques, namely linear dimension-transforming methods and nonlinear distance/neighborhood-preserving
methods (aka manifold learning) [13, 95]. The former linearly maps the original high-dimensional data space to a
lower-dimensional image space, while the latter endeavors to reproduce pairwise distances in the original space between
data points in the image space.
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Linear Dimension-Transforming Methods. PCA. During the literature review, we found that PCA introduced by Pearson
et al. [131] is dominant in linear DR techniques. It has been a popular TSRT in various tasks, including but not limited to
forecasting [191], segmentation [19], clustering [152], and retrieval [130]. PCA reduces and rearranges the coordinate
system axes called Principal Components (PCs), such that the new axes capture as much data variance as possible.
Specifically, given 𝑛 data points with𝑚 centered (zero-mean) dimensions represented by a matrix 𝑋 ∈ R𝑛×𝑚 , where
each row corresponds to a data point and each column a dimension in the original space. The basis vector for the
first PC 𝑣𝑣𝑣1 is the unit vector along which data variance (∥𝑋𝑣𝑣𝑣1∥2 = 𝑣𝑣𝑣𝑇1𝑋

𝑇𝑋𝑣𝑣𝑣1) is maximized. The basis vector for the
second PC can be computed by iterating this process after subtracting the parts of data explained by already found
PCs (𝑋 ≔ 𝑋 − 𝑋𝑣𝑣𝑣1𝑣𝑣𝑣𝑇1 ) because the basis vectors of the PCs are orthogonal. Subsequent PCs can be calculated similarly.
Mathematically, computing PCA is equivalent to finding the eigenvectors for the covariance matrix 𝑆 = 𝑋𝑇𝑋/(𝑛 − 1).
PCA often serves as a feature extraction step in TSA. For instance, distance measures can be applied to PCA embeddings
instead of the raw time series [130, 266]. During k-means-based time series clustering, PCA can be used to construct a
common projection for all data points / time series in a cluster, and the reconstruction error of each time series projected
on the corresponding common projection axes are used to reassign the cluster [152]. A similar technique is proposed
for time series classification [151]. It creates a common projection for each class based on the time series in the training
data, then, classifies an unlabeled time series to the class whose projection produces the lowest embedding variance for
the time series.
SVD. PCA can be implemented efficiently with Singular Value Decomposition (SVD), a technique for decomposing
a matrix 𝑀 = 𝑈 Σ𝑉𝑇 (limited to real cases), where 𝑀 ∈ R𝑛×𝑚 is a matrix to decompose (𝑛 is the number of data
points and𝑚 the number of data point dimensions); 𝑈 ∈ R𝑛×𝑛 is orthonormal and called the left-singular vector; and
𝑉 ∈ R𝑚×𝑚 is orthonormal and called the right-singular vector. Let 𝑀 = 𝑋 , then, 𝑉 contains the basis vectors of the
PCs as column vectors. This can be proved by substituting 𝑋 with its SVD decomposition and taking 𝑈𝑇𝑈 = 𝐼 into
account, i.e., 𝑆 = 𝑋𝑇𝑋/(𝑛 − 1) = 𝑉 Σ𝑈𝑇𝑈 Σ𝑉𝑇 /(𝑛 − 1) = 𝑉

(
Σ2/(𝑛 − 1)

)
𝑉𝑇 . SVD itself can be used for dimensionality

reduction and seen in TSA [40, 142, 257]. Keogh et al. proposed the first implementation of SVD for time series indexing.
Specifically, they scan a univariate time series with a sliding window [137]. Each segment in the window is potentially
a hit during retrieval and corresponds to a row in 𝑋 ; the window length 𝑛𝑤 =𝑚.
SSA. The approach from Keogh et al. is very similar to Singular Spectrum Decomposition (SSA) [217], a DR technique
primarily for TSA. It is well established in meteorology [217], has gained much popularity in general TSA [30, 108], and
recently enters other fields like image processing [98]. SSA decomposes a time series into interpretable components (e.g.,
trend, periodic components, and noise). In SSA, the matrix decomposed by SVD is the 𝑛𝑤-lag trajectory matrix defined
as 𝑋 =

[
𝑥𝑖, 𝑗 = 𝑦𝑖+𝑗

]
0≤𝑖<𝑛𝑤

0≤ 𝑗≤𝑛−𝑛𝑤

. In principle, SVD obtains the basis vectors for the PCs of 𝑉 that best accounts for the

variances in 𝑋 . SSA proceeds by calculating the PCs or embedding for the data points. For instance, a univariate time
series segment𝑦𝑦𝑦 = [𝑦𝑡 ]𝑡0≤𝑡<𝑡0+𝑛𝑤

can be projected to its embedding with 𝑉𝑇𝑦𝑦𝑦. The first PCs with their corresponding
basis vectors as characteristic waveforms ideally explain the majority of data variance. Reviewing the mechanism of
SSA, its relation with PCA and with the discrete Karhunen–Loève Transform (KLT) (equivalent to PCA but from the
perspective of functional analysis and integral transform) is obvious, though the name SSA honors SVD.
LDA. If the class labels are available, the analyst may want to exploit this information. Linear Discriminant Analysis
(LDA) [87] finds the best coordinate bases like PCA. However, instead of the axes that best account for the data variance,
LDA computes the axes that maximize the separation of the classes, i.e., maximizes the distance between class centers
and minimizes intra-class variance. We did not find many applications of LDA in TSA. Gao et al. use LDA when
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classifying EEG data, but based on extracted features from the time series rather than the time series themselves [94].
Shah uses LDA in time series forecasting, but for model selection, where LDA classifies each time series based on
extracted features to the best forecasting method [225].

Nonlinear Distance/Neighborhood-Preserving Methods. General Mechanism. Complex data manifolds cannot be
separated into clusters by changing the perspectives. For PCA, it is required that the first PCs account for most variances
in the data, so that the subsequent usage, e.g., a lower-dimensional scatter plot according to PCA is valid. This does not
always hold. Nonlinear DR techniques approach this problem by reproducing the distances or neighborhood structure
in the original high-dimensional space in the lower-dimensional image space. For instance, Sammon mapping [222]
strives to minimize with e.g. gradient descend the difference between the distances in the two spaces described by a
stress function

1∑
𝑖< 𝑗 𝑑𝑖 𝑗

∑︁
𝑖< 𝑗

(
𝑑𝑖 𝑗 − 𝑑′

𝑖 𝑗

)2
𝑑𝑖 𝑗

(22)

where 𝑖 and 𝑗 are indexes of data points, 𝑑𝑖 𝑗 are the distance between 𝑖-th and 𝑗-th data points in the original high-
dimensional space, and 𝑑′

𝑖 𝑗
are the distance between 𝑖-th and 𝑗-the data points in the projected lower-dimensional space.

The choice of distance is agnostic but defaults to Euclidean Distance (ED), and the data points in the image space are
randomly initialized [222]. Another popular DR technique t-SNE [111, 243] calculates the pairwise similarity between
data points in the high-dimensional original space by inverting their ED according to a normal distribution interpreted as
probabilities of the pair being neighbors. Then, it computes the pairwise similarity between initially randomly initialized
data points in the lower-dimensional image space by inverting their ED according to a t-distribution interpreted likewise
as probabilities. Finally, it minimizes the Kullback–Leibler (KL) divergence between the similarities/probabilities in the
two spaces with gradient descent. The similarities or distances between data points may not be treated equally.
Special Traits. Specifically, some techniques like Isomap [64, 256], Locally Linear Embedding (LLE) [173, 285], and
t-SNE prioritizes local structures. Like LDA, if categorical labels are available, Uniform Manifold Approximation and
Projection (UMAP) that are technologically similar to t-SNE can optionally take advantage of this additional information
and be used in a supervised fashion. Interestingly, t-SNE and UMAP, two of the most popular DR techniques for data
visualization, are less used in TSA and their applications are still mostly in visualization [70, 260]. In fact, [148]
benchmarked seven representations involving UMAP on their data and conjectured that while useful for visualization,
techniques like t-SNE and UMAP, are not effective in capturing visual patterns in time series. Luckily, advancements in
DR techniques for time-dependent show promising candidates for TSA [247], such as dynamic t-SNE (dt-SNE) [209]
and temporal MDS [121].
Axes to Apply Dimensionality Reduction. In this section, we used the term “data point”, whose counterpart in TSA
deserves explanation. Because time series can be multivariate, analysts may apply DR to the temporal domain, possibly
piecewise (without overlapping) or with a sliding window (with overlapping) [92], as well as to multiple tracks for each
time point [19, 130], or to both axes simultaneously [266]. According to our experience, brute-force application of DR
on raw time series does not necessarily contribute much to knowledge extraction. Instead, it is preferred to extract
features according to domain knowledge and apply DR on this tabular data. For instance, to diagnose the regeneration
failure in diesel particulate filters, we extracted features like the particulate mass before exiting each regeneration, the
accumulated total fuel injection during each regeneration, the maximal exhaust temperature during each regeneration,
etc. We applied various DR techniques on these features, rather than on the raw signals. Not only did the results reveal
various error roots in clearer clusters, but the extracted features contributed to explainability.
Manuscript submitted to ACM
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Other Techniques with Dimensionality Reduction Function. Other noteworthy DR techniques not mentioned
previously included Multidimensional Scaling (MDS) [164, 210, 246] and Self-Organising Map (SOM) [92, 110]. However,
we list the autoencoder under the category Machine Learning Model because it is technically more affiliated with
ANNs. Please also note that while virtually all piecewise representations and PIP (Section 5.6) claim explicitly that they
conduct dimensionality reduction, we only register dimension-transforming and distance/neighborhoold-preserving
techniques in this category, because, as mentioned at the beginning of this section, our categorization is based on
technical affinities, rather than functions, which each technique can serve many.

DR techniques are relatively general-purpose and serve in many tasks. There seem to be no universally applicable
hints about choosing the best DR technique to represent a time series. Nor are there always clear rules for parameter
setting. For instance, it is advised to set t-SNE’s perplexity parameter (the estimated number of neighbors), which
controls the balance between local and global structures, between 5 and 50 [243, 254]. Nonetheless, complex datasets
may deviate from such general settings. For instance, it requires setting the perplexity over 500 to obtain a visually
meaningful 2D scatter plot from a 3D mammoth point cloud [58]. Therefore, it makes sense to try several techniques,
vary their parameters, and choose the empirically best in specific use cases. Nonetheless, comprehensive study in [83]
concluded that most DR techniques have relatively good and robust default parameter settings, though the validity of
this finding in TSA remains to be examined. Generally, linear dimension-transformation methods tend to preserve the
global patterns while nonlinear distance/neighborhood-preserving methods are good at revealing local patterns [13].

5.6 Miscellaneous techniques

Lastly, we group TSRTs that are hard to categorize, e.g., because they combine techniques from multiple previous
categories, under the category “miscellaneous”.
Prophet Model. One of the most impactful TSRTs in this category is Prophet from Meta (Facebook back then) [236].
In a nutshell, this combines 1) a model for describing the trend, like the saturating growth model or PLR suggested in
the original paper; 2) Fourier series for capturing seasonal fluctuations; and 3) a (for each time point) binary “holiday”
component accounting for user-given impulses in the data due to short events like big limited-time discounts. Specifically,
the Prophet is defined as

𝑦𝑡 = 𝑔 (𝑡) +
𝑜∑︁
𝑖=1

(
𝑎𝑖cos

(
2𝜋𝑖𝑡
𝑠̃

)
+ 𝑏𝑖sin

(
2𝜋𝑖𝑡
𝑠̃

))
+ 𝑧 (𝑡) 𝜅 (23)

where 𝑔 (𝑡) is the selected trend model; 𝑜 is a hyperparameter for the number of Fourier series terms to use; 𝑎𝑖 and
𝑏𝑖 are Fourier coefficients for cos and sin, respectively; 𝑠̃ is the season length, like 7 (days) for weekly seasonality, or
365.25 (days) for yearly seasonality; 𝑧 (𝑡) = 1 if the analyst has specified an event at time 𝑡 , otherwise 𝑧 (𝑡) = 0; and 𝜅
follows a zero-mean normal distribution. The Prophet model is most active for univariate forecasting, especially in
business [1, 221].

Fig. 6. Perceptually Important Point. It represents
a time series with visually salient points, usually the
prominent peaks and troughs.

PIP. Another influential TSRT in this category is Perceptually
Important Point (PIP) [55]. It represents a time series with visu-
ally salient points like the main peaks and troughs in the time
series curve, see Figure 6. PIP centers around the temporal dy-
namics. It is versatile and finds applications in forecasting [240],
classification [264], and motif discovery [90]. Various PIP algo-
rithms exist. The classic one creates a list containing all time
points in the original time series, sorted in descending order
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of their importance [55]. Initially, the ranked list contains the
first and the last time point in the original time series. The algorithm adds one time point to the ranked list iteratively,
until the ranked list contains all time points in the original time series. The time point added in each iteration has the
largest sum of (Euclidean) distances to the two temporally adjacent time points in the ranked list.

6 FACTORS TO CONSIDER DURING REPRESENTATION SELECTION

According to our literature analysis, there are five primary factors to consider when using TSRTs: 1) physical dynamics,
2) data assumptions, 3) task suitability, 4) technique transfer, and 5) computational resources. We describe these next
and also provide examples.

6.1 Physical Dynamics

The first factor, physical dynamics, suggests that the best data representations ideally model the physical dynamics, e.g.,
derived from differential equations backed up by physical rules behind the data. This factor is especially relevant for
integral transforms (Section 5.2). For instance, the physical properties of audio signals encourage the use of FFT because
the sound is by nature a linear combination of vibrations of a range of time-invariant frequencies that may trace back
to different physical sources. Energy consumption data typically consists of 1) a trend implying technological advances,
behavior shifts, and long-term environment changes; 2) a seasonal fluctuation reflecting cyclic alternations of days and
nights as well as seasons; and 3) a “holiday” component or random residuals capturing unusual events or unexplained
errors. Accordingly, the Prophet model designed to capture the three components may fit the data well [236].

Since physical dynamics are primarily domain-specific, it follows that there may not be a universally (i.e., domain-
agnostic) optimal TSRT for all tasks in TSA, just like that no time series similarity measure consistently outperforms
the other [63]. As [45, 137] show, simple TSRTs like PAA may outperform complex ones like FFT, DWT, and SVD in
capturing temporal shapes in the time domain in a time series. In these cases, the usage of the complex TSRTs is not
substantiated by physical dynamics. As a result, not many benefits can be expected.

6.2 Data Assumptions

The second factor, data assumptions, requires that the analyst checks the fulfillment of the data assumptions made by
the TSRT and make adjustments if necessary. Compared with physical dynamics, which entails essential assumptions
on the domain-specific physics of the observed system or process, our second factor assumes certain properties of the
data themselves, e.g., stationarity or linearity required by the method. This factor is most prevalent among stochastic
process models (Section 5.1).

A typical example is when a model type has a parametric variant with a fixed number of parameters and a non-
parametric variant that adds parameters as data increase, e.g., linear SVMs vs. nonlinear SVMs, or ANNs vs. Gaussian
Processs (GPs) [184, 258].When possible, the former is preferable for efficiency and ease of use; the more computationally
expensive latter one may be needed when the performance of the former is insufficient.

There are established typologies of time series data. For instance, in signal processing, a signal can be categorized
as continuous/discrete, deterministic/stochastic, time-limited/time-unlimited, causal/acausal, symmetric/asymmetric,
periodic/aperiodic, energy/power/other, or (in terms of value range) bounded/unbounded [177]. However, they may
not all be noteworthy in our scope. For example, time series data are by definition in Section 3.1 always discrete;
causality (constantly zero for negative time) is often necessary to ensure a stationary initial state of the system in
control engineering and may not be of interest in other applications. In [273], Yu et al. used SAX as a TSRT. However,
Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Time Series Representation Techniques: A Survey 23

the data values in the time series do not follow a normal distribution as required by SAX [161]. Consequently, they
have to manually modify the algorithm to fit the use case.

We selected eight common data assumptions, which appear mostly frequently in the TSRTs we reviewed. These
common data assumptions are

Stationarity: (Primarily for stochastic processes) the time series has a time-invariant mean, and the autocovariance of
the time series depends only on the time lag.
Linearity: (Primarily for stochastic processes) a value in the time series can be described as a linear combination of
values at other time points plus i.i.d random variables; for DR techniques): Data are explained by a linear combination
of latent variables, i.e., linear DR techniques.
Markov Property: The values of the next time point depend only on the values of the current time point. Namely,
the observed system is memoryless [229, 287]. Note that by encapsulating the values of multiple time points in a vector,
some models like the ARIMA family (which do not have this property) can be formulated to have the property.
(A)Periodicity: Values in the time series repeat (or not) after a fixed number of time points.
Univariance: The time series has only one channel.
Normality: The values, errors, or other components of a time series are normally distributed.
Kernel: A prior choice of a kernel function is necessary, which, in turn, assumes certain properties of the time series
data. Note that an integral transform always has a kernel by definition in Equation 15, but the kernel can be fixed or
selected by the user according to prior knowledge. The latter is of concern here.
T+S+X: The time series can be decomposed as the sum of trend components (T), seasonal components (S), and some
other components (X, e.g. noise, residual, remainder, error, innovation, irregularity, or holiday). A time series model
consisting of interpretable components is called a structural model, and this kind of decomposition is the most common
one [107, 229].

Most of the selected common data assumptions are unequivocal. However, the definition of stationarity and linearity
requires refinement because they are overloaded with various meanings, especially when crossing the borders of
disciplines.

Stationarity. We adopt the weak/weak-sense/wide-sense/autocovariance stationarity stating that a time series has a
time-invariant mean and the autocovariance depends only on the time lag [75, 229].

Stationarity is mainly assumed by some stochastic process models. Stochastic processes see a time series as a
realization of a sequence of random variables [𝑌𝑡 ]0≤𝑡<𝑛 . The means and autocovariance refer to the random variables,
namely, E (𝑌𝑡 ) = E (𝑌0) and Cov (𝑌𝑡 , 𝑌𝑡+Δ𝑡 ) = Cov (𝑌0, 𝑌Δ𝑡 ). If not observed this way, even the notion of “mean” and
“variance” may not make sense. Let the time lag 𝛿𝑡 be 0, it follows that the variance of the time series should also be
time-invariant.

In contrast to weak stationarity, the strong/strict/strict-sense stationarity requires that the joint distribution of the
random variables in any same-sized subsequence of the time series is the same / time-invariant [75, 229]. To be precise,

𝑃 (𝑌𝑡 ≤ 𝑐0, 𝑌𝑡+1 ≤ 𝑐1 . . . 𝑌𝑡+Δ𝑡 ≤ 𝑐Δ𝑡 ) =

𝑃 (𝑌𝑡 ′ ≤ 𝑐0, 𝑌𝑡 ′+1 ≤ 𝑐1 . . . 𝑌𝑡 ′+Δ𝑡 ≤ 𝑐Δ𝑡 )
(24)

where 𝑃 denotes probability, and 𝑐𝑖 ∈ R [229]. In practice, strong stationarity is less used because many real-world time
series violate this property, and its verification is costly.
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Many stochastic processes require the data to be stationary. For instance, it is necessary to conduct statistic tests like
the Dickey–Fuller test to validate a trained AR model to examine the existence of a unit root [229]. In non-stationary
cases, the time series must be specially treated to remove non-stationarity, e.g., by differencing [220].

The term “stationarity” is overloaded with multiple meanings. For instance, it is common to see the comparison
between FT, STFT, WT in the literature, where the first only applies to “stationary” data and the other two to “non-
stationary” data [118]. Stationarity here means a time-invariant spectrum. In fact, DFT can be applied to non-stationary
(in the sense of our adopted meaning) time series.

Linearity. Linearity in this STAR means that the TSRTs can only capture linear dynamics of the observed system
reflected in the data.

Linear stochastic process models assume that the present value 𝑌𝑡 or present variance 𝜎2𝑡 is a linear combination
of other variables, including previous values of endogenous variables or their errors, current or previous values of
exogenous variables, or previous variance. Nonlinear stochastic process models often have nonlinearity by making the
constant parameters in linear ones changeable according to certain assumptions.

Linearity as a data assumption is not often concerned for integral transforms and piecewise representations. Many
integral transforms, like FT and WT are considered “linear”, which is rather a convenient property instead of a
constraining assumption. This “linearity” refers to the transform operation I itself, i.e.,

I
(
𝛼𝑦𝑡 + 𝛽𝑦′𝑡

)
= 𝛼I (𝑦𝑡 ) + 𝛽I

(
𝑦′𝑡

)
∀𝑡 (25)

where 𝑦𝑡 and 𝑦′𝑡 are two signals / univariate time series, and 𝛼, 𝛽 are constants. Unlike e.g. linear stochastic process
models, where linearity governs the data dynamics, the linearity of the operation in integral transforms does not
necessarily reflect linear data dynamics.

Like linear stochastic process models, linear machine learning models assume a linear relationship between their
output and input variables, e.g. linear regression and linear SVM. Nonetheless, nonlinear machine learning models like
ANNs are more representative in this category.

Linear DR techniques assume that the time series to represent can be explained by a linear combination of latent
components. It can be regarded as a linear transformation of coordinates or a linear projection of the data from a
higher-dimensional space to a lower-dimensional one. Data distributed on anything but a hyperplane in a space cannot
be disentangled linearly. Nonlinear DR techniques aim at preserving in the lower-dimensional image space the distance
in the original high-dimensional space, or the neighborhood structure, during which nonlinearity may emerge.

As a side note, we do not count the additive linear decomposition of a time series into trend, seasonal, and other
components, as described by the last data assumption, as linear because these components may contain nonlinearity
individually.

6.3 Task Suitability

The third factor, task suitability, implies that TSRTs may not be general-purpose. Namely, they may perform well in
some tasks (Section 3.2) but are unproven or possibly even fail in others. In the latter case, we may not know all facts
because failed results tend to remain undisclosed. As such, the same failure is potentially found repeatedly by different
researchers unaware of each other’s work. This factor influences stochastic process models (Section 5.1) and machine
learning models (Section 5.4) most. However, we attribute different reasons to their preferred usage in certain tasks.
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For instance, many TSRTs emerging from econometrics are geared to prediction, like ARIMA for forecasting the mean,
and ARCH for the variance/heteroscedasticity/volatility. They are seldom used in other tasks like classification [250].
Such TSRT-task combination can result from historical backgrounds or domain needs and may not reflect the general
ability of the TSRTs themselves. A promising research direction is to benchmark the suitability of various TSRTs
commonly used for one task also in others. We imagine, then, for instance, creating a skill matrix, where columns
denote tasks and rows denote TSRT, also showing cells of ineffective matches.

Different machine learning models may favor different tasks. Therefore, we mention the suitable tasks for each model
in Section 5.4. For instance, we mentioned in Section 5.4 that autoencoders are typically for anomaly detection and
denoising while VAEs for data generation, though not really prohibited in other tasks. In contrast to stochastic process
models, in our view, the reason for the concentrated usage of some machine learning models in certain tasks lies in the
model function and structure itself. We believe that the structure of the model determines the model’s function and
ultimately influences the model’s task suitability. For an autoencoder, for instance, the output layer reproduces the
data, whose dissimilarity to the original data measured by the reconstruction error reflects the novelty of the input
data and thus naturally relates to anomaly detection. The embedding layer of an autoencoder has much fewer neurons
than the input, which can be interpreted readily as dimensionality reduction; when using 2 or 3 neurons, this can be
directly used for data visualization. Should the analyst stick to the model for other tasks due to its certain merits that
the alternative options lack, either the task needs to be formulated or the model modified so that they align with each
other.

6.4 Technique Transfer

Our penultimate factor, technique transfer, is to enable techniques that solve similar problems in another discipline.
For instance, it is a common practice to describe time series as a difference equation or state space representation [104].

They are standard models in signal processing and control engineering and enables analysis akin to techniques in these
disciplines, e.g., stability analysis [37].

In the example mentioned in Section 6.2, the authors utilized a symbolic representation, SAX, with nice properties
like an ordered alphabet and the numerosity reduction [161], which can be exploited by text retrieval techniques, in
this case, regular expression, to describe the distortions in time series patterns.

Another interesting example is to transfer a time series to an image (called time series image) first with techniques
like recurrent plots; then, use image processing networks to classify the time series (images) [67] or conduct vision-based
anomaly detection [62].

6.5 Computational Resources

Our last factor, computational resources, considers execution time and memory consumption. This is especially relevant
in sensor monitoring and IoT where data volumes are huge. For instance, a Boeing 787 can generate half a terabyte
of sensor data per flight [214]; Moreover, data processing is sometimes performed on portable devices with limited
computing resources. On one hand, this factor concerns the TSRT itself, especially for machine learning models
(Section 5.4) when model training should be taken into consideration. On the other hand, analysts may want to
accelerate subsequent operations on the representation.

There are three avenues to alleviate such problems. To begin with, many TSRTs have (hyper)-parameters controlling
the data compression rate, e.g., the resolution of the spectrum for WT, the number of states and transitions in a Markov
model, the number of hidden units in the output layer of the encoder in an autoencoder, and so on. Secondly, DR
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techniques (Section 5.5) and piecewise representations (Section 5.3) can compress the data significantly and drastically
lower the needs for computational resources. Lastly, there are techniques designed to boost efficiency instead of
effectiveness, like various time series indexing methods [12, 49, 195].

7 REPRESENTATIVE TIME SERIES REPRESENTATION TECHNIQUES

Based on our literature review, we provide Table 5 listing the most representative TSRTs, exposing their data assumptions
and limitations, and enumerating their most typical use cases.

The common data assumptions are introduced in Section 6.2. We elaborate on them together with data assumptions
unique to each TSRT in free text next to the common data assumptions.

The use cases reflect classic and established applications rather than the newest research. We emphasize but do not
limit use cases to TSA, because 1) typical use cases of many methods do not lie in TSA but in e.g. image or language
processing; 2) listing more use cases inspires more applications in TSA since a major portion of methods in TSA are
transferred from other fields, see Section 3.2.

8 DISCUSSION

We next discuss additional points that influenced the creation of our survey.
Tasks Preference. Some TSRTs in our taxonomy solve the task directly, e.g., LSTM for time series prediction. Others
are essentially preprocessing, i.e., create output that enters other methods dedicated to the task. Although this could
be controversial, we do not consider it a problem for TSRTs to favor certain tasks, as also mentioned in Section 3.3.
Consider the example of large language models. They are widely recognized as representations or models of languages.
Yet, they are technically classification models, whose basic task is to pick words in their vocabulary to fill in missing
words in a text. Whereas, they can be adapted to other tasks like holding conversations.
Establishment over Cutting Edge. Though we call our paper a STAR, we concentrate more on classic methods.
Our main goal is not to present recent advancements but to create a taxonomy based on technical lineages. Firstly,
consolidated methods form relatively stable branches of knowledge and innovation; recent advancements are like
leaves, which are potentially so diversified that it is hard to trace the essential techniques. Secondly, classic methods
are what one should begin with in practice, because they are proven, have many implementations, and accumulated
experience. Since we cannot find a comprehensive taxonomy on TSRTs on the root methods, we need to start one.
Lastly, mature methods are likely familiar to our readership, which may be of help when they peruse our proposal since
the readers do not need to learn many new methods first.
Non-Exhaustive Methods. TSA is a broad topic, so our scope is quite extensive compared to existing STARs. Needless
to say, the presented TSRTs have only scratched the surface. With the limited representative selections of TSRTs in
each category, we strive to depict the paradigms of different technique strains.
Category “Miscellaneous”. The category “Miscellaneous” in Section 5.6 accommodates TSRTs that do not fit into
other categories. This implies that other five categories fail to cover all TSRTs. This is especially the case when 1) some
TSRTs like Prophet are ensembles of equally important components from many other categories; 2) some TSRTs like
PIP do not have many variations.
Blending of Categories. Our categorization of some methods is debatable. A method may have technical traits
of multiple categories, and the techniques defining the categories are not mutually exclusive. For instance, we can
categorize GP under stochastic processes; yet, GP is also well-accepted as a machine learning model. We categorized
autoencoder under the category Machine Learning Model, albeit it can be also fit under Dimensionality Reduction
Manuscript submitted to ACM
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Technique. KLT is itself primarily an integral transform [177, 208]. Its continuous form can be seen as a model that
decomposes a stochastic process into orthonormal functions/series linearly combined with uncorrelated random
variables as coefficients. Meanwhile, its discrete form, aka Hotelling Transform, is equivalent to PCA, which is well-
known as a DR technique. We tried to separate the categories as disparate as possible. It was carried out consistently
following technical lineages. Nonetheless, overlaps are, as explained, unavoidable.
Rules for Method Selection. In this STAR, we have reviewed 38 TSRTs with dedicated paragraph headings. Many
more TSRTs are briefly mentioned or explained in groups. Though elucidated with concepts, properties, and typical use
cases, the myriad TSRTs may still overwhelm practitioners. For instance, should the analyst prefer ARIMA, LSTM, or
Prophet for time series prediction? The analyst can only try a limited number of them. The next step is to create a set
of rules for method selection with the help of the taxonomy. Particularly, the rules can use as selection criteria the
problems in TSA introduced in Section 3.2, and the data assumptions introduced in Section 6.2.

9 CONCLUSION

In this STAR, we presented a systematic survey of Time Series Representation Techniques (TSRTs). We created a
taxonomy of TSRTs based on their essential technical lineages, discussed the factors to consider when choosing a TSRT
for a given context, and presented a list of representative TSRTs with their properties/assumptions and typical use
cases. Our taxonomy serves as a starting arsenal for data scientists and domain analysts in search of effective TSRTs
that may address their problems. It also helps starting researchers on TSA with an overview of the known world before
embarking on their exploration into the unknown. Additionally, senior researchers in one or a few disciplines may
benefit from our contribution by drawing on knowledge from other disciplines. While many STARs exist on time series,
they tend to focus on a narrower and sometimes domain-specific perspective. Our taxonomy organizes TSRTs from
diverse disciplines for various downstream tasks into one system. We can expect the development of methods in each
category to address more challenging cases and crossbreeding among techniques from different categories. In the future,
we would like to study and propose a set of practical criteria and rules for practitioners to choose the first candidate
TSRTs for their use cases.
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A LIST OF SYMBOLS

The symbols listed in this appendix have fixed meanings. Unlisted symbols used in the main text may vary in meaning
according to the context. Nonetheless, unlisted symbols are rare cases.

We use lowercase letters for scalars, including scalar functions (i.e., functions returning one scalar as output), boldface
letters for vectors, uppercase letters for matrices or random variables (except the lowercase 𝜀 for the error as a random
variable). This rule applies to both Latin and Greek symbols, unless they are in special fonts, including \mathcal (for
established distribution like the normal distribution N , or operators and transforms like the Fourier Transform F ) and
\mathbb (for well-known sets like the set of real numbers R.

Table 2. Latin Symbols

Symbol Meaning

𝐴 The coefficient matrix before 𝑆𝑆𝑆𝑡−1 for estimating 𝑆𝑆𝑆𝑡 in a SSM, aka the state/system matrix.
𝐵 The coefficient matrix before𝑈𝑈𝑈 𝑡 for estimating 𝑆𝑆𝑆𝑡 in a SSM, aka the input matrix.
B The lag operator, e.g., B𝑖𝑌𝑡 = 𝑌𝑡−𝑖 .
𝐶 The coefficient matrix before 𝑆𝑆𝑆𝑡 for estimating𝑌𝑌𝑌 𝑡 in a SSM, aka the output matrix.
Cov (., .) Covariance.
𝐷 The coefficient matrix before𝑈𝑈𝑈 𝑡 for estimating𝑌𝑌𝑌 𝑡 in a SSM, aka the feedthrough matrix.
𝐸 (.) The expected value.
𝐼 The identity matrix.
I An integral transform.
K The kernel of an integral transform.
𝑀 An example matrix.
N The normal distribution.
𝑃 (.) Probability.
R The set of real numbers.
𝑇 Transpose.
𝑆 Covariance matrix.
𝑆𝑆𝑆𝑡 The state variables at 𝑡-th time point in a SSM.
𝑈 Matrix whose columns are the left singular vectors in SVD.
𝑈𝑈𝑈 𝑡 The input variables at 𝑡-th time point in a SSM.
𝑉 Matrix whose columns are the right singular vectors in SVD.
var (.) Variance.
𝑋 A data set containing multiple samples, each of multiple dimensions.
𝑋𝑋𝑋 𝑡 The exogenous variables at 𝑡-th time point in a VARX model.
W The wavelet transform.
𝑌𝑡 The 𝑡-th time point as a scalar random variable in a univariate time series.
𝑎 The parameter in WT that scales the mother wavelet.

.

.

.
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Table 2. Latin Symbols – Continued

Symbol Meaning

𝑎𝑖 Coefficient for cos in 𝑖-th term in a Fourier series.
𝑎𝑖 Fourier coefficient for cos.
𝑎 The parameter in DWT that controls scaling the mother wavelet, 𝑎 = 2𝑎 .
𝑏 The parameter in WT that translates the mother wavelet.
𝑏𝑖 Coefficient for sin in 𝑖-th term in a Fourier series.
𝑏 The parameter in DWT that controls translation of the mother wavelet, 𝑏 = 2𝑎𝑏.
𝑐 A constant scalar bias.
𝑐𝑖 The 𝑖-the constant used when defining the strict stationarity.
𝑐𝑐𝑐 A constant vector bias.
𝑑 The degree of differencing in an ARIMA model.
𝑑𝑖, 𝑗 The distance between the 𝑖-th and the 𝑗-th data point in the original space.
𝑑′
𝑖, 𝑗

The distance between the 𝑖-th and the 𝑗-th data point in the image space.
𝑑 The seasonal degree of differencing in a SARIMA model.
𝑒 The base of the natural logarithm and exponential function.
𝑓 Frequency.
𝑓0 The central frequency in the Morlet wavelet.
𝑔 The trend function in the Prophet model.
𝑖 An index variable with flexible/unlimited usage.
𝑗 The imaginary unit or an index variable with flexible usage when 𝑖 is used.
𝑘 The parameter in FT that is related to the frequency.
𝑘𝑘𝑘 The parameters of a kernel function.
𝑚 The number of channels in the time series, or more generally, the number of dimensions of the

data points in a data set.
𝑚′ The number of exogenous variables in a VARX model.
𝑛 The number of time points in a time series, or more generally, the number of data points in a

data set.
𝑛𝑤 The length (number of time points) of a window function or of a sliding window.
𝑜 The number of Fourier series terms in the Prophet model.
𝑝 The number of lagged values of the (endogenous) variables in an AR model or the number of

lagged conditional variances in a GARCH model.
𝑝′ The number of lagged values of the exogenous variables to use in a VARX model.
𝑝 The seasonal AR order in a SARIMA model.
𝑝.𝑣 . Cauchy principal value.
𝑞 The number of lagged errors in a MA model or in an ARCH model.
𝑞 The seasonal MA order in a SARIMA model.

.

.

.
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Table 2. Latin Symbols – Continued

Symbol Meaning

𝑠̃ The length of a season in an SARIMA model or a Prophet model.
𝑡 The time or the zero-based index of time points in a time series.
Δ𝑡 The time difference.
𝑣 The zero-based index of channel/variables in a time series.
𝑣𝑣𝑣𝑖 The unit vector of the 𝑖-th principal component.
𝑤 The window function used in STFT.
𝑦𝑡 The scalar value in 𝑡-th time point of a univariate time series.
𝑦𝑡,𝑣 The scalar value in 𝑡-th time point and 𝑣-th channel of a multivariate time series.
𝑦 A continuous scalar function of time.
𝑦𝑦𝑦𝑡 The values (as a vector random variable) at 𝑡-th time point in a multivariate time series.
𝑧 The boolean (𝑧 (𝑡) ∈ {0, 1}) holiday/event function in the Prophet model.

Table 3. Greek Symbols

Symbol Meaning

Γ𝑖 The coefficient for𝑋𝑋𝑋 𝑡−𝑖 in a VARX model.
Σ Matrix with the singular values in SVD or summation.
Φ𝑖 The coefficient for𝑌𝑌𝑌 𝑡−𝑖 in a VAR model.
𝛼 A coefficient with flexible usage.
𝛼𝑖 The coefficient for 𝜀2

𝑡−𝑖 in a (G)ARCH model.
𝛽 A coefficient with flexible usage. Used when 𝛼 is used.
𝛽𝑖 The coefficient for 𝜎2

𝑡−𝑖 in a GARCH model.
𝜀𝑡 The error of 𝑌𝑡 as a random variable.
𝜀𝜀𝜀𝑡 The error of𝑌𝑌𝑌 𝑡 as a random variable.
𝜃𝑖 The coefficient for 𝜀𝑡−𝑖 in a MA model.
𝜃𝑖 The coefficient for the 𝑖-th seasonal MA component in an SARIMA model.
𝜅 A parameter following a zeor-mean normal distribution in the Prophet model.
𝜋 The ratio of a circle’s circumference to its diameter.
𝜏 The time shift used, e.g., to shift a window function.
𝜙𝑖 The coefficient for 𝑌𝑡−𝑖 in an AR model.
𝜙𝑖 The coefficient for the 𝑖-th seasonal AR component in an SARIMA model.
𝜎 The standard deviation.
𝜎2𝑡 The conditional variance / heteroscedasticity of 𝑌𝑡 .
𝜓 The mother wavelet.

.

.

.
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Table 3. Greek Symbols – continued

Symbol Meaning

𝜓𝑎,𝑏 The wavelet from the mother wavelet𝜓 with scaling parameter 𝑎 and translation parameter 𝑏.

Table 4. Other Symbols

Symbol Meaning

|.| The absolute value of a scalar.
∥.∥ The second norm of a vector.
≔ Assignment.
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ACF Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

AE Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ANN Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

APCA Adaptive Piecewise Constant Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

AR AutoRegressive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ARCH AutoRegressive Conditional Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ARIMA AutoRegressive Integrated Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ARIMAX AutoRegressive Integrated Moving Average with eXogenous inputs . . . . . . . . . . . . . . . . . . 9

ARMA AutoRegressive Moving-Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CNN Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CWT Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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DR Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DLM Dynamic Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

DTFT Discrete-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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EMD Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

FFT Fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

FT Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

FWT Fast Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

GAN Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

GARCH Generalized AutoRegressive Conditional Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . 12

GP Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

GRU Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

HHT Hilbert-Huang Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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C REPRESENTATIVE TIME SERIES REPRESENTATIONS

Due to the space limit, we abbreviated the categories in the second column, i.e., SP: stochastic process, IT: integral
transform, PR: piecewise representation, ML: machine learning model, DR: dimensionality reduction technique, Mi:
miscellaneous.

Table 5. Representative Time Series Representation Techniques
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Annotations to Data Assumptions and Other Limita-
tions

Typical Use Cases****

AutoRegressive
Integrated
Moving Aver-
age (ARIMA)

SP ×1 ×2 ×1 ×3 ×4 1 Stationarity: constant mean and variance over time af-
ter detrending with the integral part, otherwise special
treatment for known non-stationarity. For seasonal non-
stationarity, use seasonal ARIMA (SARIMA).
2 Linearity: relationship between variables and between
current value and historical values are linear.
3 Univariance: the original ARIMA is developed for uni-
variate time series; use vector ARIMA (VARIMA) for multi-
variate time series.
4 Normality: the error terms in the moving average part
are often assumed to be i.i.d samples from a zero-mean
normal distribution.

Forecast in economics/finance/busi-
ness [6], environmental science [133]

(Generalized)
Autoregressive
Conditional Het-
eroskedasticity
((G)ARCH)

SP ×1 ×1 ×1 ×1 1 Mean Process: (G)ARCH only models the variances of
the error terms. It requires a model / mean process to model
the mean, e.g, an AR model. As a result, the assumptions
primarily refer to the error terms.
Conditional Heteroskedasticity: the variances of errors
follow an AR model (ARCH) or ARMA model (GARCH).

Forecast of volatility of stock prices [88].

HMM SP ×1 1 Markov Property: the next future state (state is hidden
for HMM) depends only on the current state and not on the
states that occurred before it.
Observation Independence (for HMM): the current obser-
vation (time series value) does not depend on previous or
future observations but only on the current state.
Finite States and Observations: the number of states and
possible observations are finite.
Time-Invariant Transition Probabilities: the probabil-
ity of moving from one state to another does not change
over time. It can also be regarded as a kind of stationarity.

Speech recognition (HMM is the most fre-
quently used method for speech recog-
nition [232]) [46, 125], gesture/posture
recognition [71, 180], handwriting recog-
nition [200], Text to Speech (TTS) [134],
predictive maintenance [206].

Gaussian Process
(GP)

SP ×1 ×2 1 Normality: values at any subset of time points follow a
multivariate normal distribution.
2 Kernal Function: assumptions made when choosing the
kernel function / covariance function (how strongly points
in the process should correlate with each other), popular
kernel choices are the Radial Basis Function (RBF) kernel
(the most frequently used GP kernel, aka Gaussian kernel
or squared exponential kernel), the radio quadratic kernel,
the exponential sine squared kernel, etc. [258].

General regression [4, 72, 175], interpola-
tion, Bayesian optimization [26] (for com-
plex function/system whose inference is
expensive.)
General regression, prediction, filling
gaps in data, bayesian optimization (e.g.,
hyperparameter optimization in ML),
learning control policies, modeling sys-
tem dynamics; but generally for modeling
complex systems (like a complex engine
model) that costs much time to run.

· · ·
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Table 5. Representative Time Series Representation Techniques – Continued
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Annotations to Data Assumptions and Other Limita-
tions

Typical Use Cases****

Discrete Fourier
Transform (DFT)

IT 1 ×2 ×3 1 Time-Invariant Spectrum: the frequency components
do not change over time. This is why the literature claims
DFT requires stationarity. But the column "stationary" refers
to time-invariant mean and variance. This is not an assump-
tion of DFT.
2 Periodicity: the input signal is periodic and continues
indefinitely. The input of DFT is a period. A finite aperiodic
time series is thus assumed to repeat itself infinitely.
3 Univariance: though no problem with multidimensional
data (e.g. images), DFT for multivariate time series is less
established, though there are research in this direction,
like [198].

Signal filtering, compression, spetrum
analysis, system identification, identify-
ing/modeling cyclic patterns

Short-Time
Fourier Trans-
form (STFT)

IT ×1 ×2 1 Univariance: we did not find any multivariate version
of STFT.
2 Kernel:The window function can be regarded as a kernel.
Popular choices include the Gaussian window, the Hann
window, the Hamming window, the Blackman window,
etc. [202]
Resolution Trade-Off: time and frequency resolutions
cannot be high simultaneously. Larger window size leads
to higher frequency resolution but lower time resolution,
and vice versa.

Speech recognition, detect and track tar-
get in radar/sonar signals, anomaly/nov-
elty detection in machine vibration and
seismic data

Wavelet Trans-
form (WT)

IT ×1 ×2 1 Univariance: though without problem for multidimen-
sional data (e.g. images), WT for multivariate time series is
less established, though there is research in this direction,
like [156].
2 Kernel: popular choices include the Morlet wavelet (the
most frequently used), the Shannon wavelet, the Mexican
hat wavelet, etc. for CWT and the Haar wavelet, the Coiflet
wavelet, the Daubechies wavelet, etc. for DWT [101].

CWT: time-frequency analysis. Note that
cwt in MATLAB and scipy.signal.cwt

in Python are discrete versions of the
theoretical CWT, practically DWT with
higher resolutions, and thus applicable for
time-frequency analysis for time series.
DWT: compression (e.g. JPEG 2000 and
MPEG-4), denoising, feature extraction,
pattern recognition

HHT IT ×1 1 Univariance: we did not find any multivariate version
of HHT.
Sufficient Oscillatiory Behavior: HHT’s first step, EMD
reuiqres sufficient oscillatory behavior in the time series
for the extraction of meaningful intrisic mode functions. It
may not work well on monotonic or very smooth data.

Revealing patterns in science (e.g., seismic
and meteorological, astronomical data),
medical (e.g., anomaly detection ECG and
EEG), engineering (e.g., fault analysis for
revolving machine, e.g., for bearing); as
preprocessing step for prediction in finan-
cial data; image enhancement

Piecewise Aggre-
gate Approxima-
tion (PAA)

PR ×1 1 Univariance: PAA can be applied to each track individ-
ually. However, the interrelationships between tracks are
not considered.

Time series smoothing, compression, and
indexing

Piecewise Linear
Representa-
tion (PLR)

PR ×1 1 Univariance: same as above. Time series smoothing, compression, and
indexing

(indexable) Sym-
bolic Aggregate
approXimation
((i)SAX)

PR ×1 ×2 1 Univariance: same as above.
2 Normality: the values in the time series follows a normal
distribution.

Time series smoothing, compression, and
indexing (for retrieval)

SVM ML 1 ×2 1 Linearity: can be chosen to be linear or nonlinear via the
kernel selection.
2 Kernel: common kernel choices include the linear kernel
(for linear SVM), the RBF kernel (the most frequently used
for nonlinear SVM), the polynomial kernel, the sigmoid
kernel, etc. [44]

Text classification [126], image recogni-
tion [47], speech recognition [232].

· · ·
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Table 5. Representative Time Series Representation Techniques – Continued
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Annotations to Data Assumptions and Other Limita-
tions

Typical Use Cases****

Random Forest /
XGBoost

ML 1 1 Univariance: the time series data can be flattened before
fed to the model.

Various classification tasks like
medical diagnosis, fraud detec-
tion [106, 188, 211], customer seg-
mentation/recommendation; various
regression tasks like price/sales/energy-
consumption/weather forecast-
ing [187, 242]

Recurrent Neural
Network (RNN)

ML No noteworthy assumptions Time series prediction, text/audio gener-
ation, speed recognition, anomaly detec-
tion, video description

Convolutional
Neural Net-
work (CNN)

ML No noteworthy assumptions Computer vision [283], time series predic-
tion, audio recognition, text embedding
generation, anomaly detection

Attention/transformerML No noteworthy assumptions NLP [10, 193], computer vision [141, 163]
(Variational)
Autoencoder
((V)AE)

ML 1 1 Univariance: the time series data can be flattened be-
fore fed to the model; otherwise, one can prepend lay-
ers supporting multi-channel data, or try convolutional
(V)AE [148, 270] and recurrent (V)AE [196, 261].

Autoencoder (AE): anomaly detec-
tion [203, 267], dimensionality reduction
/ feature extraction (e.g., in pre-training),
denoising
VAE: Text/sequence(e.g., music, molecu-
lar structure)/image generation, anomaly
detection, image denoising

Generative
Adversarial
Network (GAN)

ML No noteworthy assumptions Image/sequence (e.g. molecular struc-
ture) generation [128, 230], image super-
resolutioning, image/text-to-image [7],
style transfer, data augmentation, anom-
aly detection

Principal Com-
ponent Analy-
sis (PCA)

DR ×1 1 Lineariry: the majority of the data variance can be ex-
plained by the linear combination of the first few principal
components.

Data visualization, compression, denois-
ing, feature extraction

Singular Value
Decomposi-
tion (SVD)

DR ×1 2 1 Lineariry: the data can be explained by the linear com-
bination of left sigular vectors that are scaled by singular
values and weighted by right sigular vectors.
2 Multivariance: according to the SVD implementation
fromKeogh et al for time series indexing, each column in the
matrix to decompose is a segment in a univariate time series
segmented by a sliding window [137] Namely, the matrix to
decompose is the transpose of the trajectory matrix of the
time series. Accordingly, it only works for univariate time
series. However, we believe that it is feasible to 1) use the
flattened sgements as the columns of the matrix to decom-
pose in multivariate cases; or 2) use the whole multivariate
time series directly as the matrix to decompose.

Latent semantic analysis, data compres-
sion, denoising

Singular Spec-
trum Decomposi-
tion (SSA)

DR × × ×1 1 Decomposition: the time series consists of trend, peri-
odic compoents, and noise

Forecast in meteorology, economics, fi-
nance, analyzing population dynamics in
ecology

· · ·
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Table 5. Representative Time Series Representation Techniques – Continued
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Annotations to Data Assumptions and Other Limita-
tions

Typical Use Cases****

Various Man-
ifold learning
techniques

DR Single Manifold: the high-dimensional data lies on or
near a lower-dimensional manifold embedded within the
higher-dimensional space; and data reside in a single
manifold.
Smoothness: small changes in the high-dimensional data
should only result in small changes in the low-dimensional
representation.
Uniform sample density: uniform distribution of points
along the manifold, rather than dense in some regions and
sparse in others.

Individual techniques may have their own data as-
sumptions, for instance, Local Linear Embedding (LLE)
assumes local linearity, isomap assumes isotropy (prop-
erties change in one direction on the manifold is the
same as in any other direction), and Uniform Manifold
Approximation and Projection (UMAP) assumes uniformly
distributed data on a locally connected Riemannian
manifold and that the Riemannian metric is locally constant
or approximately locally constant

Data visualization, denoising, feature ex-
traction, anomaly/novelty detection, pat-
tern recognition

Prophet Mi ×1 1 Decomposition: a piecewise linear represented trend,
seasonalities described by a Fourier series, and user-
provided holidays.

Forecast In business, finance, economics,
energy consumption, meteorology

Perceptually
Important
Point (PIP)

Mi ×1 1 Univariance: we did not find any multivariate version
of PIP.
Key Points: there are “key” points in the time series data
that capture most of its significant characteristics.

Time series summarization in mete-
orology and IoT, pattern recognition
(e.g., “head-and-shoulders” and “’cup-and-
handle”) in financial market analysis and
healthy monitoring, anomaly detection

Table Footnotes
* “Stationarity” in this table means weak stationarity, namely time-invariant mean, and auto-covariance only depends on the time lag. Please refer to Section 6.2 for details.
** “Linearity” in this table means that the data dynamic can be captured by a linear relationship. It does not mean that the transformation operation is linear or not. For instance,
DFT is said to be linear, which is rather a desired property, instead of a data assumption/limitation. Please refer to Section 6.2 for details.

*** “T+S(+X)” in this table means that the time series is assumed to be able to be decomposed to trend components, seasonal/cyclic/periodic components, and possibly other
components (noise/residual/holiday). Please refer to Section 6.2 for details.

****We only add STARs including monographs and book chapters dedicated to the specific TSRT and to the specific use case in this table.
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