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Abstract

We propose a data processing pipeline for feedback-driven pattern search

in multivariate time series. Prevailing machine-learning-based pattern search

methods scrutinize time series with a sliding window and classify the data

fragment in the window. They retrieve patterns of fixed sizes and assess

the pattern relevance based on its internal characteristics oblivious of the

pattern’s context. Furthermore, they confine user feedback to acceptance,

rejection, and abstention, an ineffective approach when a it target pattern

is located imprecisely. We propose “nonmyopic” (literally meaning “non-

nearsighted”) multivariate time series pattern search. Instead of classifying

patterns directly, nonmyopic search classifies each time series step as “in
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Graphical Abstract

NOOPS: Nonmyopic Feedback-Driven Pattern Search in Multi-

variate Time Series

Yuncong Yu, Tim Becker, Peter Schichtel, Wolfgang Aigner, Alexandru Telea,

Michael Behrisch

Figure 1: Traditional Search vs. Nonmyopic Search. We propose nonmyopic search
for model-based time series pattern search. The traditional pattern search in time series
scans the time series data with a sliding window to calculate a relevance profile, where
top local maxima correspond to the found patterns. The traditional method has problems
with patterns of variable duration and is oblivious to the pattern context. In contrast,
nonmyopic search classifies whether each time step is in a target pattern or not and clusters
the “in-target-pattern” time steps to retrieve pattern intervals. Nonmyopic search finds
patterns of variable lengths in one scan and is aware of the pattern context.
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Highlights

NOOPS: Nonmyopic Feedback-Driven Pattern Search in Multi-

variate Time Series

Yuncong Yu, Tim Becker, Peter Schichtel, Wolfgang Aigner, Alexandru Telea,

Michael Behrisch

• Step-based classification + clustering outperforms scanning with sliding

windows

• Nonmyopic search retrieves patterns of varying duration and considers

their contexts

• Nonmyopic search is more accurate, efficient, and robust than tradi-

tional search

• Feedback on positions and sizes besides relevance increases accuracy

significantly

• During evaluation, interval-based metrics work better than step-based

ones

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193693

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



NOOPS: Nonmyopic Feedback-Driven Pattern Search

in Multivariate Time Series

Yuncong Yua,b,∗, Tim Beckera, Peter Schichtela, Wolfgang Aignerc,
Alexandru Teleab, Michael Behrischb

aDepartment of Data Science and AI Projects, IAV GmbH, Rockwellstraße
16, Gifhorn, 38518, Lower Saxony, Germany

bDepartment of Information and Computing Sciences, Utrecht University, Princetonplein
5, Utrecht, 3584 CC, Utrecht, Netherlands

cDepartment of Computer Science and Security / Media and Digital Technologies, St.
Pölten, Campus-Platz 1, St. Pölten, A-3100, Lower Austria, Austria

Abstract

We propose a data processing pipeline for feedback-driven pattern search

in multivariate time series. Prevailing machine-learning-based pattern search

methods scrutinize time series with a sliding window and classify the data

fragment in the window. They retrieve patterns of fixed sizes and assess

the pattern relevance based on its internal characteristics oblivious of the

pattern’s context. Furthermore, they confine user feedback to acceptance,

rejection, and abstention, an ineffective approach when a it target pattern

is located imprecisely. We propose “nonmyopic” (literally meaning “non-

nearsighted”) multivariate time series pattern search. Instead of classifying

patterns directly, nonmyopic search classifies each time series step as “in
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target pattern” or not. Then, it merges the “in-target-pattern” time steps

into intervals of found patterns through density-based clustering. Nonmy-

opic search only scans the data once and can retrieve patterns of variable

sizes. Moreover, it is aware of the temporal contexts of a pattern, which is

crucial for wide application domains like automotive engineering. In addi-

tion, we propose “multi-feature feedback”. It allows user feedback on the

correctness of the found patterns as well as on their positions and sizes.

Multi-feature feedback addresses the imprecision problem with conventional

binary relevance feedback. Experiments verify that nonmyopic search outper-

forms traditional search in retrieval accuracy and speed, while multi-feature

feedback further improves retrieval accuracy compared to binary relevance

feedback. Our work helps automotive engineers trace events in various mea-

surements, while remaining domain-agnostic and applicable to other fields.

A version of this paper with supplemental materials and code is available at

https://osf.io/f6phs.

Keywords: time series analysis, pattern search, active learning

2000 MSC: 37M10, 68T10, 68U99

1. Introduction

Searching for recurrences of an event in chronologically recorded real-

valued observations, known as time series [1, 2], is a ubiquitous task in vari-

ous domains, such as retrieving interesting events in IoT measurements [3, 4]

detecting pathogenic fragments in genomic sequences [5, 6], identifying sim-

ilar market behavior in historical stock prices [7, 8], etc. Our automotive

engineers frequently trace event-induced patterns in sensor measurements as
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preliminary work for root cause diagnosis. These practical issues can be for-

mulated as time series pattern search. It addresses the problem of finding

patterns in a time series similar to given examples.

This problem is challenging owing to the obscurity of “similarity”, which

varies in use cases and can be subjective [9]. To address this problem, ma-

chine learning models are trained to capture the desired notion of similar-

ity [10, 11]. The time series is fed piece by piece with a sliding window

to the model that outputs the pattern relevance. Unfortunately, there are

rarely sufficient ground truths to support model training in practice [12].

Accordingly, researchers invite users to verify patterns typically suggested

by a tentative rule-based (meaning not involving model training) initial

search [6, 13, 14]. We call such model-based user-in-the-loop time series

pattern search “feedback-driven pattern search”.

Existing methods for feedback-driven pattern search suffer from three

weaknesses. (W1) Fixed pattern length: The size of the sliding window

dictates that of the found patterns. To retrieve patterns of variable dura-

tion, the methods require multiple differently sized kernels, each scouring the

data once. (W2) Context-obliviousness: The sliding window appraises

the relevance of a pattern based on its internal characteristics, ignoring the

context. The target event sometimes, unfortunately, lacks rich features on its

own, but may be preceded or succeeded by distinctive signals that the user

may not even notice. In that case, considering the data behavior in temporal

proximity contributes to the retrieval. (W3) Imprecise feedback: The

state-of-the-art allows the user to accept, reject, or eschew a found pattern,

from which a positive, a negative, or no label for model (re)training is ex-

3
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tracted. However, none of the options is satisfactory when a found pattern

overlaps a target pattern partially, illustrated in Figure 2.

Figure 2: Problem with Traditional Relevance Feedback. User feedback is confined
to acceptance, rejection, and abstention, which may place the user in a dilemma, where a
found pattern is partially correct, and all options are controversial.

We present NOOPS, a data processing pipeline for feedback-driven pattern

search. It features two techniques to overcome the aforementioned weak-

nesses. First, instead of classifying the patterns as relevant or not directly,

we propose to classify if each time step in the time series is located in a tar-

get pattern. The “in-target-pattern” time steps are then merged into found

pattern intervals. We call this approach nonmyopic search because, as we

will show, it recognizes patterns of different sizes and even peeks into their

context. This improvement overcomes W1 and W2, increasing retrieval ac-

curacy by 19% and decreasing execution time by 68% in our experiments.

Second, to overcome W3, we propose to solicit feedback on more features

than relevance/correctness, specifically, the positions and sizes of the found

patterns. We name this approach multi-feature feedback. We will verify

that the minor extra labeling effort pays off, raising the retrieval accuracy

by 35% in our experiment.

As an auxiliary work, we developed a Visual Query System (VQS) demon-

strated in the video https://youtu.be/7-MPiC7asBg.

4
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2. Related Work

Similarity Measures. Time series pattern search algorithms, especially the

rule-based ones, often rely on a similarity measure (alternatively a distance

measure) to gauge the relevance of a pattern with respect to the query (a

given example of the target event). The similarity measure plays a decisive

role in retrieval accuracy [15]. Basic options include cosine similarity [16],

Mahalanobis distance [17], and variants of the Lp norm, such as Euclidean

Distance (ED) [18], and Chebyshev distance [19]. To capture temporally

warped patterns, researchers proposed elastic similarity measures, where Dy-

namic Time Warping (DTW) and its variants [20, 21] are the most widely

accepted and proven hard to beat for time series classification [22]. Sadly,

“no single algorithm accounts for human judgments of time series similar-

ity” [9]. Hence, many works employs a model in place of the rule-based sim-

ilarity measure to assess the pattern relevance [10, 11]. Our data processing

pipeline begins with a rule-based initial search and proceeds with the model-

based feedback-driven search. The initial search uses ED as the similarity

measure, specifically with Mueen’s Algorithm for Similarity Search (MASS),

the fastest pattern search algorithm so far [18], due to its speed, the primary

concern of the initial search. The feedback-driven search requires a model

and aims at a higher retrieval accuracy.

Scanning Approaches. The similarity measure or the model discussed in

the previous paragraph requires a scanning approach to traverse the time

series data. The classic approach runs a sliding window to check every po-

sition in the time series. At each position, it estimates the relevance of the

pattern that starts from the position and spans the window size. Faloutsos et

5
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al. named this approach “sequential scanning” [23]. This approach cannot

retrieve patterns of variable sizes efficiently. To address this problem, re-

searchers proposed various solutions. Some works match pieces in the query

with pieces in the time series with the same characteristics (e.g., monotonic-

ity), and a matching pair of pieces may differ in size [24]. It is also possible

to formulate the query as a regular expression searching a symbolic repre-

sentation of the time series, where quantifiers in the regex describe scaling

along the time axis [25, 26]. There are also works proposing computational

techniques [27]. However, these approaches only apply to certain rule-based

similarity measures. For model-based pattern search, sequential scanning

is the only option in the literature [6, 14], resulting in W1 and W2. Our

scanning approach breaks this convention and embraces nonmyopic search.

It cooperates virtually with all classification models and overcomes the two

weaknesses, achieving higher accuracy and speed.

Active Learning. Model training requires adequate labels. In practice,

labels are scarce. Researchers have proposed relevance feedback / active

learning [28], which invites users to label the outcomes, possibly in multiple

iterations. Since its introduction in time series analysis in [29], this technique

has also gained attention in time series pattern search [6, 13, 14]. However,

the state of the art only allows yes/no/indecisive as feedback on the relevance

of the found patterns, exposing W3. We propose multi-feature feedback on

the positions and sizes of the found patterns, which solves W3, yielding

substantially higher retrieval accuracy.

Our proposed algorithm and the user interface constitute a VQS. Please

refer to Appendix A for related work on VQSs.

6
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3. Method

Figure 3: Data Processing Pipeline. NOOPS combines time-step-based classification
and density-based clustering to retrieve patterns of variable duration and be aware of
their context. Moreover, NOOPS extends traditional relevance feedback by feedback on
positions and sizes of the found patterns, boosting retrieval accuracy even further.

A time series S =
[
si ∈ Rd

]
0≤i<n

of length n (number of time steps)

and dimension d (number of tracks/channels) is an arrangement of n real-

valued vectors of size d. We adopt the matrix notation with a pair of square

brackets for an array of indexed entries. The sub-script indicates the range

of the element indexes. We use the set notation with a pair of curly brackets

for a group of not necessarily ordered entries without duplicates, such as

all found patterns. We define 1) a subsequence S (a, b) of S, starting at a-

th time step inclusive and ending at b-th time step exclusive as S(a, b) =

[si]a≤i<b; 2) a query of length w as Q =
[
qi ∈ Rd

]
0≤i<w

; and 3) a relevance

function frel : R(b−a)×d → [0, 1], which takes S (a, b) as input and returns its

relevance/confidence. Please refer to Appendix B for a list of symbols.

We define the task time series pattern search as follows: given a time

series S and one or more target pattern examples, return all subsequences

S (a, b) in S whose confidence is no less than a threshold τ ∈ (0, 1), namely,

7
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return {S (a, b) | frel (S (a, b)) ≥ τ}.

We propose a four-stage data processing pipeline for feedback-driven pat-

tern search in multivariate time series, illustrated in Figure 3.

Stage 1 searches for the query Q based on an established rule-based

method MASS [18] to obtain initial results. Though we focus on feedback-

driven search, this stage is indispensable since there are usually insufficient

labels to begin with model training immediately. If the found patterns in

this stage fail to reach the user’s desired quality, they still serve as label

candidates for the subsequent feedback-driven search.

Stage 2 gathers user feedback. During this stage, domain knowledge

flows into the pipeline, which reflects the user’s notion of relevance. Com-

pared to traditional feedback on the correctness of the found patterns alone,

we allow the user to edit the positions and sizes of the found patterns and

call this type of augmented feedback “multi-feature feedback”. With multi-

feature feedback, the user can confidently endorse a found pattern that

matches a target pattern partially, after correcting its position and size. Oth-

erwise, the user may accept it hesitantly, fearing a deterioration of the label

quality; or reject it regrettably, as a desired pattern is touched at least.

Stage 3 and Stage 4 form “nonmyopic” search.

Stage 3 uses the user labels obtained in Stage 2 to train a model. In

traditional search, the model classifies patterns directly as relevant or not.

The input of the model is a pattern P , and the raw output of the model

is the probability that P is relevant frel (P ). In contrast, nonmyopic search

trains a model to classify if each time step in the time series resides in a

target pattern. The input of the model is S (i− h, i+ h+ 1) around the

8
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time step si to classify. The raw output of the model is the probability

that si is located in a target pattern f̃rel (S (i− h, i+ h+ 1)), where we use

f̃rel : R2h+1 × d → [0, 1] instead of frel to indicate the usage of the model

for estimating the relevance of time steps, rather than relevance of patterns.

This alteration brings many benefits to be elaborated in Section 3.1.

As the user expects relevant patterns in whole pieces instead of time steps

in relevant patterns, Stage 4 merges (the indexes of) the “in-target-pattern”

time steps into found patterns intervals {(a, b) | S(a, b) ∈ {F}} with density-

based clustering, where {F} denotes all found patterns.

Because Stage 1 is not our focus, we keep its detailed explanation in

Appendix C. Subsequently, we will first explain Stage 3 and Stage 4 ,

followed by Stage 2 because we consider nonmyopic search (Stage 3 +

Stage 4 ) the major contribution. Moreover, the exposition of multi-feature

feedback (Stage 2 ) presumes the understanding of nonmyopic search.

3.1. Time-Step-Based Classification: The Adaptive Core

In NOOPS’s pipeline in Figure 3, Stage 3 serves as the adaptive core.

Traditional model-based pattern search classifies time series patterns straight-

forwardly. To attain patterns of different sizes, the model has to go through

multiple resampled versions of the time series S. Otherwise, the input size

of the model would dictate the length of the found patterns.
We propose training the model to estimate the probability that a time step

is “in-target-pattern” or “not-in-target-pattern” (hereinafter called positive
and negative time step, respectively). The confidence of all time steps is

C̃ =

[
c̃i =

{
f̃rel (S (i− h1, i+ h2 + 1)) , if h1 ≤ i < n− h2

0, otherwise

]
0≤i<n

(1)

9
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Figure 4: Traditional Search vs. nonmyopic Search. Traditional pattern search scans
the time series with a sliding window to get a confidence profile, where top local maxima
correspond to the found patterns. It has problems with patterns of variable duration and
is oblivious to the pattern context. Nonmyopic search classifies whether each time step is
within a target pattern and clusters the “in-target-pattern” time steps to retrieve pattern
intervals. It finds patterns of variable lengths in one scan and is aware of the pattern
context.

where we pad the confidence with 0 (especially for 0 ≤ i < h1) so that the
time step indexes do not shift. The indexes of the positive time step are

B =
{
i | f̃rel (S (i− h1, i+ h2 + 1)) ≥ τ

}
(2)

Recall that f̃rel introduced at the beginning of Section 3 estimates the prob-

ability that a time step belongs to a target pattern or not, based on the

behavior of the neighboring data. h1 and h2 are hyperparameters that we

call “lookbehind” and “lookahead”, respectively, because they resemble the

positive lookbehind and positive lookahead in regular expression. In practice,

we set h1 = h2 = h and call h “lookaround”. It is set with the average length

of the positively labeled found patterns from Stage 2 .

The concrete implementation of f̃rel differs slightly for each model. For

instance, some models, like CNN and LSTM, support multivariate time series

out of the box and can take S (i− h1, i+ h2 + 1) as their input unmodi-

fied. Other models, like Random Forest and XGBoost, require flattening

S (i− h1, i+ h2 + 1) before feeding it to the model. How to properly han-

10
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dle each model is out of the scope of this work. Our model configuration is

documented in Appendix D.3.

It is worth noting that time-step-based classification is a standard task for

the famous EEG Eye State dataset [30] and has witnessed a great success [31,

32]. It inspired us to transfer the technique to time series pattern search.

The proposed change from pattern-interval-based to time-step-based clas-

sification brings three benefits. First, it can retrieve patterns of variable sizes

in one scan, while the traditional search requires a series of differently-sized

sliding window kernels. The time-step-based classification breaks the con-

nection between the model input size and the found pattern size. It still

processes the data with a sliding window of size h1 + h2 + 1, however, the

window size does not dictate the found pattern size. Thanks to this decou-

pling, time-step-based classification only looks at the data once.

Second, our approach is aware of the pattern context. As illustrated

in Figure 4, depicted by the arrow pointing out from the symbol +○ above

the text “context”, when classifying the initial time steps of a target pat-

tern, the lookbehind extends into the historical data on the left side of the

pattern. Likewise, the lookahead will gradually probe into the future data

beyond the end time step of the pattern, as the sliding window approaches

the right boundry of the pattern. Therefore, when retrieving a found pattern

F = S (a, b), the search takes an extended data fragment S (a− h1, b+ h2)

into consideration, including the context S (a− h1, a) ∪ S (b, b+ h2). This

context awareness is helpful when there is characteristic information preced-

ing or succeeding the target patterns. This is for instance the case when

the target event represents a phase in a multi-phase process surrounded by

11
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more distinctive phases, e.g. in our Deep Valve Linear Phase use case il-

lustrated in Figure 8. Whereas, if the context is uninformative, the model

learns to ignore it anyway.

Third, model training becomes more robust. In traditional search, one

labeled pattern S (a, b) serves as a single training instance. In the time-step-

based classification, it corresponds to b−a training instances [S(i−h1, i+h2+

1)]a≤i<b. These training instances depict the pattern from diverse temporal

perspectives, increasing the robustness of the training, reflected in the much

smaller standard deviation of the retrieval accuracy over multiple runs in

our experiments in Section 4.2. Moreover, it enables us to perform a data

augmentation to further increase the number of labeled training instances. If

S (a, b) is a positively labeled pattern and its start time step index a and end

time step index b are precise, then, it should be surrounded by negative time

steps. Namely, we can use [S (i− h1, i+ h2 + 1)]a−̃h≤i<a or b≤i<b+̃h as negative

training instances, where h̃ is a hyperparameter which we set as h. Not only

does this data augmentation increase training instances, but it also releases

the user from the burden of providing negative labels. Traditional feedback-

driven search, on the other hand, forces the user to provide negatively labeled

patterns because the model cannot be trained only with positive training

instances. On the downside, training requires more time due to the increase

of training instances. This, however, is less of a concern compared to inference

time, as we will see in Section 4.2. Training time depends on the number of

labels, which is typically small; while the inference time scales linearly with

the length of the time series, which is generally large. Therefore, as data

volume increases, inference time dominates.

12
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3.2. Density-Based Clustering: From Steps to Intervals

Figure 5: A Canonical Example of Clustering Time Steps. We merge the positive
time steps to found pattern intervals because the user expects found patterns in whole
pieces. We can achieve the merging with density-based clustering because the positive
time steps from the same pattern form a cluster along the time axis.

Identifying time steps in target patterns from Stage 3 is one step closer

to the desired output. However, the user expects the found patterns, not

individual time steps. Accordingly, Stage 4 converts the positive time steps

B from Equation (2) into found pattern intervals {(a, b) | S (a, b) ∈ {F}},

where {F} denotes all found patterns.

We cannot blindly merge consecutive positive time steps due to inevitable

misclassifications. For instance, in Figure 5, it is likely that Stage 3 misclas-

sified Time Step 2 and 3 as positive, while Time Steps 12 and 23 as negative.

False positive time steps can result in incorrect found patterns, and false

negative time steps split a target pattern into several smaller found patterns.

The merging process must tolerate such errors.

We address this problem using one-dimensional density-based clustering.

This approach is suitable because, along the time axis, a target pattern

appears as a cluster of densely packed positive time steps. In contrast, the

positive time steps between target patterns are much sparser and will be

disregarded by the density-based clustering method out of the box.

Density-based clustering distinguishes itself from partition-based and hi-

erarchical clustering by not necessitating prior knowledge of the number of
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clusters or levels. Nevertheless, this property is not necessarily an advantage

due to other parameters affecting the number of clusters / found patterns.

In practice, we adopt Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) with parameters in Appendix D.3. The input of

DBSCAN contains the indexes of the positive time steps B, and the output

gives the found pattern intervals {(a, b) | S(a, b) ∈ {F}}, where {F} denotes

all found patterns. Finally, the confidence of a found pattern F = S (a, b) is

the average confidence over all time steps in F , i.e., frel (F ) = 1
b−a

∑b−1
i=a c̃i,

where c̃i ∈ C̃ from Equation (1) is the confidence of i-th time step.

3.3. Multi-Feature Feedback: Procuring Training Labels

Stage 2 in Figure 3 closes the proposed pipeline. It provides labels for

model training while infusing the user’s domain knowledge into the pipeline.

Conventional active learning allows user feedback on relevance alone. For

each selected found pattern, it asks the user to accept/reject/skip it. Then,

it uses the accepted found patterns as positive labels and the rejected ones

as negative labels during model training, while omitting the skipped ones.

This can lead to a dilemma illustrated in Figure 2. If accepted, the found

pattern as a positive label may confuse the model with its imperfection; if

rejected, its partial correctness could be misleading; if skipped, the partial

correctness of the found pattern is unutilized.

Combined with nonmyopic search, this imprecision in user feedback intro-

duces mislabeled training instances directly. Imagine that the user accepts

a found pattern F = S (a, b). This single user label would provide b − a

positive training instances [S(i − h1, i + h2 + 1)]a≤i<b. However, the user

may actually desire the target pattern T = S (c, d) that overlaps F . Suppose
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a < c < b < d, i.e., F starts and ends too early. To be precise, F over-

laps with T on S (c, b), but also wrongly detects the fragment S (a, c) and

misses S (b, d). This user feedback correctly labels all time step in S (c, b)

(corresponding to training instances [S (i− h1, i+ h2 + 1)]c≤i<b) as positive,

but also incorrectly labels all time step of S (a, c) (corresponding to training

instances [S (i− h1, i+ h2 + 1)]a≤i<c) positive.

To address this problem, we propose multi-feature feedback, not only on

the relevance of the found patterns but also on their positions and sizes.

Pertaining to the same example, if the algorithm suggests F , the user should

be able to notice T in the UI as well, otherwise, the user would not have

accepted F . The user can adjust the position and size of F to align with

T , so that anew := c, bnew := d, i.e., Fnew := T . In this way, we resolve the

predicament caused by the imprecision of the traditional relevance feedback.

With this adjustment, the user may even accept a found pattern of low

quality that overlaps only a little with a target pattern and should have been

rejected by traditional relevance feedback. As long as the user notices the

target pattern, the user can virtually use the target pattern instead of the

imprecise found pattern as a positive label.

We have designed a user interface to assist the user with query definition,

result inspection & analysis, and feedback provision. The UI is necessary

because we are dealing with feedback-driven pattern search involving user

interaction. However, the UI is not our focus in this work and we omit it

due to the space limit. Please refer to Appendix E for a comprehensive

explanation of the UI features and to Appendix I for a cohesive workflow.
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4. Evaluation

We make two contributions to feedback-driven pattern search: 1) nonmy-

opic search combining time-step-based classification and density-based clus-

tering; 2) multi-feature feedback on the positions and sizes of the found pat-

terns besides their correctness. Accordingly, we benchmarked 1) nonmyopic

search against traditional search on retrieval accuracy and speed; 2) multi-

feature feedback against binary relevance feedback on retrieval accuracy.

We used three labeled datasets with different characteristics in the exper-

iments. Among them, the Deep Valve dataset has two use cases, each with

unique target patterns. Please refer to Appendix F for plots of the data, the

queries, the ground truths, as well as their physical background.

We conducted all experiments on a standard laptop with 64-bit Win-

dows 10 Enterprise, Intel i7-8650U, 16GB RAM, and 1TB HDD. Details of

hardware, software, and parameter settings can be found in Appendix D.

4.1. Proposing A Novel Metric on Time Series Retrieval Accuracy

Numerous methods for time series pattern search have been proposed.

However, there is a lack of a standardized evaluation approach or metric to

assess the quality of the identified patterns. This is partially understandable

because few labeled public datasets exist for time series pattern search. One

common evaluation method is visually inspecting the found patterns [6, 33].

Another possibility is to measure performance decrease against a more accu-

rate baseline method [27, 5], which is suitable when the proposed algorithm

is an accelerated version of the baseline. Luckily, our engineers have provided

ground truths. Nonetheless, we need to establish an evaluation metric given

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193693

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 6: Time-Step-Based vs. Pattern-Interval-Based Metrics. There are cases
where the found patterns do not match the target patterns well, yet the time steps are all
correctly classified, as in b○, where the algorithm fails to recognize a target pattern as a
whole piece. The time-step-based metrics will arrive at high scores despite this problem.
The pattern-interval-based metric Average Precision (AP) avoids such pitfalls.

ground truths.

Suppose a time series S = [si]0≤i<n comes with ground truths {G}, and

the pattern search algorithm retrieves found patterns {F}. The evaluation

metric on retrieval accuracy should gauge how well {F} aligns with {G}.

We conceive two approaches to designing the metric: time-step-based and

pattern-interval-based.
For the time-step-based metric, we first need to derive whether each time

step in S is located in a found pattern, i.e.,

Y =

[
yi =

{
1, if a ≤ i < b, S (a, b) ∈ {F}
0, otherwise

]
0≤i<n

(3)

Likewise, we can derive whether each time step in S is in a ground truth

Z =

[
zi =

{
1, if a ≤ i < b, S (a, b) ∈ {G}
0, otherwise

]
0≤i<n

(4)

Subsequently, we can count 1) the number of time steps both in a ground

truth and in a found pattern (true positives) TP = |{i | yi = zi = 1}|, 2) the

number of time steps in a found pattern but not in a ground truth (false posi-
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tives) FP = |{i | yi = 1, zi = 0}|, and 3) the number of time steps in a ground

truth but not in a found pattern (false negatives) FN = |{i | yi = 0, zi = 1}|

Finally, we can calculate the precision = TP
TP+FP

, recall = TP
TP+FN

, and

F1 =
2·precision·recall
precision+recall

.

Time-step-based metrics may lead to pitfalls like in Figure 6 b○, where

the algorithm fails to recognize the target pattern as a single piece, despite

the correct classification of every time step and hence perfect scores.

We propose, therefore, to transfer the metric Average Precision (AP) [34]

from object detection in computer vision to pattern search in time series. It

operates on pattern intervals instead of time steps.

AP requires an Intersection over Union (IoU) threshold υ to judge whether

a found pattern is relevant based on its matching ground truth. The IoU of

two patterns P1 and P2 is IoU (P1, P2) = |P1∩P2|
|P1∪P2| . AP pronounces a found

pattern F ∗ true positive if 1) F ∗ overlaps a ground truth G by at least υ; and

2) G does not overlap another found pattern F ′ of higher confidence by at

least υ (otherwise, the more confident F ′ has already consumedG). Together,

F ∗ is added as a new true positive if ∃G ∈ {G} s.t. IoU (F ∗, G) ≥ υ and

∀F ′ ∈ {F ′ ∈ {F} | IoU (F ′, G) ≥ υ}, frel (F ∗) ≥ frel (F
′).

The IoU threshold υ regulates the strictness of the metric. Figure 6 a○

shows a series of IoUs. We used mainly AP30 and AP50 with IoU threshold

30% and 50% respectively and interpreted AP30 as “roughly caught” and

AP50 as “precisely located”. Please note that in computer vision, the IoU

threshold for AP is usually at least 50% and can be as high as 95%. According

to our findings, however, this thresholding can be too strict for time series

pattern search, and the scores of most results (including and especially results

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193693

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



from baseline methods) would be too low and not well separated in [0, 1],

making result comparison difficult. Figure 6 c○ provides an example, where

the found pattern has 33% IoU with a ground truth that does not overlap with

another found pattern. The found pattern is, consequently, a true positive

according to AP30, but a false positive according to AP50.

In conclusion, while advocating time-step-based classification, we prefer a

pattern-interval-based metric to measure retrieval accuracy, because it aligns

better with the desired outcome format of the task pattern search, i.e., found

pattern (intervals) in whole pieces rather than individual time steps.

4.2. Nonmyopic Search vs. Traditional Search

This section evaluates the proposed nonmyopic search in terms of retrieval

accuracy and speed in a quantitative comparison with traditional search.

We included four models in this experiment: 1) Random Forest: the

champion of retrieval accuracy in traditional search according to Lekschas

et al. [6]; 2) XGBoost: the winner in our preliminary model selection both

in retrieval accuracy and speed; 3) LSTM: one of the most popular models

for time series analysis; 4) 1D-CNN: a common alternative to RNNs for time

series analysis [35]. Nonetheless, we did not intend to find the best model

since the goal is to benchmark two pipelines. Rather, we included multiple

models to avoid judgments biased by artifacts resulted from model choices.

Model training requires labels. We used the first (sorted in ascending or-

der of start time) several ground truths as positive labels for both nonmyopic

and traditional search. For negative labels, due to the different mechanisms

of label usage by nonmyopic and traditional search, we provided different

negative labels for them. For nonmyopic search, we simply provided two
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or three relatively long negative labels. This is the desired way of provid-

ing negative labels for nonmyopic search, basically to show the background.

Otherwise, negative labels are optional anyway due to the data augmenta-

tion specific to nonmyopic search explained in the thrid benefit of nonmyopic

search in Section 3.1. For traditional search, negative labels are mandatory.

Meaningful negative labels should be of comparable size to the positive la-

bels or target patterns. Therefore, we provided at least five and up to twenty

negative labels chosen randomly, depending on the total number of ground

truths. The labels can be found in Appendix G.3.

Figure 7 shows the experiment results, one diagram per use case. We

omitted LSTM because it is significantly slower than the other models, caus-

ing a skewed visual representation for other models. Diagrams with LSTM can

be found in Appendix G.2. In the diagrams, the abscissae represent wall-

clock time, and the ordinates retrieval accuracy measured by AP30. Thus,

the overall performance increases from bottom right to top left in a diagram.

We chose AP30 because it spreads the metric scores in the diagrams relatively

well between 0 and 1. The light points represent the models in nonmyopic

search, while the dark linked points the models in traditional search. Similar

to the rule-based initial search introduced in Appendix C, the performance

of traditional model-based pattern search depends on the number of sliding

window kernels to retrieve patterns of different sizes. Hence, we measured

the performance of a model in traditional search with different numbers of

sliding window kernels and used linked points or lines to represent them.

We conducted each accuracy measurement five times, averaged the results,

and included vertical error bars in the diagrams to represent the standard
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deviations across these five trials. Each speed measurement is averaged over

ten repetitions. We did not conduct accuracy and speed measurements si-

multaneously because the former incurs more costs like generating plots and

saving results during retrieval, which were excluded from the latter.

Figure 7: Comparison on Retrieval Accuracy and Speed. Compared to the linked
dark points denoting traditional search with different numbers of sliding window kernels,
the light points for nonmyopic search are further to the upper left in each plot, indicating
an improvement in retrieval accuracy and speed. (RF: Random Forest, XGB: XGBoost)

With the same model, the data points representing nonmyopic search

are generally higher than those representing traditional search, indicating

consistently higher retrieval accuracy with nonmyopic search. Indeed, many

of the data points for traditional search are relatively low, suggesting that it

is ineffective with certain models in specific scenarios.

Furthermore, nonmyopic search is more robust because 1) we can hardly

discern the error indicator bars around the light points, while the error indi-

cator bars are prominent around the dark points, implying that traditional

search may produce more inconsistent results in different runs; 2) the light

points of different models in the same diagram are relatively of the same
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height while the dark lines of different models in the same diagram are dis-

tributed vertically more widely, hinting at the robustness of nonmyopic search

with regard to the model choice. We attribute the improvement in robust-

ness primarily to the increase in the number of training instances elaborated

in the third benefit of nonmyopic search in Section 3.1.

In the Deep Valve Linear Phase use case, all models in traditional

search performed poorly because the internal characteristics of the target

event (simply a linear phase) lack distinctive features. However, the target

pattern is a phase in a multi-phase process illustrated in Figure 8. Together

with its preceding and succeeding phases, the pattern becomes easier to de-

tect. As a result, nonmyopic search aware of the pattern context maintains

a high retrieval accuracy for all models.

Figure 8: An Operation Cycle in the Deep Valve Linear Phase Use Case. Hidden
in a five-phase process, the target event is the linear phase titled “Move”. Though it
has few conspicuous features per se, its context (the phases titled “Start”, “Loosen”, and
“Stop”) has distinctive shapes and can contribute to identifying the target pattern.

Not only is nonmyopic search more accurate and robust, but also faster

because it needs to scan the data only once, while traditional search multiple

times to find patterns of different sizes. As Figure 7 verifies, the light points

are generally positioned further to the left than the dark lines.

Figure 9 shows the training and inference time in nonmyopic search and

traditional search with various numbers of sliding window kernels, revealing

more insights. We show only the result for Random Forest. The qualita-
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tive relationships between different parts of execution time are similar in

other use cases. In the Deep Valve Whole Signal use case, the inference

time for nonmyopic search, at 39.92 ± 0.73 seconds, is comparable to that

of traditional search using a single sliding window kernel, which can only

identify patterns of a fixed size, at 48.74± 1.47 seconds. Both methods scan

the data only once. Compared to traditional search with five sliding win-

dow kernels, which finds patterns of variable duration in a coarse manner

and takes 237.15± 4.31 seconds, nonmyopic search significantly reduces the

time required. On the other hand, nonmyopic search requires considerable

training time (45.73 ± 0.91 seconds) due to the massive increase of training

instances. In comparison, training time is negligible for traditional search,

only 0.16 ± 0.01 seconds. However, increased training time in nonmyopic

search is of less concern for larger data, because it is mainly determined

by the (usually small) number of labels, while inference time scales linearly

with (the generally large size of) the time series data. Therefore, for larger

datasets, the inference time will dominate and should be the major concern

in terms of execution time.

If restricting the experiment to Random Forest (the best model for tra-

ditional search in terms of retrieval accuracy and speed) and the number of

sliding window kernels to five (which should be coarse enough; we use eight

sliding window kernels in production in rule-based initial search), nonmyopic

search brought 19% retrieval accuracy boost (absolute difference) in 68% less

execution time, as shown in Table G.6.

In addition to the primary discovery, we report the following secondary

findings like model comparison in Appendix G.2.
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Figure 9: Training and Inference Time with Random Forest. The diagrams show
the training and inference time in nonmyopic and traditional search. For one thing, the
inference time of nonmyopic search is comparable with traditional search with one sliding
window kernel, both scanning the data only once. Whereas, the inference time in tra-
ditional search scales roughly proportionally to the number of sliding windows, making
it less attractive when pattern lengths vary significantly. For another, while the training
time in traditional search is negligible compared to inference time, the training time in
nonmyopic search is considerable due to the massive increase of training instances.

In summary, nonmyopic search improves retrieval accuracy and speed for

feedback-driven pattern search. Please refer to Appendix G for more details.

4.3. Multi-Feature vs. Binary Relevance Feedback

This section evaluates the proposed multi-feature feedback on retrieval

accuracy in a quantitative comparison with traditional relevance feedback.

Conceptually, the former is advantageous as it encompasses the capabilities of

the latter at least. However, we aim to show that the minor extra effort with

multi-feature feedback pays off far more than expected. We used nonmyopic

search with Random Forest due to its strong performance in Section 4.2.

Designing experiments involving user feedback is complicated due to the

entailed manual labor and uncertainty. We propose to simulate user behav-

ior, similar to [36, 14]. Specifically, we created two agents, the BR-Agent
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and MF-Agent, to emulate Binary Relevance and Multi-Feature feedback,

respectively, depicted in Figure 10.

The BR-Agent accepts a found pattern F = S (a, b) as a positive label

if: 1) F overlaps a ground truth G = S (c, d) no less than an IoU threshold

υ∗ (set to 30%), i.e., ∃G ∈ {G} s.t. IoU (F,G) ≥ υ∗, where {G} denotes all

ground truths; 2) To avoid duplicate labels, F should not overlap an already

added positive label F ′ by υ∗, i.e., ∀F ′ ∈ {F}, IoU (F, F ′) < υ∗, where {F}

denotes all found patterns before adding F as a new positive label. If F fails

to fulfill the first criterion, the BR-Agent labels F negative. If F meets the

first criterion but not the second, the BR-Agent ignores the pattern.

The MF-Agent adds a found pattern F as a positive label as long as it

intersects with a ground truth G, regardless of how small their IoU is, i.e.,

∃G ∈ {G} s.t. F ∩ G ̸= ∅. This behavior assumes that the user can notice

the touched target pattern upon seeing the found pattern. Moreover, MF-

Agent adds G instead of F as a positive label if G is not already added,

which simulates the user’s corrections on the position and size of the found

pattern. The MF-Agent only labels a found pattern negative when it does

not come into contact with any ground truth, i.e., ∀G ∈ {G}, F ∩G = ∅.

The experiment begins with the imperfectly retrieved patterns from the

rule-based initial search detailed in Appendix C. Each agent assessed the

found patterns based on the ground truths and returned five labels. Because

Random Forest and XGBoost do not support iterative training with new

labels only, we retrained all models with both the new and the old labels. We

performed ten iterations of feedback-driven pattern search, allowing results

to converge to stable retrieval accuracy in all use cases.
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IoU = 20%

Case 2: the found pattern aligns 
poorly with a target pattern

IoU = 0%

Case 3: the found pattern does 
not align with a target pattern

Target 
pattern

IoU = 60%

Case 1: the found pattern aligns 
well with a target pattern

Found 
pattern

Time series data BR-
Agent

MF-
Agent

BR-
Agent

MF-
Agent

BR-
Agent

MF-
Agent

Note: pattern 
mirrored

Figure 10: BR-Agent vs. MF-Agent. The BR-agent labels a found pattern positive
when it overlaps a ground truth sufficiently, and negative when not. The MF-agent labels
a found pattern positive, as long as it overlaps a ground truth (no matter how small the
overlap is), and it adjusts the position and size of the found pattern to match the target
pattern (use the ground truth instead of the found pattern as the positive label); the MF-
agent only labels a found pattern negative when it does not overlap any ground truth.

Figure 11 shows the evolution of the retrieval accuracy according to AP30

and AP50 after the rule-based initial search and each of the ten feedback-

driven search iterations. According to AP30, both feedback types can im-

prove the search results from the rule-based initial search (Feedback Round

0 in Figure 11). In the Deep Valve Whole Signal use case, multi-feature

feedback outperforms binary relevance feedback by a margin of 0.05 accord-

ing to AP30. Other use cases witnessed a greater performance gain, with

the light curves for multi-feature feedback much higher than the dark ones

for binary relevance feedback. If measured by AP50, this discrepancy was

even more evident. In fact, retrieval accuracy did not grow much with binary

relevance feedback but still rose to a high level with multi-feature feedback.

To better compare the retrieval accuracy after convergence, we plot re-

trieval accuracy after ten feedback-driven search iterations with a series of

APs in Figure 12. In all use cases, the light bars representing multi-feature

feedback are higher than the dark bars representing binary relevance feed-

back, showing the general performance gain with the former. Moreover, the
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Figure 11: Evolution of Retrieval Accuracy. Both feedback types can raise retrieval
accuracy, as indicated, e.g., by the rising AP30 in the Deep Valve Whole Signal use case.
The improvement mainly happens after the first feedback round. Multi-feature feedback
outperforms binary relevance feedback, both in terms of the correct hits according to
AP30 and the quality of the found patterns according to AP50. In fact, binary relevance
feedback fails to improve retrieval accuracy if measured by the stricter metric AP50.

stricter the metric, the larger the performance gain appears. Specifically,

as metric strictness increases, scores for binary relevance feedback decrease

rapidly, while those for multi-feature feedback decline only slightly, suggest-

ing found patterns of higher quality with multi-feature feedback. In fact,

binary relevance feedback failed in the more challenging Deep Valve Linear

Phase and EEG Eye State use case.

As shown in Table H.7, multi-feature feedback raised retrieval accuracy

on average by 35% and 59% according to AP30 and AP50, respectively.

In conclusion, multi-feature feedback outperforms binary relevance feed-

back and should be the preferred choice for feedback-driven pattern search,

especially with nonmyopic search. Please refer to Appendix H.4 for a visual

inspection of the found patterns after convergence of the retrieval accuracy.

Lastly, we conducted a case study to demonstrate the UI features and an

expert study with two automotive engineers to validate its usability. They
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Figure 12: Converged Retrieval Accuracy. After ten feedback-driven search iterations,
multi-feature feedback raised retrieval accuracy to a higher level than binary relevance
feedback. The stricter the metric, the larger the performance gain appears.

are kept in Appendix I and Appendix J, respectively.

5. Discussion and Conclusion

In this work, we propose a data processing pipeline and tool called NOOPS

for feedback-driven pattern search in multivariate time series. It features

two contributions: 1) Nonmyopic search combining time-step-based classi-

fication and density-based clustering, which enables retrieving patterns of

variable sizes, considers the pattern context, and makes model training more

robust; 2) Multi-feature feedback, which comments not only on the correct-

ness of the found patterns, as suggested by existing active learning methods,

but also on their positions and sizes, leading to even higher retrieval ac-

curacy. Surprisingly, the traditional pattern-interval-based feedback-driven

search pipeline and the binary relevance feedback performed poorly in our

experiments, and are thus in our view immature for general real-world appli-

cations. On the other hand, we did not encounter any significant limitations

with the proposed nonmyopic search and multi-feature feedback. As such, we
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urge researchers and practitioners conducting time series pattern searches,

especially feedback-driven pattern searches, to try out our method.

In the future, we plan to improve NOOPS, especially in the following aspects.

Discriminate Overlapping Patterns. Nonmyopic search struggles with

overlapping patterns, often merging them into a single long pattern, akin

to semantic segmentation in computer vision. We are interested in trans-

ferring methods from object detection and instance segmentation into time

series pattern search. In practice, however, overlapping occurrences are of-

ten irrelevant for many physically induced target events. For instance, it is

physically meaningless for an opening-enlarging period of a valve to overlap

another opening-enlarging period of the same valve.

Diversify Feedback Candidates. We present highly confident candidate

patterns for feedback, which may lead to confirmation bias by focusing on

a narrow range of subclasses. Therefore, we plan to explore recommending

moderately confident candidates that differ from highly confident ones.

Externalize Knowledge. While we strive to seamlessly imbue the data

processing pipeline with domain knowledge, knowledge-assisted visual ana-

lytics inspires us to externalize tacit expert knowledge, e.g., through semantic

interaction analysis. We can imagine that the necessity of certain data pro-

cessing operations, such as normalization, can be inferred from user feedback.

The VQS can extract and manage such knowledge as explicit rules.

Our tool is in production, assisting automotive engineers in tracking

events of interest in various measurements. In the near future, we would

like to enhance NOOPS by optimizing its components and improving the VQS

design to guide the user through the analytical workflow.
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Encyclopedia of Database Systems, Springer US, Boston, MA, 2009, pp.

192–193. doi:10.1007/978-0-387-39940-9_482.

[35] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch

vom Entwickler der Keras-Bibliothek, 1st Edition, mitp, Frechen, 2018.

[36] R. van de Schoot, J. de Bruin, R. Schram, P. Zahedi, J. de Boer, F. Wei-

jdema, B. Kramer, M. Huijts, M. Hoogerwerf, G. Ferdinands, et al., An

open source machine learning framework for efficient and transparent

systematic reviews, Nature Machine Intelligence 3 (2) (2021) 125–133.

doi:10.1038/s42256-020-00287-7.

35

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193693

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://doi.org/10.1016/j.heliyon.2023.e15258
https://doi.org/10.1093/jrsssc/qlad038
https://doi.org/10.1093/jrsssc/qlad038
https://doi.org/10.1016/j.softx.2022.101049
https://doi.org/10.1007/978-0-387-39940-9_482
https://doi.org/10.1038/s42256-020-00287-7

