
 1

CVSscan: Visualization of Code Evolution
Lucian Voinea

Technische Universiteit Eindhoven
Wiskunde & Informatica

PO Box 513, 5600 MB Eindhoven
+31-402472480

lvoinea@win.tue.nl

Alex Telea
Technische Universiteit Eindhoven

Wiskunde & Informatica
PO Box 513, 5600 MB Eindhoven

+31-402475008

alext@win.tue.nl

Jarke J. van Wijk
Technische Universiteit Eindhoven

Wiskunde & Informatica
PO Box 513, 5600 MB Eindhoven

+31-402474579

vanwijk@win.tue.nl

ABSTRACT
During the life cycle of a software system, the source code is
changed many times. We study how developers can be enabled to
get insight in these changes, in order to understand the status,
history and structure better, as well as for instance the roles
played by various contributors. We present CVSscan, an
integrated multiview environment for this. Central is a line-
oriented display of the changing code, where each version is
represented by a column, and where the horizontal direction is
used for time, Separate linked displays show various metrics, as
well as the source code itself. A large variety of options is
provided to visualize a number of different aspects. Informal user
studies demonstrate the efficiency of this approach for real world
use cases.

Categories and Subject Descriptors
D.2.2[Software Engineering]: Design Tools and Techniques;
D.2.7[Software Engineering]: Maintenance, Enhancement;
H.5.2[User Interfaces]: Evaluation, Methodology;

General Terms
Management, Documentation, Design, Experimentation.

Keywords
Software evolution, Software visualization.

1. INTRODUCTION
Since its beginning, software visualization has proved to be an
efficient tool for supporting the software engineering process. The
ever-increasing complexity of software systems together with the
advent of lightweight development methodologies, such as
extreme programming [1], tends to shift development costs from
early stages, such as architecture and design, towards later stages,
such as maintenance. Industry surveys show that, in the last
decade, maintenance and evolution exceeded 90% of the total
software development costs [6], a problem referred to as the
legacy crisis [14]. This challenge is addressed on two fronts. The

preventive approach tries to improve the reliability of a system at
design time. Many visual tools and techniques exist to improve
the expressiveness of UML and visually assess design-time
quality attributes [5], [9]. The corrective approach aims to
facilitate the maintenance phase, and is supported by program and
process understanding and fault localization tools, e.g. SeeSoft [4]
Aspect Browser [8], or Tarantula [10]. With over 250 billion code
lines in maintenance in 2000 [16] we position our work in this
second area of interest.

Program and process understanding is an important aspect of
software maintenance. Current industrial projects are often based
on collaborative development of millions of code lines. Industry
practice studies have shown that maintainers spend 50% of their
time on understanding this code [17]. Many software visualization
tools have been designed to help revealing the structure of
software systems starting from the source code (e.g. [4], [18],
[19], [20]). Most of such tools focus on visualizing high-level
system abstraction, such as classes, modules, and packages,
usually extracted from source code in a reverse engineering
process. However, these tools do not show lower-level system
changes, such as the many, minute source code edits done during
debugging. Moreover, the focus is on a fixed system structural
view that does not show all changes the code has undergone in
time. Various graph drawing techniques, such as the one proposed
by Collberg et al. [2], tried to overcome this limitation by
showing the temporal dimension of software structures and
mechanisms evolution. However, their still to be validated
approach does not seem to scale well on real-life data sets. At the
other end of the granularity spectrum, the SeeSoft tool of Eick et
al. [4] uses a line-based approach: Source files are seen as a set of
code lines, each of which is drawn as a pixel line. This allows
visualizing many thousands of lines on a single screen. Several
similar techniques and tools have been proposed (Aspect Browser
[8], Bee / Hive [13], sv3D [12], Augur [7]). While these
approaches succeed in revealing structure and change
dependencies between code fragments, they only offer snapshots
in time, and do not reveal changes in the global context of an
entire project life span.

In this paper, we propose a new technique for visualizing the
evolution of line-based software structures, semantics and
attributes using space-filling displays. We use dense pixel
displays to show the overall evolution, and integrate them in an
orchestrated environment of correlated views to offer details-on-
demand. We also introduce a novel concept, the bi-level code
display that gives a detailed, yet intuitive, view of both the
contents of a code fragment and its evolution in time. We validate
our approach by analyzing the evolution of files spanning

 2

thousands of lines along tens of versions, using data from real-
life, industry-size CVS repositories.

The structure of this paper is as follows. In Section 2, we briefly
review line-based visualization tools for software evolution and
their challenges. In Section 3, we introduce CVSscan, a tool we
developed to test and validate the visualization techniques we
propose. Section 4 presents results of two case studies we
performed. These studies show how our approach can be
successfully used to investigate the evolution of files from real
life software projects. Section 5 summarizes the novel
contribution we bring to software evolution visualization and
outlines future directions of research.

2. RELATED WORK
We define the challenge of line-based software-evolution
visualization using the five dimensions proposed by Maletic et al.
[11]: task, audience, target, medium, and representation. The main
task is to gain insight in the structure and operation of a software
system by studying the evolution of changes in its source code
organization, semantics and attributes. The intended audience is
mainly composed of developers and maintainers. These usually
face software in the late stages of its development process, and
need to get an understanding of it, often with no other support
than the code itself. However, our audience includes other roles
too, as follows: Project managers can get an overview of source
code producing activities, testers can identify the regression tests
required at system change, new team members can get familiar
with the software and set-up their social network based on
relevant technical issues, and eventually architects can identify
subsystems needing redesign. The target of line-based software-
evolution visualization is the collection of source code files
maintained by version control management (VCM) systems, such
as CVS, Subversion, or Microsoft’s SourceSafe. Such systems
maintain an archive of all intermediate versions of files and give,
thus, access to a line-based history of changes. The intended
medium for visualization is the standard PC graphics display
used for most software development environments. Finally, the
representation is formed by line-oriented, dense-pixel displays.

Line-based software visualization has been addressed in a number
of tools. SeeSoft, already introduced in Section 1, is the first tool
we are aware of that proposes a direct code line-to-pixel line
visual mapping [4]. Color is used to show code fragments that
correspond to a given modification request. The Aspect Browser
[8] uses regular expressions to locate specific artifacts (e.g. key
words) and then it visualizes their distribution. Tarantula [10] uses
color and a line-oriented display to represent the degree of
success with witch a fragment of code passed a number of tests.
Bee/Hive [13] and sv3D [12] use a 3D line-based code display.
The z axis shows additional attributes (Bee/Hive) or is used to
pack the line-based visualization more compactly (sv3D). Augur
[7], a recent effort in the area, combines within one visual frame
information about both artifacts and the activities of a software
project at a given moment. Finally, UNIX’s gdiff and its
Windows version WinDiff visualize code differences between
two versions of a given file by depicting the line insertions,
deletions, and modifications, as computed by the diff utility.
However efficient for comparing pairs of files, these tools cannot
deal with real-life file evolutions that often have hundreds of
versions.

The above tools are successful in revealing the line-based
structure of software systems, and uncover change dependencies
at given moments in time. However, they do not provide insight
into the code attributes and structure changes made throughout an
entire project duration. The approach we present here attempts to
give a detailed overview of such an evolution in the context of
source code maintained in a VCM system. In the next session, we
detail our approach, and we introduce CVSscan, a tool we
developed to validate the proposed visualization techniques.

3. METHODS AND TOOL DESCRIPTION
CVSscan is a visual tool we developed to support the program
and process understanding for the maintenance of large software
projects. Similarly to other line-based software visualization tools,
CVSscan builds on the assumption that developers are
comfortable with visualizations that present the code in the same
spatial context in which they construct, i.e. write it [4]. Since
software maintenance is mainly done at code level, we decided to
use a line-based approach to visualize the software. In order to
understand the software, developers can benefit from additional
information regarding its evolution, such as time and authors of
code changes. Such information facilitates team communication
in collaborative projects, and also places investigations in the
context of an entire project evolution, such as discovering that
problems in a specific part of the code appear after another part
was changed. Such insight is easier to get when visualizing the
context of an entire project evolution. In contrast, intensive
debugging and runtime analysis is needed to get it from a single
code snapshot. Hence, we visualize in CVSscan the evolution of
source-code structure and attributes across an entire project life
span. Typical questions we try to answer with this are:

- What code lines were added, removed, or altered and when?

- Who performed these modifications of the code?

- Which parts of the code are unstable?

- How are changes correlated?

- How are the development tasks distributed?

- What is the context in which a piece of code appeared?

We next detail the structure of the data we visualize (Section 3.1)
and the visual mappings used to display it in our tool (Section
3.2).

3.1 Data Model
Our data comes from the CVS version control management
(VCM) system. To decouple CVS from the visualization itself,
data extraction is done by a separate tool: CVSgrab (Figure 1). In
this way one can use our visualization tool with any VCM, once a
suitable data extractor is implemented. The central element of a
VCM system is a repository that stores all versions of a given file.
A repository R is a set of NF files:

 { }NFiFR i ..1==

Each file iF is defined as a set of iNV versions:

{ }iiji NVvVF ..1, ==

 3

version control
management

system

data extractor visualization

CV
SG

ra
b

CV
Ss

ca
n

CVS

Figure 1: Software-evolution visualization tool chain

Each version is a tuple containing the unique ID of the version,
the author that contributed (committed) it to the repository, the
time when it was committed, and its source code:

codedateauthoridV ij ,,,, =

Our visualizations will consider the files iF separately, so we drop
the file index in the following. To compare the source code

)(jVcode and)(1+jVcode of two consecutive versions jV

and 1+jV , we use a tool like UNIX’s diff, which reports the

inserted and deleted lines in 1+jV with respect to jV . All lines not

deleted or inserted in 1+jV are defined as constant (not modified).

Finally, lines reported to be both deleted and inserted in some
version are defined as modified (edited). We denote by li the ith
line of the version we talk about in some given context. Using
diff, we can also find which lines in 1+jV match constant (or

modified) lines in jV . For one such line, we call the complete set

of matching occurrences in all versions (i.e. the transitive closure
of the above match relation) a global line l. For every li,)(ilL
denotes the global line associated with li. From these data, we
build several functional characterizations for the source code
evolution at line level. The most important is the global line
position:

() NNNljG i →×:,

We can explain),(iljG by a graph analogy. For every global

line l, we build a graph node)(lN . Nodes are created by

scanning versions jV in increasing order of j, and lines li in each

version in increasing order of i. If lines li and li+1 are consecutive
in a given version, we set a directed arc from

))((ilLN to))((1+ilLN . Finally, when a node N is inserted

between two other nodes AN and BN , we set an arc from any

already existing node between AN and BN to N . Figure 2
shows three versions of a file and their corresponding graph.

This graph is directed and acyclic, and gives a total order relation
between all code lines. The node corresponding to the global line
l before which no other line existed during the whole project is
the only one having only outgoing arcs.

int i = 1;
int h = 3;
int j = 2;

int h = 3;
int j = 2;

int i = 1;
int j = 2;

int i = 1;
int h = 3;
int j = 2;

int h = 3;
int j = 2;

int i = 1;

int j = 2;

0

1
2

0

1

0
1
2

0

1

version V1 version V2 version V3

i

j j

h

i

j

h

i

Global line
position

Line position
in file

0

1

0

1

2

0

1

2

Figure 2 Global line position and corresponding graph

analogy
We label this ‘start node’ (e.g. node “i” in Figure 2) with zero and
all other nodes with the maximal path length (defined as number
of arcs) to the start node, e.g. by doing a topological sort of the
graph (see [3]). We obtain then, for every line li in every
version jV , that ()))((, lNlabelljG i = , where)(ilLl = .

This gives a unique label to all code lines written during
development, keeps the partial line orders implied by the different
versions in the project, and ensures that lines in different versions
identified by diff as instances of the same global line have the
same label.

Next, we introduce the line status

() STATESNNijS →×:,

which characterizes the global position i in version jV . S is

computed by comparing the current line lC at global position i in
version jV with the lines lP and lN having the same global position

i in the previous and next versions 1−jV and 1+jV respectively.

The status can be one of the following:

constant: lP exists in 1−jV and is identical with lC

modified: lP exists in 1−jV or lN exists in 1+jV , but differs from lC

deleted: lP exists in 1−jV and lC does not exist in jV or

),1(ijS − = deleted.

inserted: lN exists in 1+jV and lC does not exist in jV or

),1(ijS + = inserted

modified by deletion: lC is modified, and)1,(+ijS = deleted
OR modified by deletion

modified by insertion: lN is modified, and)1,(+ijS = inserted
OR modified by insertion

Further information can be extracted from the source code.
CVSscan uses a fuzzy parser with a customizable grammar to

 4

extract information such as blocks, comments, preprocessor
macros, and so on. This produces the construct attribute

() GrammarNNljC i →×:,

which describes, for every line li in every version jV , the

grammar construct that line belongs to. We use this information to
visualize the structure of a given version (Section 3.2.1).

We next present the techniques we used to map these
characterizations to visual elements.

3.2 Visual Mapping
Our main focus is to allow the user to easily perform his
investigations by minimizing the cognitive overhead of multiple
representations for the same data. For this, CVSscan uses a single-
screen display of a file’s entire evolution.

3.2.1 Dimensions
Similarly to previous line-based software representations ([4], [8],
[7]), we represent every line of code as a pixel line on the screen.
For CVSscan, we took the decision to use a 2D representation.
Our need to visualize many attributes together may first suggest
using a 3D view. However, we chose for 2D in order to have a
simple user interface, no occlusion problems, and a visual layout
perceived as simple for code developers. The main questions we
next had to answer were how to layout the line representations in
a plane, and how to use color for encoding attributes.
Our layout approach is different in two main aspects from
previous line-based layouts. First, we do not use indentation and
line length to suggest code structure, but use a fixed-length pixel
line for all code lines and color to encode structure (Figure 3).

 a) b)
Figure 3: Line layout a) SeeSoft b) CVSscan

Secondly, we visualize on the same screen all versions that a file
has during its evolution, instead of all files in a project at a given
time (Figure 4). The horizontal axis represents thus evolution in
time and the vertical one the line position li. Each version is
shown as a vertical stripe composed of horizontal pixel bars
depicting lines of code (Figure 3). Finally, while other tools use
line color to represent only one data attribute (e.g. line age in
[4],[7]), we use it to encode the author, construct, and line status
attributes defined in Section 3.1 (Figure 5). Overall, our approach
trades revealing the length of code lines off for offering a space-
efficient filling to show files and their structure. This allows us to
visualize more source code on the same screen.
Secondly, we focus on one file at a time, in order to deliver
comprehensive view of its evolution, enabling users to make
correlations between modifications in time.
For the vertical layout of lines within one version strip, we
propose two approaches.

a) b)

File A File B
V1 V2 V3 V4 V5

File A

Line position in file

 Time

 Line position in file

Project files

Figure 4: Use of horizontal axis in line-based visualizations

a) files, in SeeSoft b) time, in CVSscan

a)

Comment

File
 Reference

Block
(nesting level 1)

Block
(nesting level 2)

Modified

Constant

To be inserted

Deleted

 b)

Author A

Author B

Author C

 c)
Figure 5: Attribute color encoding: a) construct; b) line status;

c) author
The first one, called file-based layout, uses as y coordinate the
local line position li (Figure 6.a). This layout offers an intuitive
‘classical’ view on file organization and size evolution, similar to
[4].
The second approach, called line-based layout, uses as y
coordinate the global line position ()iljG , (Figure 6.b). While
this preserves the order of lines of the same version, it introduces
empty spaces where lines have been previously deleted or will be
inserted in a future version. In this layout, each global line l has a
fixed y position throughout the whole visualization. This allows
easy identification of code blocks that stay constant in time, or get
inserted or deleted.
To show various attributes, CVSscan offers alternate color
encodings of the author, construct and line status functional
characterizations of a version. We use a fixed set of perceptually
different colors to encode the authors (Figure 5a). For constructs
(i.e. blocks, comments and references) we use a customizable
color map, and modulate luminance to encode the block nesting
level (Figure 5b). Finally, we use a customizable color map to
indicate the status of lines in a given version (Figure 5c). At each
moment, one color scheme is active, such that the user can study
the time evolution of its corresponding data attribute. When
interesting patterns are spotted, one can switch to another scheme
to get more detailed insight in the matter.

 5

a)

Deleted
 lines Lines to be

inserted

 b)

 Constant line New lines Legend

 Local Line Position

Discrete time (versions)

Global Line Position

Discrete time (versions)

Figure 6: Line layout in CVSscan: a) file-based b) line-based

Figure 7 shows the CVSscan visualization of a file evolution
through 65 versions. Color encodes line status: green denotes
constant, yellow modified, red modified by deletion, and light
blue modified by insertion respectively. Additionally, in the line-
based layout (bottom), light gray shows inserted and deleted lines.
The file-based layout (top) clearly shows the file size evolution
and allows spotting the stabilization phase occurring in the last
third of the project. Here, the file size has a small decrease
corresponding to code cleanup, followed by a relatively stable
evolution corresponding to testing and debugging. Yellow
fragments correspond to areas that need reworking during the
debugging phase.

stabilization phase

Figure 7: Line status visualization. File-based (top) and line-

based (bottom) layouts
Figure 8 illustrates different color encodings on a zoom-in of the
line-based layout in Figure 7 (bottom). In Figure 8.a, we use
yellow to encode lines that suffer modifications when passing
from one version to another, as shown in the highlight. Since the
modification relation is symmetric (see Section 3.1), yellow lines
always appear in pairs. Switching to the color scheme that
encodes the construct attribute (Figure 8.b) enables the user to
discover that the modified piece of code is in a comment, encoded
by the dark green color. This means the modification does not
actually alter the code functionality. Finally, the author attribute
(Figure 8.c) shows the developer that performed the modification,
e.g. the purple one in our highlight.

a) b) c)
Figure 8: Attribute encoding: a) line status; b) construct;

c) author

3.2.2 Multiple Views
A key factor in understanding the patterns revealed by evolution
visualization is to correlate them with other information about the
program. Besides the line-based visualization of code evolution
we presented so far, CVSscan offers two additional metric views
and a novel text view on selected code fragments (Figure 9).

code view

metric
view

metric
view

Figure 9: Multiple code views in CVSscan

The metric views encode per-version and per-global-line data and
show these with vertical, respectively horizontal color bars to
complement the evolution visualization. Different metrics are
available. For example, two proposed horizontal metrics show, for
each version, its number of lines or its author (Figure 10). A
useful vertical metric shows the lifetime of a code line for a given
global line position.

 Discrete time
(versions) a)

b)
Discrete time

(versions)
Figure 10: Metric views: a) version size; b) version author

The code view offers a text look at the code. Users can select the
code to be displayed by sweeping the mouse in the evolution
view. Vertical brushing in the code evolution area scrolls through
a version’s code, whereas horizontal brushing over the line-based
layout (Section 3.2.1) goes through a given line’s evolution.
An important issue we address in the design of CVSscan is how to
correlate the code and evolution views, when the latter uses the
line-based layout. The question is what to display when the user

 6

brushes over an empty space in the evolution view. This space
corresponds to deleted or inserted line status values, i.e. the code
at the mouse position was deleted in a previous version or will be
inserted in a future version (see e.g. the light gray areas in Figure
7). Freezing the code display would create a sensation of scrolling
disruption, as the mouse moves but the text doesn’t change.
Displaying code from a different version that the one specified by
the mouse position, would have a negative impact on the context.
We solve this problem by a new type of code display. We use two
text layers to display the code around the brushed global line
position both from the version under the mouse and from versions
in which this position does not refer to an empty space (Figure
11).

evolution
view

mouse
position

Layer
A

Layer
B

Figure 11: Two-layered code view
While the first layer (A) freezes when the user brushes over an
empty region in the evolution view, the second layer (B) pops-up,
and scrolls through the code that has been deleted, or will be later
inserted at the mouse location. This creates a smooth feeling of
scrolling continuity during brushing. In the same time, it
preserves the context of the selected version (layer A) and gives
also a detailed, text level peek, at the code evolution (layer B).
The three motions (mouse, layer A scroll, layer B scroll) are
shown also by the figures 1, 2, and 3 in Figure 14.

2

1

first
version

last
versionlifetime

of line 1
lifetime
of line 2

Figure 12: Code view, layer B. Line 1 is deleted before line 2

appears (i.e. they do not coexist)
We must now consider how to assess the code evolution shown
by layer B. The problem is that lines of code located at
consecutive global positions might not coexist in the same
version. In other words, layer B consecutively displays code lines
that may not belong to one single version. We need a way to
correlate this code with the evolution view. We achieve this by
showing the lines’ lifetimes as dark background areas in layer B
(Figure 12). Finally, we indicate the author of each line by
colored bars near the vertical borders of the code view (Figure

11). Summarizing, the code view offers a detailed look on a
specific global position in a selected version, including
information about its evolution and the developers that make it
happen.

3.2.3 Visual Improvements
Real life software projects contain large files of thousands of
lines. The resolution of commodity graphic displays is not
sufficient to fit the entire file evolution on one screen, unless
more lines share the same physical screen pixels. This raises the
question how to represent code lines that share pixels such that
the user gets a consistent, comprehensible and complete image of
the file evolution.
We address this issue in CVSscan by a position-based antialiasing
algorithm. Antialiasing is used when the total number of lines to
be displayed is larger than the available resolution. The algorithm
computes the screen color of a number of overlapping lines by
averaging their colors and weighting them according to their
degree of overlap. That is, lines that fit inside one pixel location
have a full weight, and lines that spread on more locations have a
weight that equals the line percentage covered by the pixel
location (Figure 13).

Line 1 (weight 1.0)

Line 2 (weight 1.0)

Line 3 (weight 0.5)

Pixel

Pixel

Figure 13: CVSscan antialiasing algorithm

An alternative would be to compute the line weight based on
attribute values. While this would help emphasizing lines based
on their attributes, it may introduce structure inconsistencies when
using different display magnification levels, so more research is
needed to find out whether and/or how well this alternative would
work.

3.3 User Interaction
In addition to the visualization techniques described in Section
3.2, CVSscan offers a wide range of interaction means to
facilitate the navigation of data. We describe below, using
Shneiderman’s perspective [15], the repertoire of interactive
exploration instruments we provide. All instruments are designed
to use a point-and-click approach, making the entire exploration
possible only by the use of a mouse. A tool snapshot illustrating
these mechanisms is shown in Figure 14.
As explained so far, CVSscan offers an intuitive overview on the
evolution of a program file in a single 2D image, even for files
whose number of lines exceeds the available screen resolution
(Section 3.2.3). To get more detailed insight in a specific region
of the evolution, CVSscan offers zoom and panning facilities.
This enables the user to drill down to more detailed
representations, in which the evolution of each line of code may
be assessed. The tool offers also two preset zoom levels that act as
shortcuts to the global overview (fit all code to window size) and
to the one-pixel-per-code-line level.
In order to support the file evolution analysis from the perspective
of one given version, CVSscan offers a filtering mechanism by
means of which all lines that are not relevant are removed from
the visualization, i.e. lines that will be inserted after the selected

 7

version, or lines that have been deleted before the selected
version. Filtering enables the user to assess a version, selected by
clicking on it, by clearly identifying its lines that are not useful
and will be eventually deleted, and the lines that have been
inserted into it since the beginning of the project. In other words,
filtering provides a version-centric visualization of code
evolution. Additionally, the tool gives the possibility to extract
and select only a desired interval to study the file evolution. This
mechanism is controlled by two sliders (shown in Figure 14, top)
similar to the page margin selectors in word processors. By
choosing the starting and finishing version, one can remove from
visualization the code that is not relevant, i.e. code deleted before
the starting version, or code inserted after the finishing one. This

mechanism proved to be useful in projects with a long lifetime
(e.g. over 50 versions) in which one usually identifies distinct
evolution phases that should be analyzed separately.

CVSscan enables the user to correlate information about the
software evolution with specific details of the source code and
overall statistic information. By means of metric views, users can
visually get statistic information about lines, e.g. the lifetime of a
line at a given global position, or versions, e.g. a version’s author
or size. The bi-level code view (Section 3.2.2) offers details-on-
demand about a code fragment: the text body, the line authors
and the text evolution. The user can select the fragment of interest
by simply brushing the file evolution area.

Version
centric
filter

Presets

Zoom controls

Code view, main layer

Right interval selector

Code view, second layer

Left interval selector Evolution overview

1

2 3

Figure 14: CVSscan tool overview. The file version and line number under the mouse (1) is shown in detail in the text views (2,3)

 8

Although CVSscan is an exploration tool that does not alter the
data it visualizes, it maintains a collection of state variables that
may be externalized. This enables the user to keep a history of
his actions and let him recover and reuse a specific visualization
setting at a later time. In this direction, a simple extension that our
users suggested so far was to add an annotation facility by which
developers can add their own comments, and visualize added
comments, to a given version or line position.
In the following section we present the results of two informal
studies that show how the interaction mechanisms presented
above and the visualization techniques described in Section 3.2
can be successfully used to investigate the evolution of files from
real life software systems.

4. USE-CASES AND VALIDATION
The main target audience of the CVSscan tool is the maintenance
community. They perform their tasks outside the primary
development context of a project, and most of the times long after
the initial development has ended. Therefore, the main activities a
maintainer performs are related to context recovery, such as
program understanding and team network building. CVSscan
facilitates this process by visualizing file evolution from the
perspective of different attributes and features, such as file
structure, modifications, and authors.
In order to validate the visualization techniques and methods in
CVSscan, we organized a number of informal studies. The aim
was to record and analyze the experiences of software maintainers
when they investigate completely new programs, i.e. programs of
whose development they did not participate to, with no other
support than CVSscan itself. We present below the outcome of
two such studies of the larger set we organized. In both cases, the
users participated first in a 15 minutes training session. During the
session, the tool’s functionality was demonstrated on a particular
example file. After that, each user was given a file for analysis,
but no information about its contents whatsoever. A silent
observer recorded both user actions and findings.

Case study 1: analysis of a Perl script file
In the first case, the user was given a script file from the FreeBSD
distribution of Linux, containing 457 global line positions and
spanning 65 versions. The user was familiar with scripting
languages, but had no advanced knowledge about any of them.
The user started CVSscan using the default file-based layout to
visualize the evolution of file structure.

 a) b) c)
Figure 15: Case study 1 - Analysis of a Perl script

The user brushed first over the green areas in the evolution view:
“These are comments, right? Let’s see first what they say”. He
started to brush from the beginning of the file, choosing first the
comments that spanned over the entire evolution. In the same time
he read the code fragments displayed in the code view.
“This is Perl. All Perl scripts have this path on the first line. This
one looks like a file description. It reads that this script handles
pre commits of files…“
Then while brushing over the comment fragments (Figure 15.a
top → bottom):

“These are annotated textual dividers: Configurable options,
Constants, Error messages, Subroutines, Main body. I use these
too in my programs… Here are also some annotations…”
Further on, the user investigated also the large comment
fragments that did not span over the whole evolution:
“It looks like the implementation was either not completed or the
developers left a lot of garbage. There are some code fragments
over here that are commented out.”
The user next selected the last version and brushed over the
Subroutines area
“It looks like these lines do not belong to any block. Here is a
blank line before the write_line procedure. Here a blank line
before exclude_file. So there are white lines before every
procedure? Yes, indeed: check_version, fix_up_file. So
there are four procedures. It seems exclude_file is the most
complex one as it has the highest nesting level”
At this point, the user had a high-level understanding of the file
structure. He started to make inquiries about the developers that
had worked on the file. For that, he switched back and forth
between the construct and author attributes using shortcut
buttons:
“The yellow developer, Dawes, did most of the work. However,
the orange one, Robin, wrote that complex exclude_file
procedure. He did that towards the end of the project, so probably
that adds some extra functionality to the core. I see also that the
cyan developer, Eich, did some significant work towards the end
in the check_version procedure (Figure 15.b top →
bottom). It seems that his concern was to rule out files containing
DOS line breaks... So this script doesn’t handle DOS files?”
The user then dismissed the authors that had only small
contributions and switched to the line status visualization:
“Apparently a major change took place in the middle of the
project. It mainly affected the check_version procedure”.

Then, selecting the version that followed the modified by insertion
lines of the major change, the user started to concentrate on the
areas where modifications took place:
“I see a number of modifications between these two versions
(Figure 15.c top → bottom). The first one replaces a file
reference with a fully qualified name; the second does the same,
the third too, the fourth, the fifth. Oh, they should have kept that
file name in a separate variable!“
“Here they tuned the regular expressions”
“Here they replaced a constant string with a variable”

 9

The user continued to brush all areas where modifications
appeared and tried to correlate them with the code and the authors
that committed them. We interrupted the experiment after 15
minutes. At the end of the exercise, the user was familiar with the
overall organization of the file, the focus of each individual
contributor, the places that had gone through important
modifications and what this modifications referred to.

Case study 2: analysis of a C code file
In the second case, an experienced C developer was asked to
analyze a file containing the socket implementation of the X
Transport service layer in the FreeBSD distribution of Linux. The
file had 2900 global line positions and spanned across 60
versions. We provided the user with a CVSscan version able to
highlight C grammar constructs, such as #define, #ifndef,
etc (see Section 3.1).
The second user started the tool in the default mode too, and tried
first to look for commented fragments: “This is the copyright
header, pretty standard. It says this is the implementation of the X
Transport protocol, pretty heavy stuff… It seems they explain in
this comments the implementation procedure…”
The user next switched his attention to the compiler directives:
“A lot of compiler directives. Quite complex code, this is
supposed to be portable on a lot of platforms. Oh, even
Windows“.
Next, the user started to evaluate the inserted and deleted blocks:
“This file was clearly not written from scratch, most of its
contents has been in there since the first version. Must be some
legacy code… I see major additions done in the beginning of the
project that have been removed soon after that… They tried to
alter some function calls for Posix thread safe functions (Figure
16.a top → bottom)… I see major additions also towards the end
of the project… A high nesting level, could be something
complex… It looks like code required to support IPv6. I wonder
who did that?”

 a) b) c)
Figure 16: Case study 2 - Analysis of a C code file

The user switched then to the author visualization:
“It seems the purple use, Tsi, did that (Figure 16.b top →
bottom). But a large part of his code was replaced in the final
version by… Daniel. This guy committed a lot in the final
version... And everything seems to be required to support Ipv6.
The green user, Eich, had some contribution too… well, he
mainly prints error messages.”

Eventually, the user switched to the evolution of line status and
used the predefined “Fit to line” setting to zoom in.
“Indeed, most work was done at the end… Still, I see some major
changes in the beginning throughout the file... Ah, they changed
the memory manager. They stepped to one specific to the X
environment I assume. All memory management calls are now
preceded by x (Figure 16.c top → bottom)… And here they
seem to have given up the TRANS macro”.

The user spent the rest of the exercise assessing the modifications
and the authors that committed them. We interrupted the
experiment after 15 minutes. At the end, the user did not have a
very clear image of the file’s evolution. However, he concluded
that the file represented a piece of legacy code adapted by mainly
two users to support the IPv6 network protocol. He also pointed
out a major modification: the change of the memory manager.

5. CONCLUSIONS
In this paper, we present a new approach for the visualization of
software evolution using line-oriented displays, and we introduce
CVSscan, a tool we developed to validate the proposed
techniques. The main audience we target with our work is the
software maintenance community. The goal is to provide them
with support for program and process understanding.
Our novel approach uses multiple correlated views on the
evolution of a software project. We use dense pixel displays to
show the overall evolution of code structure, semantics and
attributes, and we integrate them in an orchestrated environment
to offer details-on-demand. We also introduce a novel type of
code text display that gives a detailed, yet intuitive, view on both
the composition of a fragment of code and its evolution in time.
We also present in this paper the typical outcome of a number of
user studies we did to validate our approach on data from real-life
CVS repositories. Although informal, the studies show that the
line-based evolution visualization of code supports a quick
assessment of the important activities and artifacts produced
during development, even for users that had not taken part in any
way in developing the examined code. Our tool and datasets used
in the two discussed case studies are available for download at
http://www.win.tue.nl/~lvoinea/soft/CVSscan_setup.exe.
So far, we only focused on the evolution of individual files. As
future direction of research, we would like to extend our approach
with higher-level overviews, such as whole-project evolution
visualizations, to enable evolution analyses on entire systems.
Finally, our aim is to integrate CVSscan in a toolset for code
visualization and analysis in order to make it effectively and
efficiently available to the software development process.

6. ACKNOWLEDGEMENTS
This research was part of the ITEA project Space4U, whose aim
is to define a component based framework for the middleware
layer of high volume embedded appliances
(http://www.win.tue.nl/space4u)

7. REFERENCES
[1] Beck, K., Andres, C., Extreme Programming Explained:

Embrace Change (2nd Edition), Addison-Wesley, 2004
[2] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.

A System for Graph-Based Visualization of the Evolution of

 10

Software, Proc. ACM SoftVis ‘03, ACM Press, NY, USA,
2003, 77 – 86.

[3] Cormen, T, Leiserson, C., Rivest, R., Introduction to
Algorithms, 16th edition, MIT Press, 1996.

[4] Eick, S. G., Steffen, J. L., Sumner, E. E. SeeSoft --A Tool
for Visualizing Line Oriented Software Statistics. IEEE
Trans. on Software Engineering, 18(11),1992, 957 – 968.

[5] Eiglsperger, M., Kaufmann, M., Siebenhaller, M. A
Topology-Shape-Metrics Approach for the Automatic
Layout of UML Class Diagrams. In Proc. ACM SoftViz ‘03,
ACM Press, NY, USA, 2003,189 – 198.

[6] Erlikh, L. Leveraging Legacy System Dollars for E-business.
(IEEE) IT Pro, May-June 2000, 17 – 23.

[7] Froehlich, J., Dourish, P. Unifying Artifacts and Activities in
a Visual Tool for Distributed Software Development Teams.
In Proc. ICSE ‘04, IEEE CS Press, Washington DC, USA,
2004, 387 – 396.

[8] Griswold, W.G., Yuan, J.J., Kato, Y. Exploiting the Map
Metaphor in a Tool for Software Evolution. Proc. ICSE ‘01,
IEEE CS Press, Washington DC, USA, 2001, 265 – 274.

[9] Gutwenger, C., Junger, M., Klein, K., Kupke, J., Leipert, S.,
Mutzel, P. A New Approach for Visualizing UML Class
Diagrams, Proc. ACM SoftViz ‘03, ACM Press, NY, USA,
2003,179 – 188.

[10] Jones, J.A., Harrold, M.J., Stasko, J. Visualization of Test
Information to Assist Fault Localization. Proc. ICSE ‘02,
ACM Press, NY, USA, 2002, 467 – 477.

[11] Maletic, J.I., Marcus, A., Collard, M.L. A Task Oriented
View of Software Visualization. Proc. IEEE VISSOFT ’02,
IEEE CS Press, Washington DC, USA, 32 – 40.

[12] Marcus, A., Feng, L., Maletic, J.I. 3D Representations for
Software Visualization. In Proc. ACM SoftVis ‘03, ACM
Press, NY, USA, 2003, 27 – 36.

[13] Reiss, S.P. Bee/Hive: A Software Visualization Back End. In
Proc. of the Workshop on Software Visualization, ICSE ‘01,
44 — 48.

[14] Seacord, R. C., Plakosh, D., Lewis, G. A. Modernizing
Legacy Systems: Software Technologies, Engineering
Process, and Business Practices. Addison-Wesley, SEI
Series in Software Engineering, 2003.

[15] Shneidermann, B., The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualization. Proc IEEE Symp.
on Visual Languages (VL ‘96), IEEE CS Press, Washington
DC, USA, 1996, 336 – 343

[16] Sommerville, I. Software Engineering (6th edition). Addison-
Wesley, 2000

[17] Standish, T.A. An Essay on Software Reuse. IEEE Trans. on
Software Engineering, 10 (5), Sep. 1984, 494 — 497.

[18] Storey, M.A., Best, C., Michaud, J., Rayside, D., Litoiu, M.,
Musen, M. SHriMP Views: an Interactive Environment for
Information Visualization and Navigation. Proc. CHI ‘02,
ACM Press, NY, 520 – 521.

[19] Telea, A., Maccari, A., Riva, C. An Open Toolkit for
Prototyping Reverse Engineering Visualization. In Proc.
IEEE VisSym ‘02, The Eurographics Association, Aire-la-
Ville, Switzerland, 2002, 241 – 251.

[20] Tilley, S.R., Wong, K., Storey M.A.D., Muller, H.A.
Rigi: A visual tool for understanding legacy systems.
In International Journal of Software Engineering and
Knowledge Engineering, December 1994

