
An Interactive Reverse Engineering Environment for Large-Scale C++ Code
Alexandru Telea∗

Institute of Mathematics and Computing Science
University of Groningen, the Netherlands

Lucian Voinea†
SolidSource BV

Eindhoven, the Netherlands

Abstract

Few toolsets for reverse-engineering and understanding of C++
code provide parsing and fact extraction, querying, analysis and
code metrics, navigation, and visualization of source-code-level
facts in a way which is as easy-to-use as integrated development
environments (IDEs) are for forward engineering. We present an
interactive reverse-engineering environment (IRE) for C and C++
which allows to set up the fact extraction process, apply user-
written queries and metrics, and visualize combined query results,
metrics, code text, and code structure. Our IRE tightly couples a
fast, tolerant C++ fact extractor, an open query system, and sev-
eral scalable dense-pixel visualizations in a novel way, offering an
easy way to analyze and examine large code bases. We illustrate
our IRE with several examples, focusing on the added value of the
integrated, visual reverse-engineering approach.

1 Introduction

Static code analysis is an important step in activities such as pro-
gram understanding, software maintenance, reverse engineering,
and redocumentation. Within static analysis, several operation are
executed, such as code parsing and fact extraction, fact aggrega-
tion and querying, and presentation. To be effective in scenarios
ranging from architecture extraction to code transformation and
quality control, the various software tools involved in the above
operations must comply with several requirements. First, a fact
extractor must be able to produce both high-level facts (e.g. call
and inheritance graphs) and low-level facts (e.g. syntax trees) from
possibly incorrect and incomplete millions of lines-of-code (LOC).
Second, mechanisms should be provided to select the subsets of
interest from the extracted raw data, query and analyze these in a
variety of ways to detect various code smells or compute quality
and safety metrics. Third, interactive presentation and exploration
mechanisms should be provided to drive the entire understanding
process. Finally, to be practical for a wide range of software engi-
neers, all above tools should be tightly integrated and simple to use
and learn.

For C++, few tool-chains meet all above requirements, especially
the simplicity-of-use for non-experts. We present here an Integrated
Reverse-engineering Environment (IRE) for C and C++ which pro-
vides seamless integration of code analysis (parsing, fact extrac-
tion, metric and query computations) and presentation (interactive
visualizations of source-code, metrics, and code relations). Our so-
lution is aimed at detailed, full-scale, low-level code analysis up
to the level of local variables, as opposed to more general reverse-
engineering tools which extract and present only the high-level sys-

∗a.c.telea@rug.nl
†lucian.voinea@solidsource.nl

tem architecture. In the same time, we advocate an open solution
where queries, metrics, and presentations are fully user customiz-
able. Overall, our IRE offers to reverse engineers the look-and-
feel of Integrated Development Environments (IDEs) such as Vi-
sual C++ or Eclipse, enhanced with scalable visual presentations
which let users easily browse and analyze huge code bases. Our
focus here is to detail on the architecture of the IRE and of its sev-
eral components (parser, query system, coordinated visualizations),
and the design decisions which have made possible the creation of
an IRE which satisfies all requirements mentioned earlier. For a
related paper focusing mainly on the IRE’s applications, see [Telea
et al. 2008a].

This paper is structured as follows. In Section 2, we overview re-
lated efforts on interactive visual reverse engineering, with a focus
on C++. Section 3 presents the architecture of our IRE and details
the design of its main components: the C++ fact extractor and the
fact query system. Section 4 presents the visualizations provided
by our IRE, details on tool integration issues, and describes sample
applications. Section 5 details on performance and user experience
issues. Section 6 concludes the paper and outlines future work di-
rections.

2 Related Work

Many reverse engineering toolsets exist in the research and industry
arena. Here, we focus mainly on high-performance tools support-
ing C++ and which cover the entire spectrum from fact extraction
to querying and presentation. There are two main classes of C++
fact extractors. Lightweight extractors do only partial parsing and
type-checking and thus produce only a fraction of the entire static
information, e.g. SRCML [Collard et al. 2003], SNIFF+, GC-
CXML. Heavyweight extractors perform (nearly) full parsing and
type checking, e.g. DMS [Baxter et al. 2004], ASF+SDF [van den
Brand et al. 1997], CPPX [Lin et al. 2003], ELSA [McPeak 2006;
McPeak], and COLUMBUS [Ferenc et al. 2004]. We aim to enable
users to perform detailed analyses of all bits of the source code, so
we need a heavyweight extractor. Such extractors can be further
classified into strict ones, based on a compiler parser which halts
on lexical or syntax errors, e.g. CPPX; and tolerant ones, based on
fuzzy parsing or Generalized Left-Reduce (GLR) grammars, e.g.
COLUMBUS. Such extractors are typically run in batch mode. Their
output is typically analyzed and queried using text-based tools, or,
more rarely, visualization tools. Many software visualization sys-
tems exist, ranging from source-level [Eick et al. 1992; Lommerse
et al. 2005] up to architecture visualizations [Storey et al. 2000].
Tools used to evaluate code smells or compute code metrics [Lanza
2004] fit somewhere between the extraction and visualization tools.
However, there are few, if any, tools which combine heavyweight,
tolerant C++ fact extraction with code analysis and visualization in
a single scalable reverse-engineering environment, in the same way
forward-engineering IDEs such as Visual C++ combine compilers,
linkers, debuggers, profilers, code editors, and various visual plug-
ins.

3 Environment Architecture

We present here SOLIDFX, an integrated reverse-engineering envi-
ronment (IRE) for C and C++ that combines fact extraction, query-
ing, analysis, and visualization in a single coordinated system. Our
IRE consists several tools: a parser and fact extractor, a query and
metric computation engine, and several data views. These commu-
nicate via a central fact database (Fig. 1), which contains both the
raw data extracted from the source code and refined data created
during an analysis session. To understand the various subtleties in-
volved and design decisions involved in its construction, we next
detail our IREs architecture.

Figure 1: Dataflow architecture of SOLIDFX

3.1 Fact Extraction

We parse C and C++ code using our own fact extractor, built atop
the ELSA parser. ELSA is a C and C++ parser [McPeak 2006]
constructed using a GLR grammar with the ELKHOUND parser-
generator [McPeak]. Atop the parser which produces a parse for-
est of all possible input alternatives, ELSA adds the complex type-
checking, scoping, and symbol lookup rules that disambiguate the
input to yield an Annotated Syntax Graph (ASG). The ASG con-
tains two types of nodes: abstract syntax tree (AST) nodes, based
on the GLR grammar; and type nodes, which encode the type-
information created during disambiguation and type checking, and
are attached to the corresponding AST nodes.

However powerful, ELSA lacks several features needed to make it
usable within an open, extendable, interactive environment. No pre-
processor facts are extracted; error recovery lacks, so incorrect code
causes parse errors or even crashes; not all Standard C++, nor its
dialects, are covered; no project concept is provided, so analyzing
large code bases is tedious; the output cannot be filtered or queried
for specific facts; no linker is provided to find common symbols
across translation units; and location data is output for the begin-
ning of syntax elements only, and only as lines (no columns).

We have extended ELSA to eliminate all these limitations, as de-

scribed next. First, we introduce some terminology. A code base
is parsed one translation unit at a time. A translation unit consists
of a source file and all its included headers, much like for a com-
piler. A topform is a syntax element appearing on the highest scope
level in a translation unit or in a namespace. Hence, a translation
unit is a sequence of topforms or namespaces containing topforms.
For each translation unit, we extract four types of data elements, to
create our so-called fact database:

1. syntax: the complete AST of the unit, including its headers;

2. type: the type nodes created during disambiguation;

3. preprocessor: the preprocessor directives used;

4. location: each syntax and preprocessor element has a
(file, row, column) location in the code. This is needed for
location-based queries (Sec. 3.6) and for visualizing queries
and metrics on the code (Sec. 4).

Our fact extractor works in four phases (Fig. 2). First, the parser,
preprocessor and preprocessor filter operate in parallel. The prepro-
cessor reads the input files specified via a project setup (Sec. 3.5)
and outputs a token stream enriched with location data (Sec. 3.2).
The parser reads this stream as it performs reductions and builds the
AST, and extends ELSA’s parser to handle incomplete and incor-
rect input (Sec. 3.3). Second, the AST is disambiguated and type-
checked using ELSAs original type-checker. Third, the extracted
data is filtered to keep the facts of interest by a customizable filter
strategy (Sec. 3.4). The results are written to file using a compact
binary format. Finally, the output files can be queried using a query
API which enables users to define and execute arbitrarily complex
queries on the extracted facts (Sec. 3.6). These phases are detailed
next.

3.2 Enhanced Preprocessing

Parsers such as ELSA typically keep a map from which AST node
locations can be computed. As mentioned, exact location informa-
tion is essential for query and metrics visualization (see Sec. 4).
However, macro expansions make this map unreliable. The parser
does not know when a location arises from an expansion and thus
cannot always exactly map locations to the original source. Exact
token locations in the input source file are only present in the pre-
processor. Solving this issue involved several subtleties, as follows.

We modified both the preprocessor and parser so that each syntax
construct has a location consisting of a begin and an end marker,
each having a row and column attribute, a file-ID, and whether the
marker is inside a macro expansion. The file-IDs for a constructs
begin and end markers can differ, due to some complex uses of
the #include directive. Also, a construct can arise partly from a
macro expansion and partly not, which is why we need to flag for
expansion at both ends. We cannot use a standard preprocessor, e.g.
from gcc or Visual C++, as these do not report location changes due
to expansions. We solve the problem using a customizable prepro-
cessor library, e.g. Wave [Karlsson 2005] or LIBCPP [Stallman and
Weinberg 2006]. We modified these to stream markers (described
above) together with tokens to the parser. Markers flow unchanged
through the parser (Fig. 3). We use two lexical scanners, one in the
preprocessor (A) and one in the parser (B). To keep the two scan-
ners in sync, we also stream token lengths with the markers. Using
a single scanner, as in e.g. ANTLR [Parr and Quong 1995], is a
slightly faster and cleaner design, but implies heavy re-coding of
both LIBCPP and ELSA. We took here a pragmatic approach, sim-
ilar to SNIFF+ [Bischofberger 1992]: We use existing tools with
minimal changes, as long as they match our requirements.

Figure 2: Architecture of the SOLIDFX C++ parser (main components marked by thick frames)

Figure 3: Enhanced preprocessor-parser architecture

3.3 Parsing Erroneous Code

ELSA requires syntactically correct and complete input. To parse
incorrect and incomplete code, and handle both lexical and parse
errors, we added special grammar rules starting with a special
“garbage” token to the ELKHOUND C++ grammar. For correct
C++, such rules are never entered. During the GLR parsing, we
track so-called error-recovery states (ERSs), in which garbage to-
kens can be shifted. Upon a parse error, we move the parser to
the most recent ERS at the front of the parse tree, which cleans
up all unreachable parse tree states. Such ERSs reflect parse po-
sitions within the erroneous part. At error recovery, we prefix the
scanner output by a token sequence starting with the garbage token
followed by the right amount of opening or closing braces to match
the nesting-level where the error occurred relative to the ERS. Af-
ter prefixing, the normal GLR algorithm continues. The prefixed
scanner output, from the parse error onwards, gets matched to an
error-recovery rule which skips the erroneous input so parsing con-
tinues normally.

Our approach, where error-handling grammar rules get activated
on demand, resembles the hybrid parsing strategy suggested, but
not implemented, in [Knapen et al. 1999]. Our method lies be-
tween ANTLR’s simple error recovery, i.e. consuming tokens until
a given one is met, and its more flexible parser exception handling,
i.e. consuming tokens until a state-based condition is met. Just as
ANTLR’s authors [23], we found the complexity not in the gram-
mar, but in efficiently saving and restoring the parsers intricate in-
ternal state in the error recovery. Our recovery method does not try

to guess the meaning of erroneous code by trying to fit it into correct
grammar rules, as e.g. [Burke and Fisher 1987], as this can easily
lead to misinterpretations. Our error-recovery rules match any to-
ken to the nearest semicolon or the outermost brace pair. Hence,
we can recover from topform, class-scope, and even function-scope
errors. Our error recovery added only 6 rules to the original ELSA
grammar. This optimally balances error recovery granularity, per-
formance, and simplicity. We could provide error recovery at finer
levels, e.g. expressions. Yet, this means keeping more information
in the ERS and substantially more complex recovery rules, hence
an overall slower parsing.

3.4 Output Filtering

All extracted data elements (AST, type, preprocessor) are assigned
a per-extraction-unit unique ID. This lets all IRE tools (parser,
filter, linker, query system, and visualizations) communicate via
lightweight sets of node-IDs, or selections. The generated data is
saved in compressed binary format, together with index maps map-
ping the element IDs to their binary file offsets. We also save sep-
arate index maps for the most important elements, i.e. topforms,
declarations, functions, and global variables. These maps allows
constant-time file retrieval of any extracted element by its ID, and
also fast iteration over all elements of indexed element-types. Both
mechanisms are vital in implementing fast queries (Sec. 3.6) and vi-
sualizations (Sec. 4). The saved data is detailed enough to exactly
reconstruct the input code from it.

Output size can be a problem, e.g. when the analyzed code in-

cludes large headers such as STL, Boost, or the Windows headers,
of which only a tiny fraction is typically used in the code. We pro-
vide output filters to modularly specify what to output and what not.
One filter mimics a compiler, i.e. eliminates all extracted elements
which are not referenced in the source code, e.g. unused decla-
rations or macros from the headers. Filtering unreferenced code
elements from included headers typically reduces the size of the
translation units, and hence their I/O and querying time, by more
than one order of magnitude (see Sec. 5.1). Another filter outputs
only elements originating from a given set-of-interest of the input
files, as follows. Note that an AST node can originate from one or
more files, e.g. when a syntax construct ends with a macro defined
in another file or #includeing code. The filter outputs an AST
node if at least one of its originating files is in the set-of-interest.
As an AST node needs full context to be useful, we actually output
the topform containing it and all referenced type-nodes too.

Filtering is done by two separate engines, one for preprocessor
data (Preprocessor filter), implemented in LIBCPPs callback func-
tions [Stallman and Weinberg 2006], and one for AST and type
data (AST filter), implemented using the visitor pattern API of
ELSA’s AST (Fig. 1). The filtered output is streamed to the output-
generator which creates binary files.

3.5 Project concept

ELSA does not have the notion of a project. It must be run on ev-
ery input file with correct command-line parameters, e.g. include
paths, compiler flags, and #defines. For code bases thousands
of files, this is not scalable. We created a project concept for
SOLIDFX that allows easy handling of industry-size code bases.
Sources are grouped in batches, based on path, file-type, or user
preferences. Batches can be enabled, disabled, and ordered for ex-
traction as desired. Specifying extraction order can save time, as
results can be analyzed before an entire project has been processed
(Sec. 4). This is important for large projects taking hours to process
(Sec. 5.1).

Besides input files, projects also specify a compiler profile and a
list of project profiles. Compiler profiles specify which compiler
dialect to emulate (e.g. g++, Microsoft Visual C++, or Borland
C++) and which standard headers to use. Supporting different di-
alects is essential for correct analysis. Visual C++s extensions, e.g.
throw(...) directive, finally clause and asm{} statement,
are added via extra grammar rules. The g++ extensions are already
supported by the original ELSA parser. Profiles provide an open
way to add C++ extensions to SOLIDFX, such as Qts signal and
slot extensions, if needed. Project profiles specify system and user
include paths, #defines, and forced includes. They are handy
when analyzing many code bases which use the same library or
third-party code. We also created a translator from makefiles and
XML-based Visual Studio projects to SOLIDFX projects, enabling
users to analyze complex projects with virtually no setup effort.

Different approaches for project handling exist, e.g. COLUMBUS
so-called compiler wrapping [Ferenc et al. 2004]. This overloads
the compiler and linker tools by the fact-extractor and extractor-
linker respectively, using the PATH environment variable, and
runs the original makefiles to do the extraction. Compiler wrap-
ping is an interesting technique that we plan to implement in the
near future.

We also built a so-called linker, similar to CANLINK in COLUM-
BUS. Our linker identifies the occurrences of the same topform in
different parsed (output) files and saves these in a per-project index
file, or linkmap, which can be next used by analysis tools. Unlike
a classical compiler linker, which only links functions and global
variables, we can handle any kind of topform, e.g. declarations.

3.6 Fact Querying and Metrics

The AST of a 100 KLOC code base can easily contain over one
million nodes. On such data, users need to ask both detailed, low-
level questions e.g. ”find all calls of a default constructor which
throws an exception called X”, and high-level questions, e.g. ”show
the systems call graph” or ”show all highly-complex functions”.

We provide an open query engine, designed as a C++ class li-
brary, that handles both types of questions. Queries read and write
selections. A query effectively implements the function sout =
{q(x, pi), ∀x ∈ sin} which finds those code elements x from a
given selection sin which satisfy a function q(x, pi), where pi are
specific query parameters. The query engine design satisfies two
goals: performance, i.e. execute complex queries on MLOC-sized
code bases (which may not fit in the computer memory) in a few
seconds; and flexibility, i.e. let users design complex queries in an
easy and non-intrusive way. We achieve both goals by the following
architecture (Fig. 4).

The function q(x, pi) is implemented by a number of specialized
query subclasses, as follows. For AST nodes x, V isitorQuery
visits the AST tree rooted at the input node x and searches for nodes
of a specific syntax-type T , e.g. function, optionally checking for
attributes, e.g. the functions name. For each of the 170 syntax types
T in our C++ GLR grammar, we generate a query class containing
children queries for T s non-terminal children and data attributes
for T s terminal children. For instance, the Function query has a
property name for the functions name, and two children queries
body and signature for the functions body and signature. Besides
queries for AST nodes, which search for syntax, we also created
TypeQueries which search for type-data, and LocationQueries
which search for code fragments having a particular file, line, or
column location in the code.

Queries can be composed in query-trees. Query composition se-
mantics is controlled by a separate customizable Accumulator
class (Fig. 4). When a child qc of a query q yields a hit, q calls
its Accumulators accumulate() method, which returns true
when the Accumulators condition has been met, else false. All
query nodes use by default an AND-accumulator, which returns
true when all queries in a query-tree are satisfied. We designed
Accumulator subclasses for different operators, e.g. AND, OR,
<, >, and similar. These let us easily implement complex queries
by combining simple ones. For example, to find all functions
whose name begins with ”Foo” and have at least two parame-
ters of type ”Bar”, we set the Function querys name attribute
to ”Foo*” using wildcard expressions, the name attributes of the
Type nodes of the functions Parameter children-queries to Bar,
and an AtLeastAccumulator with a default-value of 2 on the
functions Signature child-query. Overall, the query composition
can be modified transparently by different accumulators, without
having to change the query classes.

We store query-trees in XML, and provide a query editor, so users
can edit queries on-the-fly, without recompilation, and organize
queries in custom query libraries. We have so far designed over 50
queries that cover a number of static analyses, such as identifying
basic code smells e.g. case branches without break, class member
initializations differing from the declaration order, changing access
specification of a class member when overriden, base classes with
constructed data members and no virtual destructors; and extracting
class hierarchy, include, and call graphs.

Queries can be executed on both in-memory and on disk fact
databases. On-disk queries are very efficient and have a negligible
memory footprint, given the index maps that allow random access
to elements-by-id and iterating over same-type elements (Sec. 3.4).

Figure 4: Query system architecture, with main elements marked in bold

We also implemented a cache mechanism which loads and keeps
entire parsed translation units in memory on a most-recently-used
policy. This improves query speed even further at the expense of
more memory, roughly one megabyte per 5000 LOC. Another sim-
ple and effective speed-up uses early query termination when eval-
uating the query-tree accumulators. All in all, these mechanisms
allow us to query millions of ASG nodes in a few seconds.

Queries are related to code metrics. We implemented many object-
oriented code metrics and code smells, e.g. cyclomatic complex-
ity, number of accessor methods, and actually most other metrics
described in [Lanza and Marinescu 2006], simply by counting the
results of their corresponding queries. Metrics are saved as SQL
database tables, one table per selection, indexed by the selected el-
ements IDs and storing one metric per column, and used further in
visualizations (Sec. 4).

4 Visual Program Analysis

The fact extractor, linker, and query and metric engines are coupled
with the fact database in an Integrated Reverse-engineering Envi-
ronment (IRE). Together with these, the IRE provides a number of
text and graphical views. These enable users to set up an extraction
project, browse the fact database, and perform queries and com-
pute metrics. The IRE revolves around the selection data model
(Sec. 3.4): Each view displays one or more selections, and each
IRE operation reads and writes one more selections too, following
the dataflow model in Fig. 1.

4.1 Integrated Visualizations

Figure 5 shows several views of our IRE, as follows1. The project
view allows setting up an extraction project, just as a classical build
project in e.g. Visual C++. The fact database shows the fact files
created by the SOLIDFX parser. The selection view shows all se-
lections in the fact database. The extraction generates one selection
for every parsed file. More selections can be created by analysis

1For a video showing the IRE in use, see www.solidsource.nl/
video/SolidFX/SolidFX.html

operations and direct user interaction, as described further. Each
selection has several visual user-controllable attributes:

• visibility: Visible selections are shown in the data views
(code, metrics, diagrams) discussed below.

• color: A selection can be assigned a color. This is either a
single base color, or a color mapping which translates from
one of the selections computed metrics to a rainbow (blue-
to-red) colormap. Base colors identifying specific selected
elements in the data views, while colormaps show a metrics
variation over a range of selected code elements.

The code view shows the source code, rendered from the original
source files if available, else by printing the parsed AST. The first
method is preferred as it is slightly faster and uses less memory.
Users can point-and-click this code to select and apply queries or
metrics (from the query libraries) which match the clicked nodes
type. The query results, stored as selections (Sec. 3.6), are added
to the selection view, which acts like a clipboard. Code views also
show the code fragments in the visible selections highlighted with
their respective colors, atop the code text. One novel feature is
the ability to zoom out the code views, decreasing font size, until
each code line becomes one pixel line, similar to the well-known
SeeSoft tool [Eick et al. 1992]. This enables users to overview up to
ten thousand lines on a single screen. In combination with colored
selections, this view highlights specific code fragments, e.g. results
of a safety query or code smell, or the distribution of a complexity
metric, in their code context.

The metric view shows the SQL tables storing the metrics available
for the currently active selection in the selection view. Each row
shows one selection element, having as columns its textual source
code description and computed metrics. Instead of a simple Excel-
like table widget, we implemented this view using the table lens
technique [Telea 2006]. Just as the code view, the metric view can
be zoomed in and out. Completely zoomed out table cells are re-
placed by vertical colored and/or scaled bar graphs which show the
metrics values for each column. The table view can also be sorted
on any of the metric values, and rows having the same value for a
given metric can be grouped together. This allows powerful analy-
ses to be done in just a few clicks, e.g. locating the most complex

Figure 5: Integrated reverse-engineering environment views in SOLIDFX

code fragments (sort on complexity), or detecting correlations of
several code smells or metrics across different units (compare two
table columns).

The query library view shows all queries in the XML-based query
library. Each query has an own GUI allowing the setting of its
specific attributes (Sec. 3.6), e.g. the name of a variable to search
for in the ”Find variables” query, or the depth n in the ”Find all
classes of an inheritance depth exceeding n” query. The query input
is the currently active selection in the selection view, and the output
adds a new selection to the same view.

The UML view renders selections containing (template) class dec-
larations as an UML diagram. The graph underlying the diagram,
containing classes as nodes and inheritance and uses relations as
edges, is extracted by a query, and laid out using the GraphViz or
VCG libraries [AT & T 2007; Lemke and Sander 1994]. As uses
relations, we consider type and variable uses, including function
calls. Class, method, and member metrics computed on the input
selection of this view are visualized by colored icons, extending
the technique described in [Telea et al. 2008b]. Just as the code
and metric view, the UML view is zoomable, allowing to create
overviews of hundreds of classes.

The call graph view demonstrates the integration of third-party
tools in ou IRE, as detailed later in Sec. 4.3.

Scale is a major problem when understanding and reverse engi-
neering real-world systems. Within our IRE, we handle scale with
several mechanisms. Our SOLIDFX parser can efficiently parse
million-LOC C/C++ code bases (see Sec. 5.1); the query engine
searches our on-disk indexed fact database rapidly and with a small

memory footprint (Sec. 3.6); and the data views can be zoomed out
to show thousands of lines of code and metric values on a single
screen. All views are linked, so clicking on any element in a view
highlights it in all other views where it appears, thereby making
complex assessments easy. Also, all views and queries accept se-
lections as input and/or output, thereby making cascaded analyses
easy to do.

4.2 Example Applications

We now present three typical applications of our IRE. Given the
limited space, we confine ourselves to a brief overview only.

First, we examine the complexity of the wxWidgets code base,
a popular C++ GUI library having over 500 classes and 500
KLOC. After extraction, we query all function definitions and count
their lines-of-code (LOC), comment lines (CLOC), McCabes
cyclomatic complexity (CY CLO), and C-style cast expressions
(CAST). Next, we group the functions by file and sort the groups
on descending value of the CY CLO metric, using the metric view
widget. Figure 6 bottom-left shows a zoomed-out snapshot of this
widget focusing on two files A and B. Each pixel row shows the
metrics of one function. The long red bar at the top of file B indi-
cates the most complex function in the system (denoted f1). The
other columns show that f1 is also the best documented (highest
CLOC), largest (highest LOC), and, strikingly, is in the top two
as number of C-casts (CAST). Clearly, f1 is a highly complex and
important function in wxWidgets. Double-clicking its table row
opens a file view showing all the function definitions and our se-
lected f1 flashing (Fig. 6 top-left, see also the video). The functions
in the code view are colored to show two metrics simultaneously,

Figure 6: Assessing code complexity (left and bottomright) and portability (topright)

using a blue-to- red colormap: the CY CLO metric (fill color) and
the CAST metric (frame color). Here, f1 stands out as having
both the body and frame in red, i.e. being both complex and having
many casts2. Using the metric view, we also see that the function
having the most casts, f2 (located in fileA), is also highly complex
(highCY CLO), but is barely commented (lowCLOC). This may
point to a redocumentation need.

In the second example, we examine a legacy C commercial system
of several hundreds of files and approximately 500 KLOC. Its de-
signers suspected C-cast problems creating portability issues when
going from a 32-bit to a 64-bit platform. To check this, we selected
all functions and computed their number of C casts (CAST) and
#defines (DEF). The metric view helped us detect a strikingly
strong correlation of the two metrics (Fig. 6 top-right). Upon closer
examination in the code view, we found that virtually all casts occur
in #defines, which are further centralized in a few headers. This
is a lucky case, as the designers can remove the dangerous casts
easily and in one place just by editing those #defines.

In the third example, we examine the modularity of a C++ UML
editor [Telea et al. 2008b]. We first extract the class inheritance and
association (method calls) relationships using a query, and compute

2We recommend viewing this paper in full color

the LOC, CLOC, and CY CLO metrics for all methods. Next,
we use the UML view to display a class diagram of the system
(Fig. 6 bottom-right). The inheritance relations are drawn in opaque
black, whereas the associations are drawn with 50% transparency,
thereby de-cluttering the view. As a novel feature, we use a 3-
column metric view within each class to display its three metrics
(LOC, CY CLO, CLOC from left-to-right) for its methods. We
next sort all metric views on the CLOC metric. We immediately
see that the class in the system having the most methods, markedX
in Fig. 6 bottom-right, also has the largest methods (warm-colored
LOC bars) and most complex methods (longest CY CLO bars).
But this is also the class with the most comments (longest CLOC
bars). All these indicate that X is a so-called ”God class” [Lanza
and Marinescu 2006]. The system designer confirmed afterwards
our suspicion: this was indeed the most complex class in the system
containing the intricate editors rendering code.

In the last example, we are interested to locate the complexity hot-
spots of the same UML editor as discussed in the previous example.
We visualize the architecture as an UML diagram (see Fig. 7) ex-
tracted directly from the system’s C++ source code. The UML dia-
gram shows several subsystems of our editor: the data model (stor-
ing UML diagrams), the visualization core (containing core render-
ing code), the visualization plug-in (containing optional rendering

code), and the STL classes used for implementation purposes. The
individual subsystems are identified by hand and visualized using
smooth textured contours, as described in [Byelas and Telea 2006].

Next, we compute a number of software metrics (McCabe’s com-
plexity, lines-of-code, lines-of-comments) using SOLIDFXon the
methods of the examined code base. Finally, we visualize the code
metrics directly on the UML diagram, using the adapted table-lens
technique, as shown earlier in Fig. 6 bottom-right: For each class,
the rows of its table correspond to its methods, while the table
columns correspond to the metrics computed for that class. In the
case of the example show here, these are the lines-of-code (LOC)
and cyclomatic complexity (CY CLO), sorted on decreasing com-
plexity. The height of each class is proportional to its method count.
Just as for the metric view discussed before, coloring and sorting
the metrics on various criteria emphasizes potentially interesting
outliers and correlations.

Using this visualization, Figure 7 quickly lets us locate one class
(marked X in the figure) which has more methods, and is signifi-
cantly more complex, than the rest. This class would typically pose
important maintenance problems to a system. However, by looking
at the general UML diagram organization, we notice that classX is
not part of the important subsystems (core, data model) but part of
the optional plug-in code. And indeed, the developer of this system
confirmed us that the plug-in code is much less stable and clean,
thus less maintainable, than the rest.

4.3 External Tool Integration

SOLIDFX supports two types of tool integration. First, we provide
an open AST and query API (written in C++) to our proprietary
fact-database format, so developers can write plug-ins for our IRE.
This is how we integrated the table-lens view. Second, we provide
exporters the fact database to formats such as XML (for the AST),
XMI (for UML diagrams), SQL (for metrics), and Dot and VCG
(for general graphs). For example, the inset in Fig. 5 shows a C++
system call-graph, drawn by the hierarchical edge-bundling tool of
Holten [Holten 2006], connected via a data exporter, as opposed
to the tighter integration via our own API, done for the table-lens.
This view shows the strong communication between two halves of
the analyzed system (thick edge bundle in the middle). The edge
bundling visualization tool was integrated via a data exporter, and
not the finer-grained API, since we did not avail of this visualization
tool’s code, but only of the binary executable.

5 Evaluation

We now detail on the performance and usability of our presented
IRE.

5.1 Performance

We benchmarked SOLIDFX on several code bases of hundreds of
files and millions of LOC, and compared it with COLUMBUS, one
of the most prominent heavyweight C++ extractors in existence.
We ran both tools on a 2.8 GHz PC with 1024 MB RAM. For pure
C, we used Quake 3 Arena [Id Software 2006] and Blender [Blender
Org. 2006]. C code tends to use less (or smaller) standard headers
than C++, but more macros. For C++, we used VTK [Kitware, Inc.
2006], Coin3D [Systems in Motion 2006], wxWidgets [Smart et al.
2005] and SOLIDFX. VTK and Coin3D are complex 3D graphics
libraries written in portable C++, with few templates or exceptions.
wxWidgets uses precompiled headers and exceptions. SOLIDFX,
our own tool, massively uses STL, Boost, and exceptions. For
mixed C and C++, we used Mozilla [Mozilla Corp. 2006], which

has about 2.5 MLOC without headers and 205 MLOC with head-
ers3. The considered code bases are a mix of libraries and applica-
tions using varying coding patterns, all straining extractors in dif-
ferent ways.

Figure 8: Projects used for benchmarking

Figure 8 details the tested code bases. We count LOCs after header
inclusion, before macro expansion, and excluding comments. All
needed headers were available, except for Mozilla, which missed
some headers included by test applications. We extracted using a
Visual C++ 7 profile.

Figure 9 shows the performance of SOLIDFX compared to
COLUMBUS. For both tools, we filter out facts from the system
headers. We notice several facts. First, SOLIDFX is, on the av-
erage, several times faster than COLUMBUS, while outputting at
least as much data as the latter. However, SOLIDFXs output is
more than one order of magnitude larger than that of COLUM-
BUS. We believe this is due to the very fine-grained location data,
saved for every parsed token, our potentially less optimal stor-
age design, and possibly the fact that we do not use preccom-
piled headers (PCHs). The throughput of SOLIDFX (input LOC
parsed/second) highly varies over projects, due to different code
density, line length, and complexity. We count lines before macro
expansion, so code with many macros which expand to large frag-
ments, e.g. the ELSA parser within SOLIDFX, have a roughly three
times lower throughput than any other C++ project considered. Fil-
tering system headers from the output can reduce the amount of
code with as much as 50%, thereby roughly doubling the parsing
speed, as for SOLIDFX which heavily uses Boost, STL, and Stan-
dard C++ (Table 2). For an extensive performance analysis, see
further [Boerboom and Janssen 2006].

We stress the aim of our comparison was not to conclude that our
tool surpasses COLUMBUS in all respects, but to show that, with
several design decisions (Secs. 3.1-3.5), one can build a robust tool
able to analyze industry-scale, complex, C++ code in times compet-
itive with professional extractors, starting mainly from open-source
components.

One might argue that, from a visualization perspective, display-
ing the number of casts, defines, and (comment) lines-of-code of
a code base using some table lens and SeeSoft-like views are not
such challenging tasks. Two comments are important here. First, it
is precisely the simplicity and tight integration of such views with
the queries, that makes our solution highly usable and easy to learn.

3The raw performance of any parser should be evaluated against the code
size after preprocessing

visualization plug-in

 complex implementation class X

visualization core

STL classes

data model

LOC CYCLO most complex
method (CYCLO=40)

class X

Figure 7: Correlating metrics and structure to locate complexity hot-spots

Figure 9: Performance comparison of SOLIDFX and COLUMBUS

Second, we are not aware of a similar solution that offers compa-
rable functionality, although reverse-engineering and visualization
tools have a long history. We believe that the reason for this appar-
ent contradiction is that designing such a solution is far from trivial,
even if its ingredients (parser, view, queries) are known in principle.
The main purpose of this paper (and the above included application
examples) is to clarify as much as possible the challenges (and so-
lutions) of such a design, and show what can be achieved with it for
the end user.

5.2 User Experience

We have used our IRE for undersanding and reverse-engineering
open-source code (see Sec. 5.1) but also several MLOC-size com-
mercial embedded and database software systems. The eight users
involved ranged from undergraduate students to professional devel-
opers with over 10 years of industrial experience. All were experi-
enced in C and/or C++, and worked before with at least another C or
C++ fact extractor. For the same tasks, we previously used the same
parser and view tools, but not integrated as an environment. For the
parsing phase, the IRE was not much more effective - a simple text
makefile-like project was sufficient. However, for the exploration
phase, the IRE and its tight tool integration were massively more
productive than using the same tools standalone, connected by little
scripts and data files. Reverse-engineering and maintainability and
quality assessment scenarios are by nature iterative and exploratory,
so they map perfectly to repeated selection, query, and interactive
visualization operations.

Our users often asked if we could provide the functionality shown
here with Eclipse and/or other C++ extractors, besides ours. Inte-
grating our SOLIDFX extractor in Eclipse should be relatively sim-
ple. Yet, integrating all views shown here will be very complex,
as they use advanced OpenGL graphics features unsupported in
Eclipse. Using other C++ extractors is also problematic, as few pro-

vide the fine-grained, efficient, comprehensive fact-querying API
needed to give the support level described here. Actually, the only
environment we know which could provide similar functions is
Visual Studio 2005, which recently started opening its compilers
low-level APIs for tool builders. CDT, an open C/C++ develop-
ment toolkit for Eclipse, is also a promising effort which resembles
SOLIDFX, albeit in a much earlier consolidation stage [CDT Team
2007].

6 Conclusions

We have presented SOLIDFX, an integrated program understanding
and reverse-engineering environment (IRE) for C and C++ built by
combining a tolerant heavyweight parser, an open query API, and
several visualization tools in a coordinated framework. Our IRE
promotes the same way of working in reverse engineering as in clas-
sical forward-engineering IDEs, thereby making reverse engineer-
ing activities fast and easy to learn and perform by end users. We
are currently working on several extensions for SOLIDFX. First,
we envisage merging the so far distinct UML and code views in
a single, novel way capable of showing both the detailed source
code and its various types relations (calls, inheritance, use, defini-
tion, etc). Second, we work on providing a simple and intuitive
visual way for constructing complex queries for less specialized
users, thereby making our environment more accessible.

References

AT & T. 2007. GraphViz. www.graphviz.org.

BAXTER, I., PIDGEON, C., AND MEHLICH, M. 2004. DMS: Pro-
gram transformations for practical scalable software evolution.
In Proc. ICSE, 625–634.

BISCHOFBERGER, W. 1992. Sniff+: A pragmatic approach to a
C++ programming environment. In Proc. USENIX C++ Confer-
ence, 67–81.

BLENDER ORG., 2006. Blender 2.37a. www.blender3d.org.

BOERBOOM, F., AND JANSSEN, A. 2006. Fact extraction, query-
ing and visualization of large C++ code bases. MSc thesis, Fac-
ulty of Math. and Computer Science, Eindhoven Univ. of Tech-
nology.

BURKE, M. G., AND FISHER, G. A. 1987. A practical method for
LR and LL syntactic error diagnosis and recovery. ACM Trans.
Prog. Lang. Sys. 9, 2, 164–167.

BYELAS, H., AND TELEA, A. 2006. Visualization of areas of
interest in software architecture diagrams. In Proc. SoftVis, ACM
Press, 20–28.

CDT TEAM. 2007. C/C++ development toolkit. www.eclipse.
org/cdt.

COLLARD, M. L., KAGDI, H. H., AND MALETIC, J. I. 2003.
An XML-based lightweight C++ fact extractor. In Proc. IWPC,
IEEE Press, 134–143.

EICK, S., STEFFEN, J., AND SUMNER, E. 1992. Seesoft - a tool
for visualizing line oriented software statistics. IEEE Trans. Soft.
Eng. 18, 11, 957–968.

FERENC, R., SIKET, I., , AND GYIMÓTHY, T. 2004. Extracting
facts from open source software. In Proc. ICSM.

HOLTEN, D. 2006. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. In Proc. InfoVis, 741–
748.

ID SOFTWARE, 2006. Quake 3 arena 1.31b. ftp.idsoftware.
com.

KARLSSON, B. 2005. Beyond the C++ Standard Library - An
Introduction to Boost. Addison-Wesley Professional. see also
www.boost.org.

KITWARE, INC., 2006. The visualization toolkit 4.2. www.
kitware.com.

KNAPEN, G., LAGUË, B., DAGENAIS, M., AND MERLO, E.
1999. Parsing C++ despite missing declarations. In Proc. IWPC,
114–122.

LANZA, M., AND MARINESCU, R. 2006. Object-OrientedMetrics
in Practice - Using Software Metrics to Characterize, Evaluate,
and Improve the Design of Object-Oriented Systems. Springer.

LANZA, M. 2004. CodeCrawler - polymetric views in action. In
Proc. ASE, 394–395.

LEMKE, I., AND SANDER, G., 1994. VCG: visualization of com-
piler graphs. Tech. Report, Univ. des Saarlandes, Saarbrücken,
Germany.

LIN, Y., HOLT, R. C., AND MALTON, A. J. 2003. Completeness
of a fact extractor. In Proc. WCRE, 196–204.

LOMMERSE, G., NOSSIN, F., VOINEA, L., AND TELEA, A. 2005.
The visual code navigator: An interactive toolset for source code
investigation. In Proc. InfoVis, 24–31.

MCPEAK, S. Elkhound: A fast, practical glr parser generator.
Computer Science Division, Univ. of California, Berkeley. Tech.
report UCB/CSD-2-1214, Dec. 2002.

MCPEAK, S., 2006. The Elsa C++ parser. www.cs.berkeley.
edu/\˜smcpeak/elkhound/sources/elsa.

MOZILLA CORP., 2006. Mozilla firefox 1.5. ftp.mozilla.
org.

PARR, T., AND QUONG, R. 1995. ANTLR: A predicated-LL(k)
parser generator. Software - Practice and Experience 25, 7, 789–
810.

SMART, J., HOCK, K., AND CSOMOR, S. 2005. Cross-Platform
GUI Programming with wxWidgets. Prentice Hall.

STALLMAN, R., AND WEINBERG, Z., 2006. The C preprocessor
for gcc 4.2.

STOREY, M. A., WONG, K., AND MÜLLER, H. A. 2000. How
do program understanding tools affect how programmers under-
stand programs? Science of Computer Programming 36, 2,
183207.

SYSTEMS IN MOTION, 2006. Coin3d 2.4.4. www.coin3d.org.

TELEA, A., BYELAS, H., AND VOINEA, L. 2008. A framework
for reverse engineering large C++ code bases. In Proc. SQM’08,
Springer ENTCS. to appear.

TELEA, A., TERMEER, M., LANGE, C., AND BYELAS, H. 2008.
AreaView: An editor combining uml diagrams and metrics. In
www.win.tue.nl/˜alext/ARCHIVIEW .

TELEA, A. 2006. Combining extended table lens and treemap
techniques for visualizing tabular data. In Proc. EuroVis, 5158.

VAN DEN BRAND, M., KLINT, P., AND VERHOEF, C. 1997.
Reengineering needs generic programming language technol-
ogy. ACM SIGPLAN Notices 32, 2, 54–61.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

