
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Surface and Curve Skeletonization of Large 3D
Models on the GPU

Andrei C. Jalba(a), Jacek Kustra(b), and Alexandru C. Telea(c)

Abstract— We present a GPU-based framework for extracting
surface and curve skeletons of 3D shapes represented as large
polygonal meshes. We use an efficient parallel search strategy
to compute point-cloud skeletons and their distance and feature
transforms with user-defined precision. We regularize skeletons
by a new GPU-based geodesic tracing technique which is orders
of magnitude faster and more accurate than comparable tech-
niques. We reconstruct the input surface from skeleton clouds
using a fast and accurate image-based method. We also show
how to reconstruct the skeletal manifold structure as a polygon
mesh and the curve skeleton as a polyline. Compared to recent
skeletonization methods, our approach offers two orders of
magnitude speed-up, high precision, and low memory footprints.
We demonstrate our framework on several complex 3D models.

Index Terms— Medial axes, Geodesics, Skeleton regularization.

I. INTRODUCTION

Skeletons, or medial axes, are shape descriptors used in
virtual navigation, shape matching, shape reconstruction, and
shape processing [62]. 3D shapes admit two types of skeletons.
Surface skeletons are 2D manifolds which contain the loci
of maximally-inscribed balls in a shape [50], [62]. Curve
skeletons are 1D curves which are locally centered in the
shape [16]. Surface-skeleton points, together with their dis-
tance to the shape and closest-shape points, define the medial
surface transform (MST) which is used for animation, smooth-
ing, and matching [4], [6], [17].

Computing surface skeletons of complex 3D objects rep-
resented by polygonal meshes is still a difficult problem.
Challenges include: (i) finding accurate skeletons; (ii) remov-
ing spurious skeleton branches (i.e., regularizing skeletons);
(iii) producing skeleton-mesh models for use in subsequent
algorithms; and (iv) efficient computation with respect to speed
and memory.

In this paper, we present a framework for computing surface
and curve skeletons which fulfills the above requirements, with
the following contributions:
• a refinement of the skeleton extraction method in [40]

which exploits CPU and GPU parallelism for increased
performance;

• a general-purpose GPU geodesic tracing method which
is two magnitude orders faster, and more accurate, than
similar techniques. We use this method to efficiently
apply global regularization [55] to large skeletons;

The authors are with: (a) Institute for Mathematics and Computing Science,
Eindhoven University of Technology, The Netherlands; (b) Philips Research,
Eindhoven, The Netherlands; (c) Johann Bernoulli Institute for Mathematics
and Computer Science, University of Groningen, The Netherlands. E-mail:
{a.c.jalba@tue.nl, jacek.kustra@gmail.com, a.c.telea@rug.nl}.

• an extension of the above regularization method with a
new detector to compute robust curve skeletons;

• a new image-space method to reconstruct shapes directly
from the (regularized) MST in real time;

• accurate extraction of skeleton manifolds from MST
clouds.

Section II reviews related work. We next present our skele-
ton cloud extraction (Sec. III), image-based reconstruction
from skeleton clouds (Sec. IV), geodesic tracing for regular-
ization (Sec. V), curve skeleton extraction (Sec. VIII), and
skeleton-mesh reconstruction from skeleton clouds (Sec. VI).
Section VII compares our work with a recent surface skeleton
extractor. Section IX discusses our results. Section X con-
cludes the paper.

II. RELATED WORK

Given a shape Ω ⊂ R3 with boundary ∂Ω, we first define
its distance transform DT∂Ω : R3→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (1)

The skeleton, or medial axis, of Ω is next defined as

S(Ω) = {x ∈Ω |∃ f1, f2 ∈ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}, (2)

where f1 and f2 are the contact points with ∂Ω of the
maximally inscribed ball in Ω centered at x [28], [55]. The
contact points f1 and f2 are also called feature transform (FT)
points [65]. The vectors f− x determined by skeleton points
and their corresponding feature points are also called spoke
vectors [63]. S(Ω) is a set of manifolds with boundaries which
meet along a set of Y-intersection curves [13], [18], [37]. S(Ω)
can be computed by various methods, as follows.

Voxel-based methods include thinning, distance-field, and
general-field methods. Thinning removes ∂Ω voxels (or pix-
els in 2D) while preserving connectivity [7], [48]. Voxel
removal in distance-to-boundary order enforces centered-
ness [53]. Distance-field methods find S(Ω) along singularities
of DT∂Ω [27], [31], [35], [38], [56], [60], [71], [74] and can
be efficiently done on GPUs [11], [65], [67], [72]. General-
field methods use fields smoother (with fewer singularities)
than distance transforms [1], [4], [16], [30]. Such methods
are more robust for noisy shapes. Foskey et al. compute
the θ -SMA, an approximate simplified medial axis, using
the angle between feature vectors [24]. The θ -SMA can get
disconnected along the so-called ligature branches. The θ -
HMA refines the θ -SMA by computing medial axes which
are homotopy-equivalent to the input surface [67].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

input shape skeleton cloud regularized skeleton reconstructed

skeleton mesh

extraction regularization skeleton

reconstruction

reconstructed surface

surface

reconstruction
surface

reconstruction

A B

C C

curve skeleton

curve skeleton

extraction

D

E

simpli!cation

level

Fig. 1. Our pipeline: skeleton cloud extraction (A), regularization (B), surface reconstruction (C), curve-skeleton extraction (D), and skeleton-mesh
reconstruction (E). All steps except E (CPU-only) are implemented on both the CPU and GPU.

Mesh-based methods often use Voronoi diagrams to com-
pute polygonal skeletons [21]. Amenta et al. compute the
Power Crust, an approximation of a surface and its medial
axis by a subset of Voronoi points [3]. Other methods use
edge collapses [39], starting from a mesh segmentation [33], or
sphere sweeping [44]. Mesh-based methods compute precise
3D skeletons, can handle non-uniformly sampled surfaces, and
use much less memory – typically O(n2) as compared to O(n3)
needed for a n3 voxel volume. However, such methods are
quite complex to implement, can be numerically unstable, and
are harder to parallelize [66].

Clean skeletons are extracted from noisy shapes by thresh-
olding importance measures to prune points caused by small
details [58]. We distinguish between local and global mea-
sures [43], [55]. Local measures cannot separate locally-
identical, yet globally-different, contexts (see e.g. [55], Fig. 1).
Thresholding local measures can disconnect skeletons. Recon-
nection needs extra work [41], [50], [60], [67], and makes
pruning less intuitive [58]. Local measures include the an-
gle between the feature points and distance-to-boundary [3],
[24], divergence-based [9], [60] and first-order moments [56].
Stolpner et al. find skeleton voxels where the gradient of the
shape’s distance transform is multi-valued [63], [64]. Precision
and speed are increased by a voxel-and-point-cloud approach
which subdivides voxels close to the skeleton. Leymarie and
Kimia topologically simplify point-cloud skeletons to capture
Y intersection curves and skeleton sheet boundaries in medial
scaffolds [37]. Good surveys of skeletonization theory are
given in [62], [64].

Global measures monotonically increase from the skeleton
boundary inwards. Thresholding them yields connected skele-
tons. Miklos et al. approximate shapes by a union of balls
(UoB) and use UoB medial properties [29] to simplify skele-
tons [43]. Dey and Sun present the medial geodesic function
(MGF) which is equal to the shortest-geodesic length between
feature points [20], [52]. Related work on curve skeletons is
given in Sec. VIII. Reniers et al. [55] extend the MGF for
surface and curve skeletons using geodesic lengths and surface
areas between geodesics, respectively, inspired by the so-called
2D collapse metric [17], [47], [71]. Besides monotonicity,
the MGF and its 2D collapse metric counterpart have an

intuitive geometric meaning: They assign to a skeleton point
the amount of shape boundary that corresponds, or ‘collapses
to’, the respective skeleton point. Hence, skeleton points with
small metric values correspond to small-scale shape details,
and skeleton points with large metric values correspond to
large-scale shape details. This allows an easy simplification
of the skeleton: Thresholding by a value τ eliminates all
skeleton points which encode less than τ boundary length
units. However, for large 3D meshes, computing the geodesics
required to evaluate the MGF is an expensive process.

Recently, Ma et al. proposed arguably the fastest method
to extract surface skeletons from oriented point clouds [40].
However, this method produces a ‘raw’ surface-skeleton point
cloud which, as the authors note too, are of limited use if one
requires a compact skeleton surface or a curve skeleton. We
extend their proposal in several directions (see Fig. 1): (A)
faster skeleton-cloud extraction, (B) regularization, (C) object
reconstruction, (D) curve-skeleton extraction, and (E) surface-
skeleton mesh reconstruction. These steps are described next.

III. SURFACE SKELETON EXTRACTION

Given an input shape ∂Ω, we extract a skeleton point-cloud
from an oriented point-cloud model C = {(pi,ni)} containing
points pi and their surface normals ni, where the point
coordinates are normalized to [−1,1]3 for simplicity. Our
method is based on the ball shrinking algorithm of Ma et
al. [40] which works as follows. For each point p ∈ C, a
(large) ball B(s,r0)|s = −r0n + p, tangent at p, is created.
By definition, f1 ≡ p is the first feature point of s. The
algorithm shrinks B by searching the closest point f2 to s and
iteratively moving s so that B passes through f1 and f2 until
s converges. At that moment, B is maximally inscribed, and
its center s yields a new skeleton point with inscribed radius
rins = ‖s− f1‖ = ‖s− f2‖; for full details see [40]. We next
propose two performance improvements for this method.

A. CPU Parallelization

Ma et al. propose an efficient sequential CPU implemen-
tation. Key to their method is a heuristic that sets the initial
radius r0 for a ball B(s,r0) being shrunk to the radius of a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE II
PERFORMANCE OF THE METHOD BY MA et al. [40].

Model Points CPU timings GPU timings
(surface) (seconds) (seconds)

Armadillo 106289 4.20 0.39
Dragon 437645 20.23 2.64
Horse 48485 1.62 0.29

skeleton point already found for a surface point p̃ close to p.
This greatly reduces the number of shrinking steps (see [40],
Sec. 3). However, this requires sequential processing of the
cloud C in a global distance-based ordering, computed by in-
order visiting a kd tree containing C.

We parallelize this idea as follows. We use a single global
value r0, initially set to 2. Next, we divide C into N equal-
sized chunks (without any point ordering) and process one
chunk per thread. When a thread finds a new value rins, we
set r0 to (r0+rins)/2, i.e. adapt r0 in a moving-average fashion.
Additionally, we stop shrinking the ball when two consecutive
center positions differ by a value less than an user-specified
value τ . Finally, we use an approximate nearest-neighbor (NN)
scheme based on kd trees [45] to search for the closest point
f2 to s with precision ε .

Table I shows our skeleton extraction timings t and average
number k of kd-tree searches per point for different τ and ε

values, on several models, on a 4-core 2.4 GHz CPU with N =
8 threads. For the first three models, timings by the method of
Ma et al. are also given in Table II. Smaller τ values need more
iterations; larger τ values yield less accurate skeletons quicker.
We see that k is quite stable for all models. For a skeleton
centeredness precision τ = 10−3, our method is roughly four
times faster than the sequential method of Ma et al. which
use also a 2.4 GHz CPU. Given our 4-core CPU, this implies
a very efficient parallelization. Relaxing ε slightly accelerates
this search (Tab. I, column ε = 10−3) with little accuracy loss.

Ball-shrinking yields a surface-skeleton cloud S =
{(s, f1, f2)i} with two feature points f1, f2 per skeleton point
s (see Fig. 6). The local density of S is proportional with the
input cloud density times the shape curvature [62]. Thus, we
get more skeleton points where the surface changes rapidly
and/or is finely sampled, see, e.g., the cow’s horns, ears, and
pig’s snout in Fig. 6. Controlling this density is easy: For
more points, we refined the initial mesh, using the Yams
package [25]. For fewer points, we uniformly subsample S by
removing all points closer to each skeleton point than some
distance δ . Figure 2 shows the skeleton of a cow model for
four different δ values. Conceptually, our method is similar
to Leymarie et al. [37]: We regard each input point f1 as a
medial axis ’generator’, try to pair it with another point f2,
and test maximality of the resulting balls. However, while [37]
explicitly compute pairs (f1, f2) and check for ball maximality
using search strategies based on visibility constraints, we
implicitly compute the pairs while shrinking balls.

B. GPU parallelization

For an efficient transfer of ball shrinking to GPUs, we need
(a) an efficient GPU nearest-neighbor (NN) search and (b) an

effective load balancing between GPU threads.
To these ends, Ma et al. proposed a mixed CPU-GPU

approach [40]. For NN search, they use the GPU algorithm
in [76]. For load balancing, ball-shrinking iterations are done
in parallel on the GPU. After each GPU iteration, threads ask
the CPU whether each ball needs more iterations. If so, the
CPU invokes the GPU kernel for the next iteration only for the
not-yet-converged balls. As Ma et al. mention, this achieves
good performance, but cannot use the initial radius heuristic,
as that heuristic was designed for a sequential algorithm.

Our GPU proposal directly parallelizes the CPU algorithm
with one thread per skeleton point. Since our initial radius
heuristic works in a parallel setting, we transfer it directly to
the GPU.

In contrast to Ma et al., we use a GPU-only load bal-
ancing scheme. This poses some subtle constraints on the
choice of the NN technique used. For this, we investigated
several options. Garcia et al. showed a GPU brute-force NN
algorithm [26] which turned to be 20 to 30 times slower
than our CPU KD-tree search [45]. Cayton’s NN algorithm
covers the input set of N points by a randomly-distributed set
of m� N overlapping balls which are searched in parallel
on the GPU [12]. However, this method cannot do several
NN searches in parallel which we need to parallelize ball
extraction. Left-balanced GPU KD-trees also perform poorly.
Such trees are rather deep (maximum depth D = logN for N
input points). Also, the unfavorable distribution of query points
(potential skeleton points having at least two shape points at
equal distances) causes many tree node visits during a NN
search, i.e. many random, uncached, memory accesses which
seriously degrade GPU performance.

For our context, a KD-tree with alternating splitting dimen-
sions and median-based pivoting proved best. We limit the tree
depth to a small value (10 to 12). Leaf nodes store more than
one point and are linearly searched. Linear search performs
very well on the GPU [26] (more cache hits and coalesced
memory accesses), yielding a better overall NN speed.

Table I shows the speed of our GPU method on an Nvidia
GTX 280. Since the GPU NN search is exact, these timings
should be compared with CPU timings for ε = 0. Thus, our
GPU method is 4 to 10 times faster than its CPU variant.
Compared to the GPU method of Ma et al. (see Table II), we
are about 3 times faster, as we use an initial radius heuristic
which their method does not support.

IV. IMAGE-BASED SURFACE RECONSTRUCTION

We now present an efficient and simple algorithm for
reconstruction of a model from its skeleton cloud (Fig. 3). For
each skeleton point si with radius ri, we build a viewplane-
aligned quad Q, or billboard, of world-space edge size 2. We
texture Q scaled to (ri,ri,1) with a D×D texture whose texels
T (u,v) encode both depth and shading. If fixed-point texturing
is available, T uses a 32-bit RGBA format: The first 3 bytes
of T (u,v) encode the height at (u/D,v/D) of a half-ball of
radius 1 centered in the texture (see insets in Fig. 3). The
fourth texture byte (A) encodes the ball color computed, e.g.,
with Phong shading. If floating-point textures are available,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

TABLE I
PERFORMANCE OF OUR SKELETON EXTRACTION METHOD ON BOTH CPU AND GPU (SEE SEC. III).

Model Points Points CPU timings (t seconds, k iterations) GPU timings
(surface) (skeleton) τ = 10−4,ε = 0 τ = 10−3,ε = 0 τ = ε = 10−3 τ = 10−3,ε = 0

k t k t t t
Armadillo 106289 106289 5 1.29 3 0.87 0.87 0.21
Dragon 437645 436439 5 6.53 2 5.46 5.44 1.21
Horse 48485 48485 5 0.77 3 0.58 0.58 0.09
Cow 185882 185703 5 3.63 3 2.82 2.77 0.64
Bird 46866 46862 5 0.44 3 0.35 0.34 0.03
Horse 2 193934 193887 5 7.51 3 5.77 5.77 1.32
Asiandragon 231574 230964 4 2.83 2 2.19 2.19 0.22
Asiandragon 2 954027 951010 5 17.12 3 13.10 11.82 1.57
Hand 197245 196920 4 3.32 2 2.50 2.50 0.51
Elephant 50485 50422 5 0.62 3 0.48 0.48 0.05
Buddha 543652 541762 4 6.76 3 5.47 5.37 1.42
Mouse 403652 402301 6 5.61 3 3.07 3.02 0.34
Pig 225282 224539 5 7.48 3 4.21 4.17 1.47
Armadillo 2 172974 172955 6 3.29 3 1.86 1.86 0.47
Rabbit 124998 123811 6 1.31 3 0.85 0.83 0.06

32029 points δ = 0.0169418 points δ = 0.005185882 points δ = 0 160426 points δ = 0.0001

Fig. 2. Uniform skeleton sampling for different δ values (see Sec. III). Colors show angles of feature vectors (θ -SMA detector).

we encode the height and shading in the L and A channels of
a luminance-alpha texture. This leaves two texture channels
for future potential use. The texture size D is set to 512. This
yields highly accurate shading and height encoding even for
very large balls. For maximal rendering speed, we store T on
log2(D) precomputed mip-map levels.

view plane

viewpoint

resulting pro!le

splat for s
i

splat for s
j

s
i

s
j

r
i

r
j

billboard for s
i

billboard for s
j

z axis

depth

texture

(RGB or L)

shading

texture

(A)

D texels

Fig. 3. Skeleton splatting for surface reconstruction.

We render the quads by a simple ARB fragment program
shader (7 operations) which gets the zNDC normalized device
coordinate (NDC) of the current skeleton point si via the
current color. The shader then computes the final NDC depth
zNDC +h at the current pixel from the incoming zNDC and ball
height h (from the current texel). If z+h passes the depth test,
the current texel’s color is copied to the fragment output. The
overall effect is as if 3D balls centered at the skeleton points,

and scaled to the respective skeleton-point radii, are rendered
with hidden surface removal.

Our method renders shaded models directly from skeleton
clouds of 500K points at 15 frames/second on a GT 330M
card. If lighting changes, we only recompute one shading
texture. The x,y splat sizes are pixel-accurate (by OpenGL
scaling). Depth values are either 24-bit fixed-point of floating
point, hence one can use whichever of the two is readily
available on one’s platform. Overall, our splatting-based re-
construction method delivers images nearly identical to the
original mesh (see Fig. 4).

Progressive rendering, like the Qsplat method [57], is easily
done by drawing billboards sorted by a skeleton importance
metric, e.g. ball radius or our geodesic metric in Sec. V. If we
use the geodesic metric, this always produces compact shapes.
This result cannot be guaranteed by pure surface splatting like
Qsplat. Alternatively, using a simplified skeleton as input for
the reconstruction allows us to obtain simplified renderings of
the input shape. For example, if we use a surface skeleton
simplified by the geodesic-based importance metric presented
next in Sec. V, we obtain a shape where edges have been
smoothed out; if we use the curve skeleton presented next
in Sec. VIII, we obtain a tubular approximation of the input
shape. Other shape simplification effects can be achieved by
choosing suitable skeleton simplification metrics.

Thickness estimation: Our splatting can also be used to
estimate the so-called local shape thickness, also called wall
thickness, a known task in 3D metrology [5], [22], [36], [62],
[70]. Given a shape Ω⊂ R3, the thickness at a point p ∈ ∂Ω

is defined as the distance from p to the closest point on the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

surface splats surface splats surface splats

Fig. 4. Comparison of surface rendering (top row) and skeleton image-based surface reconstruction (middle row). Insets show details.

skeleton S(Ω) to p. We can efficiently evaluate (and visualize)
the thickness at all points on ∂Ω by simply mapping the
skeleton points’ radii ri to their splat colors via a gray-to-
red (thin-to-thick) colormap (Fig. 5). Reconstructing the shape
by ball splatting will now show thin surface areas as red and
thick areas as white (see Fig. 5). Compared to typical curvature
estimation used for the same task, we need no differentiation
and work directly on a point cloud. Our method is fast: The
models in Fig. 5 take under 0.2 seconds with our method, and
several seconds on identical hardware with a recent voxel-
based thickness estimator [70].

thinthick

Fig. 5. Thickness estimation using image-based skeleton splatting.

Union of balls (UoB): Our image-based skeleton splatting
delivers the same result as an UoB model, e.g.. [43], [64].
Our splatting could be used as drop-in shape reconstruction
for any method that delivers an MST point cloud. As we shall
see in Sec. VII, our method is roughly one to two orders of
magnitude faster than [43] and over two orders of magnitude
faster than [64].

V. SKELETON REGULARIZATION

Skeleton regularization assigns an importance value ρ : S→
R+ to skeleton points (Sec. II). If ρ monotonically increases
from the skeleton boundary inwards, thresholding ρ yields a
connected skeleton which captures shape details at a given
scale. Such metrics are proposed in [20], [52], [55]: For a
skeleton point s with feature points f1, f2, ρ(s) is the length
of the shortest path γ on ∂Ω between f1 and f2. Finding such
paths can be done using Dijkstra’s algorithm [55], computing
the distance map DTf1 of f1 by the Fast Marching Method
(FMM) and then tracing γ in −∇DTf1 from f2 [49], or hybrid
search techniques [68], [73]. However, such methods are very
slow, as we shall see next.

A. Shortest and straightest geodesics

We compute the skeleton importance ρ using discrete
straightest geodesics on polyhedral surfaces [32], [51] which
generalize straight lines to arbitrary manifolds. Given a point
p ∈ ∂Ω and a tangent vector v ∈ Tp at p, the (discrete)
straightest geodesic γS is the unique solution of the (discrete)
initial-value problem γS(0) = p, γ ′S(0) = v [51]. We extend this
to define the (discrete) shortest, straightest geodesic (SSG) γse
between two points s,e ∈ ∂Ω, over tangent vectors vi ∈ Ts at
s, as the solution of the discrete boundary-value problem

γS,i(0) = s, γ
′
S,i(0) = vi

γS,i(‖γS,i‖) = e
γse = argmin

i
‖γS,i‖, (3)

where ‖γS,i‖ is the length of the discrete geodesic γS,i. Thus,
γse is the shortest among all straightest geodesics between s
and e. Solving Eqns. 3 is not easy. Speed-wise, the cost is

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

proportional to the number of tangent directions vi considered.
Also, current algorithms for computing straightest geodesics
[32], [51] estimate γ ′ by evaluating the (discrete) Gaussian
curvature at the mesh vertices visited while tracing. The
tangent vectors to γ may change directions especially when
this curvature is not exactly 2π , so geodesics may not reach
their endpoints e, which is critical for our goal. All these
concerns are addressed next.

B. Efficient SSG computation

For a skeleton point s, we trace M straightest geodesics γS,i,
1≤ i≤M in parallel on the CPU or GPU between the feature
points f1 and f2 of s on ∂Ω, with starting angles αi = (2πi)/M
uniformly spread around the vector f = f1− f2 at f1. For each
direction vi, we intersect the edges of the mesh faces visited
while tracing by the plane with normal ni = f× vi, and set
ρ(s) = mini ‖γS,i‖ i.e. the length of the SSG between f1, f2.

We speed up tracing by early termination: we stop tracing
a path if its length exceeds the current ρ(s). For a closed
mesh, we consider both paths from f1 to f2 given by the mesh-
plane intersection (closed) curve. When one of these paths is
computed, we stop tracing the other path if its current length
exceeds the first path’s length. For a computed γse, we also
store its tangent vectors ts and te in f1 and f2 respectively, and
use ts as starting direction when tracing SSGs for the next
skeleton point. Since neighbor skeleton points usually have
similar geodesics [20], [54], early termination occurs sooner.
This further speeds up tracing.

As shown in Fig. 6, ρ monotonically increases from
the skeleton boundary (blue) inwards (red). Thresholding
ρ removes skeleton points given by small shape details
(Fig. 6 e,f,h,i). Such details can be surface noise (Fig. 6 d),
but also appear in locally-tubular shapes (Fig. 6 f). In contrast,
thresholding non-monotonic metrics such as θ -SMA (Fig. 2)
would disconnect skeletons.

C. Performance and accuracy of SSG tracing

Table III shows the speed of our SSG method on a GTX 280
card vs a 2.8 GHz 4-core PC for M = 20 directions, one thread
per SSG, and the speed-up due to the heuristics in Sec. V-B.

TABLE III
TIMINGS FOR COMPUTING THE GEODESIC IMPORTANCE.

Model Timing CPU Timing GPU Optimization
(seconds) (seconds) speed-up (%)

Cow 61.7 18.2 67.4
Bird 10.3 3.2 33.4
Horse 78.9 13.6 57.4
Asiandragon 61.5 13.8 60.0
Asiandragon 2 541.2 115.1 57.8
Hand 62.2 3.1 48.1
Elephant 7.1 3.3 57.1
Buddha 327.6 43.4 62.3
Mouse 210.3 52.1 69.0
Dragon 198.3 30.4 57.2
Pig 96.9 24.0 64.5
Armadillo 63.4 11.2 59.3
Rabbit 76.4 10.8 49.2

Speed: We compared our GPU SSG to FMM [49], the
Dijkstra algorithm with A∗ heuristics [55], the Surazhky-
approximate (SA) and Surazhky-exact (SE) geodesic trac-
ing [68], and CPU SSG (Sec. V-B). Of these, only SA and
Dijkstra were used to regularize skeletons [20], [55]. GPU
SSG is 3 to 10 times faster than CPU SSG (higher speed-
ups for larger models, Tab. III); 10 times faster than Dijkstra;
100 times faster than FMM; 500 times faster than SA; and
thousands of times faster than SE. This is not surprising: For
a n-vertex mesh, Dijkstra is O(n2 logn); FMM computes one
distance field per vertex (O(n logn)) and traces a geodesic in
this field (O(

√
n), proportional to the shape diameter), i.e. is

O(n2 logn+n3/2). SA has the same complexity as FMM. SSG
traces all geodesics for a point in parallel. As we have more
GPU cores than M directions, GPU SSG is O(n3/2).

Accuracy: All above methods, except SE, compute ap-
proximate geodesics. The starting angle sampling M (Sec. V-
B) means that SSG may miss very narrow surface dents
falling between two consecutive paths γS,i and γS,i+1, i.e. may
overestimate SSG length. Overestimation is not an issue for
skeleton regularization: Long geodesics yield anyway high-
importance points which are to be kept (red points, Fig. 6).
Short geodesics, caused by surface noise which we want to
eliminate by importance thresholding (blue points, Fig. 6),
allow only much narrower concavities to fall between them,
and thus are less affected by length overestimation.

TABLE IV
ACCURACY AND TIMING COMPARISON FOR GEODESIC TRACING METHODS

(FMM, SE, AND SSG FOR DIFFERENT NUMBERS OF DIRECTIONS M).

Method Relative error (%) Timing (seconds)
Bird Pig Bird Pig

Surazhsky-exact 0 0 11209 426.2
FMM 1.87 0.85 339.6 20.9
SSG (M = 5) 1.90 0.36 0.28 0.05
SSG (M = 10) 0.36 0.07 0.56 0.08
SSG (M = 20) 0.14 0.02 1.04 0.14
SSG (M = 30) 0.08 0.009 1.54 0.22
SSG (M = 50) 0.04 8 ·10−4 2.43 0.32
SSG (M = 100) 0.02 2 ·10−4 4.83 0.62
SSG (M = 500) 0.01 4 ·10−5 23.24 2.95

Figure 7 and Table IV show the median relative error of
SSG geodesic-lengths (for different M values), FMM, and SE.
We used downsampled versions of bird and pig (11718 and
3522 points, respectively), since SE is extremely slow. SSG
is more accurate than FMM for M > 10, both for median and
maximum errors. For M = 100, SSG practically gets exact
geodesics at a tiny cost vs SE. Comparing median errors with
SA, SSG is more accurate for M ≥ 30, see Tab. 1 in [68]
where an upper relative error bound of 0.1% is used. This is
equivalent to SSG with M = 10 directions for bird and M = 30
directions for pig. As mentioned, the cost of SA is the same
as FMM, i.e. hundreds of times slower than SSG.

Memory: For a single geodesic tracing on a n vertex model,
Dijkstra with A∗ is O(n); FMM is O(n logn); Surazhky et
al. is O(n3/2). SSG is O(M). Verma and Snoeyink improved
upon Surazhky et al. by combining Dijkstra with A∗ with the
original method [73]. This reduces the memory cost to O(n),
yields a speed-up of 8, but overestimates geodesic lengths

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

a) b) c)

d) e) f) g) h) i)

Fig. 6. Skeleton cloud regularization by geodesic importance. Red points are the most important. Blue points correspond to small surface features (Sec. V).

by 10% on average. Concluding, our GPU SSG method is a
good trade-off: It is nearly as accurate as exact geodesics, and
hundreds of times faster than approximate geodesic methods.

bird model

pig model

SSG 100SSG 50 SSG 500SSG 30SSG 20SSG 10SSG 5FMM

SSG 100SSG 50 SSG 500SSG 30SSG 20SSG 10SSG 5FMM

R
e

la
ti

v
e

 e
rr

o
r

(%
)

R
e

la
ti

v
e

 e
rr

o
r

(%
)

Methods:

Methods:

Fig. 7. Accuracy comparison: FMM vs SSG geodesic tracing (see Sec. V-C).

VI. SURFACE SKELETON RECONSTRUCTION

Shape comparison, topological analysis, or segmentation
tasks require a mesh skeleton, not a point cloud. 3D skele-
tons contain many self-intersecting, closely-spaced, mani-
folds whose boundaries are the skeleton end-curves and Y-
intersection curves. Hence, point cloud reconstruction methods
for locally smooth and/or non-intersecting and/or watertight
surfaces cannot be used [2], [19], [34]. Reconstruction of
open, non-manifold, and self-intersecting surfaces [13], [75] is
relatively slow and non-trivial. We present next two methods

for reconstructing skeleton surfaces from point clouds based
on specific skeleton properties.

Fig. 9. Anatomic shapes: point clouds (a,c) and surface skeletons (b,d).

Delaunay reconstruction: For each triangle F = {fi} ⊂ ∂Ω,
we use FT−1, the inverse of the feature transform (FT)
computed at skeleton extraction (Sec. III) to gather all skeleton
points S(F) having fi as feature points. Obtaining FT−1 is for
free: For each skeleton point s found by the ball-shrinking
algorithm in Sec. III, the ball shrinking also gives us its two
feature points f1 and f2. By adding s to the shape points f1
and f2, we obtain FT−1 at the end of the ball shrinking, i.e.,
for any shape point p ∈ ∂Ω, all its skeleton points s ∈ S(Ω).

Next, we project all points in S(F) on the plane of F ,
triangulate these projections [59], and use the resulting mesh
patch to connect the points in S(F). The reason for ’lifting’
the connectivity from 2D into 3D is that locally planar surface
patches (i.e., triangles F) create, by definition, locally-planar
skeleton patches (i.e., triangulation of S(F)). This creates
duplicate skeleton-mesh triangles, since close model faces
have common skeleton points in convex areas. To remove

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

c) d)

m) n) o) p)

a) b)

g) h) i) j)

e)

k)

f)

l)

q) r) s)

Fig. 8. Delaunay method (a,g; details d,f,j,l; simplified clouds (m-r) and per-manifold method (b,h,s; details c,e,i,k) for skeleton reconstruction (Sec. VI).

these, we mark all model vertices which map via the FT
only to internal triangles, i.e., which do not have edges on
the boundary of a Delaunay triangulation [59], and skip faces
having only marked vertices. The method is O(N) for N
skeleton points, since we triangulate small point sets S(F)
of size O(1). This takes under 3 seconds for all shapes in
this paper. We use only local information (skeleton points
of a small surface neighborhood), so we can do out-of-core
reconstruction of large skeletons, like [13].

Figures 8,9 show our results. All small details (cow eyes,
hooves, horns, and pig snout) create skeletal manifolds. Noisy
skeletons have no ‘stitches’ between close ligature sheets
(Fig. 8 m,o,q). It is challenging to reconstruct such manifolds
only from point clouds: Ligatures match surface concavity
pairs [50], so their cloud density can be arbitrarily small even
for densely sampled models (Sec. III). The inverse FT links
ligatures to the input surface and thus reconstructs them well.
Simplified skeleton meshes are easily created by filtering low-
importance points (compare Figs. 8 n,p,r to the raw skeletons
in Figs. 8 m,o,q).

Per-manifold reconstruction: The Delaunay method leaves a
few tiny holes in the skeleton mesh (Fig. 8 d,f,j,l). Our second
reconstruction method fixes these. First, we cluster skeleton
points into separate manifolds. For this, we observe that a
small ball νε(s)⊂ S of radius ε around a skeleton point s maps
to one or more small vicinities ν i

∂Ω
(s) of the input shape [50].

Points on the manifold end-curves, inside a manifold, and
on Y-intersection curves have one, two, and three or more
ν i

∂Ω
respectively. We cluster skeleton points into manifolds

by a simple flood fill which groups adjacent vicinities νε(s)
having average feature vectors that differ less than an angle α

(in practice, α = 5◦). The fill stops when we find a vicinity
with a highly different feature vector, i.e., at Y-intersection
curves. We repeat the fill from a random unclustered point
until all points are clustered. Finally, we reconstruct each
cluster with the ball pivoting algorithm (BPA) [8] with ball

radius ρball set to the average inter-point distance in the cluster.
BPA incrementally grows a triangle mesh surface, as follows:
Starting with a seed triangle, a ball of a given size ρball
pivots around each triangle edge (e1,e2), i.e., revolves around
the edge while keeping contact with the edge’s endpoints,
until it touches a point p from our point-cluster, and without
containing any other cluster point except p and the edge’s
endpoints. When p is found, a new triangle (p,e1,e2) is
added to the mesh. The process is repeated from the edges
of the newly found triangle, until all possible edges have been
considered. For full details, we refer to [8], and to the public
MeshLab implementation of BPA we have used here [42].

Figure 8 b,h,s show results, with manifolds colored differ-
ently for illustration. Per-manifold reconstruction removes the
small holes and inter-manifold stitches at Y-intersection curves
of the Delaunay method (compare Figs. 8 c,e,i,k and d,f,j,l),
at a higher execution time: 12 seconds for the cow and pig
models.

VII. SURFACE SKELETON COMPARISON

We compare our point-cloud surface skeletons (PCS) with
the discrete scale axis (DSA) method [43], one of the best
methods for extracting detailed surface skeletons (Fig. 10).
For similar skeleton simplification levels, PCS and DSA create
similar skeletons (Fig. 10 g-h,m-n). Yet, differences exist
(Fig. 10, red marks). These have two causes: geometry (differ-
ent skeleton points found) and topology (same skeleton points
found but connected differently). Geometry differences imply
topology differences. Note how DSA found many skeleton
points outside the hand model (Fig. 10 e-f) and connected
these to points inside the hand. In the cow model (Fig. 10 c-
d), skeleton points are largely identical, but DSA wrongly
connects the tail and rump skeletons. Such issues, due to strong
model concavities, are noted in [43].

DSA can skip large parts of the skeleton periphery, see
e.g. the pig and cow spine and belly and elephant spine

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

a) PCB b) DSA e) PCB

f) DSAc) PCB d) DSA

g) PCB h) DSA i) PCB j) DSA

k) PCB l) DSA m) PCB n) DSA

spurious geometry

and topology

missing ligatures

missing ligatures

missing ligatures

spurious holes

Detail comparison

pig snout (PCB) pig snout (DSA)

pig hoof (PCB) pig hoof (DSA)

cow head (PCB)

PCB DSA

cow head (DSA)

cow hoof (DSA)cow hoof (PCB)

elephant trunk (PCB) elephant trunk (DSA)

elephant leg (PCB) elephant leg (DSA)

scapula (PCB) scapula (DSA)

Fig. 10. Comparison of PCS and DSA methods (Sec. VII). Skeleton parts wrongly added/missed by DSA are marked red. Green-marked details are shown
right.

(Fig. 10 b,d,j). These parts, found by our PCS, are ligature
sheets between the core skeleton and faraway skeleton points
in shallow surface cusps [50]. The reason hereof is that
PCS and DSA use different skeleton scale metrics: PCS
uses geodesic importance (a global metric); DSA computes
simplified skeletons by up-scaling the input shape (a local
operation). DSA also creates many small holes in skeletal
sheets, see Fig. 10 l. These artifacts (for a genus 0 shape)
are likely due to the numerical degeneracies listed in [43].

TABLE V
TIMING COMPARISON OF PCS AND DSA SKELETONIZATION METHODS.

Model PCS (our method) DSA(Miklos et al. [43])
time (sec.) points time (sec.) time (sec.) points

δ = 0.007 δ = 0.005
pig 27.9 224539 485 975 145153
cow 19.4 185703 448 919 64240
bird 3.3 46862 201 421 104140
horse 17.5 193887 369 744 63297
asiandragon 14.9 230964 n/a n/a n/a
hand 4.8 196920 378 778 93301
elephant 3.5 50422 505 1031 166089
armadillo 13.2 172955 426 853 105167

Table V shows timing and size statistics for PCS and DSA.

For PCS, we used an accuracy τ = 10−3 (Sec. III), and also
added regularization time. For DSA, we used approximation
thresholds δ for the mesh to union-of-balls (UoB) conversion
of 0.007 and 0.005 ([43], Sec. 2). Note that τ = 10−3 for PCS
is similar to δ = 10−3 for DSA as for skeleton accuracy. PCS is
up to 100 times faster than DSA. More accurate UoB settings
(smaller δ) make DSA much slower: 45 minutes for a 313K-
point skeleton of a 177K-triangle shape at δ = 0.002 [43]. We
could not test such settings as δ ≤ 0.003 made DSA crash on
our models. The same was true for the asiandragon model,
δ = 0.007. If we replace our SSG regularization by simpler
metrics, e.g. θ -SMA, PCS becomes much faster, basically
identical to the timings in Tab. I.

PCS and DSA create skeletons of different sizes. PCS
creates one skeleton point per input point (Sec. III). DSA uses
a Voronoi diagram, which has a different point count. Yet, the
skeletal detail created by PCS is similar to DSA (see Fig. 10).

We also compared PCS with the method of Stolpner et
al. [64] which approximate medial axes as UoB point clouds.
On a 3.4 GHz PC, PCS is over 100 times faster (Tab. V vs
Tab. 1 [64]).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

VIII. CURVE SKELETON EXTRACTION

Curve skeleton points are surface skeleton points which have
two or more SSGs between their feature points [20], [55]. The
above definition for curve skeleton points can be quite easily
applied to detect such points for voxel-based models, as shown
in [55]. For surface skeletons represented as point clouds, as
in our case, the above criterion cannot be immediately used,
mainly due to the typically non-uniform density of skeleton
point clouds (see Sec. III-A). Therefore, we propose to extract
curve skeletons by a method akin to the technique of Siddiqi
et al. [60], [61]. Our proposal is based on the following
observation: In a small vicinity N of a curve-skeleton point,
geodesic tangents, mapped to N , abruptly change directions
(Fig. 11). Given this observation, we extract curve-skeleton
points by looking for high-response points of weight-averaged
tangent directions in vicinities around each surface-skeleton
point, by a three-step method: (i) find candidates close to the
curve skeleton; (ii) filter and regularize candidates; and (iii)
reconstruct the curve skeleton.

A. Detecting candidate curve skeleton points

For each surface skeleton point si, we compute the average
(projected) tangent direction of its SSG path, i.e.,

t′s,i = ts,i− fi(fi · ts,i)

t′e,i = te,i− fi(fi · te,i)

ti =
t′s,i + t′e,i
‖t′s,i + t′e,i‖

, (4)

where ts,i, te,i are the tangent vectors at its feature points, and fi
is the normalized feature vector of si. Projection improves the
detector reliability (see below) close to Y-intersection curves,
i.e., where several skeletal manifolds intersect [18].

Tangent vectors ti span a vector field T over the surface
skeleton (Fig. 11). One can evaluate the divergence of T or
its more numerically-stable flux [60]. Points close to the curve
skeleton have large positive flux/divergence values. However,
along with these, this approach may yield also points close to
the Y-intersection curves.

We find candidate curve-skeleton points differently. For each
skeleton point si, let Ni be its set of neighbor skeleton points
(we use 10 nearest-neighbors in practice). We measure the
likelihood of si to be a curve-skeleton point as

I(si) = ρi−ρi

∥∥∥∥∑ j∈Ni wi jt j

∑ j∈Ni wi j

∥∥∥∥ , wi j = |fi · f j|e
−

(ρi−ρ j)
2

2σ2
1
−
‖si−s j‖2

2σ2

with ρi ≡ ρ(si). The importance Ii ≡ I(si) averages tangent
vectors in Ni with weights given by a 2D Gaussian kernel
and σ1,σ2 set to the median of the distances ‖si−s j‖ j∈Ni . The
weight wi j lowers the impact of tangent vectors t j of skeleton
points s j which: (i) have feature vectors f j not parallel to fi,
(ii) have geodesics of different lengths (following [20], [55]),
and (iii) are far from si. Points close to Y-intersection curves
meet conditions (i) and (ii), so they contribute weakly to I. In
contrast, points close to the curve skeleton yield large weights,
and have tangent vectors pointing outwards in all directions
(see Fig. 11). Such points have large I values, so we find the

set C of candidate curve-skeleton points by thresholding I at
a small value TI > 0.

B. Regularization of candidate curve-skeleton points

We assign an importance µi to each point si ∈ C to prune
spurious curve skeleton details. We set µi to the smallest
surface area between two SSGs of nearby skeleton points.
This is similar to the metric in [55] which was computed by a
flood-fill on a voxel surface. Our case is more complicated as
we have two curves on an unstructured mesh. We efficiently
approximate this area using only the angle between the two
geodesics and the lengths of a few additional straightest
geodesics, as follows.

For each candidate si ∈C , we find a neighbor j? ∈Mi, with
Mi a neighborhood of si (10 nearest-neighbors), for which

J j = (1+ ti · t j)e
−

(Ii−I j)
2

2σ2
1
−
‖si−s j‖2

2σ2
2 (5)

is minimal, i.e., j? = argmin j∈Mi
J j. Since si and s j? are

spatially close, we assume that their feature points coincide,
and use si for these. Let θ = ∠(ti, t j?) ∈ [0,π] be the angle
between the tangent vectors of si and s j? . The pair of SSGs
γse,i and γse, j? between the feature points f1,i and f2,i divide the
surface ∂Ω in two parts, the smallest area of which we want
to estimate. For this, we trace P straightest geodesics γS,i,k,
1≤ k≤P from f1,i to f2,i on ∂Ω, with uniformly spread starting
angles αk = 2πk/P around the vector fi = f1,i − f2,i at f1,i.
Assuming that each geodesic is half of an ellipse, with minor
axis fi, the ellipse radii ak and bk ≥ ak are given by a simple
approximation formula for an ellipse perimeter, i.e., ak =
‖fi‖/2 and bk = (2‖γS,i,k‖− π ak)/2. Next, we approximate
∂Ω between two consecutive geodesics by an oblate spheroid
with radii ak and ck = (bk +bk+1)/2, so its area is that of an
oblate spheroid wedge with angle β = 2π/P, i.e.,

Sk = β c2
k +

β a2
k

2e
ln

1+ e
1− e

, (6)

with e =
√

1−a2
k/c2

k . Assuming that the starting direction
α0 = 0 corresponds to the tangent of γse,i, we compute µi as

µi = min

(
∑

k,αk<θ

Sk, ∑
k,αk≥θ

Sk

)
. (7)

Thresholding µ removes short curve-skeleton branches to yield
the final candidate set C ′. We use more paths P = 50 than for
the surface skeleton metric (M = 20, Sec. V) to limit area
estimation errors. σ1 and σ2 are set to the median distance in
Mi.

C. Curve skeleton reconstruction

To get the final curve skeleton CS, we connect points in C ′

by line segments, by adapting the ball-pivoting method [8].
We start from the point with largest importance maxC ′(µ),
find its neighbor in C ′ within a radius r with largest µ value,
and add a new line segment to CS. Next, we try to extend CS
by searching neighbors of its end vertices ei. To become a new
end vertex, a point x must (i) be within distance r from an ei;

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 11. Tangent vector field T (shown with directional color-coding).

p = 185K, t = 371K

7.4 seconds

p = 197K, t = 394K

3.8 seconds

p = 193K, t = 387K

5.3 seconds

s = 183K, v = 4.6M

376 seconds

s = 167K, v = 3.1M

303 seconds

s = 214K, v = 4.9M

406 seconds

p surface vertices

t surface triangles
p = 225K, t = 451K

7.3 seconds

p = 23K, t = 47K

0.9 seconds

s surface voxels

v volume voxels

13 seconds398 seconds

Our method

Reniers et al.

Au et al.

420 seconds 445 seconds382 seconds

sharp bend

sharp bend

s = 23K, v = 267K

14 seconds

s = 180K, v = 3.9M

398 seconds

Fig. 12. Curve skeleton extraction: our method (top row), voxel-based method [55] (middle row), and mesh collapse method [5] (bottom row).

and (ii) the segment (x,ei) must be well-aligned with the curve
tangent. When CS cannot be extended, we backtrack and try
to extend from vertices of previous segments. This captures
the curve skeleton branching.

D. Comparison

Regularization (Sec. VIII-B) is the costliest step of our
curve-skeleton extraction. C is a small subset of the surface
skeleton, but tracing P = 50 straightest geodesics γS,i,k per
point si ∈ C is still expensive, as no early termination can
be used (Sec. V). Still, we only need to compute geodesic
lengths. This results in a very efficient CUDA mapping (see
Tab. VI).

Figure 12 compares our results with Reniers et al. [55]

and with of Au et al. who compute curve-skeletons by shape
collapse via Laplacian smoothing [5]. Although our point
count is smaller than, or at most equal to, the surface voxel
count of Reniers et al., we find more skeleton branches, e.g.
the cow udder and horns. Our skeletons, unlike Au et al.,
do not have artificial straight-line branches and sharp bends.
Au et al. added these in a ‘surgery’ step to connect disjoint
skeleton parts (see green markers, hand and horse model,
Fig. 12 bottom). The skeletons of Au et al. extend deeper into
surface cusps, e.g. the pig’s hooves and snout. Such branches
are shortened by our regularization (Sec. VIII-B). Our method
is on average 50 times faster than Au et al. and over one order
of magnitude faster than Reniers et al. Interestingly, the costs
of the latter two are similar, since both methods ’visit’ the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE VI
CURVE-SKELETON EXTRACTION TIMINGS.

Model Detect Regularize Reconstruct Total
(seconds) (seconds) (seconds) (seconds)

Cow 3.1 3.5 0.8 7.4
Bird 0.5 1.2 0.1 1.8
Horse 2.5 2.6 0.2 5.3
Asiandragon 2.6 3.7 1.7 8.0
Hand 1.3 1.9 0.6 3.8
Elephant 0.5 1.5 0.5 2.5
Buddha 3.3 5.3 0.8 9.4
Mouse 3.0 4.6 0.9 8.5
Dragon 3.5 4.7 0.9 9.1
Pig 2.5 4.0 0.8 7.3
Armadillo 1.8 1.5 0.6 3.9
Rabbit 0.5 1.1 0.5 2.1

entire input volume: Au et al. while collapsing the mesh, and
Reniers et al. while computing its voxel skeleton detectors.

E. Relation to surface skeletons

As stated at the beginning of Sec. VIII, we detect curve
skeleton points as a subset of surface skeleton points, so
our curve skeleton is always a subset of the corresponding
surface skeleton point-cloud. Both curve and surface skeletons
can be simplified (regularized), and the relation between
these two regularization types is as follows. First, we can
regularize a surface skeleton, using the SSG-length importance
metric ρ (Sec. V), and then compute the curve skeleton
of the regularized surface skeleton. This approach, however,
may eliminate entire curve-skeleton terminal branches which
correspond to thin and narrow shape parts, such as the pig’s tail
or cow’s horns in Fig. 12, since the surface skeleton has a low
importance in such regions. Alternatively, we can extract the
curve skeleton from the full surface skeleton, and regularize
the former by thresholding its own importance µ (Eqn. 7).
This has the advantage of simplifying curve-skeleton terminal
branches more uniformly.

A mixed curve-and-surface skeleton can be easily extracted
too. For this, we replace the importance ρ of the surface
skeleton points which have been detected to be also on the
curve skeleton by the corresponding curve skeleton importance
µ . Note that, for all curve skeleton points p∈CS, µ(p)> ρ(p),
since the former measures an area whose boundary length is
the latter. Given this, and as already shown for the voxel case
in [55], thresholding ρ with increasing values will now deliver
a mixed curve-and-surface skeleton, where the surface skeleton
is first progressively simplified towards the curve skeleton,
followed by the simplification of the higher-importance curve
skeleton.

IX. DISCUSSION

We next discuss our framework vs several related methods.

Input: We use (non-uniform) mesh models instead of voxel
models. Our input can be of any genus (see the rabbit, cat, and
dragon models), self-intersecting (cow model), and non-closed
(hand model). Skeleton extraction and shape rendering only re-
quire an oriented point cloud input. We need connectivity data

only for the regularization and Delaunay-based reconstruction.

Accuracy: Voxel-based skeletons are limited by the voxel
resolution [11], [31], [55]. Like Stolpner et al. [64], our
skeletons are point clouds close to the true medial axis within
a user-prescribed precision in world space. Our image-based
shape reconstruction from its (simplified) skeleton is real-time
and near-pixel accurate.

Scalability: A 10243 distance-and-feature-transform volume
needs at least 4GB RAM [11], [30], [70]. An equivalent
mesh, roughly 1M triangles, needs only 24MB RAM, which is
essential for typical 1GB GPU RAM limits. Voxelization has
also large speed costs and is delicate for certain meshes [23],
[24], [46]. Multiresolution voxel schemes reduce memory
costs but complicate algorithms and reduce GPU speedups.
Table I (Sec. III) (τ = 10−3, ε = 0, equivalent to a 10243

volume) shows that our method is over 100 times faster than
[10], [20], [37], [43], [55], [64], even without voxelization.

Geodesic computation: Our GPU computation of shortest,
straightest geodesics (SSGs) is over two orders of magnitude
faster, and more accurate, than state-of-the-art techniques [49],
[68], [73]. This makes global skeleton regularization practical
for large models. Our SSG method is also usable for other
applications requiring fast, near-exact, geodesics on meshes.

Simplicity: Our framework has no complex computational
geometry operations or degenerate cases, unlike [43], [55],
[64]. Its only user parameters are the skeleton centeredness τ

and number of geodesic directions M, explained in Secs. III
and V.

Curve skeletons: Existing curve skeleton extractors have
widely different speed, accuracy, and curve skeleton defini-
tions [5], [14], [15], [20], [30]. Our curve skeletons cannot re-
place all such methods. Our main novelty is the fast extraction
of curve skeletons from a surface skeleton cloud. The closest
methods to ours are the medial geodesic function (MGF) [20]
and ROSA [69]. Yet, we use a different angle-based criterion
than MGF and also than ROSA which computes curve skele-
tons as centers of point cloud projections on a cut plane found
by optimizing for circularity. We are two orders of magnitude
faster than ROSA and MGF, and on average 50 times faster
than Au et al. [5] (Sec. VIII-C). Compared to the variational
method of Hassouna et al. [30], we are 20 times faster (Fig. 12,
Tab. VI vs Fig. 10 in [30]).

X. CONCLUSION

We have presented a GPU-based framework for extracting
surface and curve skeletons from large meshes. Using GPUs to
parallelize several extraction steps (maximal ball computation,
regularization, and surface reconstruction), we obtain similar
or higher-quality surface and curve skeletons with two orders
of magnitude speed-up over state-of-the-art methods. Skeleton
clouds, extracted with user-desired accuracy, are regularized by
a new parallel computation of shortest, straightest geodesics
which is over two orders of magnitude faster, and more
accurate, than similar schemes. From the skeleton cloud, we
reconstruct the input shapes in real-time by an image-based
method or extract high-quality mesh and curve skeletons for

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

further use in applications such as shape analysis, classifica-
tion, and matching.

REFERENCES

[1] N. Ahuja and J. Chuang. Shape representation using a generalized
potential field model. IEEE TPAMI, 19(2):169–176, 1997.

[2] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for
homeomorphic surface reconstruction. JCGA, 12:125–141, 2002.

[3] N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc. SMA,
pages 65–73. ACM, 2001.

[4] C. Aslan, A. Erdem, E. Erdem, and S. Tari. Disconnected skeleton:
Shape at its absolute scale. IEEE TPAMI, 30(12):2188–2203, 2008.

[5] O. K. C. Au, C. Tai, H. Chu, D. Cohen-Or, and T. Lee. Skeleton
extraction by mesh contraction. In Proc. ACM SIGGRAPH, pages 441–
449, 2008.

[6] X. Bai and L. Latecki. Path similarity skeleton graph matching. IEEE
TPAMI, 30(7):1282–1292, 2008.

[7] X. Bai, L. Latecki, and W.-Y. Liu. Skeleton pruning by contour
partitioning with discrete curve evolution. IEEE TPAMI, 3(29):449–462,
2007.

[8] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin.
The ball-pivoting algorithm for surface reconstruction. IEEE TVCG,
5(4):349–359, 1999.

[9] S. Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven automatic
centerline extraction. Medical Image Analysis, 9(3):209–221, 2005.

[10] S. Bouix, K. Siddiqi, A. Tannenbaum, and S. Zucker. Medial axis
computation and evolution. In Statistics and analysis of shape, chapter 1,
pages 1–28. 2006.

[11] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding algorithm to
compute exact distance transform with the GPU. In Proc. SIGGRAPH
I3D Symp., pages 134–141, 2010.

[12] L. Cayton. A nearest neighbor data structure for graphics hardware.
In Proc. ADMS, pages 192–197, 2010. people.kyb.tuebingen.
mpg.de/lcayton.

[13] M. Chang, F. Leymarie, and B. Kimia. Surface reconstruction from
point clouds by transforming the medial scaffold. CVIU, (113):1130–
1146, 2009.

[14] J. Chuang, C. Tsai, and M. Ko. Skeletonization of three-dimensional
object using generalized potential field. IEEE TPAMI, 22(11):1241–
1251, 2000.

[15] N. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applica-
tions, and algorithms. IEEE TVCG, 13(3):87–95, 2007.

[16] N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian. Computing
hierarchical curve-skeletons of 3D objects. Visual Comput., 21(11):945–
955, 2005.

[17] L. Costa and R. Cesar. Shape analysis and classification. CRC Press,
2000.

[18] J. Damon. Global medial structure of regions in R3. Geometry and
Topology, 10:2385–2429, 2006.

[19] T. Dey and S. Goswami. Provable surface reconstruction from noisy
samples. IJCGA, 35(1):340–355, 2006.

[20] T. Dey and J. Sun. Defining and computing curve skeletons with medial
geodesic functions. In Proc. SGP, pages 143–152. IEEE, 2006.

[21] T. Dey and W. Zhao. Approximating the medial axis from the Voronoi
diagram with a convergence guarantee. Algorithmica, 38:179–200, 2003.

[22] R. Dougherty and K. Kunzelmann. Computing local thickness of 3D
structures with ImageJ. Microscopy and Microanalysis, (12):1678–1679,
2007. www.optinav.com/LocalThicknessEd.pdf.

[23] E. Eisemann and X. Decoret. Fast scene voxelization and applications.
In Proc. SIGGRAPH I3D Symp., pages 71–78, 2006.

[24] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a
simplified medial axis. In Proc. Shape Modeling, pages 135–142, 2003.

[25] P. Frey. YAMS: a fully automatic adaptive isotropic surface remeshing
procedure. tech. rep. 0252, INRIA, Nov. 2001. www.ann.jussieu.
fr/˜frey.

[26] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search
using GPU. In Proc. CVGPU, pages 77–83, 2008.

[27] Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete
euclidean distance maps. IEEE TPAMI, 18:1055–1066, 1996.

[28] P. Giblin and B. Kimia. A formal classification of 3D medial axis points
and their local geometry. IEEE TPAMI, 26(2):238–251, 2004.

[29] J. Giesen, B. Miklos, M. Pauly, and C. Wormser. The scale axis
transform. In Proc. Annual Symp. Comp. Geom., pages 106–115, 2009.

[30] M. Hassouna and A. Farag. Variational curve skeletons using gradient
vector flow. IEEE TPAMI, 31(12):2257–2274, 2009.

[31] W. Hesselink and J. Roerdink. Euclidean skeletons of digiral image and
volume data in linear time by the integer medial axis transform. IEEE
TPAMI, 30(12):2204–2217, 2008.

[32] I. Hotz and H. Hagen. Visualizing geodesics. In Proc. IEEE Visualiza-
tion, pages 311–318, 2000.

[33] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM TOG, 22(3):954–961, 2003.

[34] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction.
In Proc. SGP, pages 61–70, 2006.

[35] R. Kimmel, D. Shaked, N. Kiryati, and A. Bruckstein. Skeletonization
via Distance Maps and Level Sets. Computer Vision and Image
Understanding: CVIU, 62(3):382–391, 1995.

[36] J. Lambourne, D. Brujic, Z. Djuric, and M. Ristic. Calculation and
visualisation of the thickness of 3D CAD models. In Proc. SMI, pages
107–112, 2005.

[37] F. Leymarie and B. Kimia. The medial scaffold of 3d unorganized point
clouds. IEEE TVCG, 29(2):313–330, 2007.

[38] F. Leymarie and M. Levine. Simulating the grassfire transform using an
active contour model. IEEE TPAMI, 14(1):56–75, jan 1992.

[39] X. Li, T. Woon, T. Tan, and Z. Huang. Decomposing polygon meshes
for interactive applications. In Proc. I3D Symp., pages 35–42, 2001.

[40] J. Ma, S. W. Bae, and S. Choi. 3D medial axis point approximation
using nearest neighbors and the normal field. Visual Comput., 28(1):7–
19, 2012.

[41] G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Image and
Vision Computing, 16(5):317–327, 1998.

[42] MeshLab. MeshLab geometry processing software, 2012. meshlab.
sourceforge.net.

[43] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis representations
for 3D geometry. In Proc. ACM SIGGRAPH, pages 394–493, 2010.

[44] M. Mortara, G. Patanet, M. Spagnuolo, B. Falcidieno, and J. Rossignac.
Plumber: A method for multiscale decomposition of 3D shapes into
tubular primitives and bodies. In Proc. ACM SMA, pages 339–344,
2004.

[45] D. Mount and S. Arya. Approximate nearest neighbor search software.
2011. www.cs.umd.edu/˜mount/ANN.

[46] F. Nooruddin and G. Turk. Simplification and repair of polygonal models
using volumetric techniques. IEEE TVCG, 9(2):191–205, 2003. see also
www.cs.princeton.edu/˜min/binvox.

[47] R. L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Pattern
Recognition, (28):343–359, 1995.

[48] K. Palagyi and A. Kuba. Directional 3D thinning using 8 subiterations.
In Proc. DGCI, volume 1568, pages 325–336. Springer LNCS, 1999.

[49] G. Peyre and L. Cohen. Geodesic computations for fast and accurate
surface remeshing and parameterization. In Progress in Nonlinear Dif-
ferential Equations and Their Applications, volume 63, pages 151–171.
Springer LNCS, 2005. www.ceremade.dauphine.fr/˜peyre.

[50] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker. Multiscale
medial loci and their properties. IJCV, 55(2-3):155–179, 2003.

[51] K. Polthier and M. Schmies. Straightest geodesics on polyhedral
surfaces. In ACM SIGGRAPH Courses, pages 30–38, 2006.

[52] S. Prohaska and H. C. Hege. Fast visualization of plane-like structures
in voxel data. In Proc. IEEE Visualization, page 2936, 2002.

[53] C. Pudney. Distance-ordered homotopic thinning: A skeletonization
algorithm for 3D digital images. CVIU, 72(3):404–413, 1998.

[54] D. Reniers and A. Telea. Part-type segmentation of articulated voxel-
shapes using the junction rule. CGF, 27(7):1837–1844, 2008.

[55] D. Reniers, J. J. van Wijk, and A. Telea. Computing multiscale skeletons
of genus 0 objects using a global importance measure. IEEE TVCG,
14(2):355–368, 2008.

[56] M. Rumpf and A. Telea. A continuous skeletonization method based on
level sets. In Proc. VisSym, pages 151–158, 2002.

[57] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. In Proc. SIGGRAPH, pages 230–
237, 2000.

[58] D. Shaked and A. Bruckstein. Pruning medial axes. CVIU, 69(2):156–
169, 1998.

[59] J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Applied Computational Geometry: Towards
Geometric Engineering, pages 203–222. Springer LLNC, 1996.

[60] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-Jacobi
skeletons. IJCV, 48(3):215–231, 2002.

[61] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. The Hamilton-
Jacobi skeleton. In Proc. of the International Conference on Computer
Vision - Volume 2, ICCV ’99, pages 828–, Washington, DC, USA, 1999.
IEEE Computer Society.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[62] K. Siddiqi and S. Pizer. Medial Representations: Mathematics, Algo-
rithms and Applications. Springer, 2009.

[63] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci and
boundary differential geometry. In Proc. IEEE 3DIM, pages 87–95,
2009.

[64] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci for 3D
shape representation. CVIU, 115(5):695–706, 2011.

[65] R. Strzodka and A. Telea. Generalized distance transforms and skeletons
in graphics hardware. In Proc. VisSym, pages 221–230, 2004.

[66] A. Sud. Efficient computation of discrete Voronoi diagram and
homotopy-preserving simplified medial axis of a 3D polyhedron. PhD
thesis, UNC Chapel Hill, 2006.

[67] A. Sud, M. Foskey, and D. Manocha. Homotopy-preserving medial axis
simplification. In Proc. SPM, pages 103–110, 2005.

[68] V. Surazhsky, T. Surazshky, D. Kirsanov, S. Gortler, and H. Hoppe. Fast
exact and approximate geodesics on meshes. In Proc. ACM SIGGRAPH,
pages 130–138, 2005.

[69] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton extraction
from incomplete point cloud. In Proc. SIGGRAPH, pages 541–550,
2009.

[70] A. Telea and A. Jalba. Voxel-based assessment of printability of 3D
shapes. In Proc. ISMM, pages 393–404. Springer LNCS, 2011.

[71] A. Telea and J. J. van Wijk. An augmented fast marching method for
computing skeletons and centerlines. In Proc. VisSym, pages 251–259,
2002.

[72] M. van Dortmont, H. van de Wetering, and A. Telea. Skeletonization
and distance transforms of 3D volumes using graphics hardware. In
Proc. DGCI, pages 617–629. Springer LNCS, 2006.

[73] V. Verma and J. Snoeyink. Reducing the memory required to find a
geodesic shortest path on a large mesh. In Proc. ACM GIS, pages 227–
235, 2009.

[74] M. Wan, F. Dachille, and A. Kaufman. Distance-field based skeletons for
virtual navigation. In Proc. IEEE Visualization, pages 239–246, 2001.

[75] J. Wang, M. Oliveira, and A. Kaufman. Reconstructing manifold and
non-manifold surfaces from point clouds. In Proc. SMA, pages 139–147,
2007.

[76] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction
on graphics hardware. ACM TOG, 27(5):111, 2008.

Andrei C. Jalba received his B.Sc. (1998) and
M.Sc. (1999) in Applied Electronics and Informa-
tion Engineering from “Politehnica” University of
Bucharest, Romania. He obtained a Ph.D. degree
at the Institute for Mathematics and Computing
Science of the University of Groningen, the Nether-
lands, in 2004. Currently he is assistant professor
at the Eindhoven University of Technology. His
research interests include computer graphics and
vision, shape processing and parallel computing.

Jacek Kustra received his Licenciatura degree
in Electronics and Telecommunications and M.Sc.
in Biomedical Engineering from the University of
Aveiro, Portugal, in 2004 and 2008 respectively. In
parallel to his studies he worked as software de-
velopment freelancer. He is employed as a Scientist
in Philips Research and is working towards a PhD
degree at the University of Groningen. His research
interests are in shape and surface processing with
applications towards healthcare systems.

Alexandru C. Telea received his PhD (2000) in
Computer Science from the Eindhoven University
of Technology, the Netherlands. Until 2007, he was
assistant professor in visualization and computer
graphics at the same university. Since 2007, he is
professor of computer science at the University of
Groningen, the Netherlands. His interests include 3D
multiscale shape processing, scientific and informa-
tion visualization, and software analytics.

