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An Unified Multiscale Framework for Planar,
Surface, and Curve Skeletonization

Andrei C. Jalba(a), Andre Sobiecki(b), and Alexandru C. Telea(b)

Abstract— Computing skeletons of 2D shapes, and medial sur-
face and curve skeletons of 3D shapes, is a challenging task. In
particular, there is no unified framework that detects all types
of skeletons using a single model, and also produces a multiscale
representation which allows to progressively simplify, or regularize,
all skeleton types. In this paper, we present such a framework. We
model skeleton detection and regularization by a conservative mass
transport process from a shape’s boundary to its surface skeleton,
next to its curve skeleton, and finally to the shape center. The
resulting density field can be thresholded to obtain a multiscale rep-
resentation of progressively simplified surface, or curve, skeletons.
We detail a numerical implementation of our framework which
is demonstrably stable and has high computational efficiency. We
demonstrate our framework on several complex 2D and 3D shapes.

Index Terms— Medial axes, Skeleton regularization, Physically-
based shape processing.

I. INTRODUCTION

Skeletons, or medial axes, are shape descriptors used in
virtual navigation, shape matching, shape reconstruction, and
shape processing [60]. 3D shapes admit two types of skeletons.
Surface skeletons are 2D manifolds which contain the loci of
maximally-inscribed balls in a shape [50], [60]. Curve skeletons
are 1D curves which are locally centered in the shape [16].
Surface-skeleton points, with their distance to the shape and
closest-shape points, define the medial surface transform (MST),
used for animation, smoothing, and matching [4], [7], [20].

Many methods exist for computing 2D skeletons [20], [47],
[69], 3D surface skeletons [27], [53], [59], [64], and 3D curve
skeletons [6], [18], [26], [68]. Although recent methods demon-
strate high accuracy, insensitivity to noise, and computational ef-
ficiency, several challenges remain open. We focus here on two
modeling challenges, as follows. First, 2D skeletons, 3D surface
skeletons, and 3D curve skeletons are typically extracted, and
next simplified, using different methods and metrics. This makes
the comparison and the formal reasoning about the properties of
the extracted skeletons difficult. Secondly, few (if any) methods
offer a continuous multiscale representation that addresses all
skeleton types, i.e., a model which encodes both the geometric
importance of any skeleton point (useful for simplifying, or
regularizing, noisy skeletons) and the type of skeleton point
(non-skeleton, surface skeleton, or curve skeleton).

In this paper, we present a framework for 2D and 3D
curve-and-surface skeletonization that addresses the above two
goals. We model both the skeleton detection and its importance
using an advection principle that collapses mass from a shape
boundary to its skeleton and next to the skeleton center (in
2D); and from the boundary to the surface skeleton, next to the
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curve skeleton, and finally to the latter’s center (in 3D). This
allows us to detect all types of mentioned skeletons, and also
to regularize them, e.g., to remove detail branches, via a single
model and a simple thresholding operation. We propose a single
algorithm that unifies skeleton detection and regularization in
2D and 3D, and also establishes a formal connection between
surface and curve skeletons. Our method is simple to implement,
computationally efficient, and easy to use. We show that our
results are very similar to the ones produced by several existing
2D and 3D skeletonization methods on a set of complex shapes.

The structure of this paper is as follows. Section II reviews
related work. Section III presents our skeletonization method.
Section IV details our method’s implementation. Section V
compares our results with one 2D, six 3D surface, and 11
curve skeletonization methods. Section VI discusses our results.
Section VII concludes the paper.

II. RELATED WORK

Given a shape Ω⊂Rn, n∈ {2,3} with boundary ∂Ω, we first
define its Euclidean distance transform DT∂Ω : Rn→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (1)

The skeleton, or medial axis, of Ω is next defined as

SΩ = {x∈Ω|∃f1, f2 ∈ ∂Ω, f1 6= f2,‖x−f1‖= ‖x−f2‖=DT∂Ω(x)}
(2)

where f1 and f2 are the contact points with ∂Ω of the maximally
inscribed balls in Ω centered at x [23], [53]. The points f1 and f2
are called feature transform (FT) points [65]. The vectors f−x
are called spoke vectors [63]. For n = 2, SΩ is a set of curves
which meet at the so-called skeleton junction points [20]. For
n = 3, SΩ is a set of manifolds with boundaries which meet
along a set of so called Y-intersection curves [14], [17], [36].

In contrast to 2D and surface skeletons (Eqn. 2), 3D curve
skeletons CSΩ admit many definitions [16], implemented by a
wide variety of methods (discussed further below). As such, a
formal relationship between SΩ and CSΩ is still not unanimously
accepted. For instance, although it is commonly accepted that
CSΩ should be centered within SΩ, only few skeletonization
methods use and/or enforce this property [30], [53].

Skeletons can be computed by various methods, as follows.

Thinning: Thinning removes ∂Ω voxels (or pixels in 2D)
while preserving connectivity [8], [48], [52]. Although simple
and fast, thinning can be sensitive to Euclidean transformations.

Field methods: These methods find SΩ along singularities of
DT∂Ω or related fields [22], [27], [33], [37], [55], [69], [72] and
can be efficiently done on GPUs [13], [65], [66]. General-field
methods use fields smoother (with fewer singularities) than
distance transforms [1], [4], [16], [26], and thus are more
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robust for noisy shapes. Siddiqi et al. find the skeleton as
the non-zero divergence locus of ∇DT∂Ω [59]. However,
∇ · (∇DT∂Ω), with ∇· the divergence operator, can be non-zero
also at non-skeletal points. Torsello and Hancock correct this
for a more accurate 2D skeleton detection by a momentum
conservation principle ∇ · (ρ∇DT∂Ω) = 0, where ρ is the
mass density on the evolving boundary ∂Ω [5]. Rossi and
Torsello extend this idea to compute 3D surface skeletons
[54]. However, this method does not compute curve skeletons
and does not model the curve-surface skeleton relationship.

Mesh-based methods: Field methods volumetrically sample
Ω, which can be expensive memory-wise. Mesh-based methods
use a surface sampling of ∂Ω, which allows processing
higher-resolution shapes. Mesh methods include Voronoi
diagrams to compute polygonal skeletons [19]. Amenta et
al. compute the Power Crust, an approximation of a surface
and its medial axis by a subset of Voronoi points [2]. Other
methods use edge collapses [38], starting from a mesh
segmentation [32]. Surface skeletons can be extracted from
oriented point clouds [29], [41] or polygon meshes [36], [45]
by searching for maximally inscribed balls tangent at at least
two shape points. Curve skeletons can be extracted from point
clouds as centers of cloud projections on a cut plane which
optimizes for circularity [68]. Contraction techniques are a
separate subclass of mesh methods. Like field techniques, they
evolve ∂Ω under various types of normal flows, effectively
collapsing it onto the surface-or-curve skeleton. Methods using
a (constrained) Laplacian contraction by mean curvature flow
deliver high-quality curve skeletons [6], [12], [15], or even
‘meso skeletons’ mixes of surface and curve skeletons [67].
A different approach is taken by Jalba and Telea who contract
the surface skeleton to compute its curve skeleton counterpart
[30]. A recent review of contraction methods is given in [62].

Multiscale skeletons: Clean skeletons are extracted from noisy
shapes by thresholding importance measures ρ : Ω→R+. This
prunes skeletal branches caused by small details [17], [58].
We distinguish between local and global measures [44], [53].
Local measures cannot separate locally-identical, yet globally-
different, contexts (see e.g. [53], Fig. 1). Thresholding local
measures can disconnect skeletons. Reconnection needs extra
work [42], [50], [59], [66], and makes pruning less intuitive
[58]. Local measures include the angle between the feature
points and distance-to-boundary [2], [21], [66], divergence-
based [11], [59], first-order moments [55], and points where
∇DT∂Ω is multi-valued [63], [64]. Leymarie and Kimia topolog-
ically simplify point-cloud skeletons to capture Y-intersection
curves and skeleton sheet boundaries in medial scaffolds [36].
A good survey of such methods is given in [60].

Global measures monotonically increase from the skeleton
boundary ∂SΩ inwards. Thresholding them yields connected
skeletons which capture skeleton details at a user-given scale.
Miklos et al. approximate shapes by unions of balls (UoB) and
use UoB medial properties [24] to simplify skeletons [44]. Dey
and Sun introduce the medial geodesic function (MGF), equal to
the shortest-geodesic length between feature points [18], [51].
Reniers et al. [53] extend the MGF for surface and curve
skeletons using geodesic lengths and surface areas between
geodesics, respectively, inspired by the so-called collapse metric

used to extract multiscale 2D skeletons [20], [47], [69]. A fast
GPU implementation of this extended MGF is given in [29].

The MGF and its 2D collapse metric counterpart have an in-
tuitive geometric meaning: They assign to a skeleton point p the
amount of shape boundary that corresponds, or ‘collapses’ to, p
by some kind of boundary-to-skeleton mass transport. Skeleton
points p with low metric values correspond to small-scale shape
details or noise; points p with large metric values correspond to
large-scale shape details. This allows an easy simplification of
the skeleton: Thresholding by a value τ eliminates all skeleton
points which encode less than τ boundary length or area units.
If the collapse metric monotonically increases from the skeleton
boundary to its center, thresholding delivers a set of connected
and nested skeleton approximations, also called a multiscale
skeleton [18], [20], [53], [69].

III. PROPOSED FRAMEWORK

A. Preliminaries

Following the above, we aim to create a single model that
1) unifies the representation and detection of 2D skeletons,

3D surface skeletons, and 3D curve skeletons;
2) computes a monotonic, global importance metric for 2D

and 3D skeleton regularization and simplification;
Conceptually, we aim to capture the desirable properties of the
2D and 3D boundary collapse metric [20], [47], [53], [69] in a
single model, and also connect contraction-based and distance-
field based methods in a single framework. Practically, we aim
at a single, easy to implement and use, and computationally
efficient method that extracts and regularizes all skeleton types.

To achieve this, we first introduce our unified skeleton
definition: Given a shape Ω ∈ Rn∈{2,3}, we aim to compute
an importance function λ : Ω→ R+ so that the threshold sets
λτ = {x ∈Ω|λ (x)≥ τ} capture all existing skeleton types and
all their simplifications. Specifically, we want λ0 to be the full
input shape Ω; λε (for a small ε > 0) to be the full (unsimplified)
surface skeleton SΩ, which implies that λ (x) = 0,∀x /∈ SΩ.
As τ increases, we want λτ to be progressively simplified
surface skeletons, and as τ increases even further, progressively
simplified curve skeletons. In the limit, when τ = maxx∈Ω λ (x),
we want λτ to be a single point (for genus 0 objects), which
we next call the shape center CΩ. This process can be seen as a
‘recursive’ skeletonization which computes the surface skeleton
from the input shape, the curve skeleton from the surface
skeleton, and the shape center from the curve skeleton. All
skeletons λτ should satisfy the well-known desirable properties
– centeredness, rotational invariance, homotopy to the input
shape Ω, noise robustness, one-pixel (in 2D) and one-voxel (in
3D) thickness, inclusion of the curve skeleton in the surface
skeleton, and computational efficiency [16], [61], [62].

B. Physically-based skeletonization model

For a shape Ω ∈Rn∈{2,3}, we model our unified skeletoniza-
tion as a contraction of Ω on whose boundary mass is distributed
with unit density. Contraction is described by three fields:
φ(x, t), ρ(x, t), and u(x, t), with x ∈Ω, and with t ∈ R+ being
the time parameter, as follows. Similar to phase-field models
[10], the field φ → [−1,1] is 1 inside Ω and -1 outside, so that
the boundary of the contracting shape is implicitly given by
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Γt = {x ∈ Ω |φ(x, t) = 0}. For now, we assume that φ varies
abruptly and monotonically over [−1,1] in a small vicinity
around Γt . The field ρ → R+ gives the mass density of Γt .
Finally, u→ Rn gives the contraction direction of Γt .

Our contraction is described by a system of three PDEs:

∂ρ

∂ t
+∇ · (ρu) = 0, (3)

∂φ

∂ t
+u ·∇φ = 0, with Γt ∼= Γ0, (4)

u =
∇φ

‖∇φ‖ . (5)

Equation 3 imposes mass conservation on the shrinking
boundary. Equation 4 models boundary contraction with the
topological homeomorphic constraint Γt ∼= Γ0. This ensures
that the computed skeletons are homotopic to the input shape
∂Ω = Γ0. Equation 5 imposes inwards contraction of our shape,
with unit speed in normal direction to Γt .

Eliminating u from Eqns. 3-5, we obtain

∂ρ

∂ t
=−∇ρ · ∇φ

‖∇φ‖ −ρ∇ · ∇φ

‖∇φ‖ =−∇ρ · ∇φ

‖∇φ‖ −ρκ (6)

∂φ

∂ t
+‖∇φ‖= 0, with Γt ∼= Γ0 (7)

where κ is the (mean) curvature of Γt .
Equations 6-7 are supplemented by the initial conditions

φ(x, t = 0) =

{
1, if x ∈Ω

−1, if x /∈Ω
(8)

ρ(x, t = 0) =

{
1, if x ∈ ∂Ω

0, if x /∈ ∂Ω.
(9)

Let us define the time-of-arrival function T : Ω→R+ so that

φ(x, t) = T (x)− t. (10)

Hence, Γt = {x∈Ω |T (x) = t}, i.e., T (x) is the time after which
Γt passes through x. Using Eqns. 7 and 10, we obtain ‖∇T‖=
−φ(·, t) = 1, the well-known Eikonal equation for arrival time
T . The Euclidean distance transform DT∂Ω is the weak solution
of this equation under Euclidean norm [57]. Hence, Eqn. 7
without the constraint Γt ∼= Γ0 is the PDE generating continuous
multi-scale (flat) morphological erosions. Other norms are also
possible [43], leading to various distance transforms.

We finally define the skeleton importance λ as the maximum
density that has reached a certain location x ∈Ω, i.e.,

λ (x) = max
t>0

ρ(x, t). (11)

Intuitively, our model describes a conservative advection pro-
cess where mass, uniformly spread on ∂Ω, flows on shortest
paths from ∂Ω to its surface skeleton SΩ; then, along SΩ on
shortest paths to the curve skeleton CSΩ; and finally along CSΩ

on shortest paths to the shape center CΩ (Fig. 1). Once all mass
has reached CΩ, we compute the (simplified) surface and curve
skeletons by thresholding λ at increasing values.

IV. SOLVING THE SYSTEM

To compute the importance λ , we solve the contraction model
in Sec. III-B by discretizing Ω on a uniform cubic-cell (pixel or
voxel) grid embedded in R2 and R3 respectively, as follows.

curve skeleton CSΩ

surface skeleton SΩ

input surface ∂Ω

object center CΩ

low λ high λ

boundary

point p

Fig. 1. Density advection model from the surface ∂Ω of a genus-0 input shape
to its surface skeleton SΩ, curve skeleton CSΩ, and object center CΩ. Colors
depict the importance λ of different spatial regions.

A. Topologically-constrained boundary evolution by density-
ordered thinning

As stated in Sec. III-B, Eqn. 7 must be solved with the
constraint that Γt and Γ0 are homeomorphic, for all t. Even
without this constraint, it is well-known that the evolution of
φ from Eqn. (7) develops discontinuities of the φ derivatives
(shocks) within finite time [43], [57]. The skeleton SΩ precisely
coincides with the locations of these shocks [59].

Since Eqn. 7 can be written as an Eikonal evolution, or
boundary-value problem (Sec. III-B), one way to interpret the
contraction is as thresholding DT∂Ω inside Ω at increasingly
higher values, producing multi-scale morphological erosions
of Ω. Additionally, the topological constraint Γt ∼= Γ0 should
also be satisfied by each level set of DT∂Ω corresponding to
Γt . For achieving this, we could consider using topologically-
constrained level sets [25]. The problem with this approach is
that it first performs an un-constrained step to update level-set
values, following the motion equation (Eqn. 7). Then, at points
x where the topological constrained is violated, the so-called
level-set function ψ is next ‘fixed’ so that the points x lie on the
corresponding side of the boundary dictated by the constraint.
This fix artificially alters the ψ values, which creates spurious
and unwanted discontinuities in ψ , ultimately leading to a not
sharply-defined (in terms of our desired sharp transition of the
level-set function in [−1,1]) and/or non-smooth evolution of Γt .
In turn, this will drastically affect the quality of the extracted
skeletons, as we verified in practice. As such, we chose not to
use topologically-constrained level-sets for our context.

To handle all above issues, we use topology-preserving mor-
phological thinning to define and steer the evolution (contrac-
tion) of Γt . Our thinning process is ordered both by DT∂Ω

and by the density field ρ: As long as Γt is far from the
skeleton SΩ, ordering by DT∂Ω ensures a smooth Γt while
solving Eqn. 7. Additionally, since thinning relies on a binary
field, Γt is maintained sharp during its evolution.

We next explain why the thinning order is also given by
the density field ρ , which is crucial when the evolving Γt
reaches the (yet unknown) skeleton locations. Recall that such
locations correspond to shocks of Eqn. 7. Hence, ordering by
DT∂Ω (which is just a viscosity solution of Eqn. 7) becomes
meaningless. As sketched in Fig. 1, we want the importance λ ,
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and thus also the density ρ which determines this importance,
to monotonically increase from ∂Ω to SΩ, next from ∂SΩ to
CSΩ, and finally from ∂CSΩ (curve-skeleton endpoints) to CΩ.
Since Γt shrinks in normal direction (Eqn. 7), this is equivalent
to transporting density on shortest paths from ∂Ω to SΩ to CSΩ

and next to CΩ. Fig. 1 shows such a path (in white) on which
the mass of a point p ∈ ∂Ω should flow during its advection
to CΩ. Consider now the set of all such paths from all points
on ∂Ω to CΩ. For a shape Ω of genus 0, following a reasoning
similar to [53], these paths will form a tree having as leaves
all (discrete) points of ∂Ω and CΩ as root. The computation
of ρ by means of our contracting Γt is analogous to traversing
this tree from its leaves to the root. To ensure a correct density
update, we thus need that, at any junction-point where several
subtrees meet, all these trees to have been fully traversed and
their roots’ densities to be thus correctly updated. This is why
our thinning visits points in Γt in increasing ρ order.

Figure 2 illustrates our thinning for a 3D shape. When using
density-ordered thinning, Γt (drawn red) is kept smooth during
collapsing. In contrast, if not using density ordering, the col-
lapsing Γt will quickly develop irregularities (Fig. 2 e-h, insets).
In turn, these will create irregularities in the signal ρ which will
ultimately lead to jagged skeletons λτ after simplification.

B. Algorithm
Summarizing the observations from Sec. IV-A, our contrac-

tion algorithm should:
R1: provide a sharp definition of the evolving boundary Γt ;
R2: allow interleaved iterative solves of Eqns. 6 and 7;
R3: ensure a smooth evolution of Γt , steered by DT∂Ω and ρ;
R4: allow efficient computation.
Most existing thinning algorithms do not provide a represen-

tation of Γt which satisfies all requirements R1..R3 above. For
example, the divergence-driven thinning algorithm in [59] uses
a sorted heap to ensure the correct processing order, thus fails
to provide an explicit Γt representation. In contrast, we use an
explicit representation of Γt , modeled as a narrow-band of points
(that is, pixels in 2D and voxels in 3D, respectively). Density is
transported, according to Eqn. 6, only within this narrow-band,
which is computationally efficient (R4).

Let us note that some thinning algorithms combine the
detection and removal of a so-called topologically-simple point
in a single pass. The thinning result may then depend on the
point processing order, as discussed in [28]. In contrast, we use
an approach similar to [28], where we first find all simple points
(detection phase), and eliminate these next (removal phase).

Our full skeletonization algorithm is now as follows (Alg. 1).
During initialization, we compute the Euclidean distance trans-
form DT∂Ω on Ω (line 2). Next, we initialize the full-grid fields
ρ (density), λ (importance) and M (binary description of the
contracting shape) to their default values (line 3). We use DT∂Ω

to label interior points x∈Ω with M(x) = 2 and initial boundary
points x ∈ ∂Ω with M(x) = 1 respectively (lines 4-8). Finally,
we set the density of boundary points to one and gather them in
the set Q1. This set will keep, during the algorithm execution,
all points processed by the current algorithm iteration.

The main loop (lines 10-29) iteratively solves the system
of Eqns. 6 and 7. Here, the field M has two roles. First, M
labels points outside (M = 0), on the boundary (M = 1), and

1 Skeletonize(Shape Ω, Field λ )
Data: Ω: discretized input shape
Result: λ : importance field

2 DT∂Ω(·)← 3D Euclidean distance transform of ∂Ω;
3 ρ(·)← 0; λ (·)← 0; M(·)← 0; Q1←∅;
4 foreach x ∈Ω do
5 if DT∂Ω(x)> 0 then M(x)← 2; // interior points
6 foreach x ∈Ω do
7 if DT∂Ω(x)> 0∧DT∂Ω(x)< 2∧ simple(x,M) then
8 ρ(x)←1; M(x)←1; Q1←Q1∪{x}; // boundary points
9 d← 0;

10 repeat
11 d← d +∆d; Q2←∅;
12 foreach x ∈ Q1 do
13 foreach y ∈N (x)∧M(y) = 2 do
14 Q2← Q2∪{y}; M(y)← 1; // new boundary point
15 Sort Q1 in increasing ρ order;
16 C←∅;
17 foreach x ∈ Q1 do // process Q1 in increasing ρ order
18 if DT∂Ω(x)< d∧ simple(x,M) then C←C∪{x};
19 else Q2← Q2∪{x}; M(x)← 1;
20 B←∅;
21 foreach x ∈C do
22 if simple(x,M) then
23 M(x)← 0; B← B∪{x};
24 λ (x)← max(λ (x),ρ(x));
25 else Q2← Q2∪{x}; M(x)← 1;
26 Transport ρ from x ∈ B to interior points, using Eqn. 6;
27 foreach x ∈ B do ρ(x)← 0;
28 swap(Q1,Q2);
29 until B =∅;

Algorithm 1: Skeletonization algorithm.

respectively inside (M = 2) the shrinking shape, thus efficiently
keeps track of this shape. Secondly, we use M to check if a shape
point is topologically simple or not: the function simple(x,M)
returns true if removing x from the shape given by M(·) > 0
does not change the shape’s topology and false otherwise.

The first inner loop (lines 12-14) fills a set Q2 with unpro-
cessed, 26-connected (8-connected in 2D) neighbors y ∈N (x)
of the point x being processed. The set Q2 captures points
going to be processed in the next algorithm iteration (detailed
further below). Next, we sort the current set Q1 on increasing ρ

(line 15), allowing the second inner loop (lines 17-19) to process
these in increasing order of their density values. This second
loop performs the detection phase of the thinning algorithm.
Additionally, only points which are topologically-simple and
within close distance (∆d) to the current Γt are added to set C
for further processing. The other non-simple points are added
to Q2 for processing in the next iterations. The third inner loop
(lines 21 to 25) performs the removal phase of the thinning
algorithm. Topologically-simple points x ∈C are removed (by
labeling them with M(x) = 0) and collected in the narrow-
band set B. At this stage, their importance λ is also computed
(line 24). Non-simple points are added to Q2.

Set B models the current boundary Γt , thus meeting R1. As
shown in Alg. 1, B is built from current topologically-simple
points (from Q1) in increasing ρ order and by filtering them via
the distance-threshold criterion (line 18). Hence, the boundary
Γt is kept relatively smooth (discussed further in Sec. IV-C),
thus R3 is met. Once B is available, we can transport density
(line 26) from points in B to interior points, thus meeting R2.
After density has been conservatively transported away from the
current B, we set the density to zero at points x ∈ B (line 27).
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Fig. 2. Boundary Γt at four moments, with (a-d) and without (e-h) density-ordered thinning. Surface/curve skeletons, four simplification levels – our method
with (i-l) and without (m-p) density-ordered thinning; Reniers et al. [53] (q-t). All skeletons are color-coded by importance λ using a rainbow colormap.

At the end of the algorithm’s main loop, the sets Q1 and
Q2 are swapped (line 28). This is an essential aspect of our
algorithm, as it facilitates an explicit and computationally-
efficient representation of the boundary Γt (set B above). Having
these sets, we can limit our computations only to a surface-like
band of points around the current Γt , thus meeting R4.

The algorithm stops when B becomes empty. For objects of
genus 0, this happens when the shrunk shape and Q1 contain
only a single point, which is precisely the shape center CΩ.
This point clearly cannot be added to B since the topological
constraint would be violated. For objects of higher genus,
termination happens when the shrunk shape contains only curve-
skeleton loops connected by non-terminal branches, a structure
which cannot be shrunk any longer without disconnecting the
skeleton (see example further in Sec. IV-D).

Let us now discuss the smoothness of the boundary Γt
captured by the set B. Away from singular points of Eqn. 7,
Γt is captured (by the set B) as a level-set of DT∂Ω, which is a

Lipschitz-continuous function under the L2 metric. At singular
points of Eqn. 7, our thinning still endorses Lipschitz continuity,
but under the L∞ metric. Intuitively, at such points, the order in
which new inner points are processed in lines 12-14 reinforces
the L∞ metric when solving Eqn. 6. Note that, although at
non-singular points, topologically-constrained level sets [25]
provide better smoothness properties of the evolving boundary
(due to sub-pixel or sub-voxel precision), such methods have
problems regarding the evolution of Γt along shocks of Eqn. 7,
as discussed in Sec. IV-A. In contrast, our approach produces a
smooth shrinking Γt , as shown by Fig. 2 a-d.

C. Density transport
We now focus on solving the mass conservation equa-

tion (Eqn. 6; Alg. 1, line 26). For 2D and 3D curve skele-
tons, discretizing Eqn. 6 with the unconditionally-stable, semi-
Lagrangian scheme in [35] suffices. However, generating
progressively-simpler surface skeletons by simply thresholding
the importance field λ requires additional work.
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a) density advection b) density diffusive advection

Fig. 3. Density transport via advection vs diffusive advection (see Sec. IV-C).
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Fig. 4. Conservative advection vs. diffusive advection. Density is transported
on the surface skeleton from Γt to Γt+1 by left: conservative advection and right:
diffusive advection. Arrows show the directions in which density is transported.
The new density values at grid cells a, b and c are also shown.

Since our algorithm solves Eqn. 7 under the L∞ norm along
its singular points (see Sec. IV-B), and since noise, small errors
and inacuracies due to the thinning process propagate into the
density field evolution (Eqn. 6), simply thresholding λ would
yield jaggies (indentations) in surface skeletons, for all but
trivial shapes (see example in Fig. 3 a). To tackle this, we
propose a smoothing of the density field ρ , which leads to the
desired importance field λ , as follows.

The key idea of [35] for solving conservative-advection PDEs
similar to Eqn. 3 is to follow so-called characteristic curves
(along which the PDE becomes an ODE) both forwards and
backwards in time, while ensuring that interpolation weights
are equal to one for all grid cells, i.e., the advected density is
conserved. We constrain the density ρ to be zero outside the
shrinking shape, so we only need the forward step. Figure 4 left
shows a schematic example, assuming that density is transported
along surface-skeleton points. For illustration simplicity, and
without loss of generality, we next assume that ρ is one at
all points in Γt . The density propagation directions, given by
∇φ/‖∇φ‖ (Eqn. 5), are shown by arrows. Hence, as shown in
Fig. 4, the (linear) interpolation weights equal one, and the new
density values at grid cells a, b and c have the indicated values.
Since all weights equal one, mass is conserved, as desired.

One way to tackle the above inaccuracies is by endorsing
density advection with a (conservative) diffusive component,
yielding a smoother evolution of ρ . For this, we propose an
anisotropic diffusion process, which we dub diffusive advection
(as opposed to the well-known diffusion-advection PDE). That
is, instead of transporting density solely in the (potentially-
noisy) gradient directions, we also allow density to diffuse to
other surrounding nearby cells (Fig. 4 right). As can be seen
by following the arrows, each ’donor cell’ now contributes to
multiple nearby cells. The weights along each arrow per donor
cell, as well as the new density values of cells a, b and c, are
also shown. More formally, let χ t be the characteristic function
of the shrinking shape, obtained, e.g., by upper-thresholding the
field M(·) of Alg. 1 with value 1. Then, the new density value

at a grid cell i of Γt+1 for time-step t +1 can be expressed as

ρ
t+1
i = ρ

t
i + ∑

j∈Ni

ρ
t
j

1−χ t
j

∑k∈N j χ t
k
, (12)

with being Ni the 26-connected neighborhood centered at i for
the 3D case. Let wt

j =
1−χt

j
∑k∈N j χt

k
and assume that cell i receives

density contributions from three surrounding cells j ∈ {1,2,3}
in Γt (see Fig. 4), i.e.,

ρ
t+1
i = ρ

t
i +ρ

t
1wt

1 +ρ
t
2wt

2 +ρ
t
3wt

3. (13)

This can be rewritten as

ρ
t+1
i −ρ

t
i =

3

∑
k=1

wt
k(ρ

t
k−ρ

t
i )+ρ

t
i

3

∑
k=1

wt
k

which is a discretization of anisotropic diffusion [49] with an
additional reaction term

∂ρ

∂ t
= ∇ · (w∇ρ)+ρC . (14)

Note that C above could be seen as a simple curvature esti-
mate. Comparing Eqn. 6 with Eqn. 14, we see that our simple
discrete rule (Eqn. 12) replaces conservative advective transport
by conservative diffusive transport, while taking into account
the geometry of the evolving Γt . Finally, to force the density to
flow more along gradient directions (u, see Eqn. 5), we replace
the weights wt

j in Eqn. 13 by

W t
j = wt

j/(1+ l2
i j/σ

2
a ), (15)

with li j =
∥∥∥ xi−x j
‖xi−x j‖ −u

∥∥∥ and σa a sensitivity parameter. Thus, for
small σa values, density transport happens mostly along gradient
directions, as required by Eqn. 6, whereas larger σa values result
in density diffusion into cells nearby Γt+1.

Figure 5 shows the density transport directions, generated
by diffusive advection, for a simple test shape. Directions are
shown only for the surface skeleton (a) and the curve skeleton
(b), to reduce occlusion and increase visual readability, and
are directionally color-coded (red=vectors aligned with the x
shape axis, green=vectors aligned with y, blue=vectors aligned
with z). As visible from both overview and detail images, the
transport directions move density from the input surface along
shortest paths to the surface skeleton, next to the curve skeleton,
and next to the object center CΩ, where all mass from ∂Ω

ultimately collapses. The practical result thus matches well the
model proposed in Sec. III-B (see also Fig. 1).

Figure 3 compares the importance fields λ generated by the
two density-transport methods above. Compared to conservative
advection (Fig. 3 a), diffusive advection creates a smooth density
flow along the surface skeleton, leading to the desired smooth
and monotonically-increasing importance field (Fig. 3 b).

D. Detecting different skeleton types

The importance field λ allows us to easily detect both
skeleton types and the shape’s center. Specifically, we have
that SΩ = {x ∈ Ω |λ (x) ≥ 2.0}, since surface-skeleton points
are, by definition, situated at equal distance from at least
two different points on the boundary ∂Ω (Eqn. 2), and thus
have an importance equal to at least that of two (collapsed)
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Fig. 5. Mass transport directions for the hand model over the surface skeleton
(a) and curve skeleton (b), as computed by our model. See Sec. IV-C.

points of ∂Ω, i.e. at least two. For genus 0 objects which
admit a center in the sense denoted in Sec. III-B, we have
CΩ = argmaxx∈Ω λ (x). Curve-skeleton points could be readily
detected by upper thresholding the importance field λ with a
large threshold τ . However, there are two shortcomings with this
approach: First, the resulting curve skeleton may not be always
one-voxel thick. Secondly, its extremities may be removed due
to the large threshold value used. In other words, for high
τ values, we would obtain a simplified, rather than a full,
curve skeleton. To alleviate these issues we detect salient curve-
skeleton points, during the shrinking process, using

CSΩ = {x ∈ B |ρ(x)> c T̂ (x)∧ endPoint(x,M)}, (16)

where c> 0 is a constant (explained next); T̂ is a simple estimate
for the time-of-arrival (approximating T from Eqn. 10), given
by d in Alg. 1; and endPoint(x,M) returns true if x is a curve-
skeleton end point. We justify Eqn. 16 as follows.

First, Eqn. 16 only selects points from the surface skeleton,
since only these have a density larger than two. Consider
now a point b on the skeleton boundary ∂SΩ, such that
b ∈ SΩ \CSΩ (Fig. 6). The density ρ(b) equals the length
of the circular segment C(b) ⊂ ∂Ω (drawn green in Fig. 6),
which is αDT∂Ω(b) = αT (b) with α its subtended angle. Let
x be a neighbour of b such that T (x) = T (b) + 1. Using
the boundary evolution equation (Eqn. 7) and the arrival-time
definition (Eqn. 10), it can be easily shown that x must be in
the ‘upstream’ direction from b, since x−b and ∇φ are parallel
vectors. When the evolving boundary passes through b (i.e.,
b is removed by density-ordered thinning, see Alg. 1), ρ(b) is
‘pushed’ in the upstream direction through (diffusive) advection
transport. Thus, x will directly receive most density of b, under
advective density transport. Moreover, due to the boundary-
propagation order, when the interface is about to pass through
x, point x must also be found to be part of the surface skeleton,
and furthermore, ρ(x) > ρ(b). Indeed, since regular points
x ∈ SΩ \CSΩ also receive density contributions from its two (or
more) feature-points on ∂Ω (boundary normals are preserved
by the Eikonal equation), a rough estimate for the minimum
density at x is ρ(x) > 2+αT (b). By a similar reasoning, for
points y ∈ SΩ \CSΩ situated in upstream direction from b, with
T (y) > T (b) + 1, we find ρ(y) > 2T (y) +αT (b) as a lower

curve skeleton CSΩ

surface skeleton SΩ

input surface ∂Ω

C(b)

x

c

b

feature point
of x

feature point
of x

Fig. 6. Selecting curve-skeleton points for importance boosting (Sec. IV-D).
The red arrow shows the upstream density-advection from b through x up to
the curve-skeleton point c. The yellow arrow shows the second direction from
which c receives density from the surface-skeleton.

bound on their density. Finally, points c ∈CSΩ collect density
from at least two neighbor-points y ∈ SΩ \CSΩ; this is so since
the curve CSΩ locally divides the 2D-manifold surface SΩ in two
parts. For instance, in Fig. 6, c will receive density from at least
two surface-skeleton neighbor points situated at the tips of the
red, respective yellow, arrows. Additionally, c receives a (larger)
density contribution from (at least) another downstream curve-
skeleton neighbor, so ρ(c)> 4∑i T (yi)≥ 4T (c). Hence, setting
c= 4 in Eqn. 16 performs conservative curve-skeleton detection.
We verified empirically that setting c = 4 cleanly and robustly
separates important curve-skeleton points from surface-skeleton
points. Additionally, the end-point test in Eqn. 16 ensures that
only points which are at the sharp ‘tips’ of the shrinking surface
Γt are considered as salient curve-skeleton candidates.

Once the points x ∈ CSΩ are found using Eqn. 16, we
‘boost’ their importance during the iterative process by adding
a constant fraction δ of the input shape’s mass |∂Ω|. As a
result, curve-skeleton points will have a significantly higher
importance than surface-skeleton points. Also, as δ is constant
for all x∈CSΩ, the monotonic increase of importance along the
curve skeleton branches is preserved. All in all, this allows us
to threshold the final importance λ at precisely δ to cleanly and
easily detect a full (unsimplified) CSΩ, and to threshold λ at
higher values to obtain progressively simplified curve skeletons.

Figure 7 shows the effect of increasing the importance
threshold τ for a shape of genus 3. Skeleton voxels are colored
by importance λ via a rainbow colormap. The first three τ values
(Figs. 7 a-c) yield three increasingly simple surface skeletons.
The last of these (Fig. 7 c) is a mix of surface and curve skeleton
parts, i.e., is an example of the meso skeletons described in [67].
As τ increases to δ , we find the full curve skeleton (Fig. 7 d).
Increasing τ further removes the end branches of the curve
skeleton, without disconnecting its loops (Fig. 7 e). For visual
clarity, we used in Fig. 7 e a local normalization of the colormap,
based on the range of voxels in the respective simplified skele-
ton, rather than on the full importance range [0,λmax] used for all
other figures. This shows better how the importance increases
from the curve skeleton endpoints to its center, and is high
over its loops. Finally, for the highest considered τ value, we
get the fully simplified curve-skeleton without disconnections
containing only loops connected by internal branches (Fig. 7 f).

E. Implementation details and parameter settings
Implementation: Our algorithm is implemented in C++
using OpenGL for skeleton rendering. We compute DT∂Ω
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a) b) c) d) e) f)

Fig. 7. Progressively simplified skeletons: surface skeletons (a-c) and curve skeletons (d-f) for six increasing τ values. See Sec. IV-D.

on the CPU by the method of Meijster et al. [27], or on
the GPU (if available) by the method of Cao et al. [13].
Both methods compute the exact Euclidean distance transform
and are linear in |Ω|, the number of foreground pixels or
voxels in the input shape. We implement simple() using
the Euler number for Ω ⊂ R2 and Malandain’s criterion [9]
for Ω ⊂ R3 respectively. We detect curve-skeleton endpoints
(function endPoint(), Eqn. 16) as those voxels x ∈ B with one
(26-connected) neighbor y for which M(y) > 0. We use the
integral method of Neumann et al. [46] to estimate the gradient
directions along which density is transported (Eqn. 5). Sorting
Q1 is implemented by the Standard Template Library (STL)
sort function. Algorithm 1 requires K iterations of the loop
in line 10, where K is roughly equal to 1

2 maxx∈Ω DT∂Ω(x),
the maximal thickness of Ω. Since at each iteration we sort
the set Q1, which is worst-case equal to the input boundary
∂Ω, the total complexity of our method is O(K |∂Ω| log(|∂Ω|)).
Parameters: Throughout the paper we use the following pa-
rameter settings. To obtain a good approximation of the motion
equation (Eqn. 7), we set the distance step ∆d in Alg. 1 to
∆d = 1. The parameter σa, controlling the density spread along
gradient directions (Eqn. 15), is set to σa = 0.2. The parameter
c in Eqn. 16, i.e., the saliency of the detected curve-skeleton
points, is set to c = 4.0. The parameter δ , representing the
importance difference between curve and surface skeleton points
(Sec. IV-D), is set to δ = 0.1 of the total input surface mass
|∂Ω|. The above values have been tested on a set of over 60
shapes, voxelized at various resolutions, and have consistently
delivered good results like the ones shown in our figures here.
As such, the only free parameter is the skeleton simplification
threshold τ , whose use is explained in Sec. IV-D.

V. COMPARATIVE RESULTS

A. Two-dimensional skeletons
For 2D shapes, we compared our method with the Augmented

Fast Marching Method (AFMM) [69]. AFMM is a good ex-
ample of 2D skeletonization methods that computes centered,
accurate, connected, and pixel-thin skeletons regularized by the
collapsed boundary-length importance metric (like [20], [47]).

Figure 8 shows skeletons of several shapes from the database
in [56] extracted with AFMM and with our method, for several
simplification thresholds τ . Our method and the AFMM produce
visually identical skeletons, both in terms of position, but also
branches kept at a given τ . This is a non-trivial result, given that
our method and the AFMM have completely different models
behind. Moreover, since λAFMM at a skeleton point x equals the
length of boundary that collapses to x when advected in ∇DT∂Ω,
and since λ ≈ λAFMM (Fig. 8), this supports the claim that our
λ is indeed equal to the collapsed boundary length.

B. Surface skeletons
Figure 9 (bottom 6 rows) compares our method with

four voxel-based methods: multiscale skeletons (MS) [53],
Hamilton-Jacobi (HJ) [59], integer medial axis (IMA) [27], and
iterative thinning process (ITP) [31]; and with the multiscale
mesh-based skeletonization (MBS) in [29]. Test shapes cover
a wide range, including natural and synthetic, smooth and
detailed, and objects of various genii (all voxelized at 5123

resolution by binvox [48]). Our surface skeletons look very
similar to those created by other methods, and show similar
power in capturing the input shape genus and boundary details.

The comparison with MS is particularly interesting. To our
knowledge, MS is the only existing voxel-based technique that
computes multiscale surface skeletons whose importance uses
a boundary-collapse metric. For MS, this metric is

λSS(x ∈ S) = min
γ=(fx

1 fx
2 )⊂∂Ω

‖γ‖ (17)

i.e. the length ‖γ‖ of the shortest geodesic path γ on ∂Ω between
the two feature points f x

1 and f x
2 of a skeleton point x.

As for the 2D case (Sec. V-A), we see that our surface
skeletons and importance values (color-coded in Fig. 9, row
12, by a rainbow colormap) are very similar to the MS ones
(Fig. 9, row 7). Figure 2, two bottom rows, details this insight
by showing four surface skeletons obtained by thresholding our
importance λ , and λSS, at four increasing values. The monotonic
increase of both λ and λSS, from low values on the surface-
skeleton boundary to high values on the curve skeleton, and the
resulting skeletons, are similar. This is an even more interesting
result than the similarity of our results with the AFMM. Our
importance λ (x) equals the amount of boundary mass which
reaches x subject to Eqs. 6,7. The fact that λ ≈ λSS supports
the conjectures in [18], [53] that all boundary points on such
a geodesic γ , if advected in ∇DT∂Ω, would reach the skeleton
point x. However, a formal proof of these conjectures still lacks.
Separately, Fig. 2 (bottom row) shows that our λ monotonically
increases as we advance inwards on the skeletal structures
(Sec. IV), hence that thresholding λ yields connected skeletons.

To better qualitatively assess our surface skeletons, Fig. 10
compares these with skeletons computed by the high-resolution
MBS method [29], which uses the multiscale-importance in
[53], but has a different skeleton detector, and uses a mesh
rather than a voxel representation. For more insight, we colored
our surface-skeleton border voxels red. Our skeletons are very
similar to the MBS ones. Our method captures roughly the same
amount of skeleton detail as MBS, even though the latter uses
mesh, rather than voxel, skeleton-and-shape representations.
Figures 10 (4) shows our reconstruction of the input shape by
drawing balls centered at the surface-skeleton voxels x and
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TABLE I
PERFORMANCE COMPARISON. SKELETONIZATION SPEEDS IN COLUMNS 4-13 ARE GIVEN IN FOREGROUND VOXELS/MILLSECOND.

Model (5123 voxels) |Ω| |∂Ω| Our method TV DDS RT ITP(curve) MS(curve) MS(surface) HJ IMA ITP(surface) MBS(surface)
Dino 3952385 214232 364.8 (10.83 sec) 109.5 9.9 14.7 60.9 30.6 38.32 36.9 62.5 66.5 1.62 sec
Dragon 1208845 119144 421.4 (2.86 sec) 61.2 10.6 10.8 25.7 7.2 27.2 14.8 45.8 25.7 14.0 sec
Fertility 7010557 343667 365.5 (19.18 sec) 133.0 13.2 16.8 51.9 15.4 25.6 30.9 158.0 51.9 4.13 sec
Rockerarm 2726188 186362 500.1 (5.45 sec) 111.4 14.3 22.3 51.9 17.9 13.5 52.3 99.4 49.3 4.2 sec
Casting 4280458 544345 400.6 (10.68 sec) 109.8 12.6 19.7 48.6 9.3 29.1 49.7 87.5 53.2 3.28 sec
Horse 9235212 329222 361.9 (25.51 sec) 120.5 10.2 25.9 54.9 13.7 32.9 52.1 94.3 54.9 13.65 sec
Elephant 7885332 310919 294.9 (26.73 sec) 112.8 10.6 9.1 43.8 20.8 30.4 42.3 109.7 42.2 3.92 sec
Frog 7796250 323397 335.5 (23.23 sec) 123.0 12.9 16.0 48.1 10.5 63.3 54.1 148.5 65.6 2.74 sec
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Fig. 8. Comparison of importance-colored 2D skeletons computed with our method and the AFMM [69], for increasing skeleton-simplification levels.

whose radii equal DT∂Ω(x), using the rendering technique in
[29]. As visible, our reconstructions are very close to the
input shapes (Figs. 10 (3)). The small bubble-like differences are
explained by the fixed resolution of the voxel grid. This verifies
the reconstructibility criterion for our method and, implicitly,
shows that our skeletons are correctly centered. The last row
in Fig. 10 compares our method for the elephant shape from
Fig. 7, which has three tunnels, large thin-and-flat areas (ears),
near-cylindrical parts (legs), high positive-curvature areas (ear
borders), and high negative-curvature areas (ear-head junctions).
Our surface skeleton is very close to the one produced by MBS,
and also to the skeleton produced by the discrete-scale axis

(DSA) mesh-based method of Miklos et al. [44], one of the
highest-accuracy existing surface-skeletonization methods.

C. Curve skeletons
Figure 9 (top 6 rows) compares our method with five

curve-skeleton methods: Thinvox (TV) [48], distance-driven
skeletonization (DDS) [3], robust thinning (RT) [39], iterative
thinning process (ITP) [31], and multiscale skeletons (MS)
[53]. In contrast to surface skeletons, we see now more vari-
ation between the compared methods. Our method delivers
consistently thin (unlike MS), smooth (unlike ITP), noise-free
(unlike ITP), and genus-preserving (unlike RT and MS) curve
skeletons. Figure 11 shows extra insight, by comparing our
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Fig. 9. Comparison of our 3D surface and curve skeletons with 10 related methods. Top 6 rows: curve skeletons. Bottom 6 rows: surface skeletons.
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1) 2) 3) 4)

1) 2) 3) 4)

1) 2) 3) 4) 1) 2) 3) 4)

1) 5)2) 3) 4)

3)

)

4)

Fig. 10. Comparison of surface skeletons: (1) Jalba et al. (MBS) [29]; (2) our method; Original shapes (3) vs our skeleton-based reconstruction (4). All voxel
models have a 5123 resolution. Last row: detailed comparison, including also (5) the surface-skeleton of Miklos et al. [44].

method with six additional mesh-based curve-skeletonization
methods (Kustra et al. [34]; Livesu et al. [40]; Telea and Jalba
[30]; Au et al. [6]; Dey and Sun [18]; and Jalba et al. [29]). As
visible, our method yields well-centered curve skeletons which
compare favorably, in terms of smoothness and lack of spurious
branches, with the highest-quality mesh-based skeletons.

a) Kustra et al. b) Livesu et al. c) Telea and Jalba d) Au et al.

f) Dey and Sun h) Reniers et al. j) our methodi) Arcelli et al.

) ))

g) Palagyi et al.

e) Jalba et al.

Fig. 11. Comparison of curve-skeletonization methods. Mesh-based methods
(a-e). Voxel-based methods (f-i). Our method (j).

As for surface skeletons (Sec. V-B), let us detail the parallel
with MS curve-skeletons. MS detects curve skeletons as those
points having at least two equal-length geodesics on ∂Ω be-
tween their feature points (MGF criterion in [18]). MS extends
MGF by assigning a curve-skeleton importance λCS equal to

the area bounded on ∂Ω by the above two geodesics. Figures 9
and 11 show that our curve-skeletons and MS are very similar.
The importances λ and λCS are also quite similar (see Fig. 2 l vs
Fig. 2 t and Fig. 9, row 5 vs 6), except for the rockerarm, casting,
and frog models, where λCS is smaller. Upon closer inspection,
this shows a defect of MS: Low λCS points appear on curve-
skeleton loops, whose geodesics do not cut ∂Ω in two separate
parts according to the Jordan theorem [70], so following [53]
these points should get a high importance, to prevent loop
disconnection when simplifying skeletons. Our method correctly
finds such loops and assigns them a high importance.

VI. DISCUSSION

A. Method properties
Unification: Our method extracts 2D skeletons, 3D surface and
3D curve multiscale skeletons. To our knowledge, this is the
first time that all these three skeleton types, including multiscale
regularization, are computed by a single method which uses
a single simplification metric. From both a theoretical and
a practical perspective, we believe this to be an important result.

Robustness and accuracy: Our method computes thin, cen-
tered, homotopy-preserving, and connected skeletons from po-
tentially noisy 2D and 3D shapes of arbitrary genus. Figure 12
quantitatively compares our skeletons with four other methods,
using the technique in [61]. In detail, given two (curve or
surface) skeletons S1 and S2, we first define the distance field

D12(x ∈Ω) =

{
miny∈S2 ‖x−y‖= DTS2(x) if x ∈ S1,

0 if x 6∈ S1.

To compare two same-kind (curve or surface) skeletons, we
draw the field D12+D21 over the voxels S1∪S2, normalized by
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curve skeleton CS1

curve skeleton CS2

Identical Different

curve skeleton CS1

surface
skeleton SS2

Legend

Fig. 12. Quantitative comparison of surface and curve skeletons. Color mapping indicates skeleton differences (see Sec. VI-A).

its maximum value, using a rainbow colormap. Close skeleton
fragments are blue, while outlier ones are red. Comparing a
curve skeleton CS1 with a surface skeleton SS2 shows how
well is CS1 contained within SS2. For this, we color voxels
in CS1 by D12, and voxels in SS2 \CS1 with gray. Hence,
voxels in CS1 ∩ SS2 are blue, and voxels in CS1 far from SS2
become red (Fig. 12 inset). Looking at Fig. 12, we see that
our surface skeletons are very similar to those produced by
IMA and HJ (Fig. 12 b,d). Warm colors, showing differences,
occur mainly on the surface-skeleton boundary, and are due to
the different simplification methods (and simplification levels)
used by the compared methods. Our curve skeletons are fully
contained in our surface skeletons, as expected (Fig. 12 e),
but also nearly fully contained in the IMA and HJ skeletons
(Fig. 12 g,i). Conversely, the DDS and HJ curve skeletons
are well contained in our surface skeletons (Fig. 12 a,c). The
largest differences, found between curve skeletons themselves
(Fig. 12 f,h), are still quite small in absolute value.

Scalability: Table I (column 4) shows the speed of our
method, implemented in C++ on a Linux 3.5 GHz PC with
32 GB RAM and an NVidia 690 GTX for the shapes in
Fig. 9. Columns 2 and 3 give the shapes’ surface areas |∂Ω|
and volumes |Ω|, in voxels. We note a high and relatively
shape-independent throughput (foreground voxels/second), in
line with the complexity stated in Sec. IV-E. Compared to the
tested voxel-based methods (columns 5-13), our method is one
order of magnitude faster on average. The next-fastest method
is TV [48]. However, TV does not compute surface skeletons
nor an importance metric. Compared to MS, the only other
voxel-based method which computes a multiscale importance
metric, we are on average 10 times faster. The last column in
Tab. I shows the speed of the MBS mesh-based skeletonization
in [29], the second other method we are aware of (apart from
MS) which computes multiscale skeletons. Compared to our
absolute timings (Tab. I, column 4, figures in brackets), MBS
is 2.6 times faster on average. However, MBS is parallelized
on the GPU, while our method is sequential and on the CPU.

Our cost is essentially dominated by the number of foreground
voxels (Sec. IV-E), while MBS is dominated by the cost of
its geodesic tracing, which is O(n3/2) for a meshed surface
of n vertices. As such, our method is of comparable speed or
even faster than MBS for shapes like dragon or rockerarm,
which have a low volume (thus, generate few voxels for our
method) but are represented by highly-refined meshes (thus,
are costly for MBS). Conversely, our method is about ten
times slower than MBS for shapes having a high volume, and
whose mesh-representation uses few vertices, e.g. dino and frog.

Simplicity: Our framework has a single, simple, 2D and 3D
implementation (under 2000 lines of C++), with no complex
computational geometry operations or degenerate cases, unlike
some mesh-based methods [44], [53], [64]. Its only user
parameter, the importance threshold τ , is simple to use: given
the initial uniform density on ∂Ω, τ selects skeletal structures
which encode input-shape details whose length (in 2D) or area
(in 3D) is larger than τ , similarly to [20], [47], [53], [69].

Classical properties: We next summarize the behavior of our
method vs several recognized desirable skeleton properties.

1. Centeredness: Centeredness is ensured by the unit-speed
evolution of Γt (Eqn. 5). We verify centeredness, both for
curve and surface skeletons, against several methods known to
formally respect this property [3], [27], [53], [69] (see Fig. 10).

2. Thinness: Our 2D and 3D skeletons are one-cell (pixel or
voxel) thin, by construction. To argue this, suppose that this
would not be so. Then, a skeleton λτ would (a) be thicker
than one cell, and (b) would have, over a cross-section, the
same importance λ . If such a thick cross-section existed, our
shrinking algorithm would continue, since the shape can be
further shrunk without disconnecting it (see Fig. 2).

3. Homotopy: Homotopy of the skeleton with the input shape
is guaranteed by construction, by the constraint in Eqn. 4 and
its corresponding implementation (Alg. 1).

4. Reconstructibility: The ability to reconstruct (smoothed
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versions of) the input shape from (simplified versions of) its
skeleton is shown in Fig. 10. As visible, our reconstruction
is quite accurate (compare e.g. Fig. 10 with Fig. 4 in [29]),
modulo the natural limitation imposed by the fixed voxel grid.

5. Rotational invariance: The discretization of our proposed
PDE system (Eqns. 3-5) described in Sec. IV-C is rotationally
invariant by construction. We have verified that we indeed
obtain nearly voxel-identical multiscale skeletons for the same
input shape rotated at random angles with respect to the cell
grid (not shown here for sake of brevity).

6. Curve vs surface skeletons: Our curve skeletons are by
construction included in the surface skeletons of the same
shape, since they are both obtained by thresholding the same
single-and-global importance field λ (see Sec. IV-D).

7. Multiscale and noise resistance: The field λ describes the
whole space between the input surface ∂Ω, surface skeleton
SΩ, curve skeleton CSΩ, and shape center CΩ. Thresholding λ

with increasing values yields the SΩ from Ω; simplified surface
skeletons (without branches due to small-scale shape details);
the (simplified) CSΩ; and the shape center, or zero-dimensional
skeleton, of Ω. Reniers et al. get similar results, but they
need two separate surface and curve skeleton importances
and corresponding algorithms [53]. We compute λ making no
distinction between the two skeleton types. Telea and Jalba
compute multiscale curve skeletons by collapsing surface
skeletons inwards, following the idea that the former can be
seen as the medial loci of the latter [30]. Yet, as in [53],
their surface and curve skeleton algorithms are fundamentally
different, and they also do not propose a curve-skeleton
importance metric. Thresholding λ at values τ between the
average importance of SΩ and CSΩ yields a meso-skeleton
structure [67] that continuously shrinks from SΩ towards CSΩ

as τ increases (see Sec. IV-D).

Limitations: Our method stores four voxel scalar volumes (ρ ,
λ , M, and DT∂Ω in Alg. 1), i.e. can handle shapes up to roughly
10003 voxels on a 16 GB PC. Mesh-based skeletonization
methods [29], [41] need far less memory. For instance, the
mesh models for all shapes in this paper, which are up to 1M
triangles, need only 24MB with the method in [29]. Separately,
we acknowledge that our comparisons highlight differences
between our skeletons and those produced by other methods,
but do not explicitly show which skeletons are more suitable
for a specific application, e.g. shape retrieval, classification, or
segmentation. A thorough qualitative comparison with this goal
is an important topic for future work.

B. Comparison with Hamiltonian methods
Equation 3 is similar with Torsello and Hancock’s (TH) mass

conservation model ∇ ·(ρu)= 0 used for 2D skeletonization [5].
Yet, several key differences exist. Numerically, TH transforms
the mass conservation ∇ · (ρu) = 0 into a system of two ODEs
(Eqns. 7 in [5]) by the substitution σ = log(ρ). These ODEs
are solved with a second-order Crank-Nicholson divergence-
discretization scheme coupled with semi-Lagrangian advection.
In contrast, we use the conservative semi-Lagrangian scheme
of Fedkiw [35], which only needs linear interpolation and
clamping. This has several advantages. First, our scheme is
numerically very stable, and conserves density well. Secondly,

we do not need the second-order divergence discretization of
TH. Thirdly, by computing the density logarithm σ , TH also
needs exponentiation to find the final density ρ = exp(σ).
We noticed, in practice, that this creates important numerical
problems, such as an infinite value of ρ at several points in Ω.

Torsello and Rossi extend the TH density advection to extract
3D medial surfaces [54]. In their model, density advection
stops when reaching the surface skeleton. In contrast, we
continue advection by collapsing the surface skeleton to the
curve skeleton and the latter to the shape center, yielding all
desired skeletal representations within a single process.

VII. CONCLUSIONS

We have presented a unified framework for computing 2D
skeletons and 3D surface and curve skeletons. We detect all
skeleton types by a single algorithm, and also compute a single
importance metric which assigns to each skeletal point the
amount of (2D or 3D) input boundary described by that point.
Comparing our skeletons and their computed importance with
results computed by related methods shows a very good match.
We present a simple implementation of our method which
achieves good performance results on a range of complex 2D
and 3D shapes, i.e., over 3 times faster than the fastest voxel-
based skeletonization method we are aware of, and over 10
times faster than comparable multiscale methods.

Future work can target several directions. Porting our method
to massively-parallel platforms (e.g., CUDA) using sparse voxel
grids will increase scalability. Separately, modulating the input-
surface density by e.g. curvature or application-specific metrics
would allow different feature-sensitive skeleton simplifications.

ACKNOWLEDGMENTS

We acknowledge the financial support of CNPq, Brazil,
through the grant 202535/2011-8, and the help of the authors
of [3] in providing us their DDS method implementation.

REFERENCES

[1] N. Ahuja and J. Chuang. Shape representation using a generalized
potential field model. IEEE TPAMI, 19(2):169–176, 1997.

[2] N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc. SMA,
pages 65–73. ACM, 2001.

[3] C. Arcelli, G. Sanniti di Baja, and L. Serino. Distance-driven skeletoniza-
tion in voxel images. IEEE TPAMI, 33(4):709–720, 2011.

[4] C. Aslan, A. Erdem, E. Erdem, and S. Tari. Disconnected skeleton: Shape
at its absolute scale. IEEE TPAMI, 30(12):2188–2203, 2008.

[5] A.Torsello and E. Hancock. Correcting curvature-density effects in the
Hamilton-Jacobi skeleton. IEEE TIP, 15(4):877891, 2006.

[6] O. K. C. Au, C. Tai, H. Chu, D. Cohen-Or, and T. Lee. Skeleton extraction
by mesh contraction. In Proc. ACM SIGGRAPH, pages 441–449, 2008.

[7] X. Bai and L. Latecki. Path similarity skeleton graph matching. IEEE
TPAMI, 30(7):1282–1292, 2008.

[8] X. Bai, L. Latecki, and W.-Y. Liu. Skeleton pruning by contour partitioning
with discrete curve evolution. IEEE TPAMI, 3(29):449–462, 2007.

[9] G. Bertrand and G. Malandain. A new characterization of three-
dimensional simple points. Pattern Recogn. Lett., 2(15):169–175, 1994.

[10] T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-
dimensional vesicle dynamics. Phys. Rev. E, 72:041921, 2005.

[11] S. Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven automatic
centerline extraction. Medical Image Analysis, 9(3):209–221, 2005.

[12] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su. Point cloud
skeletons via Laplacian based contraction. In Proc. IEEE SMA, pages
187–197, 2010.

[13] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding algorithm
to compute exact distance transform with the GPU. In Proc. SIGGRAPH
I3D Symp., pages 134–141, 2010.

[14] M. Chang, F. Leymarie, and B. Kimia. Surface reconstruction from point
clouds by transforming the medial scaffold. CVIU, (113):1130–1146,
2009.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[15] M. Chuang and M. Kazhdan. Fast mean-curvature flow via finite-elements
tracking. CGF, 30(6):1750–1760, 2011.

[16] N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian. Computing
hierarchical curve-skeletons of 3D objects. Visual Comput., 21(11):945–
955, 2005.

[17] J. Damon. Global medial structure of regions in R3. Geometry and
Topology, 10:2385–2429, 2006.

[18] T. Dey and J. Sun. Defining and computing curve skeletons with medial
geodesic functions. In Proc. SGP, pages 143–152. IEEE, 2006.

[19] T. Dey and W. Zhao. Approximating the medial axis from the Voronoi
diagram with a convergence guarantee. Algorithmica, 38:179–200, 2003.

[20] A. Falcão, L. Costa, and B. da Cunha. Multiscale skeletons by image
foresting transform and its applications to neuromorphometry. Pattern
Recognition, 35(7):1571–1582, 2002.

[21] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified
medial axis. In Proc. Shape Modeling, pages 135–142, 2003.

[22] Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete
euclidean distance maps. IEEE TPAMI, 18:1055–1066, 1996.

[23] P. Giblin and B. Kimia. A formal classification of 3D medial axis points
and their local geometry. IEEE TPAMI, 26(2):238–251, 2004.

[24] J. Giesen, B. Miklos, M. Pauly, and C. Wormser. The scale axis transform.
In Proc. Annual Symp. Comp. Geom., pages 106–115, 2009.

[25] X. Han, C. Xu, and J. L. Prince. A topology preserving level set method
for geometric deformable models. IEEE TPAMI, 25(6):755–768, 2003.

[26] M. Hassouna and A. Farag. Variational curve skeletons using gradient
vector flow. IEEE TPAMI, 31(12):2257–2274, 2009.

[27] W. Hesselink and J. Roerdink. Euclidean skeletons of digiral image and
volume data in linear time by the integer medial axis transform. IEEE
TPAMI, 30(12):2204–2217, 2008.

[28] M. Iwanowski and P. Soille. Fast algorithm for order independent binary
homotopic thinning. In Proc. ICANNGA, pages 606–615. Springer, 2007.

[29] A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletonization of
large 3D models on the GPU. IEEE TPAMI, 35(6):1495–1508, 2013.

[30] A. Jalba and A. Telea. Computing curve skeletons from medial surfaces
of 3D shapes. In Proc. TPCG, pages 99–106. Eurographics, 2012.

[31] T. Ju, M. Baker, and W. Chiu. Computing a family of skeletons of
volumetric models for shape description. Comput. Aided Des., 39(5):352–
360, 2007.

[32] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM TOG, 22(3):954–961, 2003.

[33] R. Kimmel, D. Shaked, N. Kiryati, and A. Bruckstein. Skeletonization
via Distance Maps and Level Sets. CVIU, 62(3):382–391, 1995.

[34] J. Kustra, A. Jalba, and A. Telea. Probabilistic view-based 3D curve
skeleton computation on the GPU. In Proc. VISAPP, volume 2, pages
237–246, 2013.

[35] M. Lentine, J. Gretarsson, and R. Fedkiw. An unconditionally stable fully
conservative semi-Lagrangian method. J. Comp. Phys., 230(8):2857–2879,
2011.

[36] F. Leymarie and B. Kimia. The medial scaffold of 3D unorganized point
clouds. IEEE TVCG, 29(2):313–330, 2007.

[37] F. Leymarie and M. Levine. Simulating the grassfire transform using an
active contour model. IEEE TPAMI, 14(1):56–75, jan 1992.

[38] X. Li, T. Woon, T. Tan, and Z. Huang. Decomposing polygon meshes for
interactive applications. In Proc. I3D Symp., pages 35–42, 2001.

[39] L. Liu, E. Chambers, D. Letscher, and T. Ju. A simple and robust thinning
algorithm on cell complexes. CGF, 29(7):2253–2260, 2010.

[40] M. Livesu, F. Guggeri, and R. Scateni. Reconstructing the curve-skeletons
of 3D shapes using the visual hull. IEEE TVCG, 18(11):1891–1901, 2012.

[41] J. Ma, S. W. Bae, and S. Choi. 3D medial axis point approximation using
nearest neighbors and the normal field. Visual Comput., 28(1):7–19, 2012.

[42] G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Image and
Vision Computing, 16(5):317–327, 1998.

[43] P. Maragos and M. A. Butt. Curve evolution, differential morphology, and
distance transforms applied to multiscale and eikonal problems. Fundam.
Inf., 41(1,2):91–129, 2000.

[44] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis representations
for 3D geometry. In Proc. ACM SIGGRAPH, pages 394–493, 2010.

[45] M. Mortara, G. Patanet, M. Spagnuolo, B. Falcidieno, and J. Rossignac.
Plumber: A method for multiscale decomposition of 3D shapes into tubular
primitives and bodies. In Proc. ACM SMA, pages 339–344, 2004.
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