
EG UK Theory and Practice of Computer Graphics (2012)

Hamish Carr and Silvester Czanner (Editors)

Computing Curve Skeletons from Medial Surfaces

of 3D Shapes

A. Telea1 and A. C. Jalba2

1University of Groningen, the Netherlands
2Eindhoven University of Technology, the Netherlands

Abstract

Skeletons are powerful shape descriptors with many applications in shape processing, reconstruction and

matching. In this paper we show that in 3D, curve skeletons can be extracted from surface skeletons in the

same manner as surface skeletons can be computed from 3D object representations. Thus, the curve skeleton is

conceptually the result of a recursion applied twice to a given 3D shape. To compute them, we propose an explicit

advection of the surface skeleton in the implicitly-computed gradient of its distance-transform field. Through

this process, surface skeleton points collapse into the sought curve skeleton. As a side result, we show how to

reconstruct accurate and smooth surface skeletons from point-cloud representations thereof. Finally, we compare

our method to existing state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Skeletons, or medial axes, are shape descriptors used in vir-

tual navigation, shape matching, shape reconstruction, and

shape processing [SP09]. 3D shapes admit two types of

skeletons. Surface skeletons, or S-skeletons, are 2D mani-

folds which contain the loci of maximally-inscribed balls

within a shape [SP09, PSS∗03]. Curve skeletons, or C-

skeletons, are 1D curves which are locally centered in the

shape [CSYB05]. Surface-skeleton points, together with

their distance to the shape and closest-shape points, define

the medial surface transform (MST), which is used for shape

animation, smoothing, and matching [CC00].

While S-skeletons have a formal definition, several def-

initions for C-skeletons exist. Different methods use these

definitions to extract C-skeletons directly from the input 3D

shape. As such, the relation between surface and curve skele-

tons is still largely unexplored.

In this paper, we show that C-skeletons can be de-

fined based on (and extracted from) S-skeletons analogously

to the definition (and extraction) of S-skeletons from 3D

shapes. For this, we extend a recent surface skeletonization

method [MBC12] that extracts point-cloud S-skeletons to

reconstruct manifold S-skeleton representations in a noise-

resistant manner. Next, we use this representation to extract

C-skeletons and compare these with results of related meth-

ods that directly extract C-skeletons from 3D shapes.

To our knowledge, the proposed approach is the first one

which shows that surface and curve skeletons can be defined

within a single, unitary and dimension-independent frame-

work, rather than using separate definitions for the two. This

conceptually reduces curve skeleton computation to a ‘recur-

sive’ skeletonization operation applied twice on 3D shapes.

From a practical viewpoint, our approach offers a robust and

simple alternative for noise-resistant C-skeleton extraction

from complex 3D shapes.

This paper is structured as follows. Section 2 reviews re-

lated work on curve and surface skeleton extraction. Sec-

tion 3 shows how we extract manifold S-skeleton representa-

tions from (noisy) point-cloud S-skeletons. Section 4 shows

how to extract C-skeletons from S-skeleton manifolds and

presents results on several 3D shapes. Section 5 compares

our results with two related curve skeleton extractors and

discusses our method. Section 6 concludes the paper.

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

2. Related Work

Given a shape Ω ⊂ R
3 with boundary ∂Ω, we first define its

distance transform DT∂Ω : Ω → R
+

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x−y‖. (1)

The S-skeleton of Ω is next defined as

S(Ω) = {x ∈ Ω |∃y,z ∈ ∂Ω, y 6= z,

‖x−y‖= ‖x− z‖= DT∂Ω(x)}, (2)

where ‖ ·‖ is the Euclidean distance metric in R3, and y and

z are the contact points with ∂Ω of the maximally-inscribed

ball in Ω centered at x, also called feature points [ST04] or

spoke vectors [SWS09]. S(Ω) is a set of manifolds which

meet along a set of Y-intersection curves [Dam06] or medial

scaffold [LK07,CLK09].

Surface skeletons: S(Ω) is computed by voxel or mesh-

based methods. Voxel-based methods include thinning,

distance-field, and general-field methods. Thinning removes

voxels of ∂Ω while preserving connectivity [PK99, Pud98].

Distance-field methods find S(Ω) along singularities of

DT∂Ω [RT02, TvW02, WDK01, SBTZ02, HR08] and can

be efficiently done on GPUs [ST04, SFM05, vDvdWT06,

CTMT10]. General-field methods use fields with less sin-

gularities than distance transforms [AC97,CSYB05,HF09],

so are more robust for noisy shapes. Stolpner et al. find

skeleton voxels where the gradient of the shape’s distance

transform is multi-valued [SWS09, SWS11]. Mesh-based

methods often use Voronoi diagrams to compute polygonal

skeletons [DZ03]. Amenta et al. compute the Power Crust,

an approximate S-skeleton, by a carefully-chosen subset

of Voronoi points [ACK01]. Miklos et al. approximate

shapes by a union of balls (UoB) and use UoB medial

properties [GMPW09] to simplify S-skeletons [MGP10].

Mesh-based methods compute S-skeletons very precisely,

can handle non-uniformly sampled surfaces, and use much

less memory – typically O(N2) as compared to O(N3)
needed for a N3 voxel volume [Sud06].

Curve skeletons: C-skeletons have widely different def-

initions [CSM07, CTK00]. Among recent advances, Au

et al. compute C-skeletons by collapsing the input shape

via Laplacian smoothing [ATC∗08]. ROSA computes C-

skeletons as centers of point-cloud projections on a cut plane

found by optimizing for circularity [TZCO09]. Hassouna et

al. [HF09] compute C-skeletons as the extrema of a cost

function that captures centrality with respect to the input sur-

face, and find these extrema using variational methods in a

voxel setting.

Dey and Sun present the medial geodesic function

(MGF), which defines the C-skeleton as the locus of

S-skeleton points having two or more different shortest-

geodesics between their feature points [DS06, PH02].

Reniers et al. [RvWT08] extend the MGF to compute

both surface and curve skeletons using geodesic lengths

and surface areas between geodesics, respectively. Unlike

these methods, our approach does not rely on a volumetric

representation of the input 3D object. As such, computing

the C-skeleton by selecting those points of the S-skeleton

which admit two or more, different shortest geodesics,

would result in a very sparse (and disconnected) C-skeleton.

Therefore, our approach does not rely on this criterion

for selecting C-skeleton points and avoids the sparsity

problem by computing the C-skeleton through collapsing

the (connected) S-skeleton mesh.

3. Surface Skeleton Extraction

Recently, Ma et al. proposed arguably the fastest ex-

isting method for extracting S-skeletons from meshed

shapes [MBC12]. Given a mesh representation M =
({(pi,ni)},{t j}) of an input surface ∂Ω consisting of points

pi with (unit) normals ni and triangles t j, for each point

p ∈ M, a (large) ball B(s,rL) = −rL n+ p is created, with

center s and tangent at p. Then, the algorithm iteratively

shrinks B until it becomes maximally inscribed, at which in-

stance its center s′ yields the final skeleton point. By defini-

tion, f s
′

1 ≡ p is the first feature point of S-skeleton point s′,

whereas the second contact point of the maximal ball yields

the second feature point f s
′

2 of s′. However, as the authors

of [MBC12] point out, this method produces a point cloud

S-skeleton, SC, which is of limited use in applications.

We create a mesh representation MS from SC in a three-

step process, as follows.

Importance computation: Given SC, we compute the im-

portance ρ : SC → R
+ as

ρ(s ∈ SC) = min
γ=(f s1 f s2)⊂∂Ω

‖γ‖ (3)

i.e. the length of the shortest geodesic path γ on the mesh

M between the two feature points f s1 and f s2 of s. For this,

we compute the geodesic distance DTM(f s1 → f s2) on M

between f s1 and f s2 using the Fast Marching Method, and

next trace γ in −∇DTM(f s1 → f s2) from f s2 to f
s
1 [PC05]. This

is essentially the S-skeleton importance metric of Reniers

et al. [RvWT08], implemented in our case on mesh, rather

than voxel, surfaces. Other methods can be used for the

same purpose, e.g. [SSK∗05,VS09].

S-skeleton reconstruction: Given ρ, we now iterate over

all triangles ti = {pij},1 ≤ j ≤ 3 of the mesh M and select,

for each triangle vertex pij, the corresponding skeleton point

s(pij) ∈ S having the maximal importance, i.e.

s(pij) = argmaxs∈S | f s1=s(pij)∨ f s2=s(pij)
ρ(s) (4)

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

Next, we create a S-skeleton triangle tSi = {s(pij)},1≤ j≤ 3

for ti. The S-skeleton mesh MS is then simply the collection

of these triangles, {tSi }. Let us observe thatMS is homotopic

to M. In particular, MS preserves the manifold properties

of M. This is due to the fact that the vectors s(pij)− pij do

not intersect with each other for any triangle ti, as these

vectors are parallel to the gradient vector of DT∂Ω. Further,

these vectors span a vector field which is divergence-free

everywhere outside S(Ω) [SP09]. Hence, Eqn. 4 effectively

‘maps’ M onto MS as if M were advected in ∇DT∂Ω until it

reached the S-skeleton.

S-skeleton smoothing: As noted in [MBC12], if the input

mesh M is noisy, SC will be a noisy skeleton point-cloud,

due to the well-known fact that small surface perturbations

create many spurious skeleton sheets [PSS∗03, Dam06]. In

turn, this means that our skeleton meshMS can contain many

spike-like triangles. We easily regularize MS by performing

2 . . .5 (constrained) Laplacian smoothing iterations on all its

points whose importance ρ exceeds a (small) user-specified

threshold τ. This effectively removes spikes created by low-

importance skeleton points, by pulling these points towards

the high-importance skeleton points to which they are con-

nected in MS. This process is different from the skeleton

regularization of Reniers et al. [RvWT08]: While Reniers

et al. remove low-importance skeleton points to obtain a

clean skeleton, wemove these points onto the planes of trian-

gles formed by high-importance points. While point removal

would imply a complicated re-meshing process, our solution

is straightforward.

Figure 1 (a1-i1) show several skeleton meshes MS con-

structed by our method. The corresponding skeleton clouds

SC are shown in Fig. 1 (a2-i2), colored by importance ρ via a

blue-to-red colormap. The reconstructed meshes capture ac-

curately fine-scale skeleton details even for complex shapes.

4. Curve Skeleton Extraction

4.1. Definition

Given a surface skeleton S(Ω) of a 3D shape, defined as in

Eqn. 2, we define the corresponding curve skeleton by using

an analogous approach to Eqn. 2, as follows.

Let us first examine the continuous case. Denote by ∂S

the boundary of the S-skeleton, i.e., the set of 1D curves

that form the so-called external borders of the skeletal man-

ifolds [LK07,CLK09]. Then, by analogy to Eqn. 1, we first

define the distance transform DT∂S : S→ R
+ of ∂S as

DT∂S(x ∈ S) = min
y∈∂S

‖x−y‖S (5)

where ‖ · ‖S is the geodesic distance metric on S.

Given Eqn. 5, we now define the curve skeleton C(Ω) as

C(Ω) = {x ∈ S |∃y,z ∈ ∂S, y 6= z,

‖x−y‖S = ‖x− z‖S = DT∂S(x)}. (6)

In words, C is the locus of points on the S-skeleton at equal

geodesic distance on S from at least two points on ∂S.

Note the similarity of the C-skeleton and S-skeleton def-

initions, i.e. Eqns. 1 and 5, and Eqns. 2 and 6 respectively.

The curve skeleton is nothing but the ‘skeleton of the sur-

face skeleton’, where we replace the Euclidean distance in

Ω (used for the surface skeleton) by the geodesic distance

in S(Ω) (used for the curve skeleton). In this sense, the C-

skeleton is conceptually the result of a recursive skeletoniza-

tion operation applied twice on a given 3D shape.

4.2. Computation

Directly solving Eqns. 5 and 6 that define the C-skeleton is,

however, much more involved than solving Eqns. 1 and 2

that define the S-skeleton. First, we would need to accu-

rately locate the boundary ∂S of the S-skeleton, using the

mesh representationMS computed as outlined in Sec. 3. This

is already challenging, given the very complex structure of

MS (see Fig. 1 a1-i1). Secondly, we would need to compute

geodesic paths onMS, which is possible, given the manifold

structure of MS, but relatively expensive.

We take here a different approach. Given the identical

structure of the C-skeleton and S-skeleton definitions, we in-

fer that the C-skeleton C(Ω) is the locus of singularities of

DT∂S, by analogy with the identical well-known observation

that holds for the S-skeleton. Hence, we can compute C(Ω)
by advecting all points of S(Ω) in ∇DT∂S, until these points

reach the aforementioned singularities. The problem is now

reduced to computing ∇DT∂S.

For the above, we proceed as follows. Consider a S-

skeleton like the one of a 3D parallelepiped shown in Fig. 2.

Consider a S-skeleton point s and its two feature points f s1
and f s2. Each such feature-point-pair is connected by a short-

est geodesic γs on the input surface ∂Ω, as described in

Sec. 3. Consider now the tangent vectors to γs at its feature

endpoints, oriented as shown in Fig. 2, i.e. t s1, t
s
2. Following

the observations of Reniers et al. [RvWT08], the sum vectors

(t s1+ t s2)/2 are tangent to S(Ω) and oriented in the direction

of ∇DT∂S(s). The above hold for any S-skeleton point, see

e.g. also point q in Fig. 2. Since we have already computed

the shortest-geodesics for all S-skeleton points as part of the

regularized S-skeleton mesh construction (Sec. 3), we ob-

tain our desired gradient field virtually for free, i.e., without

having to explicitly compute ∇DT∂S.

Given the above implicitly-computed gradient field

∇DT∂S, we now advect all S-skeleton points s ∈ MS itera-

tively in the normalized gradient field by

s
i+1 = PT (si)

(

s
i+

∇DT∂S(s̃
i)

‖∇DT∂S(s̃
i)‖

δ

)

. (7)

Here, s̃ is the closest skeleton point in the original skeleton

cloud SC to the currently advected point si at the ith iteration,

found by searching for the closest nearest-neighbor of si in

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

a1)

a2)

a3)

b1)

b2)

b3)

c1)

c2)

c3)

d1)

d2)

d3)

e1)

e2)

e3)

f1)

f2)

f3)

g1)

g2)

g3)

h1)

h2)

h3)

i1)

i2)

i3)

bird fertility horse cow

heptoroid heptoroid elk dino scapula

Figure 1: Examples: Medial surfaces (a1-i1); medial point clouds colored by importance (a2-i2); curve skeletons (a3-i3).

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

SC. This effectively samples our implicit gradient field at the

locations of the advected skeleton points during the advec-

tion. Gradient normalization produces a field whose slope

is everywhere 1, i.e. the same as the gradient of a distance

transform. δ is set to half of the average edge-size of the tri-

angle fan in MS around si. This ensures that advection steps

are proportional to the local skeleton-mesh density. The op-

erator PT (si) projects the advected point on the triangle fan

T (si) in the skeleton mesh around si to constrain advection

on the S-skeleton surface.

s

q

f1
s

f2
s

f1
q

f2
q

vq

vs

t1
q

t2
q

t1
s

t2
s

curve skeleton

surface skeleton

γs

γq

Figure 2: Advection principle for curve skeleton extraction

As explained in [DS06, RvWT08], certain S-skeleton

points admit more than one shortest-geodesic. The above-

mentioned authors use this property to define the locus of the

C-skeleton. In our model, such points are located precisely

on the singularities of ∇DT∂S, i.e. are points where this gra-

dient abruptly switches directions. In other words, our C-

skeleton definition and computation proposal produces pre-

cisely the same C-skeletons as [DS06,RvWT08].

Several implementation details are important for stabil-

ity and convergence speed, as follows. We advect S-skeleton

points in decreasing order of their importance ρ. This en-

sures an “upwind strategy” such that points can be up-

dated in place, in decreasing distance from the S-skeleton

boundary (since ρ monotonically increases on S from ∂S in-

wards [RvWT08]). In practical terms, this reduces numerical

problems such as skeleton-mesh self intersections. To further

reduce such problems, which may create badly shaped trian-

gles as the skeleton mesh collapses towards its C-skeleton,

we perform one Laplacian smoothing iteration of the ad-

vected mesh after each advection iteration.

After advecting each skeleton point, we evaluate the area

of its triangle fan T (si), and block the point for any fur-

ther advection if this area falls below a very small value

ε = 10−5. This stopping criterion determines whether S-

skeleton points have reached the location of the C-skeleton.

A similar approach is used in [ATC∗08]. Blocking advection

of such points has two desirable effects: First, convergence

is sped up as points reaching the C-skeleton do not require

further update. More importantly, without such blocking,

end-points of C-skeleton branches would be advected along

these branches inwards, which would needlessly shrink the

C-skeleton.

Figure 3 shows several iteration steps of the advection

of the S-skeleton of a hand model. The top row shows

the corresponding S-skeleton meshes. We see how the S-

skeleton shrinks inwards from its (implicit) boundary with

equal speed. During this process, the mesh remains of high

quality due to the constrained advection to the skeleton sur-

face and Laplacian smoothing. Also, we see how points that

reach the (implicit) location of the C-skeleton stay blocked,

see e.g. points along the finger centerlines. This is due to

blocking the advection of small-area triangles. The implicit

C-skeleton structure starts becoming visible already from the

tenth iteration, see Fig. 3 2b, in the middle of the palm. Af-

ter 35 iterations, the entire S-skeleton has collapsed to its

C-skeleton (Fig. 3 5b).

In contrast to other methods e.g. [ATC∗08], we do not

compute the C-skeleton as an explicit 1D curve, or poly-

line. Our C-skeleton is essentially a mesh having the same

topology as the S-skeleton but shrunk to a dense 1D geo-

metric structure. To convert such C-skeleton meshes into 1D

curve skeletons, one could remove all collapsed mesh faces

through a mesh decimation technique, similar to that used

by Au et al. [ATC∗08]. Finally, we render the C-skeleton

by drawing small fixed-size balls centered at the advected

points (Fig. 3 a5).

5. Results and Comparison

We implemented the S-skeleton reconstruction (Sec. 3) and

C-skeleton extraction (Sec. 4.2) in C++ using the ANN li-

brary [MA11] for nearest-neighbor point searches (Eqn. 7).

The S-skeleton reconstruction is O(N) for a skeleton cloud

of N points. On a 2.8 GHz PC, this takes under 3 seconds for

skeleton clouds of up to 500K points. C-skeleton extraction

takes 30 . . .40 iterations to converge to a thin structure for

all meshes presented in this paper. C-skeleton extraction is

O(kN logN) for k collapse iterations on a N point S-skeleton

points. The entire method requiresO(N)memory for meshes

of N points, i.e., the costs of storing the S-skeleton mesh and

2 feature points per skeleton point. Table 1 shows timings

for the models in Figs. 1 and 3.

Figure 4 shows several curve skeletons extracted by two

methods related to our approach: Reniers et al. [RvWT08]

extract C-skeletons from voxel models using the MGF-based

geodesic criterion [DS06]. We use geodesics differently, i.e.

to determine the collapse direction of S-skeleton points,

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

a1) a2) a3) a4) a5)

b1) b2) b3) b4) b5)

iteration 0 (start) iteration 10 iteration 20 iteration 30 iteration 35 (end)

curve

skeleton

formation

Figure 3: Advection steps for curve skeleton extraction. (a1-a4) Surface skeleton mesh. (b1-b5) Medial point clouds. (a5) Curve

skeleton rendering.

Table 1: Timings for C-skeleton computation, Section 4.2.

Model Points Triangles Extraction time (sec.)

Bird 11718 23432 2.1

Fertility 24994 50000 8.7

Horse 193934 387864 246

Cow 185882 371456 232

Heptoroid 79056 158196 41

Neptune 28052 56112 8.6

Elk 35062 70124 9.1

Dino 23255 46600 8.2

Scapula 116930 233856 134

Hand 197245 393984 253

rather than to select C-skeleton points from the S-skeleton.

Au et al. extract C-skeletons from mesh models by collaps-

ing the mesh along its normals. In contrast, we collapse the

S-skeleton along its distance-transform gradient, rather than

the input mesh. Our area-based collapse stopping criterion

(Sec. 4.2) is however similar to the one of Au et al.

Comparing Fig. 4 with the corresponding results of our

method in Fig. 1, we notice several differences. Even though

our surface point count is smaller than, or at most equal to,

the surface voxel count of Reniers et al., our C-skeleton has

more branches, see e.g. the cow udder and horns (Fig. 4 c

vs Fig. 1 d3). This is expected: Both we and Reniers et al.

simplify the S-skeleton prior to C-skeleton computation, to

eliminate spurious branches. However, while Reniers et al.

do this by thresholding ρ, which cuts off peripheral skeleton

parts, we just smooth such areas (Sec. 3). This keeps more

of the peripheral skeleton details.

Compared to Au et al., our skeletons do not have artificial

straight-line branches and sharp bends (see Fig. 4 e-l, green

markers). Au et al. added these in a so-called “surgery”

step to connect disjoint skeleton parts. Our C-skeletons are

inherently smoother since our entire extraction process is

continuous (advection in the continuous ∇DT∂S and Lapla-

cian smoothing of S). However, this built-in continuity also

makes our C-skeletons slightly thicker close to junctions.

Thinner C-skeletons can be obtained by decreasing the min-

imal collapsed area constraint ε (Sec. 4.2), at the expense

of more iterations. In contrast, the method of Au et al. has

several built-in constraints. While these ensure C-skeleton

centeredness and thinness, smoothness is suboptimal.

Performance-wise, our method is slightly faster, on the av-

erage, than Au et al. and Reniers et al., see Tab. 1 vs Fig. 4.

Although these are positive findings, we stress that we do not

consider our speed results to be an important value point for

our method: Our main novelty, and added-value, is that we

showed that C-skeletons can be computed directly, and only,

from S-skeletons, using an identical skeleton definition for

both skeleton types. If desired, significant speed-ups of the

advection process can be obtained by parallel implementa-

tion of the advection algorithm e.g. using CUDA.

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

p = 28K, 9.4 seconds

s = 183K, v = 4.6M, 376 seconds s = 167K, v = 3.1M, 303 seconds s = 214K, v = 4.9M, 406 seconds

s surface voxels

v volume voxels

p = 23K, 13 secondsp = 185K, 398 seconds

Reniers et al.

Au et al.

p = 194K, 420 secondsp = 196K, 382 seconds

sharp bend

s = 23K, v = 267K, 14 seconds

p = 35K, 7.6 seconds p = 24K, 13.8 seconds p = 12K, 4.3 seconds

p vertices

sharp bend

a) cow b) hand c) horse d) dino

d) cow e) hand f) horse g) dino

h) neptune i) elk i) fertility j) bird

Figure 4: Curve skeletons extracted by related methods. Compare results with Fig. 1 and timings in Tab. 1.

6. Conclusions

In this paper, we have introduced a new definition for curve

skeletons for 3D shapes. We generalized the well-known

definition of medial surfaces (in 3D) or medial axes (in

2D) to define curve skeletons as the loci of points on the

medial surface situated at maximal geodesic distance from

at least two medial surface boundary points. We showed

that our definition delivers detailed and centered curve

skeletons which resemble results produced by other curve-

skeletonization methods. Next, we have presented a simple

method to compute curve skeletons based on an explicit ad-

vection of the surface skeleton in the implicitly-computed

gradient of its distance-transform field. As a side result, we

have showed how to reconstruct accurate and smooth surface

skeletons from point-cloud representations thereof.

Our results open several interesting follow-up directions.

Given our unified surface and curve-skeleton definitions,

new theoretical insights on quantitative and qualitative re-

lations of the two skeletons can be researched. We plan to

investigate these relations to use our surface and curve skele-

tons for shape segmentation, feature extraction, and shape

compression applications.

On the practical side, a current shortcoming of our

method, which we plan to eliminate in a future work, is

that the C-skeleton is represented by a shrunk mesh in-

stead of a polyline. Secondly, we plan to implement fast

GPU-based numerical methods to perform the advection

process which, combined with the already-existing fast GPU

surface-skeleton extraction [MBC12], should lead to a com-

petitive curve skeletonization pipeline.

References

[AC97] AHUJA N., CHUANG J.: Shape representation using a
generalized potential field model. IEEE TPAMI 19, 2 (1997),
169–176. 2

[ACK01] AMENTA N., CHOI S., KOLLURI R.: The power crust.
In Proc. SMA (2001), ACM, pp. 65–73. 2

[ATC∗08] AU O. K. C., TAI C., CHU H., COHEN-OR D., LEE

c© The Eurographics Association 2012.



A. Telea & A. C. Jalba / Computing Curve Skeletons from Medial Surfaces

T.: Skeleton extraction by mesh contraction. In Proc. ACM SIG-

GRAPH (2008), pp. 441–449. 2, 5

[CC00] COSTA L., CESAR R.: Shape analysis and classification.
CRC Press, 2000. 1

[CLK09] CHANG M., LEYMARIE F., KIMIA B.: Surface recon-
struction from point clouds by transforming the medial scaffold.
CVIU, 113 (2009), 1130–1146. 2, 3

[CSM07] CORNEA N., SILVER D., MIN P.: Curve-skeleton
properties, applications, and algorithms. IEEE TVCG 13, 3
(2007), 87–95. 2

[CSYB05] CORNEA N., SILVER D., YUAN X., BALASUBRA-
MANIAN R.: Computing hierarchical curve-skeletons of 3D ob-
jects. Visual Computer 21, 11 (2005), 945–955. 1, 2

[CTK00] CHUANG J., TSAI C., KO M.: Skeletonization of
three-dimensional object using generalized potential field. IEEE
TPAMI 22, 11 (2000), 1241–1251. 2

[CTMT10] CAO T., TANG K., MOHAMED A., TAN T.: Parallel
banding algorithm to compute exact distance transform with the
GPU. In Proc. SIGGRAPH I3D Symp. (2010), pp. 134–141. 2

[Dam06] DAMON J.: Global medial structure of regions in R3.
Geometry and Topology 10 (2006), 2385–2429. 2, 3

[DS06] DEY T., SUN J.: Defining and computing curve skele-
tons with medial geodesic functions. In Proc. SGP (2006), IEEE,
pp. 143–152. 2, 5

[DZ03] DEY T., ZHAO W.: Approximating the medial axis from
the Voronoi diagram with a convergence guarantee. Algorithmica
38 (2003), 179–200. 2

[GMPW09] GIESEN J., MIKLOS B., PAULY M., WORMSER C.:
The scale axis transform. In Proc. Annual Symp. Comp. Geom.

(2009), pp. 106–115. 2

[HF09] HASSOUNA M., FARAG A.: Variational curve skeletons
using gradient vector flow. IEEE TPAMI 31, 12 (2009), 2257–
2274. 2

[HR08] HESSELINK W., ROERDINK J.: Euclidean skeletons of
digiral image and volume data in linear time by the integer medial
axis transform. IEEE TPAMI 30, 12 (2008), 2204–2217. 2

[LK07] LEYMARIE F., KIMIA B.: The medial scaffold of 3d un-
organized point clouds. IEEE TVCG 29, 2 (2007), 313–330. 2,
3

[MA11] MOUNT D., ARYA S.: Approximate nearest neighbor
search software. www.cs.umd.edu/~mount/ANN. 5

[MBC12] MA J., BAE S., CHOI S.: 3D medial axis point ap-
proximation using nearest neighbors and the normal field. Vis.

Comput. 28, 1 (2012), 7–19. 1, 2, 3, 7

[MGP10] MIKLOS B., GIESEN J., PAULY M.: Discrete scale
axis representations for 3D geometry. In Proc. ACM SIGGRAPH

(2010), pp. 394–493. 2

[PC05] PEYRE G., COHEN L.: Geodesic computations for
fast and accurate surface remeshing and parameterization. In
Progress in Nonlinear Differential Equations and Their Ap-

plications (2005), vol. 63, Springer LNCS, pp. 151–171.
www.ceremade.dauphine.fr/~peyre. 2

[PH02] PROHASKA S., HEGE H. C.: Fast visualization of plane-
like structures in voxel data. In Proc. IEEE Visualization (2002),
p. 29Ð36. 2

[PK99] PALAGYI K., KUBA A.: Directional 3D thinning using 8
subiterations. In Proc. DGCI (1999), vol. 1568, Springer LNCS,
pp. 325–336. 2

[PSS∗03] PIZER S., SIDDIQI K., SZEKELY G., DAMON J.,
ZUCKER S.: Multiscale medial loci and their properties. IJCV

55, 2-3 (2003), 155–179. 1, 3

[Pud98] PUDNEY C.: Distance-ordered homotopic thinning: A
skeletonization algorithm for 3D digital images. CVIU 72, 3
(1998), 404–413. 2

[RT02] RUMPF M., TELEA A.: A continuous skeletonization
method based on level sets. In Proc. VisSym (2002), pp. 151–
158. 2

[RvWT08] RENIERS D., VAN WIJK J. J., TELEA A.: Computing
multiscale skeletons of genus 0 objects using a global importance
measure. IEEE TVCG 14, 2 (2008), 355–368. 2, 3, 5

[SBTZ02] SIDDIQI K., BOUIX S., TANNENBAUM A., ZUCKER

S.: Hamilton-Jacobi skeletons. IJCV 48, 3 (2002), 215–231. 2

[SFM05] SUD A., FOSKEY M., MANOCHA D.: Homotopy-
preserving medial axis simplification. In Proc. SPM (2005),
pp. 103–110. 2

[SP09] SIDDIQI K., PIZER S.: Medial Representations: Mathe-

matics, Algorithms and Applications. Springer, 2009. 1, 3

[SSK∗05] SURAZHSKY V., SURAZSHKY T., KIRSANOV D.,
GORTLER S., HOPPE H.: Fast exact and approximate geodesics
on meshes. In Proc. ACM SIGGRAPH (2005), pp. 130–138. 2

[ST04] STRZODKA R., TELEA A.: Generalized distance trans-
forms and skeletons in graphics hardware. In Proc. VisSym

(2004), pp. 221–230. 2

[Sud06] SUD A.: Efficient computation of discrete Voronoi dia-

gram and homotopy-preserving simplified medial axis of a 3D

polyhedron. PhD thesis, UNC Chapel Hill, 2006. 2

[SWS09] STOLPNER S., WHITESIDES S., SIDDIQI K.: Sampled
medial loci and boundary differential geometry. In Proc. IEEE

3DIM (2009), pp. 87–95. 2

[SWS11] STOLPNER S., WHITESIDES S., SIDDIQI K.: Sampled
medial loci for 3D shape representation. CVIU 115, 5 (2011),
695–706. 2

[TvW02] TELEA A., VAN WIJK J. J.: An augmented fast march-
ing method for computing skeletons and centerlines. In Proc.

VisSym (2002), pp. 251–259. 2

[TZCO09] TAGLIASACCHI A., ZHANG H., COHEN-OR D.:
Curve skeleton extraction from incomplete point cloud. In Proc.

SIGGRAPH (2009), pp. 541–550. 2

[vDvdWT06] VAN DORTMONT M., VAN DE WETERING H.,
TELEA A.: Skeletonization and distance transforms of 3D vol-
umes using graphics hardware. In Proc. DGCI (2006), Springer
LNCS, pp. 617–629. 2

[VS09] VERMA V., SNOEYINK J.: Reducing the memory re-
quired to find a geodesic shortest path on a large mesh. In Proc.

ACM GIS (2009), pp. 227–235. 2

[WDK01] WAN M., DACHILLE F., KAUFMAN A.: Distance-
field based skeletons for virtual navigation. In Proc. IEEE Vi-

sualization (2001), pp. 239–246. 2

c© The Eurographics Association 2012.

www.cs.umd.edu/~mount/ANN
www.ceremade.dauphine.fr/~peyre

