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Abstract
Visualization of data on structure and related temporal activity supports the analysis of correlations between the
two types of data. This is typically done by linked views. This has shortcomings with respect to efficient space
usage and makes mapping the effect of user input into one view into the other view difficult. We propose here a
novel, space-efficient technique that ‘fuses’ the two information spaces – structure and activity – in one view. We
base our technique on the idea that user interaction should be simple, yet easy to understand and follow. We apply
our technique, implemented in a prototype tool, for the understanding of software engineering datasets, namely
static structure and execution traces of the Chromium web browser.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Structure views are used to display data such as organi-
zation layers, software system containment relations, cata-
logues, and directory structures. Treemaps [SBW08], icicle
plots [KL83], and node-link graph layouts [BETT99] are ef-
fective tools for creating structure views that support users in
tasks such as getting overviews of a given dataset, compar-
ing substructures of interest, and correlating the distribution
of metrics of interest with the structure. Activity views are
equally important: They convey insight into the dynamics
of a process, such as the evolution in time of several met-
rics’ values, an event sequence, or the history of an activ-
ity. Activity views help reasoning about cause-effect rela-
tions, discover trends, and grasp the overall dynamics of a
time-dependent process. Activity views involve techniques
such as timelines [HHWN02], sequence views [DPH10],
flow graphs [San94], and animation [KIL07].

In certain cases, understanding requires combining both
structure and activity insights. One such case is program
comprehension through dynamic analysis in software main-
tenance [Bas97, WGGS92, LD06]. Here, software is instru-
mented, and execution data is collected as execution traces
(program tracing). Use-cases involve understanding a pro-
gram structure (e.g., its hierarchy of packages, files, and
classes) and program execution (e.g., order and duration

of function calls). Equally important is the correlation of
structure with activity insights to answer questions such as
finding high-activity packages; mapping execution phases
to program module structures; and reasoning about perfor-
mance problems at system component level.

In information visualization, many solutions exist for sep-
arate visualization of structure and activity. However, com-
bining structure-and-activity data in a single image is still
hard. In this paper, we present a new approach for this prob-
lem. Rather than using linked views, we ‘fuse’ both structure
and activity information spaces in a single view. Next, we
propose several rendering variations and interaction modes
that enable users to easily map foci of interest between the
two spaces, thereby supporting the task of correlating in-
sights. Our techniques are easy to implement and use, and
can be applied to fuse structure and time-dependent data be-
yond software visualization.

In Section 2, we review related work on structure and ac-
tivity visualization. Section 3 presents our visual and inter-
action design. Section 5 presents a program comprehension
tool implemented atop of our proposal. Section 6 discusses
our techniques. Section 7 concludes the paper.
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2. Related Work

In the following, we review related work with a focus on
software visualization.
Structure Views: Program structure is typically shown
with node-link diagrams using various layout tech-
niques [BETT99, Aub12, AT 10]. For hierarchies (trees),
space-filling visualizations such as treemaps [SBW08,
vWvdW99], icicle plots [KL83], and radial plots [Hol06]
are highly scalable, and can show the correlation of struc-
ture with metrics mapped, e.g., to node size and color.
Activity Views: Execution traces are often visualized us-
ing different variants of icicle plots. The horizontal axis
typically maps time, e.g., function call start and end
moments [TBD10] or memory block allocation and re-
lease moments [MT07]. The vertical axis maps call stack
depth [TBD10] or memory block address ranges [MT07].
Stacked timelines enable comparing the evolution of several
time-dependent signals such as software repository commit
activities [VTvW05] to find interesting event correlations.
Multivariate visualization, e.g., scatter plots and dimension-
ality reduction techniques, are used to detect correlations in
high-dimensional datasets such as multi-metric log files, or
to compare different datasets, e.g., profiling data from dif-
ferent execution traces [LPW00,MC01]. Peer-to-peer down-
load metrics [Rob05] and execution traces [VTvW04] are
displayed via several Cartesian 2D plots that are further
linked by shared axes (dimensions). Various subsampling
techniques are used to combine information of subpixel-size
events to increase scalability [MT07, CZH∗08].
Correlating Views: Structure views are typically used to
show the static system structure that is obtained, e.g., via
static program analysis [NNH05]. In contrast, activity views
are used to show dynamic information such as execution
or software evolution logs. Linked views are probably the
most used technique to correlate the two. For example, Cor-
nelissen et al. link a radial bundled node-link view (for
static function calls), an icicle plot (for static system struc-
ture), and a call timeline (for dynamic execution informa-
tion) by means of selection and brushing to show which sub-
systems are active in a certain execution phase [CZH∗08].
Similar techniques are used in Tarantula [JH05] and Gam-
matella [JOH04] to link structure and text views.

Although easy to learn and use, views linked by selec-
tion and brushing require a certain effort to use, in particu-
lar when the spatial layout of the views is different. More
precisely, such split-attention setups are known to generate
a significant amount of context switches that require mental
effort, time, and short-term memory to assimilate these dis-
tinct views [CKB09]. Especially mentally challenging tasks,
such as program comprehension, though, also require users
to concentrate and use their short-term memory to corre-
late pieces of information. Moreover, displaying such views
side-by-side, such as when views share an axis, takes a non-
negligible amount of screen space. In effect, such separate
visualization are not optimal for these tasks. In the follow-
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time window overview window
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Figure 1: Combined structure-and-activity view design.

ing, we present a visualization design that alleviates these
problems.

3. Visual Design

Our goal is to create a visualization design that

• combines structure and activity views in a scalable way;
• enables users to easily correlate subsets of the information

shown in the two views;
• is efficient and simple to implement, and portable.

3.1. Overlaid Layout

We start by choosing a treemap and an icicle plot for the
structure and activity views, respectively. Our choices are
motivated by the high scalability of both views, as shown in
numerous cases [vWvdW99, JOH04, CZH∗08]. Unlike ex-
isting linked view solutions which keep such views spatially
separated, we choose to overlay the views (Fig. 1).

3.2. Structure View

This view uses a treemap to display a hierarchical (tree)
dataset T . In our use-case, T stores containment relation-
ships in a software system. We use here a simple strip layout,
which has some advantages as discussed later (Sec. 4.4.1).
To maximize information density (one of our design goals),
we do not render borders between sibling cells, except a
2-pixel border on the topmost level. Hence, we need other
ways to show neighbor cells belonging to the same subtree.
An option is to use cushion treemaps (CTMs) [vWvdW99].
CTMs use a Phong-shaded height map built by summing
up parabolic profiles ψi : [0,1]2→ R+ centered atop of tree
nodes ni ∈ P belonging to the same path P⊂ T . If a slanted
light vector is used, shading discontinuities convey the tree-
distance of neighbor cells, i.e., the larger the shading dis-
continuity between those cells, the larger the distance of the
respective nodes in T .
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The parabolic cushions in the original CTM design have
linearly-changing gradients. Thus, to create high-contrast
images that convey the tree structure, CTMs use relatively
high Phong specular coefficients. This can visibly darken the
result (see, e.g., [vWvdW99], Fig. 6). Also, CTMs require
per-pixel computations that cannot be efficiently done except
if using pixel shaders. Although this is possible [LNVT05],
it conflicts with our portability and simplicity requirements.

We take here an approach similar to CTMs, but which is
simpler and generates brighter, easier to read, images. For
each node n ∈ T at depth di ≥ 0 from the root of T , we
define a luminance profile ψi : [0,1]2→ R+ as

ψi(x,y) =
[(

1− (1− fxx)di
)(

1− (1−2 fyy)di
)]k

, (1)

i.e., the product of two exponential profiles ψ
x
i and ψ

y
i

(Fig. 2). The values fx, fy ∈ [0,1] control the position of the
highlight. Setting fx = 1, fy = 0.8,k = 0.2 gives an effect
similar to the original CTM design.
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Figure 2: Treemap cushion luminance design. The 3D plot
shows ψi for di = 4, fx = 1, fy = 0.8.

To render our treemap, we multiply, at each screen pixel
(x,y), the profiles ψi for all treemap cells that cover (x,y).
We do this easily by storing ψi, for all depths di, as 2D lumi-
nance textures, and rendering T with textured cells in depth-
first order with multiplicative alpha blending. Fig. 3 shows
the rendering of the hierarchical structure of a software sys-
tem with 8,850 elements. Several differences are apparent
between our design and CTMs [vWvdW99,LNVT05]. First,
the image is much brighter: In contrast to CTMs, the flat-
ness of our profiles ψi increases with tree depth, due to the
increasing exponent di in Eqn. 1. Thus, deep tree cells have
a relatively much wider highlight than cells higher in the
tree. The asymmetric shading profile, which visually sepa-
rates neighbor cells whose nodes are far apart in T , is pre-
served. Overall, our shading slightly reduces the mapping
of tree-depth to luminance (present in CTMs) but yields an
overall brighter image. As we shall see next in Secs. 4 and 5,
this is useful for color-mapping metrics to the structure view.

Figure 3: Treemap rendering for a dataset of 8,850 nodes.

3.3. Activity View

The activity view displays a sequence E = {ei} of events.
Each event e = (eS,eE ,eP) has a start and end moment eS ∈
R+,eE ∈ R+,eS < eE and a parent event eP ∈ E ∪NULL.
Thus, E is an event sequence organized as a tree TE . Par-
ent events encompass time-wise child events, i.e., ∀e ∈
E,eS(eP(e)) > eS ∧ eE(eP(e)) < eE . Such datasets emerge
from, e.g., state machine simulations and program tracing.
For the latter example, our use-case in this paper, E is a set
of function calls, so paths in TE are program call stacks.

The activity view shows E using an icicle plot metaphor
(Fig. 1): Nodes are drawn as rectangular cells in TE -depth-
order from top to bottom, horizontally positioned on their
eS,eE start and end moments. The activity view can be
zoomed and panned with the mouse to focus on a time-range
of interest. This is useful when analyzing high-frequency
traces that contain many short-duration events.

4. Interaction for Linking and Occlusion Reduction

4.1. Goals

In many applications, like our program comprehension use-
case, the structure T in the structure view (Sec. 3.2) and the
activity data E in the activity view (Sec. 3.3) are correlated:
Each event e ∈ E is associated with a structural element
n ∈ T via an activity-to-structure mapping m : E→ T . Note
that m need not be injective. For instance, in our software
dataset, m maps from function calls to function declarations;
most execution traces have several calls to the same function.
Showing such correlations by visualizing m and its inverse
m−1, i.e., linking the two views, is an important requirement.

A separate issue regards the occlusion created by draw-
ing the activity view atop of the structure view (Fig. 1). As
noted, we do this to minimize the space needed to show both
views. Indeed, if we were to stack the views, this would dou-
ble the required screen space in the worst case. Overlaying
the views is space-efficient, but creates undesired occlusions.

We address both above issues, i.e., visualize the activity-
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Figure 4: Interaction modes: Overview (a), approach (b),
and detail (c). Focus item is green and focus subset is blue.

to-structure mapping m and its inverse m−1, and reduce the
activity-view vs structure-view occlusion, by interaction. To
explain this, we first introduce the three key elements of our
interaction design: Focus point, focus item, and focus sub-
set. The focus point p f = (x f ,y f ) ∈ R2 is the current mouse
position. The focus item is the object o f ∈ V closest to the
focus point in the view V ∈ {T,E} selected for interaction.
Users can toggle the view V to interact with, called the in-
put target, via the Control key. If V = T , o f ∈ T is a node
in the tree shown in the structure view (Sec. 3.2). If V = E,
o f ∈ E is an event in the sequence shown in the activity view
(Sec. 3.3). The focus subset s f ⊂V is a set of elements in the
view V ; s f contains the focus item o f and also other objects
that are semantically and spatially close to o f in V .

By suitably choosing o f and s f , we address the view-
linking and view-occlusion issues, as detailed next.

4.2. Interaction with the Activity View

Interacting with the activity view supports activity-centered
use-cases. Following Sec. 4.1, we design suitable defini-
tions of the focus item and focus subset following the visual
information-seeking mantra: Overview, zoom-and-filter, and
details on demand [Shn96], via three interaction modes.

4.2.1. Overview Mode

In this mode (Fig. 4 a), one typically visualizes a zoomed-
out activity view, looking for ‘salient’ icicles, e.g., deep
call stacks surrounded by shallow execution areas. We en-
ter overview mode when the focus point p f is outside and
below the rendered icicle plot. We next define the focus item
o f as the closest (in Euclidean distance sense) icicle plot cell
to p f . Next, we define the focus subset s f as the path starting
at the root of TE and ending at o f , whose elements are visible
in the activity view at the current zoom and pan levels.

a) overview mode

b) entering

approach mode

c) entering 

detail mode

Figure 5: Interaction modes. Focus color is blue.

4.2.2. Approach Mode

In this mode (Fig. 4 b), the user moves the mouse closer to
the activity view: The focus point p f is now between two ici-
cles rather than below all icicles as in the overview mode, but
still outside the icicle-plot itself. This mode is useful when
one has decided to focus on an area within a trace dataset,
but is not sure which specific call stacks within that trace
deserve further attention. We define two focus items oL

f and
oR

f as the closest items on the x axis to the left, respectively
right, of p f . The focus subset s f contains now the visible
paths in E that pass through oL

f and oR
f .

4.2.3. Detail Mode

In this mode (Fig. 4 c), the user moves the mouse, thus p f ,
inside the icicle plot, e.g., decides to focus on the call stack
below a given function call. We set o f to the icicle-plot cell
under p f , and s f to the path from o f downwards in TE .

4.2.4. Rendering

Focus items: We render all items in s f with full opacity
and shaded cushions. We use cushions to convey both the
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Figure 6: Shaded cushions for activity view items.

structure of the selected focus subset s f and the position
of the focus point p f within s f . Consider an item p ∈ s f
whose icicle-plot cell is a rectangle R spanned by (xl ,yt)
and (xr,yb) (Fig. 6). If xl < x f < xr, we cut R in two rectan-
gles Rl = (xl ,yt);(x f ,yb) and Rr = (x f ,yt);(xr,yb) and tex-
ture these with two luminance textures ψl and ψr, based on
Eqn. 1 with di = 1, fx = 1, fy = 0.8. This yields a luminance
profile that horizontally varies from dark (x = xl) to fully
bright (x = x f ) and then to dark again (x = xr), and verti-
cally shows the slightly convex profile in Fig. 2. If x f < xl
or x f > xr, we texture R as for the Rr and Rl cases indicated
above, respectively. As the user moves the mouse horizon-
tally, the highlight at x f moves along all items in s f , like a
3D lighting which glides atop of the focus set.

Items in s f are further color-mapped to show metrics of
interest, as described separately in Sec. 4.4. For any such
color mapping, we linearly decrease the saturation of colors
in s f upwards and downwards from o f until the top-most
and bottom-most items in s f , respectively. As the user
moves the mouse vertically within s f , a saturation highlight
follows the mouse to indicate the position of the focus item.
Fig. 5 shows the rendering of an activity view with items
in s f colored in blue for illustration purposes. We see how
items in the focus set change color close to the mouse. The
horizontal shading gradient conveys a soft focus on items
close to the mouse, and also emphasizes the icicle plot
structure.

Out-of-focus items: All items in E \ s f in the activity view
are rendered with a high transparency and low saturation.
For example, the right-most call stacks in Fig. 5, are desat-
urated and have a higher luminance (due to the transparent
blending on a white background), which allows for visually
separating s f (blue) from its context (gray). This reduces oc-
clusion in two ways. First, one can move the mouse within,
or around, the activity view to bring different items in fo-
cus, as outlined in Secs. 4.2.1-4.2.3. Secondly, one can grab
the activity view and pan it horizontally. The two operations
allow for de-occluding any part of the structure view by a
mouse gesture (and optional click-to-pan).

4.3. Interaction with the Structure View

As for the activity view, interacting with the structure view
requires a focus item o f and focus subset s f . The focus point

p f is always within a treemap cell. We set o f to this cell, and
s f to the subtree of T containing o f and starting at a user-
specified height h, which is controlled by moving the mouse
wheel. Items in s f \T are rendered with low saturation.

4.4. Color Linking

Colors serve two purposes in our design: First, we color map
attributes of interest of the items in both the structure and ac-
tivity views, e.g., package-ID, call stack depth, and function-
call starting time. Secondly, we use color to link items in
focus between the two views, as explained next.

As outlined in Sec. 4.1, we want to bidirectionally link the
activity and structure views so one can correlate data shown
in both: For an item u∈E, we want to show the items m(u)⊂
T ; for an item v∈ T , we want to show the items m−1(v)⊂E.
Visualizing m or m−1 for all items in E and T respectively
is hard or even impossible, since T and E may have thou-
sands of items. In our design, this would require, e.g., using
a node-link metaphor that connects related items with lines.
This can easily lead to unacceptable clutter. Other designs,
such as shared view axes [CZH∗08,MT07,VTvW04] are not
possible given our spatial overlaid design.

To solve this, we restrict ourselves to show m and m−1

only for the focus subset s f . For this, we propose two color-
linking designs. In the first design, called data-in-focus,
items in s f are colored via a task-specific colormap. Fig. 8
shows this for calls in s f ⊂ E colored by relative stack
depth. Corresponding structure items {m(u)|u∈ s f }⊂ T use
the same colormap. This shows how our metric (call stack
depth) for the selected calls (s f ) varies over the function def-
initions (m(s f )). Items u ∈ E \ s f are drawn in both views
with no color mapping, i.e., gray. As the user changes s f
by brushing over E, the colored items change in both views,
which allows for linking subsets of interest in these views.

In our second design, called data-outside-focus, items in
s f and m(s f ) are left gray, and items in E \ s f and T \m(s f )
are color mapped. As the user changes s f by brushing over
E, linked items appear as gray items in both views. In con-
trast to the first color linking design, we can now use differ-
ent color mappings in the two views, e.g., to show call count
in the activity view and call duration in the structure view
(Fig. 9), since linking is shown by the common gray color.
This mode supports the task of identifying linked items in
both views, shown in the context of view-specific metrics
mapped in each view by view-specific color maps.

Color linking works for selections s f done in both the ac-
tivity and structure views. In other words, we can either se-
lect items in the activity view and see where they map in
the structure view (m mapping), or select items in the struc-
ture view and see where these map in the activity view (m−1

mapping). As both views are drawn in the same screen rect-
angle, we toggle the input target view by pressing the Con-
trol key, as outlined in Sec. 4.1.
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4.4.1. Constrained Structure-View Layout

We can further exploit the treemap layout to minimize
structure-view vs activity-view occlusion: We define a func-
tion γ : T → N equal to the number of relations of a node
n ∈ T to the event sequence E, i.e., γ = ‖m−1‖. When using
the strip treemap layout, we sort nodes in T on γ. Treemap
cells that have many relations to the activity view, e.g., often-
called functions, are placed at the treemap bottom, while
items with few relations go to the top. This reduces the like-
lihood of occlusion between both views during color linking.

5. Applications

We have implemented the proposed visualization atop of
a toolset for program-execution comprehension [TBD10].
As input data, we recorded an execution of Chromium,
the open-source code base of Google’s web browser
Chrome [Goo12]. The hierarchical structure contains 8,850
files and folders, in total 2.7 million lines of C/C++ code.
The trace, pre-filtered as the system was instrumented only
partially, results in about 9,000 calls to 914 function bodies.

Within all color mappings presented next, we use two spe-
cial colors to indicate missing data: Items in the focus sub-
set which have no data are white; items outside the focus
subset which have no data are blue. We next present sev-
eral analyses centered on correlating software structure with
trace data, implemented with our proposed techniques.

5.1. Temporal Locality and Coherence of Packages

As a first use-case, we analyze how distinct packages of
Chromium collaborate in time (Fig. 7). We use a categori-
cal color mapping for both views (data-in-focus color link-
ing, Sec. 4.4). Colors map the package-ID for a few top-level
folders of interest in the structure tree T . Next, we move the
mouse to select the topmost node in the activity view, i.e.,
focus on the entire visible trace. We see that the yellow and
green packages are executed at the beginning of the shown
time frame. In contrast, the red, cyan and blue packages are
involved over the entire time frame.

5.2. Structural Locality and Coherence of Events and
Packages

We now analyze structural properties of events shown in the
activity view. Given a focus subset s f ⊂ E in the event view,
we first partition s f into subsets of events s j

f = m−1( f j),
where { f j} = {m(e)|e ∈ s f } are all files in T related to
events in s f . For each file f j, we then define two metrics ma
(activity view) and ms (structure view) based on the events in
s j

f . Both metrics are normalized to [0,1] based on their global
minimum and maximum values for all events in s f . The
metrics are then color-mapped using a ‘criticality’ scheme
(green=low, yellow=middle, red=high).

5.2.1. Stack Depth: Analyzing Per-File Coherence

In execution trace analysis, stack depth is an important mea-
sure: It gives a first hint of whether a specific function imple-
ments high-level or low-level functionality, also measured as
utilityhood [HL05]. Typically, low stack depth means low
utilityhood and high stack depth means high utilityhood.
While this metric is known to work quite well at function
level, we want to see how it behaves at file level, given that
files can contain multi-level functionality.

To analyze coherence of utilityhood in the trace, we set
ma( f j) ≡ ms( f j) to the maximum call-stack depth of all
correlated events in s j

f . We visualize these metrics using
data-in-focus color-linking and the criticality color scheme
((Fig. 8). In the activity view, we can see that the file con-
taining TabContents::NotifyNavigationStateChanged (1 in
Fig. 8) is, despite its low ‘visual’ stack depth, colored red
instead of the expected green. This means that this file not
only contributes to high-level, but also to low-level function-
ality. In contrast, most other calls in the activity view show a
green-to-red downward gradient, i.e. they are defined in files
whose overall functionality is homogeneous. In the structure
view, we see a rather heterogeneous distribution of function-
ality levels in the chrome package.

5.2.2. Call Count and Duration: High-Activity Packages

Call count and call duration are often used to find how ac-
tively packages take part in the execution of specific func-
tionality. To show these, we define ma = ‖s j

f ‖, i.e., the num-
ber of calls to f j (call count per file), and ms = ∑e∈s j

f
(eE −

eS), i.e., cumulated call duration of f j. Since ma 6= ms, we
use the data-outside-focus color linking design (Sec. 4.4).

When brushing the structure view, we first see that most
treemap cells are blue (Fig. 9). As this color indicates miss-
ing (trace) data (Sec. 5), this shows that our recorded ex-
ecution trace ‘samples’ the system structure only sparsely.

Figure 7: Colors: Package ID. Input target: Activity view,
Interaction mode: Detail.
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This is indeed so given our partial instrumentation of the
code stack. This is a quick way for users to assess the over-
all code coverage of a given trace. Next, we see that the color
distribution in the activity view is heavily shifted to low val-
ues (green and yellow). This is due to an outlier that is visi-
ble with the naked eye in the activity view (zoom-inset 1 in
Fig. 9): This is a timer function, ResetBaseTimer, called ev-
ery few milliseconds and thus having a very high call count.
In contrast, for the call duration metric shown in the structure
view, we see no such outlier (no red treemap cells): Called
functions have similar durations. Further on, in the chrome
package, which contains the current focus subset s f brushed
by the user (2 in Fig. 9), several files are correlated to events
in the activity view. In contrast, in most other packages only
few files are correlated to events in the activity view. This
is a further indication that the trace examined here ‘targets’
mainly functionality in the chrome package.

6. Discussion

Generality: Our approach can show a hierarchy and an
event-sequence, and highlight relationships between items
in the two datasets. Although we used our approach on pro-
gram static structure and execution traces, the proposal is in
no way restricted to software engineering datasets; they gen-
erally apply to structural data and correlated temporal data.

Scalability: Given the space-filling treemap layout and the
space-efficient icicle plot layout, the design scales well to
datasets containing thousands of elements. The shaded cush-
ions used in both views convey additional structural cues,
e.g., nesting of events in the activity view and hierarchy in
the structure view. This makes the views usable in zoomed-
out mode when items are only a few pixels large.

Ease of Use: The proposed interaction techniques are easy to
use: Selecting item subsets of interest in either of the views,
and zooming and panning to a time-range of interest in the
activity view, are done using only the mouse motion, mouse

chrome

Figure 8: Colors: Maximum stack depth. Input target: Ac-
tivity view, Interaction mode: Approach.

chrome

1

calls to ResetBaseTimer

Figure 9: Colors: Call count (in activity view) and call du-
ration (in structure view). Input target: Structure view.

wheel, and the Control key. Although we have not conducted
a formal user evaluation, insight so far shows that the pro-
posed method is intuitive and easy to use within minutes.
We expect that integrating multitouch-based input devices
allows for further increasing the easiness of user input.

Flexibility: The proposed brushing-based selection tech-
niques allow for easily and quickly adjusting the level-of-
detail of the selection by moving the mouse or turning the
mouse wheel. Our two color-linking techniques (data-in-
focus, data-outside-focus) based on the selection help corre-
lating two different metrics at a time. Also, the linking tech-
niques enable us to project any metric computed on one of
the two datasets to the other dataset, effectively enabling a
‘push’/‘pull’ of metric data from one view to the other.

Implementation: A simple and portable implementation
is a key requirement for the acceptance of software visual-
ization tools [Kie06, Kos03]. Our implementation, done in
Qt, requires only basic texture-mapping and alpha blending,
and renders datasets of tens of thousands of elements in
real-time, including the interactive brushing.

Limitations: Occlusion reduction by pan-and-brush com-
bined with transparency (Sec. 4.2.4) works well even for
large datasets, e.g., deep icicle plots overlaid on deep
treemaps - one can ‘see through’ any icicle plot area just by
moving the mouse and/or panning this plot. However, this
still requires a (small) amount of user interaction. The likeli-
hood of occlusion is further reduced by our strip treemap re-
ordering based on relation count. Even more aggressive oc-
clusion reduction could be done by exploiting treemap lay-
outs which allow for more flexible reordering schemes.

The color-linking technique (Sec. 4.4) can only show re-
lationships between groups of items, i.e., our focus sub-
set s f vs its mapping m(s f ). Although one-to-one rela-
tions can be inferred by seeing how highlighted elements

c© The Eurographics Association 2012.
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change while brushing and/or selecting smaller subsets s f ,
this does not replace a detailed relationship visualization.
Further refinements could add, e.g., carefully routed bundled
edges [Hol06] atop of our design to emphasize such details.

7. Conclusions

We have presented a method for the visualization of com-
bined hierarchical structure and event-sequence datasets. We
address visual scalability by a new overlaid layout of ici-
cle plots and treemaps. By this, the two views are linked
with less disruption. We use simple, brushing-based, inter-
action for selection of items of interest and occlusion reduc-
tion. Combined with color-linking, this allows for querying
relationships between parts of the two displayed datasets.
Computationally-efficient shaded cushion variations are pro-
posed for structure and focus enhancement. The technique is
illustrated on large datasets from program comprehension,
but can be used on other structure-and-activity datasets.
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