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Abstract— We present a practical algorithm for computing
robust, multiscale curve and surface skeletons of 3D objects
of genus zero. Based on a model which follows an advection
principle, we assign to each point on the skeleton a part of the
object surface, called thecollapse. The size of the collapse is
used as a uniform importance measure for the curve and surface
skeleton, so that both can be simplified by imposing a single
threshold on this intuitive measure. The simplified skeletons are
connected by default, without special precautions, due to the
monotonicity of the importance measure. The skeletons possess
additional desirable properties: They are centered, robust to
noise, hierarchical, and provide a natural skeleton-to-boundary
mapping. We present a voxel-based algorithm that is straightfor-
ward to implement and simple to use. We illustrate our method
on several realistic 3D objects.

Index Terms— Surface skeletons, curve skeletons, importance
measure

I. I NTRODUCTION

SKELETONS are compact shape descriptors. The skeleton,
or medial axis, of a 2D object can be defined as the

centers of maximally inscribed discs [1]. In 3D, this definition
can be extended to the centers of maximally inscribed balls.
Alternative definitions are the set of interior points that have
at least two closest points on the object surface, or the
first-order singularities of the distance-to-boundary field, or
distance transform (DT). Using these definitions for a 3D
object, we obtain the so-calledsurface skeletonS, or medial
surface, which consists of a set of 2D manifolds, or skeletal
sheets, and a set of 1D curves. The skeleton points, together
with their distance to the 3D object boundary, define the
medial surface transform (MST), which can be used for
volumetric animation [2], surface smoothing [3], or topological
analysis used in shape recognition, registration, simplification,
or feature tracking.

A different type of skeleton is thecurve skeletonC, which
consists, for a 3D object, of 1D curves locally centered with
respect to the object boundary. Curve skeletons have a low
dimensionality which makes them suitable for “stick-figure”
object representations in 3D animation, morphing, and geo-
metric processing [4]. In contrast to surface skeletons, curve
skeletons lack a formal and unanimously accepted definition.

It is widely accepted that 2D skeletons and 3D surface and
curve skeletons should fulfill several desirable properties [3],
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[4]: homotopic, invariant under isometric transformations, re-
construction, thin, centered, junction detective, robust, efficient
to compute, and hierarchical. While 2D skeletonization is a
well-studied problem, computing 3D skeletons with all of the
above properties is still an open problem.

The robustness and hierarchical properties deserve further
attention. Therobustnessproperty means that the skeleton
is insensitive to small-scale boundary noise. This is needed
in all practical applications, as the boundary discretization,
whether voxel or polygon based, inevitably introduces noise.
The hierarchical property means computing a multiscale of
nested skeletons, each one representing the shape details on a
different spatial scale. Hierarchical skeletons are typically also
robust, since boundary noise can be seen as small-scale object
details. To the above, we add theuniformity and inclusion
properties. The uniformity property requires that both curve
and surface skeletons are computed and treated similarly. For
example, if a method provides a parameter for multiscale
skeleton simplification, this parameter should be the same
for both curve and surface skeletons. The inclusion property
requires thatC is a subset ofS, motivated by the fact that curve
skeletons can be considered a limit case of surface skeletons
for objects with local circular symmetry (e.g. a tube).

In this paper, we introduce thecollapse measure, a novel im-
portance measure for computing both curve and surface skele-
tons of 3D shapes. Our measure possesses all the desirable
properties mentioned earlier: It is robust to compute on com-
plex, noisy 3D shapes, always delivers connected skeletons,
its thresholding produces a hierarchy of nested skeletons de-
scribing the shape at different scales, treats surface and curve
skeletons uniformly, and is simple to implement. Additionally,
our collapse measure has a geometrically-motivated definition
which makes its use in practice intuitive. Conceptually, the
collapse measure is based on an advection process which
generalizes to 3D the global feature-distance measure usedto
compute 2D skeletons by several authors [5]–[7]. Intuitively,
this can be explained as follows. Mass, initially located onthe
object boundary, is advected onto and then along the skeleton.
The collapse measure of an object point is the amount of
mass advected through that point. All object points are treated
equally, yielding a uniform collapse measure for non-skeleton,
surface skeleton, and curve skeleton points. Hence, our method
merges the skeleton detection and simplification in a single
step. We present a voxel-based algorithm that computes an
approximation of the collapse measure. The algorithm does
not simulate the advection process explicitly, but computes
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Fig. 1. A 2D shape and its skeleton. Pointsp, q ∈ S and their feature points
pa, pb andqa, qb respectively have locally identical configurations. Globally
however,p is considered more important thanq.

the collapse measure directly. We demonstrate the algorithm
on several real-world examples.

The structure of this paper is as follows. In Section II
we give an overview of related work. In Section III we
discuss our informal model in 2D, show its equivalence to
the feature-distance measure, and propose an extension to 3D.
The informal 3D model motivates our algorithm, which is
presented in Section IV. Section V presents the results of the
algorithm. Section VI discusses how our method fulfills the
desirable skeleton properties, and compares it with existing
methods. Section VII concludes this paper.

II. RELATED WORK

Methods for computing medial axes and skeletons are
commonly classified into four groups [8]: thinning or ero-
sion [9], geometric methods [5], [10], [11], distance-field
methods [7], [12]–[14], and general-field methods [15], [16].
Such methods usually work either on a raster or voxel-based
object representation, or on a boundary sampling. Thinning
methods iteratively remove boundary voxels as long as con-
nectivity is not violated. Removing voxels in order of a true
distance-to-boundary fashion enforces the centeredness crite-
rion [17]. Geometric methods often use the Voronoi-diagram
of a boundary sampling and deliver a polygonal skeleton
description [5]. These methods are quite complex to implement
in 3D and the resulting surface skeletons can be difficult to
handle. Other geometric methods compute skeletons using
edge collapses [10], from a mesh segmentation [18], or by
sphere sweeping [11]. Distance-field methods detect skeletons
as singularities of various types of the distance transformof the
object [3], [13] and have been efficiently implemented using
graphics hardware [14], [19], [20]. In general-field methods
alternatives for the distance transform are used [15], [16].
These methods are generally less sensitive to noise, due to
the averaging effect that the field has.

A key aspect of any skeletonization method is its ability
to produce robust, hierarchical skeletons. At the core of any
such method is an importance measure for the skeleton points.
Such measures have the desirable property that small values
correspond to skeleton points that represent object details,
whereas large values correspond to points that represent the
object’s main structure. Simplified skeletons can be obtained
by pruning the skeleton using the importance measure [21].

We distinguish betweenlocal and global measures. Local
measures use only object properties from a small, limited
vicinity of every object point, and are thus incapable of
distinguishing between locally identical configurations,such
as those sketched in 2D in Fig. 1. Thresholding local measures
usually delivers disconnected skeletons. Connectivity can be
enforced, but this requires extra work [13], [22], [23], and
often makes the simplification non-continuous [21], thus less
intuitive. In contrast, global measures monotonically increase
from the skeleton boundary to its center, and describe a
skeleton point’s importance to representing the whole object.
Pruning global measures by simple thresholding always deliv-
ers connected skeletons.

In 2D, the feature-distancemeasure, also called collapsed
boundary measure, is a simple, robust and efficient to com-
pute global importance measure used both for polygonal and
pixel object representations by several authors [5]–[7]. Fig. 1
sketches this measure: The importance of the skeleton point
p equals the length of the smaller boundary curve delimited
by pointspa andpb, wherepa, pb are the points at minimum
distance ofp: the so-calledfeature points. By this measure,
the importance ofq is regarded lower, which agrees with
intuition. In 3D, the θ-SMA method uses a local measure
based on the angle between the feature (or anchor) points [19],
[24]. Combining the angle with the distance-to-boundary value
yields a more robust measure [22]. Siddiqi et al. propose a
range of methods that use a local divergence-based measure
to detect and classify skeleton points in 3D [13], [25], [26].
A similar approach using first-order moments is given by
Rumpf and Telea [3]. Pizer et al. [27] give a comparison of
methods that compute multiscale skeletons. The general-field
method of Cornea et al. [16] delivers smooth curve skeleton
hierarchies. However, only a limited number of hierarchy
levels is generated and the different levels are not treated
uniformly. Recently, Dey and Sun [28] presented a method
that computes robust curve skeletons. Similar to Prohaska et
al. [29], they use shortest-geodesic length between feature
points as an importance measure for the surface skeleton
points. This is a global importance measure, used to find the
middle of the surface skeleton. They obtain a curve skeletonby
using the local divergence-measure of [13] on this geodesic-
length measure.

Related to the curve skeleton is the Reeb graph: a 1D
structure encoding geometrical and topological properties of
3D shapes [30], [31]. It is constructed by following the
evolution of the level sets of a real-valued function on the
object boundary. The critical points of this function are rep-
resented by nodes in the Reeb graph, and the edges represent
connections between critical points. The real-valued function,
defined on the object boundary, should be chosen carefully
to obtain a Reeb graph that is suitable for the application at
hand. In contrast, our approach uses curve and surface skeleton
definitions to obtain a real-valued function on the skeleton, the
importance measure, which is then used to simplify it.

In this paper, we propose a global importance measure
for computing multiscale surface and curve skeletons, by
generalizing the 2D feature-distance measure to 3D. At the
core of our measure is an advection principle. In the next
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section we present the conceptual model.

III. C ONCEPTUAL MODEL

Let Ω be a d-dimensional object with boundary∂Ω. The
distance transformD : Ω → R is defined asD(p) =
mink∈∂Ω dist(p, k), wheredist is the Euclidean distance in
R

d. The feature transformF : Ω → P(∂Ω), whereP is the
power set, assigns to a pointp in Ω the set of points on∂Ω
that are at minimum distance ofp, the feature pointsof p:

F (p ∈ Ω) = {x ∈ ∂Ω | dist(p, x) = D(p)}. (1)

The skeletonS of Ω is defined as those points inΩ that have
at least two feature points:

S(Ω) =
{

x ∈ Ω
∣

∣ |F (x)| ≥ 2
}

. (2)

In the generic case, skeleton points have exactly two feature
points. In the non-generic cases, which are limit cases, skeleton
points have three or more feature points. Whend = 3, S is
called the surface skeleton. An equivalent definition of the
skeleton is as the points whereD is non-differentiable.D and
∇D can be computed using several methods, e.g., by solving
the eikonal equation‖∇D‖ = 1 using level set methods
such as the fast marching method [32], graphics hardware
techniques [14], [33], or a variety of discrete propagation
methods (for an overview of these see [34]).

In the remainder of this section we present a conceptual
model that appeals to intuition, in order to motivate the
algorithm that we further present in Section IV. At all times,
we assume the generic case of a skeleton point having exactly
two feature points. The non-generic cases of points having
three or more feature points are dealt with in Section IV-C.
We proceed as follows. In Section III-A we first describe an
informal 2D model using an advection principle that yields
a measure equivalent to the feature-distance measure, and as
such has the desirable property of monotonicity. In SectionIII-
B we extend this model to 3D, such that we obtain a monotonic
3D importance measure.

A. Collapse Measure in 2D

Let Ω be a 2D shape. The skeleton ofΩ can be defined
as those points where the distance transformD is non-
differentiable. Governed by the eikonal equation, the trajectory
of each boundary point follows the gradient field∇D and ends
at the skeletonS, where∇D is undefined. We aim to define
a flow vector fieldF that extends∇D to the skeleton, such
that trajectories do not end atS. On non-skeleton points,F is
equal to the distance field gradient:

F = ∇D on Ω \ S. (3)

Instead of ending atS, we let the trajectories end in a unique
point on S, called theroot R. The precise definition ofR
follows later (Eq.6). If we assume that the object is of genus
0, the skeleton is also of genus 0, because the skeleton is
homotopic to the shape [35]. Assuming genus 0, the skeleton
of Ω is a tree, it has no loops, so that the continuation of the
trajectories onS towardR is predetermined. The flow fieldF

Fig. 2. A rectangle shapeΩ, its skeletonS, the rootR, a skeleton pointp,
andp’s feature pointsa, b. The collapse ofp is formed by the origins of the
trajectories (red) throughp.

on S can be defined in only one way, namely tangent to the
skeleton:

F : F · nS = 0 on S \R, (4)

where nS represents the normal to the skeleton, andF is
chosen in the direction of the rootR. All trajectories end in
the root, where we defineF(R) = ~0.

Consider a discretization of the object boundary into a
large but finite number of particles evenly distributed on the
boundary∂Ω. The advection of the particles is governed byF.
The trajectories of these particles together form atrajectory
tree of which R is the root. When the number of particles
approaches infinity, the tree covers the whole ofΩ, so that each
point p ∈ Ω is on the trajectory tree. On non-skeleton points,
the trajectories do not intersect because they follow∇D.
On skeleton points the trajectories necessarily overlap, as the
skeleton of a 2D shape is only a 1D structure. Consequently,
each object pointp ∈ Ω has one or more trajectories going
through it that originate on the object boundary. That part of
the boundary that is formed by the origins of the trajectories
(tree leaves) going through a pointp is called thecollapse
of p. The collapse at a non-skeleton point is just its single
feature point. The collapse at a skeleton point are its two
feature points, plus the origins of the trajectories incoming
from the skeleton and passing through that point. Because the
skeleton is a tree structure, a pointp ∈ S dividesS into two
subtrees. The collapse atp is the sum (or integration in the
limit) of the feature points of the subtree not containingR,
which means that the collapse atp is a compact boundary arc.

Based on the construction presented above, we can now de-
fine our importance measureρ on Ω. The importance measure
tells us how important an object pointp is in representing
the object boundary: the more trajectories throughp, the more
importantp is. In case of an infinite number of particles this
presents a problem, as the importance for a skeleton point
would be infinite, so we use the size of the collapse instead:

ρ(p) : Ω→ R ρ(p) = | collapse atp |. (5)

We call this importance measureρ the collapse measure. We
can now define the rootR as that point onS, having two
neighboring pointsx, y ∈ S, such that the collapse measure
at x is equal to the collapse measure aty:

R(Ω) : ρ(x) = ρ(y). (6)
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Fig. 3. A box shapeΩ, (part of) the curve skeletonC, and two slicesΣ1,Σ2.
One trajectory is shown in red.

Hence, the root is in the middle of the skeleton with respect
to the amount of incoming trajectories. In Fig. 2, the feature
points of the rootR can be seen to divide the boundary exactly
into two components of equal length.

Intuitively, the above fieldF defines an advection of par-
ticles, or mass, from the boundary onto and then along the
skeleton, up into the rootR. The importance of a point is the
amount of mass that passes through that point on its way to the
root. The collapse measure has a low value at the non-skeleton
pointsΩ \ S. On the skeleton,ρ increases while approaching
the root, as more and more trajectories overlap. The collapse
measure is monotonic, because the trajectories form a tree.
It can be easily seen that the value ofρ on S is equal in
the limit to the well-known feature-distance measure [5]–[7],
which assigns to each skeleton point the smaller boundary-arc
length between two feature points. Using our construction,
we obtain the same measure. In Fig. 2, a sparse subset of the
incoming trajectories for a pointp is shown. These trajectories
clearly originate from the smaller boundary arc between the
feature points ofp. Indeed, our collapse measureρ(p) is equal
to the length of this arc.

B. Extension to 3D

Our goal is to construct an importance measure in 3D that
is monotonic. Then, we can compute robust 3D skeletons
simply by thresholding this measure, just as is done in 2D
using the feature-distance measure. We extend our informal
2D advection model from the previous section to 3D. This
informal model for 3D shapes motivates our algorithm from
Section IV.

Again, we want to construct a flow vector fieldF, yielding
a trajectory tree that covers the whole volume ofΩ. As in 2D,
we require that the trajectories first follow∇D:

F = ∇D on Ω \ S. (7)

The definition of F should be extended toS and there
should be a single rootR ∈ S. In contrast to the 2D case,
there are more possibilities to defineF as S is now a 2D
structure (Eq. 2): the surface skeleton, generally consisting of
2D curved manifolds. We present a construction ofF that
yields a measure that is not only monotonic, but has the nice
property that it differentiates between the surface and curve
skeleton.

The key idea is to slice the 3D shape into 2D simply-
connected and possibly curved manifolds, calledslices, and
use our 2D model on these slices to defineF in a divide-and-
conquer fashion. LetΣ denote a slice with compact boundary
∂Σ ⊂ ∂Ω. We defineF on a sliceΣ using the 2D model.
BecauseF is already defined onΩ \ S by Eq. 7, the slices
must be parallel to∇D, so that trajectories starting on a slice
boundary stay in their respective slice. If we denote bynΣ the
normal to sliceΣ, then we require:

nΣ · ∇D = 0 on Σ \ S. (8)

This implies that the 1D skeletonS(Σ) of a sliceΣ is at the
intersection of the slice with the surface skeletonS(Ω) of the
object:

S(Σ) = Σ ∩ S(Ω), (9)

because each pointp ∈ S(Σ) is connected to its two feature
points by two trajectories originating on the slice boundary
∂Σ. Now, F on the slice skeleton, and thus onS(Ω), can be
defined according to our 2D model (Eq. 4), namely tangent to
the slice skeleton,F(S(Σ)) · nΣ = 0, in the direction of the
slice rootRΣ. The slice rootRΣ is defined similar to the root
in the 2D model: its two feature points divide∂Σ into two
boundary arcs of equal length.

Applying the 2D model to each slice, we obtain one
trajectory tree per slice, yielding a trajectory forest. Inorder
to merge this forest into a single trajectory tree for the whole
volumeΩ, the trajectories starting on the slice boundary∂Σ
should not stop in the slice rootRΣ, but should continue to
a single global rootR, which we will define later. This poses
the final requirement on the slices, namely that the roots of
all the slices together form a 1D connected structure. We call
this structure the curve skeletonC, as it is connected and can
be considered in the center of the object, as it consists of
individual slice roots:

C = {RΣi
}i. (10)

We now define a slice set satisfying the requirements above.
The key idea is that we choose each sliceΣ such that its
root RΣ has two shortest geodesics on the object surface
∂Ω between its two feature pointsF (RΣ). The two shortest
geodesics form the boundary∂Σ of the slice. In this way we
are sure that the slice roots form a connected 1D structure,
satisfying Eq. 10. Indeed, we use here the result of Dey and
Sun [28]: They used as definition for their connected curve
skeleton those points onS that have two shortest geodesics
between their two feature points. A second reason why this
definition fits our model nicely is thatRΣ is indeed the root of
its slice: the two shortest geodesics betweenF (RΣ) forming
the slice boundary∂Σ are necessarily of equal length. A



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

slice is completely characterized by its boundary consisting
of two shortest geodesics, together forming a Jordan curve,
and the fact that it is parallel to∇D. What remains to be
shown is that this definition yields simply-connected slices, in
specific, that there are no holes atS(Σ). Extensive empirical
study suggests this, as checked by us on several tenths of
different 3D voxelized objects, sampled on various resolutions.
However, we cannot prove this, and leave it as a conjecture.

Our recursive approach of first slicing the object and then
applying our 2D model to the slices yields a hierarchically
structured trajectory tree. Consider a trajectory starting on
the object boundary∂Ω and slice boundary∂Σ. It first goes
straight to the slice skeleton while staying in its sliceΣ. The
collapse at such a non-skeleton point is a single point on
the boundary. After arriving on the slice skeleton, locatedon
the surface skeletonS, the trajectory follows the 1D slice
skeleton toward the slice rootRΣ ∈ C, overlapping more
and more trajectories from the same slice on its way. The
collapse at a slice skeleton point is similar to the collapseat
a skeleton point in the 2D model: a boundary arc on the slice
boundary. Without considering trajectories coming from other
slices, the collapse at the slice rootRΣ is the slice boundary
∂Σ. After trajectories arrive at the slice root, located on the
curve skeleton, they continue along the curve skeleton toward
the global rootR ∈ C, joining the trajectories coming from
other slices. Hence, the collapse at a curve skeleton point
is an integration of slice boundaries: an object-surface area.
Indeed, the Jordan curve theorem states that a Jordan curve on
a surface of genus 0 divides that surface into two components.
In our construction, the collapse at a curve skeleton pointRΣ

is the area of the smaller component generated by the slice
boundary and Jordan curve∂Σ. We still need to define the
global rootR. Analogous to the 2D root, which is defined to
be in the middle of the skeleton with respect to the collapse
measure (Eq. 6), the global rootR is the slice rootRΣ ∈ C of
the slice whose boundary divides the object surface into two
components of equal area.

Figure 3 exemplifies our construction. It shows a box shape,
two slicesΣ1, Σ2, and one trajectory starting on∂Σ1. The
trajectory first goes toS(Σ1), and then toRΣ1

while staying
in the slice. PointRΣ1

is the root of Σ1, as the feature
points a, b of RΣ1

divide the slice boundary∂Σ1 into two
components of equal length: each component is a shortest
geodesics between betweena, b. The trajectory leaves the slice
in RΣ1

and continues along the curve skeletonC. Finally, the
trajectory ends in the global rootR ∈ C, which coincides
with the root of sliceΣ2. Point R is chosen as the global
root because its slice boundary divides the boundary into two
components of equal area.

As in 2D, the tree structure of the trajectories ensures that
the collapse measure is also monotonic in 3D by construction.
It is furthermore important to note that the collapse measure of
a curve skeleton pointp can be computed independently from
other points simply by taking the area of the smaller object
surface component generated by the slice boundary, consisting
of two shortest geodesics between the two feature pointsa, b

of p. Likewise, the collapse measure of a surface skeleton
point can be directly computed by taking the length of the

shortest geodesic betweena, b on the object surface. We use
these properties in our algorithm in Section IV.

C. Skeleton simplification

After we have computedρ for all points in the objectΩ, we
obtain a simplified skeleton by thresholdingρ with a desired
importance valueτ . To easily handle objects of different sizes,
we first normalizeρ to [0..1] by dividing it by its maximal
value, i.e. half the object surface area (see Sec. III-A):

Sτ = {p ∈ Ω | ρ(p) > τ
1

2
area(∂Ω)}. (11)

These simplified skeletons are connected by default, as the
collapse measureρ is monotonic.

One observation must be made concerning the interpretation
of the collapse measureρ. This measure is essentially of a
higher dimensionality on the curve skeletonC than on the
remainder of the surface skeletonS\C. Whereasρ(C) denotes
a collapsed area,ρ(S \ C) denotes a collapsed curve length.
This means that, when we increaseτ , the surface skeleton
typically disappears completely even before the curve skeleton
starts to get simplified. This is desirable in applications where
the curve skeleton is considered more important. However,
in other applications, this behavior may not be desired, as
we shall show in Section VI. For such applications, we can
“equalize” ρ by reducing the dimensionality ofρ(C) from an
area to a length by taking its square root. We denote the
equalizedskeleton byS′τ . In contrast toSτ , the equalized
skeleton gets simplified uniformly both in its curve as in its
surface components whenτ is increased. Note that this is just
one of the possible ways to equalizeρ. Other options leading
to other applications are open to further study.

IV. A LGORITHM

We present now a voxel-based algorithm that computes
simplified skeletons, by first computing the collapse measure
and then thresholding it (Eq. 11). A strong point of our
algorithm is that it works on the object-boundary voxels only
and not on any derived structures. In particular, there is no
need to computeS first. It is important to note that we
do not need to explicitly compute the flow vector fieldF
and simulate an advection process, which would be unstable.
Instead, we compute the collapse measure at surface and curve
skeleton voxels directly as a length and object surface area,
respectively. In Section IV-A we present an outline of the
algorithm. Section IV-B discusses the implementation into
more detail. Section IV-C explains how the algorithm deals
with the non-generic cases.

A. Outline

Our voxel-based algorithm computes the collapse measure
for each object voxelp independently from the other voxels.
From the curve skeleton definition (Sec. III-B) follows that
we can detect a curve skeleton pointp by checking whetherp
admits two shortest geodesics on the object surface betweenits
two feature points. However, in discrete space this definition
is problematic. On a voxelized object surface, the length ofa
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1: computeF on Ω
2: for eachp ∈ Ω do
3: F ←

⋃

x,y,z∈{0,1} F (px + x, py + y, pz + z)
4: P ←

⋃

a6=b∈F shortestpath(a, b)
5: C ← {connected components in graph∂Ω \ P}
6: if |C| ≥ 2 then {curve skeleton voxel}
7: ρ(p)← area(∂Ω)−max

c∈C
area(c)

8: else{surface or non-skeleton voxel}
9: ρ(p)← max

l∈P
length(l)

10: end if
11: ρ(p)← ρ(p)

1

2
area(∂Ω)

12: end for
13: Sτ = {p ∈ Ω | ρ(p) > τ}

Fig. 4. Pseudo code of the complete algorithm.

shortest path, as discrete equivalent of a shortest geodesic,
is only an approximation for the geodesic length on the
original continuous surface. In practice, we will thus find
only one shortest path between the two feature voxels of
a curve skeleton voxel. Because of this, and in order to
handle the non-generic cases as will be explained in Sec. IV-
C, we opt to detect the curve skeleton differently. Instead
of computing the shortest path(s) between the two feature
voxels of a voxelp, we also consider the feature voxels
of p’s neighbors, basically “extending” the feature set ofp.
Shortest paths are computed between each pair of voxels in
the extended feature set, yielding multiple shortest paths. For
curve skeleton voxels, these shortest paths form a band around
the object (see e.g. Fig. 6a), which can be considered the
discrete version of the Jordan curve that the slice boundary
is (Sec. III-B). Assuming that the object is of genus 0, such a
band splits the object surface into two connected components
if and only if p is a curve skeleton voxel, which fact we use
as the detector. The collapse measure atp is the area of the
smaller component generated by the band. If the band does
not divide the surface into multiple components, the voxel is
considered a surface skeleton voxel, and we take as collapse
measure the maximum over the shortest-path lengths. After
computing the collapse measure for all voxels, the simplified
skeleton is computed by thresholdingρ. We detail on the
implementation in the next section.

B. Implementation

The pseudo code of the algorithm is shown in Figure 4.
The algorithm takes as input a binary objectΩ voxelized
on a regular grid. The output is the simplified skeletonSτ ,
represented on the same voxel grid. The voxelized boundary
∂Ω is represented as a graph in which nodes are voxels. An
edge in the graph corresponds to two neighboring voxels which
are 26-connected, i.e share at least one corner. The object
voxels Ω are 6-connected, i.e. they are connected if sharing
a face. The algorithm consists of four stages: computing
the (extended) feature transform, the shortest path sets, the
collapse measure, and finally the simplified skeleton.

In the first stage (Fig. 4 line 1) we compute the feature
transformF using [36]. Next, we compute theextended feature

Fig. 5. Curve skeleton of a box with two tunnels computed using a variation
of our algorithm.

set F of a voxel p by merging the feature set ofp with
the feature sets of its 26-neighbors that lie in the first octant
(line 3). The purpose ofF is to combat two discretization
problems, as outlined in Sec. IV-A. The first problem is
that, while surface skeleton points always have at least two
feature points inR3, this is not necessarily so in discrete (Z

3)
space [34]. In a box of even height, no voxels on the center
surface skeleton sheet contain two feature voxels. Second,
curve skeleton points have two shortest geodesics between
their feature points inR3, but inZ

3 the geodesic length cannot
be computed exactly, and we may find only one shortest path
in practice.

In the second stage, we compute the set of shortest paths
P between each pair of feature voxels inF (line 4). The
shortest path between two feature voxelsa, b is computed as a
3D chain code [37], using the A* shortest-path algorithm [38]
on the boundary graph, with Euclidean distance as the search
heuristic. The A* algorithm computes only one shortest path
between two feature voxelsa, b. This is not a problem, because
we compute the set of shortest paths between each pair
of feature voxels inF . Although computing shortest paths
between each pair of feature voxels seems computationally
expensive, the size ofF is typically small (≤ 8), and half of
the paths are between neighboring feature voxels.

In the third stage, the collapse measureρ(p) is computed.
We compute the set of connected componentsC in the
boundary graph in which the voxels of the shortest-path set
P are removed. A simple spatial subdivision scheme on the
boundary is used to speed up the flood fills used. Moreover,
we prevent computing the collapse for voxels that certainly
are non-skeleton voxels, i.e. have only few voxels inP . If
C contains two or more connected components,p is a curve
skeleton voxel and the collapse atp is ∂Ω \ c, wherec ∈ C

is the largest connected component in terms of voxel count.
The collapse measure is equal to the number of voxels in
∂Ω\c (line 7). We could use a surface-area estimator to better
approximate the collapse area on the original continuous∂Ω,
but taking the cardinality of the collapse yields good results
in practice. If C contains only one connected component,
p is either a surface skeleton or non-skeleton voxel. In that
case, the collapse atp is the longest shortest-path inP . As
collapse measure we could take the amount of voxels in this
longest path. However, using the length estimator of [37]
instead gives better results in practice (line 9). Althoughthe
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Fig. 6. Generic curve skeleton point (a), non-generic cases (b-d). The curve skeletons are shown with a rainbow color map encoding the collapse measure.
In each image, the shortest path set for a selected curve skeleton voxel is shown in magenta. Feature voxels are shown as spheres and are connected to the
selected voxel using line segments. These images are screenshots made using our implementation.

algorithm does not differentiate between surface skeletonand
non-skeleton voxels, for which|C| is also 1, the length of the
longest shortest-path for non-skeleton voxels will be between
neighboring voxels, resulting in a very smallρ. The object
voxels will be of low importance and will disappear first when
increasing the threshold. Next,ρ is normalized as explained
in Section III-C (line 11).

The above method of detecting curve skeleton points and
computing their collapse measure works well only for genus 0
objects, i.e. objects without tunnels, whose skeleton is a tree.
Detecting curve skeleton points in this manner for objects with
genus greater than zero does not work, because the Jordan
curve theorem does not hold: for points where the shortest
paths P are adjacent to a tunnel,P does not divide the
boundary into two or more connected components. A simple
variation of the algorithm for detecting curve skeleton points
for objects with tunnels is as follows. We replace the curve
skeleton detection (lines 5 and 6, Fig. 4) with a “Jordan curve
test” on P . See [39] for details. The choice of a meaningful
importance measure for the points situated onC-loops is
subject to future research. Yet, the variation suggested above
allows a simple and robust computation of curve skeletons for
objects of arbitrary genus. Fig. 5 shows such a curve skeleton
extracted for an object with two tunnels.

In the fourth and final stage, we simplify the skeleton with
the desiredτ value by applying Eq. 11 (line 13). In order
to compute the equalized skeletonS′τ , the algorithm can be
slightly modified by taking the square root ofρ on C (Fig. 4,

line 7), and normalizing by
√

1
2area(∂Ω) (line 11). Depending

on the value ofτ , we obtain forSτ or S′τ surface and curve
skeletons simplified to different levels, as demonstrated in
Section V.

C. Non-generic cases

Our model from Section III-B assumed the generic case of a
skeleton point having exactly two feature points and admitting
one or two shortest geodesics between them. An example of
such a generic curve skeleton point is shown in Figure 6a.
However, our algorithm from the previous section can also
deal with the non-generic cases, as explained in this section.
We can distinguish two cases: 1) points having three or more
feature points, and 2) points having three or more shortest
geodesics between their two feature points.

We begin explaining the first case. Surface skeletons consist
of manifolds with boundaries, calledsheets[40], [41]. Sheets
intersect in curves. Points on these curves have more than two
feature points. Fig. 6b shows such a configuration in a box
with a vertical ridge. The selected curve skeleton point lies
on the intersection curve of three sheets and has three feature
voxels. This is a limit case. A point lying on one sheet has
one pair of feature points, but a point lying on the intersection
of three sheets has three pairs of feature points. Some feature
points are shared among pairs, yielding three distinct feature
points. No two feature points among these three admit two
shortest geodesics between them, so that the curve skeleton
cannot be detected using this criterion. However, our algorithm
combines all shortest geodesics, so that we now obtain a slice
boundary that splits the object surface into two components,
correctly detecting the curve skeleton point. Another example
of a point having three or more feature points is that of a curve
skeleton point whose inscribed ball has a finite contact with
the boundary. This yields a continuum of feature points, which
in voxel space results in a finite number of feature voxels.
Combining the shortest paths between all feature voxels again
resolves the issue as it splits the object surface into two
components. An example of this situation in a cylinder shape
is shown Fig. 6c.

Combining all shortest geodesics might result in slightly
wrong collapses in the uncommon occasion that a curve
skeleton point lies on the intersection curve of more than three
sheets. In this case, not every two feature points and the associ-
ated shortest geodesic between them correspond to a sheet. At
those points, the collapse measure might differ slightly from
what it should be, violating monotonicity. However, we did not
find this to be a detectable issue in any real-world example
(see Sec. V).

The second non-generic case is that of a pointp ∈ C having
three or more shortest geodesics between its two feature
points, which happens at junction points of the curve skeleton
(Fig. 6d). This is a limit case, since each curve skeleton
point next to the junction does admit two shortest geodesics.
The difference with the generic case is that we obtain more
than two connected components in case of a junction point.
The algorithm deals with this by always taking∂Ω \ c as
the collapse atp (Fig. 4, line 7), wherec is the largest
component inC, essentially taking the largest collapse among



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

the collapses ofp’s neighbors.

V. RESULTS

We have implemented the algorithm from the previous
section in C++ and have run it on a Pentium 4, 3GHZ with
1GB of RAM. As input we used several complex polyg-
onal meshes from [42], [43], voxelized using binvox [44]
for various resolutions. We used object resolutions ranging
up to 5123 voxels. For each object the resolution that we
used is appended to the object’s name. The Mobile object
was created such that it incorporates several synthetic, non-
natural shapes. Various measurements are shown in Table I.
Column “dim” indicates the dimension of the object. Columns
“ |Ω|” and “|∂Ω|” indicate the number of boundary and object
voxels respectively. Columns “#paths” indicate the numberof
computed shortest paths, and “#comp.” indicates how many
times the connected components are computed (Fig. 4, line 5),
whereas “paths t” and “comp. t” show the total wall-clock
time for both. The last column shows the total wall-clock
time for the whole algorithm to complete. As can be seen,
all objects are completed within 10 minutes. We use a simple
caching scheme for shortest paths to prevent computing the
same shortest path more than once as much as possible. The
size of the cache is a user parameter and presents a tradeoff
between speed and memory usage. In these measurements a
cache size of 50 MB was used, which presents a speed-up
factor of 3 to 4 approximately. For these resolutions, larger
cache sizes do not improve speed significantly. Column “mem”
shows the peak memory usage, which is below 800 MB for
all the objects we considered.

Fig. 7 shows the simplified skeletonsSτ of three objects
as computed by our algorithm, with the indicated values of
τ . The importance measure is visualized using a rainbow
color map, mapping0 to blue (i.e. unimportant skeleton
points) and1 to red (i.e. central, important skeleton points).
We observe that the non-generic cases in the Mobile object,
such as the cylinder and extruded star, are handled well. The
surface skeleton is mainly blue because its importance measure
is significantly smaller than that of the curve skeleton, as
explained in Section III-C. In order to highlight the variation of
ρ on S \C we can better use the equalized skeletonS ′τ . Fig. 8
showsS′τ for the Bird object. It is interesting to see howSτ

andS′τ progress differently when increasingτ . With S′τ , the
surface and curve skeleton are simplified more simultaneously,
especially near the periphery of the skeleton, which can be
useful for some applications, as we will see in the next section.

Fig. 9 shows the curve skeleton in isolation for various
objects. Note that we modified the original Rockerarm object
so that it is genus 0. We observe that the extracted curve
skeletons reach into fine structures like the tentacle tips of
the Octopus object and the Cow’s tail, are centered with
respect to the object surface, and exhibit very little wiggle
noise. Cornea et al. [8] made a comparison between four curve
skeleton methods: a basic thinning, distance field, geometric,
and potential-field method. Among the objects tested was the
Plane object. We observe that our approach delivers superior
results on this object (compare Fig. 9 and [8, Fig.12]). The

price we pay is that our method is slower than the first three
methods mentioned in [8], although it is the same order as
the potential-field method. More results of our skeletonization
method are available online at [45], including animations of
Sτ ’s progression.

VI. D ISCUSSION

Because curve and surface skeletonization methods differ
in the precise skeleton definition that they use, the object
representation they work on, and the applications they target,
they are usually compared by their results based on various
desirable properties as mentioned in Section I. In Section VI-A
we discuss how our approach satisfies these desirable proper-
ties. In Section VI-B, we discuss how several key aspects of
our approach relate to other approaches.

A. Desirable properties

The skeleton isinvariant under isometric transformations
(modulo, of course, the voxel discretization). The skeleton is
up to four voxels thick due to the discretization; a simple
post-processing step could be added to make it one voxel
thin, if desired. The surface skeleton iscenteredbecause it is
defined as those points having at least two feature points. The
curve skeleton is centered on the surface skeleton with respect
to the shortest-geodesic length function, and thus it is also
centered within the object. Since the importance measure is
monotonically increasing (Sec. III-B), the simplified skeletons
Sτ areconnectedby default. No special homotopy-preserving
provisions are needed to ensure this, unlike e.g. [13], [23],
[28], due to the global nature of the importance measure. The
simplification is continuous for the vast majority of shapes.
That is, small changes inτ result in small changes inSτ .
This is a very important property, given the infamous unstable
behavior of skeletal structure. The continuity can be ascribed
to the fact that the shortest geodesic of a pointq ∈ S\C evolves
smoothly overS\C, so thatρ is continuous onS\C. The slice
boundaries, each consisting of two shortest geodesics, evolve
smoothly overC except at curve skeleton junctions, so thatρ is
continuous onC and only contains jumps atC-junctions. The
skeletons arehierarchical or multiscale, becauseρ represents
a continuous hierarchy of nested skeletons in which eachSτ

represents a separate level.
Our approach satisfies the two additional desirable prop-

erties we proposed in Section I for methods that compute
both curve and surface skeletons. First, the curve skeletonis
includedin the surface skeleton, because the curve skeleton is
considered as a special case of the surface skeleton, namelyas
those points having more than one shortest geodesic. Second,
our importance measure treats the non-skeleton, surface and
curve skeleton points in auniform manner: All points are
characterized by their importance given by the advected mass
model.

Our simplification method has a single parameterτ ; no other
hacks or settings are needed. The meaning of the importance
ρ which is thresholded byτ is quite simple and intuitive: for
a given skeleton pointp, ρ(p) represents the fraction of the
object’s boundary which is described by that point.
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TABLE I

TABLE WITH MEASUREMENTS. SEE THE TEXT FOR DETAILS.

object dim |Ω| |∂Ω| #paths #comp. paths t comp. t mem total t

Bird512 262x132x488 717k 95k 750k 73k 126s 59s 303M 196s

Cow256 78x146x244 549k 44k 357k 47k 9s 14s 125M 28s

Cow384 115x217x366 1,904k 102k 811k 151k 32s 102s 319M 148s

Cow512 154x289x488 4,575k 183k 1,441k 345k 75s 302s 592M 411s

Dino512 159x453x487 3,218k 177k 1,413k 231k 61s 156s 590M 246s

Dragon512 214x336x488 5,656k 320k 2,664k 491k 152s 254s 747M 475s

Hand512 488x205x342 3,137k 167k 1,348k 211k 132s 171s 570M 332s

Homer512 162x488x276 3,947k 191k 1,517k 324k 62s 207s 561M 299s

Horse512 488x421x228 4,900k 214k 1,698k 349k 117s 289s 716M 449s

Plane 217x304x98 545k 110k 912k 71k 257s 57s 306M 323s

Mobile384 366x224x348 1,211k 175k 1,418k 123k 71s 83s 482M 171s

Octopus384 366x259x335 610k 76k 680k 64k 16s 24s 321M 54s

Rockerarm256 246x126x76 528k 67k 541k 58k 68s 31s 176M 105s

Rockerarm384 366x188x112 1,860k 154k1,197k 156k 301s 142s 399M 461s

Fig. 7. Simplified skeletonsSτ of the Dragon, Mobile, and Cow objects at four thresholdsτ . The importance measure is visualized using a rainbow color
map.

Fig. 8. Simplified equalized skeletonsS′

τ for the Bird object.
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Fig. 9. The curve skeletons of the Rockerarm, Plane, Hand, Octopus, Homer, and Horse objects. The importance measure is visualized using a rainbow
color map. For the Hand and Horse objects we show the collapses (magenta) for several curve skeleton voxels (white). The line segments indicate feature
voxels of the white voxels.

Fig. 10. The skeletons can be made robust by increasing the thresholdτ .

The robustnessproperty requires the skeleton of a noisy
surface to be close to that of the corresponding smooth surface.
We can achieve this behavior by settingτ such that skeleton
parts due to noise are filtered out. Fig. 10 shows the Dino
object with and without surface noise and its skeleton for
two thresholdsτ . As expected, we observe thatS′τ of the
noisy Dino (b) is much noisier thanS′τ of the Dino without
noise (a) for small values ofτ : τ < 0.05. The skeleton of
the noisy Dino can be made robust (d) by increasingτ . At
τ = 0.1, the structure of the simplified skeleton of the noisy
Dino (d) is comparable to the skeleton of the non-noisy Dino
(c). The importance measures on both are also very similar as
indicated by the colors. In the above, we used the simplified
equalized skeletonS′τ . If we use the non-equalized skeleton
Sτ , the spurious branches of the curve skeleton remain, until
τ is so high thatS is completely removed.

The curve skeleton is said to bejunction detective, or

Fig. 11. Shape segmentations using the skeleton-to-boundary mapping.

allowing for component-wise differentiation, when different
logical parts of the object can be inferred from the curve
skeleton [4]. In fact, the collapses that we compute provides us
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with a natural skeleton-to-boundary mapping. Surface skeleton
points map to curves on the object surface, whereas curve
skeleton points map to contiguous areas. Figure 9 shows
the skeleton-to-boundary mapping for several curve skeleton
points for the Hand and Horse objects. We observe that the
collapses correspond to logical parts of the boundary, such
as the legs or ear of the horse and fingers of the hand. The
skeleton-to-boundary mapping can be used in various appli-
cations, e.g., for selection purposes in geometric modeling
applications. Another application is shape segmentation.The
collapses associated with the curve skeleton branches coming
together in a junction provide us with meaningful components:
distinct logical object parts. Combining the meaningful com-
ponents that are associated with all curve skeleton junctions
yields a shape segmentation having desirable properties, as
follows. Because the skeleton-to-boundary mapping is based
on shortest geodesics, the borders between segments are
smooth, minimally twisting, and robust to noise. Being based
on the curve skeleton, the segmentation respects circular shape
symmetry and is pose invariant. A shape segmentation method
from the first and third author exploiting this skeleton-to-
boundary mapping is described in [39]. Figure 11 shows two
segmentations obtained using this approach.

The original object, or a simplified version thereof, can be
reconstructedfrom the surface skeleton by placing at each
voxel its maximally inscribed ball. In general, reconstruction
from the curve skeleton is not possible by using only balls. One
simple application of our simplified skeletons is that of surface
smoothing. By reconstructing a surface from the simplified
skeletonSτ for a small τ value, small-scale surface noise
is replaced by sphere segments. For the purpose of surface
smoothing, the simplified equalized skeletonS′τ is used, so that
the spurious curve and surface skeleton parts due to the noise
near the boundary are simplified simultaneously. Fig. 12 shows
two examples. Of course,τ cannot be too high, otherwise
the reconstruction becomes too inaccurate, or “spherified”.
Reducing noise in this manner works best at thick object parts,
such that the inscribed balls of this part are large in comparison
to the inscribed balls in the perturbations. Indeed, noise at
thin parts can be considered as object features, more so than
noise at thick parts. Noise at the thin parts, namely the ridges
of the box and the neck of the Dino, is less reduced than
the thick parts. A nice feature of using the collapse measure
is that the reconstructed object cannot become disconnected
due to the simplification, because the collapse measure on the
curve skeleton has such a high value. In contrast, if we would
simplify the Dino in Fig. 12 using only the collapse measure
as defined onS \ C, the neck would become disconnected.

The monotonicity of the collapse measure comes at a price:
Our measure is not so efficient to compute as purely local
importance measures, due to the global operations involved.
Computing the feature transform using [36] takesO(n), where
n = |Ω|. Computing the set of shortest paths for an object
voxel in the boundary graph using A* takesO(b log b) in
the worst case, whereb = |∂Ω| ≈ log n. The worst case
is a sphere, as the shortest-path algorithm visits practically
all boundary voxels for diametrically-opposed feature voxels.
However, shortest paths are not computed between arbitrary

Fig. 12. Surface smoothing of the Box and Dino objects by reconstruction
from S′

τ , with a smallτ .

boundary voxels, but always between associated feature-
voxels, so that for objects that consist of distinct parts, the
algorithm visits only a small subset of the boundary voxels.
Computing the connected components using a hierarchical
spatial subdivision scheme on the surface takesO(log b).
In total, the worst case of the algorithm isO(n(b log b)),
but practical cases are far below this limit. Table I shows
the relation betweenn, b, and the running times for several
practical objects. In particular, we note that the speed of our
implementation compares favorably to [28]. On a comparable
machine, their approach took half an hour to compute a curve
skeleton for the Rockerarm. Our approach took under 10
minutes, using a voxel resolution of3843 for a full curve and
surface skeleton hierarchy, while observing that the complexity
of the curve skeleton is comparable (compare Fig. 9 and [28,
Fig.5]). Our approach is faster than the potential-field method
of Cornea et al. [16], which reportedly takes up to half an
hour for voxel resolutions in the order of2003 on a standard
PC.

When discussing the speed, we should stress the fact that
our approach is, to our knowledge, the only one that gener-
alizes a global importance measure for 2D objects, namely
the feature-distance measure, to 3D. This measure is the
cornerstone of our method, as it guarantees the satisfaction of
all the desirable properties considered, similar to its analogous
2D counterpart.

B. Comparison with other methods

In this section we compare our method with existing
methods on five main aspects of our implementation: use
of geodesics, local versus global detection, gradient field
extension, the use of advection, and discrete versus continuous
space methods.

Our approach resembles the recently published approach
of Dey and Sun [28] in the sense that the shortest-geodesic
length between feature points is used. There are some im-
portant differences however. Most importantly, we producea
skeleton hierarchy, while their approach does not. Second,
their approach is more of a hybrid method, in which first



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 13. A comparison between the surface skeleton producedby using our
global measure (top) and a typical local measure (bottom).

the surface skeleton and global geodesic-length measure are
explicitly determined, after which a local divergence-based
measure [13] is used to find the curve skeleton on the derived
surface skeleton structure. Because this latter measure islocal,
an erosion is needed to enforce connectedness, as well as
a sampling resolution high enough to accurately compute
the involved divergence. In contrast, our approach uses a
singleglobal measure for both the curve and surface skeleton.
The measure can be computed independently on a point-
by-point fashion, making our algorithm simple and allowing
parallel processing. Furthermore, all our computations are
based on a non-derived structure, namely the object surface.
This allows us to use a voxel representation, requiring simple
data-structures and algorithms, keeping our algorithm straight-
forward and efficient. A second advantage of using only non-
derived structures and integral quantities, such as geodesics
and collapsed areas, is that our approach is very robust, even
for coarsely sampled volumetric objects.

We would further like to compare the surface skeleton
produced by our global importance measure with the skeleton
resulting from a purely local measure. See Fig. 13. The top
images show the surface skeletonSτ of the Cow object com-
puted by our method. The bottom images (taken from [23])
show the surface skeleton resulting from the moment-based
measure from [3]. The threshold used for the latter images
was carefully chosen such that the skeleton is both connected
and noise free. We choseτ for our method such that the
skeletons are most similar. Yet, we observe that our skeleton
at this comparable simplification level is able to capture more
details, such as the horizontal skeleton sheets and the skeleton
in the udder and tail. This can be explained by the fact that
local measures cannot distinguish between these fine structures
and noise, and will eliminate them together, whereas global
measures can. Our skeleton is connected regardless ofτ .

At a conceptual level, our advection-based importance mea-
sure is related to the flow complex of Giesen et al. [46],

[47]. We briefly outline next the similarities and differences.
Both approaches define a vector field inside a 3D object, in
which advection of points situated on the object boundary is
considered. In both approaches, the vector field is equal to
the gradient of the distance-to-boundary function in the non-
critical points, i.e. away from the skeleton. Both approaches
extend the vector field to the critical (skeleton) points, however
in different ways, and for different purposes. In both cases, the
vector field defines implicitly a dynamical system, or induced
flow, which describes the motion, or advection, of particles.
Typically, such particles originate from a (dense) sampling of
the surface of the considered 3D object. Giesen et al. extend
the gradient field on the skeleton in the direction of steepest
ascent, and end the trajectories, called orbits in [46], in critical
points where the steepest ascent cannot be determined, called
fixed points of the flow complex. In contrast, our advection
model extends the vector field on the skeleton such that
it is tangent to the trajectory tree, constructed as described
in Sec. III-B, and oriented toward the unique root. Hence,
the advection model of [46] admits several fixed points or
“sinks”, even for genus 0 objects, whereas our model admits
one unique sink, or root. Our notion of collapse of a point
is similar to the set of start points, on the object surface,
of all orbits contained in what in [47] is called a “stable
manifold” of that point. They define, and compute, the core
of a 3D object as the set of unstable manifolds of critical
points c, which are the set of points to which the neighbors
of c flow. The core is shown to be homotopic to the medial
axis, or skeleton. At an implementation level, the object and
skeleton are manipulated in a computational geometry setting
based on polygonal descriptions, using tools such as the
Voronoi and Delaunay diagrams. In contrast, we define and
compute the skeleton using the (extended) feature transform
(Sec.IV), and we perform all computations in a discrete voxel
setting. All in all, the goal of our advection-based model
is to define a monotonic importance measure which allows
robust simplification of complex 3D skeletons, whereas the
model in [46] is used to fulfill topological guarantees for
medial axes [47] and surface reconstruction [48] computation
methods.

Skeletons can be computed by direct numerical simulation
of advection. For example, Torsello and Hancock [49] compute
skeletons of 2D shapes by simulating an advection process
based on momentum conservation. This yields a scalar density
field which captures the local contractions and dilations ofthe
boundary evolution in the distance field gradient. Hence, their
method is a skeleton detector, but not a skeleton simplifier.
In contrast, our collapse measure has overall low values away
from the skeleton, but has a high variation on the skeleton
itself, which allows us to simplify the skeleton.

Finally, let us mention that we have opted for a voxel-based
approach for its ease of implementation. A disadvantage of this
is that polygonal models first need to be voxelized. The result-
ing skeletons are influenced by the grid’s orientation, causing
a slight loss of rotation invariance, and the grid’s resolution,
which may cause a loss of detail for objects containing small
features. Methods acting directly on continuous geometrical
data do not have these issues. However, we would like to
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indicate that the definition of our global importance measure
is not limited to discrete space. As long as the key ingredients
of this measure are available, namely, computation of the
feature points, shortest geodesics, and connected components,
our approach can be adapted to other representations.

VII. C ONCLUSION

We have proposed the collapse measure, a novel importance
measure that enables the robust computation of multiscale
curve and surface skeletons of 3D objects. To our knowledge,
this is the first truly global 3D importance measure that
can be used to obtain both surface and/or curve skeleton
hierarchies in a uniform manner. Underpinning the collapse
measure is a physical process in which mass from the object
boundary is advected or “collapses” onto the skeleton. This
gives the measure an intuitive meaning, and allows us to
reason about it and deduce several properties of interest. For
the practical implementation of the proposed measure, we do
not explicitly simulate the advection process, as this can be
computationally unstable and complex. Instead, we proposea
practical algorithm that is straightforward to implement,does
not need any post-processing steps, and is robust, as it uses
only integral operations. Our algorithm delivers good results
on a wide range of real-world, complex objects. A limitation
of our measure is that objects with tunnels cannot be handled.
However, this is a known limitation for the analogous 2D
feature-distance measure [5]. In detail, we can compute curve
skeletons for such objects, but not simplify them, since we
have no importance measure for their loop-parts.

In future work, we want to apply our skeletons in various
applications, such as the simplification of complex 3D objects.
Also, we consider an extension of the collapse measure that
can handle objects with tunnels. The recursive nature of our
approach makes it interesting to look at generalizations and
applications beyond 3D, e.g. for time-dependent surfaces.
Finally, on a more theoretical ground, we plan to investigate
our conjecture (see Sec. III-B) in more depth to acquire
more insight into the relation of shapes with their skeletal
counterparts.
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