IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Computing Multiscale Curve and Surface
Skeletons of Genus 0 Shapes Using a
Global Importance Measure

Dennie Reniers, Jarke J. van Wijklember, IEEEand Alexandru Telea

Abstract—We present a practical algorithm for computing [4]: homotopic, invariant under isometric transformaspne-
robust, multiscale curve and surface skeletons of 3D objest construction, thin, centered, junction detective, ropeficient
of genus zero. Based on a model which follows an advectiony, compute, and hierarchical. While 2D skeletonization is a

principle, we assign to each point on the skeleton a part of # - . .
object surface, called thecollapse. The size of the collapse is well-studied problem, computing 3D skeletons with all o th

used as a uniform importance measure for the curve and surfae above properties is still an open problem.
skeleton, so that both can be simplified by imposing a single The robustness and hierarchical properties deserve furthe

threshold on this intuitive measure. The simplified skeletos are  gttention. Therobustnessproperty means that the skeleton
connected by default, without special precautions, due tohe s jhsensitive to small-scale boundary noise. This is neede

monotonicity of the importance measure. The skeletons posss . I tical licati the b d di wirat
additional desirable properties: They are centered, robus to in all practical applications, as the boundary discreiusa

noise, hierarchical, and provide a natural skeleton-to-bandary ~Whether voxel or polygon based, inevitably introduces @ois
mapping. We present a voxel-based algorithm that is straigtior- ~ The hierarchical property means computing a multiscale of

ward to implement and simple to use. We illustrate our method nested skeletons, each one representing the shape details o
on several realistic 3D objects. different spatial scale. Hierarchical skeletons are iycalso
Index Terms— Surface skeletons, curve skeletons, importance robust, since boundary noise can be seen as small-scalg obje
measure details. To the above, we add thumiformity and inclusion
properties. The uniformity property requires that bothveur
. INTRODUCTION and surface skeletons are computed and treated similamty. F

KELETONS are compact shape descriptors. The skeleté¥ample, if a method provides a parameter for multiscale

or medial axis, of a 2D object can be defined as trekeleton simplification, this parameter should be the same
centers of maximally inscribed discs [1]. In 3D, this definit for both curve and surface skeletons. The inclusion prgpert
can be extended to the centers of maximally inscribed balf§guires thaf is a subset of, motivated by the fact that curve
Alternative definitions are the set of interior points thavé Skeletons can be considered a limit case of surface skeleton
at least two closest points on the object surface, or tf@f objects with local circular symmetry (e.g. a tube).
first-order singularities of the distance-to-boundarydfiedr ~ In this paper, we introduce tlellapse measure novel im-
distance transform (DT). Using these definitions for a 3Portance measure for computing both curve and surface-skele
object, we obtain the so-calleslirface skeleto®, or medial tons of 3D shapes. Our measure possesses all the desirable
surface, which consists of a set of 2D manifolds, or skeletdfoperties mentioned earlier: It is robust to compute on-com
sheets, and a set of 1D curves. The skeleton points, togetA§X, noisy 3D shapes, always delivers connected skeletons
with their distance to the 3D object boundary, define th thresholding produces a hierarchy of nested skeletens d
medial surface transform (MST), which can be used fgcribing the shape at different scales, treats surface ang c
volumetric animation [2], surface smoothing [3], or topgilcal ~ Skeletons uniformly, and is simple to implement. Addititipa
analysis used in shape recognition, registration, sincplion, OUr collapse measure has a geometrically-motivated definit
or feature tracking. which makes its use in practice intuitive. Conceptuallyg th

A different type of skeleton is theurve skeletor, which collapse measure is based on an advection process which
consists, for a 3D object, of 1D curves locally centered witgeneralizes to 3D the global feature-distance measuretosed
respect to the object boundary. Curve skeletons have a I16@Mpute 2D skeletons by several authors [5]-{7]. Intuifive
dimensionality which makes them suitable for “stick-figurethis can be explained as follows. Mass, initially locatectie
object representations in 3D animation, morphing, and gepiect boundary, is advected onto and then along the skeleto
metric processing [4]. In contrast to surface skeletonsyecu The collapse measure of an object point is the amount of
skeletons lack a formal and unanimously accepted definitioR@ss advected through that point. All object points aretédea
It is widely accepted that 2D skeletons and 3D surface aggually, yielding a uniform collapse measure for non-skoeie

curve skeletons should fulfill several desirable properf], Surface skeleton, and curve skeleton points. Hence, outadet
merges the skeleton detection and simplification in a single
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We distinguish betweetocal and global measures. Local
measures use only object properties from a small, limited
vicinity of every object point, and are thus incapable of
distinguishing between locally identical configuratiossch
as those sketched in 2D in Fig. 1. Thresholding local measure
usually delivers disconnected skeletons. Connectivity ba
enforced, but this requires extra work [13], [22], [23], and
often makes the simplification non-continuous [21], thussle
intuitive. In contrast, global measures monotonicallyréase
Fig. 1. A 2D shape and its skeleton. Poipts; € S and their feature points fTom the skeleton boundary to its center, and describe a
pa, Py andqa, g, respectively have locally identical configurations. Glgba skeleton point’s importance to representing the whole aibje
however,p is considered more important than Pruning global measures by simple thresholding always-deli

ers connected skeletons.

] _In 2D, thefeature-distanceneasure, also called collapsed
the collapse measure directly. We demonstrate the alm”ﬂboundary measure, is a simple, robust and efficient to com-
on several real-world examples. pute global importance measure used both for polygonal and

The structure of this paper is as follows. In Section Ihixel object representations by several authors [5]-[#]. E
we give an overview of related work. In Section Ill Wesketches this measure: The importance of the skeleton point
discuss our informal model in 2D, show its equivalence t9 equals the length of the smaller boundary curve delimited
the feature-distance measure, and propose an extensi@h to[{fy pointsp, andp,, wherep,, p, are the points at minimum
The informal 3D model motivates our algorithm, which igjistance ofp: the so-calledfeature points By this measure,
presented in Section IV. Section V presents the results ef tfje importance ofy is regarded lower, which agrees with
algorithm. Section VI discusses how our method fulfills thgytyition. In 3D, the -SMA method uses a local measure
desirable skeleton properties, and compares it with @gstipased on the angle between the feature (or anchor) poirits [19
methods. Section VII concludes this paper. [24]. Combining the angle with the distance-to-boundatyea
yields a more robust measure [22]. Siddiqi et al. propose a
range of methods that use a local divergence-based measure
to detect and classify skeleton points in 3D [13], [25], [26]

Methods for computing medial axes and skeletons afe similar approach using first-order moments is given by
commonly classified into four groups [8]: thinning or eroRumpf and Telea [3]. Pizer et al. [27] give a comparison of
sion [9], geometric methods [5], [10], [11], distance-fieladnethods that compute multiscale skeletons. The genetdl-fie
methods [7], [12]-[14], and general-field methods [15],][16method of Cornea et al. [16] delivers smooth curve skeleton
Such methods usually work either on a raster or voxel-baseigrarchies. However, only a limited number of hierarchy
object representation, or on a boundary sampling. Thinnitgyels is generated and the different levels are not treated
methods iteratively remove boundary voxels as long as camiformly. Recently, Dey and Sun [28] presented a method
nectivity is not violated. Removing voxels in order of a trug¢hat computes robust curve skeletons. Similar to Prohaska e
distance-to-boundary fashion enforces the centeredmiss cal. [29], they use shortest-geodesic length between featur
rion [17]. Geometric methods often use the Voronoi-diagrapoints as an importance measure for the surface skeleton
of a boundary sampling and deliver a polygonal skeletgoints. This is a global importance measure, used to find the
description [5]. These methods are quite complex to imptememiddle of the surface skeleton. They obtain a curve skeleyon
in 3D and the resulting surface skeletons can be difficult tgsing the local divergence-measure of [13] on this geodesic
handle. Other geometric methods compute skeletons usleggth measure.
edge collapses [10], from a mesh segmentation [18], or byRelated to the curve skeleton is the Reeb graph: a 1D
sphere sweeping [11]. Distance-field methods detect skedet structure encoding geometrical and topological propertie
as singularities of various types of the distance transfoirthe 3D shapes [30], [31]. It is constructed by following the
object [3], [13] and have been efficiently implemented usingvolution of the level sets of a real-valued function on the
graphics hardware [14], [19], [20]. In general-field methodobject boundary. The critical points of this function ar@-re
alternatives for the distance transform are used [15],.[1Gksented by nodes in the Reeb graph, and the edges represent
These methods are generally less sensitive to noise, duecédnections between critical points. The real-valued tiong
the averaging effect that the field has. defined on the object boundary, should be chosen carefully

A key aspect of any skeletonization method is its abilitjo obtain a Reeb graph that is suitable for the application at
to produce robust, hierarchical skeletons. At the core gf ahand. In contrast, our approach uses curve and surfacdakele
such method is an importance measure for the skeleton poiksfinitions to obtain a real-valued function on the skeletba
Such measures have the desirable property that small valireportance measure, which is then used to simplify it.
correspond to skeleton points that represent object detail In this paper, we propose a global importance measure
whereas large values correspond to points that represent fibr computing multiscale surface and curve skeletons, by
object’s main structure. Simplified skeletons can be okthingeneralizing the 2D feature-distance measure to 3D. At the
by pruning the skeleton using the importance measure [21kore of our measure is an advection principle. In the next

Il. RELATED WORK
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section we present the conceptual model. (1) V% ,a ----------------------
[1l. CONCEPTUAL MODEL S A B
_Let Q be ad-dimensional object. with _boundar&ﬂ. The . < o(p)
distance transformD : ©Q — R is defined asD(p) = R p _ 1
mingeoq dist(p, k), wheredist is the Euclidean distance in 1 N
R<. The feature transforn&’ : Q — P(9Q), whereP is the 1
power set, assigns to a poiptin 2 the set of points o2 H—%

that are at minimum distance of the feature pointsof p:

F(p c Q) _ {x c o0 | dist(p7 x) _ D(p)}. (1) Fig. 2. A rectangle shap®, its skeletonS, the rootR, a skeleton poinp,

andp’s feature pointsz, b. The collapse op is formed by the origins of the
. . . trajectories (red) throughp.
The skeletonS of 2 is defined as those points {a that have

at least two feature points:

S(Q) = {I cQ ‘ |F(z)| > 2}_ (2) on S can be defined in only one way, namely tangent to the
N skeleton:
In the generic case, skeleton points have exactly two featur F: F-ng=0 onS\ R, (4)

points. In the non-generic cases, which are limit case$etke
points have three or more feature points. Whes: 3, S is Where ns represents the normal to the skeleton, dnds
called the surface skeleton. An equivalent definition of trehosen in the direction of the rodt. All trajectories end in
skeleton is as the points whefgis non-differentiableD and the root, where we definB(R) = 0.
VD can be computed using several methods, e.g., by solvingconsider a discretization of the object boundary into a
the eikonal equatiorjVD|| = 1 using level set methodslarge but finite number of particles evenly distributed oa th
such as the fast marching method [32], graphics hardwdreundary)2. The advection of the particles is governediy
techniques [14], [33], or a variety of discrete propagatiohhe trajectories of these particles together forrtragectory
methods (for an overview of these see [34]). tree of which R is the root. When the number of particles
In the remainder of this section we present a conceptulproaches infinity, the tree covers the whol€péo that each
model that appeals to intuition, in order to motivate thpointp € (2 is on the trajectory tree. On non-skeleton points,
algorithm that we further present in Section IV. At all timesthe trajectories do not intersect because they follo.
we assume the generic case of a skeleton point having exa€y skeleton points the trajectories necessarily overlagha
two feature points. The non-generic cases of points havieleton of a 2D shape is only a 1D structure. Consequently,
three or more feature points are dealt with in Section IV-@ach object poinp €  has one or more trajectories going
We proceed as follows. In Section 11I-A we first describe athrough it that originate on the object boundary. That pért o
informal 2D model using an advection principle that yieldghe boundary that is formed by the origins of the trajectorie
a measure equivalent to the feature-distance measure,sanftrge leaves) going through a poiptis called thecollapse
such has the desirable property of monotonicity. In Sedtien of p. The collapse at a non-skeleton point is just its single
B we extend this model to 3D, such that we obtain a monotorigature point. The collapse at a skeleton point are its two
3D importance measure. feature points, plus the origins of the trajectories inaugni
from the skeleton and passing through that point. Becauese th
skeleton is a tree structure, a pope S dividesS into two
subtrees. The collapse atis the sum (or integration in the
Let 2 be a 2D shape. The skeleton @f can be defined |imit) of the feature points of the subtree not containiAg
as those points where the distance transfafmis non- \hich means that the collapsejats a compact boundary arc.
differentiable. Governed by the eikonal equation, theettiiry ~ Based on the construction presented above, we can now de-
of each boundary point follows the gradient fi§fd) and ends  fine our importance measupeon 2. The importance measure
at the skeletors, whereV D is undefined. We aim to definetells us how important an object poiptis in representing
a flow vector fieldF that extendsVD to the skeleton, such the object boundary: the more trajectories thropgthe more
that trajectories do not end &t On non-skeleton point¥' is  jmportantp is. In case of an infinite number of particles this

A. Collapse Measure in 2D

equal to the distance field gradient: presents a problem, as the importance for a skeleton point
F—vD on 0\ . 3) would be infinite, so we use the size of the collapse instead:
Instead of ending af, we let the trajectories end in a unique pp): =R p(p) = | collapse ap |. ®)

point on S, called theroot R. The precise definition of? \yg cq)l this importance measurethe collapse measuree
follows later (Eq.6). If we assume that the object is of genys;n now define the rooR as that point onS, having two

0, the skeleton is also of genus O,_ because the Skeletomé?ghboring points, y € S, such that the collapse measure
homotopic to the shape [35]. Assuming genus 0, the skeletgn,~is equal to the collapse measureyat
of Q) is a tree, it has no loops, so that the continuation of the '

trajectories onS toward R is predetermined. The flow fiel® R(Q): p(z) = py). (6)
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The definition of F should be extended t& and there
should be a single rooR € S. In contrast to the 2D case,
there are more possibilities to defite as S is now a 2D
structure (Eq. 2): the surface skeleton, generally cangisif
— slice 3, 2D curved manifolds. We present a constructionBfthat
"'u,'slice skeleton 5(z,) Yields a measure that is not only monotonic, but has the nice
p property that it differentiates between the surface andeur
skeleton.
The key idea is to slice the 3D shape into 2D simply-
connected and possibly curved manifolds, calidides and
use our 2D model on these slices to defthén a divide-and-
conquer fashion. Let denote a slice with compact boundary
0% C 99. We defineF on a sliceX using the 2D model.
e : BecauseF is already defined of2 \ S by Eq. 7, the slices
curve skeleton C must be parallel t6/ D, so that trajectories starting on a slice

slice

7 - slice skeleton S(Z,)

2

5Q boundary stay in their respective slice. If we denotenkythe
: normal to sliceX, then we require:
ny-VD =0 onX\S. (8)
Fig. 3. A box shap&, (part of) the curve skeleto@, and two slices;, 31,.  1Nis implies that the 1D skeletofi(X) of a sliceX: is at the
One trajectory is shown in red. intersection of the slice with the surface skele@®(f2) of the
object:
S(8) =N S(Q), 9)

Hence, the root is in the middle of the skeleton with respect
to the amount of incoming trajectories. In Fig. 2, the featubecause each poipte S(X) is connected to its two feature
points of the rooi? can be seen to divide the boundary exactlpoints by two trajectories originating on the slice bourydar
into two components of equal length. 0%. Now, F on the slice skeleton, and thus &(2), can be

Intuitively, the above fieldF defines an advection of par-defined according to our 2D model (Eg. 4), namely tangent to
ticles, or mass, from the boundary onto and then along tHee slice skeletonF'(S(X)) - nz = 0, in the direction of the
skeleton, up into the roak. The importance of a point is theslice rootRs. The slice rootRy, is defined similar to the root
amount of mass that passes through that point on its way to thethe 2D model: its two feature points divid&: into two
root. The collapse measure has a low value at the non-skeldd@undary arcs of equal length.
points Q) \ S. On the skeletony increases while approaching Applying the 2D model to each slice, we obtain one
the root, as more and more trajectories overlap. The calaggajectory tree per slice, yielding a trajectory forest.order
measure is monotonic, because the trajectories form a tréemerge this forest into a single trajectory tree for the leho
It can be easily seen that the value pfon S is equal in Vvolume(2, the trajectories starting on the slice boundaby
the limit to the well-known feature-distance measure [8]-[ should not stop in the slice rodts, but should continue to
which assigns to each skeleton point the smaller boundary-a single global root?, which we will define later. This poses
length between two feature points. Using our constructiothie final requirement on the slices, namely that the roots of
we obtain the same measure. In Fig. 2, a sparse subset ofaéhe slices together form a 1D connected structure. We cal
incoming trajectories for a pointis shown. These trajectoriesthis structure the curve skeletdh as it is connected and can
clearly originate from the smaller boundary arc between thg considered in the center of the object, as it consists of
feature points op. Indeed, our collapse measyr@) is equal individual slice roots:
to the length of this arc. C = {Ry, i (10)
B. Extension to 3D We now define a slice set satisfying the requirements above.

Our goal is to construct an importance measure in 3D th-g?e key idea is that we choose each slicesuch that its

is monotonic. Then, we can compute robust 3D skeleto ot Ry has two shortest geodesics on the object surface

simply by thresholding this measure, just as is done in 2 between its two feature points(Hy). The wo shortest

using the feature-distance measure. We extend our inforng'?gf)deSICS form the boundady. of the slice. In this way we

. . . re sure that the slice roots form a connected 1D structure,
2D advection model from the previous section to 3D. Th%atisfying Eq. 10. Indeed, we use here the result of Dey and

g;%;gﬁl I\n;.odel for 3D shapes motivates our algorithm frorﬁun [28]: They us_ed as definition for their connected curve
Again, we want to construct a flow vector fiekd yielding skeleton tho_se points of that_ have two shortest geodesms_
a trajectory tree that covers the whole volume»fAs in 2D, betyv_e_en the" two featur_e points. A s_ec_ond reason why this
we require that the trajectories first followD: definition fits our model nicely is thaky, is indeed the root of
its slice: the two shortest geodesics betwé€iRy;) forming
F=VD on 2\ S. (7) the slice boundarypX are necessarily of equal length. A
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slice is completely characterized by its boundary comsisti shortest geodesic betweenb on the object surface. We use
of two shortest geodesics, together forming a Jordan curtleese properties in our algorithm in Section IV.

and the fact that it is parallel t&¥ D. What remains to be

shown is that this definition yields simply-connected slid@ ¢ gkeleton simplification

specific, that there are no holes . Extensive empirical L .
study suggests this, as checke?(ta)/ us on several tenths o'wer we hav_g computed for all points " the_ object, we
different 3D voxelized objects, sampled on various resohst pbtaln a simplified skelet(_)n by threshpldlpgNlth a desw_ed
However, we cannot prove this, and leave it as a conjectur'(g.]po.rtance vaIug. To easily hand[e_opjeqts of c_in‘ferent_ SIZES,
Our recursive approach of first slicing the object and theti® f|rs_t normalizep to [0.-1] by dividing it by its maxmal
applying our 2D model to the slices yields a hierarchicall\)//alue’ .e. half the object surface area (see Sec. IIl-A):
structured trajectory tree. Consider a trajectory stgrtim 1

the object bodndarg)ﬂ and slice boundary?)JZ. It %rstggoes Sr={peQlrlp)> Tiarez((?Q)}. (11)
straight to the slice skeleton while staying in its sliéeThe These simplified skeletons are connected by default, as the
collapse at such a non-skeleton point is a single point @ollapse measurg is monotonic.

the boundary. After arriving on the slice skeleton, located  One observation must be made concerning the interpretation
the surface skeleto, the trajectory follows the 1D slice of the collapse measure This measure is essentially of a
skeleton toward the slice roaks € C, overlapping more higher dimensionality on the curve skeleténthan on the
and more trajectories from the same slice on its way. Themainder of the surface skeletén C. Whereas(C) denotes
collapse at a slice skeleton point is similar to the collagse a collapsed areg(S \ C) denotes a collapsed curve length.

a skeleton point in the 2D model: a boundary arc on the slig#dis means that, when we increasethe surface skeleton
boundary. Without considering trajectories coming frotent typically disappears completely even before the curvestéal
slices, the collapse at the slice raBft; is the slice boundary starts to get simplified. This is desirable in applicatiorisve

0X. After trajectories arrive at the slice root, located on thghe curve skeleton is considered more important. However,
curve skeleton, they continue along the curve skeletonrbwan other applications, this behavior may not be desired, as
the global rootR € C, joining the trajectories coming fromwe shall show in Section VI. For such applications, we can
other slices. Hence, the collapse at a curve skeleton poistualize” p by reducing the dimensionality ¢f(C) from an

is an integration of slice boundaries: an object-surfa@a.ararea to a length by taking its square root. We denote the
Indeed, the Jordan curve theorem states that a Jordan aurvequalizedskeleton byS.. In contrast toS,, the equalized

a surface of genus 0 divides that surface into two componersgeleton gets simplified uniformly both in its curve as in its
In our construction, the collapse at a curve skeleton pBint surface components whenis increased. Note that this is just

is the area of the smaller component generated by the slgge of the possible ways to equalizeOther options leading
boundary and Jordan curv#®. We still need to define the to other applications are open to further study.

global rootR. Analogous to the 2D root, which is defined to

be in the middle of the skeleton with respect to the collapse IV. ALGORITHM

measure (Eg. 6), the global .ro-ﬁ’ns the sl|ge rootiy, € C of We present now a voxel-based algorithm that computes
the slice whose boundary divides the object surface into tv%?mplified skeletons, by first computing the collapse measur
components of equal area.

Figure 3 exemplifies our construction. It shows a box shap%nd then thresholding it (Eq. 11). A strong point of our
two slices ), 5. and one trajectory starting ofis};. The gorithm is that it works on the object-boundary voxelsyonl

X ; : X and not on any derived structures. In particular, there is no
_trajectory_ first goes tcS(Zl), and then taRz, while staying need to computeS first. It is important to note that we
in the slice. PointRy, is the root of ¥, as the feature

. = . . do not need to explicity compute the flow vector fiel
points a,b of Ry, divide the slice boundary’, into wo and simulate an advection process, which would be unstable.

et oo, Ty e e oo iea, e compte e colapse measr i sufaceacur
9 aefb. J y skeleton voxels directly as a length and object surface, area

in Rs;, and continues along the curve skeletarFinally, the oo ey 1n Section IV-A we present an outline of the

trajectory ends in the global roag € C, which coincides algorithm. Section IV-B discusses the implementation into

Wltr: tt)he root '(t)f Sll.'ce%f' Pg'm ﬁ I'Sd Ch(t)senb as ;he g.lotgalmore detail. Section IV-C explains how the algorithm deals
root because its slice boundary divides the boundary in tw ...\ non-generic cases.

components of equal area.
As in 2D, the tree structure of the trajectories ensures that )

the collapse measure is also monotonic in 3D by constructidh Outline

It is furthermore important to note that the collapse measfir  Our voxel-based algorithm computes the collapse measure

a curve skeleton point can be computed independently fronfor each object voxeb independently from the other voxels.

other points simply by taking the area of the smaller objeErom the curve skeleton definition (Sec. IlI-B) follows that

surface component generated by the slice boundary, cigsistve can detect a curve skeleton painby checking whethep

of two shortest geodesics between the two feature pairits admits two shortest geodesics on the object surface betitgeen

of p. Likewise, the collapse measure of a surface skeletbmo feature points. However, in discrete space this definiti

point can be directly computed by taking the length of this problematic. On a voxelized object surface, the length of
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1: computeF’ on )
2: for eachp € Q do
3 F Uz,y,ze{o,l} F(pw + T, Py +Y,p. + Z)
4 P —U,zcp shortestpatfu, b)
5. C « {connected components in grapk \ P}
6: if |C| > 2 then {curve skeleton voxél
7: p(p) « aredd) — max aredc)
ce
8: else{surface or non-skeleton voxel
9: length(l
p(z_)) < max length()
10:  end if )
. p(p Fig. 5. Curve skeleton of a box with two tunnels computed gisirvariation
1 pp) < Fareddq) of our algorithm.
12: end for
13: S; ={peQ|plp) >r}
Fig. 4. Pseudo code of the complete algorithm. set F' of a voxel p by merging the feature set qgf with

the feature sets of its 26-neighbors that lie in the first micta

(line 3). The purpose of is to combat two discretization
shortest path, as discrete equivalent of a shortest gendegioblems, as outlined in Sec. IV-A. The first problem is
is only an approximation for the geodesic length on th@st while surface skeleton points always have at least two
original continuous surface. In practice, we will thus findagtyre points irR3, this is not necessarily so in discre@]
only one shortest path between the two feature voxels §ace [34]. In a box of even height, no voxels on the center
a curve skeleton voxel. Because of this, and in order &rface skeleton sheet contain two feature voxels. Second,
handle the non-generic cases as will be explained in Sec. ¥rve skeleton points have two shortest geodesics between
C, we opt to detect the curve skeleton differently. Insteafleir feature points i3, but inZ3 the geodesic length cannot
of computing the shortest path(s) between the two featusg computed exactly, and we may find only one shortest path
voxels of a voxelp, we also consider the feature voxelsy practice.
of p's neighbors, basically “extending” the feature setpof | the second stage, we compute the set of shortest paths
Shortest paths are computed between each pair of voxelspngenyveen each pair of feature voxels T (line 4). The
the extended feature set, yielding multiple shortest pdhs gpgrtest path between two feature voxels is computed as a
curve s_keleton voxels, t_hese shorte_st paths form a bgndnehrogD chain code [37], using the A* shortest-path algorithim][38
the object (see e.g. Fig. 6a), which can be considered $g the boundary graph, with Euclidean distance as the search
discrete version of the Jordan curve that the slice boundayyristic. The A* algorithm computes only one shortest path
is (Sec. Ill-B). Assuming that the object is of genus 0, suchi@yeen two feature voxeds b. This is not a problem, because
band splits the object surface into two connected compsnefe compute the set of shortest paths between each pair
if and only if p is a curve skeleton voxel, which fact we uUs&t feature voxels inF. Although computing shortest paths
as the detector. The collapse measure & the area of the petween each pair of feature voxels seems computationally
smaller component generated by the band. If the band d%ensive, the size aF is typically small € 8), and half of

not divide the surface into multiple components, the vozel jhe paths are between neighboring feature voxels.
considered a surface skeleton voxel, and we take as collapsg, the third stage, the collapse measyp(p) is computed.

measure the maximum over the shortest-path lengths. Af{gg compute the set of connected componefitsin the

computing the collapse measure for all voxels, the simplifig, nqary graph in which the voxels of the shortest-path set
skeleton is computed by thresholding We detail on the p 506 removed. A simple spatial subdivision scheme on the

implementation in the next section. boundary is used to speed up the flood fills used. Moreover,
) we prevent computing the collapse for voxels that certainly
B. Implementation are non-skeleton voxels, i.e. have only few voxelsAn If

The pseudo code of the algorithm is shown in Figure 4 contains two or more connected componeptss a curve
The algorithm takes as input a binary obje@tvoxelized skeleton voxel and the collapse jais 02 \ ¢, wherec € C
on a regular grid. The output is the simplified skelet®n is the largest connected component in terms of voxel count.
represented on the same voxel grid. The voxelized boundditye collapse measure is equal to the number of voxels in
09 is represented as a graph in which nodes are voxels. Af\ ¢ (line 7). We could use a surface-area estimator to better
edge in the graph corresponds to two neighboring voxelshwhiapproximate the collapse area on the original continutius
are 26-connected, i.e share at least one corner. The objadt taking the cardinality of the collapse yields good resul
voxels ) are 6-connected, i.e. they are connected if shariiy practice. If C' contains only one connected component,
a face. The algorithm consists of four stages: computingis either a surface skeleton or non-skeleton voxel. In that
the (extended) feature transform, the shortest path deds, tase, the collapse at is the longest shortest-path . As
collapse measure, and finally the simplified skeleton. collapse measure we could take the amount of voxels in this

In the first stage (Fig. 4 line 1) we compute the featudengest path. However, using the length estimator of [37]
transformF’ using [36]. Next, we compute thextended feature instead gives better results in practice (line 9). Althotigé
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Fig. 6. Generic curve skeleton poird){ non-generic cased{d). The curve skeletons are shown with a rainbow color map dingathe collapse measure.
In each image, the shortest path set for a selected curvetskeloxel is shown in magenta. Feature voxels are showntesespand are connected to the
selected voxel using line segments. These images are shatermade using our implementation.

algorithm does not differentiate between surface skelatwh ~ We begin explaining the first case. Surface skeletons donsis
non-skeleton voxels, for whiclC| is also 1, the length of the of manifolds with boundaries, callezheetd40], [41]. Sheets
longest shortest-path for non-skeleton voxels will be leetw intersect in curves. Points on these curves have more than tw
neighboring voxels, resulting in a very small The object feature points. Fig. 6b shows such a configuration in a box
voxels will be of low importance and will disappear first whenvith a vertical ridge. The selected curve skeleton poing lie
increasing the threshold. Next, is normalized as explainedon the intersection curve of three sheets and has threedeatu
in Section 11I-C (line 11). voxels. This is a limit case. A point lying on one sheet has

The above method of detecting curve skeleton points ande pair of feature points, but a point lying on the intereect
computing their collapse measure works well only for genusdl three sheets has three pairs of feature points. Someréeatu
objects, i.e. objects without tunnels, whose skeleton i®e.t points are shared among pairs, yielding three distincufeat
Detecting curve skeleton points in this manner for objedtl w points. No two feature points among these three admit two
genus greater than zero does not work, because the Jorslaortest geodesics between them, so that the curve skeleton
curve theorem does not hold: for points where the shortestnnot be detected using this criterion. However, our @lyor
paths P are adjacent to a tunnel’ does not divide the combines all shortest geodesics, so that we now obtain& slic
boundary into two or more connected components. A simpb®undary that splits the object surface into two components
variation of the algorithm for detecting curve skeletonntsi correctly detecting the curve skeleton point. Another gsxiam
for objects with tunnels is as follows. We replace the curva a point having three or more feature points is that of aeurv
skeleton detection (lines 5 and 6, Fig. 4) with a “Jordan eunskeleton point whose inscribed ball has a finite contact with
test” on P. See [39] for details. The choice of a meaningfuhe boundary. This yields a continuum of feature pointscivhi
importance measure for the points situated @#oops is in voxel space results in a finite number of feature voxels.
subject to future research. Yet, the variation suggestedeab Combining the shortest paths between all feature voxelmaga
allows a simple and robust computation of curve skeletons fiesolves the issue as it splits the object surface into two
objects of arbitrary genus. Fig. 5 shows such a curve skeletmomponents. An example of this situation in a cylinder shape
extracted for an object with two tunnels. is shown Fig. 6c.

In the fourth and final stage, we simplify the skeleton with
the desiredr value by applying Eq. 11 (line 13). In order

to compute _the equallz_ed skeletdl, the algorithm can be skeleton point lies on the intersection curve of more thaegh
slightly modified by taking the square root pfonC (Fig. 4, g06ts | this case, not every two feature points and tioeiass
line 7), and normalizing by/ areddQ2) (line 11). Depending ated shortest geodesic between them correspond to a sheet. A
on the value ofr, we obtain forS; or S. surface and curve those points, the collapse measure might differ slighttynfr
skeletons simplified to different levels, as demonstrated what it should be, violating monotonicity. However, we diotn

Combining all shortest geodesics might result in slightly
wrong collapses in the uncommon occasion that a curve

Section V. find this to be a detectable issue in any real-world example
(see Sec. V).
C. Non-generic cases The second non-generic case is that of a ppiatC having

Our model from Section IlI-B assumed the generic case otlaree or more shortest geodesics between its two feature
skeleton point having exactly two feature points and adingjtt points, which happens at junction points of the curve skelet
one or two shortest geodesics between them. An example(Bfg. 6d). This is a limit case, since each curve skeleton
such a generic curve skeleton point is shown in Figure Gaoint next to the junction does admit two shortest geodesics
However, our algorithm from the previous section can alsbhe difference with the generic case is that we obtain more
deal with the non-generic cases, as explained in this sectithan two connected components in case of a junction point.
We can distinguish two cases: 1) points having three or mofbe algorithm deals with this by always takir@f \ ¢ as
feature points, and 2) points having three or more shortéke collapse atp (Fig. 4, line 7), wherec is the largest
geodesics between their two feature points. component inC, essentially taking the largest collapse among
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the collapses op’s neighbors. price we pay is that our method is slower than the first three

methods mentioned in [8], although it is the same order as

the potential-field method. More results of our skeletotiira

method are available online at [45], including animatiofis o

We have implemented the algorithm from the previous,’s progression.

section in C++ and have run it on a Pentium 4, 3GHZ with

1GB of RAM. As input we used several complex polyg- VI. DISCUSSION

?or:ai/arpi(e)izersesf:)?lﬂio[:sm’V\[/‘elggjs\elgx(e)lkfeeg ;J;g?ut?(;rr:\éo?@;zﬂ Because curve and surfaf:e_ _skeletonization methods d_iffer
: in the precise skeleton definition that they use, the object

3 X X
up to 512 voxels. For each object the resolution that W?epresentation they work on, and the applications theyetarg

used is appended to the object's name. The Mobile ObJ(?ﬁey are usually compared by their results based on various

was created such that it incorporates several synthetit; n%qsirable properties as mentioned in Section |. In SectieA V

natural shapes. Various measurements are shown in Table 1. . i .
Wwe' discuss how our approach satisfies these desirable proper

Column “dim” indicates the dimension of the object. Column . :
“|Q]" and *|99]” indicate the number of boundary and objecﬁes' In Section VI-B, we discuss how several key aspects of
our approach relate to other approaches.

voxels respectively. Columns “#paths” indicate the nuntfer
computed shortest paths, and “#comp.” indicates how many
times the connected components are computed (Fig. 4, line4) Desirable properties
whereas “paths t" and “comp. t” show the total wall-clock The skeleton isnvariant under isometric transformations
time for both. The last column shows the total wall-clockmodulo, of course, the voxel discretization). The skeld®
time for the whole algorithm to complete. As can be seeap to four voxels thick due to the discretization; a simple
all objects are completed within 10 minutes. We use a simg@st-processing step could be added to make it one voxel
caching scheme for shortest paths to prevent computing thén, if desired. The surface skeletondsnteredbecause it is
same shortest path more than once as much as possible. défined as those points having at least two feature points. Th
size of the cache is a user parameter and presents a tradegife skeleton is centered on the surface skeleton withreotsp
between speed and memory usage. In these measurements the shortest-geodesic length function, and thus it is als
cache size of 50 MB was used, which presents a speeddemtered within the object. Since the importance measure is
factor of 3 to 4 approximately. For these resolutions, largenonotonically increasing (Sec. I11-B), the simplified sit@ins
cache sizes do not improve speed significantly. Column “mers;, areconnectecy default. No special homotopy-preserving
shows the peak memory usage, which is below 800 MB f@rovisions are needed to ensure this, unlike e.g. [13],,[23]
all the objects we considered. [28], due to the global nature of the importance measure. The
Fig. 7 shows the simplified skeletods of three objects simplification is continuous for the vast majority of shapes
as computed by our algorithm, with the indicated values @hat is, small changes im result in small changes i, .
7. The importance measure is visualized using a rainbdwhis is a very important property, given the infamous unistab
color map, mappingd to blue (i.e. unimportant skeletonbehavior of skeletal structure. The continuity can be asdi
points) andl to red (i.e. central, important skeleton points)o the fact that the shortest geodesic of a pgiatS\C evolves
We observe that the non-generic cases in the Mobile objestnoothly overS\C, so thatp is continuous o\ C. The slice
such as the cylinder and extruded star, are handled well. Th®undaries, each consisting of two shortest geodesicéyesvo
surface skeleton is mainly blue because its importanceuneassmoothly ovelC except at curve skeleton junctions, so thad
is significantly smaller than that of the curve skeleton, a®ntinuous orC and only contains jumps @k-junctions. The
explained in Section IlI-C. In order to highlight the vaitat of skeletons arénierarchical or multiscale, because represents
p on S\ C we can better use the equalized skelefdnFig. 8 a continuous hierarchy of nested skeletons in which ech
showsS! for the Bird object. It is interesting to see haty  represents a separate level.
and S, progress differently when increasing With S., the Our approach satisfies the two additional desirable prop-
surface and curve skeleton are simplified more simultarigougrties we proposed in Section | for methods that compute
especially near the periphery of the skeleton, which can beth curve and surface skeletons. First, the curve skeiston
useful for some applications, as we will see in the next eacti includedin the surface skeleton, because the curve skeleton is
Fig. 9 shows the curve skeleton in isolation for variousonsidered as a special case of the surface skeleton, nasely
objects. Note that we modified the original Rockerarm objetitose points having more than one shortest geodesic. Second
so that it is genus 0. We observe that the extracted cumer importance measure treats the non-skeleton, surfate an
skeletons reach into fine structures like the tentacle tips eaurve skeleton points in aniform manner: All points are
the Octopus object and the Cow’s tail, are centered witlharacterized by their importance given by the advectedmas
respect to the object surface, and exhibit very little weggimodel.
noise. Cornea et al. [8] made a comparison between four curvéOur simplification method has a single parametaro other
skeleton methods: a basic thinning, distance field, geametthacks or settings are needed. The meaning of the importance
and potential-field method. Among the objects tested was thavhich is thresholded by is quite simple and intuitive: for
Plane object. We observe that our approach delivers superdogiven skeleton poinp, p(p) represents the fraction of the
results on this object (compare Fig. 9 and [8, Fig.12]). Thabject's boundary which is described by that point.

V. RESULTS
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Fig. 7. Simplified skeletons of the Dragon, Mobile, and Cow objects at four threshatdS'he importance measure is visualized using a rainbow color

map.

TABLE |

TABLE WITH MEASUREMENTS. SEE THE TEXT FOR DETAILS

object dim ] 10| | #paths #comp. pathst comp.[t mem total t
Bird512 262x132x488 717k 95k 750k 73k 126s 595 303M 196s
Cow256 78x146x244 549k 44k 357k 47k 9s 14s| 125M 28s
Cow384 115x217x366 1,904k 102k 811k 151k 32s 1029 319M 148s
Cow512 154x289x488 4,575k 183k 1,441k 345k 75s 3023 592M 411s
Dino512 159x453x487 3,218k 177k 1,413k 231k 61s 1563 590M 246s
Dragon512 214x336x488 5,656k 320k 2,664k 491k 152s 2543 747TM 475s
Hand512 488x205x342 3,137k 167k 1,348k 211k 132s 1713 570M 332s
Homer512 162x488x276 3,947k 191k 1,517k 324k 62s 2073 561M 299s
Horse512 488x421x228 4,900k 214k 1,698k 349k 117s 2893 716M 449s
Plane 217x304x98 545k 110k 912k 71k 257s 575 306M 323s
Mobile384 366x224x348 1,211k 175k 1,418k 123k 71s 839 482M 171s
Octopus384 366x259x335 610k 76k 680k 64k 16s 24s| 321M 54s
Rockerarm256 246x126x76 528k 67k 541k 58k 68s 31s| 176M 105s
Rockerarm384  366x188x112 1,860k  154k1,197k 156k 301s 1423 399M 461s

(e )'
7=0.0001

7=0.0004

/')

©=0.0004

Fig. 8. Simplified equalized skeletoi. for the Bird object.

t=0.025

t=0.1
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Fig. 9. The curve skeletons of the Rockerarm, Plane, HanthbpDs, Homer, and Horse objects. The importance measurisualized using a rainbow
color map. For the Hand and Horse objects we show the coBafmeagenta) for several curve skeleton voxels (white). Tie $egments indicate feature
voxels of the white voxels.

Fig. 10. The skeletons can be made robust by increasing tashibld 7.

The robustnessproperty requires the skeleton of a nois
surface to be close to that of the corresponding smootheirfa
We can achieve this behavior by settingsuch that skeleton
parts due to noise are filtered out. Fig. 10 shows the Dil
object with and without surface noise and its skeleton fi
two thresholdsr. As expected, we observe th&f of the
noisy Dino ) is much noisier thars. of the Dino without
noise @) for small values ofr: 7 < 0.05. The skeleton of
the noisy Dino can be made robusf) (by increasingr. At
7 = 0.1, the structure of the simplified skeleton of the nois
Dino (d) is comparable to the skeleton of the non-noisy Dino
(c). The importance measures on both are also very similarf@g 11. Shape segmentations using the skeleton-to-boymdapping.
indicated by the colors. In the above, we used the simplified
equalized skeletos”. If we use the non-equalized skeleton

Sr, the spurious branches of the curve skeleton remain, unfjlowing for component-wise differentiation, when difeit
7 is 0 high thatS is completely removed. logical parts of the object can be inferred from the curve
The curve skeleton is said to beanction detective or skeleton [4]. In fact, the collapses that we compute pravige
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with a natural skeleton-to-boundary mapping. Surfaceet&al
points map to curves on the object surface, whereas curve
skeleton points map to contiguous areas. Figure 9 shows
the skeleton-to-boundary mapping for several curve shkrlet
points for the Hand and Horse objects. We observe that the
collapses correspond to logical parts of the boundary, such
as the legs or ear of the horse and fingers of the hand. The
skeleton-to-boundary mapping can be used in various appli-
cations, e.g., for selection purposes in geometric modelin
applications. Another application is shape segmentafitie.
collapses associated with the curve skeleton branchesagomi
together in a junction provide us with meaningful composent
distinct logical object parts. Combining the meaningfuinzo
ponents that are associated with all curve skeleton junstio
yields a shape segmentation having desirable p_rOp_ertES’F%. 12. Surface smoothing of the Box and Dino objects by metraction
follows. Because the skeleton-to-boundary mapping is dasgm s, with a smallr.

on shortest geodesics, the borders between segments are

smooth, minimally twisting, and robust to noise. Being lohse

on the curve skeleton, the segmentation respects cirdudges boundary voxels, but always between associated feature-
symmetry and is pose invariant. A shape segmentation methakels, so that for objects that consist of distinct pars t
from the first and third author exploiting this skeleton-toalgorithm visits only a small subset of the boundary voxels.
boundary mapping is described in [39]. Figure 11 shows twW©omputing the connected components using a hierarchical
segmentations obtained using this approach. spatial subdivision scheme on the surface takiogb).

The original object, or a simplified version thereof, can bl total, the worst case of the algorithm @&(n(blogb)),
reconstructedirom the surface skeleton by placing at eacbut practical cases are far below this limit. Table | shows
voxel its maximally inscribed ball. In general, reconstioie  the relation betweem, b, and the running times for several
from the curve skeleton is not possible by using only ballse O practical objects. In particular, we note that the speeduwsf o
simple application of our simplified skeletons is that offace implementation compares favorably to [28]. On a comparable
smoothing. By reconstructing a surface from the simplifiesghachine, their approach took half an hour to compute a curve
skeletonS, for a small + value, small-scale surface noiseskeleton for the Rockerarm. Our approach took under 10
is replaced by sphere segments. For the purpose of surfatidutes, using a voxel resolution 8842 for a full curve and
smoothing, the simplified equalized skelet®his used, so that surface skeleton hierarchy, while observing that the cexip
the spurious curve and surface skeleton parts due to the n@éthe curve skeleton is comparable (compare Fig. 9 and [28,
near the boundary are simplified simultaneously. Fig. 12vshoFig.5]). Our approach is faster than the potential-fieldhuodt
two examples. Of course; cannot be too high, otherwiseof Cornea et al. [16], which reportedly takes up to half an
the reconstruction becomes too inaccurate, or “spherifiediour for voxel resolutions in the order @003 on a standard
Reducing noise in this manner works best at thick objecsparPC.
such that the inscribed balls of this part are large in coispar ~ When discussing the speed, we should stress the fact that
to the inscribed balls in the perturbations. Indeed, notse gur approach is, to our knowledge, the only one that gener-
thin parts can be considered as object features, more so thiires a global importance measure for 2D objects, namely
noise at thick parts. Noise at the thin parts, namely theesdgthe feature-distance measure, to 3D. This measure is the
of the box and the neck of the Dino, is less reduced thaarnerstone of our method, as it guarantees the satisfiaofio
the thick parts. A nice feature of using the collapse measuilt the desirable properties considered, similar to itdegwus
is that the reconstructed object cannot become discorthec®® counterpart.
due to the simplification, because the collapse measureeon th
curve skeleton has such a high value. In contrast, if we would i _
simplify the Dino in Fig. 12 using only the collapse measurg: Comparison with other methods
as defined ors \ C, the neck would become disconnected. In this section we compare our method with existing

The monotonicity of the collapse measure comes at a priceethods on five main aspects of our implementation: use
Our measure is not so efficient to compute as purely logall geodesics, local versus global detection, gradient field
importance measures, due to the global operations involvedtension, the use of advection, and discrete versus et
Computing the feature transform using [36] tak&3:), where space methods.

n = |Q|. Computing the set of shortest paths for an object Our approach resembles the recently published approach
voxel in the boundary graph using A* take3(blogd) in of Dey and Sun [28] in the sense that the shortest-geodesic
the worst case, wheré = 09| =~ logn. The worst case length between feature points is used. There are some im-
is a sphere, as the shortest-path algorithm visits prdigticaportant differences however. Most importantly, we prodace
all boundary voxels for diametrically-opposed featurealex skeleton hierarchy, while their approach does not. Second,
However, shortest paths are not computed between arbitrtlrgir approach is more of a hybrid method, in which first
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[47]. We briefly outline next the similarities and differeasc
Both approaches define a vector field inside a 3D object, in
which advection of points situated on the object boundary is
considered. In both approaches, the vector field is equal to
the gradient of the distance-to-boundary function in tha-no
critical points, i.e. away from the skeleton. Both apprazch
extend the vector field to the critical (skeleton) pointsybeer
in different ways, and for different purposes. In both caies
vector field defines implicitly a dynamical system, or inddice
flow, which describes the motion, or advection, of particles
Typically, such particles originate from a (dense) sangplh
the surface of the considered 3D object. Giesen et al. extend
the gradient field on the skeleton in the direction of steepes
ascent, and end the trajectories, called orbits in [46]rilicel
points where the steepest ascent cannot be determineet] call
fixed points of the flow complex. In contrast, our advection
model extends the vector field on the skeleton such that
it is tangent to the trajectory tree, constructed as desdrib
Fig. 13. A comparison between the surface skeleton prodbyassing our in Sec. IlI-B, and oriented toward the unique root. Hence,
global measure (top) and a typical local measure (bottom). the advection model of [46] admits several fixed points or
“sinks”, even for genus 0 objects, whereas our model admits
one unique sink, or root. Our notion of collapse of a point
the surface skeleton and global geodesic-length measere igrsimilar to the set of start points, on the object surface,
explicitly determined, after which a local divergence4uhs of all orbits contained in what in [47] is called a “stable
measure [13] is used to find the curve skeleton on the deriviefnifold” of that point. They define, and compute, the core
surface skeleton structure. Because this latter measioeak of a 3D object as the set of unstable manifolds of critical
an erosion is needed to enforce connectedness, as Wellpgfts ¢, which are the set of points to which the neighbors
a sampling resolution high enough to accurately compuig ¢ flow. The core is shown to be homotopic to the medial
the involved divergence. In contrast, our approach usesaxis, or skeleton. At an implementation level, the objed an
singleglobal measure for both the curve and surface skeletajkeleton are manipulated in a computational geometrynsgtti
The measure can be computed independently on a poibised on polygonal descriptions, using tools such as the
by-point fashion, making our algorithm simple and allowing/oronoi and Delaunay diagrams. In contrast, we define and
parallel processing. Furthermore, all our computations agompute the skeleton using the (extended) feature tramsfor
based on a non-derived structure, namely the object surfa@ec.IV), and we perform all computations in a discrete Voxe
This allows us to use a voxel representation, requiring Bmpsetting. All in all, the goal of our advection-based model
data-structures and algorithms, keeping our algorithaigit- is to define a monotonic importance measure which allows
forward and efficient. A second advantage of using only nofobust simplification of complex 3D skeletons, whereas the
derived structures and integral quantities, such as gexsdesnodel in [46] is used to fulfill topological guarantees for
and collapsed areas, is that our approach is very robust, ewgedial axes [47] and surface reconstruction [48] comparati
for coarsely sampled volumetric objects. methods.

We would further like to compare the surface skeleton Skeletons can be computed by direct numerical simulation
produced by our global importance measure with the skeletofiadvection. For example, Torsello and Hancock [49] coraput
resulting from a purely local measure. See Fig. 13. The teeletons of 2D shapes by simulating an advection process
images show the surface skeleiSn of the Cow object com- based on momentum conservation. This yields a scalar giensit
puted by our method. The bottom images (taken from [23feld which captures the local contractions and dilationthef
show the surface skeleton resulting from the moment-basselindary evolution in the distance field gradient. Henceir th
measure from [3]. The threshold used for the latter imagesethod is a skeleton detector, but not a skeleton simplifier.
was carefully chosen such that the skeleton is both condiecte contrast, our collapse measure has overall low valuey awa
and noise free. We chose for our method such that thefrom the skeleton, but has a high variation on the skeleton
skeletons are most similar. Yet, we observe that our skeletieself, which allows us to simplify the skeleton.
at this comparable simplification level is able to captureeno Finally, let us mention that we have opted for a voxel-based
details, such as the horizontal skeleton sheets and thetskel approach for its ease of implementation. A disadvantageisf t
in the udder and tail. This can be explained by the fact thiatthat polygonal models first need to be voxelized. The tesul
local measures cannot distinguish between these finestesct ing skeletons are influenced by the grid’s orientation, taus
and noise, and will eliminate them together, whereas glotalslight loss of rotation invariance, and the grid’s redohut
measures can. Our skeleton is connected regardless of  which may cause a loss of detail for objects containing small

At a conceptual level, our advection-based importance mdaatures. Methods acting directly on continuous geonwtric
sure is related to the flow complex of Giesen et al. [46flata do not have these issues. However, we would like to
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indicate that the definition of our global importance measur(s]
is not limited to discrete space. As long as the key ingredien

of this measure are available, namely, computation of the!
feature points, shortest geodesics, and connected comisone
our approach can be adapted to other representations. (8]

VII. CONCLUSION [9]

We have proposed the collapse measure, a novel importance

measure that enables the robust computation of multiscale
curve and surface skeletons of 3D objects. To our knowledge,
this is the first truly global 3D importance measure th 1]
can be used to obtain both surface and/or curve skeleton
hierarchies in a uniform manner. Underpinning the collapse
measure is a physical process in which mass from the obj
boundary is advected or “collapses” onto the skeleton. This
gives the measure an intuitive meaning, and allows us [3]
reason about it and deduce several properties of interest. F
the practical implementation of the proposed measure, we @dg
not explicitly simulate the advection process, as this can b
computationally unstable and complex. Instead, we proaos?ls]
practical algorithm that is straightforward to implemetbes
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only integral operations. Our algorithm delivers good tessu [1€]
on a wide range of real-world, complex objects. A limitation
of our measure is that objects with tunnels cannot be handlgd]
However, this is a known limitation for the analogous 2D
feature-distance measure [5]. In detail, we can COMpuUteeCUk; g
skeletons for such objects, but not simplify them, since we
have no importance measure for their loop-parts.

In future work, we want to apply our skeletons in variou§®
applications, such as the simplification of complex 3D otgec
Also, we consider an extension of the collapse measure tEi
can handle objects with tunnels. The recursive nature of our
approach makes it interesting to look at generalizatiorss an
applications beyond 3D, e.g. for time-dependent surfacé®l
Finally, on a more theoretical ground, we plan to inveségafzz]
our conjecture (see Sec. llI-B) in more depth to acquire
more insight into the relation of shapes with their skelet?3]
counterparts.
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