CUBu: Universal real-time bundling for large
graphs.

Matthew van der Zwan, Valeriu Codreanu and Alexandru Telea

Abstract—Visualizing very large graphs by edge bundling is a promising method, yet subject to several challenges: speed, clutter,
level-of-detail, and parameter control. We present CUBu, a framework that addresses the above problems in an integrated way. Fully
GPU-based, CUBu bundles graphs of up to a million edges at interactive framerates, being over 50 times faster than comparable
state-of-the-art methods, and has a simple and intuitive control of bundling parameters. CUBu extends and unifies existing bundling
techniques, offering ways to control bundle shapes, separate bundles by edge direction, and shade bundles to create a level-of-detail
visualization that shows both the graph core structure and its details. We demonstrate CUBu on several large graphs extracted from

real-life application domains.

Index Terms—I.3.3 [Computing Methodologies]: Computer Graphics—Picture/Image Generation; 1.3.6 [Computing Methodologies]:

Computer Graphics—Methodology and Techniques

1 INTRODUCTION

ERY large graphs and networks have become perva-
Vsive in data-intensive applications such as traffic and
network monitoring, software engineering, bioinformatics,
and telecom applications. When the size of such datasets
exceeds certain limits, understanding them becomes chal-
lenging. Edge bundling methods have become an important
tool for this task: Given a large graph having a 2D spatial
embedding of its nodes, bundling produces a simplified
view of the graph structure by grouping spatially-close and
semantically-related edges, so that edge-crossing clutter is
reduced and the graph’s main connectivity patterns become
better visible. Bundling was used for applications in vehicle
traffic [42], [21], [27], program understanding [8], [41], mul-
tivariate data analysis [29], and medical visualization [4].

While many bundling methods have been proposed,
several key challenges exist with respect to their usability
and usefulness:

Scalability: Recent techniques can bundle graphs of tens of
thousands of edges in subsecond time [14], [22], [31]. While
impressive, this speed is still insufficient for graphs such as
Internet connectivity patterns, worldwide traffic flows, or
call graphs of large software systems of millions of edges.
Moreover, bundling time-dependent (dynamic) graphs,
or changing bundling parameters during interactive data
exploration, asks for bundling methods that are one to two
orders of magnitude faster. Such methods do not exist yet.

Directions: Most bundling methods cannot separately
bundle edges having different directions. This creates a high
amount of overdraw, which precludes users from reasoning
about the directions of edges in a given bundle [30], [20].
Current directional bundling methods, which aim to solve
this issue, are however too slow to cope with interactive
exploration of large graphs [43], [40], [38].

o M. van der Zwan and A. Telea are with the University of Groningen, the
Netherlands. Email: m.a.t.van.der.zwan@rug.nl, a.c.telea@rug.nl.
o V. Codreanu is with SURFsara. Email: valeriu.codreanu@surfsara.nl

Level of detail: As bundling highlights the main
connectivity patterns in a graph, users also need Ievel-
of-detail techniques able to emphasize the importance of
a given bundle for the overall pattern. Various shading
techniques have been used for this, e.g., colormapping and
alpha blending[17], [27], [20] and shaded tubes [46], [12].
While detail shading can effectively provide level-of-detail
cues, it cannot (yet) be computed in real time and it is
relatively complex to implement.

Generality: A final challenge is the proliferation of bundling
techniques. While each such technique may excel in specific
ways, e.g., speed, ease of use, or achieving specific con-
straints on the resulting layout, achieving all these goals
with a single algorithm is still hard [53]. Hence, users face
the dilemma of implementing and using a large set of
algorithms, or settling with the (dis)advantages of a specific
algorithm.

We propose a single bundling algorithm: CUBu (CUDA-
based Universal Bundling) to address all above challenges.
We tackle scalability by a GPU bundling method that
achieves average speed-ups of 50 up to 100 times vs the
fastest existing general-graph bundling techniques [22], [14],
[31]. Next, we propose two directional bundling extensions
that are fast, robust, and easy to use. Thirdly, we show
how to create multiscale bundled visualizations having the
same quality as comparable methods[46], [12] and with
a much simpler, and faster, implementation. Finally, we
show how to create bundle styles proposed by widely
different methods [9], [12], [17], [27] with our single method.
As CUBu achieves all the above, we dub it a “universal’
bundling algorithm. We illustrate CUBu’s speed and quality
by several applications on large real-world graphs.

The structure of this paper is as follows. Section 2 covers
related work. Section 3 describes our general bundling algo-
rithm. Section 4 presents applications of CUBu in several do-
mains. Section 5 discusses our method. Section 6 concludes
the paper.

2 RELATED WORK

We overview existing bundling methods based on the four
feature, or requirements, classes listed in Sec. 1:

Scalability: Early bundling methods for compound graphs,
e.g.,, HEB[17], achieve a high scalability, by exploiting
explicit hierarchical information present in the input
graph. Methods for bundling general graphs (without
hierarchical information) evolved from slow approaches,
such as force-directed edge bundling (FDEB[18]), to
advanced schemes to detect edge proximity and thus
achieve faster bundling, such as control meshes (GBEB [9]),
Voronoi diagrams (WR[27], [26]), medial axes (SBEB[12]),
and radial kernel splatting (KDEEB][20], 3DHEB [31]).
The MINGLE method uses multilevel edge clustering to
accelerate the bundling process[14]. Scalability is critical
for, e.g., streaming (time-dependent) graphs: For the
well-known US airlines dataset (900 edges), FDEB[18]
achieves 19 seconds/frame on a 1.7GHz PC (see [18],
Sec. 4.2); StreamEB achieves 6 seconds/frame on similar
hardware [32]; KDEEB reaches 0.17 seconds/frame [20]; and
3DHEB yields 0.4 seconds/frame[31]. Such speeds are yet
insufficient for real-time bundling of large static graphs or
large dynamic graphs having hundreds of thousands of
edges or more, such as the wiki or amazon graphs discussed
in [14].

Directions: A bundle contains several edges placed close
to or atop of each other. Bundles separate high-density
edge groups by large white space areas, and thereby help
perceiving the overall graph structure. Yet, bundling creates
an undesired overdraw issue: We cannot display edge-
specific attributes for (all) edges in a bundle, since these
share the same screen space. This, in turn, makes it harder
to reason about a bundle’s semantics. The standard solution
to this issue is to aggregate attributes at overlapping
edges, e.g., using averaging done by alpha blending[27],
[17], [46], [18]. While this works well for quantitative
scalar attributes, it yields wrong results for other types of
attributes, such as edge directions. To address this, one can
group same-direction edges into different bundles and,
next, directionally color-code edges to show directions.
Such directional bundling methods include divided edge
bundling (DEB), which extends FDEB to include edge-
direction compatibility [43]; attribute-driven edge bundling
(ADEB), which extends KDEEB by a flow map encoding
local edge-compatibility metrics [38]; and 3DHEB, which
bins edges per-direction-interval and uses KDEEB to
bundle each bin separately [31]. Yet, all these methods are
much slower than undirected edge bundling, making them
unsuitable for interactive large-graph exploration.

Level of detail: Graph splatting first proposed to depict a
graph as a continuous image-space density field, computed
by convolving the graph drawing by a Gaussian filter
whose size controls the level-of-detail [51]. Accuracy issues
on computing such dof the node ensity fields are discussed
in [28], [42]. This image-space idea was extended in the
LaGO tool by aggregating edges connecting local node-
density maxima [54]. Recent bundling methods highlight a
graph’s main structure (dense bundles vs isolated edges)
by alpha blending[27], [18], [17]. Shaded cushions[52],
adapted to create crisp curved-and-shaded tubes along
bundles [46], [12], better separate different pattern scales in
a graph than splatting or alpha blending, and also separate

2

crossing bundles better than alpha blending or straight-line
edge aggregation. Yet, creating shaded bundle tubes is very
complex, involving operations such as distance transforms
and medial axes[46], [12], which are far from real-time
performance.

Generality: Globally, we see three major styles in existing
bundling methods: (1) smooth bundles, having few inflection
points between end-nodes, are created by FDEB, KDEEB,
and WR, and help easy visual following of large bundles; (2)
strongly ramified bundles, showing a hourglass-like pattern
between end-nodes, are created by HEB, GBEB, and SBEB,
and help an easy detection of connection branching points;
and (3) straight-line bundles, showing a highly simplified
graph connectivity pattern, are created by LaGO, and help
an easy recognition of end-to-end node connections. All
these drawing styles have their merits (and limitations).
The problem is that obtaining each such drawing style
entails changing the bundling method being used. This is
undesirable in terms of application-design simplicity and
also forces users to learn parameter settings of many such
methods.

3 PROPOSED METHOD

CUBuU's input is a graph drawing G = (V, E) with vertices
V = {v; € R?} and edges F = {e; C R?}. In detail: v; are
the positions of vertices, and e; are the drawings of edges in
G. For conciseness, we shall however call these next vertices
and edges, respectively. Edges e; can be straight lines or
2D curves, which covers bundling of both straight-line
graphs[18], [9], [27] and spatial trajectories [21], [42], [20],
[19]. Edges e; are modeled as uniformly-sampled polylines,
ie., e; = {x;}, where ||x; — x;4+1]| is a user-given sampling-
step 0. The control points x; of these polylines are further
called sites. Edges can be either directed or undirected. Our
algorithm’s first phase creates a bundling B C R? of G. For
this, we propose a set of techniques which lead to massive
performance improvements of CUBu as compared to all ex-
isting bundling methods (Sec. 3.1). Next, we describe several
changes to the basic bundling algorithm that lead to the
generation of different bundle shapes and styles (Sec. 3.2).
Finally, we describe several methods to render the bundled
graph drawing B using suitable shading, transparency, and
color-mapping to emphasize various structures of interest
on different spatial scales (Sec. 3.3).

3.1 Bundling algorithm

To achieve our goal of real-time bundling of large graphs,
we efficiently use parallel computing architectures such as
NVidia’s CUDA or OpenCL. After studying the wide family
of general-graph bundling methods, we found that KDEEB,
one of the fastest bundling methods, is the most suitable to
such parallelization. Yet, a careful study of KDEEB reveals
several performance and accuracy issues. We next describe
these issues, and how CUBu corrects them.

KDEEB follows the mean shift principle [7]: The set P of
all sites x; on all edges in E is convolved with a parabolic
(Epanechnikov) radial kernel K of radius pg, to obtain an
edge density map p: R? — R as

p(x € R?) = Z K (”Xp_R}")) (1)

yeP

Next, the sites x; are advected upwards in the normal-
ized gradient of p with a distance pg, or in other words

x’-’ew:x-+p37p.)

! TVl
Edges are next resampled to get an uniform and dense
spatial distribution of the sites x; over G, needed for a
good kernel density estimation. Finally, a 1D Laplacian
filter is applied on the edges to remove small-scale jitters
created by the finite-step advection (Eqn. 2). The above four
steps are repeated py times, while pp is decreased from an
initial user-specified value pr by a small fraction at each
step. We next discuss our changes to the four steps of the
process (density map computation, advection, resampling,

and smoothing), and their reasons to be.

Density map computation (step 1): KDEEB computes p
using OpenGL by splatting the radial kernels K, encoded
as 2D floating-point textures at the site locations x;, and
accumulating the result p in a floating-point image buffer.
All texture and image buffers in CUBu are square and
of identical resolution, further denoted as p; x pr pixels.
While simple to implement, KDEEB’s OpenGL splatting
takes about 40% of the total bundling time for the graphs
discussed in [22]. For large graphs of over 1M sites, we mea-
sured that splatting reaches over 60% of the total bundling
time. This is due to the fact that splatting uses a scattering
model: Data from sites x; is scattered to neighbor pixels
within the kernel radius pr, so parallelization is severely
limited by the many concurrent image-writes — for a set of
pg sites and kernel radius pr, computing the density map
takes ps - pr pixel writes, many of which ‘overlap’ at the
same pixel locations. We address this by replacing scattering
with a gathering strategy: We compute p(y) for each pixel
y in the image p by summing up the contributions of all
sites x; closer to y than pgr. This reduces the number of
pixel writes from pg - pr to p7. Additionally, we split the 2D
convolution (Eqn. 1) into two 1D passes, one over the rows
and one over the columns of the image p, and treat several
blocks of rows, respectively columns, in parallel via CUDA
kernel invocations.

For gathering to work, we need to know, for each pixel
y, all sites x; for which ||y — x| < pgr. Typical solutions
for this use spatial search structures, e.g., kd-trees. While
such techniques exist on CUDA [15], [6], they all need costly
reinitializations after each advection step that moves the
sites (Eqn. 2). We propose a faster solution: We first create a
per-pixel site-density buffer C' : R? — N, where C(x) gives
the number of sites in F that fall inside pixel x, by rendering
all sites into the image C, using atomicAdd operations to
take care of concurrent writes. Next, we compute p(y) as

ply)= > K(lx-ylhCx), €)

x€T(y)

with T(y) being a disk of radius pr centered at y. In
contrast to scattering, where speed is bounded by the
integral of p (Eqn. 1) over R?, the speed of our gathering is
bounded by the much lower number of concurrent writes
occurring when computing C, i.e., the probability that two
or more sites fall over the same pixel, i.e., the number of
edge intersections in the graph drawing. To further decrease
this probability, rather than sampling edges uniformly with
a step of A units (as in KDEEB), we use a sampling step
of A + 1%5, where ¢ is a random real number uniformly

3

distributed in [—1,1], computed by CUDA’s cuRAND
library. This decreases the chance that closely-spaced edges,
appearing in later bundling iterations, have clusters of
closely-spaced sites, separated by gaps of size A. A good
by-product of our random sampling is that sites are more
evenly distributed in image space. This leads to a better
estimation of the density gradient Vp used for advection,
which is computed by finite differences. The setting of
CUBu’s core parameters px, py, pr, and pg is further
discussed in Sec. 5.1.

Advection and resampling (steps 2 and 3): KDEEB ad-
vection (Eqn. 2) strictly follows the mean-shift idea, i.e.,
moves sites upwards in the density gradient. Yet, since
div Vp is practically never zero for our bundles (see anal-
ysis in[12]), advection increases the local edge-sampling
density in negative-divergence areas, and decreases density
in positive-divergence areas. To ensure a nearly constant
sampling density (important for density estimation [22]),
KDEEB resamples edges after each advection iteration. We
measured this resampling cost on a wide family of graphs,
and found it to be about 30% of the total bundling time, in
line with [22]. Let us analyze what happens when advecting
a site: The site’s shift x7“* —x; (Eqn. 2) can be decomposed
into a drift along the tangent

Xjt1 = %;
7(x;) =
S P —

)

of the graph edge sampled by x; and a motion along
the normal n; to the edge at x;. Tangent drift ((x}* —
x;) - 7(x;))7(x;) causes sampling-density variations. We
cancel this drift by advecting sites along n;, i.e., replace
prVp/||Vp| in Eqn. 2 by its projection along n;. In other
words, Eqn. 2 is replaced by

\Y
X;}ew = Xj +pR (WZH . IIJ) l’lj (5)

This change, which has negligible computational cost, yields
a much more uniform sampling density. We can now resam-
ple edges every three or four advection iterations, instead of
every iteration, as in KDEEB. This gives a performance boost
of about 20..30% as compared to KDEEB.

Implementation-wise, both advection and resampling
are done in parallel with CUDA. For advection, the set
P of sites is split into equal sizes among the available
threads, which next apply Eqn. 5 in parallel to each site. For
resampling, the set E of edges is similarly split into equal
sizes among the available threads. Each edge e = {x;} is
resampled by creating new sites x7“*’, spaced equally along
the polyline {x;}, with the user-given sampling-step o (see
the introduction of Sec. 3). After the complete set {x7“'} is
computed, it replaces the old set {x; } in the description of e.

Smoothing (step 4): As the final step of the bundling pro-
cess, we perform one Laplacian smoothing iteration every
3..4 iterations rather that after each iteration (as in KDEEB).
As for resampling, we need to perform smoothing less
frequently than the original KDEEB since our constrained
advection is more accurate than the KDEEB one, being
controlled not just by the (imprecise) density gradient, but
also by the shape of the edges themselves (due to normal
projection). As advection, smoothing is implemented by
splitting the site set P equally among the available threads

e edge sampling points
@ edge endpoints

a)

Fig. 1. a) Bundled graph with nodes (green) and edge sampling points (green). b) Density map for the same graph.

and next moving each site x; to the location

it+L
ZjL—L X ©)
2L +1

Here, L represents the width (in sites) of the 1D Laplacian
smoothing kernel, and ¢ represents the smoothing strength.
Following similar applications of Laplacian smoothing in
bundling, we set are ¢ = 0.5 and L = 10 [18], [22], [12].

The modifications to the original KDEEB described in
this section give a major performance boost to the CUBu
algorithm. Performance is discussed in full detail further in
Sec. 5.2.

X = (1- 9)x; + 6

3.2 Control of bundle geometries

Besides computational efficiency, a second main aim of
CUBu is to offer simple but flexible ways to parameterize
the geometry of the resulting bundles. This section describes
two types of such parameterizations — bundle shape control
and directional bundling — and how these can be easily
integrated in the general-purpose four-step algorithm
described in Sec. 3.1.

Bundle shape control: Different bundling techniques create
different bundle styles, in terms of their shape, curvature,
and thickness (see also Fig. 2a-e): HEB creates typical ‘hour-
glass’ shapes by its B-spline control polygons that capture
the underlying hierarchy tree. HEB shapes have been found
effective for tasks involving finding high-level connections
between node groups[8], [47]. HEB bundles also constrain
edge directions close to their node endpoints, helping one to
visually match edges with node glyphs. FDEB and related
methods, e.g., KDEEB, create bundles with less inflection
points and smoother curvature variation than HEB, which
are easier to follow visually [18], [32], [16], [22]. SBEB, GBEB,
and WR create highly ramified bundles, which are good in
showing splitting/merging of paths between node groups.
While not typically seen as bundling methods, several
techniques route spatially close edges along constrained
paths, yielding highly simplified graph drawings [54], [27].
Separately, the TGI-EB framework enhances the classical
FDEB algorithm with four different edge-compatibility met-
rics to create four bundling styles called centrality-based,
topology-based, radial, and orthogonal, which support dif-
ferent tasks such as centrality analysis and finding cohesive

groups of nodes [33]. Summarizing, different bundle styles
support different analysis tasks and/or user preferences.

Making a single bundling technique generate all above
bundling styles is not easy. Small changes can be done by
parameter tuning, e.g., the amount of Laplacian smoothing
or edge relaxation[18], [12]. More complex style changes,
e.g., creating HEB-style bundles with FDEB or a schematic
bundled layout with KDEEB, are hard or not even possible
without changing the bundling algorithm itself. We achieve
all such styles by changing a few parameters in CUBu, as
follows.

HEB and FDEB styles: To create HEB bundles, we modulate
site advection by an edge-profile function, i.e., replace Eqn. 5
by

Vp
X7 = x; + prA(t(x; (7.”)”. @)
7 J ((J)) HVPH J J

Here, A : [0,1] — [0,1] controls the amount of motion
of each site x; as a function of the parametric arc-length
position t € [0,1] of x; along its edge. Using a hourglass-
like function Aypp(t) = ((1 — 8|t — 0.5]))?, having two
symmetric inflections at its endpoints ¢t = 0 and ¢ = 1 and
a plateau of value 1 in the middle (see also Fig. 4), creates
HEB-style bundles, by gradually limiting the advection of
sites close to bundle endpoints. Using a function A = 1
produces the classical smooth fan-out common to general-
graph bundling algorithms for both static graphs[18], [27],
[12], [22] and dynamic graphs [32]. We call this style the
FDEB style, giving credit to the FDEB technique [18], which
was the first to pioneer it.

Small-world style: When exploring small-world graphs, one
wants to see how a compact and strongly-related node
group is connected (or not) to other node groups. Sev-
eral methods do this by pre-clustering nodes based on
connectivity and distance, and next drawing straight-line
connections between nodes and their cluster centers, fol-
lowed by drawing connections between cluster centers
themselves [49], [50], [2], [54]. This yields a typical ‘linked
star’ pattern akin to the one in a bubble graph layout[3],
where stars show node clusters and links between star cen-
ters show higher-level connections between node clusters.
We obtain the same effect by edge bundling, without
needing to explicitly cluster the input graph, as follows. Let
e be an edge with node endpoints v; and v;. We first run
CUBu’s basic advection step (Eqn. 2) on the set of all nodes

edge
direction

i) CUBU directional (tracks style) 1’)

j) CUBu directional (inline style) ! -

shaded
clusters

edge length
[|

color:
edge
direction

Fig. 2. Bundling styles for migrations graph. (a-e) Existing algorithms. (f-j) Styles produced by our single CUBu method.

v € V, rather than on all sites (sampling points) of all edges.
Given that Eqn. 2 is essentially a mean shift process (see
Sec. 3.1), this shifts each node v to a location v° close to the
center of its local neighborhood. Next, we insert the points
v{ and v;? as the second, respectively one-but-last, sites on
the sampled edge (v;, v;). Finally, we apply the standard
CUBu bundling on the resulting set of edge-sites.

Figure 2g, shows the effect of this technique. Several
star structures appear, showing groups of related nodes.
Bundles now link the centers of these stars, showing the
node-group to node-group main connectivity patterns
more explicitly than via standard bundling (e.g., FDEB or
KDEEB). More whitespace is left between the bundles, as

edges will first automatically agglomerate by going to the
node-group centers vi and vj prior to bundling proper.
This further helps better visual separation of bundles. The
kernel radius pr used for mean shift clustering of edge
endpoints gives the desired size of node neighborhoods:
Large pr values create fewer and larger node clusters, i.e.,
show the coarse-level small-world graph structure. Small
pr values create more and smaller node clusters, i.e., show
the fine-level small-world structure. The lower bound of
pr < 1 pixels yields the standard KDEEB bundling.

Schematic style: Schematic bundled-graph drawing uses
simple edge shapes and, at the same time, groups

b) HEB style

Fig. 3. FDEB vs HEB styles for airlines graph, using ‘parallel tracks’
directional bundling.

+ Maeg(?)

0,57

0,257

Fig. 4. HEB profile function Ay 5. See Eqn. 7. and related text.

spatially close edges into bundles. Examples are orthogonal
layouts used for software diagrams[10] and metro map
layouts [45], [34]. CUBu can generate a particular type of
schematic drawings, in which (a) spatially close edges are
bundled and (b) bundles have shapes given by simple
polylines consisting of a few segments. For instance,
Fig. 2h can be seen as the schematic simplification of
the bundlings in Figs. 2f or 2g. To achieve this bundling
style, we simply disable the edge resampling step after
each advection iteration (see Sec. 3.1, steps 2 and 3). As
outlined in Sec. 3.1, this makes advection create a highly

6

non-uniform sampling-point density consisting of a few
spatially-separated dense point clusters. Edges consist of
segments linking such clusters, thus have the desired coarse
polyline structure.

Directional bundling: Drawing graphs with edges
separated by direction is of recognized importance. Only
a few bundling methods can do this: DEB [43] adapts
FDEB'’s edge-compatibility function[18] to add directional
similarity atop of spatial closeness. However, this method
is quite slow. Similarly, ADEB[38] and 3DHEB][31]
extend KDEEB'’s edge-density function to include a flow
field capturing edge directions (ADEB) and respectively
compute H edge-density maps, uniformly sampled over
the 27 edge orientation range. FDEB and 3DHEB are 5 to
10 times slower than KDEEB, although implemented on the
GPU. Other fast bundling techniques, e.g., MINGLE, are
hard to adapt to use directional compatibility. We describe
next two directional bundling techniques that can be easily
added to CUBu to produce similar results to DEB, 3DHEB,
and ADEB, while keeping scalability.

Parallel tracks: Given a graph with edges e; and sites x;,
bundled by an undirected bundling method (e.g., FDEB,
SBEB, KDEEB, WR, or any similar method), we move each
site x; in the final bundled graph with a small distance
eA(t(x;)) in the direction 7(x;) x d, where 7(x;) is the
normalized tangent vector to e; at x; (Eqn. 4), d = (0,0, 1)
is the vector normal to the 2D layout plane, and ¢ and A
are the edge arc-length parameterization and edge-profile
functions A used earlier for bundle shape control. In detail,
we replace the x; by

X;racks =x;+ EA(t(Xj)) (T(Xj) x d). (8)

This effectively ‘splits’ each bundle into two parallel
railway-like ‘tracks’ separated by a maximal distance
2¢, so that all edges in a bundle that go in the same
direction stay in one such track. As Figs. 3 and 2i show,
this creates a uniform and regular separation of bundles
into two thinner, parallel-running, bundles which can be
next easily color-coded to show edge directions. The value
€ is controlled by the user, typically set to about 10 pixels
for good results. Parallel tracks can be applied to any of
the bundling-geometry styles described in Sec. 3.2 with
negligible cost. Moreover, parallel tracks can be applied as a
simple “postprocessing’ step to the bundling itself, precisely
as relaxation, i.e., just before the visual exploration of the
bundled graph (Sec. 3.3).

Inline directional bundling: Our second directional bundling
technique takes place during bundling itself rather than as a
postprocessing step. For this, we modify Eqn. 3 to compute,
for each edge site y, a density gradient p(y) that accounts
only for sites x within a radius pr from y which have an
edge-tangent vector 7(x) (Eqn. 4) that is compatible with
the tangent 7(y). In detail, we replace Eqn. 3 by

ply) = > K(lx-ylDCx~(x,y),)

x€T(y)

where k(x,y) = 7(x) - 7(y) € [-1,1]. This bundles close
same-direction edge fragments as usual, but forces close
opposite-direction edge fragments to repel each other. In the
above, we use for 7(-) the tangent directions of the original
(unbundled) edges, as we want to estimate directional com-
patibility based on the input, and not on the bundled, graph.

Compared to parallel tracks (Fig. 2i), inline directional
bundling (Fig. 2j) creates larger separations between edges
having different directions, and an overall more natural
effect, quite similar to DEB. Bundle shapes can now adapt
more freely, as they are only constrained by directionally
compatible edges.

Ease of integration: Summarizing the above, it is important
to note that all bundling styles described in this section can
be integrated in the core CUBu algorithm (Sec. 3.1) with
minimal changes, as follows:

o FDEB style: This style is created by default by the
CUBu bundling algorithm described in Sec. 3.1;

e HEB style: To achieve this, we replace Eqn. 5 by
Eqn. 7;

o Small-world style: To achieve this, we perform the
advection step (Eqn. 2) on the node positions prior
to the standard CUBu algorithm;

o Schematic style: To achieve this, we disable the resam-
pling step (Sec. 3.1, step 3);

o Parallel tracks style: To achieve this, we apply Eqn. 8
to the final site positions of a bundled drawing;

o Inline directional style: To achieve this, we replace
Eqn. 3 by Eqn. 9 in the density map computation
(Sec. 3.1, step 1).

3.3 Visualization enhancements for bundled graphs

Besides computational scalability (Sec. 3.1) and control of
the bundles’ geometry (Sec. 3.2), a third contribution of
CUBu targets the visualization of the resulting bundled
graphs. In this section we describe two visual additions
that help exploring the information conveyed by bundled
graphs: color-and-opacity control for better visibility of
short edges, and multiscale shading for emphasizing the
coarse bundle structure. As for the bundle geometry control
(Sec. 3.2), the visual additions discussed here integrate
easily and keep the computational efficiency of the overall
CUBu framework.

Color and opacity: Existing bundling techniques use color
to encode geometric edge properties, e.g., direction or
length; or edge attributes, e.g., time, height, or speed when
bundling trail datasets[27], [20]. Alpha blending typically
shows edge density p, ie., bundle importance, as opac-
ity [17]. Yet, tuning alpha blending is not easy: Too high
values make the drawing cluttered in high edge-density
areas [11]; too low values make outliers, like sparse bundles
and isolated edges, hard to see. Note that this is a separate
problem from the issue of normalizing the opacity of the
drawn bundled graph so that it lies between 0 and 1, so
as to prevent opacity saturation during the drawing of the
bundled edges. Such normalization can be easily done by
simply using the normalized density p as per-pixel opacity.
However, doing this for large graphs, where the amount
of edge overdraw can vary hugely between dense-bundle
zones and sparse edges, will make isolated edges appear
almost transparent. This can be further corrected by using a
non-linear opacity transfer function, that would emphasize
low opacities. However, this still does not show well short
edges: Due to their small length, such edges get a smaller
chance to overlap other edges during bundling, as com-
pared to long edges. As such, they will not be well visible,
unless one considerably boosts the low opacity range. In

7

turn, doing such a boosting can make the entire image too
opaque, thus cluttered.

We propose an alternative color-and-opacity mapping
scheme that takes into consideration the edge lengths. The
scheme works as follows: Each edge site x has an HSV A
(hue, saturation, value, alpha) attribute. We allow setting
and S based on any edge attribute. Examples in this paper
of setting H and S include both local and global attributes,
such as the edge direction at x and the edge length respec-
tively. V and A are set using a parabolic cushion profile
function ¢, where

V(%) = Yimas + (1 = Yo)e(x), (10)
AX) = a - (1= Yipar + Yimarc(x)), (11)
e(x) = \/1 -2+ [t(x) = 1/2]. (12)
14 c(x)
1(x)
0 ' ' ' i

Fig. 6. Parabolic profile ¢(x). See Eqgns. 10-12.

Here, [is the length of the current edge; [;,,q. is the length
of the longest edge in E; ¢ is the edge arc-length parameter-
ization explained in Sec. 3.1; and « € [0,1] is a parameter
that controls the drawing’s overall opacity. The parabolic
profile ¢(x) is shown in Fig. 6. Note how the luminance V'
and opacity A are functions of both the position of the site
along the edge x and also of the relative edge length I /l,,45.
As such, short edges get constant opacity A but a parabolic
luminance V' profile, whose gradient makes them appear
more salient in the image, which helps seeing them better.
Long edges get a flat luminance V' and parabolic opacity
profile. This way, their end fragments become less opaque,
and thus make more ‘room’ around their end vertices for
short edges that may exist in these areas to be better visible.
Their flat luminance de-emphasizes them, as opposed to
short edges, since their length is a strong enough visual cue
to make them visible.

Figures 2fj show how the proposed color and opacity
design works: Compared to Figs. 2a-e, which use classical
alpha blending, we now see many more detail edges that
connect to isolated nodes.

Multiscale shading: Edges in bundled drawings can be
hard to follow end-to-end due to crossings[30], [46]. This
can be helped by a shading effect that makes bundles
appear like 3D overlaid tubes rather than flat 2D shapes. The
shading gradient (high across a bundle, low along it) makes
the visual separation between crossing bundles easier. This
can be done by explicitly computing separated bundles, by
clustering edges belonging to the same bundle, and ren-
dering generalized shaded cushions atop such bundles [52].
Such shading involves complicated and costly operations:
edge clustering, distance transforms, and medial axes [46],
[12]. For graphs of tens of thousands of edges or more, doing
this at interactive rates is not possible.

We propose a new fast way to compute shaded bundles
from a bundled graph drawing. Consider the density map
p (Eqn. 1) as a height plot surface z = p(x). At each
pixel x, we estimate the normal n(x) to this surface as the

color:
edge length
[

a) migrations graph

color:
edge
direction

b) airlines graph

Fig. 5. Multiscale tube shading for the migrations and airlines graphs. Insets show shading details (Sec. 3.3).

dp dp
dz’ dy’
computed by central differences. We next use n(x;) to shade
each edge site x; by the classical Phong lighting model,
like [27]. However, this approach has a key problem: The
density p can vary hugely over its domain: Along dense
and tight bundles, p derivatives have high values, yielding
almost horizontal normals, thus no illumination (if we use
a vertical light vector); along sparse bundles of just a few
edges, p derivatives get very low, yielding an almost vertical
normal n, thus maximal illumination. This is opposite to our
goal to de-emphasize dense bundles and emphasize sparse
ones. We handle this by a different shading model: For each
pixel x, we compute the maximal value p,q.(X) of p over
a disk of radius r centered at x. Next, we use p(x)/pmaz(X)
as height in the above lighting computations. This locally
normalizes p so that dense bundles appear as shallower
bumps and sparser ones as taller ones, respectively. The
parameter r controls the smoothing amount in a multiscale
way: Larger values make bundles have larger highlights and
less sharply-defined borders; smaller values create sharper
highlights and bundle borders. Good values for r range
between 5 and 15 pixels, which is roughly the thickness of
a bundle in the image. Computing bundle shading is easily
implemented in CUDA by a single pass over all pixels x
of the density image p. The complete shading takes a few
milliseconds, since the partial derivatives of p are already
available from the gradient computation (Eqn. 2), and the
remaining operations are very simple. In contrast, the meth-
ods in [46], [12] involve (a) clustering of edges in E based on
geometric similarity, which takes a few seconds for graphs
of hundreds of thousands of sites; (b) the computation of
the Euclidean distance transform of the edge drawing, its
thresholding, and the computation of the skeleton (medial
axis) of the thresholded image, which takes, when using
fast GPU-based methods [5], about 50..100 milliseconds on
images of 5122 pixels; and (c) the evaluation of a Phong-
like lighting model using the above skeletons and distance
transforms. For full details, we refer the reader to [12], [46].
Overall, the costs of this type of tube shading are about two
orders of magnitude larger than our method.

normalized 3D vector (71), with derivatives of p

Figure 5 shows our tube shading results. As visible,
dense (important) bundles stand out easily, in terms of color

and shading.

4 APPLICATIONS

Huge graphs: Our first example uses the amazon graph,
which records about 900K co-purchase relations between
about 520K items on amazon.com [14]. Figure 7 shows this
graph, visualized with MINGLE, KDEEB, and CUBu. We
see that MINGLE only exposes the edge-density pattern in
the graph; KDEEB shows some structure, but cannot outline
the main connection patterns. In contrast, CUBu clearly
shows these connection patterns. We also see how CUBu
generates very similar results for two different sampled
versions of this graph, taken from [14] (Figs. 7c,e); and how
tuning the radius r used for multiscale shading generates
coarser vs finer-grained visualizations of the graph structure
(Fig. 7c vs d). Figures 7f-i show the bundling of the wiki
graph, which contains about 105K edges representing
relations between Wikipedia pages, computed with four
different methods: MINGLE [14], LaGO [54], KDEEB,
and CUBu. We notice how LaGO mainly shows the node
density, and a few edges (in red) between nodes selected
by the user, but cannot reveal the entire edge structure.
MINGLE succeeds in showing that the graph consists of a
dense ‘core’ of nodes (light blue) to which peripheral nodes
connect. In contrast, CUBu’s FDEB style shows clearly that
the graph part that surrounds the code has a quite regular
structure. CUBu’s small-world style shows even better
how groups of nodes far from the core connect to the core.
Note also that following a bundle from its end outside the
core to where it ends inside the core is much easier in the
CUBu images (Fig. 7h,i) than in the MINGLE image (Fig. 7f).

Flight exploration: We consider dynamic trail-sets formed
by the trajectories of airplanes over given space-time
regions. Such data is provided by either air-traffic control
(ATC)[20], [23], or gathered by hobbyists that record
ADS-B signals[1] used by planes to transmit their name,
position, altitude, call sign and status information, and
consolidated into a global server[39]. Dynamic bundling
can be used to show changes of the main structure of
the connectivity pattern implied by the trails[20], [25].
However, if undirected bundling is used, trail-sets being

amazon graph

a) MINGLE, 899K edges

¢) CUBu, 500K edges, fine shading (color=edge length)

wiki-vote graph (105K edges)

f) MINGLE bundling (color=density) g) LaGO simplified drawing

h) KDEEB style (color=direction)

i) small-world style (color=direction)

Fig. 7. Multiscale visualization of large graphs (amazon and wiki) at different sampling resolutions and shading scales (Sec. 4).

close to each other and going in opposite directions get
bundled together. In turn, when using color-mapping
to show trail attributes, e.g., direction, colors mapping
different values get blended together, resulting in wrong
insights. Existing directed bundling methods[43], [18],
[38] are orders of magnitude too slow for the real-time
requirements of dynamic trail exploration, where we need
to create tens of frames (thus, bundled layouts) per second
to yield a smooth animation.

CUBu’s fast directional bundling solves both above
problems. Figure 8 shows a frame of the dynamic bundling
of all world flights in the database[39], corresponding to
the morning of June 1%, 2013 (about 26K flights from a
total of 750K flights in the database). The unbundled flight
display (Fig. 8a) shows several clutter areas, where we see
only a single direction-color (A4) or false colors, not even
existing in our directional colormap (B, (). Undirected
bundling also creates false colors, see e.g. the detail in
Fig. 8 ¢, corresponding to a small zone above Paris. Directed
bundling (Fig. 8b) clearly separates trail-sets running in
opposite directions. We now see that in all regions A..C
there is symmetric traffic in both directions. Also, no false
colors are created (Fig. 8 d).

Projection analysis: Multidimensional projections are effi-
cient and effective tools for mapping multivariate datasets,
having tens or hundreds of attributes per data point or ob-
servation, to a 2D scatterplot, so that high-dimensional sim-
ilarities between points are preserved in this scatterplot [36],
[37], [35], [44], [24]. As all existing projection techniques can-
not faithfully preserve high-dimensional distances, showing
erroneously-projected points is crucial to using the resulting
projections [29]. One way to spot wrongly-projected points
is to draw point-to-point connections (edges) and color these
by the projection error [29]. However, this creates a very
large, and cluttered, set of lines. Figure 9a shows this for
a relatively small set of 2300 19-dimensional points from
the well-known segmentation dataset describing image frag-
ments [13], projected to 2D using the LAMP technique [24].
Here, point-to-point projection errors are color-coded using
a rainbow colormap (blue=low projection errors, red=high
projection errors). Little structure, in terms of point-groups
sharing similar projection errors, can be seen. Using CUBu,
we can create a bundled layout of these point-to-point error
edges, which now better shows that the main errors affect
the top vs bottom point groups (Fig. 9b). Using our tube-like
shading, we now can better spot the top-to-bottom bundle,

Paris detail

Paris detail

Fig. 10. Bundled graph showing projection errors between point-groups
in a multidimensional projection. Image from cover of [48].

and also see that an important left-to-right bundle exists
(Fig. 9¢). Finally, using HEB-style bundles allows us to better
see how individual projected points participate in bundles,
ie., are affected by projection errors (Fig. 9d). All these
visualizations are generated in real-time on a commodity
PC, due to our fast CUBu bundling technique.

Figure 10 shows a more complex usage of CUBu to
depict projection errors in a multidimensional projection of
a high-dimensional dataset. The projected points, visible as
blue dots, are grouped into five clusters, based on their
attribute similarity. Each cluster is shown by a colored
shaded cushion, using five categorical colors. Bundles show
similar points which are placed far away from each other by
the projection, i.e., the most important projection errors, and
are colored by the projection error magnitude. The image is
taken from the cover of a recent visualization book [48].
Eye tracking: Our final example shows the eye tracking

10

b) CUBu bundling

Fig. 11. Eye tracking analysis of pilot gaze (Sec. 4).

data set used in [20], which comes from tracking the eye
movement over the instruments of an airplane, in a scenario
involving a pilot performing a landing manoeuvre in a flight
simulator. The aim of this experiment was to test a new
cockpit instrument providing landing assistance and its use
in combination along the other instruments in the cockpit
[20]. In Fig. 11a, this new instrument is indicated as LAI
(Landing Assistance Interface). The vertices in the graph are
the points to which the eyes where drawn (so-called fixation
points) and the connecting edges indicate eye-movement
between the vertices (so-called saccades). For this dataset,
fixation points and saccades were obtained from raw eye-
tracking data following the protocol detailed in [20].

Drawing the raw saccades between fixation points gen-
erates a completely cluttered image, from which high-level
connections between fixation points cannot be inferred.
However, bundling can be used to de-clutter and simplify
such an image [38]. Figure 11 compares this approach using
the attribute-driven edge-bundling method (ADEB) [38] and
our CUBu method. The figure shows bundles generated by
ADEB vs those generated by CUBu, both using the same
color scheme to show the main direction of the original
(unbundled) edges. Like the image generated with the
ADEB method, the CUBu bundled image (Fig. 11b) shows
the same connections between instruments. However, we
can also see a smaller but still significant bundle along the
central axis of the image due to the different rendering style
allowed by CUBu. Also, CUBu is roughly 100 times faster
than ADEB for this dataset (see also Tab. 1).

b) standard bundling

/ a) raw graph

Fig. 9. Projection errors. Color maps edge lengths (Sec. 4).

5 DISCUSSION

We have implemented CUBu using C++ and NVidia CUDA
2.1 for the bundling part and OpenGL 1.1 for rendering.
We have tested CUBu on Linux and Mac OS X with several
GPUs (GT 330M, GeForce 580, and single and dual-GPU
GTX 690). For the dual GPU, we split all work (density
estimation, advection, resampling, and smoothing) evenly
on the two GPUs. For testing, we used a variety of graphs,
including all static graphs in[18], [14], [22], [29] and the
dynamic graphs in[20], [25]. These range from a few hun-
dred nodes and edges to hundreds of thousands of nodes,
almost a million edges, and almost 20M edge sampling
points (sites).

5.1 Parameter settings

Kernel radius pg: The initial kernel size, specified in pixels,
controls bundling coarseness. In detail, pg tells the user the
maximum distance at which two edges ‘see” each other, i.e.,
get bundled. Small values yield more, and sparser, bundles;
large values yield a simpler view having less and denser
bundles. A good preset for pr is 5% of the size of the graph
drawing.

Bundling iterations px: The number of bundling iterations
should be large enough so that bundling converges to a
stable structure. For all tested graphs, we verified that
pn € [10,15] leads to convergence, although graphs
having already closely spaced edges, such as trail sets [20]
converge with less iterations. Hence, we conservatively
preset py = 15.

Image resolution p;: The output image size controls the
accuracy of density estimation (Eqn. 3), and thus also
of the gradient estimation by finite differences (Sec. 3.1).
Typical applications would use p; = 5122 pixels. For
high-quality results, such as the images in this paper, we
used p; = 10242 pixels.

Sampling points ps: The edge sampling density, equal to
the total number of sampling points pg divided by the sum
of all edge lengths, also affects bundling quality. Intuitively,
we want the sampling density to be high enough to capture
the smallest details of interest in our graph drawing, but
not higher, as this decreases speed. For all our test graphs,
we found this optimal density to be roughly equal to one
sampling point per 10 pixels of edge length.

5.2 Performance

CUBu'’s performance depends on its four parameters: kernel
radius pr, number of bundling iterations py, image resolu-
tion py, and sampling point count pg. To analyze scalability,

11

d) HEB style bundling

c) standard bundling
had and shading

and shading

[FDEB|DEB|SBEB|GBEB[ADEB|3DHEB|KDEEB[MINGLE[CUBY]
[65]275] 266] 56| 13] 07| 05] 0.2 0.014]
TABLE 1

Bundling times (seconds) for several methods for the US airlines graph
(235 nodes, 2099 edges, 86K sample points), see Sec.5.2.

we varied all four parameters, one at a time, while keep-
ing the other three fixed around good default values, and
measured the bundling time. Figure 12 shows our timings
on the single and dual-GPU GTX 690 platform, thereby also
showing multi-GPU scalability. We see that bundling speed
is linear in py, ps, 1/P1, and roughly independent on pg.
Also, we see that CUBu scales well on a dual-GPU platform.
Since our dual-GPU design simply splits workload between
the two GPUs, it should also scale well on a platform having
more than two GPUs. This is an important result, as none of
the bundling algorithms known so far do takes advantage
of multi-GPU capabilities.

The complexity of CUBu is O(prpnps), worst-case iden-
tical to KDEEB and ADEB. Yet, the highly-parallel design of
CUBu ensures that it is 30 to 100 times faster than KDEEB,
the fastest known undirected bundling competitor (Tab.2).
Since the principle behind KDEEB and CUBu is the same,
further detailing this performance boost is worthwhile. The
by far most important gain of CUBu is realized in the
computation of the density map (Eqn. 1), which is done by
gathering rather than scattering. As explained in Sec. 3.1,
this optimally uses the GPU by minimizing the number
of concurrent writes, which is the major bottleneck in the
KDEEB design. As the density map computation is 40..60%
of the total KDEEB time (Sec. 3.1) and since this is the step we
improve the most, this delivers the largest part of the speed
gains of CUBu. The second main speed boost is given by the
fact that CUBu is entirely implemented on the GPU, while
KDEEB performs the gradient computation, edge advection,
edge resampling, and edge smoothing on the CPU. This, and
the CPU-GPU data transfers, are the second main bottleneck
of KDEEB.

Compared to ADEB, CUBu is 60 to 200 times faster, as
ADEB is half the speed of KDEEB [38]. Further comparison,
done on the well-known US airlines graph (235 nodes, 2099
edges, 86K sample points), are listed in Tab. 1. These results
are not surprising given that the complexities of MINGLE,
FDEB, GBEB are essentially quadratic with respect to pg,
while the complexity of CUBu is linear with respect to pg.

a)Image resolution p; Fixed parameters

250

200 PR™ 32
™ PN=20
E 150 ps = 600K
qé 100
E
%0 ——1GPU
0 —#-2 GPUs
256x256 512x512 1024x1024 2048x2048
- b) Bundling iterations py Fixed parameters
140 pL= 10247
=120 —
=32
Enw e 600K
cE: 80 ps
i 60
40
20 ——1GPU
—=-2 GPUs

2 8 14 20 25 30

12

0 c)Kernel size pg Fixed parameters
120 Pl B 1024
-2-100 DPN= 20
S8 e g = 600K
(]
£ 60
= 40
——1GPU
22 —=-2GPUs
16 32 64 96 128
w00 d) Sampling points pg Fixed parameters
700 p1 = 10247
— 600 =32
£ 500 Pr
=400 pN=20
£ 300
i= 200
1GPU
100 —-2GPUs

0
F &F&FFFFFS &
FFHF&F&FFHFFsS
PSS S

Fig. 12. Performance scalability as function of the CUBu algorithm parameters (Sec. 5.1).

Graph Nodes| Edges KDEEB CUBu (1 GPU)

‘ Samples | Time (ms)|Samples | Time (ms)
US airlines 235 2099 86K 500 86K 14
US migrations| 1715] 9780 220K 1500 221K 24
Radial 1024] 4021 290K 1500 290K 23
France airlines| 34550 17275 330K 1800 330K 25
Poker 859| 2127 50K 400 50K 11
Amazon 738491899791 19M 8053 19M 152

TABLE 2

Timings for CUBuU and KDEEB [22] for several graphs (Sec. 5.2).

5.3 Generality

CUBu can handle graphs of any topology and having an
initial edge layout given by curves or straight lines, as long
as we have a 2D node layout. By varying a few parameters,
we can achieve undirected or directed bundling and several
bundling styles (FDEB, HEB, small-world, and schematic)
and shading effects (flat, emphasizing outlier edges, and
tube-like) with a single implementation. All bundling pa-
rameters, except the image resolution, can be controlled
locally, by simply making them a function of the data values
at any edge sampling point (site) or neighborhood thereof.
This way, we can create a rich family of bundling variations.
For example, we can set the kernel radius pgr as a function
of the parametric site coordinate ¢ to control the bundles’
shapes; or we can set the directional compatibility ~ as a
function of edge attributes, to achieve data-driven bundling.
Such variations require only minimal code changes to CUBu
and incur no performance penalty, as CUBu treats all sites
independently and in parallel.

5.4 Limitations

While fast, generic, and highly configurable, CUBu has a
few limitations. Like all other bundling methods, its bun-
dles are not fully controllable in terms of exact shape and
position. Interpreting such bundles should thus be done
with care, especially when spatial positions are important.
To mitigate this, CUBu adds bundle relaxation [21], which
allows users to interactively interpolate between bundled
and original edges. Separately, the design of effective bundle
shapes is clearly application-dependent. The styles shown in

Sec. 3.1 are just a sample subset which does not claim to be
generally optimal nor exhaustive. Specific applications may
need different bundle styles. Such styles are easy to get by
using other suitable edge profiles (Eqn. 7) and/or edge sim-
ilarity functions (Eqn. 9). A final issue regards the variation
of bundled layouts: Since CUBu can bundle large graphs
in real-time, it means that its users can easily vary any of
the bundling parameters to interactively generate a wide
range of bundled layouts. While this is a powerful tool, it
can also potentially confuse users during the exploration of
the bundling parameter-space. Now that real-time bundling
parameter control is possible, a next research step should
consider how to present this parameter-space to users so as
to enable intuitive and effective exploration.

6 CONCLUSIONS

We have presented CUBu, a general-purpose framework
for creating high-quality bundlings from very large graphs.
CUBu proposes a GPU-based design that addresses the
main desirable features of existing bundling algorithms
(scalability, directional bundling, level-of-detail visualiza-
tion of bundled results) in a single unified framework.
CUBu is 50 to 100 times faster than state-of-the-art bundling
methods, thereby opening the door to real-time bundling
of graphs of millions of edges. Separately, CUBu can pro-
duce bundling styles similar to a wide variety of ex-
isting graph visualization algorithms, such as hierarchi-
cal edge bundling, skeleton-based edge bundling, force-
directed edge bundling, schematic graph drawing, image-
based edge bundles, and dynamic-graph bundling. We com-
pare CUBu with seven related bundling algorithms and
show its scalability and generality on several graphs and
trail-sets up to one million edges.

As future work, we aim to adapt CUBu to address
graph and trail-like datasets generated by additional ap-
plication domains, such as diffusion tensor imaging (DTI)
bundling [4] and road-and-maritime traffic datasets[42].
Separately, we aim to extend our image-based bundle shad-
ing to visualize several per-edge and per-node attributes,
in the direction of supporting multivariate graph visualiza-
tion. Studying how CUBu can integrate additional bundling

styles such as the ones described in [33] is also an interesting
topic for future work.

As CUBu largely solves the scalability challenge of gen-
erating bundled drawings of large graphs at interactive
rates, a separate important task for future work is to use
this algorithm in the construction of interactive exploratory
visualizations for such graphs. This way the main added-
value of the scalable bundling and various drawing styles
provided by CUBu can be optimally leveraged to solve real-
world problems involving such graphs.

REFERENCES
[1] ADS-B. Automatic dependent surveillance broadcast, 2014. www.
ads-b.com.

[2] D. Auber, Y. Chiricota, F. Jourdan, and G. Melan con. Multiscale
visualization of small world networks. In Proc. IEEE Infovis, pages
75-81, 2003.

[3] R. Boardman. Bubble trees: The visualization of hierarchical
information structures. In Proc. ACM CHI, pages 315-316, 2000.

[4]]. Bottger, A. Schifer, G. Lohmann, A. Villringer, and D. Margulies.
Three-dimensional mean-shift edge bundling for the visualization
of functional connectivity in the brain. IEEE TVCG, 20(3):471-480,
2014.

[5] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding
algorithm to compute exact distance transform with the GPU. In
Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games,
pages 134-141, 2010.

[6] L. Cayton. A nearest neighbor data structure for graphics hard-
ware. In Proc. ADMS, pages 192-197, 2010. people. kyb.tuebingen.
mpg.de/lcayton.

[7] D.Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE TPAMI, 24(5):603-619, 2002.

[8] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J. J. van Wijk. Execution trace analysis through
massive sequence and circular bundle views.]. Sys. & Software,
81(12):2252-2268, 2008.

[9] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-based
edge clustering for graph visualization. [EEE TVCG, 14(6):1277-
1284, 2008.

[10] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, 2007.

[11] G. Ellis and A. Dix. A taxonomy of clutter reduction for informa-
tion visualisation. IEEE TVCG, 13(6):1216-1223, 2007.

[12] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea.
Skeleton-based edge bundles for graph visualization. IEEE TVCG,
17(2):2364-2373, 2011.

[13] A.Frank and A. Asuncion. UCI machine learning repository, 2013.

[14] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel
agglomerative edge bundling for visualizing large graphs. In Proc.
PacificVis, pages 187-194, 2011.

[15] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor
search using GPU. In Proc. Intl. Workshop on Computer Vision on
GPU (CVGPU), pages 77-83, 2008.

[16] Z. H, X. Yuan, H. Qu, W. Cui, and B. Chen. Visual clustering in
parallel coordinates. CGF, pages 1324-1332, 2008.

[17] D. Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE TVCG, 12(5):741-748, 2006.

[18] D. Holten and J. J. van Wijk. Force-directed edge bundling for
graph visualization. Computer Graphics Forum, 28(3):670-677, 2009.

[19] C. Hurter, S. Conversy, D. Gianazza, and A. Telea. Interactive
image-based information visualization for aircraft trajectory anal-
ysis. Transportation Research Part C: Emerging Technologies, 48, 2014.

[20] C. Hurter, O. Ersoy, S. Fabrikant, T. Klein, and A. Telea. Bundled
visualization of dynamic graph and trail data. IEEE TVCG,
20(8):1141-1157, 2014.

[21] C. Hurter, O. Ersoy, and A. Telea. MoleView: An attribute and
structure-based semantic lens for large element-based plots. IEEE
TVCG, 17(12):2600-2609, 2011.

[22] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel
density estimation. Computer Graphics Forum, 31(3):435-443, 2012.

[23] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading
data across views to support iterative exploration of aircraft tra-
jectories. IEEE TVCG, 15(6):1017-1024, 2009.

[24] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato. Local affine multidimensional projection. IEEE TVCG,
17(12):25632571, 2011.

[25] T. Klein, M. van der Zwan, and A. Telea. Dynamic multiscale
visualization of flight data. In Proc. VISAPP, pages 232-240, 2014.

[26]

[27]
(28]

[29]

(30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]
(4]

[45]

[46]

[47]

(48]
[49]
(50]
[51]

[52]

(53]
[54]

13

A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling for
geographical data visualization. In Proc. Information Visualisation,
pages 329-335, 2010.

A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing
edges into bundles. Computer Graphics Forum, 29(3):432—439, 2010.
O. Lampe and H. Hauser. Interactive visualization of streaming
data with kernel density estimation. In Proc. IEEE PacificVis, pages
232-239, 2011.

R. Martins, D. Coimbra, R. Minghim, and A. Telea. Visual analysis
of dimensionality reduction quality for parameterized projections.
Computers & Graphics, 41:26-42, 2014.

F. McGee and]. Dingliana. An empirical study on the impact of
edge bundling on user comprehension of graphs. In Proc. AVI,
pages 620-627, 2012.

D. Moura. 3D density histograms for criteria-driven edge
bundling, 2015. arXiv:1504.02687v1 [cs.GR].

Q. Nguyen, P. Eades, and S.-H. Hong. StreamEB: Stream edge
bundling. In Proc. Graph Drawing, pages 324-332. Springer, 2012.
Q. Nguyen, S.-H. Hong, and P. Eades. TGI-EB: A new framework
for edge bundling integrating topology, geometry, and impor-
tance. In Proc. Graph Drawing, pages 123-235, 2011.

M. Nollenburg and A. Wolff. Drawing and labeling high-
quality metro maps by mixed-integer programming. IEEE TVCG,
17(5):626-641, 2010.

F. Paulovich, D. Eler, J. Poco, C. Botha, R. Minghim, and L. G.
Nonato. Piecewise Laplacian-based projection for interactive
data exploration and organization. Computer Graphics Forum,
30(3):1091-1100, 2011.

F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high precision multidimensional
projection technique and its application to document mapping.
IEEE TVCG, 14(3):564-575, 2008.

F. V. Paulovich, C. Silva, and L. G. Nonato. Two-phase mapping
for projecting massive data sets. [EEE TVCG, 16:12811290, 2010.
V. Peysakhovich, C. Hurter, and A. Telea. Attribute-driven edge
bundling for general graphs with applications in trail analysis. In
Proc. IEEE PacificVis, 2015.

PlaneFinder. Live flight status tracker, 2014. http://planefinder.
net.

S. Pupyrev, L. Nachmanson, S.Bereg, and E. Holroyd. Edge
routing with ordered bundles. In Proc. Graph Drawing, pages 136—
147, 2012.

D. Reniers, L. Voinea, O. Ersoy, and A. Telea. The Solid* toolset
for software visual analytics of program structure and metrics
comprehension: From research prototype to product. Science of
Computer Programming, 79(1):224-240, 2014.

R. Scheepens, N. Willems, H. van de Wetering, G. Andrienko,
N. Andrienko, and J. J. van Wijk. Composite density maps for
multivariate trajectories. IEEE TVCG, 17(12):2518-2527, 2011.

D. Selassie, B. Heller, and J. Heer. Divided edge bundling for
directional network data. IEEE TVCG, 19(12):754-763, 2011.

C. Silva, F. Paulovich, and L. G. Nonato. User-centered multidi-
mensional projection techniques. Comput. Sci. Eng., 14(4):74-81,
2012.

J. Stott, P. Rodgers,]. Martinez-Ovando, and S. Walker. Automatic
metro map layout using multicriteria optimization. IEEE TVCG,
17(1):101-114, 2011.

A. Telea and O. Ersoy. Image-based edge bundles: Simplified
visualization of large graphs. Computer Graphics Forum, 29(3):543—
551, 2010.

A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and
visualization of call dependencies for large C/C++ code bases: A
comparative study. In Proc. IEEE VISSOFT, pages 81-88, 2009.

A. C. Telea. Data visualization — Principles and Practice, ond edition.
CRC Press, 2014.

F. van Ham and J. J. van Wijk. Interactive visualization of small
world graphs. In Proc. IEEE Infovis, pages 199-206, 2004.

F. van Ham and M. Wattenberg. Centrality based visualization of
small world graphs. CGF, 27(3):972-980, 2008.

R. van Liere and W. de Leeuw. GraphSplatting: Visualizing
graphs as continuous fields. IEEE Transactions on Visualization and
Computer Graphics, 9(2):206-212, 2003.

J. J. van Wijk and H. van de Wetering. Cushion treemaps:
Visualization of hierarchical information. In Proc. IEEE InfoVis,
pages 73-78, Los Alamitos, CA, 1999. IEEE Press.

H. Zhou, P. Xu, Y. Xiaoru, and Q. Huamin. Edge bundling in
information visualization. Tsinghua Sci. Tech., 18(2):148-156, 2013.
M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive
level-of-detail rendering of large graphs. IEEE TVCG, 18(12):2486—
2495, 2012.

www.ads-b.com
www.ads-b.com
people.kyb.tuebingen.mpg.de/lcayton
people.kyb.tuebingen.mpg.de/lcayton
http://planefinder.net
http://planefinder.net

Matthew van der Zwan received his B.Sc. in
Computer Science and his B.Sc. in Applied
Mathemathics from the University of Groningen,
the Netherlands, in 2009. In 2011, he received
his M.Sc. in Computer Science from the same
university, where he currently is a Ph.D. student.
His research interests are in computer vision,
focussing on tracking applications, but also in
visualization and visual analytics.

Valeriu Codreanu Valeriu Codreanu received
his PhD in Electrical Engineering from the Poly-
technic University of Bucharest in 2011. He
next held postdoctoral positions at the Univer-
sity of Groningen (2011-2014) and Eindhoven
University of Technology (2014-2015). He cur-
rently works as a HPC consultant at SURFsara,
the Dutch national supercomputing center. His
research interests cover the theory, architec-
ture, and programming of high-performance and
energy-efficient computing systems.

Alexandru Telea received his PhD (2000) in
Computer Science from the Eindhoven Univer-
sity of Technology, the Netherlands. Until 2007,
he was assistant professor in visualization and
computer graphics at the same university. Since
2007, he is professor of computer science at the
University of Groningen, the Netherlands. His
interests include 3D multiscale shape process-
ing, scientific and information visualization, and
software analytics.

14

	Introduction
	Related Work
	Proposed method
	Bundling algorithm
	Control of bundle geometries
	Visualization enhancements for bundled graphs

	Applications
	Discussion
	Parameter settings
	Performance
	Generality
	Limitations

	Conclusions
	References
	Biographies
	Matthew van der Zwan
	Valeriu Codreanu
	Alexandru Telea

