
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 1

Dynamic Importance Monte Carlo SPH Vortical
Flows with Lagrangian Samples

Xingyu Ye, Xiaokun Wang, Yanrui Xu, Alexandru C. Telea, Jiří Kosinka, Lihua You, Jian Jun Zhang, Jian Chang

Abstract—We present a Lagrangian dynamic importance
Monte Carlo method without non-trivial random walks for solv-
ing the Velocity-Vorticity Poisson Equation (VVPE) in Smoothed
Particle Hydrodynamics (SPH) for vortical flows. Key to our
approach is the use of the Kinematic Vorticity Number (KVN)
to detect vortex cores and to compute the KVN-based importance
of each particle when solving the VVPE. We use Adaptive Kernel
Density Estimation (AKDE) to extract a probability density
distribution from the KVN for the the Monte Carlo calculations.
Even though the distribution of the KVN can be non-trivial,
AKDE yields a smooth and normalized result which we dynam-
ically update at each time step. As we sample actual particles
directly, the Lagrangian attributes of particle samples ensure
that the continuously evolved KVN-based importance, modeled
by the probability density distribution extracted from the KVN
by AKDE, can be closely followed. Our approach enables effective
vortical flow simulations with significantly reduced computational
overhead and comparable quality to the classic Biot-Savart law
that in contrast requires expensive global particle querying.

Index Terms—Fluid Simulation, Importance Monte Carlo,
SPH, Vortical Flow.

I. INTRODUCTION

Simulating visually rich and complex vortical flows is a hot
topic in computer graphics research. Despite recent advances
[1], several challenges still remain. Lagrangian methods us-
ing Smoothed Particle Hydrodynamics (SPH) show a rapid
dissipation of vortical flows stemming from many sources
such as numerical damping [2] and coarse sampling [3]. This
is typically tackled by adding missing vortical or turbulent en-
ergy. For example, the vorticity confinement method enforces
vortical flows by amplifying current vorticity [4]. Yet, this can
only enforce existing vorticity. To alleviate this, the micropolar
fluid method creates turbulent flows via micro-rotations [5].
However, since there exists a conceptual distinction between
micro-rotations and vorticity [6], the generated flow details are
not necessarily of vortical type.

Vortical flows can be simulated by evolving the vortic-
ity field directly and solving the Velocity-Vorticity Poisson
Equation (VVPE) [7]. The Biot-Savart law provides a clas-
sic method to solve this Poisson equation, which uses the

Xingyu Ye, Xiaokun Wang, and Yanrui Xu are with University of Science
and Technology Beijing, Beijing 100083, China. E-mail:{xye@bournemouth.a
c.uk, wangxiaokun@ustb.edu.cn, xuyanruiedw@me.com}.

Xingyu Ye, Lihua You, Jian Jun Zhang, and Jian Chang are with National
Centre for Computer Animation, Bournemouth University, Bournemouth
BH12 5BB, U.K. E-mail:{lyou, jzhang, jchang}@bournemouth.ac.uk.

Alexandru C. Telea is with Utrecht University, Utrecht 3508 TC, Nether-
lands. E-mail:{a.c.telea@uu.nl}.

Jiří Kosinka is with University of Groningen, Groningen 9712 CP, Nether-
lands. E-mail:{j.kosinka@rug.nl}

(Corresponding author: Xiaokun Wang, Jian Chang.)

Green’s function to formulate the solution via a convolution
integral. Vortex methods numerically evaluate this integral
by a discrete summation that queries vorticity tracked by
discrete Lagrangian elements e.g. particles [8], segments [9],
and filaments [10]. Yet, this global summation has a low
computational efficiency. Recent Monte Carlo methods ad-
dress this by efficient point-based Partial Differential Equation
(PDE) solvers [11]. These approaches replace the expensive
global summation by summing points sampled by random
walks including walking-on-spheres [11], [12], walking-on-
boundary [13], and walking-on-stars methods [14], [15]. They
come with various non-trivial boundary sampling methods
to obtain sufficient boundary information for solving PDEs
within point-based frameworks.

Although Monte Carlo methods are commonly developed
as point-based (grid-free and particle-free) PDE solvers, we
focus on the classic SPH framework to enhance vortical flows
in more general and non-trivial fluid scenarios than previous
work. We propose a dynamic importance Monte Carlo method
for solving the VVPE. Since our work is conducted in the
context of SPH, particle velocities can be projected to satisfy
the free-slip boundary using particle boundaries [16]. Thus,
our work can directly apply the Monte Carlo PDE solver with
infinite domains [17] and non-trivial random walk techniques
can be omitted.

We use the dimensionless Kinematic Vorticity Number
(KVN) [18] to compute the importance of each particle when
solving the VVPE. The KVN shows how closely a rotation
resembles rigid body rotation and works better than vorticity
to detect vortex cores, i.e., the rotation center of a vortex. The
Monte Carlo method requires a normalized probability density
distribution and representative samples. We extract a dynam-
ically updated probability density distribution from the KVN
through Adaptive Kernel Density Estimation (AKDE) [19].
Even though the KVN distribution can be nontrivial, AKDE
ensures a smooth and normalized probability density distribu-
tion. Important areas typically evolve with time. We update
samples following our KVN-based importance at each time
step to ensure this evolution can be closely followed.

In summary, the main contributions of our work are:
• A Monte Carlo method without random walks to enhance

SPH vortical flows with Lagrangian particle samples
closely following the evolution of important areas.

• A KVN-based importance that highlights vortex cores and
models particle importances for solving the VVPE.

• A dynamically updated probability density distribution
estimated by AKDE, used to run the Monte Carlo method
smoothly and in a normalized fashion.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 2

2.5 4.2

speed (m/s)

0 2

speed (m/s)

Fig. 1. Left: A static Stanford bunny in a high-velocity stream. Right: A static tower subjected to periodic waves. Both scenarios are rendered as particles
with color-coded speed. These results show our method’s ability to handle various vortical flow phenomena and generate realistic vortices.

The remainder of this paper is organized as follows. We
start by reviewing related work (Sec. II) and also introduce
the vorticity loss of SPH and the solution of VVPE (Sec. III).
Next, we detail our dynamic importance Monte Carlo SPH
vortical flow approach (Sec. IV). We illustrate our proposal by
a series of simulation experiments and comparisons (Sec. V).
Finally, we conclude the paper and provide directions for
future work (Sec. VI).

II. RELATED WORK

We next review work related to SPH vortical flow simula-
tions and the Monte Carlo method in graphics. For a detailed
and broader introduction to fluid simulation and SPH-based
fluids, we refer to [1], [20], [21].

Detail-enhanced SPH Flows. Many detail-enhancing
schemes for SPH fluids were first developed in the field of
Eluerian fluid simulation. To alleviate numerical dissipation
in smoke simulation, Fedkiw et al. [4] introduced the vorticity
confinement method to the graphics community. Macklin and
Müller [22] adapted it to position-based fluids using SPH
discretization. To overcome the weakness of non-conservation
of momentum and parameter sensitivity, Letine et al. [23]
extended this approach to a momentum-conserving form. As
the vorticity confinement scheme can only amplify existing
vorticity, Bender et al. [5] introduced the micropolar model
to simulate turbulent flows with SPH methods. This method
develops a constitutive model to govern micro-rotation dynam-
ics with applications in heat transfer [24], blood flow [25], and
magnetized fluids [26]; and can update velocity using micro-
rotation dynamics without explicitly enforcing vorticity. How-
ever, the concept of micro-rotations differs from vorticity [6].
Vortical motions constitute a small part of the overall produced
turbulent motions. Ye et al. [27] introduced the Monte Carlo
method to enhance vortical details by uniformly distributed
samples. Although this approach effectively simulates vortical
flow, the high variance of uniform sampling makes it sensitive
to the setting of the sample count; inconsistent vortex patterns
can appear for different sample counts. In our work, we use
a combined scheme of KVN-based importance sampling and
neighbor particles to develop a method that stably enhances
vortices, is less sensitive to sample count, and yields coherent
vortex patterns for different sample counts.

Vortex Methods. Such methods represent vortices by La-
grangian vortex elements and update vorticity dynamics using
the curl of the Navier-Stokes equation (a.k.a. the vorticity
equation). Vortex particle methods in this class model vortices
using particles [28]. Selle et al. [8] coupled the vortex particle
method with Eulerian fluids using the vorticity confinement
method to overcome their separate weaknesses. Park et al. [7]
simulated smoke by vortex particles with no-through and no-
slip boundary handling for vorticity.

In 3D, a vortex center is usually not a point but a curve.
The vortex stretching term within the vorticity equation, which
is zero in 2D, governs the deformation of this curve. Most
Eulerian methods do not directly discretize this term by finite
differences due to potential numerical instabilities in gradient
computations. The vortex filament method models vortices
using Lagrangian filaments [29], [30]. Updating the shape of
filaments replaces the finite difference of the vortex stretch-
ing term, providing better numerical stability. Yet, handling
filament topology brings extra complexities. Zhang and Brid-
son [31] used a segment-based method in Eulerian approaches.
The segment can be easily updated via its two endpoints which
favors simplicity. Xiong et al. [9] further introduced explicit
Lagrangian segments to simulate vortical flows without classic
grid-based and particle-based frameworks.

Another challenge of vortex methods stems from the Biot-
Savart law. Converting vorticity to velocity is needed to update
the position of Lagrangian vortex elements. This can be done
by solving the VVPE. The Biot-Savart law uses the Green’s
function to formulate a summation as a solution to the Poisson
equation. Yet, this summation is a computationally expensive
N -body problem with O(N2) complexity for N fluid par-
ticles. Several schemes aim to accelerate this computation.
The Fast Multipole Method (FMM) uses dynamically updated
multi-scale grids for near and far particles [32], [33]; near
particles are handled using dense grids or individually; far
particles are transferred to coarse grids (which become coarser
with distance) as a whole body. Although the FMM reduces
the computational overhead of the Biot-Savart law, dynam-
ically managing multi-scale grids makes its implementation
challenging. In the Particle-Particle Particle-Mesh (PPPM)
scheme [31], near particles are still treated individually, while
far particles are transferred to uniform grids and solved using

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 3

the Vortex-in-Cell (VIC) method. Our work also treats near
and far particles separately: Near particles affect the kernel-
based importance; far particles are modeled by the Monte
Carlo method using our KVN-based importance.

Monte Carlo Methods in Computer Graphics. Such
methods were first used to estimate the outcome of ray
tracing [34], [35]. Sawhney and Crane [11] proposed the Monte
Carlo geometry processing method – a Monte Carlo point-
based partial differential equation (PDE) solver which is
highly efficient and easy to implement. Subsequent works
extended this method to spatially varying coefficients [36],
Neumann boundaries [14], Robin boundaries [15], walk on
boundary [13], and differential solvers [37].

Rioux-Lavoie et al. [12] introduced Monte Carlo methods
to fluid simulation by solving the VVPE with a point-based
Monte Carlo PDE solver. The Poisson equation solution is
represented by continuous integration using Green’s function.
This integration can be efficiently estimated by Monte Carlo
methods using a discrete summation. This Monte Carlo PDE
solver was next extended to solve the general velocity-based
Navier-Stokes equation [17]. While classic grid- or particle-
based frameworks solve PDEs by discretizing differential
operators using finite difference or SPH approximations, point-
based Monte Carlo methods solve PDEs by sampling spa-
tial points. Such samples are usually obtained by random
walks, including the walk-on-sphere [11] algorithm and its
variants [13], [15]. However, these random-walk methods re-
quire non-trivial techniques to obtain sufficient and correctly
distributed samples from boundaries with complex geometries.
Our approach is developed in the context of the SPH. This
allows the Monte Carlo method to be computed on infinite
domains without random walks, as boundary conditions are
satisfied by the SPH projection.

Kinematic Vorticity Number (KVN). A well-known tool
for analyzing crustal deformations in geology, KVN is a non-
dimensional factor that measures the degree of pure rotations,
eliminating the influence of angular velocity magnitude [38],
[39]. KVN ranges from 0 (pure shear deformation) to ∞
(rigid body rotation). Schielicke et al. [18] used the KVN to
estimate vortex core size and circulation. We use the KVN
in our solver to evaluate the importance of fluid particles
in simulating vortical flows. Unlike approaches that estimate
KVN via measurements [40], we directly use the theoretical
definition of the KVN to compute its value. A dynamically
updated probability distribution at each time step based on
KVN is applied to select samples.

Kernel Density Estimation (KDE). In statistics, KDE pro-
vides an effective way to estimate a smooth probability density
function from sample positions by a kernel function [41]. The
resulting smoothness is controlled by the kernel bandwidth
(akin to the support radius of SPH kernels). Many schemes
have been developed for this control, e.g., data-based [42] and
linear diffusion processes [43]. George and David [44] studied
the effect of variable bandwidths for uni- and multivariate
KDE. To improve accuracy at boundaries, Jones [45] discusses
several methods for boundary correction. Kerm [19] proposed
Adaptive Kernel Density Estimation (AKDE) to adapt to the
sparseness of data with variable weights and bandwidths. We

use AKDE to estimate a dynamically updated probability
density distribution representing the KVN-based importance
for computations in the Monte Carlo method.

III. VORTICAL FLOW SIMULATIONS IN SPH

A. Vorticity Loss

SPH typically simulates fluids using a velocity-based form
of the Navier-Stokes equation

Du

Dt
= −1

ρ
∇p+ ν∇2u+ f , (1)

∇ · u = 0, (2)

where D
Dt = ∂

∂t + u · ∇ is the material derivative, u is the
particle velocity, ρ is the density, ν is the kinematic viscosity,
p is the pressure, and f models external body forces. t denotes
simulation time. All these fields are defined on Rd where
d ∈ {1, 2, 3} is the simulation dimension. While Eq. (1) can
simulate incompressible flows, it may not model nontrivial
vortical motions well due to numerical damping and SPH’s
inherent coarse sampling. By taking the curl of Eq. (1), we
obtain the governing equation for the vorticity ω = ∇×u as

Dω

Dt
= (ω · ∇)u+ ν∇2ω +∇× f . (3)

Eq. (3) gives the time evolution of vorticity and can be used to
quantify the vorticity loss at each time step t as follows [46]:

• compute the vorticity ωt = ∇× ut;
• evolve ωt+∆t from ωt using Eq. (3);
• apply non-pressure forces to ut to compute an interme-

diate velocity ūt;
• quantify the loss of vorticity ωt

L = ωt+∆t −∇× ūt by
using the curl of the intermediate velocity ūt.

These steps can be computed straightforwardly using an
SPH formulation. Density can be approximated by

ρi =
∑
j∈Ni

mjW
h(xij), (4)

where Ni are the neighbor particles of particle i of mass mi

and xij = xi−xj . For the SPH smoothing kernel Wh : Rd →
R with support radius h, we use cubic splines [47]

Wh(r) = σd


6(q3 − q2) + 1 0 ≤ q ≤ 1

2

2(1− q)3
1

2
< q ≤ 1

0 otherwise,

(5)

where q = ∥r∥
h and σd is a kernel normalization factor

depending on the dimension d: σ1 = 4
3h ; σ2 = 40

7πh2 ; and
σ3 = 8

πh3 , respectively.
Regarding the discretizing of differential operators, the

difference formula of SPH has a more accurate discretization
than the symmetric formula [21]. Though not fully momentum-
conserving, the difference formula is most commonly used
for intermediate discretizations. As the whole vorticity-loss
computations do not yield ultimate forces applied to fluid

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 4

particles directly, we use the difference formula to discretize
the curl, gradient, and divergence operators [48] as

∇× ut(xi) =
∑
j∈Ni

mj

ρj
ut
ij ×∇Wh(xij), (6)

∇ut(xi) =
∑
j∈Ni

mj

ρj
ut
ij ⊗∇Wh(xij), (7)

∇ · ut(xi) =
∑
j∈Ni

mj

ρj
ut
ij · ∇Wh(xij), (8)

where ut
ij = ut(xi)− ut(xj) and a⊗ b = abT .

For the Laplacian ∇2, we use the following formulation

∇2ut(xi) = 2(d+ 2)
∑
j∈Ni

mj

ρj

ut
ij · xij

∥xij∥2 + 0.01h2
∇Wh(xij),

(9)
where the h2 term is a regularization factor. This enhances
numerical stability by reducing 2nd order derivatives to 1st

order ones [49].
We enhance the continuity of the vorticity loss ωL by the

following smoothing using the SPH kernel

ω̃t
L(xi) =

∑
j∈Ni

mj

ρj
ωt

L(xj)W
h(xij). (10)

Vortex methods simulate vortical flows by an explicit vor-
ticity field which requires complex solving for vorticity at
solid boundaries to enforce no-slip and no-through boundary
conditions [7], [9]. Using the vorticity loss provides an implicit
scheme allowing us to enhance vortical flows directly in the
velocity field without solving for boundary vorticity.

B. Solving the VVPE

Recovering a velocity field from a vorticity field requires
solving the VVPE

−∇2u = ∇× ω. (11)

Using Green’s function G : Rd → R for the Laplacian ∇2,
Eq. (11) has a solution with infinite domains as

u(x) = ∇×[(G∗ω)(x)] =

∫
Ωs

∇G(x−y)×ω(y) dsy, (12)

where ∗ denotes the convolution product, Ωs is the simula-
tion domain, dsy denotes the differential volume element at
position y, and G(x) = 1

2π ln ∥x∥ (for d = 2) and 1
4π∥x∥ (for

d = 3), respectively. The vortex particle method discretizes
the vorticity field by a set of particles xi as

ω(x) =
∑
i∈H

Γ(xi)δ(x− xi), (13)

where Γ =
∮
C
u ds ≈ vω is the vortex strength or circulation;

C is a closed curve (2D) or surface (3D) giving the boundary
of a vortex particle; H is the set of all vortex particle indices;
δ : Rd → R is the Dirac delta function; and v is the vortex
particle volume. Using Eq. (13), we can rewrite Eq. (12) as

u(x) =
∑
i∈H

∇G(x− xi)× Γ(xi), (14)

(a) Segment stretching scheme

0.5 3.8

speed (m/s)

(b) SPH gradient discretization

Fig. 2. Comparison of (a) the segment stretching scheme [31] and (b) SPH
gradient discretization in a high-velocity stream with multiple static obstacles
(green, pink, orange). Particle colors encode speed (white: low speed; blue:
high speed). Both methods yield stable vortical flows in our experiments. As
the schemes produce comparable results, we use the simpler SPH gradient
discretization in our method to compute vortex stretching.

which is known as the Biot-Savart law [28].
To preserve vortex features in SPH flows, we convert the

smoothed vorticity loss ω̃L (Eq. (10)) into a velocity loss

uL(x) = v
∑
i∈H

∇G(x− xi)× ω̃L(xi) (15)

and use this loss to enforce vortical motions in the original
velocity via

ū(x) = u(x) + uL(x). (16)

The simulation can be unstable due to the singularity of
the Green’s function G at the zero point. We alleviate this by
modifying G with the vortex blob scheme [50], [20] as

G̃(x) =

{
1
2π ln

(
∥x∥+ h · e−∥x∥/θ) for d = 2

− 1

4π(∥x∥+h·e−∥x∥/θ)
for d = 3,

(17)

where θ = 1× 10−6 is a small regularization factor.

C. Discussion of Vortex Stretch

The vortex stretch term (ω · ∇)u in Eq. (3) describes the
bending or stretching of the vortex central curve in the 3D
case; this term is zero in 2D. Most schemes avoid using
finite differences when computing this gradient as this can be
numerically unstable. Some methods replace particle repre-
sentation with segments [9] or filaments [10] to directly model
the updating result of the vortex stretch term. Yet, handling
elements other than particles introduces new complexities.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 5

KVN Monte Carlo Biot-Savart

Extract probability density
distribution by AKDE

KVN-based importance (Sec. IV-B)

Kernel-based importance (Sec. IV-C)

Classic Biot-Savart

Neighbors

Smooth

Vorticity field ω (Sec. III-A) Enhanced Vortical FlowsVelocity field u

Update sample set (Alg. 3)

Vorticity loss

Wk

P

Fig. 3. Workflow of our approach. We evaluate vorticity loss at each time step using two particle groups defined by kernel-based importance and KVN-based
importance. For the former, we sample neighbor particles using the classic Biot-Savart law. For the latter, we use the Monte Carlo Biot-Savart estimator.
We update the sample set S using an importance sampling scheme and use AKDE to compute a probability density distribution from the KVN to get the
KVN-based importance. Velocity loss computed by both particle groups contributes to enhancing vortical flows in SPH.

Zhang et al. [31] leverage Kelvin’s circulation theorem and
vortex segments to compute the vortex stretch by

Dω

Dt
(x) ≈ ω(x)

∥xa − xb∥
(u (xa)− u(xb)) , (18)

where xa = x+ ∥xa−xb∥
2

ω(x)
∥ω(x)∥ and xb = x− ∥xa−xb∥

2
ω(x)

∥ω(x)∥
are the endpoints of a vortex segment. This scheme can be used
flexibly in grid- or particle-based simulation frameworks and
has shown good stability in practice [12].

Figure 2 compares this segment-based scheme with the
difference form of the SPH gradient approximation in Eq. (7).
The scenario simulates a high-velocity stream with multiple
static obstacles, color coded by particle speed (white is low,
blue is high speed). Both approaches provide effective vortical
flow simulations without any observed numerical instability.
As such, we approximate vortex stretching using the simpler
SPH gradient discretization.

IV. DYNAMIC IMPORTANCE MONTE CARLO VORTICAL
FLOWS

In SPH, particles are discrete fluid parcels that record all
fluid attributes, e.g., velocity, pressure, and vorticity. Solving
the VVPE (Eq. (12)) requires integration over the whole
simulation domain, i.e., set H to all fluid particles and then
evaluate Eq. (14) for each particle. This has O(N2) complexity
for N particles, which is prohibitive in practice. The Monte
Carlo method [12], [27] increases efficiency by replacing the
full set H in Eq. (14) with a smaller set S as

uL(x) =
v

|S|
∑
i∈S

∇G̃(x− xi)× ω̃L(xi)

P (xi)
, (19)

where P is the discrete probability of samples. Estimation
accuracy highly depends on the sample distribution: a well-
representative sample set yields low variance and accurate
estimation of the entire system.

A. Our proposal

Figure 3 shows our entire workflow. We use the Kinematic
Vorticity Number (KVN) to estimate the solution of the VVPE

Algorithm 1 Dynamic importance Monte Carlo simulation of
vortical flows
Input: time step ∆t, current velocity ut

Output: velocity ut+∆t at next time step

1: for all fluid particles i do
2: ūt(xi)← ApplyNonPressureForces(∆t,ut)
3: for all fluid particles i do
4: ω̃t

L(xi)← QuantifyVorticityLoss(∆t,ut) ▷ Sec. III-A
5: Wk(xi)← ComputeKVN(ut) ▷ Eq. (20)
6: for all fluid particles i do
7: f̂(xi)← ExtractProbabilityDistribution(Wk) ▷ Eq. (23)
8: S ← UpdateSamples(Wk) ▷ Alg. 3
9: ut

L ← VorticityLossToVelocityLoss(ω̃t
L, f̂ , S) ▷ Alg. 2

10: for all fluid particles i do
11: if ∥ut

L(xi)∥ < ∥ūt(xi)∥ do
12: ūt(xi)← ūt(xi) + ut

L(xi)
13: for all fluid particles i do
14: ut+∆t(xi)← PressureProjection(∆t, ūt)

by two types of importance. Kernel-based importance uses
the classic Biot-Savart law for neighbor particles without the
need for sampling. KVN-based importance is modeled by the
dynamically updated probability density distribution extracted
using AKDE from the KVN. We draw particle samples by a
rejection sampling scheme for the Monte Carlo method.

Algorithm 1 lists our full method. We first apply non-
pressure forces to obtain the intermediate velocity ū (line 3).
We next evaluate the smoothed vorticity loss ω̃L (line 5)
and the KVN (line 6), which we use further to enhance
vortical flows. We use KVN-mapped acceptance and rejection
probabilities to update the sample set S (line 9) by importance
sampling (Alg. 3). For this, we approximate the probability
density distribution modeling the KVN-based importance by
Eq. (23) with KVN giving the particle weights (line 8). Next,
we convert the smoothed vorticity loss ω̃L to the velocity loss
uL (line 10, see also Alg. 2). We use this velocity loss only
if it does not exceed in magnitude the intermediate velocity,
i.e., when ∥uL∥ < ∥ū∥ (lines 12–13). This avoids potential
instabilities when the vortex particle volume v is large, as
uL would also be large (see Eq. (19)). Finally, we perform
pressure projection to enforce incompressibility (line 15).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 6

Algorithm 2 Vorticity loss to velocity loss conversion

Input: vorticity loss ω̃t
L, probabilities f̂ , sample set S

Output: velocity loss ut
L

1: for all fluid particles i do
2: Ni ← RecordNeighboringParticles(xi)
3: uN

L (xi)← BiotSavart(Ni, ω̃
t
L) ▷ Eq. (26)

4: for all fluid particles i do
5: P (xi)← DiscretizeProbablity(Ni, f̂) ▷ Eq. (24)
6: for all fluid particles i do
7: ni ← CountNonNeighborSamples(xi)
8: uS

L(xi)← MonteCarloBiotSavart(S, ω̃t
L, P, ni) ▷ Eq. (25)

9: for all fluid particles i do
10: ut

L(xi)← uN
L (xi) + uS

L(xi)

B. KVN-based importance

Fluid simulations typically use vorticity ω to evaluate rota-
tion. When approximating the VVPE solution, Rioux-Lavoie
et al. [12] found that a sample distribution following the
vorticity magnitude yields more accurate results. Vorticity is
twice the angular velocity [20], so vorticity magnitude also
increases with angular velocity. Separately, when considering
particle importance, particles within vortex cores are clearly
(more) important in vortical flow simulations. Given the direct
relation with angular velocity, if vorticity is used to assess
importance, particles within high-angular-velocity vortex cores
are more important than low-angular-velocity ones. Particles
outside vortex cores can also have larger vorticity and higher
importance than those with low-angular-velocity. Yet, given
the character of rigid-body-like rotations, particles within
vortex cores should be treated equally. Measuring particle
importance should thus be decoupled from angular velocity
and purely depend on the character of rotations.

The KVN is a dimensionless measure of how close a
rotation resembles a rigid body rotation. It can be defined as
the ratio of the magnitudes of the rotation tensor Ω and strain
tensor S [18], [38], that is

Wk =
∥Ω∥
∥S∥

=
∥ω∥
2∥S∥

, (20)

where Ω = 1
2 (∇u − ∇uT), S = 1

2 (∇u + ∇uT), and ∥·∥
is the vector or tensor 2-norm. Wk determines three cases:
Rotation rate exceeds strain rate (Wk > 1); pure shear motion
(Wk = 1); and strain rate exceeds rotation rate (Wk < 1).

KVN measures pure rotations based on the normalized
strain rate, decoupled from angular velocity magnitude. Since
only the kind of rotation is measured, two vortex cores with
different vorticities or angular velocities can have equal Wk

and importance. Our experiments showed that the KVN can
more effectively highlight vortex cores than vorticity alone
(see further Sec. V and Fig. 12).

The Monte Carlo method requires a probability density
distribution representing our KVN-based importance to solve
the VVPE. We consider for this the Kernel Density Estimation
(KDE) [51], defined for a sample set S as

f̂(xi) =
1

|S|ηd
∑
j∈S

Kη(xij), (21)

where d is the spatial dimension; and Kη : Rd → R is a
kernel function with bandwitdth η. For Kη , we use the dyadic
product of 1D Epanechnikov kernels. In d = 3 dimensions,
Kη(x) = K(qx)K(qy)K(qz), where x = (x, y, z), qx = x

η ,
qy = y

η , qz = z
η , and

K(q) =

{
3
4 (1− q2) for |q| ≤ 1,

0 for |q| > 1.
(22)

The Epanechnikov kernel provides good performance in min-
imizing the error between estimation and benchmark val-
ues [52]. Given its compact support, Eq. (21) can be easily
and efficiently implemented in typical SPH frameworks. We
further speed up the computation of f̂ by setting η to the
support radius h of SPH. However, h is typically quite small,
as it only needs to model how a particle moves under the
influence of its neighbors. This yields fewer samples than
KDE’s typical bandwidth, which can result in a highly jittering
probability density distribution. We address this by using
AKDE instead of KDE. This allows us to set weights to
fluid particles and estimate the probability density function
by querying weighted fluid particles directly [19] as

f̂(xi) =
1

ηd
∑

j∈F Wk(xj)

∑
j∈Ni

Wk(xj)K
η(xij), (23)

where particle weights are set to Wk, the KVN-based im-
portance; and F is the set of all fluid particles. Enforcing
incompressibility at each time step keeps a relatively uniform
fluid particle distribution. In turn, this ensures that all parti-
cles i have a stable number of neighbors being used when
computing Eq. (23), which removes the jittering problem.

We next compute the normalized discrete probability with
neighbor particles excluded as

P (xi) =
f̂(xi)∑

j∈F\Ni
f̂(xj)

. (24)

Normalization ensures that all discrete probabilities sum to one
over all particles while accounting for each particle’s relative
KVN-based importance as given by AKDE. Importantly, note
that the neighbors Ni of particle i are considered separately
in the kernel-based importance (see next Sec. IV-C). As such,
some particles in S could already be considered by the kernel-
based importance. We remove the influence of this overlap by
ignoring particle samples in Ni when we evaluate Eqn. (24).
The Monte Carlo Biot-Savart estimator based on non-neighbor
samples thus becomes

uS
L(xi) =

v

|S \ Ni|
∑

j∈S\Ni

∇G̃(xij)× ω̃L(xj)

P (xj)
. (25)

C. Drawing Lagrangian Particle Samples

Sample-drawing approaches in the literature [11], [13], [15]
provide points rather than actual Lagrangian particles as sam-
pling results. In the context of vortical flow simulations, the
loss of the Lagrangian attribute could smooth out the advection
of vortices. Points can be converted to actual particles using
nearest-neighbor or other schemes. Still, the density of point

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 7

if ξi < Pa , .add(i)

Particle sample setFluid particle set KVN

Acceptance Probability Pa

Rejection Probability Pr

if ξj < Pr , .delete(j)

a or a (t)

b

Sample count
control

- cycle

Control flowAction flow

Fig. 4. Dynamic sampling workflow. We map the KVN to acceptance (Pa)
and rejection (Pr) probabilities. Pa determines the addition of new members
to the sample set S. Pr is used to delete unneeded members from S.

samples could far exceed that of actual particles, as their
positions are unaware of the particle-based discretization in
our SPH framework. Point-particle converting schemes could
lead to repeated sampling of the same particles and a waste
of computational resources.

To solve the VVPE, we must consider two aspects. First,
we have the kernel-based importance given by the Biot-
Savart kernel ∇G, which attaches more importance to nearby
particles and less importance to distant ones. This adapts
perfectly to the SPH framework. We can naively consider all
neighbor particles within the SPH support radius and recover
the velocity loss by the classic Biot-Savart law as

uN
L (xi) = v

∑
j∈Ni

∇G̃(xij)× ω̃L(xj). (26)

Yet, particles outside Ni contribute to the overall shape of
vortices [31] so we cannot simulate visually authentic vortical
flows with neighbor particles alone.

Algorithm 3 Update samples in S
Input: KVN values Wk, current sample set S
Output: updated sample set S

1: for all fluid particles i do
2: ξ ← GetRandomNumber() (0 ≤ ξ < 1)
3: if i /∈ S do
4: Pa ← GetAcceptanceProbability(Wk(xi)) ▷ Eq. (27)
5: if ξ < Pa do
6: Add i to S
7: else if i ∈ S do
8: Pr ← GetRejectionProbability(Wk(xi)) ▷ Eq. (28)
9: if ξ < Pr do

10: Delete i from S

The second aspect determining the importance of particles is
their contribution to vortical flows. We should obtain particles
within vortex cores based on their KVN values. A simple idea
is to directly sample all particles with Wk > 1 (for which
rotation rate exceeds strain rate, see Sec. IV-B). Yet, this hard
cut-off that ignores particles with Wk ≤ 1 can disturb the
continuous distribution of vortices and produce visual artifacts.

A better option is to sample such particles using accep-
tance and rejection probabilities Pa : Rd → [0, 1] and
Pr : Rd → [0, 1]. At each time step, we generate a random
number ξ ∈ [0, 1] for each particle and mark the particle as a
sample if Pa > ξ. To keep continuity of vortical effects, we
keep samples at the current time step in the next time step

a = 0.005, b = 3.5
a = 0.004, b = 3.5
a = 0.005, b = 2.5

0 4 8 12
0

5

10

Time (seconds)

×104

Sa
m

pl
e

C
ou

nt

Fig. 5. Sample count in the Von Kármán vortex street scenario shown in
Fig. 7 for different hyperparameter values a and b for Pa and Pr . Increasing
a increases Pa, while increasing b reduces Pr , both yielding more samples.

unless Pr > ξ. Each particle is queried only once per time
step, which is efficient.

We could set Pa to the discrete probability P (Eq. (24)).
But, as we query each particle only once per time step, we
lose control over the created sample count. A better option
is to draw samples following the KVN-based importance, i.e.,
distribute them densely in areas where Wk is large and sparsely
where Wk is small. We propose next such a scheme with the
acceptance probability

Pa(x) = 1− 1

[Wk(x) + 1]a
, (27)

and the rejection probability

Pr(x) = e−bWk(x), (28)

where the a > 0 and b > 0 hyperparameters control the sample
creation and deletion rates respectively. Alg. 3 and Fig. 4 show
this procedure for dynamically sampling particles.

Fig. 5 shows how the sample count |S| changes with the
values a and b (Eqs. (27) and (28)) for the Von Kármán vortex
street scenario in Fig. 7. The sample count increases with
larger a (since this increases acceptance Pa) or b (since this
decreases rejection Pr).

Our sampling scheme is an accumulation process. For
scenarios with open boundaries (Fig. 2), particles near an
outflow side stay longer in the domain and have a larger chance
to be used as samples. This can lead to dense samples near
outflows and sparse samples near inflows. We alleviate this by
setting a to a time-dependent form for each particle i as

ai = 0.018e−cti + 0.004, (29)

where ti is the time that particle i stays in the simulation
domain; and c > 0 is a decay rate. This makes a decay over
time and converges to a static value for the acceptance prob-
ability Pa, allowing relatively higher acceptance probabilities
for particles near inflows.

V. RESULTS

We next showcase our method by several experiments.
All simulations were implemented using the Taichi graphics
programming language [53]. Computations were performed
on a desktop PC equipped with an NVIDIA Quadro RTX
4000 GPU, a 3GHz 8-core Intel Core i7-9700 processor, and
32GB memory. For rendering, we use the Karma renderer in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 8

TABLE I
PARAMETER VALUES, AVERAGE SAMPLE AMOUNTS, AND AVERAGE COMPUTATIONAL TIME PER FRAME FOR ALL EXPERIMENTS.

Scenario Domain size
[m]

Avg. part.
count

Particle
radius
[mm]

Time
step
[ms]

Method Coefficients Avg. samp.
count

Avg. comp.
time / frame

[s]

Fig. 2 11× 1.6× 2 2.7M 6 2
Segment stretching β = 0.7, b = 2.5,

84 k 7.31
a = 0.018e−12t + 0.004

SPH gradient discretization β = 1.0, b = 2.5,
71 k 6.34

a = 0.018e−12t + 0.004

Fig. 6 3.5× 2.0× 3.5 2.4M 6 2 Ours
β = 0.7, 1.0, 1.2,

44 k 5.50a = 0.018e−12t + 0.004,
b = 1.5

Fig. 7 4× 1 130 k 3 1

Divergence-free SPH - - 0.10

Uniform Monte Carlo β = 0.1 10 k 0.12

Ours β = 0.1, b = 3.5,
10 k 0.12

a = 0.018e−5t + 0.004

Fig. 11 1× 1

14 k 4.5 1
Vorticity-based sampling β = 0.2, b = 1,

6.2 k 0.023
a = 0.001

Ours β = 0.2, b = 4.5,
6.2 k 0.023

a = 0.005

126 k 1.5 0.2
Divergence-free SPH - - 0.008

Vorticity-based sampling β = 0.2, b = 1,
61.9 k 0.165

a = 0.0002

Fig. 13 1× 1 14 k 4.5 1

Divergence-free SPH - - 0.008

Vorticity confinement ϵ = 0.0002 - 0.012

Micropolar fluids νt = 0.004 - 0.012

Ours β = 0.08, b = 2.5,
2 k 0.019

a = 0.005

Fig. 14 9× 1.6× 2 2.7M 6 2

Divergence-free SPH - - 1.06

Classic Biot-Savart β = 2.0 - 158.44

Ours β = 1.3, b = 2.0,
47 k 4.79

a = 0.018e−6t + 0.004

Fig. 15 3.5× 2× 3.5 2.4M 6 2

Vorticity confinement ϵ = 0.0001 - 1.68

Micropolar fluids νt = 0.1 - 1.41

Ours β = 1.0, b = 1.5
40 k 4.93

a = 0.018e−12t + 0.004

Fig. 16 3.8× 5.0× 3.8 2.5M 6 1 Ours β = 0.7, b = 1.5,
38 k 3.52

a = 0.018e−12t + 0.004

Fig. 17 6× 4× 6 2.5M 8 2 Ours β = 1.5, b = 1.5,
43 k 3.66

a = 0.018e−12t + 0.004

Fig. 18 6× 2× 3 2.6M 6 1 Ours β = 1.0, b = 1.5,
40 k 3.92

a = 0.018e−12t + 0.004

Houdini 20.0. We encourage readers to watch our results in
the accompanying video.

For pressure projection, we use the divergence-free SPH
[54] due to its good performance in maintaining incompress-
ibility. We use a particle-based scheme to enforce solid bound-
aries in our experiments [16]. Table I gives parameter values
and performance metrics for each experiment. For brevity, we
next focus on important observations in each experiment, and
refer to Tab. I for specific settings.

Regulating vortex strength. Practical 3D content creation
requires the controllability of visual effects. In our approach,
we can control the overall vortex profile by adjusting the
volume v of vortex particles (Eq. (25)). Given some baseline
value vf , let next v = βvf , where β is a scaling factor.
To evaluate the effect of β, we consider a dynamic scenario
where four propellers rotate in water with an angular velocity
of 0.5π rad/s (Fig. 6). Rotation directions are opposite for
any two adjacent propellers. This scenario is rendered as (left)
particles with color-coded speed and (right) translucent water.
This experiment clearly shows that increasing β enhances

vortical flows in the simulations – so this parameter offers a
simple but effective way to control the overall vortex motions.

2D Von Kármán vortex street. We simulate this classical
scenario using a 0.1m disk with fluid particles initialized at a
velocity of 3m/s. We compare the divergence-free SPH [54],
uniform Monte Carlo [27], and our method. Figure 7 shows
results color-coded by vorticity (top row) and by speed (middle
row). Our approach produces more distinct vortex cores with
rotational motions that are more effectively enforced than in
the compared methods. To illustrate the advantage of our
approach in sample distribution, the images in Fig. 7 (bottom
row) show the fluid particles colored by the adaptive kernel
density computed using Eq. (23). The results show that our
approach effectively identifies vortex core areas which have
high KVN. Our approach performs importance sampling in
these areas using Lagrangian particle samples that closely
follow the advection of vortex cores. As our method densely
samples vortex cores, vortex energy is ‘gathered’ to enhance
vortical motions. In contrast, uniform sampling leads to a
visible loss of vortex energy.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 9

0 3.5

speed (m/s)

(a) β = 0.7

(b) β = 1.0

(c) β = 1.2

Fig. 6. Setting the scaling factor β using a scenario with four propellers
rotating in water with an angular velocity of 0.5π rad/s. Adjacent propellers
rotate in opposite directions. Rendering uses particles color-coded by speed
(left; dark blue is low, light blue is high, speed) and water (right). We observe
that increasing β produces more pronounced vortices.

2D Von Kármán vortex street with two cubes. We con-
duct another Von Kármán vortex street experiment with two
cubes as obstacles (Fig. 8) to highlight the difference between
querying only neighbor particles and querying samples outside
the neighbor scope. Images (a), (b), and the average vorticity
norm plotted in (d) show that querying neighbor particles
yields slightly enforced vorticity as the Green’s function G
is large for closer particles. Yet, the vortex enforcing result is
not visually prominent enough for this scheme to work on its
own. Image (c) and the vorticity norm plot in (d) show that
the enforced vorticity is mainly obtained from samples outside
the neighbor scope.

2D rotating panel. To further show the advantage of
our approach vs previous uniform sampling methods [27],
we conduct a series of experiments using a rotating panel
with 1.5π rad/s (Fig. 9). For uniform sampling, vortices are
randomly distributed within the domain when using Ns = 400
samples (a); for Ns = 3000 samples, almost no vortices are
produced (b). In contrast, our dynamic KVN-based importance
sampling scheme creates coherent vortex patterns for both
sample counts (c,d) – that is, we see a central vortex and two
smaller ones around it, and no random vortex distributions.

Figure 10(a) shows the average vorticity norm for different
sample counts. We see that uniform sampling largely enforces
vorticity when Ns < 1000. However, the vorticity decays
rapidly with Ns increasing. When Ns is small, the high
vorticity is attributed to the high variance of the uniform
sampling. Samples are randomly distributed within the domain
and each sample is given a too large weight in the Monte
Carlo estimation. Thus, vortices with high angular velocity
are randomly produced as we saw in Fig. 9(a). We also
noticed that this can lead to numerical instability. Moreover,
since samples are equally weighted, when Ns increases, the
vorticity enforcing effect is dissipated by evenly distributed

samples without any importance, leading to the result shown in
Fig. 9(b). In contrast, our importance-based sampling allocates
more samples to high KVN areas. Figure 10(a) shows a
more stable and reliable vorticity-enforcing performance of our
approach among multiple sample counts, which aligns with the
results we saw in Fig. 9(c,d).

Figure 10(b) shows the average computation time per frame
of uniform sampling vs our method. Our approach is slightly
slower than uniform sampling for Ns > 500 samples since
we need extra sampling and probability computations for our
KVN-based importance. Interestingly, uniform sampling is
quite slow for sample counts Ns < 1000. Indeed, as discussed,
small Ns usually leads to high variance and introduces nu-
merical instability. Hence, more pressure projection iterations
are needed, which leads to an overall larger computing time.
Our approach removes this issue since importance sampling
effectively reduces variance.

2D lid driven cavity. We simulate a 2D 1 × 1m box
with the top lid driven with 1m/s. Figure 11 compares
divergence-free SPH, the vorticity-based sampling scheme,
and our approach by showing the resulting flows with velocity-
colored streamlines. Divergence-free SPH with particle count
N = 126 k (image a) and the vorticity-based sampling scheme
with N = 14 k (image b) create only one central vortex.
The vorticity-based scheme with N = 14 k particles can
only enforce existing vortices. Increasing N to 126 k particles
allows this scheme to create two extra vortices (image c). Our
approach shows a similar vortex pattern with image (c) when
using only 14k particles (image d). These differences relate
to the explained discrepancy between vorticity and the KVN
(Sec.IV-B). As vorticity directly relates to angular velocity, the
vorticity-based scheme focuses on particles that already have a
high angular velocity, i.e., part of the large vortex in image (b).
This is similar to the vorticity confinement scheme and limits
the ability to generate new vortices. In contrast, our KVN-
based scheme uses rotation quality as an importance measure.
The small vortex cores (low angular velocity, akin to rigid
body rotations, and easily dissipated) are densely sampled and
further enforced by our approach.

Fig. 12 shows the difference between vorticity ω and the
KVN. Comparing the streamline plot (a) with the correspond-
ing vorticity magnitude (b), we see that vortex cores, i.e., areas
where streamlines quickly curl, like the central area in (a),
do not necessarily have high vorticity magnitude. Conversely,
areas with high vorticity magnitude (bright yellow in (b)) do
not always correspond to vortex cores in (a). So, if particle
samples were created based on vorticity alone, the resulting
simulations would not do well in generating new vortices. In
contrast, we see that high-KVN values (bright areas in (c))
match well the vortex core areas in (a), so KVN is more
indicative of vortex cores than vorticity. In (d), we show
the sample particles colored by the adaptive kernel density
f̂ and non-sample particles colored dark blue. We see that
our approach successfully uses KVN-mapped probabilities to
produce Lagrangian particle samples that adequately cover
vortex core areas while allocating fewer samples to other areas.

2D vortex interaction. Dissipation in SPH typically

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 10

-50 0 50 s-1
Vorticity

Non-sample particle color: Sample particle color:
kernel density

0 1

(b) Uniform Monte Carlo (c) Ours

Speed
0 4 m/s

Raw fluid particles

(a) Divergence-free SPH

Fig. 7. Two-dimensional Von Kármán vortex streets. (a) Divergence-free SPH, (b) uniform Monte Carlo, and (c) our method. Top row: Color-coded vorticity.
Middle row: Color-coded speed. Our approach produces more vortex cores and enhances the rotation of vortices. Bottom row: Raw fluid particles with
sample particles colored by the adaptive kernel density (Eq. (23)) and non-sample particles dark blue. Our approach achieves a higher concentration of samples
within vortex cores. These Lagrangian samples closely follow the advection of vortex cores.

0

4

speed
(m/s)

(d) Average vorticity norm per frame
0 2 4 6 8 10 12

0

3

6

9

12

15

18

A
ve

ra
ge

 v
or

ti
ci

ty
 n

or
m

 (s
-1

)

Time (second)

Divergence-free SPH
Apply only
Apply only

(b) ery only neighbor particles (apply only)

(c) ery global samples outside neighbor scope (apply only)

(a) Divergence-free SPH

Fig. 8. Two-dimensional Von Kármán vortex street with double cubes
comparing (a) divergence-free SPH, (b) our scheme using only uN

L , and (c)
our scheme using only uS

L. Vorticity norm plots over time are shown in (d).
The vorticity enhancing effect mainly sources from global samples. Using
only uN

L shows slightly more vorticity than DFSPH but far under what one
would arguably desire to reach in practice.

(a) Uniform sampling (Ns = 400) (b) Uniform sampling (Ns = 3000)

(c) KVN-importance (Ours, Ns = 400) (d) KVN-importance (Ours, Ns = 3000)

0

1

speed
(m/s)

Fig. 9. Two-dimensional rotating panel with an angular velocity of 1.5π
rad/s using 30k particles. We compare our scheme with the uniform sampling
scheme [27] using different sample count. For the uniform sampling, vortices
are randomly produced without any regularity when sample count Ns = 400,
while there is almost no enforced vortex when Ns = 3000. Our KVN-
importance sampling maintains coherent enforced vortex patterns regardless
of Ns = 400 or Ns = 3000.

smooths out most vortical flows and kinetic energy. The 2D
vortex interaction scenario in Fig. 13 compares the kinetic
energy preservation of divergence-free SPH (DF), vorticity
confinement (VC) [22], micropolar fluids (MF) [5], and our
approach. Four vortices are initialized with an angular velocity
of 2 rad/s in different directions within a 1 × 1m box as
shown in image (a). Since all these methods except divergence-
free SPH use hyperparameters to control their effects, for fair
comparison, we tune these parameters as high as possible

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 11

0

3

6

9

12

15

18

A
ve

ra
ge

 v
or

ti
ci

ty
 n

or
m

 (s
-1

)

Uniform sampling

KVN-importance (Ours)

Sample count

20 4 6 8 ×103

Uniform sampling

KVN-importance (Ours)

20 4 6 8 ×103

Sample count25

30

40

45

35

50

55

A
ve

ra
ge

 c
om

pu
ta

ti
on

 ti
m

e
(m

s)

(a) Average vorticity norm (b) Average computation time per frame

Fig. 10. (a) Average vorticity norm with increasing sample count and (b)
average computation time per frame with increasing sample count using
the scenario shown in Fig. 9 with 30k fluid particles. Our dynamic KVN-
importance sampling scheme shows a more stable vorticity enhancing perfor-
mance with lower sample count sensitivity.

(a) Divergence-free SPH (N=126k) (b) Vorticity-based (N=14k)

(c) Vorticity-based (N=126k) (d) KVN-based (Ours, N=14k)

0

1

speed
(m/s)

Fig. 11. Lid driven cavity visualized by streamlines. (a) Divergence-free
SPH yields one central vortex using 126 k particles. (b) The vorticity-based
sampling scheme using 14 k particles produces similar results, albeit with an
reinforced vortex. (c) Increasing the particle count to 126 k emables vorticity-
based sampling to create additional vortices. (d) Our approach produces
similar results to (c) with only 14 k particles.

while ensuring that there is no energy increase. Image (b)
shows that our approach better preserves energy compared
to DF, VC, and MF. Interestingly, energy in our approach
declines relatively quickly for about 4 s, after which the decay
rate slows. We analyze the reason for this using the sample
count graph in image (c). The initial profile of the simulation
before 4 s consists of four vortices. This represents a vortex
merging process, leading to rapid changes in sample count
and relatively weak vortex enforcement. After the vortices
merge into a stable structure at about 4 s, samples successfully
converge to the stable and important areas, resulting in a
relatively lower energy decay rate.

Stanford bunny with high-velocity streams. We compare
our sampling scheme with the computation of the classic Biot-
Savart law by naively querying all fluid particles (Eq. (14)).
Figure 14 shows the experiment designed for this which in-
volves a Stanford bunny hit by high-velocity streams. Particle
color encodes speed (white is low, blue is high speed). Flows

0 1 m/s

(a) Streamline (b) Abs. vorticity (c) KVN

(d) Raw fluid particles with samples

0 15 s-1 0 5

Non-sample particle color:
0 3

Sample particle color:
kernel density

speed

Fig. 12. Comparison of vorticity ω and the KVN. (a) Stream. (b) Vorticity
magnitude. Note that vortex cores do not always have high vorticities, and high
vorticities can exist outside vortex cores. (c) The KVN effectively highlights
vortex cores. (d) Raw fluid particles. The adaptive kernel density f̂ is color-
coded on particle samples, while non-sample fluid particles keep the default
color. Our importance sampling scheme draws Lagrangian particle samples
from vortex cores with high probabilities.

are initialized with a 2m/s velocity on a plane tilted at
an angle of 5 degrees. In image (a) and also in Figure 1
(left), computed with standard incompressible SPH, we find
barely visible vortical flows behind the bunny due to the
method’s dissipative character. (b) The classic Biot-Savart
formulation that uses all particles recovers the vorticity loss
into the velocity field, so vortical flows are preserved well.
However, this has a very high computational overhead – see
Tab. I. (c) Our approach effectively reduces this overhead to
an acceptable level. While vortex patterns are not completely
identical to (b), the large performance gain of our approach is
worth this trade-off.

Rotating glass panel. Figure 15 compares the vorticity
confinement method, micropolar fluids, and our approach in a
3D scenario where a square glass panel rotates in water with
an angular velocity of 0.5π rad/s. Particle color encodes speed
(white is high, blue is low speed). The vorticity confinement
method shows little vortical flow; the micropolar fluid method
generates fine ripple motion artifacts. Compared to these
approaches, our method yields significant vortical flows.

Dam breaking. Figure 16 shows the simulation of a dam
breaking scenario which releases three water blocks in an area
containing multiple static obstacles. The top half of the figure
shows particles color-coded by speed (top); the bottom half
shows water color-coded on vorticity norm. Realistic vortices
can be seen on the water surface around the obstacles.

Rotating vessel. Figure 17 shows a vessel rotating in water
with an angular velocity of 4 rad/s. Particles are color-coded
on speed (white is high, blue is low speed). Our method creates
visually authentic wake flows behind the vessel.

Periodic waves crashing against a tower. Figure 1 (right)
and Figure 18 show a more dynamic scenario with waves
periodically crashing against a static tower. The square glass

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 12

Initial four vortices
as shown in image
(a)

Vortices merge.
Samples converge.

1

2

(b) Kinetic energy

K
in

et
ic

 E
ne

rg
y

(J
)

0 10 20 30

2

4

6

8

Time (seconds)

DF
VC
MF
Ours

×102

0

0 1

speed (m/s)

(a) Scenario seing

(c) Sample count graph

Time (seconds)
8

16

24

32

Sa
m

pl
e

C
ou

nt

×102

1

2

0 10 20 30

Fig. 13. 2D vortex interaction scenario: Comparison of kinetic energy
among divergence-free SPH (DF), vorticity confinement (VC), micropolar
fluids (MF), and our approach. (a) Initial scenario configuration. (b) Kinetic
energy over time: our approach reduces kinetic energy decay better, with
a notable slowdown around 4 s. (c) The sample count over time illustrates
the convergence of samples after the vortex merging phase at about 4 s,
corresponding to slower energy decay.

panel on the left pushes the water periodically to create waves.
Results are rendered as particles with color-coded speed (top
half of figure) and water color-coded by vorticity norm (bottom
half of figure). We observe realistic vortical flows with many
whirlpools to the right of the tower, which confirms the
effectiveness of our method in enhancing vortical flows.

Performance. Table I presents computational time and other
relevant metrics for all studied scenarios. Compared to the
classic Biot-Savart law that uses all particles (experiment in
Fig. 14), our approach has an average computation time of
4.79 s per frame, while the classic Biot-Savart law requires
158.44 s. This shows that our dynamic importance Monte
Carlo approach significantly enhances efficiency – achieving
roughly a 33-fold speedup. Compared to divergence-free SPH,
micropolar fluids, and vorticity confinement, our approach is
slightly less efficient. Indeed, our approach queries for particle
samples (Sec. IV-C) whose total count |S| can be larger
than the total number of neighbor particles. Since most SPH-
based methods only query neighbor particles, our cost can be
higher. In return, our method offers a substantial improvement
in vortical flow preservation while maintaining a reasonable
computational overhead. This balance between performance
and visual quality positions our approach as a viable option
for applications where high-fidelity vortical flows are crucial.

VI. CONCLUSION AND FUTURE WORK

We have presented a dynamic importance Monte Carlo
method to simulate SPH-based vortical flows by solving the
Velocity-Vorticity Poisson Equation (VVPE). Unlike most
point-based Monte Carlo PDE solvers, our method is La-
grangian with particle samples closely following the advection
of areas which are important for vortex dynamics. We use the
dimensionless Kinematic Vorticity Number (KVN) to measure
the pure rotation and the importance of each fluid particle in
vortex cores. To represent the KVN-based importance, we ap-
plied Adaptive Kernel Density Estimation (AKDE) to extract
a smooth and dynamically updated probability density distri-
bution for use in the Monte Carlo estimator. We use KVN-
mapped acceptance and rejection probabilities to regulate the
sample count within the desired scale while maintaining a
particle sample distribution similar to that estimated by AKDE.

Our experiments showed that our approach produces con-
vincing vortical flows in SPH fluids with acceptable compu-
tational overhead. Compared to the classic Biot-Savart law
which naively queries all fluid particles, our method is over
30 times faster while yielding similar results. Our KVN-based
importance also showed to be better in tracking vortex cores
than vorticity alone. Moreover, compared with the uniform
sampling scheme, our importance sampling is more stable and
effective in enforcing vortical flows. Separately, we showed
that our method produces more vortical flow when compared
to techniques such as divergence-free SPH, uniform Monte
Carlo, vorticity sampling, vorticity confinement, and micropo-
lar fluids, while having only a small extra computational cost.

Despite the effectiveness of our scheme in preserving vor-
tices and reducing the computational overhead of the Biot-
Savart law, some limitations exist. Apart from the higher cost
as compared to other SPH-based turbulent or vortical detail-
enhancing methods, while vortices represented by Lagrangian
particles perfectly adapt to the SPH framework, we lack a
special mechanism to preserve filament-shaped vortex cores in
3D, potentially leading to a loss of vortical flows. In our future
work, we aim to extend our approach to preserve such vortex
filaments with further improved computational efficiency.

ACKNOWLEDGMENTS

We would like to thank the Taichi graphics community
for the kind support in coding and high-performance com-
putation. We also acknowledge the use of Houdini soft-
ware courtesy of SideFX. This research was supported
by National Key Research and Development Program of
China (No. 2022ZD0118001), National Natural Science Foun-
dation of China (Nos. 62376025, 62332017, U22A2022),
Guangdong Basic and Applied Basic Research Founda-
tion (No. 2023A1515030177), China Scholarship Council
(202206320039), and was partially funded by Horizon 2020-
Marie Skłodowska-Curie Action-Individual Fellowships (No.
895941).

REFERENCES

[1] X. Wang, Y. Xu, S. Liu, B. Ren, J. Kosinka, A. C. Telea, J. Wang,
C. Song, J. Chang, C. Li, J. J. Zhang, and X. Ban, “Physics-based
fluid simulation in computer graphics: Survey, research trends, and
challenges,” Comput. Vis. Media, pp. 1–56, Apr. 2024.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 13

(a) Standard incompressible SPH (b) Classic Biot-Savart (c) Ours

2.5 4.2

speed (m/s)

Fig. 14. Stanford bunny hit by high-velocity streams. Particles are color-coded by speed. (a) Standard incompressible SPH (divergence-free SPH) produces
barely visible vortices. (b) Classic Biot-Savart that naively queries all fluid particles yields prominent vortices behind the bunny. (c) Our approach also yields
strong vortical flows, yet requires far less computational overhead compared to the classic scheme, as shown in Tab. I.

0 3

speed (m/s)

(a) Vorticity confinement (b) Micropolar fluids

(c) Ours

Fig. 15. Rotating glass panel with an angular velocity of 0.5π rad/s. Particles
are colored by speed (dark blue: low, white: high). We compare the vortical
effect of several methods. (a) The vorticity confinement method generates only
little vortical flows. (b) The micropolar fluids yields obvious ripple artifacts.
(c) Our approach produces strong vortical flows.

[2] F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun, “Power
particles: an incompressible fluid solver based on power diagrams,” ACM
Trans. Graph., vol. 34, no. 4, jul 2015.

[3] J. Cornelis, M. Ihmsen, A. Peer, and M. Teschner, “IISPH-FLIP for
incompressible fluids,” Comput. Graph. Forum, vol. 33, no. 2, pp. 255–
262, 2014.

[4] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,” in
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 15–22.

[5] J. Bender, D. Koschier, T. Kugelstadt, and M. Weiler, “Turbulent
micropolar SPH fluids with foam,” IEEE Trans. Vis. Comput. Graph.,
vol. 25, no. 6, pp. 2284–2295, 2019.

[6] J. Chen, C. C. Liang, and J. D. Lee, “Theory and simulation of
micropolar fluid dynamics,” Proc. Inst. Mech. Eng. N, vol. 224, no.
1-2, pp. 31–39, 2010.

[7] S. I. Park and M. J. Kim, “Vortex fluid for gaseous phenomena,” in
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 261–270.

[8] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for
smoke, water and explosions,” in ACM SIGGRAPH 2005 Papers, ser.
SIGGRAPH ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 910–914.

[9] S. Xiong, R. Tao, Y. Zhang, F. Feng, and B. Zhu, “Incompressible flow
simulation on vortex segment clouds,” ACM Trans. Graph., vol. 40,
no. 4, jul 2021.

[10] S. Weißmann and U. Pinkall, “Filament-based smoke with vortex shed-
ding and variational reconnection,” in ACM SIGGRAPH 2010 Papers,
ser. SIGGRAPH ’10. New York, NY, USA: Association for Computing
Machinery, 2010.

0 5

speed (m/s)

0 30

vorticity norm (s-1)

Fig. 16. Dam breaking scenario that releases three water blocks among
multiple static solid objects. Top half: Particles color coded by speed. Bottom
half: Water color coded by vorticity norm (bottom). Our approach is able to
produce significant vortices.

0 1.5

speed (m/s)

Fig. 17. Vessel rotating on water with an angular velocity of 4 rad/s. Particles
are color-coded by speed (blue is low, white is high). Realistic wake flows
are produced behind the vessel.

[11] R. Sawhney and K. Crane, “Monte carlo geometry processing: a grid-
free approach to pde-based methods on volumetric domains,” ACM
Trans. Graph., vol. 39, no. 4, aug 2020.

[12] D. Rioux-Lavoie, R. Sugimoto, T. Özdemir, N. H. Shimada, C. Batty,
D. Nowrouzezahrai, and T. Hachisuka, “A monte carlo method for fluid
simulation,” ACM Trans. Graph., vol. 41, no. 6, nov 2022.

[13] R. Sugimoto, T. Chen, Y. Jiang, C. Batty, and T. Hachisuka, “A practical
walk-on-boundary method for boundary value problems,” ACM Trans.
Graph., vol. 42, no. 4, jul 2023.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 14

0 2

speed (m/s)

0 25

vorticity norm (s-1)

Fig. 18. Periodic waves crash against a static tower rendered as (top) particles
with color-coded speed and (bottom) water with color-coded vorticity norm.
The square glass panel at the left side pushes water periodically to produce
waves. Many realistic whirlpools appear to the right of the tower.

[14] R. Sawhney, B. Miller, I. Gkioulekas, and K. Crane, “Walk on stars:
A grid-free monte carlo method for pdes with neumann boundary
conditions,” ACM Trans. Graph., vol. 42, no. 4, jul 2023.

[15] B. Miller, R. Sawhney, K. Crane, and I. Gkioulekas, “Walkin’ robin:
Walk on stars with robin boundary conditions,” ACM Trans. Graph.,
vol. 43, no. 4, Jul. 2024.

[16] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner,
“Versatile rigid-fluid coupling for incompressible SPH,” ACM Trans.
Graph., vol. 31, no. 4, jul 2012.

[17] R. Sugimoto, C. Batty, and T. Hachisuka, “Velocity-based monte carlo
fluids,” in ACM SIGGRAPH 2024 Conference Papers, ser. SIGGRAPH
’24. New York, NY, USA: Association for Computing Machinery,
2024.

[18] L. Schielicke, P. Névir, and U. Ulbrich, “Kinematic vorticity number –
a tool for estimating vortex sizes and circulations,” Tellus A, vol. 68,
no. 1, p. 29464, 2016.

[19] P. V. Kerm, “Adaptive kernel density estimation,” Stata J., vol. 3, no. 2,
pp. 148–156, 2003.

[20] R. Bridson, Fluid Simulation for Computer Graphics, 2nd ed. Natick:
CRC Press, 2015.

[21] D. Koschier, J. Bender, B. Solenthaler, and M. Teschner, “Smoothed
Particle Hydrodynamics Techniques for the Physics Based Simulation
of Fluids and Solids,” in Eurographics 2019 - Tutorials, W. Jakob and
E. Puppo, Eds. The Eurographics Association, 2019.

[22] M. Macklin and M. Müller, “Position based fluids,” ACM Trans. Graph.,
vol. 32, no. 4, jul 2013.

[23] M. Lentine, M. Aanjaneya, and R. Fedkiw, “Mass and momentum
conservation for fluid simulation,” in Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11. New York, NY, USA: Association for Computing Machinery, 2011,
p. 91–100.

[24] P. Pasha, S. Mirzaei, and M. Zarinfar, “Application of numerical methods
in micropolar fluid flow and heat transfer in permeable plates,” Alex.
Eng. J., vol. 61, no. 4, pp. 2663–2672, 2022.

[25] E. Karvelas, G. Sofiadis, T. Papathanasiou, and I. Sarris, “Effect of
micropolar fluid properties on the blood flow in a human carotid model,”
Fluids, vol. 5, no. 3, 2020.

[26] N. Abbas, S. Nadeem, and M. N. Khan, “Numerical analysis of unsteady
magnetized micropolar fluid flow over a curved surface,” J. Therm. Anal.
Calorim., vol. 147, no. 11, pp. 6449–6459, 2022.

[27] X. Ye, X. Wang, Y. Xu, J. Kosinka, A. C. Telea, L. You, J. J. Zhang,
and J. Chang, “Monte carlo vortical smoothed particle hydrodynamics
for simulating turbulent flows,” Comput. Graph. Forum, vol. 43, no. 2,
p. e15024, 2024.

[28] G. S. Winckelmans and A. Leonard, “Contributions to vortex particle
methods for the computation of three-dimensional incompressible un-
steady flows,” J. Comput. Phys., vol. 109, no. 2, p. 247–273, dec 1993.

[29] A. Angelidis and F. Neyret, “Simulation of smoke based on vor-
tex filament primitives,” in Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’05. New York, NY, USA: Association for Computing Machinery,
2005, p. 87–96.

[30] A. Barnat and N. S. Pollard, “Smoke sheets for graph-structured vor-
tex filaments,” in Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’12. Goslar, DEU:
Eurographics Association, 2012, p. 77–86.

[31] X. Zhang and R. Bridson, “A pppm fast summation method for fluids
and beyond,” ACM Trans. Graph., vol. 33, no. 6, nov 2014.

[32] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987.

[33] A. Angelidis, “Multi-scale vorticle fluids,” ACM Trans. Graph., vol. 36,
no. 4, jul 2017.

[34] R. L. Cook, “Stochastic sampling in computer graphics,” ACM Trans.
Graph., vol. 5, no. 1, p. 51–72, jan 1986.

[35] J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph.,
vol. 20, no. 4, p. 143–150, aug 1986.

[36] R. Sawhney, D. Seyb, W. Jarosz, and K. Crane, “Grid-free monte carlo
for pdes with spatially varying coefficients,” ACM Trans. Graph., vol. 41,
no. 4, jul 2022.

[37] Z. Yu, L. Wu, Z. Zhou, and S. Zhao, “A differential monte carlo solver
for the poisson equation,” in ACM SIGGRAPH 2024 Conference Papers,
ser. SIGGRAPH ’24. New York, NY, USA: Association for Computing
Machinery, 2024.

[38] C. Truesdell, “Two measures of vorticity,” J. Ration. Mech. Anal.,
vol. 2, pp. 173–217, 1953. [Online]. Available: http://www.jstor.org/
stable/24900328

[39] W. D. Means, H. B. Edward, G. S. Lister, and P. F. Williams, “Vorticity
and non-coaxiality in progressive deformations,” J. Struct. Geol., vol. 2,
no. 3, pp. 371–378, 1980.

[40] R. Graziani, K. P. Larson, R. D. Law, M.-A. Vanier, and J. R. Thig-
pen, “A refined approach for quantitative kinematic vorticity number
estimation using microstructures,” J. Struct. Geol., vol. 153, p. 104459,
2021.

[41] S. Węglarczyk, “Kernel density estimation and its application,” ITM Web
Conf., vol. 23, p. 00037, 2018.

[42] S. J. Sheather and C. M. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” J. R. Stat. Soc. B,
vol. 53, no. 3, pp. 683–690, 1991.

[43] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation
via diffusion,” Ann. Stat., vol. 38, no. 5, pp. 2916 – 2957, 2010.

[44] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,” Ann.
Stat., vol. 20, no. 3, pp. 1236–1265, 1992.

[45] C. M. Jones, “Simple boundary correction for kernel density estimation,”
Stat. Comput., vol. 3, pp. 135–146, 1993.

[46] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vorticity in
advection-projection fluid solvers,” ACM Trans. Graph., vol. 34, no. 4,
jul 2015.

[47] J. J. Monaghan and J. C. Lattanzio, “A refined particle method for
astrophysical problems,” A&A, vol. 149, no. 1, pp. 135–143, Aug. 1985.

[48] D. J. Price, “Smoothed particle hydrodynamics and magnetohydrody-
namics,” J. Comput. Phys., vol. 231, no. 3, pp. 759–794, 2012, special
Issue: Computational Plasma Physics.

[49] J. J. Monaghan, “Smoothed particle hydrodynamics,” Rep. Prog. Phys.,
vol. 68, no. 8, p. 1703, jul 2005.

[50] A. J. Chorin and P. S. Bernard, “Discretization of a vortex sheet, with
an example of roll-up,” J. Comput. Phys., vol. 13, no. 3, pp. 423–429,
1973.

[51] A. Eckert-Gallup and N. Martin, “Kernel density estimation (kde) with
adaptive bandwidth selection for environmental contours of extreme sea
states,” in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–5.

[52] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002.

[53] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:
a language for high-performance computation on spatially sparse data
structures,” ACM Trans. Graph., vol. 38, no. 6, nov 2019.

[54] J. Bender and D. Koschier, “Divergence-free SPH for incompressible
and viscous fluids,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 3,
pp. 1193–1206, 2017.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2020 15

Xingyu Ye is a PhD candidate at National Centre
for Computer Animation, Bournemouth University,
United Kingdom. He received his MEng degree
in vehicle engineering from Zhejiang University in
2022, and BEng degree in vehicle engineering from
Chongqing University in 2019. His research interests
include physics-based fluid simulation and neural
fluid simulation.

Xiaokun Wang is an associate professor in In-
telligence Science and Technology, University of
Science and Technology Beijing, China. He received
a PhD degree in Computer Science and Technology
from the University of Science and Technology
Beijing in 2017. From 2021 to 2023, he worked
at the National Centre for Computer Animation
at Bournemouth University supported by the EU
Horizon 2020 Marie Curie Individual Fellowship.
His research interests include computer graphics,
virtual reality and human-computer interaction.

Yanrui Xu is a postdoctoral researcher at Tsinghua
University. He received his PhD in Computer Sci-
ence and Technology from the University of Science
and Technology Beijing in 2025. His research inter-
ests focus on physics-based fluid simulation.

Alexandru C. Telea received his PhD (2000) in
Computer Science from the Eindhoven University
of Technology. He was assistant professor in visual-
ization and computer graphics at the same university
(until 2007) and then full professor of visualization
at the University of Groningen. Since 2019 he is
full professor of visual data analytics at Utrecht
University. His interests include highdimensional
visualization, visual analytics, and image-based in-
formation visualization.

Jiří Kosinka received the PhD and MSc degrees
in mathematics and physics from Charles University
in Prague, Czech Republic, in 2006 and 2002, re-
spectively. He is currently an Associate (Adjunct)
Professor with the Bernoulli Institute, University of
Groningen, the Netherlands. His research interests
include geometric modeling, computer-aided design,
computer graphics, and image processing.

Lihua You is a professor at the National Cen-
ter for Computer Animation, Bournemouth Uni-
versity, UK. He received his BSc degree from
Yanshan University, MSc degree and PhD degree
from Chongqing University, China, and another PhD
degree from Bournemouth University, UK. Before
joining Bournemouth University, UK, he was a
lecturer, an associate professor, and a professor of
Chongqing University, China. He was an academic
visiting scholar at Faculty of Engineering, Imperial
College London, UK from 1995 to 1996.

Jian jun Zhang is professor of Computer Animation
at the National Centre for Computer Animation,
Bournemouth University where he leads the National
Research Centre. His research focuses on a number
of topics relating to 3D computer animation, virtual
human modelling and simulation, and physics-based
animation. He is also interested in virtual reality,
medical visualisation and simulation, and conversa-
tional AI.

Jian Chang is a professor in National Centre
Computer Animation at Bournemouth University,
United Kindom. He received his PhD degree in
Computer Graphics from Bournemouth University,
in 2007. His research interests include physics based
modelling (deformation & fluid), motion synthesis,
virtual reality (surgery simulation), and novel HCI
(eye tracking, gesture control and haptic).

