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Fig. 1. Decision Exploration Lab in visual querying mode, with the DataSpace tree (A), the Decision Map (B) and the Rule Triggering view (C).

Abstract—We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Man-
agement (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly
important to align business decisions with business goals. In our work, we consider decision models (executable models of the busi-
ness domain) as ontologies that describe the business domain, and production rules that describe the business logic of decisions to
be made over this ontology. Executing a decision model produces an accumulation of decisions made over time for individual cases.
We are interested, first, to get insight in the decision logic and the accumulated facts by themselves. Secondly and more importantly,
we want to see how the accumulated facts reveal potential divergences between the reality as captured by the decision model, and
the reality as captured by the executed decisions. We illustrate the motivation, added value for visual analytics, and our proposed
solution and tooling through a business case from the car insurance industry.

Index Terms—Decision support systems, model validation and analysis, multivariate Statistics, program analysis

1 INTRODUCTION

Complexity of legislation and changing environments, markets, and
business policies render the making of informed business decisions
increasingly hard. Many operational decisions are made at the bottom
of organizations by people who do not have the full knowledge or ac-
cess to information needed for optimal decision-making. To alleviate
this, expert systems have been integrated in enterprises to help au-
tomating complex decisions [26, 34]. A key feature of expert systems
is the separation of knowledge representation and knowledge execu-
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tion. However effective, expert systems are typically used to solve one
particular problem, rather than a wide range of problems.

Enterprise Decision Management (EDM) takes a more generic
approach to decision automation by means of Business Rule Man-
agement Systems (BRMSs) and Decision Management Systems
(DMSs) [45]. BRMSs are tailored to model and execute a wide range
of business decisions. Atop of knowledge modeling and basic execu-
tion management, DMS add monitoring and performance analysis of
BRM automated decision execution.

Decision models (DMs) express the workflow and processes of an
enterprise. They are used for both high-complexity decisions and ev-
eryday high-volume operational decisions. DMs enable non-technical
business users to model the business domain and business logic in-
stead of providing requirements to IT departments that have to imple-
ment such models. The result is a body of explicit knowledge, i.e., an
ontology modeling the business domain and a rule-set modeling the
business logic respectively. The combination of explicit knowledge,
automated decisions based on this knowledge, and the sheer amount
of decisions being made by DMSs, bring many challenges to business
analysts that use such systems.

Information visualization (infovis) and visual analytics (VA) study
how graphical representations and interaction, as external representa-
tions, support the internal processes of reasoning, understanding, and
sense making [44, 21]. EDM is an interesting case for infovis and VA
since it makes part of the internal representation and reasoning mech-
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anisms external, and hence available for explicit analysis, and it also
exposes facts on the performed decisions.

In this paper, we present the Decision Exploration Lab (DEL), a set
of infovis and VA tools that help business users to explore the knowl-
edge and execution facts gathered from a BRMS. Following the task-
oriented framework of Maletic et al. [36], we can describe DEL as fol-
lows: The targeted fasks are to get an overview of the decision logic
and domain ontology and to find correlations and potential discrepan-
cies between these facts and actual executions of the decision logic;
the audience is formed by EDM business analysts who understand the
modeled domain well, but are not IT nor BRMS experts; the analy-
sis target is the domain modeling (ontology and decision rules) and
the facts gathered from rule execution; the visual representation con-
sists of a set of linked views (scatter plots, tree views, and bar charts);
finally, the presentation medium is the standard 2D PC screen.

The structure of this paper is as follows. In Sec. 2 we overview de-
cision management and automation, and the challenges that advocate a
visual analytics approach. In Sec. 3 we identify the core tasks that we
want to support and introduce the Decision Exploration Lab (DEL), a
visual analytics tool that helps performing these tasks. In Sec. 4 we
show how DEL supports the identified tasks using a scenario from the
car insurance industry. Sec. 5 discusses the implementation of DEL.
Section 6 concludes the paper with a discussion of DEL both from a
research and a product standpoint.

2 WHAT Is DECISION AUTOMATION?

Decisions are an increasingly important asset in modern business. In
highly competitive complex and rapidly changing markets, business
decisions should be traceable and adaptable [35, 30]. Decision au-
tomation is one way to reach this, by encoding business knowledge in
an executable decision model [39]. Creating a decision model is the
task of a business analyst, or more generally a knowledge engineer.

Let us consider a scenario from the car insurance industry: han-
dling car insurance requests. Two decision models are used here: risk
management (DM;) and pricing (DM>). Figure 2 shows this scenario
using the well-known BPMN business process notation [40]. Both
models have as input an insurance request, which contains data about
the driver, the car, and the requested insurance. The risk management
model DM first determines if a driver is eligible for an insurance. Its
output is one of the following: eligible (the system could automatically
find that an insurance can be given); ineligible (the system found rea-
sons to deny the request); or manual processing (the system could not
take a decision, so a human operator should intervene). Once DM/ has
determined eligibility, the pricing model DM, is triggered to compute
the insurance base quote, a list of discounts and surcharges, and the
final insurance quote. We next use this scenario as a running example
for our paper and discuss it in more detail in Sec. 4.

Each decision model (DM and DM>) has two parts. First, an on-
tology describes the objects subject to decision, their attributes, and
the decision outcomes. In our example, such ontologies have terms
such as insurance (with quote, surcharges, and discounts attributes),
requesters (with person detail attributes, e.g., age, driving history, and
salary), and cars (with technical vehicle details as attributes). Ontolo-
gies can have a hierarchical structure modeling the natural grouping of
concepts or types. Secondly, a decision model has a set of production
rules that describe how the decision is taken on an ontology instance.
Rules have a precondition (IF statement) and an action that is executed
when the precondition is met (THEN statement). For example:

IF

the vehicle has antilock brakes
THEN

add a 5% discount to the quote

A decision model encodes both (1) well-known (unambiguous) ex-
ternal factors and (2) expectations (or assumptions) about the deci-
sion’s input domain. In case (1), we have rules that enforce regulations
or physical constraints, i.e., aspects of reality that must be taken into
account. For example, a rule states that no requester without a driving
license can be offered a car insurance, since the law requires a license
to drive in the first place. As an example of case (2), consider the rule:

decision: process manually
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Fig. 2. A car insurance request, containing data about the driver, ve-
hicle, and requested insurance is processed by two decision models
(DM;, DMs>). It results in a pricing offer, rejection, or manual processing.

Insurance quote
request

IF

the driver has been caught for driving under influence
THEN

set the status of the insurance request to ineligible

This rule encodes the assumption that the number of insurance re-
questers caught for driving under influence (DUI) is low enough to
ensure that this rule will not neglect too many requesters. Another
way to deal with DUI cases is accepting them but assuming a higher
accident risk and thus giving them a higher quote. Assumptions are
made in both cases but dealing with these assumptions follows differ-
ent paths. A challenging problem is to find how well such assumptions
match the actual decisions that have been made over time.

Decision models are only partial models of the reality. When cre-
ating them, business analysts use their experience to decide which
knowledge should be explicitly captured (in ontology objects and as-
sociated rules) and which knowledge can be left out. For complex
models consisting of hundreds or thousands of rules it is very hard or
even impossible to know if all such assumptions are correct and what
their interplay is.

The problem we address next generalizes the above observations,
and can be summarized as follows: How can we explore and under-
stand how reality as captured by decision models diverges from reality
encoded by actual decisions taken over time?

2.1 Decision Management Systems

The value proposition of decision management systems is that they
separate the business logic from the enterprise applications imple-
menting a business process. Such applications send an instance of
the ontology that serves as input for a decision model to the decision
service and retrieve the decision for further processing. We next give
a high-level overview of BRMS’s, based on IBM’s Operational Deci-
sion Manager (ODM) [25]. The presented concepts apply also to other
systems such as Drools [27] and FICO Blaze Advizor [14].

The main components of a BRMS relevant to our context are de-
cision model repositories, execution engines, and operational data
stores. Decision models are stored in a BRMS repository. A front-end
accesses the repository to provide rule authoring, access management,
version handling, and model deployment. Once a model is deployed,
it provides a decision service to all enterprise applications using it.

A decision model has input and output parameters, both types being
described by the decision model ontology attributes. Input parameters
model the information based on which decisions are taken, e.g., the
details on the person requesting an insurance and the vehicle param-
eters. Output parameters model the actual decision, e.g., the decision
to grant an insurance and the insurance details. Business logic, or the
way to arrive to an output from a given input, is captured by produc-
tion rules which have unique names and are structured in packages.
These rules can be expressed in several forms, e.g. controlled natural
language [11] and decision tables.

A rule-execution engine performs the decision logic for the given
input ontology instance. Such instances are also known under the



name of individuals in artificial intelligence and observations in statis-
tics. Given an instance, the engine finds which rules need to be trig-
gered, and in which order, to reach the final decision. For this, in-
ference algorithms are used based on variants of RETE or TREAT
[16, 38]. The decision model’s output parameters, i.e. the actual de-
cision, are set to the decided values by the action part of the triggered
rules. All inputs, decisions (outputs), and rule execution traces are
stored in the operational data store of a BRMS.

When analyzing automated decisions, all above data sources need
to be considered. Hence, such analyses involve three data spaces:

e DS; - Decision model: The ontology and production rules oper-
ating on this ontology that describe how decisions are made.

e DS; - Decision instances: Instances of the ontology for which a
decision has been made according to the decision model.

e DS; - Decision execution traces: A trace of triggered produc-
tion rules for each decision.

These data spaces have some analogy to well-known data sets in
software engineering [9]: Type declarations, or UML models, in a
program are analogous to our decision model ontologies. The im-
perative program source code is analogous to our production rules.
Variable values in a program execution trace are analogous to decision
instances. Finally, sequences of executed statements from a program
execution trace mirror our decision execution traces. At a higher level,
our goal of understanding how a set of decisions has been reached
resembles program comprehension goals in reverse engineering and
dynamic analysis [8].

2.2 Analytics requirements for Decision Management

Each of the three data spaces DS;..DS3 adds to the challenge of un-
derstanding automated decisions in its own way. When building a de-
cision model (DSy), analysts use their context knowledge to determine
which information is important to make an informed decision. Only
this information will be, thus, encoded in production rules. The tech-
nical details of rule writing are here less relevant. What is crucial,
however, for analysts is to understand how their modeled decisions
impact the business and if their execution aligns with business goals.
In this context, several questions are of interest to business analysts:

e What is the structure of input data in terms of related concepts?
e How do input concepts relate to the decision?

e Which parts of the decision logic are relevant for a certain selec-
tion of decisions?

For these questions, we further identify two types of challenges.

Scale: Typical BRMS ontologies are complex, consisting of many
concepts, which in turn are a mix of categorical, numerical and tem-
poral variables. Decision automation is usually applied in areas that
have a high throughput. This leads to a large collection of facts with
a high complexity that has a strong relation with the business logic.
For instance, the ontology for the decision models from the car insur-
ance scenario in this paper consists of 22 objects with a total of 94
attributes. The associated rule-set has 166 rules. A typical run of this
rule-set over an input-set of requesters generates over 100K decisions.

Dataset sizes in industrial applications of BRMS’s are much
larger. For instance, IBM consultants worked on a decision model
for a loan industry application, consisting of 100 concepts with an
average of 20 attributes per concept; this model’s business logic has
2600 production rules. The throughput for this decision service is of
hundreds of executions per second. For a credit-card use-case, the
decision model has 1300 concepts. This model consists of multiple
rule-sets each having between 10K and 20K rules. The throughput for
this decision service is of 2400 decisions per second on average, with
peak days of 55 million decisions.

Performance measuring: In IBM ODM [25], the performance of a
decision is measured by so-called key performance indicators (KPIs).
Monitoring KPIs over time yields so-called business performance
trends. A KPI is a function of an ontology’s attributes, computed
over ontology instances, and resulting in a single value. KPIs can
be defined for input parameters, e.g., the male-female ratio of car in-
surance requesters, and output parameters, e.g., the fraction of eligible
car insurance requests from the total request set. Input KPIs cannot
be influenced by changing the decision model. However, output KPIs
are defined by the interplay between the decision model and decision
instances.

Output KPIs are similar to metrics used to assess the quality of
a software product or process, e.g. lines of codes, number of bugs
found, or number of passed tests [12]. Many tools exist for visual
analysis of such metrics [33]. These could be directly used in our
context. However, a major issue exists with output KPIs, both in the
software industry and in our context: While metrics show process ag-
gregated performance, they do not explain why that performance has
been reached. For instance, in the software industry, we can monitor
the bug discovery rate, but this metric will not tell why more (or less)
bugs have been introduced. The same is true for output KPIs in our
context: These show increase or decrease of business performance,
but give few or no clues on why this variation is happening. Also,
typical KPIs say little about the relation between current vs optimal
performance, which is an important business driver [35, 30].

Core tasks: The above observations lead to the following high-level
tasks that we want to address with our approach:

T1: Create selections of decisions for performance monitoring, vali-
dation, auditing and testing purposes.

T2: Understand correlations between input data and decisions.

T3: Verify expected and discover unexpected operation of a decision
system.

T4: Find KPI-related opportunities for improving existing decisions.

2.3 Visual analytics solutions

Knowledge modeling, representation, reasoning over knowledge,
and consistency checking are closely related topics to our problem
domain. A related topic is machine learning, where models are built
from observations. In our case, we have an existing model expressed
as [F-THEN production rules and want to use observations to discover
how suitable this model is for a given observation set. For more
details, we refer to Russell er al. [41].

Software visualization: Software visualization aims to depict the
structure, behavior and evolution of software [9]. As outlined in
Sec. 2.1, several similarities exist between the life-cycle of software
systems and decision models, and also between the involved data
structures. However, the questions for DMSs (Sec. 2.2) are quite
different from typical software comprehension goals. These are due
to the different execution model of rule-sets compared to software
systems. The rule execution order is a side-effect of the execution
engine and thus has no particular meaning to a business analyst. In
contrast, imperative software executes statements in the order they
appear in the source code. More importantly, our core question is
different: We want to see how the realities captured by the decision
model and the executed decisions diverge. This question is of a
higher level than what typical software comprehension tools, such as
dependency graphs and executions charts, directly address.

Data modeling: Most business ontology attributes are of categori-
cal type. To analyze such data, two main approaches exist [13]: In
the area of categorical visualization (CatVis) methods, Friendly et al.
present several visualization techniques, with a focus on mosaic plots
[17, 18, 19]. Other CatVis techniques include treemaps [28], CatTrees
[31], parallel sets [32], and the contingency wheel [3]. Although these



methods are specifically designed for categorical data, they are also
more focused on, and effective for, frequency-related tasks. Quan-
tization methods, on the other hand, model categories by numerical
values and are effective for similarity analysis tasks. Such methods
reduce a large number of dimensions to a number that is suitable for
display, i.e., two or three. An overview of such methods is given by
Fodor [15]. In our work, we focus on a subclass of dimensionality re-
duction methods known as Multiple Correspondence Analysis (MCA).
This technique has been known under other names [46] and is partic-
ularly suitable for categorical data, as opposed to the more general
multidimensional scaling (MDS) techniques which address numerical
data. MCA results are usually visualized with 2D or 3D scatterplots.
CA maps [22] map each category to a plot point. (CA) biplots [20, 22]
extend CA maps by mapping both categories and observations to plot
points. For the exploration of ontology data, visualization methods
using node-link displays of the ontology graph can be used [29].

Concluding, several visualization techniques exist for multivariate
data and ontologies. However, none of these is a direct and full solu-
tion for all our challenges. What we need is not just to show similarity
relations between data points, but also cause-effect and correlation-
effect relations — for instance, which rules cause a certain decision and
how a correlation of values influences the rule triggering.

2.4 Decision support VA tools

Savikhin et al. [43] present a visual tool that helps users make in-
formed auction bids to overcome the winner’s and loser’s curses. A
graph shows the theoretical gain/loss predictions for a given bid, in-
forming the user about the most appropriate bid. PortfolioCompare is
a visual analytics tool that supports financial planning decisions for fi-
nancial investment portfolios [42]. In this tool, users can add multiple
financial portfolios and analyze risk and return aspects of each portfo-
lio. AlHajj et al. present a Tableau-based visualization for decision-
making support in treating injuries [2]. All above tools focus on im-
proving human decisions. In contrast, we want to give a human in-
sight in, and ways to improve, automated decisions. Afzal et al. [1]
describe a system for interactive what-if analysis of the impact of de-
cisions to fight epidemic spread. A history tree view shows the lost
or saved lives over time as a function of taken decisions. This helps
analyzing the relation between a set of decisions and the outcome,
where outcome is considered to be one variable. Migut and Worring
present an interactive risk assessment framework using 2D scatter-
plots, Voronoi diagrams, and treemaps to visually explore the results
of an automatic classifier, highlighting cost boundaries for different
trade-offs [37]. We also use Voronoi diagrams and 2D scatterplots as
visual tools, but our focus is different: Explore the decisions made by
a user-programmed rule-based system (as opposed to a trained classi-
fier), and see how rules and decisions interact. We are interested to see
the aggregated effects of the same decision made potentially millions
of times. Thus, we do not focus on a sequence of different decisions
but on one particular decision and consider that each decision has its
own output variables. This is opposed to [1] where all decisions in-
fluence the same output variable. Decision rules are also visualized
by Wlodyka et al. using node-link diagrams and 3D matrices [48].
However, their focus is only to show the rule-sets, and not their effects
on actual decisions. Wang et al. present a methodology and workflow
for designing VA systems for decision support in organizations [47].
However, this general framework does not focus on the concrete chal-
lenges for BRMS rule-based systems.

3 THE DECISION EXPLORATION LAB

In the following, we present the Decision Exploration Lab (DEL), a
toolset for combined textual and visual analysis of DMS datasets. The
design of DEL aims to provide direct support for the core tasks related
to DMSs as outlined in Sec. 2.2. We start with a general introduction of
the components of DEL (Secs. 3.1 and 3.2). Next, we discuss several
tool refinements based on its actual utilization (Sec. 3.3). In Sec. 4
we show how DEL supports our core tasks, based on two actual user
stories involving our car insurance scenario.

3.1 Querying and filtering

Many decision analysis scenarios start with narrowing down the search
space. When troubleshooting a particular decision, business analysts
need to find the decision for a person with a given name and ID. A
more challenging use-case involves analysts wanting to focus on a par-
ticular segment, e.g. persons with a certain education level or above-
average-risk credit card transactions. We support such use-cases by a
a query and filter mechanism. Since DMS analysts are used to express
production rules in controlled natural language [11], we extended this
approach to allow querying decisions. Concretely, users can query de-
cisions based on both the checked preconditions and actions taken by
production rules, in natural language. Two examples follow:

find decisions where the vehicle has antilock brakes;
find decisions where the quote has at least a 5% discount;

Recall that a decision has three parts: an ontology instance repre-
senting the input; an execution trace; and an ontology instance repre-
senting the decision. When a query is entered (Fig. 3A), a table listing
decision details is updated (Fig. 3B). The user can add or remove on-
tology attributes to this table to show only the information required for
the task at hand. Selecing a decision from the table opens a separate
view showing details of the selected decision. For example, Fig. 3C
shows the detail view for rules triggered for a student who was not
eligible for a car insurance.

This approach covers simple queries on the decision warehouse
when users know what to ask. Use-cases include auditing and trou-
bleshooting for which details of single decisions must be known and
the decision itself can be reasonably easy identified by known criteria,
and creating selections of decisions for monitoring or validation (T1).
We also use this function as a preliminary filter for our visual explo-
ration mode (see Sec. 3.2 next). Specifically, users employ queries to
reduce the set of decision instances in a way that is most suitable for
the kind of questions he wants to answer next.

ODM Decision Exploration Lab
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Fig. 3. Textual query view (A), with query result table (B), and detail view
(C) showing triggered rules for a selected decision.

3.2 Visual Decision Exploration

The visual decision exploration mode of DEL (Fig. 1) helps finding
two types of relations:

1. Relations between ontology concepts themselves.



2. Relations between ontology concepts and the decision logic.

This view has three main components: The DataSpace tree shows
all ontology variables. The Decision Map helps understanding corre-
lations between concepts. The Rule Triggering view shows how pro-
duction rules map to actual executions. The DataSpace tree and Deci-
sion Map build upon the techniques presented in Broeksema et al. [6].
These techniques have been initially introduced in the general context
of analyzing multivariate categorical data. We adapted and extended
these techniques to our more specific context of analyzing ontologies,
rule sets, and the execution thereof, as follows.

3.2.1 DataSpace tree

To support analysis on ontology instances from the decision model,
we use a tree view, as follows (see Fig. 1A). Each ontology attribute
of basic data type (e.g. boolean, string, numeric) becomes a tree node.
Parent nodes are created following the object hierarchy. For exam-
ple, the input parameter InsuranceRequest has a property of type Per-
son, which in turn has a numeric attribute age. This yields a branch
input InsuranceRequest.Person.age in our tree.

We separate variables in three subtrees: categorical, numerical and
temporal. All variables define the data space that comprise our de-
cision instances. Numerical and temporal variables can be binned
into categorical variables. This way, they can be directly handled by
our underlying decision-map analysis based on the MCA technique
(Sec. 2.3). When quantizing numerical variables, users can choose
the number of bins to match the precision needed for their questions.
Temporal variables can be binned with various time spans, e.g., year,
quarter, month or day. Quantizing a variable can be iteratively done
until the binned variable meets the analyst’s expectations and needs.

To each variable node, we add, as leafs, all values that the respective
category can take. For numerical and temporal variables, we show
statistics (minimum, maximum, average, and standard deviation) to
inform users about the basic properties of these variables. For each
value of a categorical variable, we show a bar scaled by the number
of times this value was taken in the dataset. The bars form together a
histogram of the variable (see Figs. 1 and 6).

3.2.2 Analyzing Categorical Data

As outlined above, we reduce a decision model ontology to a
categorical-only dataset. We next use Multiple Correspondence Anal-
ysis (MCA) to analyze this data. MCA treats rows (instances) and
columns (variables) identically and thus allows analyzing both in-
stances and variables. Intuitively, MCA can be seen as a weighted
principal component analysis on either rows or columns [23].

Performing MCA can be done by constructing either an indicator
matrix or a Burt matrix from the dataset [23]. In the indicator matrix
I, we have a column for each possible value, with a position of 1 on
rows (instances) that select this value. For any row, only one value
of a particular variable can be set to one. The indicator matrix allows
for analysis of both instances (rows) and variables (columns). How-
ever, the size of [ is given by the number of instances, which can be
very large. In our car insurance example, we have 100K decisions. As
outlined in Sec. 2.2, this number can easily go into the millions. To
support interactive real-time visual analysis, we thus base our frame-
work on the Burt matrix, which is defined as

B=1"xI o))

B is a symmetric square matrix whose rows and columns are the
variable values. As a result, the size of B is bound by the number of
distinct variable values. In our context, this number is several orders of
magnitude smaller than the number of decisions. For example, in our
car insurance scenario, the decision model contains 23 variables with
a total of 158 distinct values; in contrast, we have 100K decisions.

MCA delivers three pieces of information for further analysis:

1. The projections of the original data points on the factors f;, or
eigenvectors, of the Burt matrix. These are sorted by explained
variance, i.e. f] explains most of the variance, f, explains second
most of the variance, and so on.

2. The amount of variance explained by each factor f;.

3. The contribution of each variable to a factor, or how much of the
variance of a given factor is explained by a given variable.

3.2.3 Decision Map

The Decision Map is a dynamic map analogous to the one presented
by Zizi et al. [49]. However, while Zizi et al. assign space to areas in
the map based on instances, Decision Map maps concepts.

The Decision Map follows the classical scatterplot technique used
for MDS (Fig. 1B): We take the two factors f; and f> along which
the data has most variance, and plot all variable value projections, or
factor scores, along f] and f,. Next, we map f] and f, to the x and
y axes of our 2D scatterplot respectively. Similarity between variable
values is show by proximity between 2D plot points.

MCA, like similar techniques such as MDS and PCA, tries to make
the projection (2D) distance mirror the distance in the original data
space. For the latter, we use the chi-square distance metric. This met-
ric is based on relative frequencies of variables, adjusted by the contri-
bution of a variable to the average instance. Each of the resulting fac-
tors is a combination of the variables used in the analysis. When most
of the variance is explained by the first two factors f| and f;, MCA
is good for exposing the original data structure: Proximity between
projected variable values means that those values are correlated. Ad-
ditionally, contributions of each variable can be calculated, to explain
how much the x and y plot axes are determined by a certain variable.

However, the complexity of the chi-square distance metric makes
the interpretation of the x and y plot axes hard for business analysts.
As such, we leave out these axes, and use the 2D scatterplot points as
sites to create a Voronoi diagram. Due to the strong relation with on-
tology concepts, we name the resulting Voronoi cells concept islands.
A concept island containing one concept represents all decisions that
have this concept. Islands with more than one concept represent a set
of decisions that have all these concepts.

As mentioned, each factor f; explains part of the variance in the data
and is a combination of the original variables. To make the Decision
Map easier to read, we add three bar plots to it (for fi, f», and for
all factors f;~,). Bars in the first two plots show the contribution of
each variable to the x (f1) and y (f>) axes respectively. Bars in the
third plot show the contributions of all variables which have not been
captured by the plot, i.e. contributions captured by the factors fis;.
Contributions in each plot, i.e. bar lengths, are sorted decreasingly, so
we can locate the most important variables that map to the x and y axes
or which are not captured by the 2D plot at all.

3.2.4 Color Mapping

The MCA visualization in [6] uses a categorical color map to show
the identity of the mapped variables. The high number of colors in the
view make it hard to interpret. In contrast, we use a two-color map.
This two advantages. First, it allows us to show the relation between
input and output concepts. More generally, we can now see depen-
dent vs independent variables, where the user chooses which variables
are of which type. Secondly, we avoid the color mapping problems
that occur when color maps variable identity and when the number of
variables is high (i.e. 10 or more, as noted in [6]).

The Decision Map in Fig. 4 illustrates the above. We see how the
three values (eligible, manual and ineligible) of the decision concept
eligibility (green concept islands) relate with respect to values of input
concepts (blue concept islands).

3.25

We support real-time exploration and filtering of decisions by several
interaction techniques. First, we use the DataSpace tree to select the
variables of interest, by (un)checking their respective checkboxes in
this view (Fig. 1A). When variables are added or removed, MCA is
performed anew on the selected variables and the Decision Map is up-
dated. Given the efficient computation of the Burt matrix (Sec. 3.2.2),
this process works in real-time even for large datasets. The implied

Interaction
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Fig. 4. Rule Triggering view for selections of decisions. The selected
cell shows people between 25 and 80 who are maried and no longer
full-time student. These people tend to get less often marked as high-
risk drivers and are less often caught for driving under influence.

way of working is simple: An analyst starts with a selection of vari-
ables of interest determined by e.g. textual search (Sec. 3.1). From this
selection, he next iteratively removes variables which do not contribute
to the structure of the data (e.g. show up having small contribution in
the Decision Map bar charts). This yields a Decision Map where real
data correlations become more visible.

Secondly, we add interaction to the contribution bar charts to en-
hance understanding of the Decision Map. When a bar, representing a
variable, is hovered over in one bar chart, bars in the other two charts
representing the same variable are highlighted. This helps users to see
how much a given variable is explained along the x and y axes, and
also how much is not explained by the plot at all. At the same time,
all concept islands that belong to the hovered variable are colored use
a gradient color scheme based on ColorBrewer [24].

Thirdly, we provide a merge slider, which merges concept islands
that are closer than the 2D distance given by the slider value. Merging
results in new concept islands that represent not one value, but a set of
correlated values. When a decision concept is merged with an input
concept, e.g., the eligible concept island in Fig. 4, the concept island
is colored green as well. Merging helps users to segment the decision
instances based on correlated properties.

Finally, each concept island can be hovered and brushed. At hov-
ering, a detail panel on the right is updated to show the full name of
this island. This way, we can show partial labels or no labels for small
concept islands and concept islands that contain multiple values in the
Decision Map to avoid clutter. Brushing implements dynamic queries
[7] on the decisions by selecting one or multiple concept islands. By
default, all decisions are shown in the decision table. When brushing
concept islands, decisions are filtered based on the values represented
by the brushed concept islands. This allows for creating selections of
decisions (T1) based on correlations found in the data (e.g. find mid-
aged and married people). Brushing allows discovering correspon-
dences between the decision instances (DS;) and the decision logic
(DS3). This is in contrast to most brushing techniques which provide
detail-on-demand or show the same data in different (linked) views.

3.2.6 The Rule Trigger View

The Decision Map helps exploring relations between concepts (DSy)
using the instances (DS;) of the taken decisions. So far, we only ex-
plored the insight that could be extracted by MCA on our decision
model. Correlations between input concepts are, however, dictated by
reality, e.g., students tend to be younger on average; and mid-aged
people have a higher chance of being married. Correlations between
decision concepts and input concepts, on the other hand, result from
the executed business logic given by the production rules. This dis-
tinction pertains precisely to our core question (Sec. 2): How can we

examine how the reality (as captured by the decision model) diverges
from the reality encoded by the actual decisions taken?

As explained, the Decision Map shows this distinction using a two-
color mapping. We further analyze this distinction using the decision
execution trace information available (DS3). Each decision is the re-
sult of production rules that triggered for a given input. For a random
decision population, we can expect that each rule is triggered in the
same proportion as for the overall population. Thus, selecting a partic-
ular decision subset and comparing the expected vs observed trigger
counts for this selection shows us if the decision logic of this rule
is either over- or underrepresented for this input population segment.
For this, we sort the rules triggered for a decision subset by the ab-
solute difference between the expected count and the observed count.
Combining the correlation between properties with over- or underrep-
resented logic leads to a better understanding of

1. How a set of instances impacts the overall behavior of a decision.

2. How a particular formulation of rules leads to a unexpected be-
havior for a given set of instances.

For this, we use a new view: The Rule Trigger view (Figs. 1C and 4).
This view is a table showing the rules triggered for a selection of deci-
sions. From left to right, the table columns show the unique rule iden-
tifier, expected trigger count, and actual trigger count for the selected
decisions. The table background is colored red when the expected
count is below the actual count, and green when the expected count is
above the actual count. In Fig. 4, the selected concept island represents
people between 25 and 80 who are married and no longer full-time stu-
dent. From the corresponding Rule Trigger view, we learn that these
people are less often caught for driving under influence (Fig. 4(1)) and
get less often marked as high-risk drivers (Fig. 4(2)). They do get tick-
ets (Fig. 4(3)), but this occurs less often in combination with accidents
(Fig. 4(4)). As the selected island is close to the eligibility cell, this
confirms the expectation (T2,T3) that people who are eligible for car
insurance are indeed people with reasonable driving habits. We also
considered showing rules not triggered for a selection. However, this
creates visual clutter. For instance, when the selection contains only
females, all rules that only apply to males will show up in the view.

3.3 Visualization refinements

We further found two issues related to using Voronoi cells to display
concept islands. First, an informal user study with EDM domain ex-
perts at IBM showed that users find these cells confusing at first. For
instance, users tried to interpret cell sizes, which have no direct se-
mantics. We solved this issue by explaining that point proximity is the
most important when looking at the plot. Next, we explained that a cell
size relates to its position with respect to other points. That is, when a
cell is small, the point is a center of a cluster, thus has many correlated
values; when a cell is large, it is either at the border of a cluster or
the value is an outlier. This explanation, and walking through a simple
ten-minute training scenario, greatly helped users to learn how the plot
should be used. However, more extensive user studies should point out
if better visual encodings could be created instead of our Voronoi plot.

Secondly, we noticed that MCA tends to project most points close
to the projection origin. These values reflect the properties of the aver-
age decision instance. Business-wise, these are initially the most im-
portant instances: Most decision instances have these properties and
these have thus a large impact on business performance. Values that
project as outliers are instance properties that occur less often, thus
have likely a lesser business performance impact. Such outlier proper-
ties can be interesting in a second analysis pass, as they could suggest
new business opportunities. Thus, visualization should first focus on
properties of the average insurance requester. However, such proper-
ties get assigned the least space in the MCA plot.

We address the crowding issue by applying a transformation to the
projected MCA values as follows. First, we scale both factors f; and
f2 to [0..1]. Next, we calculate the variance and the mean value for the
values of the scaled factors. These values are then used to configure
two scaling functions, one for each factor, that are centered around the
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Fig. 5. (a) Central clutter in MCA plots. (b) The spread transformation
gives significantly more space to the values in the marked area (red
circle) while keeping the overall plot structure intact.

mean. An uniform distribution on the [0..1] domain has a variance of
1/12. We use this observation by assuming that, when the variance
is under 1/12, the distribution is close to a normal distribution. Next,
the scaling function behaves as a cumulative density function (CDF)
for a normal distribution for variances below 1/12 and as the inverse
for variances above 1/12. Overall, this scaling creates more space
for clustered values while keeping the overall structure intact (Fig. 5),
because both the CDF and its inverse are monotonically increasing.

4 SCENARIO: CAR INSURANCE

We illustrate our DEL toolset with the analysis of a business process
from the car insurance industry with the two decision models intro-
duced in Sec. 2. The input instances have been synthesized to avoid
confidentiality and privacy concerns. The ontology on which the de-
cision models operate consists of an AutoQuoteRequest. This concept
contains information about a driver, the car for which insurance is re-
quested, and the insurance type.

The risk management decision logic (Fig. 2, DMy) has 22 rules.
These do various checks on applicants, such as age checks and checks
for high-risk driving indicators. The pricing decision logic (Fig. 2,
DM,;) has 144 rules. A set of decision tables determine the insurance
base premium based on the type of the requested insurance and car
value. Extra rules determine which discounts apply for a request, e.g.,
anti-lock brakes and experienced-driver discounts. Yet other rules de-
termine if certain surcharges apply, such as the old-vehicle surcharge.
A final rules group model region-specific insurance policies. These
either override global policies or encode additional discounts and sur-
charges that only apply in particular regions.

We next illustrate the usage of DEL by two user stories. In both
cases, users are business analysts involved in deciding car insurance
quotations. In the first story (Sec. 4.1), the analyst discovers that less
people are eligible and wants to find out why. In the second story
(Sec. 4.2), the analyst discovers that expensive cars do not get signifi-
cant higher quotes.

4.1 Story 1: Why fewer than expected people are eligible

Using the DataSpace tree (Fig. 1A), the analyst examines the eligi-
ble decision concept. He sees that 88.6% of the requests are eligible,
10.4% are ineligible, and 1% are manually processed (Fig. 6). This is
unexpected, because the analyst designed this decision model to have
an eligibility rate between 90% and 95%. Thus, the analyst first learns
that his model does not meet the expected performance (T3).

Using his knowledge about the decision model and business do-
main, the analyst now states that people below 18 and people above 80
are ineligible due to legislation and business policies. He now wants
to check this expectation against the actual age distribution of drivers.
For this, he quantizes the numerical age variable into five categories,
two for the lower and upper ranges of ineligible people, and three
for potentially eligible people: < 18: Not eligible, [18..25): Youth,
[25..65): Adults, [65..80): Elderly, and > 80: Not eligible.

4 = d: eligibleResp.Eligible

S e sso%
=] | Inelighle  10.4%
B | Manual 1.0%
4 = i: autoQuoteReq.Driver.Age

] | 2-[25..65)

[ | 1-[18..25)
=l | 3 - [65..80)
21 4->-80  4.8%
=1 0-<18 3.6%

Fig. 6. DataSpace showing the age and eligibility variables.

The quantized age concept appears in the DataSpace tree under
categorical concepts (Fig. 6). The lower and upper age category per-
centages lead the analysts to deduct that these two groups account for
about 85% of the ineligible requests. Thus, 15% of all ineligible appli-
cants (1.6% of the total) are so because of other reasons than age. This
is a first clue that there is some room for decision improvement, i.e.,
maximizing the number of insurances sold. For this, we need to find
out why people are ineligible for other reasons than their age (T4).

The analyst is next interested in the correlation between driver at-
tributes and the decision (T2). He thus selects all driver attributes and
the eligibility decision attribute in the DataSpace tree. The resulting
plot (Fig. 7a) shows some structure, which is hard to examine due to
clutter. Values above the topleft-bottomright diagonal represent inel-
igible people. As expected, the age < 18 and age > 80 values fall
into this area. Values below this diagonal are related to eligible or
manually-processed requests.

From the contribution plots (Fig. 7a(A,B)), the analyst learns that
only 60% of the variance is explained by the first two factors. Also, he
finds that there are several attributes that do not contribute to the data
structure (T2). These are the attributes in the bottom-right and top-left
contribution plots that are on the far right of these plots (Fig. 7a C).
Among these, we have state and gender. This tells the analyst that
state and gender do not influence the decision.

Next, the analyst iteratively removes these unimportant attributes
until all remaining attributes contribute at least 5% to f; (x axis). He
now obtains a simplified map (Fig. 7b), with the attributes age, eligi-
bility, full-time student, married, DUI (driving under influence), and
good student certificate. This map explains 76% of the variance and
still shows the earlier diagonal structure. This confirms the earlier find-
ing that the removed attributes do not contribute to the data structure.

To further simplify the view, the analyst uses the merge slider to
group correlated values in single concept islands. Left in the result-
ing Decision Map (Fig. 7c), he sees the concept island for eligible
instances. The values of the two most important input attributes are
age : [25..65,65..80] and fulltimestudent : false. Hence, the expecta-
tion that eligible people are mainly working adults is confirmed (T3).
At the top in Fig. 7c, the analyst sees that ineligible people are corre-
lated to age > 80. For instances where age < 18, the most important
correlated value is DUI.

In the center of the Decision Map (Fig. 7c), the analyst finds a con-
cept island for students between 18 and 25. This island is centered
between the three decision values (eligible, ineligible, manual pro-
cessing), showing that these decisions are about equally spread among
students. He now sees that students are a group where some optimiza-
tion may be possible, as these are not strongly correlated with any
of the decision outcomes (T4). To find out more about students, the
analyst selects the center cell to filter decisions and update the Rule
Trigger view. This view now shows only decisions for instances that
have age € [18..25) and fulltime student = true (5716 decisions).

Knowing the decision model, the analyst notes that the first three
rules in the Rule Trigger View (Fig. 7c(1)) come from a decision ta-
ble. For the definition of these particular rules, the analyst turns to
his rule authoring environment, IBM Operational Decision Manager
(ODM) in this case [25]. In ODM, he finds the decision table con-
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Fig. 7. Interactive analysis of variables of interest: (a) The analyst has selected all available attributes related to drivers and clicked the plot age bar
to see where the various age groups are in the plot. (b) The analyst simplified the plot by removing all variables that did not contribute to the data
structure. (c) The analyst merged values and selected the ‘students’ concept island to examine rule triggering for this set of decision instances.

Set Eligibility

Gender Age State of Residence

Eligible?
<16 Ineligible
CA Manual

Otherwise Eligible
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ineligible

CcA Manual
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Message
Sorry. you are too young to q...
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male (18 21] :
Otherwise
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Fig. 8. Decision table for initial eligibility status based on age.

taining the rules he just found in the Rule Trigger View (Fig. 8). From
their definitions, he sees that these rules do a basic separation mostly
based on age. In this decision table, the analyst sees that rules 3 and
7 affect people between 16 and 25 not living in CA, and rule 8 rep-
resents males above 21. Given that he is looking at students, it is not
much of a surprise that rule 3 and 7 are overrepresented, while rule 8
is underrepresented for this selection of decisions (T3).

The two rules from the High Risk Driver package (Fig. 7¢(2)) re-
veal an interesting fact about the working of the decision model. Both
the DU and the high-risk driver rule were not specifically written with
students in mind. However, students trigger these rules more than the
analyst expects, given that they were not written for this group in par-
ticular. The analyst knows that, when an insurance request is flagged
as being from a high risk driver, the decision model always rejects it.
However, he also knows that business policies state that extra effort
should be done to make students customer. Using the above analysis,
the analyst decides to add a rule to the decision model which marks
high-risk students for manual processing. This way, such students will
be analyzed by salespeople (rather than automatically rejected), and
thus have a higher chance to become customers (T4).

Summarizing, the analyst first found a hint that there is space for
improvement in the DataSpace tree. Next, he used the Decision Map
to find clusters of correlated values based on the accumulated decision
instances. Finally, he uses external contextual information about busi-
ness policies with respect to retaining students to find ways to improve
the decision model.

4.2 Story 2: Why expensive cars get low quotes

The KPI of the insurance decision model (Fig. 2, DM,) is computed
as follows. First, the sum Q of all calculated insurance quotes is com-
puted. Next, for each insurance, two probabilities y; and y; are drawn
from a car-accident and a claim-value distribution respectively. y; and
Y, are combined to calculate the probable insurance loss, which is then
subtracted from Q. Monitoring this KPI over time shows whether the
business is profitable, but not why. Also, the KPI is less precise than it
could be, given that the car-accident and claim-value distributions do
not consider the specifics of certain insurance instances.

To increase insight in the business performance, the analyst decides

to analyze the insurance quotes. For this, he quantizes the numerical
attribute vehicle.value and quote. The car value is quantized in the
same way as it is done in the production rules that determine the quote
base premium (< 5500, 5500..11000, 11000..20000, 20000..35000,
35000..55000, > 55000). Next, the analyst assumes that quotes are
correlated to car values. Hence, he quantizes the quote variable in
proportional ranges to the quantization of the value variable.

Next, the analyst selects properties of drivers, cars, and the quote
variable. The contribution plots show long tails of non contributing
attributes. Brushing next shows that those are driver properties. This
is not surprising, as the analyst assumes that car properties, especially
car value, are the most important factors for the quote. To clean up
the plot, he now iteratively removes such unimportant variables, as ex-
plained for story 1 (Sec. 4.1). After removing the driver attributes from
the plot, the analyst finds, to his surprise (T3), that there is no strong
correlation between car value and quote. To learn how car values are
distributed in the Decision Map, the analyst now clicks the *Car Value’
bar in one of the contribution plots. The gradient coloring shows its
value for ordered attributes, such as age and car value in this particular
case. As visible in Fig. 9a, a clockwise gradient (marked with the red
arrow) shows low-priced cars placed top right; increasing car values
in-between; and expensive cars top-left. Once this pattern is clear, the
analyst now understands how spatial areas relate to car values. The
quote attribute values, on the other hand, are almost all centered, and
do not show a clear vertical or horizontal distribution. This finding is
enforced by the contribution plots which show that the quote attribute
(green bar) does not contribute much to either f; (x axis) or f> (y axis).

The analyst now removes the guote variable from the plot and per-
forms merging in order to get clusters of related values (Fig. 9b). He
notices that car options such as all-side airbags (concept island 1), anti
lock brakes, and daytime running lights (concept island 2) correlate
with the more expensive cars. At this point, he selects the concept is-
lands related to expensive cars (islands 1, 2 and 3 in Fig. 9b). Now,
he finds two interesting things in the Rule Triggering view: First, the
rule that gives a discount for experienced drivers is underrepresented.
For this selection, it is expected that this rule should trigger 312 times,
but it is only triggered 206 times. Thus, expensive cars are less often
driven by drivers that are considered experienced by the business logic.
Secondly, the discount rules for daytime running lights and anti-lock
brakes are overrepresented. The daytime running light discount is trig-
gered 229 times times instead of the expected 100; and the anti-lock
brakes discount is triggered 229 times instead of the expected 101.
When the analyst selects each of these three concept island individu-
ally, he finds two more overrepresented discounts: In concept island
3, the passenger-and-driver airbag discount rule is overrepresented; in
concept island 1, the SUV discount rule is overrepresented.

From all the above, the analyst has finally now learned that:

1. The car value is, unexpectedly, not strongly correlated to the
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Fig. 9. Car values correlated to quotes in an unexpected way. (a) The highlighted values show a clockwise trend for car values with low valued cars
top right and high valued cars top left. (b) After removing the quote and performing some merging the same trend is still visible (though counter
clockwise). Additionally, The triggered rules view reveal some cumulating discounts and an underrepresentation of experienced drivers.

quote (T2, T3).
2. Expensive cars are less likely driven by experienced drivers (T3).

3. While the base quote calculation takes into account car values,
expensive cars still get too low quotes due to an accumulation of
discounts (T3).

As a result, the analyst has discovered a potential revenue leak in
the business logic, which could be compensated for instance by setting
up a ‘luxury car’ surcharge rule and using different calculations for the
base quote (T4). Of course, this decision is subject to various checks
with actuary departments and requires further investigations before be-
ing implemented. Nonetheless, DEL has shown here its potential for
insight formation.

5 IMPLEMENTATION

DEL is implemented as an extension for IBM Operational Decision
Manager [25]. Its input data is gathered from ODM’s decision ware-
house. We extract the data from this warehouse in a separate Apache
Solr search server [4]. This decouples the load caused by analysis from
production systems. It also allows data to be indexed and stored in a
suitable format for efficient querying (Sec. 3.1). With this architecture,
MCA can be performed in real time for data sets with tens of thou-
sands of items. Quantizing numerical variables, a task that goes over
all decisions, takes more time when the number of decisions grows.
However, this is normally done only at the beginning of the analysis
process and hence does not have a significant performance impact.

DEL consists of a back end, which is implemented using Java tech-
nologies, and a web based front end. The front-end is implemented
using the Dojo Toolkit [10] for the overall layout and standard wid-
gets. For the Decision Map, we used D3.js [5] which provides the
needed flexibility for custom widgets and interactions tightly bound
to the data at hand. DEL was tested on a standard dual-core 2.5 Ghz
machine with 4GB of RAM. On this configuration, DEL can easily
handle over 100K decision instances in real-time.

DEL was evaluated by IBM ODM'’s product managers and chief
architects. As a preliminary validation of our work, we quote below
one of the ODM chief architects:

“The Decision Exploration Lab would be a key asset for the ODM
product to be able to assist our users with the right level of tooling and
targeted analytics. From my point of view, in this proof of concept, the
algorithms are sound and the visualization is great. We will need more

use case investigations, refinement on the visual design and some task-
based approaches to adapt the ease of use to the level of understanding
of our users. But I'm sure this mid-point exists, all the more as our
users, in these times of big data and business analytics, are becoming
more advanced and less intimidated by analytics in general.”

6 CONCLUSION

We have presented the Decision Exploration Lab (DEL), a visual ana-
Iytics solution designed to address prevalent issues in the area of Op-
erational Decision Management (ODM). Our solution integrates pro-
duction rule execution traces, statistical analysis of decision instances,
and interactive visual analysis into a decision exploration system. We
demonstrated how the tool can be used to verify expected and find un-
expected functioning of decision models, using a scenario from the car
insurance industry.

The industrial relevance of the problems addressed by DEL was
expressed by one of the IBM ODM chief architects as follows: “A
significant part of the ODM customers implements a feedback loop
to improve the the logic of their automated decisions from the actual
outcomes of decisions. They gain insight in the business efficiency
of these decisions by monitoring KPIs and Business Intelligence ap-
proaches. But when it comes to figuring out what concrete parts of a
decision model have to be improved or rethought to meet a particular
goal, they can only rely on their knowledge.”

The originality of our approach is that we provide a toolset that
supports combined analysis of rule execution traces and decision in-
stances. This allows business analysts to explore decision models in
the light of the accumulated facts about this model in the form of de-
cision instances. As a result, analysts can verify if the decision model
and the reality are diverging, and if so, understand the underlying rea-
sons and take corrective and perfective measures.

Understanding the functioning of decision models is a challenging
topic and much more work is to be done. Both the ontology and the
production rules of a decision model contain a wealth of information
that can be included in the visual analysis process. In the future, we
will explore how this information can be integrated and used to present
richer and more precise information about the decision model. We
already performed informal user studies with internal domain experts
to verify the soundness of our approach. More controlled user studies
will be performed to evaluate the overall effectiveness of our approach.
Based on the lessons learned, we are now working with the IBM ODM
product team to devise future directions of DEL in this area.
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