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Abstract

We present a method for computing a surface classifier that can be used to detect convex ridges on voxel sur-
faces extracted from 3D scans. In contrast to classical approaches based on (discrete) curvature computations,
which can be sensitive to various types of noise, we propose here a new method that detects convex ridges on
such surfaces, based on the computation of the surface’s 3D skeleton. We use a suitable robust, noise-resistant
skeletonization algorithm to extract the full 3D skeleton of the given surface, and subsequently compute a surface
classifier that separates convex ridges from quasi-flat regions, using the feature points of the simplified skeleton.
We demonstrate our method on voxel surfaces extracted from actual anatomical scans, with a focus on cortical
surfaces, and compare our results with curvature-based classifiers. As a second application of the 3D skeleton, we
show how a partitioning of the brain skeleton can be used in a preprocessing step for the brain surface analysis.

1. Introduction

Detecting features such as ridges and valleys in datasets such
as 2D grayscale images and 3D CT and MRI volumetric
scans, is an important and active area of research. Features
such as edges and corners must be classified in a robust
way in order to enable further analyses on such datasets,
like edge-preserving denoising or robust partitioning of ar-
eas bounded by such edges. The so-called local classifica-
tion of surfaces, in particular the separation of highly curved
ridges from low curvature areas, is also an important prereq-
uisite in numerous surface processing applications such as
surface matching and feature-preserving simplification.

Traditionally, most surface classifiers used in practice em-
ploy one or another variation of ridge detection based on
higher-order surface derivatives, such as gradients, curva-
ture, or moments. Although a wealth of such methods ex-
ist, curvature estimations on noisy voxel surfaces is an in-
herently delicate process. Many such methods trade off the
precision of ridge detection for stability, by using different
types of filtering over (small) neighborhoods.

Curvature is intimately connected to another well-known
surface descriptions: skeletons or medial axes. However, this
relation has not often been used for surface classification or
ridge detection, partly due to the infamously unstable nature
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of 3D skeletons, the difficulty of computing them in 3D, and
the lack of an appropriate scale notion.

In this paper, we show that 3D skeletons can be used
for robust voxel surface classification. We extend a stable
3D skeletonization method that comes with a built-in multi-
scale criterion so that we compute a surface classifier which
separates convex ridges from smooth regions. Our method
employs only integral quantities, such as Euclidean and
geodesic distances, and hence is inherently robust as com-
pared to several curvature estimators, even on noisy, low-
resolution datasets. We implement the proposed method to
work directly on, and uniquely with, voxel representations of
the surface, skeleton, and classifier. We illustrate our method
on the classification of anatomical surfaces, with a focus on
cortical surfaces, and compare it with a curvature-based clas-
sifier. Finally, we show the feasibility of a robust partitioning
of a 3D brain skeleton, to emphasize the high potential of 3D
skeletons in further surface analysis applications.

This paper is structured as follows. Section 2 overviews
related work in the area of surface classification, with a
focus on brain cortex analysis. Section 3 overviews 3D
skeletonization, with an emphasis on the robust multiscale
method we shall extend here. Section 4 presents our new
skeleton-based surface classification used for ridge detec-



D. Reniers & A. Jalba & A. Telea / Anatomical Classification Using 3D Skeletons

tion. Section 5 shows the results of our method applied to
a voxel-based brain surface, and compares it with a typi-
cal curvature-based classifier. Section 6 illustrates another
potential application of 3D skeletons, by showing the ro-
bust partitioning of a 3D brain skeleton. Section 7 discusses
our method and compares it with curvature-based classifiers.
Section 8 concludes the paper.

2. Related work

The canonical quantity for edge detection on surfaces is
the curvature tensor. Different methods exist for its eval-
uation on discrete surfaces, such as shown by Moreton
and Séquin [MS92], Clarenz et al. [CDROO], and Des-
brun et al. [DMSBO00]. Besides curvature, surface classi-
fiers can be based on related integral quantities, such as mo-
ments [CRT04]. Globally speaking, all such methods use a
local surface classification, and thereby trade edge detection
accuracy for stability via some built-in smoothing.

Extracting cortical surface features, such as sulci and gyri,
from MR brain volumes is focus of extensive work. Such
features are used in studies of inter-subject gyral and sulcal
variability [GPC*99] or to identify structural and functional
patterns in Alzheimer patients [THS*04].

Many methods for sulci extraction use the surface’s
(mean) curvature. Sulcal fundi are defined as crest lines of
extremal curvature. Similar approaches can be used for gyral
structures. Such methods are semi-automatic, requiring the
user to define two or more points on a sulcus, which are then
connected by optimizing a curvature-based cost. Several
such approaches exist, using weighted geodesics [BSO01], dy-
namic programming [KMG98], fast marching [MST04] and
3D curve-tracking [RDROO]. Evaluating curvature extrema
involves higher-order derivatives, so these methods can be
quite unstable on highly convoluted cortical surfaces coming
as limited resolution voxel scans (see also Sec. 5). Cachia et
al. [CMR*03] alleviate such problems using a scale-space
of the underlying curvature signal, thereby trading precision
for stability.

To overcome stability problems, other methods find sul-
cal fundi by locally maximizing the distance from the cor-
tical surface to a bounding hull around it. The methods
of [GPC*99,Loh98] find fundi as the deepest boundaries of
surfaces obtained by subtracting the white and gray matter
from the bounding hull. Combining curvature and distance-
based criteria leads to more stable, but significantly more
complex to implement, methods [KHS*07,KHS*06,TPD0?2,
THR*01].

Although uncommon, using skeletons to detect features is
not new. Hisada er al. [HBKO1] use the skeleton in combi-
nation with denoising and filter techniques to detect salient
shape features of polygonal shapes.

3. 3D Skeletonization

This section gives a brief overview of the 3D skeletonization
method and associated importance measure that underlie our
surface classifier which we discuss in Section 4.

3.1. Preliminaries

Let Q be a 3D shape with closed boundary 0Q. Let D : Q —
R4 be the distance transform, assigning to each point in-
side the shape the minimum distance to the boundary. Let
F : Q — P(0Q), where P is the power set, be the so-called
feature transform, assigning to each point inside the shape
the set of boundary points at minimum distance, called the
feature points:

FlpeQ)={qeaQ||p—ql=D(p)} (1

The skeleton S of Q can be defined as the locus of centers
of maximally inscribed balls. At each point p on the skele-
ton, a maximally inscribed ball can be placed that touches
the boundary in at least two points, the feature points F(p):

SQ) ={peQ||F(p)>2} 2)

This definition can be used both in 2D and 3D. In 3D, S is
sometimes called the medial surface, or surface skeleton, to
distinguish it from the curve skeleton, or centerline. In this
paper, we shall compute and use the medial surface

The skeleton of a 3D shape consists of manifolds, called
sheets, which intersect in curves, called Y-curves [DamO06].
Whereas sheet points have two feature points, Y-curve points
have three or more feature points which are the union of the
feature-point pairs of the intersecting sheets. In addition, a
surface skeleton can also contain isolated curves in some de-
generate cases, such as a cylinder. However, brain surfaces
do not contain such structures, as they do not have a tubular
structure, i.e. their never have circular cross-sections.

3.2. Simplified Robust Skeletons

Following from Eq. 2, skeletons are inherently sensitive to
small boundary perturbations. This situation is considerably
worsened in practice by sampling noise emerging from the
limited resolution of 3D acquisition devices, like MRI or CT
scans. 3D skeletons directly computed following Eq. 2 will
exhibit a myriad of spurious sheets corresponding to small-
scale boundary noise (e.g. tiny bumps). This is one of the
main problems which has precluded their use in practical
applications.

To produce robust skeletons, some skeletonization meth-
ods define an importance measure p : S — R indicating the
importance of each skeletal point in representing the shape.
Combined with a suitable pruning strategy, this delivers a
simplified skeleton [SB98].

One successful importance measure p is defined as the
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Figure 1: Simplified skeletons St—10,St—20,St=70 of a noisy box. The intensity encodes the importance measure p. Whereas
Si—10 contains some spurious sheets, Si—yq is robust. In S;—79, only the center sheet is retained, which can be seen as a

coarse-scale representation of the box.

length of the shortest path on the surface dQ between the
two feature points F(p) for each point p € S [PHO2]. This
measure smoothly evolves over skeletal sheets, may contain
jumps at Y-curves (cf. Fig. 1), is low on the periphery of
the skeleton, and has a local maximum ridge in the middle
of the skeleton [DS06]. Besides yielding robust skeletons, it
can be used to obtain progressively simplified, or multiscale,
skeletons by simply increasing the threshold on p [RVTOS].

To implement such a measure for voxelized objects, we
proceed as follows. The feature transform is computed us-
ing [Mul92]. Let F be the extended feature transform, de-
fined as F = Uvyzeqo,1y F(Px+x,py+y,pz +2). Then, the
importance measure p : Q — R is defined on the object
voxels as the maximum shortest-path length between the
points in the feature set F(p):

plp)= max [y(a,b)|, 3)
a,beF(p)
where 7y is the shortest path between a,b and || - || the

shortest-path length, computed using an accurate length es-
timator [KS93] which assigns different weights to the three
different voxel-neighbor types. Using p, the definition of the
discrete simplified-skeleton St becomes (cf. Eq. 2):

S(Q)={pe|p(p) =1}, 4)

Empirical studies indicate that T should set to at least 5
voxel-length units to prune the skeleton S; of any noise
due to discretization artifacts [PHO2,RVTO08]. The threshold
T functions as a continuous scale-parameter controlling the
simplification level. Small T values eliminate less important
skeleton parts that are due to small-scale surface features or
acquisition noise. Larger T values can be used to retain the
most salient parts of the skeleton. For illustration, Figure 1
shows the effect of increasing T for a noisy 3D box.

It is important that the simplified skeletons remain con-
nected, as skeletons should be homotopic to the origi-
nal shape [Lie03]. Fortunately, the simplified skeletons are
connected for the smaller values of T, because the mea-
sure p is monotonic on St except on the local maximum
ridge [DS06]. Note that the restriction of the skeletonization
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method to genus 0 shapes as mentioned in [RVTO08] does not
apply here as we do not need to compute the curve-skeleton.

4. Skeleton-based Surface Classifier

The key idea of our approach is simple: By increasing the
simplification level T, we prune the boundary of the skele-
ton first. Because the skeleton reaches into the ridges of the
surface, we remove the skeleton parts whose feature points
lie on and near these ridges. In this fashion, we can detect
ridges by the absence of feature points.

This idea reflects an intimate connection of skeletons with
curvature extrema on the surface. Specifically, the boundary
points of the skeleton, i.e. branch tips in 2D and medial sheet
edges in 3D, correspond one-to-one with curvature maxima
(convex ridges) on the surface, via the feature transform.
Hence, by using the skeleton and associated feature points,
suitably pruned to remove noise effects, we can robustly de-
tect such ridges, without any discrete curvature computation.

Let V be the set of feature points corresponding to a sim-
plified skeleton. We call this set the feature collection of Sz:

V(S)=J F(p). 5)

PES:

By increasing the threshold T on the importance measure
p, gaps will appear in the feature collection V on and near
shape convex ridges. We can detect such gaps and use them
to detect the ridges. However, one complication is that the
parameter 7 is also used to prune spurious skeleton parts that
are due to boundary noise or discretization artifacts. Here,
we assume that the scale of the noise is uniform for the whole
shape. Setting 7 to the noise level T, opens V on the ridges,
but also on noisy parts, which we do not want to detect as
ridges. Therefore, we have to increase T further to T, + Te:
the feature collection V is opened further on ridges, but not
on boundary noise. This is illustrated in Fig. 2 in the 2D case,
for the sake of clarity. In Fig. 2a, the non-simplified skeleton
Sp of a box with a small-scale noise bump is shown. The
feature collection (thick lines) covers the whole boundary.
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Figure 2: Non-simplified skeleton (a). Simplified skeleton at scale ty, (b). Simplified skeleton at scale T, 4 Te (c). Large gap due

to round part (d). Thick lines are feature collections V.

When 7 is set to the noise level T, (Fig. 2b), the openings in
V on the bump and near the non-noisy convex corners have
the same size, so that we cannot differentiate between the
two situations. By further increasing 7 to T, + T (Fig. 2¢), V
is further opened on the corners, but not on the bump.

Thus, our surface classifier is defined for each bound-
ary point ¢ € dQ as the geodesic distance to V (S, 41, ),
again computed using [KS93]. Points at a distance of at least
%1:,, from a feature point in V are considered ridge points.
The term T, controls the minimum detected ridge width and
should be chosen as small as possible, but at the same time
large enough to account for the small inaccuracies in the
feature points caused by the discretization. We verified that
a conservative setting T > 4 gives good results on a wide
range of objects, including 3D brain surfaces but also sev-
eral other 3D synthetic and organic shapes.

The ridge-width parameter T, controls the minimum
width of the detected ridges, but not the maximum. In case of
round (blunt) parts of the shape, e.g. as shown in Fig. 2d, the
openings in V and thus the ridges might become thicker than
Te. The importance measure p varies quickly for the skele-
ton representing the round part, so that in the discrete case,
V may opened at the round part by a slight increase of .
This is as expected, since it is not possible to specify an ex-
act location of an edge over blunt parts having no curvature
variation.

5. Results

In this section, we illustrate our surface classification method
on a brain cortex surface, computed from a MRI scan of 256°
voxels resolution. Figure 3 shows the curvature-based clas-
sifier proposed by Taubin [Tau95] on a triangle mesh of the
brain surface. To reduce small-scale noise artifacts we apply
the diffusion (heat) equation geodesically to the cortical sur-
face. To take into account the fact that the underlying grid
is irregular, we use the approach in [DMSB99], equivalent
to anisotropic diffusion on regular grids. The three different
images in Fig. 3 correspond to increasingly longer diffusion
times 7, which are equivalent to increasingly larger Gaussian
filters [CRTO4].

Figure 6 shows our skeleton-based surface classifier, com-
puted on three progressively simplified skeletons, as de-

scribed in Sec. 4. The corresponding skeletons, and their
simplification levels 7, are shown separately in Fig. 7. The
simplification levels T are chosen so that they match the sizes
of the Gaussian filters that describe the curvature smooth-
ing in Fig. 3. We notice several things. First, the simpli-
fication level T for the skeleton-based classifier has a very
similar effect to the Gaussian filtering, or smoothing time ¢,
for the curvature classifier: Small values yield sharper (but
potentially noisier) ridges, larger values yield smoother, but
thicker, ridges. However, we also see that the skeleton-based
detector separates the convex gyral ridges (curvature max-
ima) from the quasi-flat and concave regions quite sharply,
even at low simplification levels, whereas the curvature-
based classifier produces results where the separation is
less clear. The skeleton-based classifier is also able to pro-
duce noise-free results directly in voxel space (Fig. 6 top),
whereas the curvature classifier used here (and other similar
ones) need to construct a local polygonal, or local tangent-
plane, approximation of the voxel data.

Figure 4 illustrates our 3D skeleton and surface classi-
fier on a hip dataset, to demonstrate the applicability of our
method for different datasets besides cortical surfaces, in-
cluding shapes with tunnels. Just as for the brain dataset,
we see the clear separation of convex ridges (edges) from
smooth regions.

a) skeleten

b) classifier

Figure 4: Surface classification of the hip dataset
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Figure 3: Brain surface classification using a smoothed curvature estimator (blue=low curvature, red=high curvature)

6. Brain Skeleton Partitioning

Besides computing a robust surface classifier, the 3D skele-
ton can be used as a preprocessing step in other applications,
such as robust brain surface partitioning. The key principle
enabling this is as follows. Consider the set of medial sheets
that form a 3D skeleton. The intersections of two (or more)
such medial sheets is called a medial intersection curve or
Y-curve. The set of all Y-curves for a given 3D skeleton cre-
ates a graph-like structure, called the Y-network [Dam06]. Y-
curves from this network map to important geometric events
on the original surface. Specifically, curves which have one
endpoint not connected to another Y-curve are the intersec-
tion of two (or more) medial sheets which correspond to
bumps (convex ridges) on the original surface, i.e. gyri in
the case of a brain. Curves whose both endpoints are con-
nected to other Y-curves correspond to the intersection of at
least two medial sheets of which at least one is ’internal’, i.e.
does not map to a convex ridge.

Hence, if we were able to partition the 3D skeleton in dis-
tinct sheets, and also extract the Y-network, we could use
this information to further partition the brain geometrical
structure, as outlined above. To perform this partitioning,
several methods could be used. Topology-based criteria us-
ing local (3-by-3 or 5-by-5) templates can be employed to
detect the medial intersection curves based on the discrete
connectivity patterns of the skeleton voxels, as described e.g.
in [MBA93,GK04], among others. However, template-based
methods can have robustness problems e.g. in the case of
multiple-sheet intersections.

To robustly partition the brain skeleton, we use a differ-
ent distance-based approach, described in [RTOS]. In brief,
this method works as follows. First, we compute a sim-
plified feature-transform which groups, for each skeleton
voxel, feature voxels located on the surface at a geodesic
distance closer than the skeleton simplification threshold 7.
Second, we detect Y-curve voxels as those skeleton voxels
whose simplified feature-transform has at least three groups
of disconnected feature voxels. This is actually nothing else
than a robust voxel-based implementation of the continuous
criterion saying that an Y-curve point corresponds to at least
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three distinct feature points on the surface. Using the robust
Y-curves we partition the simplified skeleton into distinct
medial sheets.

Figure 5 shows the results of the 3D skeleton partition-
ing for the same brain dataset as used before. The top row
shows the different medial sheets, each colored with a dif-
ferent color from its neighbor sheets, to distinguish them.
The resulting sheets are cleanly (and clearly) separated from
each other. The bottom row shows the Y-network for the
same skeleton partitioning, where each Y-curve has a dif-
ferent color from its neighbors. Similar to the sheets, the Y-
curves are clearly separated from each other.

Although we do not show it in this paper, the high qual-
ity of the 3D skeleton partitioning results makes them read-
ily usable for further brain surface analyses. For example,
one could detect the borders of each 3D sheet in Fig. 5 top,
project these on the brain surface using the feature transform
which we already computed (Sec. 3.1), and thereby obtain
the ridge-curves of the gyral structures. Secondly, the end-
points of the Y-curves in Fig. 5 top which belong to a single
curve (the "loose’ ends of those curves) correspond, via the
feature transform, to brain surface points where three gyral
structures meet, as explained above.

7. Discussion

As already mentioned in Sec. 4, there is a strong connec-
tion between skeletons and convex shape features. Hence,
our skeleton-based surface classifier shares several proper-
ties with curvature-based classifiers: sharp ridges (edges) are
detected more precisely than soft, blunt ridges; there is an
analogy between Gaussian filtering of the curvature signal
and geodesic-distance-based simplification of the skeleton,
whereby the Gaussian filter size and the skeleton importance
threshold both act as scale parameters.

However, there are also important differences. Our
skeleton-based classifier uses only integral computations,
and is hence inherently more robust than derivative-based
curvature methods. Also, the skeleton classifier can be
seen as a quasi-global operator, since our importance-based
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Figure 5: Brain skeleton partitioning. Top: partitioned medial sheets (color-coded). Bottom: medial intersection curves (color-

coded)

metric ‘gathers’ surface information that may come from
the same, but also very different, zones of the surface
(see [RVTO8]). In contrast, curvature estimators are strongly
local, as they only analyze a small neighborhood at each sur-
face point. Together, these facts explain the difference in ro-
bustness of the considered classifiers.

So far, we have shown how we can use skeletons to detect
curvature maxima, or convex ridges. Detection of minima,
or concave ridges, such as the sulcal fundi of a cortex sur-
face, is equally simple: For this, we only have to use the
skeleton of the volume’s background, all other details of the
method staying the same. Computing the background skele-
ton is equally easy and stable.

Concerning the computational efficiency: A brute-force,
not optimized, implementation of the 3D skeletonization
algorithm [RVTO8] takes around 12 minutes on the 256°
dataset, on a Windows PC at 3.0 GHz. An optimized imple-
mentation should be several times faster. After the skeleton

is available, the computation of the surface classifier is fast
(10-15 seconds).

8. Conclusions

In this paper we argued that 3D skeletons, which are often
seen as unreliable and unstable, can be used to perform a
number of basic processing operations on medical datasets.
As an example of such an operation, we showed that ro-
bust, multi-scale skeletonization of the cortical surface pro-
vides a robust and effective means for the classification of
voxel-based surfaces into highly convex (ridge) regions and
smooth areas. We show that skeleton-based classifiers are
less sensitive to discretization noise, due to their integral-
based construction, as compared to curvature-based classi-
fiers which use derivatives. We illustrate our method on dif-
ferent voxel datasets obtained from medical imaging scans.
‘We also discuss how our classifier, and the underlying skele-
ton, can be used as a first step in brain cortex analysis.

(© The Eurographics Association 2008.
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Future work involves the actual utilization of our classi-
fier for concrete medical imaging applications, such as the
extraction of sulcal fundi curves and surface segmentation,
as well as a more rigorous mathematical analysis of the con-
nection between our classifier and curvature metrics.
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Figure 6: Brain surface classification, different skeleton simplification levels T (see Sec. 5). Top: actual voxel classifier com-
puted. Bottom: ray-traced images of the same classifier
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Figure 7: Brain surface skeleton at three different simplification levels, colored by skeleton importance p
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