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Abstract: Computing curve skeletons of 3D shapes is a challenging task. Recently, a high-potential technique for this

task was proposed, based on integrating medial information obtained from several 2D projections of a 3D

shape (Livesu et al., 2012). However effective, this technique is strongly influenced in terms of complexity by

the quality of a so-called skeleton probability volume, which encodes potential 3D curve-skeleton locations.

In this paper, we extend the above method to deliver a highly accurate and discriminative curve-skeleton

probability volume. For this, we analyze the error sources of the original technique, and propose improvements

in terms of accuracy, culling false positives, and speed. We show that our technique can deliver point-cloud

curve-skeletons which are close to the desired locations, even in the absence of complex postprocessing. We

demonstrate our technique on several 3D models.

1 INTRODUCTION

Curve skeletons are well-known 3D shape descrip-

tors with applications in computer vision, path plan-

ning, robotics, shape matching, and computer anima-

tion. A 3D object admits two types of skeletons: Surface

skeletons are 2D manifolds which contain the loci of

maximally-inscribed balls in a shape (Siddiqi and Pizer,

2009). Curve skeletons are 1D curves which are locally

centered in the shape (Cornea et al., 2005).

Curve skeleton extraction has received increased at-

tention in the last years (Dey and Sun, 2006; Reniers

et al., 2008; Jalba et al., 2012; Au et al., 2008; Ma

et al., 2012; Tagliasacchi et al., 2009; Cao et al., 2010a;

Tagliasacchi et al., 2012). All these methods work in

object space, i.e. take as input a 3D shape description

coming as a voxel model, mesh, or dense point cloud.

Recently, Livesu et al. have proposed a fundamentally

different approach: They extract the curve skeleton from

a set of 2D views of a 3D shape (Livesu et al., 2012). Key

to this computation is the extraction of a volume which

encodes, at each 3D point inside the shape, the proba-

bility that the curve-skeleton passes through that point.

The curve-skeleton is extracted from this volume using a

set of postprocessing techniques. This approach has the

major advantage that it requires only a set of 2D views

of the input shape, so it can be used when one does not

have a complete 3D shape model. However, this method

strongly depends on the quality of the skeletal probabil-

ity volume.

We present here an extension of the view-based ap-

proach of Livesu et al., with the following contribu-

tions. First, we propose a different way for computing

the curve-skeleton probability and representing it as a

dense point cloud. On the one hand, this eliminates a

major part of the original proposal’s false positives (i.e.,

locations where a curve-skeleton point is suggested, but

no such point actually exists), which makes our proba-

bility better suited for further skeleton extraction. On the

other hand, our point-cloud model eliminates the need

for a costly voxel representation. Secondly, we propose

a fast GPU implementation of the point cloud compu-

tation which also delivers the skeleton probability with

higher accuracy than the original method. We demon-

strate our technique on several complex 3D models.

The structure of this paper is as follows. Section 2

overviews related work on 3D curve skeleton extraction.

Section 3 details the three steps of our framework: ex-

traction of accurate 2D view-based skeletons (Sec. 3.1),

a conservative stereo matching for extracting 3D skele-

ton points from 2D view pairs, (Sec. 3.2), and a sharpen-

ing step that delivers a point cloud narrowly condensed

along the curve skeleton (Sec. 3.3). Section 4 presents

several results and discusses our framework. Section 5

concludes the paper.



2 RELATED WORK

2.1 Preliminaries

Given a three-dimensional binary shape Ω ⊂ R
3 with

boundary ∂Ω, we first define its distance transform

DT∂Ω : Ω → R+ as

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x−y‖ (1)

The surface skeleton of Ω is next defined as

S∂Ω = {x ∈ Ω|∃ f1, f2 ∈ ∂Ω, f1 6= f2,

‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)}, (2)

where f1 and f2 are two contact points with ∂Ω of the

maximally inscribed disc in Ω centered at x, also called

feature transform (FT) points (Strzodka and Telea, 2004)

or spoke vectors (Stolpner et al., 2009). Here, the feature

transform is defined as

FT∂Ω(x ∈ Ω) = argmin
y∈∂Ω

‖x−y‖. (3)

Note that FT∂Ω is multi-valued, as an inscribed ball can

have two, or more, contact points f. Note, also, that

the above definitions for the distance transform, feature

transform, and skeleton are also valid in the case of a 2D

shape Ω ∈ R
2.

2.2 Object-space curve skeletonization

In contrast to the formal definition of surface skeletons

(Eqn. 2), curve skeletons know several definitions in the

literature. Earlier methods computed the curve skele-

ton by thinning, or eroding, the input voxel shape in the

order of its distance transform, until a connected voxel

curve is left (Bai et al., 2007). Thinning can also be used

to compute so-called meso-skeletons, i.e. a mix of sur-

face skeletons and curve skeletons (Liu et al., 2010). For

mesh-based models, a related technique collapses the in-

put mesh along its surface normals under various con-

straints required to maintain its quality (Au et al., 2008).

Hassouna et al. present a variational technique which

extracts the skeleton by tracking salient nodes on the in-

put shape in a volumetric cost field that encodes cen-

trality (Hassouna and Farag, 2009). Tagliassacchi et al.

compute curve skeletons as centers of point cloud pro-

jections on a cut plane found by optimizing for circular-

ity (Tagliasacchi et al., 2009). A good review of curve

skeletonization is given in (Cornea et al., 2007).

One of the first formal definitions of curve skele-

tons is the locus of points x ∈ Ω which admit at least

two shortest paths, or geodesics, between their fea-

ture points (Dey and Sun, 2006; Prohaska and Hege,

2002). This definition has been used for mesh mod-

els (Dey and Sun, 2006) and voxel-based models (Re-

niers et al., 2008). Curve skeletons can also be extracted

by collapsing a previously computed surface skeleton to-

wards its center using differents variants of mean curva-

ture flow (Tagliasacchi et al., 2012; Cao et al., 2010a;

Telea and Jalba, 2012). Alternatively, surface skele-

tons can be computed using a ball shrinking method (Ma

et al., 2012) and then selecting points which match the

geodesic criterion (Jalba et al., 2012). However, such

approaches require one to first compute the more expen-

sive surface skeleton.

2.3 View-based curve skeletonization

A quite different approach was recently proposed by

Livesu et al.: Noting that the 2D projection of a 3D

curve skeleton is close to the 2D skeleton of the pro-

jection, or view, of an input 3D shape, they extract curve

skeletons by merging 2D skeletal information obtained

from several views of the input shape Ω. Given two such

views Ci and C⊥
i , whose up-vectors are parallel and lines

of sight are orthogonal, the silhouettes Bi and B⊥
i of Ω

are first computed by ortographic projection of the input

shape. Secondly, the 2D skeletons S∂Bi
and S∂B⊥

i
of these

silhouettes are computed. Next, stereo vision is used

to reconstruct the 3D skeleton: Point pairs p ∈ SBi
and

p⊥ ∈ S
B⊥

i
are found by scanning each epipolar line, and

then backprojected into 3D to yield a potential curve-

skeleton point x1. The points x found in this way are ac-

cumulated into a so-called probability volume V ⊂ R
3,

which gives, at each spatial point, the likelihood to have

a curve-skeleton passing through that point.

The above method has several advantages compared

to earlier techniques. First, it can be used directly on

shape views, rather than 3D shape models, which makes

it suitable for any model which can be rendered in a

2D view, regardless of its representation (e.g. polygons,

splats, points, lines, or textures). Secondly, the method

can be easily parallelized, as view pairs are treated inde-

pendently. However, this method fundamentally relies

on the fast computation of a good probability volume

which contains a correct estimation of the curve skele-

ton location. This poses the following requirements:

1. a reliable and accurate stereo vision correspon-

dence matching, i.e. finding the correct pairs of

points (p∈ S∂Bi
, p⊥ ∈ S∂B⊥

i
) which represent the pro-

jection of the same curve skeleton point in the view-

pair (Ci,C
⊥
i );

2. an accurate and efficient representation of the prob-

ability volume V for further processing.

1Here and next, we denote by italics (e.g., p) the 2D pro-
jection of a 3D point p in a camera C



Requirement (1) is not considered by Livesu et al.,

where all possible point-pairs along an epipolar line

are backprojected. This generates, as we shall see in

Sec. 3.2.2, a large amount of noise in the probability

volume V . Removing this noise requires four relatively

complex postprocessing steps in the original proposal.

Secondly, the probability volume V is represented as a

voxel grid. This makes the method unnecessarily inaccu-

rate, relatively slow and hard to parallelize, and requires

large amounts of memory, thus contradicts requirement

(2).

In the following, we present several enhancements

that make view-based skeleton extraction compatible

with requirements (1) and (2). This allows us to extract

a high-accuracy probability volume for further usage in

curve skeleton computation or direct visualization.

3 ACCURATE PROBABILITY

VOLUME COMPUTATION

Our proposal has three steps (see also Fig. 1). First,

we extract regularized and subpixel-accuracy 2D skele-

tons from several views of the input shape (Sec. 3.1).

Next, we use additional view-based information to in-

fer a conservative set of correspondences between points

in such 2D skeleton pairs, backproject these in 3D, and

record the obtained points as a point cloud (Sec. 3.2).

Finally, we apply an additional sharpening step on the

3D point cloud, which directly delivers a highly accu-

rate curve-skeleton probability (Sec. 3.3).

3.1 Robust 2D Skeletonization

Given a shape Ω and camera specification C = (o,v,u)
described by its origin o, view direction v, and up-vector

u, we start by computing the silhouette B of Ω by ren-

dering the shape on the camera’s view plane (u,v×u).
Next, we compute the so-called salience 2D skeleton of

B using the technique presented in (Telea, 2012a). The

salience of a point p ∈ B is defined as

σ(p) =
ρ(p)

DT∂B(p)
(4)

Here, DT∂B(p) is the 2D distance transform of the sil-

houette boundary ∂B and ρ(p) is the so-called skeleton

importance

ρ(p) = max
f1,f2∈FT∂B(p)

‖γf1f2
‖ (5)

where FT∂B is the feature transform of the boundary

∂B, and γab is the compact boundary fragment between

two points a and b on ∂B. The importance ρ increases

monotonically from the endpoints (tips) of the skele-

ton towards its center. Intuitively, ρ(p) associates, to

each skeleton point p, the length of the longest bound-

ary arc (in pixels) subtended by its feature points. Upper

thresholding ρ with a value ρ0 will thus remove both

skeleton branches created by small boundary wiggles

and end-parts of important skeleton branches caused e.g.

by boundary corners. Figure 2 (top row) shows this ef-

fect for a silhouette B of a horse model. For ρ0 = 1,

we get the full 2D skeleton, which contains many spu-

rious branches. For ρ0 = 5, we get the desired skeleton

detail at the legs and head, but still have several spuri-

ous branches around the rump and neck. For ρ0 = 30,

we eliminate all spurious branches, but also loose rele-

vant portions of branches corresponding to the legs. This

is undesired, since, as we shall later see, we need the

important branches at their full length to reconstruct a

curve-skeleton reaching into all shape protrusions.

In contrast, the salience metric σ (Eqn. 4) delivers

a better result. As shown in (Telea, 2012a), σ is high

along the most important, or salient, skeleton branches,

and low elsewhere. Hence, we can threshold σ to obtain

the skeleton

S∂B = {p ∈ B|σ(p) > σ0} (6)

Equation 6 delivers a clean, regularized, skeleton

whose spurious branches are eliminated, and whose im-

portant branches extend all the way into the shape’s pro-

trusions. Figure 2 (bottom row) shows the saliency-

based regularization. For σ0 = 0, we obtain the same

full skeleton as for ρ0 = 1. Increasing σ0 over a value

of 0.05 practically removes all spurious branches, but

keeps the important ones un-pruned (see zoom-ins). As

such, we use the value σ0 = 0.05 further in our pipeline.

We further enhance the precision of the computed

skeleton by using the subpixel technique presented

in (Strzodka and Telea, 2004). As such, skeleton points

are stored as 2D floating-point coordinates rather than

integers. This will be important when performing the

3D stereo reconstruction (Sec. 3.2.2).

3.2 Accurate Correspondence Matching

We find potential 3D curve-skeleton points along the

same key idea of (Livesu et al., 2012): Given a cam-

era C = (o,v,u), where v points towards the object’s

origin, we construct a pair-camera C⊥ = (o⊥,v⊥,u⊥)
which also points at the origin and so that the two up-

vectors u and u⊥ are parallel. In this case, projected

points p in C correspond to projected points p⊥ in C⊥

located on the same horizontal scanline. Given such a

point-pair (p,p⊥), the generated 3D point x is computed

by triangulation, i.e. by solving

x = p+ kv = p⊥ + k⊥v⊥ (7)
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Figure 2: Skeleton regularization. Top row: Importance-based method (Telea and van Wijk, 2002) for three different threshold
values ρ0. Bottom row: Salience-based method (Telea, 2012a) for three different threshold values σ0.

where p and p⊥ are the 3D locations, in their respec-

tive view planes, corresponding to p and p⊥ respectively,

and k and k⊥ are the distances between x and the view

planes of C and C⊥. Note that p and p⊥ can be imme-

diately computed as we know the positions of p and p⊥

and the cameras’ positions, orientations, and near plane

locations.

3.2.1 Correspondence Problem

However, as well known in stereo vision, the success of

applying Eqn. 7 is fundamentally conditioned by hav-

ing the correct 2D points p and p⊥ paired in the two

cameras. Let us analyze this issue in our context: Con-

sider that a scanline y intersects a 2D skeleton shape in

m points on the average. Hence, we have m2 possible

point-pairs. These will generate m2 points in the 3D re-

construction, whereas in reality there are only at most

m such points – that is, if no occlusion is present. The

excess of m2 − m points are false positives. Given N

such camera-pairs placed uniformly around the object in

order to reconstruct its 3D curve skeleton, and consid-

ering a camera viewplane of P×P pixels, we have in

the worst case O(N(m2 −m)P) false-positive points in

the curve skeleton. The ratio of false-to-true positives

is thus Π = O
(

N(m2 −m)P)/(NmP)
)

= O(m). In our

measurements for a wide set of shapes, we noticed that

m = 5 on the average. Concretely, at an image resolution

of P2 = 10242 pixels, and using the setting N = 21 from

Livesu et al., we thus get over 400K false-positive points

generated in excess of the NPm ≃ 100K true-positive

skeleton points.

The above false-to-true-positive ratio Π is a conser-

vative estimate: Given a rigid shape Ω, the 2D skeleton

of its silhouette can change considerably as the silhou-

ette changes, even when no self occlusions occur. This,

and additional self-occlusion effects, reduce the true-

positive count and thus increases Π. This ultimately cre-

ates substantial noise in the curve-skeleton probability

estimation, and thus makes an accurate curve skeleton

extraction more complex.



3.2.2 Pair-culling heuristic

We reduce the false-to-true-positive ratio Π by using ad-

ditional information present in our cameras, as follows.

Consider a point p on a scanline L in C and all points

L⊥ = {p⊥i } on the same scanline in C⊥ (see Fig. 3 e).

The 3D reconstructions of all pairs (p, p⊥i ) lie along the

line p + kv (Eqn. 7). Hence, if we had an estimate of

the depth kest between the correct reconstruction and the

viewplane of C, we could select the best pair p⊥est for p

as

p⊥est = argmin
p⊥est∈L⊥

|kest − k| (8)

i.e. the point in C⊥ which yields, together with p, a

depth closest to our estimate. We estimate kest as fol-

lows: When we draw the shape in C, we also compute

its nearest and furthest depth buffers Z n and Z f , by ren-

dering the shape twice using the OpenGL GL LESS and

GL GREATER depth-comparison functions respectively.

Next, for each point p in the viewplane of C, we set

kest = 1
2
[Z n(p)+Z f (p)] (see Fig. 3 e).

It is essential to note that our heuristic for kest is not

an attempt to find the exact value of the depth k. In-

deed, if we could do this, we would not need to apply

Eqn. 8, as we could perform the 3D backprojection us-

ing a single view. We use kest only as a way to select

the most likely point-pair for 3D reconstruction. This

is argumented as follows: First, we note that the value

k for the correct point-pair must reside between Z n(p)
and Z f (p) - indeed, the reconstructed 3D point x must

be inside the object’s hull. Secondly, the curve skeleton

is roughly situated in the (local) middle of the object,

thus its depth is close to kest . Thirdly, we note that, when

the angle between the cameras’ vectors α = ∠(v,v⊥) de-

creases, then the depths ki yielded by Eqn. 8 for a set of

scanline-points p⊥i ∈ L⊥ get further apart. In detail, if

the distance between two neighbor pixels in the scanline

L⊥ is δ, the distance between their reconstructions using

the same point p in the other scanline L is ε = δ/sin(α),
see Fig. 3 c. Hence, if we use a small α (under 90deg), we

get fewer depths ki close to kest , so we decrease the prob-

ability that selecting the point whose depth is closest to

kest (Eqn. 8) will yield an incorrect point-pair for the 3D

reconstruction. In contrast, Livesu et al. use α = 90◦,

as this slightly simplifies Eqn. 7. Given that low α val-

ues reduce the likelihood to obtain false pairs using our

depth heuristic, we prefer this, and set α = 20◦.

Figure 3 shows the results of using our depth-based

pairing heuristic. Images (a) and (b) show the two skele-

tons S∂B and S∂B⊥ corresponding to the two cameras

C and C⊥ respectively. The brute-force many-to-many

correspondence pairing yields 6046 three-dimensional

points. As visible in Fig. 3 c, these points are spread

uniformly in depth along the view directions of the two

cameras. This is expected, since 2D skeleton pixels are

equally spaced in the image plane. For clarity, we dis-

played here only those points which pass the silhouette

and depth-culling, i.e. which are inside the object from

any considered view (see further Sec. 3.3). The dis-

played points in Fig. 3 c are thus final points in the curve-

skeleton probability volume delivered by many-to-many

matching.

Figure 3 d shows the reconstructed 3D points when

we use our depth-based pair-culling. Since we now only

have one-to-one pairs, we obtain much less points (721

vs 6046, see the explanations in Sec. 3.2.1). Moreover,

these points are located very close to the actual curve

skeleton, as shown by the top view of the model.

Given our conservative point-pair selection, as

shown in Fig. 4, we generate much fewer curve-skeleton

points than if using many-to-many pairing. Although

this is highly desirable for obtaining an accurate (false-

positive-free) curve skeleton, it also means that the curve

skeleton will be sparser than when using all possible

pairs. To counteract this, we simply use more view pairs

N. In practice, setting N ≃ 500 yields sufficiently dense

curve skeletons (see results in Sec. 4). An additional

advantage of using more views is that we do not need

to carefully select the optimal views for stereo recon-

struction, in contrast to the original method, where such

views are obtained by performing a principal component

analysis (PCA) on both the 3D shape and its 2D projec-

tions.

We further reduce the number of tested point-pairs

(Eqn. 8) by scanning L from left to right (for p) and L⊥

from right to left (for p⊥), As such, 3D points are gen-

erated in increasing order of their depth k, so |kest − k|
first decreases, then increases. Hence, we stop the scan

as soon as |kest − k| increases, which gives an additional

speed improvement.

3.3 Probability Sharpening

We collect the 3D points x (Eqn. 7) found by the depth-

based correspondence matching for a given camera-pair

(C,C⊥) in an unstructured point cloud C S . As C ro-

tates around the input shape, we keep testing that the

projections x of the accumulated points x ∈ C S fall in-

side the silhouette B in C, as well as within C’s depth

range [Z n(x),Z f (x)]. Points which do not pass these

tests are eliminated from C S . The depth test explained

above comes atop the silhouette test which was already

proposed by Livesu et al.. Whereas the silhouette test

constrains C S to fall within the visual hull of our in-

put shape, we constrain C S even further, namely to fall

within the exact shape. The difference is relevant for ob-

jects with cavities, whose visual hull is larger than the

object itself.



d) pair culling: 721 pairs

a) first view (C) b) second view (C⊥)

c) full pairing: 6046 pairs

C C⊥

v
⊥

v

C C⊥

v
⊥

v
C

scanline L⊥

v
⊥

v

p

pi
⊥

α

e) pair matching and triangulation

skeleton pixel 

resolution
δ

depth spread ε

scanline L

shape Ω

Zf(p)

Zn(p)

Zn(p)+Zf(p)

2

reconstructed

point x

selected p⊥
est

Figure 3: Correspondence matching for curve-skeleton reconstruction. A camera pair (a,b). Reconstructed 3D points when using
full pairing (c) and when using our depth-based pairing (d). Depth-based pairing and triangulation (e)

However closer to the true curve-skeleton than the re-

sults presented by Livesu et al., our C S still shows some

spread around the location of the true curve skeleton.

This is due to two factors. First, consider the inherent

variability of 2D skeletons in views of a 3D object: The

2D skeleton is locally centered with respect to the silhou-

ette (or projection) of a 3D object Ω. In areas where Ω
has circular symmetry, the 2D skeleton of the projected

3D object is indeed identical to the 2D projection of the

true 3D curve skeleton, i.e., skeletonization and projec-

tion are commutative. However, this is not true in gen-

eral for shapes with other cross-sections. Moreover, self-

occlusions, in the case of concave objects, will generate

2D skeletons which have little in common with the pro-

jection of the curve skeleton. It is important to stress that

this is not a problem caused by wrong correspondence

matching. Secondly, using a small α angle between the

camera pairs (Sec. 3.2.2), coupled with the inherent res-

olution limitations of the image-based skeletons, intro-

duces some depth estimation errors which show up as

spatial noise in the curve skeleton.

We further improve the sharpness of C S as follows.

For each camera C which generates a silhouette B, we

move the points x ∈ C S parallel to the view plane of

C with a step equal to ∇DT∂B. Since ∇DT∂B points to-

wards S∂B, this moves the curve-skeleton points towards

the 2D skeleton S∂B. Note that, in general, ∇DT∂B is not

zero along S∂B (Telea and van Wijk, 2002). Hence, to

prevent points to drift along S∂B, and thus create gaps in

the curve skeleton, we disallow moving points x which

already project on S∂B. Note also that this advection nev-

ers move points outside Ω, since S∂B is always inside any

sihouette B of Ω. Since the above process is done for all

the viewpoints C, the curve skeleton gets influenced by

all the considered views. This is an important difference

with respect to Livesu et al., where a 3D skeleton point

is determined only by two views.

Figure 4 shows the effect of our three improvement

steps: depth-based pairing (Sec. 3.2.2), depth culling,

and sharpening. All images show 3D point clouds ren-

dered with alpha blending. Figure 4 a shows the cloud

C S computed following the original method of Livesu et

al., that is, with many-to-many correspondence match-

ing along scanlines (Sec. 3.2.1). Clearly, this cloud con-

tains a huge amount of points not even close to the actual

curve skeleton. If we decrease the alpha value in the vi-

sualization, we see that this cloud, indeed, has a higher

density along the curve-skeleton (Fig. 4 b). We see here

also that naive thresholding of the density, which is quite

similar to decreasing the alpha value to obtain Fig. 4 b

from Fig. 4 a, creates problems: If a too low threshold is

used, the skeleton still stays thick; if a too high thresh-

old is used, the skeleton risks disconnections (see white

gaps in the neck region in Fig. 4 b).

Eliminating the large amount of false positives from

the cloud shown in Fig. 4 a is very challenging. To do
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Figure 4: Curve-skeleton probability point-cloud. (a) original method (Livesu et al., 2012). (b) Cloud in (a) displayed with lower
opacity. (c) Effect of depth-based pairing. (d) Effect of depth culling. (e) Effect of sharpening (see Sec. 3.3).

this, Livesu et al. apply an involved post-processing

pipeline: (1) voxelize the cloud into a voting grid; (2)

extract a maximized spanning tree (MST) from the grid;

(3) detect and prune perceptually salient tree branches;

(4) collapse short branches; (5) recover curve-skeleton

loops lost by the MST; and (6) smooth the resulting

skeleton; for details we refer to (Livesu et al., 2012).

Although this is possible, as demonstrated by the results

of Livesu et al., this post-processing is highly complex,

delicate, and time-consuming.

Fig. 4 c shows our curve-skeleton probability, ob-

tained with the center-based correspondence pair culling

(Sec. 3.2.2). The point cloud contains now around ten

times less points. Also, note that points close to the

true curve skeleton have been well detected, i.e., we

also have few false negatives. Applying the depth-based

culling further removes a small amount of false positives

(Fig. 4 d vs Fig. 4 c). Finally, the density sharpening step

effectively attracts the curve-skeleton points towards the

local skeleton in each view, so the overall result is a

sharpening of the point cloud C S , i.e. a point density

increase along the true curve skeleton and a density de-

crease further from the skeleton (Fig. 4 e).

4 DISCUSSION

Performance: We have implemented our method in

C++ with OpenGL and CUDA and tested it on a 2.8

GHz MacBook Pro with an Nvidia GT 330M graphics

card. The main effort is spent in computing the regu-

larized 2D salience skeletons (Sec. 3.1). We efficiently

implemented the computation of DT∂B, FT∂B, ρ, and σ
(Eqns. 1-4) using the method in (Cao et al., 2010b), one

of the fastest exact Euclidean distance-and-feature trans-

form techniques in existence (see our publicly available

code at (Telea, 2012b)). The remaining steps of our

pipeline are trivial to parallelize, as points and cam-

era views are treated independently. Overall, our entire

pipeline runs roughly at 500 frames/second. Given that

we use more views than Livesu et al., i.e. roughly 500

vs 21, our CUDA-based parallelization is essential, as

it allows us to achieve roughly the same timings as the

method of Livesu et al.
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Figure 5: Curve-skeleton probability point-clouds for several models (see Sec. 4).

Parameters: All parameters of the method are fixed and

independent on the input shape, i.e. skeleton saliency

threshold σ0 = 0.05 (Sec. 3.1), number of considered

views uniformly distributed around a sphere centered in

the object center N = 500 (Sec. 3.2.2), screen resolu-

tion P2 = 10242 pixels (Sec. 3.2.1), and angle between

the camera-pair view vectors α = 20◦ (Sec. 3.2.2). Less

views (N < 500) will generate sparser-sampled curve



skeletons, as discussed in Sec. 3.2.2. Decreasing the

pixel resolution generates slightly thicker point distri-

butions in the curve-skeleton cloud. This is expected,

since we have less and coarser-spaced 2D skeleton pix-

els, which also implies higher depth estimation errors

(Eqn. 7). Decreasing α under roughly 5 degrees gener-

ates too large inaccuracies in the depth estimation; in-

creasing it over roughly 30 degrees reduces the likeli-

hood of good correspondence pairing; hence, our setting

of α = 20◦.

Results: Figure 5 shows several results computed with

our method. The produced curve-skeleton clouds con-

tain between 100K and 300K points. We render these

clouds using small point splats of 2 by 2 pixels, to make

them more visible. The key observation is that our skele-

ton point clouds are already very close to the desired 3D

location, even in the absence of any cloud postprocess-

ing. In contrast, the equivalent point clouds delivered by

the method of Livesu et al. are much noisier (see exam-

ple in Fig. 3 a and related discussion in Sec. 3.2.2), and

thus require significant postprocessing to select the true-

positives. Since our point clouds are much sharper, we

can directly use them for curve-skeleton visualization,

as shown in Fig. 5. If an explicit line representation of

such skeletons is desired, this can be easily obtained by

using e.g. the curve-skeleton reconstruction algorithm

described in (Jalba et al., 2012), Sec. VIII-C. Thin tubu-

lar skeleton representations can be obtained by isosur-

facing the density field induced by our 3D point cloud.

In this paper, we refrained from producing such recon-

structions, as we want to let our main contribution stand

apart – the computation of noise-free, accurate point-

cloud representations of the curve skeleton probability.

Comparison: Figure 6 compares our method with sev-

eral recent curve-skeleton extraction methods. As visi-

ble, our curve skeleton has the same overall structure and

positioning within the object. However, differences ex-

ist. First, our method produces smoother curve skeletons

than (Dey and Sun, 2006) and (Jalba et al., 2012). This is

due to the density sharpening step, which does not have

an equivalent in the latter two methods. Also, (Au et al.,

2008) requires a so-called connectivity surgery step to

repair the curve skeleton after the main Laplacian advec-

tion has completed. This necessary step has the unde-

sired by-product of creating straight-line internal skele-

ton branches (Fig. 6 d, palm center). Secondly, we cor-

rectly find the skeleton’s ligature and internal branches.

This is also the case for all other methods except (Livesu

et al., 2012), where all skeleton branches are merged in a

single junction point (Fig. 6 b). This fact is not surpris-

ing, given the branch collapsing postprocessing step in

the latter method. It is not clear to us why this step is re-

quired (or beneficial), as it actually changes the topology

of the skeleton, and thus may impair operations such as

shape analysis or matching.

Properties: Our method maintains all of the desir-

able properties of curve skeletons advocated by related

work (Cornea et al., 2007; Au et al., 2008; Tagliasac-

chi et al., 2012; Livesu et al., 2012; Jalba et al., 2012):

Our skeletons are thin and locally centered within the

object. Higher-genus objects (with tunnels) are handled

well (see rabbit and rotor models, Fig. 5). The method

is robust against noise, due to the sharpening step (see

dino and armadillo models, Fig. 5). Thin, sharp de-

tail protrusions of the models generate curve skeleton

branches, as long as these parts project to at least 1 pixel

in screen space (see neptune, spider, and rabbit mod-

els, Fig. 5). This is due to the usage of the 2D skele-

ton saliency metric, which keeps 2D skeleton branches

reaching into such salient shape details (Sec. 3.1). Input

model resolution, e.g. polygon count, is largely irrele-

vant to the end result, since 2D skeletons are computed

in image space.

Limitations: Our method cannot recover complete

curve skeletons for shape parts which are not visible

from any viewpoint, i.e., permanently self-occluded.

This is an inherent problem of view-based 3D recon-

struction. For such shapes, the object-space skeletoniza-

tion methods mentioned in Sec. 2 should be used.

5 CONCLUSIONS

We have presented a new method for computing

curve-skeletons as unstructured point clouds. Our

method extends the view-based curve-skeleton extrac-

tion of Livesu et al. in several directions: (1) Us-

ing salience-based skeletons to guarantee preservation

of terminal skeleton branches, (2) using depth infor-

mation to reduce the number of false-positives in the

3D skeleton reconstruction, and (3) sharpening the ob-

tained point-cloud representation to better approximate

the 1D singularity locus of the curve skeleton. We trade

off speed for accuracy, by generating more conserva-

tive skeleton samples and using more viewpoints. How-

ever, by using a GPU implementation, we achieve the

same speed as the original method, but deliver a much

cleaner and sharper 3D skeleton point-cloud approxima-

tion. Overall, our method can be used either as a front-

end for reconstructing line-based representations of 3D

curve skeletons, or for directly rendering such skeletons

as unstructured point clouds.

Future work can improve the point matching accu-

racy, for example by using optical flow models or ex-

ploiting geometric variability properties of 2D skeletons.

Separately, implementing the 3D geodesic-based curve-

skeleton detector of (Dey and Sun, 2006) by using the

2D collapsed boundary metric ρ (Eqn. 5) is a promis-
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Figure 6: Comparison with related methods: (a) our method; (b) (Livesu et al., 2012); (c) (Telea and Jalba, 2012); (d) (Au et al.,
2008); (e) (Dey and Sun, 2006); (f) (Jalba et al., 2012); (g) (Reniers et al., 2008) (see Sec. 4)

ing way for recovering highly accurate curve skeletons

in this view-based framework.
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