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Abstract: We present a novel set of techniques for visualization of very large data sets encoding flight information
obtained from Air Traffic Control. The aims of our visualization are to provide a smooth way to explore the
available information and find outlier spatio-temporal patterns by navigating between fine-scale, detail, views
on the data and coarse overviews of large areas and long time periods. To achieve this, we extend and adapt
several image-based visualization techniques, including animation, density maps, and bundled graphs. In
contrast to previous methods, we are able to visualize significantly more information on a single screen, with
limited clutter, and also create real-time animations of the data. For computational scalability, we implement
our method using GPU-accelerated techniques. We demonstrate our results on several real-world data sets
ranging from hours over a country to one month over the entire world.

1 INTRODUCTION

In the last years, the availability of large and accu-
rate data sources describing the motion of various types of
vehicles, e.g. airplanes, vessels, automobiles, and pedes-
trians, has massively increased (Andrienko et al., 2007;
Keim et al., 2007; Andrienko et al., 2011; Andrienko
et al., 2012; PlaneFinder, 2013). The availability of such
movement data sets can help in a wide range of analy-
ses and use-cases, such as Air Traffic Control (ATC), epi-
demics propagation, and crisis situation analysis.

Within this context, we focus on the analysis of air-
plane movement data sets. Such data sets consist of sev-
eral airplane trajectories, or trails, each one being in turn
a temporal sequence of data points describing the posi-
tion, height, velocity, flight direction vector (and possibly
more attributes) of a single airplane over its flight time
span. Visualization of flight trails can assist in numer-
ous ATC scenarios, such as finding and explaining histor-
ical flight outliers; understanding the correlation between
flight congestion and weather patterns; training of ATC
controllers; and better planning of flight routes over given
spatio-temporal intervals (Bilimoria et al., 2001; Hurter
et al., 2009; Hurter et al., 2013; Thales, Inc., 2013; Euro-
control, 2013).

However, visualizing large trail data sets poses several
challenges, of which we consider here the following:

Computational scalability: Movement data sets are by
their nature orders of magnitude larger than their static
counterparts. For instance, Fig. 1 shows a single day of air
traffic over France, which contains 20K trajectories, each

having hundreds of data points (one data point is recorded
every 4 minutes). A data set for the air traffic over the
entire world and over several weeks will easily have mil-
lions of trails. Generating real-time visualizations from
such data sets is clearly a computational challenge.

Visual scalability: Besides the computational challenge,
large trail data sets will also contain many high-density
traffic regions. In turn, visualizing such regions will
create visual clutter and occlusions. Moreover, if we
want to depict not just spatial positions, but additional
attributes such as speed, flight ID, and flight height, the
information density increases even further.
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Figure 1: (a) Flights over France, July 5th, 2006, visualized
with (Hurter et al., 2009), color-coded by height. (b) Zoom-in
over Paris area.

In this paper, we present a visualization system for
air traffic that aims to address the above challenges. In
contrast to ATC systems that address more specific use-



cases (Thales, Inc., 2013; Eurocontrol, 2013; Gaspard-
Boulinc et al., 2003; Hurter et al., 2009), our goal is
to efficiently and effectively visualize attributed trails
over large time and space intervals. We achieve visual
scalability by several level-of-detail, or multiscale, tech-
niques: animation, density maps, and graph bundling.
We achieve computational scalability by implementing
the above techniques efficiently on the GPU. Overall,
our contribution extends earlier work in trail visualiza-
tion (Scheepens et al., 2011; Hurter et al., 2009; Hurter
et al., 2013) with several temporal attributes, on the one
hand, and making the visualization suitable for large data
sets, on the other hand. We demonstrate our visualization
on both medium-scale data sets (French air traffic, one
week) and very large data sets (the world, one month).

The structure of this paper is as follows. Section 2
overviews related work in the area of trail visualiza-
tion. Section 3 introduces the proposed visualization tech-
niques. Section 4 presents several visualization results for
the analysis of country-scale and world-scale air traffic.
Section 5 discusses our techniques. Section 6 concludes
the paper.

2 RELATED WORK

Visual air traffic analysis techniques and tools can be
roughly divided into two classes, as follows.

Decision support systems, such as ATC systems, typi-
cally handle low-to-moderate size data sets, such as the
region over an airport or city (Fig. 1 b), or thousands
of trails over larger geographical areas. These tools
provide sophisticated query mechanisms to support
various ATC tasks. The Future ATM Concepts Evaluation
Tool (FACET) is capable of quickly generating and
analyzing thousands of aircraft trajectories (Bilimoria
et al., 2001). It provides a simulation environment for
the climb, cruise, and descent phases of an aircraft’s
flight. Traffic patterns are shown in 2D and 3D, under
various current and projected conditions for specific
airspace regions. Similar systems have been developed
by Eurocontrol, the European Organization for the Safety
of Air Navigation. For example, the Network Strategic
Tool (NEST) (Eurocontrol, 2013) is a tool used by air
traffic practitioners for airspace structure design and
development, capacity planning and post-operations
analysis, the organization of traffic flows, the preparation
of scenarios for fast time simulations, and ad-hoc studies
at local and network level. EPOQUES (Gaspard-Boulinc
et al., 2003) is a tool which gathers and analyzes radar
recordings and audio communications. It proposes
underlying techniques to treat Air Traffic Management
(ATM) safety occurrences, such as helping operators
to detect and analyze situations when two aircraft go

beyond safety distance. CoFlight (Thales, Inc., 2013)
is a flight data processing (FDP) open-architecture
framework for the storage, analysis, and visualization
of 4D (spatio-temporal) flight data. A comprehensive
list of over 50 ATC-related systems and tools is given
in (GAIN Group, 2004). While such systems emphasize
the importance of visualization for ATC systems, they
all lack high visual scalability and/or the ability to show
multiple data attributes at the same time. Specifically,
there is no way to continuously navigate between the
different levels of abstraction, which makes it harder to
link global and local scale patterns.

Exploration systems, in contrast to decision support sys-
tems, aim at showing as much traffic data to the user as
possible, without prior filtering, so the user can spot un-
expected behavior. By next detecting outlier and/or main-
stream patterns in such visualizations, users can focus on
a subset of the data, and refine their understanding thereof.
Many such systems employ a space-filling (also called
dense-pixel, or image-based) metaphor (Mansmann et al.,
2007): By trying to use each screen pixel to convey data,
users can explore larger data sets on a wider range of lev-
els of abstraction, from fine-grained and local patterns to
coarse global patterns. Image-based techniques also nat-
urally map to GPU implementations, which helps their
computational scalability. For instance, (Willems et al.,
2010) use density maps to show thousands of trajecto-
ries of nautical vessels on 2D maps and also to empha-
size high-congestion areas. By next combining several
density maps, a few attributes can be analyzed simultane-
ously (Scheepens et al., 2011). (Lambert et al., 2010b)
use GPU techniques to quickly compute uncluttered lay-
outs of large aircraft trajectories in both 2D and 3D (Lam-
bert et al., 2010a). The FROMDADY system allows in-
teractive linking and brushing of airplane trails to support
complex queries in the entire attribute space recorded in
the data set (Hurter et al., 2009). Density maps are effec-
tive to tackle the visual scalability problem, by aggregat-
ing spatially close information for trajectory analysis (An-
drienko et al., 2011; Andrienko et al., 2012; Marzuoli
et al., 2012). Multimodal interactions help users in posing
complex queries with little effort (Letondal et al., 2013).
Bundling techniques are effective in showing the coarse-
scale connectivity structure of a set of trails that link a set
of spatial locations in a clutter-free manner (Hurter et al.,
2012; Holten and van Wijk, 2009; Ersoy et al., 2011; Cui
et al., 2008). Bundling can also be used to show the dy-
namics of trails, e.g., how flight patterns change over a
geographical area over a week (Hurter et al., 2013). Fo-
cus+context interaction techniques help in further reduc-
ing clutter and posing complex spatial- and data- queries
in trajectory visualizations (Hurter et al., 2011; Krüger
et al., 2013).



3 VISUALIZATION TECHNIQUES

We now introduce our image-based visualization tech-
niques for plane trails. Throughout the exposition, we use
as running example the one-week French air traffic data
set from (Hurter et al., 2013) (52K flights, about 900K
recorded plane positions).

3.1 Data model

We model a flight path, or trail T , as a sequence of points

T = {pi = ((x,y) ∈ R2,h ∈ R+, t ∈ R+)i} (1)

which we order along increasing values of ti. The points
pi hold recorded samples of the plane’s position (x,y), fly-
ing altitude h, and possibly additional quantities such as
ground and air speed. Our data set is thus a collection
T S = {Ti}. Attributes can be also defined at the trail level,
e.g., the flight ID. At an even higher level, we can have at-
tributes at the level of a group of spatially-and-temporally
close trails, which we call a trail bundle (Hurter et al.,
2013).

3.2 Multivariate animated visualization

Our main visualization techniques are animation and den-
sity maps, akin to (Scheepens et al., 2011; Willems et al.,
2010). However, we take several different design deci-
sions, leading to a different visualization, as follows.

First, we consider four instantaneous attributes (that
is, sampled at all moments ti, Eqn. 1):

A1: instantaneous positions of in-flight airplanes;
A2: height along flight trails;
A3: flight directions along trails;
A4: airplane flight speed along their flight trails.

Next, we construct a density map

ρ(x) = ∑
T∈T S

∫
p∈T

K
(

x−p
h

)
(2)

by convolving the trail-set with a Gaussian or Epanech-
nikov (parabolic) kernel K of width h. ρ is subsequently
interpreted as luminance to become the background of the
visualization, similarly to (Scheepens et al., 2011). How-
ever, in contrast to (Scheepens et al., 2011), we use the
density map only as a context visualization atop of which
our actual fine-grained animation takes place, whereas
(Scheepens et al., 2011) use the density map as their prime
visualization vehicle. Figure 2 a shows the density map
for the French airline data set. Bright white-gray areas
show regions of intense traffic for the entire considered
time range. Dark gray regions indicate areas where few or
no flights were recorded in this period.

Next, we consider a so-called sliding time-window
w(t) = [t, t +∆], which moves with constant speed (given

by a user-controlled animation setting) over the consid-
ered time range. Given this time-window, we select all
data points pi ∈ T S for which ti ∈ w(t). Rather than
drawing entire trails T atop of the background, such as
e.g. (Scheepens et al., 2011) or (Hurter et al., 2013), we
now consider trail segments T∆(t) which contain all trail
sample points falling in w. We draw these trail segments,
textured with a transparency (alpha) texture. This texture
is built by placing at the sample point positions pi a train
of 1D Gaussian half-pulses φi tangent to the trail segments
(pi,pi+1). The pulses φi are scaled so that they are 1 at the
location of pi and near zero at a distance δvi downstream
the flight path, where vi is the instantaneous plane speed
at pi and δ is a user-set parameter. The final texture is built
by modulating the pulses φi with a large 1D Gaussian en-
velope Φ∆ placed over w and summing up the modulated
values (see Fig. 3).

Texturing serves two purposes, as follows. First, set-
ting both ∆ and δ to very low values creates images where
the arrow-like (high to low alpha) shapes created by φi,
and their motion due to the sliding window, shows the in-
stantaneous plane positions at a given time moment (A1)
as well as their motion along trails (Fig. 2 a). In con-
trast, setting δ to low values but ∆ to larger values creates
‘trains’ of arrow-like shapes that slide along trails. Fig-
ure 2 b shows a snapshot from such an animation. Here,
short pulses indicate slow-motion planes – indeed, slower
planes mean closer-spaced sample points, thus shorter
pulses. Analogously, longer pulses show fast planes. Fi-
nally, we can add a third attribute to the visualization by
using color mapping. For instance, in Fig. 2 b (inset),
we use a blue-to-red (rainbow) color map to map altitude.
We see here a fine-grained blue trail segment indicating a
slow, low-altitude, outlier flight in an area with fast (long
pulses) and higher (green) flights (A4).
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Figure 3: Construction of directional pulses for animation.

Increasing both δ and ∆ also allows us to smoothly
navigate from instantaneous views on the data to more
global views. Figure 2 c shows this for ∆ set to roughly
8 hours and δ to 4 hours respectively for our one-week
flight data set. Colors map flight altitude (A2). Blue
spots indicate regions densely populated by landing zones
(airports). Warm lines show in-flight routes. By look-
ing at the latter, we can see that most studied flights have
the same altitude. This observation correlates with flight
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Figure 2: Animated multivariate visualization, French airline data set. (a) Instantaneous plane positions, with color-coded height. (b)
Trail segments over short time periods, with color-coded height. Trails over entire studied one-week period with color coding height
(c) and direction (d).

rules for civil aircraft for the studied territory (France).
Figure 2 d shows a similar map, with trails colored now
using a directional hue color map (see color wheel in
the image), thus addressing A3 over the entire studied
time period. Directional color coding lets us discover
several close-and-parallel, opposite-direction, flight paths,
e.g. A1,A2; B1,B2, C1,C2 and D1,D2 (going southwest-
northeast and conversely); and E1,E2 (going roughly
northwest to southeast and conversely). Similar patterns
(not shown here for conciseness) exist for almost all the
other similar-size time intervals in the studied 7-day pe-
riod. From such images, we can conclude that flights
linking pairs of airports follow parallel paths but are struc-
turally not overlapping in space.

However useful in showing the flight directions,
flight speed, and overall flight locations, the above
visualizations suffer from a certain amount of clutter,
especially for large values of ∆. Indeed, in such cases,
our trail-segment set contains many crossing flights,
especially in high-density areas such as close to airports.
Understanding flight patterns in such areas is important
for many ATC planning tasks (Letondal et al., 2013;
Hurter et al., 2009). We further help users in getting
clearer, less cluttered, insight in such areas by using
several transfer functions, as follows:

Alpha transfer function: Consider, for instance, that we
are interested in low-altitude flight segments (close to air-
ports). To focus on these regions, we modulate the pulse
textures φi with a transfer function f (h) = ( hmax−h

hmax
)kα ,

where h and hmax are the altitude and its maximum
value respectively. Values of kα < 1 render low-altitude
trail segments gradually transparent, allowing to focus
on the high-altitude ranges. Values of kα > 1 render
high-altitude trail segments more transparent, allowing to
focus on low-altitude ranges.

Color transfer function: Consider, for instance, that we
color map the altitude attribute. If we are interested in fo-
cusing on altitude variations for the low-altitude (close to
airport) range, we need to dedicate more dynamic range to
this signal range. To do this, we apply a transfer function
f (x) = xkcolor to the normalized altitude attribute prior to
color mapping. Values of kcolor < 1 emphasize high alti-
tude ranges. Values kcolor > 1, in contrast, emphasize low
altitude ranges.

Figure 4 shows the effects for our French airline data
set. Image (a) shows the effect of kcolor = 1 and kα = 2.
As the high-altitude trail segments become more trans-
parent, we can now better focus on the airport zones and
thus the landing and take-off trail segments. These are ap-
parent on the image as colder colors (blue). Image (b),
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Figure 4: Emphasizing specific flight ranges and decreasing occlusion by color and alpha transfer functions.

taken for a longer time-window ∆ value, shows the effect
of kcolor = 0.5 and kα = 1.5. We see now more and longer
trails, since ∆ is longer. However, the clutter due to over-
draw stays limited, due to the fading out of high-altitude
trail segments caused by kα. The low kcolor value allows
us to visually separate the warm-colored cruise trail seg-
ments (which have higher altitude) from the cold-colored
landing and takeoff segments (which have lower altitude).
Images (c-e) show three snapshots from our one-week
period taken at different moments of the morning and
evening, for ∆ = 30 minutes. Here, by using kα = 3,
we are able to de-clutter even more of the crowded air-
port regions, and see the so-called ‘approach lanes’ of the
planes, i.e. the general paths that planes take when taking
off or landing at an airport. Although images (c-e) are for
three different days and two different times of day, we no-
tice that the approach lanes above the Paris area are quite
similar. This is not a trivial finding since, if we look at
other times of day, such patterns are quite different. The
found explanation (in discussions with ATC controllers)
is that planes that land and/or take off early in the morn-
ing or late in the evening are typically long-distance hauls,
which have more stable approach lanes than shorter-range
flights common during the day.

3.3 Animation and bundling

As shown so far, our flight visualization offers several
scales, or levels of detail, at which the data can be ex-
amined – ranging from instantaneous plane positions to
trail fragments and ending with large trail sets over sev-
eral days. However, apart from this temporal multiscale,
we can also exploit the spatial multiscale of our trail data.
Looking at e.g. Fig. 2 d, we see that trails come naturally
grouped in sets of closely spaced, relatively parallel, trails.
This observation has been exploited by many bundling al-
gorithms that simplify the visualization by bringing to-
gether all trails in such sets, e.g. (Hurter et al., 2012;
Holten and van Wijk, 2009; Ersoy et al., 2011; Cui et al.,
2008). The resulting images, although they distort the
spatial information, are much more effective than trails in
showing the connectivity patterns between airports, and
how these change in time.

Recently, (Hurter et al., 2013) have shown how trail
bundling can be applied to airline trails, by applying the
efficient and robust KDEEB bundling algorithm (Hurter
et al., 2012) to a so-called streaming graph containing
only trails whose start time moment falls within a sliding
time-window. However, their solution does not show any
additional attributes atop of the emerging bundles, such
as flight directions, height, or speed. We extend here this
approach, by combining bundling with our multivariate
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Figure 5: Emphasizing airport connection patterns by trail bundling.

attribute-based animations. In detail, we apply (Hurter
et al., 2013) to trails selected by our time-window w(t).
This delivers a set of bundled trails. Next, we project on
these trails the attribute values of the corresponding sam-
pling points (for identical time moments) from the origi-
nal, unbundled, trails. Finally, we use the visualizations
described in Sec. 3.2 to create the final images.

Figure 5 illustrates this. Images (a,b) use the same
color coding as in Fig. 2 d. However, the trails are now
given by two frames of the bundled flight graph, which
correspond to two moments in two different days in our
one-week data set. Since trails are bundled, geograph-
ical (spatial) information is lost: Bundles indicate now
just connections between airports, rather than actual flight
paths. Still, directional color-coding is useful to show
temporal insights. First, we see that the connection pattern
is roughly identical for the two studied moments. Flights
in bundles A and B keep their directions over time, re-
spectively northwest (green) and southeast (pink). Flights
in the big central white bundle structure C go equally in
both directions at both studied moments, since white is the
result of additively blending opposite colors in our color
map. In contrast, flights in bundle D go southwest (yellow
D1 in Fig. 2 e) and then return northeast at moment 2 (blue
D2 in Fig. 2 f). All the other visualizations described in
Sec. 3.2, such as animating pulses along bundles to show
flight directions, or using transfer functions to focus on
specific data ranges, are further available.

3.4 Congestion detection

An important and frequently occurring task in movement
data analysis is detecting and examining so-called con-
gestion areas, i.e. spatial zones where many vehicles are
present at a given time moment (Scheepens et al., 2011;
Hurter et al., 2009). In ATC, such areas are particularly
important to prevent air traffic congestion and, thus, de-
lays or an increase in fuel consumption. On smaller spa-
tial scales, congestion areas become collision areas, i.e.
zones where a high risk of vehicle collision exists. Corre-

Figure 6: Congestion detection. The kernel size corresponds to
a time-interval of 30 minutes. Alpha blending is used to focus
on higher flights.

lating the appearance of such zones with other parameters
can give important insights in the reasons why such prob-
lems occurred and ways to solve them (Eurocontrol, 2013;
Gaspard-Boulinc et al., 2003; Bilimoria et al., 2001).

An early, and relatively simple, approach to conges-
tion area detection was given by (Scheepens et al., 2011):
By visualizing the density map ρ (Eqn. 2), we can detect
zones of high vehicle densities. However, this solution
was proposed in a static setting: There is a single density
map computed for the entire studied time period. As such,
dynamic congestion patterns that occur and disappear on
smaller time-scales are not visible. Secondly, this basic
solution does not assume there is a higher probability of
collision in the direction of vehicle motion and for rapid
vehicles than for other situations.

We extend this idea by using anisotropic kernels K in
Eqn. 2. In contrast to the isotropic radial kernel, such ker-
nels are larger in the direction of instantaneous motion
of a vehicle than in other directions. A simple way to
implement this is to use e.g. elliptic kernels whose large
axis is tangent to the trail and scaled to be equal to the
instantaneous velocity. A further refinement involves us-
ing asymmetric kernels, which are longer in the motion



direction than in the opposite direction, thereby modeling
the fact that congestion or collision is more probable in
front of a moving vehicle than behind it. Other kernels
can be immediately used to model other types of conges-
tion probabilities, as and when desired.

Figure 6 shows the result of visualizing this conges-
tion density map for the French airline data set. Here,
we color mapped the quantity max(ρ−1,0) to a rainbow
color map. Indeed, ρ is by construction equal or larger
than 1 at every plane location, and only values larger than
1 indicate a congestion probability, i.e., the overlap of two
kernels corresponding to two different planes. We also
used kα = 0.2 to focus on higher-altitude trail segments, as
we are more interested to detect and assess in-flight con-
gestion rather than congestion close to or on the airstrips.
The kernel size was set to be equivalent to a duration of
30 minutes, thereby modeling a use-case where if sev-
eral planes at high altitude get closer to each other than
a flight time of 30 minutes, we consider the area as being
congested. The red patterns visible in the image delineate
quite clearly the emerging congestion patterns. These pat-
terns are not (easily) visible using any of the earlier-used
visualizations. We notice that the congestion areas are, in
most cases, well aligned with the the main flight routes,
which is expected. However, we also see a few red blobs
which do not follow the elongated structure parallel to
these routes. These indicate congestion areas that occur
at the intersection of several routes rather than on a single
route.

4 RESULTS

We used our visualization to analyze several data
sets over different space and time periods. Statistics for
the data sets shown in this paper are given in Tab. 1.
Besides the French data set, we show also a data set
with three days of flights over Europe and one with
one-month flights over the entire world. Our goal was
the explorative scenario outlined in Sec. 2: Given a large
and unknown data set, can we (as users) quickly form
a general impression on the distribution of flights in
terms of spatial location, direction, speed, and height?
Secondly, can we discover outlier flight patterns, which
diverge, in some significant way, from the overall flight
patterns in the same data set? Below we present several
of our findings.

Outlier landing/takeoff patterns: In Fig. 4 (d-e), we
found that landing/takeoff patterns over the Paris area, for
three moments, are quite similar. However, we cannot
generalize to infer that such patterns are constant for all
moments. Also, the zoom level in Fig. 4 is too low, so po-
tential small-scale pattern changes would not be visible.

We repeated the experiment shown in Fig. 4 (d-e) at

Statistics French Europe World
air-traffic air-traffic air-traffic

start date 06/04/2008 01/06/2013 01/06/2013
end date 12/04/2008 03/06/2013 30/06/2013
# flights 52547 50984 748057

# sample 870880 873240 14711646
points
Table 1: Data set statistics for examples in this paper.

a finer zoom level. Also, we set ∆ to 24 hours, to show
more data in one animation frame, thereby allowing us
to move the animation faster to cover a longer time pe-
riod quicker. Next, we watched the animation for our
one-week data set. Pattern changes are easily spotted as
changes in the animation. We thus discovered that pat-
tern changes indeed exist. Figure 7 shows three frames
from this animation, for three different days. We quickly
see that the Saturday traffic is much more intense than on
Sunday and Tuesday. This confirms the expected week
variation of flight patterns. More interestingly, the Tues-
day landing/takeoff routes are quite different than the ones
for the other two days. To explain this further, we looked
up data for wind direction around the Paris area for these
three days, and found out that the wind patterns on Tues-
day were quite different than for the other two days. This
explains our finding, as ATC rules indicate that land-
ing/takeoff flight segments are indeed computed based on
wind directions.

Global flight patterns: We now consider a larger data
set, covering the entire world. The data, available on-
line (PlaneFinder, 2013), is gathered continuously by hob-
byists that record ADS-B plane feeds (ADS-B, 2013) used
by commercial and private planes to transmit their name,
position, altitude, call sign, status, and other information,
and consolidated into a global server. ADS-B is gradu-
ally replacing radar as the most efficient method for ATC,
so our visualizations will potentially become directly rel-
evant for ATC-related tasks in the near future. In contrast
to the French airline data set, obtained directly from the
French ATC authorities, the world data set is far less uni-
formly sampled, depending on the position of hobbyist
receivers throughout the world. However, this data set is
orders of magnitudes larger (see Tab. 1). We processed
this data to create the trails data set necessary for our vi-
sualization, by matching IDs of the same flight, removing
duplicate sample points (coming from different beacons),
and separating flights having the same ID that occur dur-
ing different days.

Figure 8 shows an overview of the world traffic on
June 1, 2013. Image (a) is a snapshot from (PlaneFinder,
2013), showing plane positions at one moment during the
day with icons. Besides flight densities, little is visible
on this image. Image (b) shows our visualization of flight
routes for that day, color-coded by flight direction. As for
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Figure 7: Height-colored trails over a duration of 24 hours with an alpha-based emphasis on low flights (and airports). We see a clear
difference in landing directions Sunday vs Tuesday. Saturday shows a significant increase in traffic around Paris.

the smaller French data set (Fig. 2 d), we see here too that
flights linking the same (close) airports but having differ-
ent directions follow parallel, but separated, lanes – such
as the broad one between Europe and the US. However,
the densely flown regions, such as Europe, are too clut-
tered at this scale. One solution to de-clutter is to reduce
the parameters δ and ∆, to focus on shorter time-ranges.
Image (c) shows this result. Here, the arrow-like glyphs
become visible and as such indicate the flight directions
more clearly (see insets). As such, the European region
also becomes more de-cluttered. To further de-clutter and
obtain local detail, we zoom in over Europe (image (d)),
and increase back δ and ∆ to see full one-day trails, like
in image (b). We can again see here the lane separation
patterns, such as the one linking the Canary islands with
the mainland and connecting the main hubs, e.g. London,
Paris, and Amsterdam with the rest of the map. Image (e)
shows the same region, this time color-coded by altitude.
Low-flight zones such as airport areas are blue, and cruise
segments are green. We see that the average cruise heights
over Europe are quite similar. The sizes of the blue spots
indicate the extent of low-flight zones close to airports. In-
terestingly, the entire of south-east Britain is such a zone,
which is not crossed by any high-altitude flight (yellow
trails). In contrast, the Paris area shows a similarly-sized
blue zone, but which gets crossed by quite many high-
altitude flights. Image (f) shows the Europe traffic with
trail bundling, colored by flight directions. We notice here
many white bundles: These are parallel and close trails
which have nearly equal counts of flights in opposite di-
rections. Indeed, since the KDEEB algorithm works by
grouping trails in distance order, trails that end up in the
same bundle are by construction the closest ones to that
bundle’s location. And, secondly, since trail colors are
additively blended and we use directional hue-coding, we
achieve gray (or white) when a bundle contains (nearly)
equal trail amounts running in opposite directions. We
can thus infer that most trail groups over Europe over the

considered day contain roughly equal numbers of flights
in opposite directions. This situation was different for
the two considered day moments for the French airspace
shown in Fig. 5. Thus, we infer that, at a coarser day-over-
Europe scale, air traffic is more balanced. Finally, we see
in Fig. 8 f also a few outlier colored trails (see markers
in image). These are groups of flights that go in a single
direction, i.e., there are no opposite-direction flights in the
same spatial region for the entire considered day.

5 DISCUSSION

Several aspects are relevant to our presented tech-
nique, as follows.

Scalability: We implemented our visualization in Python
and C++, using OpenGL pixel shaders for the rendering
part (texture computation, blending, transfer functions,
and congestion map, see Sec. 3). For bundling (Sec. 3.3),
we use a novel CUDA-based implementation of the
KDEEB principle (Hurter et al., 2012), as follows.
First, we compute the density map using separable 1D
convolution kernels, and a gathering design, rather than
the scattering design using 2D OpenGL texture sprites in
KDEEB. Secondly, we parallelize all operations (density
map computation, trail advection, and trail re-sampling),
as compared to only density computation in KDEEB.
Table 2 shows our timings on a 2.6 GHz Windows PC
with a NVidia 690 GTX card, for various trail selections.
The bundling cost is roughly linear with the number
of sample points. Compared to the results in (Hurter
et al., 2012), our bundling is about 30 times faster, on
identical hardware. The computational complexity of our
technique is linear in the number of trail sample points
falling in the considered time-window of length ∆. Given
the above-mentioned design decisions, we can all in all
create real-time animations of flight data for a few million
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Figure 8: (a,c) Overview of world traffic, June 1, 2013. (d-f) Details over Europe (see Sec. 4).

sample points. This performance was not achievable with
earlier techniques (Hurter et al., 2013; Hurter et al., 2009;
Eurocontrol, 2013; Krüger et al., 2013).

Statistics # flights # sample bundling time
points (msecs)

Data set 1 50984 683216 74
Data set 2 23433 886323 89
Data set 3 50984 1280680 124

Table 2: CUDA bundling statistics.

Limitations: While our technique has significantly less
visual clutter than e.g. (Hurter et al., 2009; Hurter et al.,
2013; Krüger et al., 2013) by means of transfer func-
tions and bundling, highly dense flight areas viewed at a
coarse scale will still have a high amount of overlapping
flights. This problem is solved in (Scheepens et al., 2011)
by showing only aggregated information. In contrast, we

choose to tolerate the clutter to be able to show individ-
ual outliers in such areas. To increase resolution, we use
a large 60-inch touchscreen, which makes finer-grained
patterns easier visible. A second limitation concerns the
number of attributes that we can show simultaneously on
a trail – currently, this is limited to three (speed, direction,
and altitude). Showing more attributes is an open chal-
lenge to all similar research.

6 CONCLUSIONS

We have presented a set of visualization techniques
for the interactive exploration of very large movement
data sets emerging from Air Traffic Control. Our main
goals were to achieve high information density with lim-
ited clutter, present several movement attributes such as
altitude, position, and speed at the same time. We achieve
these goals by following an image-based visualization de-



sign based on density maps (to show amount of flights),
animation (to show direction and change in flight pat-
terns over time), and graph bundling (to show coarse-
scale similar patterns and their change over time). We
achieve computational scalability by using a fully GPU-
based implementation using pixel shaders and CUDA.
The visualization design and implementation also allows
users to smoothly navigate, in both space and time, be-
tween local detail and global patterns. We demonstrated
our techniques on several data sets ranging from hours
over a single country to one month over the entire world.
Further information and material is available online at
http://www.cs.rug.nl/svcg/SoftVis/FlightVis.

Although visual scalability is still challenged by the
sheer amount of information to be shown, our method is
considerably more scalable both in visual space and com-
putational complexity than current methods used for the
same types of data sets and analysis. In the future, we
plan to augment our visualization by adding interactive
queries in order to enable users to compare and search
spatio-temporal patterns of interest, and also enhance the
image-based design to allow for the display of more data
attributes at the same time.
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