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Abstract: We present a system for detection and tracking of cow teats, as part of the construction of automatic milking
devices (AMDs) in the dairy industry. We detail algorithmic solutions for the robust detection and tracking of
teat tips in low-resolution video streams produced by embedded time-of-flight cameras, using a combination
of depth images and point-cloud data. We present a visual analysis tool for the validation and optimization
of the proposed techniques. Compared to existing state-of-the-art solutions, our method can robustly handle
occlusions, variable poses, and geometries of the tracked shape, and yields a correct tracking rate for over 90%
for tests involving real-world images obtained from an industrial AMD robot.

1 Introduction

Scale economies in the dairy industry increasingly shift
manual labor to robotic devices. One such development is
the advent of automatic milking devices (AMDs): Given
a stable populated with cows, AMDs use vision devices to
locate cows in the stable, reach under the cow e.g. with a
mechanical arm, locate the udder and teats, and finally track
the teats in order to couple a suction device to each teat to
collect milk (LMI12; Sco13; MES14; Wes09; Hun06).

Vision devices used in AMDs must be small, shock-
resistant, able to work in the dim lighting of a stable,
and relatively cheap (Wes09). Separately, they have to
operate in near-real-time to cope with the cow’s motion,
handle occlusions, locate features of interest with sub-
centimeter precision, and work fully automatically. In re-
cent years, time-of-flight (ToF) range cameras have become
increasingly popular as the core building-block of such sys-
tems (MES14; Sco13). Given a 3D scene, a ToF cam-
era produces a per-pixel depth map of the occluding sur-
faces found in front of the camera, with a relatively high
frame-rate (24 frames per second (fps)). Compared to tradi-
tional stereo vision (Hun06) or laser-scanning (HAP05) de-
vices, ToF cameras are less sensitive to lighting conditions
and dust specks, generate a full depth-map with depth data
at each pixel, are shock-resistant, come in compact form-
factors, need no delicate calibration, and provide many 3D
vision functions in embedded software (DPC10; DDL10).
Hence, high hopes are placed on using ToF cameras in in-
dustrial AMD applications. However, their relatively low
spatial resolution creates new challenges that are not typi-
cally handled by mainstream vision algorithms.

In this paper, we present a vision-based solution for
AMD robots built using ToF cameras. We focus on the ro-
bust, accurate, automatic, and fast detection and tracking of
the cow teats, i.e., the last step of the milking process. We
present the entire vision pipeline from depth image acqui-
sition, feature extraction and filtering, and udder tracking,
and detail a simple and efficient implementation thereof.
We then present both qualitative and quantitative validation
of our system in an industrial context.

In the following, Section 2 overviews graphics and vi-
sion methods relevant to our goal. Section 3 describes our
solution. Section 4 presents the results. Section 5 presents
a visual analysis tool developed for validating the quality of
our tracking results. Section 6 concludes the paper.

2 Related Work
We next overview computer vision methods for feature

detection and tracking for natural deformable moving ob-
jects. Given our application context, we focus only on
methods which can comply with all our requirements: (1)
automation, (2) low-cost, (3) robustness, (4) low computa-
tional complexity, and (5) implementation simplicity.
Marker-based tracking: A standard solution to 3D shape
tracking is to mark salient keypoints thereof by textures
which can be easily detected in a 2D image. If corre-
spondences can be robustly found between stereo image
pairs, stereo vision solutions can then be used to com-
pute 3D positions of such fiducial marker-pairs by trian-
gulation (LSG08). Marker-based solutions are fast, simple
to implement, and quite robust, but not applicable to our
context, as industry guidelines discourage the placement of
markers on cow teats. Monocular marker-based tracking
solutions also exist, but they are considerably more com-
plex and computationally expensive for non-rigid, compli-
cated, shapes (AT06; ST01).
Marker-less tracking: Marker-less tracking solutions typ-
ically find keypoints at the naturally salient image fea-
tures (corners, edges, or edge crossings), e.g. using
SIFT (Low04) and SURF (BETG08) descriptors. For very
low-resolution texture-less images, like our cow udders,
the robustness of such approaches is very low. Template-
based methods try to find pre-defined templates (small pre-
defined patterns) in the image, using statistical approaches
such as correlation (SW99). Deformable dynamic tem-
plates (DDTs) can search for more complex configurations,
by adapting a deformable template model to fit image sil-
houettes (YHC92). However, DDTs require well-chosen
energy functions, initialization points, and high-resolution
images, and are too computationally expensive for our real-
time context.
3D reconstruction: Having a depth camera, one can re-
construct the 3D visible-object surface from the depth field,
which comes as a 3D point cloud. From this surface,
teat tips could be found at maxima of mean or Gaussian
curvature, similar to polyp detection approaches used in
medical science, see e.g. (CFFD09). Yet, reconstructing
clean, differentiable, 3D surfaces from point clouds given
by ToF cameras is very challenging. Most surface recon-
struction methods in existence have constraints on the sam-
pling density, complexity, connectivity, and water-tightness
of the sampled surface, and are also quite slow (KBH06;
HDD∗92; DG04; DLRW09; KJT14). Additionally, such
methods cannot find features (like our cow teats) which are



occluded in the input image.
Specific solutions: Many techniques have been proposed
and fine-tuned to find and track features in moving natural
shapes such as humans or parts thereof, e.g. faces or hands.
However, such techniques are not directly usable for cow
udder morphologies, as they have other shape priors. In
the milk industry, very few solutions exist and have been
implemented into AMD robots (LMI12; Sco13; MES14;
Wes09; Hun06). All these solutions assume a fully unoc-
cluded and zoomed-in bottom or side view of the udder,
given by a fixed robot arm that places the camera close to
the udder, and given a cow constrained in a small space, to
limit motion. In contrast, we do not assume that our robot
is initially correctly placed close to the cow udder, nor do
we assume that the cow cannot move vs the robot.

3 Method

As input device, we use a SwissRanger SR4000 ToF
camera (Mes10), which has one of the best quality-price
ratios to date (DPC10; DDL10). The camera gives a 24-fps
stream {Ii}. Each frame Ii has two 176×144 pixel images
(Ai,Di). Ai is a standard amplitude (luminance) image. Di
is a depth map, where each pixel stores the distance, in mil-
limeters, to the closest occluding object, with an accuracy
of a few millimeters for distances up to roughly 1 meter.
The camera also delivers a point-cloud Pi = {p j} with the
world-space locations of all visible-surface points in frame
i. The camera is rigidly mounted on a robot which can reach
the zone under the cow to be milked. As outlined in Sec. 1,
we focus on the milking stage, where the camera is already
under the cow, roughly between the legs and looking to-
wards the tail. The cow stands upright, so its legs and teats
appear as vertically-oriented shapes in the image (Fig. 2 a).

Our solution is split in two parts: A detection module
finds teats from the image-and-point-cloud {Ii,Pi} of the
current frame i. Next, a tracking module integrates this in-
formation over time, handling occlusion and other model
priors (Fig. 1). The two modules are described below.

3.1 Detection

To find teats in the a frame Ii, we can use one or several of
the fields Ai, Di, and Pi given by the camera. After extensive
studies, we found that our images Ai are too low-contrast
and noisy to be useful, due to poor lighting in the stable.
Hence, we use only the depth image Di and point cloud Pi
for teat detection. As the images Di still contain a small
noise amount, caused by dust specks floating in the stable,
we first apply a median filter to them. The filtered images
D̃i are almost noise-free and show little blurring (Fig. 2 b).

We next propose two separate methods to find teats
from filtered depth images D̃i (Sec. 3.1.1) and point clouds
Pi (Sec. 3.1.2) respectively.

3.1.1 Template-based detection

Our first teat-detection method treats D̃i as regular
grayscale images. To find teats, we use a template-
matching technique consisting of four steps:
a. Edge detection: First, we find edges in the depth im-
age D̃i, using a gradient-magnitude filter ‖∇D̃i‖. The result
Ei of this filter highights values where D̃i has strong jumps,

a b c

fd e

Figure 2: A frame from a typical video sequence. (a) Amplitude
image A, with visible udder and four teats. (b) Filtered depth im-
age D̃. (c) Edges E in depth image. (d) Canonical template image
T . (e) Correlation image Ci. (f) Matches found (Sec. 3.1.1).

which are the silhouettes of shapes in our depth image. Fig-
ure 2c shows a typical edge-image Ei. Silhouettes of the
cow teats and limbs are clearly visible in this image.
b. Template matching: To find teats, we use a template-
matching approach. For this, we first compute the silhou-
ette (edge-image) of a typical U-shape of a teat. We call
this image a template T (Fig. 2d). Next, we use a nor-
malized correlation coefficient (NCC) approach (SW99) to
find instances of T in the edge-image Ei, by convolving
Ei with T using the Fast Fourier Transform provided by
OpenCV (Ope14). Besides speed, the advantage of NCC
becomes apparent if we notice that a teat could be close
by in front of a leg, or far away from the background (sta-
ble wall), resulting in edges of highly different intensities.
NCC efficiently corrects for edge-intensity differences in
both Ei and T , which matches our goal to capture the shape
of objects described by the edges, rather than objects’ rela-
tive positions with respect to the background.

The NCC computation yields a correlation image Ci
where each pixel Ci(x,y) ∈ [0,1] tells how well T matches
the edge-image Ei at pixel (x,y), with higher values encod-
ing better matches (Fig. 2e). The maxima of Ci are regions
where T matches best. Thus, we can find potential teat lo-
cations, or matches ti, by finding the N largest local maxima
of Ci. For all our tests, we fixed N = 6. We also tried the op-
tion of upper-thresholding Ci with a fixed value. However,
this yielded between none and tens of matches per image
Ci, so we prefer the first approach (N-best selection). For
each match ti = (x,y,z)i, we store its 2D position xi,yi in
image-space, and also its depth from camera zi.

The above template matching method is not scale-
invariant – it only finds areas in Ci which match the tem-
plate T at T ’s own scale. Figure 3a shows this: Here, we
miss the front-right teat, which is about twice larger than
the template. Still, the range of teat sizes (in image-space)
is bounded by the fixed size of the cow and the position-
ing of the robot which is never more than 1.5 meters away
from the udder. Analyzing several production videos, we
determined that teats range between 1/30 and 1/6 of the
image-width, i.e. between Tmin = 10 and Tmax = 30 pixels.
To find teats in this scale-range, we use the NCC method
described above with six template sizes Ti, 1 ≤ i ≤ 6, uni-
formly distributed between Tmin and Tmax. This enables us
to find small and large teats (Fig. 3b).
c. Match selection: We next collect all matches ti from
all different scales Tj, after which we apply the N-best se-
lection procedure outlined above for the single-scale case.
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Figure 1: Proposed teat detection-and-tracking pipeline. Blue arrows indicate data streams from the input information acquired from
the ToF camera to the output of four tracked teats Mi. Red arrows indicate the control-flow for tracking reinitialization (see Sec. 3.2.5).
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Figure 3: Single-scale (a) vs multiscale matching without time filtering (b). Multiscale matching with time filtering for two consecutive
frames (c,d). Matches are indicated by rectangles, with ‘FP’ showing false-positives. Red-marked FP’s are removed by time filtering.

When using multiple scales, we can find two (or more)
matches ti and t j, for two scales Ta and Tb, whose 2D po-
sitions (xi,yi) and (x j,y j) are close enough to represent the
same teat. We consider such matches to be duplicates when
the center of the inscribed circle in Ti falls in the inscribed
circle of Tj or vice versa (Fig. 4). From any set of dupli-
cates, we only keep a single match for further processing.

(a) (b) (c)
Figure 4: Template overlap. (a) Canonical template, with its in-
scribed circle and circle-center. (b) Two overlapping templates.
(c) Two non-overlapping templates (see Sec. 3.1.1).

d. Match time filtering: Our teat-detection can find a teat
where none actually exists. These are areas where the edge-
structure in Ei has U-shapes similar to our templates, e.g.
around the cow’s tail-tip, or around some leg muscle struc-
tures. We call these false positives (FPs). Many such FPs
appear only for a very few consecutive frames. In contrast,
true positives (TPs) are visible for longer periods, until they
get occluded or drift out of the camera view. We remove
FPs by time filtering, as follows. Let Mi = {t j} be the set
of matches found in frame i of our input stream. Given the
sequence {Mk}i−K<k<i of matches found in the previous K
frames, we remove from Mi those matches which are not
visible in at least τ of the last K frames. This means that
we have a delay (of K frames) in detecting teats. Choos-
ing a low value for K keeps this delay small, as our camera
operates at 24 fps. Fixing K = 5 and τ = 2 frames effec-
tively removed most FPs while keeping most TPs. Figure 3
shows this. The three FP matches marked red in images
(a,b) are removed in image (c) by time filtering. The re-
maining FP, marked green, which corresponds to the cow
tail, is however not removed, as this structure persists in

several frames. We show next in Sec. 3.2 how such remain-
ing FPs are removed by using tracking.

3.1.2 PCA Based Detection

The template-based method described above works well
when teats are roughly vertical and parallel to the camera
plane, i.e., when the angle α between a teat’s symmetry-
axis and the camera plane is below roughly 10 ◦. For
such angles, the difference between the edge profiles of the
vertically-aligned U structures in our templates Ti and those
of actual teats in Ei is small enough to yield strong matches.

For larger angles α, template matching has difficulties.
In such cases, the teats’ silhouettes in Ei differ too much
from the ones in our templates. We find two sub-cases here.
First, a teat could be rotated into the camera-plane. To ad-
dress this, we could use a solution akin to the one dealing
with scale-variance (Sec. 3.1.1), i.e., create a family of tem-
plates T rot

i rotated in the camera plane. The second case oc-
curs when teats are rotated out of the camera plane (see e.g.
the two front teats in Fig. 5a). In such cases, the teat silhou-
ette changes from a U-shape to an ellipse or parabola sector.
We verified that rotation invariance cannot be dealt with in
this case by using additional templates, as such shapes have
too high an edge variability in the depth image.

We propose next a method to handle both rotation vari-
ance cases. Teats have a roughly cylindrical shape, which
means that locally there is a clearly-oriented structure in
the depth-image data. This structure can be lost in the
projected edge image. To find such structures, consider a
ball B of fixed radius, roughly 4 cm in world space, cor-
responding to the average half-length of a cow teat. We
next center B consecutively at all locations pi of the point
cloud Pi delivered by the ToF camera, and compute the
eigenvectors e j

i , 1 ≤ j ≤ 3, and corresponding eigenval-
ues λ1

i ≥ λ2
i ≥ λ3

i of the covariance matrix of all points
in Pi ∩ B. Figure 5b illustrates this, by showing the di-
rection of the major eigenvector e1

i by color coding – red,
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Figure 5: PCA-based detection. (a) Amplitude image. (b) Direction of major eigenvector. (c) Elongation values. (d) 2D projected
neighborhood of a point marked ‘A’ in the first image. (e) Template used for matching. (f) Correlation image (see Sec. 3.1.2).

green, and blue show eigenvectors e1
i aligned with the x, y,

and z axes respectively. Next, we find tube-shaped regions
Pi∩B by computing the so-called linear anisotropy or elon-
gation c = λ1

i /λ2
i (WPG∗97), and selecting only regions for

which c > 1.5. These are potential teat locations. Figure 5c
shows the elongation c with a rainbow colormap (blue=low,
green=medium, red=high values). As visible, areas around
teats are green, as they have a quite high elongation. Fi-
nally, we project such regions onto the plane defined by
(e1

i ,e2
i ). If a teat exists around pi, e1

i should match its sym-
metry axis (given the teat’s cylindrical shape), so the result-
ing 2D projection should show a vertical teat shape, like the
ones in our templates. This corrects for the rotational vari-
ance. Additionally, we scale the 2D projection by the value
of λ1

i divided by the height of the template T , which takes
care of the scale variance. As such, we can now directly
use our single-scale template matching to find rotationally-
invariant teat matches in the projected images.

Given camera resolution limitations, the 2D projections
of cloud points Pi ∩B can yield very sparse point sets. To
match these with a teat shape, we need a compact image.
To create this, we render a quad mesh with points Pi∩B as
vertices and connectivity given by the raster structure of Ii.
Mesh vertices are colored by their depth to the projection
plane. Figure 5d shows such a 2D projection for the neigh-
borhood Pi∩A around point A in Fig. 5a. Such images typ-
ically have jagged edges, given (again) the low resolution
of our cloud Pi clipped by the ball B. Computing edges on
such images yields a high amount of noise, which makes
our edge-template matching not robust. We solve this by
a template matching using the full image of a teat, where
pixel grayscale values indicate depth (Fig. 5e). The corre-
lation result (Fig. 5f) emphasizes elongated regions whose
maxima correctly capture positions of rotated teats.

The matches yielded by the PCA detection are merged
with the ones delivered by the template-based detection
(Sec. 3.1.1) to yield the final match-set Mi. This way, we
increase the chances of capturing all matches visible in a
single image. We use this joint match-set Mi to robustly
detect and track all four teats, as described next.

3.2 Tracking

Our teat detection technique (Sec. 3.1) successfully finds
about 90% of the visible teat tips in our typical videos. Yet,
detection still suffers from two main problems:
Occlusion: In frames where one or more teats are occluded
from the camera viewpoint( by cow limbs, other teats or
robot parts), detection obviously fails to find such teats. As
our AMD robot needs finding all teats in each frame to start
the milking process, we must locate occluded teats too.
Robustness: Even for frames with no apparent teat occlu-
sion, two additional teat detection problems exist. First,
certain teat configurations are not detectable, due to reso-
lution limitations of the ToF camera. We call these false

negatives (FNs). Some FNs can be removed by relaxing
the detection method’s parameters, to accept more image
structures as teats. However, this makes detection sensitive
to small-scale noise, which next creates matches at spurious
image locations, i.e., yields unwanted false positives (FPs).

To reduce the amount of FPs and FNs described above,
we need to use additional information not present in single
video frames. For this, we choose a model-based approach:
We define a parameterized model that describes the intrin-
sic variability (priors) of shape, size, orientation, and dy-
namics (change in time) of the entire set of four teats that
a typical cow has. At frame i, this set of teats, called the
tracked teat-set (TTS), is a quadrilateral Mi = {p j ∈ R3},
1≤ j≤ 4, whose vertices p j are ordered counter-clockwise
with p0 being the near-left teat from the camera viewpoint.
To compute Mi, we use a tracking procedure that fits the
TTS Mi−1 computed from frame i− 1 to the match-set Mi
detected in the current frame i, subject to our model’s ge-
ometric and dynamic constraints. Figure 6 shows the TTS
quad tracked in three frames in a video of several minutes.
Our tracking proposal is detailed next.
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Figure 6: Three frames from a tracking sequence with matches
shown as rectangles and TTS shown as a 3D quad (see Sec. 3.2).

3.2.1 Candidate matches

Key to tracking is finding how vertices of the TTS Mi−1
from the previous frame correspond to teat-matches in Mi
found in the current frame. To find these correspondences,
we first construct a collection S = {µ j

i } j of all candidate-
match sets µ j

i ⊂ Mi each having between one and four
matches as elements. We sort this sequence decreasingly
on the number of elements |µ j

i | in each candidate-match set
(CMS), and then try to construct a candidate TTS M j

i from
each such µ j

i , in increasing j order. This ordering models
our preference to fit our TTS to more, rather than to fewer,
matches in the current frame, so as to use most of the infor-
mation present in that frame.

3.2.2 Correspondence finding

Given a CMS µ j
i , we find its point-to-point correspondence

with the previous TTS Mi−1 as the set of point-pairs {(qk ∈
µ j

i ,p
i−1
k ∈Mi−1)}, 1≤ k≤ |µ j

i |, which minimize the metric

Emotion =
1

|µ j
i |

|µ j
i |

∑
k=0
‖qk−pi−1

k ‖,



where ‖ · ‖ is the Euclidean distance in R3. Intuitively,
Emotion captures the amount of motion between Mi−1 and
Mi. Since the cow stays relatively still during milking, the
robot moves slowly, and our camera has a high frame-rate,
teats cannot ‘jump’ from one place to another one between
consecutive frames. Hence, for a CMS µ j

i to be valid, it has
to yield a small value for Emotion. In practice, we allow only
values Emotion < 25 mm.

3.2.3 TTS estimation

From each CMS µ j
i given by correspondence finding, we

build a potential new TTS M j
i for the current frame i: For

all points qk ∈ µ j
i which have a correspondence to a TTS-

quad vertex pi−1
k ∈Mi−1, we set the new value of pi

k ∈Mi

to qk. For all other vertices pi
k ∈M j

i which have no corre-
spondences in µ j

i , a situation which occurs when |µ j
i | < 4,

we compute their values by translating their corresponding
points pi−1

k ∈Mi−1 with the average translation vector

v =
1

|µ j
i |

|µ j
i |

∑
k=0

qk−pk.

3.2.4 TTS optimization

The previous step delivers as many potential TTS models
M j

i as the number ‖S‖ of CMS configurations. These are
all possible TTS models which can be built by using one
or several matches in Mi. We select the best such TTS as
the optimal TTS with respect to three metrics which de-
scribe geometric constraints observed by watching videos
of actual cows during milking, as described below. Let us
stress here that we are not searching for an absolute mini-
mum of these metrics, but for a ‘best fit’, i.e., a TTS which
optimizes these metrics over all possible TTSs.
Shape: During milking, the soft udder shape changes as
the cow moves. Yet, the relative teat positions are quite
stable. Thus, the shape of our quad M j

i should be con-
strained. While this is partly done by the motion constraint
Emotion, that allows teats to move only slightly, an accumu-
lation of such small movements over hundreds of frames
can yield very different quad shapes. We thus further con-
strain the quad shape by constraining its area. We could
have used other shape metrics here, e.g. the quad’s aspect
ratio. However, the area constraint performs much better
during the tracking-initialization stage (see next Sec. 3.2.5).
We model the area constraint by the difference between the
actual quad-area and the expected quad-area Aexpected as

Eshape =
|A(M j

i )−Aexpected |
Aexpected

.

Here, Aexpected is a fixed value, computed from actual udder
measurements of the cows under analysis. Setting Aexpected
has to be done only once, before the first time the cow is
milked, and can be re-used for subsequent milking.
Flatness: We also observed that teat tips stay roughly in
the same plane. We therefore want the same to hold for the
vertices of the quad M j

i . We model this by checking how
close each vertex pk ∈M j

i is to the plane formed by the

other three vertices, i.e. by the metric

E f latness =
1
4

4

∑
k=0
|nk ·vk|.

Here, nk is the normal of the plane through all quad points
except pk, and vk is the normalized vector from any point
pl 6=k to pk. When our quad is flat, every pk lies in the same
plane as the other points pl 6=k, so nk and vk are orthogonal to
each other, thus E f latness = 0. Higher values of E f latness > 0
tell that pk do not all lie in the same plane. In particular,
note that configurations that include an incorrectly detected
point on the cow’s tail yield a high E f latness, thus are not
favored by this metric.
Orientation: Finally, we note that teat tips are in a plane
roughly parallel to the ground surface on which the cow
stands. We encode this prior by measuring the orientation-
deviation between the quad vertex-normals nk, computed
as for the flatness criterion, and the vertical direction u, by

Eorient =
1
4

4

∑
k=0
|1−nk ·u|.

In the ideal case, all normals nk are parallel to u, so Eorient =
0. Values Eorient > 0 indicate deviations from the desired
orientation. Similar to the flatness metric, the orientation
metric typically produces higher values for incorrectly ori-
ented vertices and therefore also favors the correctly ori-
ented configurations, even when the corresponding value
for Eorient is not optimal in an absolute sense.

To jointly optimize for TTS shape, flatness, and orien-
tation, we use the total geometric error

Egeom = wshape ·Eshape +w f latness ·E f latness +worient ·Eorient

where the weights w sum up to 1. The first TTS M j
i , in the

testing order given by CMS finding (Sec. 3.2.1), that scores
Etotal < ε, is considered a good-enough fit, and yields the
new value for the TTS Mi for the current frame i. Here,
we use ε = 1

3 , meaning that only one of the three error met-
rics can be at its acceptable maximum, while all other error
metrics should be zero for us to accept this configuration.

3.2.5 Initialization

To start tracking, we must initialize our TTS M . Also, re-
initialization is needed when we cannot track Mi−1 to the
current frame i. This happens when (a) the current match-
set Mi is empty, e.g. due to a bad camera angle, too large
distance to the cow, complete occlusion of teats in frame
i, or limitations of our teat-detection algorithm; (b) no cor-
respondence between Mi−1 and Mi exists which satisfies
the motion constraint Emotion (Sec. 3.2.2), e.g. because of
accidental robot jumps due to collisions with the cow; (c)
no candidate TTS M j

i having a sufficiently good geometry
Egeom is found, e.g. due to the same reasons as for (a).

In all such cases, we must build Mi afresh, using only
data from Mi. For this, we first find all CMS sets µ j

i having
at least three points, by the same method as for tracking
(Sec. 3.2.2). We regard each µ j

i as a potential TTS M j
i , and

compute its Egeom. The TTS yielding a minimal Egeom value
below our threshold ε becomes our new Mi. If no such TTS
is found, we set Mi = ∅, i.e. mark that tracking is lost in
the current frame, and try to re-initialize in the next frame.



Let us further detail the difference between tracking and
initialization. During tracking, we optimize for the TTS
that (a) fits the most matches found in the current frame, (b)
has the best geometric quality, and (c) has a small motion
with respect to the previous TTS. In contrast, at initializa-
tion we only optimize for geometric quality and number of
matches. Indeed, we cannot optimize for motion, since the
previous valid TTS may have occurred many frames ago
or there was no such TTS (at the video stream start). To
track, we only need a single valid match in each frame. For
initialization, we need minimally three valid matches in a
frame (to be able to evaluate the geometric constraints). As
we shall see in Sec. 5, our tracking is robust enough to re-
quire re-initialization only very seldomly, and thus deliver
a high overall quality of the proposed solution.

4 Results
Our tracking-and-detection system, implemented in un-

optimized C#, achieves tracking at 4. . . 8 fps on a 3.0 GHz
Windows PC for an input video stream provided by the
SR4000 API. For an image resolution of N pixels, both
computational and memory complexities of detection are
O(N); for tracking, these are both O(1), since the match-set
sizes are not a function of the image size. This strongly sug-
gests that an optimized implementation, e.g. in embedded
C, can run at real-time rates on a low-cost ARM processor
such as available on the milking robot, which supports our
claims for practical industrial applicability and low cost.

Figure 7 shows the interaction between detection and
tracking by showing the TTS results for 3 sequential frames
selected from a longer video. The first frame (a) is an ini-
tialization frame. Here, five matches are found (red rect-
angles). Of these, the correct four corresponding to teats
are selected by the initialization procedure (Sec. 3.2.5) to
create the current TTS Ma, as using any of the other two
false-positives would create tilted quads which yield a high
error Egeom. The obtained TTS is shown in Fig. 7d atop of
a rendering of the point cloud zoomed in on the udder area.
As can be seen, the TTS approximates the actual teat po-
sitions quite well. In the second frame (Fig. 7b), we find
only three true-positive matches on the teats, and two false-
positives. However, as seen in the corresponding cloud ren-
dering (Fig. 7e), tracking correctly estimates the position of
the fourth teat. In the final image, we only detect one true-
positive and one false-positive (Fig. 7c). Here again, the
tracking succeeds in creating the correct TTS (Fig. 7f).

5 Quality Analysis
Analyzing the full tracking process is crucial to validate

the robustness and correctness of our proposed solution.
The video data we use is unlabeled, i.e., has no ground-
truth for the correct teat positions. Labeling it would cost
a huge effort (manually marking 3D teat positions in thou-
sands of frames for several videos). Thus, we base our vali-
dation on (a) the visual inspection of the tracked teat-set M
(Sec. 3.2), and (b) on a data-analysis tool for the tracking
process. This analysis tool was crucial in helping us find
an optimal set of parameters, metrics, and heuristics for our
problem. The analysis tool is described below.

During tracking, we record all computed information:
input and derived images, match locations, tracked teat po-

sitions, error metrics, and system state (tracking, initializ-
ing, or tracking lost). Our analysis tool next aims to show
such data to (a) allow validation of the tracking quality; and
(b) help finding reasons for sub-optimal tracking, poten-
tially leading to algorithm and parameter improvements.

Our analysis tool consists of several linked views
(Fig. 8). Its set-up follows the overview and details-on-
demand design common for visual analytics tools (Shn96),
showing both overall tracking performance, but also finer-
level details that explain this performance. The analysis
tool is connected in a feedback loop with detection-and-
tracking (Secs. 3.1,3.2) so that the analyst can spot sub-
optimal results in the overview, examine details to find their
causes, adjust the responsible algorithm parameters, see the
effects (e.g. improvements), and repeat the process until an
optimal algorithm and parameter-set is found.

We next detail the views of our analysis tool. The
model state view shows a timeline overview of the TTS
model state (initializing, tracking, or tracking lost). States
are shown by color-coded bars – blue=tracking, yellow=re-
initialization, and red=tracking lost. This gives an easy-
to-follow global overview of the entire tracking process,
and allows quickly spotting frames whose state changes
from neighbor frames, e.g. frames where tracking fails and
which occur in a sequence of correctly tracked frames. Af-
ter spotting such frames, we can use the views described
next to find causes of the respective state-change.

The tracking view refines the overview information
from the model state view by showing graphs of all model
variables as functions of time. Correlating values of these
signals with state values (or state changes) in the model
view allows tracing back the cause of the respective states
one step back, i.e., to the components of the error metrics
Egeom or Emotion (Sec. 3.2). For instance, in the model-
state view in Fig. 8, we see a suspiciously large amount of
red (tracking lost) frames. At first sight, this suggests that
our tracking is not working optimally. Let us focus on the
largest red block, marked A in Fig. 8. We see that this block
correlates to a zero value for the E f latness metric (Eqn. 3.2.4)
in the tracking view. This tells us that tracking is lost be-
cause this metric had a too large value, which in turn caused
Egeom to exceed the allowed threshold ε. Showing other
model variables in the same view allows back-tracing the
cause of a large E f latness error to earlier data, such as the
number and locations of found matches. Using this proce-
dure, we found out that, for the time-range of block A, the
cause was that there were no correct matches found in the
image, due to the robot drifting out of the udder area. As
we expect tracking to be lost in such cases, this does not
flag a problem of our tracker, but of the robot’s steering.

The TTS view shows the trajectories of the four tracked
teats over the entire analyzed video, both as 2D camera-
view projections (TTS view, top images) and also as 3D
world space positions (TTS view, bottom images). Given
the assumed smooth motion of both the tracked shape (cow)
and camera (robot), such trajectories should be smooth
curves. Also, these curves should have a relatively simi-
lar overall shape, given the geometric constraint that limits
the relative motion of teats from each other (Sec. 3.2.4).
Spotting large line-segment jumps in the TTS view allows
us to find time-ranges when tracking performed incorrectly.
Such a jump is marked B in the figure, and is visible for all
four teats. Clicking on such a jump brings the data for the
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Figure 7: Tracking sequence, three consecutive frames. Top row: amplitude images, with superimposed matches. Bottom row: zoom-in
on the point cloud around the tracked TTS. The bottom-left arrow icon indicates that the system is successfully tracking (see Sec. 4).

respective time moment(s) in focus in the other views. The
current time is shown in the tracking view by the dot marker
labeled C. We now see that this moment corresponds to the
beginning of the first large red block in the tracking view.
Hence, we know that the jump is caused by a tracking-lost
event (which is expected and correct). If, however, the
jump corresponded to a tracking state (blue in the model
state view), this would have shown severe tracking prob-
lems, as the tracking would have created jumps (not in line
with our knowledge of the studied phenomenon) and would
have marked these as valid tracked frames.

The frame data view shows the amplitude, depth, and
point cloud data acquired from the ToF camera for the
frame selected in the other views, as well as numerical
statistics on this frame (number of matches and values of
the model metrics). These ‘details on demand’ allow refin-
ing the insight obtained from the overviews. All views are
linked by interactive selection – clicking on a time-instant
or position in the overviews shows details of the selected
frame in the frame data view. For instance, the frame data
in Fig. 7 corresponds to the moment C discussed above. As
visible in the amplitude image, the two back teats are now
connected to the suction cups of the milking robot. In such
cases, tracking is expected to be lost (due to the robot be-
ing too close to the udder). Hence, we have explained that
the tracking-lost event observed in the TTS and model-state
views is expected and not due to a tracker problem.

The analysis tool allows browsing a video both frame
by frame or playing it in real-time, so that correlations be-
tween tracking performance and algorithm variables can be
easily seen. Using this tool, we have been able to refine our
proposed detection-and-tracking algorithms, fine-tune their
parameters, and also validate the end-to-end tracking per-
formance of our system. Overall, we have tested over 15
real-life videos of several minutes each acquired in actual
stables in a production-process environment, that cover a
wide range of camera-to-subject distances, angles, and mo-
tion paths. Average tracking performance amounts to over
90% of the frames being successfully tracked. This clearly
exceeds the documented performance of comparable sys-
tems (LMI12; Sco13; MES14; Wes09; Hun06).

6 Conclusions

We present an end-to-end system for the detection of
cow teats for automatic milking devices (AMDs) in the
milk industry. We present several techniques and algo-
rithms that make this detection robust and fully automated
when using a very low resolution time-of-flight camera,
which renders classical computer vision algorithms not ap-
plicable. By combining depth and point cloud information
analysis with observed model priors, we achieve a simple
and robust implementation that can successfully track over
90% of the frames present in typical AMD videos, which
exceeds the performance of all known competitive solu-
tions in the area. In contrast to these solutions, our proposal
is also fully automated, allows large relative camera-subject
motions and orientation changes, and accounts for occlu-
sions. We present a visual analytics tool that allows tracker
refinement and result validation.

Several extension directions are possible. Different teat
detectors can be designed to find teats more accurately un-
der extreme zoom-out conditions, e.g. based on 3D tem-
plate matching. Secondly, using a more complex model in-
cluding both teats and udder shape should render our track-
ing performance even higher in contexts of high occlusion.
Such refinements will lead to a more effective solution for
the next generation of AMD robots for the dairy industry.
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