Visual Support for Porting Large Code Bases

Bertjan Broeksema Alexandru Telea
KDAB Berlin, Germany University of Groningen, the Netherlands
Email: bertjan.broeksema@fr.iom.cém Email: a.c.telea@rug.nl

Abstract—We present a tool that helps C/C++ developers to C++ program transformation tools include ASF+SDF [26],
estimate the effort and automate software porting. Our tool Stratego [27], Transformers [2], and DMS [3]. The features

supports project leaders in planning a porting project by showing ¢ these tools vary widely, often in terms of subtle (but
where a project must be changed, how many changes are needed, b

what kinds of changes are needed, and how these interact with the crucial) details, such as C/C++ dialect or template support

code. For developers, we provide an overview of where a given file integration with a preprocessor, completeness and coesst
must be changed, the structure of that file, and close interaction of the produced ASG, range of supported transforms, and APIs

with typical code editors. To this end, we integrate code querying, for third-party tool integration. A comparison of C/C++ tita

program transformation, and software visualization techniques. analyzers is given in [4], [6]. IDEs like Visual Studio, Eufie

We illustrate our solution with use-cases on real-world code bases. KDevelop [15], and QtC'reat'or [20] include Iightweigf,lt aymly
ers, good for code completion and cross-references, buthwhi

I. INTRODUCTION cannot perform program rewrites. Static analysis alsoveledi

A common problem of adapting large software systems &®de quality metrics useful to assess the porting effor}. [16
changing dependencies,g. libraries, is the sheer number of Getting insight into a set of planned code rewrites is as im-
code changes required. For sypbrting activities, we need to portant as doing the rewrites themselv@sogram visualization
realistically estimate the effort and automate changeedacge oOffers several solutions. Code-level visualizations,npired
slow, cumbersome, and error prone manual work. by Eick et al. [9], show large code amounts with table-

We present a KDevelop extension [15] that assists portit@s techniques [21]. Colors encode attributes such as code
C/C++ code bases to newer versions of their dependenciestyfe and code faults [12], evolution metrics [28], or query
project-wide view shows the required changes with hintsuabdesults [24]. Program structure, dependencies, and raetric
the difficulty of each change. A file-level view shows where igncoded as attributed compound graphs, can be visualizegl us
a file which kind of changes are needed, and how these inter@@ge bundling techniques [11] or matrix plots [25], [29].dee
with the current code context where they are to be done. H8¥el and structure-level visualizations serve complemmgn
this, we find the code fragments prone to being modified duritgpderstanding goals by focusing on different abstractwels.
porting by a generic, lightweight, query mechanism exetute
on the code base’s abstract syntax graph. Next, we express
automatic porting activities as source-code-rewritintesufor ~ We aim to support the entire process of code porting: def-
the queried fragments. Finally, we use several views to shéition of a set of code transformations or rewrites, assgss
the amount, type, and location of porting effort and how ipgrt their impact on a given code base, applying the rewrites, and
activities depend on their code context. assessing their effects. For this, we need insight on thadtrgf

Section Il presents related work in visual code refactosng €writes at several levels, suchmmject level(see the rewrites’
porting tools. Section |1l describes the visualizationd gneries distribution of across an entire projeetg. hundreds of files);
proposed in our tool: the effort estimation view, the reavritfile level(see the effect of several rewrites on a given file); and
impact view, and the impact distribution view. Section \oats  Source levelsee the effect of typically one rewrite at the level
the application of our tool for porting a real-world large €+ Of individual code lines). . .
code base. Section V discusses our techniques. Finally, Seclhere are several tasks to support during a code porting:

tion VI concludes the paper and outlines future work di@@i  Effort estimation: For a code base and set of rewrites, how are
the rewrites spread over its files? This gives a good estimate
of the porting effortbefore actually doing it. Code porting by
Related work covers visualization tools and techniques fe&yrite engines is rarely fully automatic. Developers néed
program comprehension at code level, as follows. review the performed rewrites to ensure that these are thdee
FirSt,StatiC analySiﬂools extract facts on the code to pCB’Ig correct and desirab|@_g_ do not Change the code to alter
abstract syntax trees (ASTs) or annotated syntax graph8$AS program semantics or given coding styles. Few rewrites or
Program transformations use these facts to (semi)autoaligti rewrites grouped in a few files indicate minor, localizedaroges
rewrite code via rewrite rules. Efficient and scalable C+Wh|ch arguab'y take |ESS effort to understand, execute\dew

analyzers include Columbus/CAN [10], EDG [8], Elsa [18]than many rewrites spanning the whole code base.
Clang [7], Eclipse’s CDT [22], PUMA [1], and SolidFX [24]. o ]
Rewrite impact: When the same code fragment is affected by

1B. Broeksema is now with IBM Center for Advanced Studies, Eean several rewrites, their order may be important. Even when th

Ill. V ISUALIZATION TOOL OVERVIEW

Il. RELATED WORK



KDevelop A. Querying and transformation

source > Parser To support automated porting, we must first describe which
files .
code constructs are affected by porting. Examples are usfage

: a given API (set of functions or classes); inclusion of darta
Porting Extension V headers; and usage of certain language featugesonstructors,
T default arguments, or templates which is specific to a giveh A
version. We describe constructs of interest as resultpiefies

QAxS) —{Hx}, QlacAsgeS)={hiea} (1)

A query takes an ASB € A and a query pattersg € & and
| B produces a set dfits h={h;} € a, i.e. AST nodes which match
Project EstimationView the query pattern. Hits also have location (token, lineuool)

File Impact View

Transform
Engine

data provided by the KDevelop parser. Our query langige
Fig. 1. Overview of our code porting framework largely similar with the one of the EFES and SolidFX C++ stati

analyzers [4], [24]. We also find hits by matching patternghwi
actual AST fragments with a visitor design. A full specificat

semanticeffect is order independent, different orders may les®f our query language is given at [6]. Querying uses KDevelop
to different code layouts, some of which are less readalale thPUchain (definition-uses chain) system and it correctly finds
others. Depending on the rewrite engine and actual rewrit@é uses of a symbole.g. function, type or variable, across

used, some rewrites may be conflictual; getting an overview anslation unit boundaries. This is essential for the rseep:

code fragments affected by such rewrites is useful. program-wide code rewrites. _
A query outputs code fragments which we may want to

To support the above tasks, we have developed a portiglgange via automatic program rewriting. Two main technsque
engine, or extension, for the KDevelop IDE (Fig. 1). We usexist here.Procedural rewritingchanges selected AST frag-
KDevelop’s C++ static analyzer to extract ASG data from @ents (our hitshj) based on given rules [2], [17]. However
given code base. Second, we created a query engine wrgemeric, this approach has some problems. Data not codtaine
finds code fragments (and their ASGs) that match user-seécifin an AST, such as code layout, comments, or macros, is
patterns which have to be rewritten. These patterns are nbgfd to maintain. This may generate code which is correct
transformed in the ASG based on user-specified rewrite ;rul@sit otherwise illegible, and may loose lexical-level infation.
this is the actual porting. Third, we created a set of viewgivh DMS alleviates this by intermixing C++ preprocessing and
address the effort estimation and rewrite impact undeditgn parsing at the expense of a more complex implementation [3].
tasks at project, file, and source code level. The query,itewr Source-to-source rewritgules, in contrast, work directly at
and visualization engines are integrated in KDevelop dgetin source-levelj.e. on the actual tokens. This method is far easier
views, which lets one query, rewrite, and visualize coderin 40 implement than the one in DMS, and is sufficient for the less
integrated way (see Fig. 2 for an overview). general transforms needed for portiregg. identifier renaming,
changes of function signatures and call arguments, andgelsan
of scope qualifiers for symbols. We define a transform as:

T(SoxHxSr)—C, T(speS,heH,steSr)=ceC (2)

A transformT takes a hith = Q(a,sq) from applying a query

So on an input prograna (Eqn. 1), and a set of rewrite rules
Sr, and produces a source-level changef the code inh.
Rewrite rules can refer to specific syntactic parts of theryjue
result, as captured by the query pattegn In this way, we can
rewrite conditionally on thevaluesof specific elementse.qg.
only rename a symbol if it occurs in a scope with a given name.
A rewrite rule performs insertion and replacement actionghe
code it acts. Like conditions, insertions and replacemessact

on specific code parts as described by the rewrite speaificati
sr. For instance, we can erase the last argument of a function
call, or qualify a symbol with desired scope names. A full
e ——— description of the transform langua@e is given in [6].
e Source-to-source transforms using code rewrite rules have
several advantages. First, rewrdtetionscan ignore KDevelop’s
internal C++ grammar representation. We have found this to
be highly desirable for developers who do not want to get
We describe the components of our porting extension.  deeply involved with such issues. Secondly, the rewritgirgn

source code editor |y

porting extension panel |$
)

Fig. 2. KDevelop IDE with integrated porting extension



stays relatively simple, and still can keep source codeugyothis port, following [19]. For each of the 550 files in the code
comments, and macros largely similar between original ahdse, a table row shows the number of hits for each query in
transformed code. The key to this is that rewrite rules $pecithe query set. The first column shows the sum of all hits for the
code to be changed in terms afntax but do the actual respective file. The table can be zoomed out, reducing rows to
changes (insertion on replacement) in termgamiges(start-end colored pixel bars, and sorted on any column. The bottom émag
locations) in the code. This fully preserves layout, prepssing shows files sorted by total number of query hits. We see hate th
macros, and comments outside changed code. Since KDevelopost porting effort is located in about 5 to 10% of the entire
ASG captures semantic data, relatively complex changéds sget of files. The most important queries, thus main types of
as replacing a symbol in all scopes where it is used, or chgngchanges to be done, agt cast(Qt typecast macro)QlconSet
all instances of a given C++ template, work as expected. (construct QlconSet objectsfPtrList<T> (templated object
However, our solution also has some limitations. Our rewripointer containers), anQString::latin1 (string localization)j.e.
rules are localj.e. can only modify code within their input hit table columns 2 to 5, since these have most cells with large
range. This excludes transforms such as rewriting codendrowalues. To further support effort estimation, developersy m
a function call when the function’s return type is changedefine, for each query, a porting difficulty level, which refke
Secondly, if different queries yield overlapping hits, wannot how well the rewrite engine handles that specific construct
apply a set of transforms in a single step, but need to perfof{®ec. IlI-A). Column headers are colored to reflect this clity
pairs of query-and-transform steps one at a time. with a green-red (easy-hard) colormap. In Fig. 3, we see for
Given the above, user inspection of the effects of a givémstance thatQString::latinl is frequent, but can be easily
guery-and-transform set is important. We next present afsetported; howeverQPtrList<T> also affects many files, but has
visualizations which address this concern and, at a highwel,l a high porting difficulty. Overall, the porting view assisirfing
support developers in planning and executing porting tasks decisionse.g. trigger the development of new rewrite rules;
~ allocate specific developers to specific project parts; dobse
«- to do some porting activities by hand and automate others.

C. Rewrite impact view

o | As explained in Sec. llI-A, code rewriting is rarely fully
automated. Apart from our rewrite engine limitations, weda
seen that developers first want to see what such an engine woul

i | change in their code before firing it off, especially for code

' bases having many rewrite locations (hits). Typical qoesti
are: which code fragments are affected by a given rewrite, rul
or by more rules; and how do rewrites spread over a élg.(

[ are they condensed in specific parts like the leading incarde

declaration sections, or do they affect the whole file).

The rewrite impact viewaddresses these questions (Fig. 4).
A tree browser in the left panel shows all files in the code base
and the specific queries and query hits for each file. When we
select a file in this view, the right panel shows the query hits

gt_cast |QIconSet QPtrList [[QString:latin1 | ; . . . -
I—I/—“—V—I in that file. In this panel, thex axis maps to the file extent

qt_cast<T>(const QObject*) QlconSet QPtrList<T> : Qstring:latin1() const ' GuardedPtr<T: tton::
-

- (left=first line, right=last line). Each horizontal bar st hits
' for a specific query; hits are red blocks. The bar itself is a
— condensed view of the code in the queried file. To render this,
] we traverse the file's AST in depth-first order and render each
node as a bar block. The blockisposition and width reflect
the node’s size (in lines of code, LOC) and location in the file
The block’s height reflects the nesting level: deeper nodes a
drawn as blocks inside their parents’ blocks. Block coldrsvs
AST node typese.g. brown for loops (for, do, while), purple
Fig. 3. Effort estimation view, sorted on total hits per file for control statements (if, switch), cyan for C-style fuoas,
o ) green for public methods, orange for protected methodsreohd
B. Effort estimation view for private methods. This colormap covers only a small subse
Our first view addresses the task of estimating the overali all C++ AST node typese. the constructs of interest during
effort of porting thekdelibs 3.5.10code base. Our code baseorting. Node types not in the colormap and nodes whose block
has to be ported from version 3 of the well-known user intaxfaare smaller than a few pixels in either dimension are not draw
C++ Qt library (Qt3) to version 4 (Qt4). We use a table-lenso that the view stays uncluttered. The red hit blocks araysw
approach (see Fig. 3). The query set (15 queries shown hdrawn at full height; their width shows the hit range. Hit ¢ho
out of a few tens in total) captures code patterns involved widths are limited to a few pixels so hits always stay visible

I B
s

9

|

R LIRS RlT] [ Rl I'r'll I

<[




2 Project: kdelibs-3.5.10w Configure Colors
)

public methods

e Jfile browser |* 7=t | Peilquery hit distributions | R e
Queryld ca 6 Query Id / / \Ranges
36

+ khtmljecrmafkjs_window.... QGuardedPtr<T> m

+ kdeuifktoolbarbutton.cpp 35 QObject::queryList H = Rm Al
+ kiojkio/kdirlister.cpp 35 QobjectList

+ kstyles/kthemestyle/kth... 32 QPtrList<T>

+- kstyles/keramikfkeramik.... 31 OPtrlist<T=:containsRef

- (EEEETEFERE TP EI | string:latin1() const nlliin[}

Qstring: latin1() const / / \

- QObjectList
a hits class control structures

1
6
QGuardedPtr<T=> 5

- QObject::queryList 2
QPtrList<T=:contan... 2
QPtrList=<T= 1

+ katefcar‘t.’test rearessio.. 2

C++ Query Engine

Fig. 4. Rewrite impact view with syntax structure of a selddites overlaid by query hits (see Secs.llI-C and IV-B)

The rewrite view can be zoomed on tkaxis like a table lens. manually rewrite the code, or use third-partly rewrite @egi
Zooming in makes the screen-size of deeper nested nodes, larguch as, in our case, thlg32qt4 engine provided by Qt itself.
so these become visible. Zooming out emphasizes largealglolhe developer is not obliged to provide transforms &
scope constructg,.g.function definitions and class declarationsqueries pertaining to a given porting task.

The rewrite impact view outlines query hit distribution at
file level. Vertical red bars show code ranges with overlagpi B- Performing the porting
hits, thus areas of potential automatic rewrite problermtse T After the developer has assessed that the porting effora for
spread of red bars in the file indicate where rewrites wilode base is acceptable, actual porting starts. Here, on&lwo
occur in the file,e.g.in the preamble or main code range, antlke to use the rewrite engine as much as possible. Since, as
also with respect to code constructsg. within function or already explained, this may not work correctly in all cases,
class declarations. This view is linked to KDevelop’s edlty good strategy is to examine the code file by file, or query by
brushing and selection, so developers can examine in de&il query, and assess when automatic rewriting is safe. Fonieis
potential effects of a given rewrite before actually doihg i  use the rewrite impact view (Fig. 4).

| V A PPLICATIONS Situation before applying the rewriting
. . b= e [EROSIPSCRENNERE ot
We now present three use-cases for our visual porting stippt— = \
As input, we take thédelibsC++ code base (750 KLOC, 550| = | & & cetii ™ e ol ew)
- . . . . a3 public:
flles) and 'the. Qt3 to Qt4 portlng scenario along the Off!Cli s Ef:j;ﬁgiéf%iﬁ?ﬁfg:;;i:g;zi:”thT??;I{tlgabl:thzws()i,u. i) )
porting guidelines [19]. Porting code from Qt3 to Qt4 is nigin T w e Mt e { et a5
related to rewriting code which uses Qt3 APl calls or dat@syp| = |5 el v g
to their Qt4 equivalents. This involves several syntactic a ' '
. . t || Query Current File QGuardedPtr<T> e (e R Configure Colors
semantic changes related to the evolution of the Qt toolRiL. A | areet overiew query hits SR -
Query Id 4 Ranges
A. Estimating the effort S L  Fla B CEET ] nm geoor
: - : e | B T e R e
When starting a porting job, developers want a quick assebs: —
ment of the challenge at hande. the porting effort and type = wameer s
89 H

of work involved (automatic vs manual rewriting). The effor| | = i
estimation view (Fig. 3), sorted by total aggregated quety h|~ | = i <o e
. . . . . . 94 External (ExecState *exec, KHTMLPart *p)
per file, supports this. Fdelibs this view shows that the main|/ | = ot et b0, 06 0
effort is condensed in 5 to 10% of the project files; most rewri ol e e genot) const { return furfo; 1
. . [ 9g enum { AddFavorite };
actions can be done automatically; but there are a few sU | srime: ! :
. . .. . ( ]
actions, like the rewriting oQPtrList<T> template class uses,|.,.,...x. e

which the current rewrite engine cannot handle (see SeB)IIl |seres

= -
©
a

H H H H 1 H H ~ uery Id anges
Hits of a given query in a given file can be examined in detq.,,....*" F 1 [ O I e ¥ 1 men
. . . . . . . . rList<T>::contains| [MTIC—me
by clicking on their cells in the table-lens view in Fig. 3, | Feiionene. |1 ifE——0=uw HEEn—em—h 1 goer
selects their code is KDevelop’s editor. Situation after rewriting

We should stress that porting effoestimation based on
query hits, and actual portingxecution based on automatic
and/or manual rewriting, are separate activities. Thereffo Several points can be made here (see Fig. 5). The selected
estimation view only highlights how much and where must wortfile contains many public methods, as shown by the many small
be done, and if this can be automated or not. Developersese fight green blocks. Apart from these, we see a few private
in how they do the rewritinge.g. use our own rewrite engine methods halfway the file (pink blocks) and a few protected
(when fully automatic transforms exist for specific queyiesmethods in the left-middle area (orange blocks). The red hit

Fig. 5. Potential rewrite inspecting (top). After the reimgy (bottom)



in the white areas near the beginning of the file (left regiomjigure 6 shows how this works. Before zooming, we see two
show code to be ported as well, located in very small funstiorgroups of two hits each, which seem to overlap (Fig. 6 top).
whose screen size is under a few pixels in this view. We also s&fter zooming in this area (Fig. 6 bottom), we see that the
some larger functions containing consecutive and nestettaio first two hits are closely spaced, but not overlapping, iasid
structures (purple blocks) and loops (brown blocks). Bnale one control structure (purple block). The two other hitside
see a class definition (dark green block at the beginning). a public method (green block), fall further apart. As no hits
Next, the developer wants to examine change locations drerlap, they can be ported in one step using the rewritenengi
more detail. This serves to understand why certain hits mccu
for instance, hits of a certain query in a file may show comssru C. Complexity assessment for affected code

which one did not expect to be present. This ocoeus for  The decision to rewrite automatically or manually, rewrite
code bases maintained by many developers, such as in opgdtering, and the overall rewrite difficulty depend on mdvart
source projects. Another use-case is examining overladpts, the query hit count, hit locations, and hit overlaps. Otfaetdrs
i.e. vertical red bars; these are potential automatic rewritingclude the overallcontextof a code fragmente.g. location,
prOblemS. For deta”s, the user clicks in an area of inter%rrounding code constructs, and related comments. Tmmpp
in the rewrite impact view. This opens a KDevelop editor fofore kinds of reasoning about the impact of a rewrite on argive
the respective file and places the edit cursor at the locatifflg, we added additional metrics in the rewrite impact view.
corresponding to the position clicked in the bar. Clicking on piferent color schemes serve different analyses. One pl@am
a red hit block selects the hit's code range in the editor (S@#ich proved useful was to compare changes in public method
Fig. 5 top). The location selected in the rewrite impact vieWeclarations to changes in protected or private declarstio
matching the cursor position in the editor, is shown in thesw The hypothesis is that changes in public declarations have a
as a thin blue marker. The marker iS Updated when the UWher impact on a code base than Changes on protected or
clicks on the color bar and when mOVing the cursor in the e,dit(brivate declarations. Hence, a rewrite of a pub“c dedlamat
so the editor and rewrite impact view are linked in both wayshould be done with more care (if done manually) than one
In our case (Fig. 5 top), the hit is a Q@GuardedPt<T>  of protected or private declarations. Similarly, changeshe
construct, to be ported to its Qt4 syntaQRointer<T>). Note  jmplementation of a method are more localized than changes
that this query correctly handles C++ template instamtiesj in i the (public) interface of a class. However, in this cabe, t
our case the instance bei@GuardedPt KHTMLPart>. Now  complexity of the code around the change is important. For
the user can deCide hOW to dO the I‘eWI‘i'[e. Hel’e, he uses %mp'e' rewrites in deep|y nested control and |oop strastu
rewrite engine, since the construct occurs in a simple s@ntegy jn C-style casts potentially make the code more unreadabl
and, from the rewrite rule details, one knowns that this @Wr than rewrites in simpler code like assignment sequencese si
has no side effects. A right-button click menu on the hit (N@he former are already more complex than the latter everréefo
shown in the image) does the rewriting. Figure 5 bottom showsyriting [23]. Hence, rewrites on complex structures stidae
the rewriting effect: TheQGuardedPtx T> hits have vanished dgne with greater care.
from the list of query hits in the rewrite impact view, which T4 support such analyses, we use a colormap which depicts
has now three queries (colored bars) as compared to fourebefgyde complexity with respect to rewriting. All top-leverst-
rewriting. The code in the editor is updated automaticailyce tres such as class declarations and function bodies geathe
the rewrite affects the underlying source file. Manual réngi light gray tint to show an overview of global structure. Lsop
works conversely: the user changes the code in the editor ayife different tints of green (depending on the loop tgpg
the impact view is updated. for, do-whilg). Control structures have different purple tinif (
switch etc). C-style casts are light blue.

Figure 7 shows this colormap for three files of tkeelib
‘ 4 HFI code base. The first file (A) is a header with no implementation

T

="

(e.g. inline methods) and thus has low complexity, as shown
by the gray-tint bar. For the next two files (B,C), we show the
whole file and a zoom-in of a complex part thereof. We see
i — that these files contain different kinds of deeply nestegdoo
| } nested control structures, and several C-style castselBfihits
! al | show QString::latin1() function calls, which returns a Latin-1
I i L | encoding of a string object. In file B, we see a recurring patte
asng et cons LI (T AT e AT I a do-while loop (light green) which ends with several C-casts
Afterzooming (nested cyan block), and has a hit in the last statementi¢req |
Fig. 6. Zooming the rewrite impact view to analize query hits i.e. in the loop control expressions containiQtring::latin1()
calls. Also, we see that all hits are clustered within a sigtge
We next show the zooming the rewrite impact view. Thiblock roughly halfway the file, where we zoomed in. Here is a
helps deciding whether certain hits which seem to overlap imethod definition. For file C, we display hits for six diffeten
the zoomed-out view truly refer to the same code range or nqtieries. The first five queries have relatively few, clustehits

The mouse wheel zooms the view around the mouse positias. shown by the red bar locations (Fig. 7, file C, unzoomed




Query Id Ranges
File A

QPtrlist<T> ]l M1 1 | I e
Query Id Ranges
File B | Qstring:latinl() const ] I:l | B R
Query Id Ranges
FileB
(zoomed) Qstring:latinli) const I
Query Id Ranges
QGuardedPtr<T= ::::
. QObject::queryList L
File C | qobjectList LTI
QPtrList<T=
QPtrList<T=>::containsRef
Qstring::latinl() const 11 O il ]

Query Id Ranges
QGuardedPtr<T=
QObject:iqueryList

File C | QobjectList
(zoomed) ulim

QPtrList<T=

QPtrList<T=:containsRef

Qstring::latinll) const

Fig. 7. Rewrite impact view colored to emphasize code complexith respect to rewriting (see Sec. IV-C)

view). The last hit, again for th@String::latin1() query, has === =" - @ @ @ *“

more hits which are spread over a larger file portion. Howeve E g 0 D e

few hits overlap, so porting can be done by manually revgitir
these overlapping regions followed by automatic rewritofg
the remaining cases. Zooming in over a small range of file :

shows that most hits are outside complex structures, exbept ;
QsString::latin1() hits (red bars over green blocks).

D Anticipating porting effort Fig. 8. Deprecated API usage for anticipating porting ¢ff¢6ec. I1V-D)

For code bases which depend on third-party components,
porting is rarely a one-shot activity. When the interfacewfts class, which is a non-deprecated partkafepim This yielded
a component changes, the code base is likely to need regvritiR043 hits in 373 files. This implies thadepimlibis indeed
Such porting efforts can be anticipated by checking the co@enon-trivial dependency dédepim Further inquiries revealed
base’s usage of so-called deprecated APls. These are A®IBOSsible explanation for the low usage kafepimlibsAPIs
which are (highly) likely to be dropped off in future release Within kdepim the two components are largely maintained by
thus whose usage implies future porting costs. Ktlepimlibs the same team, which suggests that concerted efforts have be
library, part of the KDE framework [14], which contains codélone to remove usage of deprecated APIs.
for personal information management (PIM) functions, i®ad)
example. This library is widely used in thelepimcomponent E- Assessing porting dependencies at system level
of KDE. The evolution ofkdepimlibsfeatured several tens of The effort estimation view (Fig. 3) only shows the relatidn o
deprecated methods. Within this library, deprecated nustlane porting changes (query hits) to code at the lowest levelsifile
marked by special macros. We developed a query set for findiRgr large systems, developers may want to assess how a set
such methods which resulted in 47 function queries spread owef (porting) changes affects their code at higher abstacti
15 classes okdepimlibs Next, we checked how a new releaséevels,e.g.subsystems. For this, we use an existing dependency
of kdepim(to be included with KDE 4.5) uses such methodsisualization technique in a new way. Given a qué€yand a
by searching this release with our query set. code base with a set of filés, we first compute all filesg C F

Figure 8 shows the results of this analysis. Strikinglyréhewhich contain at least one hitc Q(f € F). Next, we construct a
are only 9 uses of 6 deprecated API®l(...,m6) within compound graplG consisting of containment and dependency
kdepim even though the size of the latter is over 500 KLOGelations. Containment relations reflect the softwarecstine
This is a good signal.e. very low effort for portingkdepim (folders and files), readily available from KDevelop’s stat
with respect tokdepimlibsAPI deprecation. As a reference,analysis. Dependency relations link all file nodes belogdm
we queriedkdepim for usage of non-deprecatektlepimlib the same setq, for all queriesQ. This reflects that porting the
functionality, i.e. the use of APIs in theAkonadi::Collection code with respect to a que needs to modify all filedg.



Node colors Node colors
mcre mcre

meerre

mor

W eagerre
nnnnnnn

e
et
Buinoun

QPtrList<T>

°)

Fig. 9. Understanding porting dependencies by visualizjogry hit relations between subsystems (Sec. IV-E)

To visualizeG, we use the hierarchical edge bundling (HEBYhe views on-the-fly as these become available, which gives a
technique of Holtenet al. [11], adapted to encode portingsmooth experience.
attributes. Figure 9 shows this for oukdelibsexample. The  Queries and transforms are declaratively written in XML.
left image (Fig. 9 a) shows a high-level view of the code. Nodélthough this offers less freedom thang. using an imperative
are folders, colored by the number of query hits with a blue-tquery and/or transform language, it reduces end-userteffor
red rainbow colormap. Several folders stand out as comiginiTypically, users start with an existing (XML-based) queny o
many hits,e.g. kioand khtml Next, we select thénterfaces transform set, and modify these gradually to suit their seed
folder and only show query hits relating this folder to thetre
of kdelibs i.e. the KDE packages, colored by query type. Thiferformance: The speed of KDevelop's C++ analyzer (slightly
shows that the Qt3-to-Qt4 changes in timerfacesfolder higher than compilation time) is key to the performance af ou
which affect packages involv@PtrList<T> constructs in the solution. For the entir& DE code base (3.8 MLOC), this is
kscript sub-interface (green edges) and several other construdgsminutes on a 1.8 GHz machine with 2 GB RAM. Although
in the ktexteditorsub-interface (purple edges). We next zoorthis may sound high, note that analysis is done once, and only
in on the porting dependencies betweiater facesand kio, redone for those files which are changed. In practice, tieslgi
by expandingkio to file level over the entire circumferencenear-real-time response time for typical developer daii
of the HEB view (Fig. 9 b). We now color nodes based ) , i
on their type (folders=green, C++ files=blue, headers=gejn Gene_rallty: Our porting support solution depends on .K.Develop
When we selectkscript, we see now precisely which fileso_”ly In terms of Im.plementanon_ The query, rewriting, and
shareQPtrList<T> porting dependencies witkscript - these wsughzatlons techniques presen_te_d are generic anq do not
are the nodes connected by green edges with the highlighigly in any way on C/C++ specifics. The only requirement
kscript node in Fig. 9 b,i.e. about 30% of all files inkio, is the availability of a_stauc analyzer that p_roduces an ASQ
spread over most of thkio subsystems. Porting dependencie}é"th source cpde locations. Hence., our solution can be Il_;egd|
of other types thaiQPtrList<T> are shown in gray. We see a!ntegratede.g.m QtCreator [20] (which also has an API for its
large bundle of these in the lower-right area, and seleanthdltérmnal C/C++ analyzer), KDevelop for other languagesntha
for further inspection (Fig. 9 c): We now see that these afdC+* or Eclipse &.g.via the CDT C/C++ or Recoder Java
QString::latinl porting changes (orange edges) which rela@@lyzers [22], [17]). The Recoder framework is partidylar
to the kio2 subsystem we just selected: they go to siblingHited, as it offers a powerful API for code rewriting.
subsystems irkio and none tokscript Hence, a Qt3-to-Qt4
porting affectskio at implementationievel via QString::latinl
constructs and ainterface level via QPtrList<T> constructs
due to thekscript API.

Validation: We have used our framework for several real-
world code porting contexts: work done at KDAB, Inc. [13],
a company specialized in software porting solutions and in
particular Qt-based code; and code refactoring work in the
V. DISCUSSION KDevelop open-source project after the KDE 4.4 release. In
Ease of use:Our views, query engine, and rewrite engine aroth cases, qurframework has been able to handle complex pod
tightly integrated with KDevelop. For this, we reuse the mpe?2Ses of millions of LOC and help developers save valuale ti
APIs of KDevelop for ASG access and GUI management. THMNg porting activities. _ N
incremental code analysis in KDevelop ensures that queries//€ &/s0 compared our solution gi32qt4 the official Qt3

and transforms done on large code bases show their result{ift4 Porting tool in the Qt SDK. The aim of this tool is
largely similar to ours: assist developers in porting Q&34x

For HEB technical details, we refer to the paper of Holter] [11 code to the Qt4 APIgt32gt4uses a lightweight C++ analyzer



to find and rewrite code fragments which comply with a built-i We next consider more generic, easier to specify ways to
list of porting patterns. Given thigjt32gt4has several serious select and transform code fragments. Also, we plan to augmen
limitations, including incorrectly rewriting syntactibasimilar, our visualizations to support more complex understandagg s

but semantically different code (due to scoping and lookugarios such as the assessment of ripple effects determinad b
limitations), and not rewriting certain constructs. Thesults certain code change throughout an entire code base and semi-
in broken code that does not compile, or worse, compiles kattomatic what-if scenario support for assessing the impfc
executes with different semantics. In contrast, our soitutias a given (set of) code modification(s) before these are dgtual
less limitations: although it cannot perform any type of €odexecuted manually or automatically.

transformation, the rewrites it handles do not result in piting
but incorrect code. Moreover, our solution is more geneérc,

it can be used for C++ rewriting beyond porting Qt-based codéll R.Akers, |. Baxter, M. Mehlich, B. Ellis, and K. Luecke.eBngineering
C++ component models via automatic program transformatiorPréc.

S . - P : WCRE pages 167-175, 2005.
L|m|t§1t|ons. F_or code.analy3|s, we are !lmlted by the quality of[z] R. Anisko, V. David, and C. Vasseur. Transformers: A C+ogram
ASG information provided by KDevelop’s own C++ analyzer. In° ~ transformation framework. tech. rep. 0310, EIPTA/LRDE, E&r2003.

particular, this analyzer does not perform a so-catlledboration  [3] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program triamsiations

phase on the ASG,e. the insertion of non-explicit constructs ;o&oaractlcal scalable software evolution. froc. ICSE pages 234-243,

for implicit cast operator calls and constructor calls, dedtruc- [4] F. J. A. Boerboom and A. A. M. G. Janssen. Fact extractrerying
tor calls for stack objects. However, such constructs nedzet and visualization of large C++ code bases. MSc thesis, DdpZomp.

- - . . . Sci., Eindhoven Univ. of Technology, the Netherlands, 2006
handled during porting to maintain code semantics. Other C+5 B. Broeksema. KbDevelop C++ query and rewriting extensi@f10.

analyzers such as Clang [7], Elsa [18] or SolidFX [24] do this ~ nttp:/mww.gitorious.org/kdevcpptools/kdevepptools.
and thus provide a richer ASG. Currently, we solve this peobl [6] B. Broeksema. A visual tool-based approach to porting Cegte. MSc

. . . . thesis, Dept. of Comp. Sci., Univ. of Groningen, the Netheta June
by inserting on-the-fly checks in our queries and transfatons 2010. http:/iwww.cs.rug.nlisveg/Softvis/Refactor.

account for such constructs. However, this solution is de&i, [7] Clang Team. The Clang C++ analyzer, 2011. http://clanm.org.
as such code should belong to the C++ analyzer proper. [8] Edison Design Group. EDG C++ front-end, 2011. www.edgic

; : ; _ ] S. Eick, J. Steffen, and E. Sumner. Seesoft - a tool foraliging line
Our query engine is S|mpler than general purpose AS oriented software statistic$EEE Trans. Softw. Eng18:957-968, 1992.

pattern-matching engines like [24]. Specifically, we do n@io] R. Ferenc, A. Begmles, M. Tarkiainen, and T. Gyithy. Columbus -

REFERENCES

support querying for patterns involving all nodes presarthe reverse Oezngineering tool and schema for C++Pfac. ICSM pages 172—
C/C-++ grammar, but limit ourselves to the most interestings [11] D. Holten. Hierarchical edge bundles: Visualizatidradjacency relations

for (API-related) porting scenarios.e. nodes which describe in hierarchical datalEEE TVCG 12(5):741-748, 2006.
the usage of an external API in terms of types, inheritandé?] J. A. Jones, M. J. Harrold, and J. Stasko. Visualizatibtest information

: : to assist fault localization. IRroc. ICSE pages 132-140, 2002.
templates, class member access, and function calls. Ifedgsi [13] KDAB Inc. KDAB company, 2010. www.kdab.com.

all C/C++ AST nodes could be added to this model, resulting jfu] KDE PIM Team. KDE PIM personal information management ligra

a query engine very similar to [24]. Similarly, our code réing 5] i%ll- Pttpi//comr%nity-Irde-lfg%/i;D_Ec’:lM- 2010 evelom
H : H H evelop team. evelop or C++, . Www.Kdeve. .
engine Is geared towards changes which lacal to a given [16] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice

query context. For porting code, this is however adequatees Springer, 2005.
typical changes here do not spread over large amounts of cdli A. Ludwig. Recoder Java static analyzer and programritewy 2010.
It is tempting to consider third-party C++ analyzers tq . hit:recodersourceforge.net,
, L ?18] S. McPeak. The Elsa C++ parser, 2011. www.scottmcpeaielkhound/
remove KDevelop’s analyzer limitations. There are few epen ~ sources/elsa.
source C++ analyzers which do preprocessing, have cd@@ Nokia, Inc. Qt 3 to Qt 4 porting guide, 2011. http://dgicnokia.com/4.
. g -, 6/porting4.html.
location data, prow_de rewntmg_, are scalable, an_d CoViEHa [20] Qt Creator team. Qt Creator integrated development enrient, 2010.
fully. The only suitable candidate we know is Clang [7]. ~ gt.nokia.com/products/developer-tools.
However, integrating Clang in KDevelop is not trivial. Give [21] R. Rao and S. K. Card. The table lens: merging graphicdl symbolic

; ; ; representations in an interactive focus + context visatibn for tabular
these reasons, our solution is a good compromise between information. InProc. ACM CHI pages 234-242, 1994.

generality and development effort. [22] D. Schaefer. The Eclipse C++ development toolkit, 20tivw.eclipse.
org/cdt.
ilathility- ; ; ; 23] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules,
Ava!Iab|I|ty. Our framework, mcludmlg examples, is openl)l Guidelines, and best practicesddison-Wesley, 2005,
available as a KDevelop 4.0.1 extension [5]. [24] A. Telea, H. Byelas, and L. Voinea. A framework for reveengineering
VI. CONCLUSIONS IZa(;gSICH code basesElectr. Notes Theor. Comp. ScRk33:143-159,

In this paper, we have presented a visual assistant forrport[25] F. vam Ham. Using multilevel call matrices in large softer@rojects. In
CIC++ code bases. Our solution assists users in assessjpg’ °C: INfoVis pages 227-232, 2003,
. ' . o ﬂ@‘p M. van den Brand, J. Heering, P. Klint, and P. A. OlivierCompiling
the porting effort for a given code base, determining possi- language definitions: the ASF+SDF compild€M Trans. Program. Lang.

ble conflicts (and resolutions thereof) during porting,tiget | EYS\tf, 24(4)13534—368,300% ; i Strateqo/xT chsical .
. . . . . visser. rogram transtormation wi ratego. .C cal repor
an overview of the issues affecting code under porting, affd UU-CS-2004-011, Institute of ICS, Utrecht Univ., Netheda, 2004.

doing the porting semi-automatically. We presented two nggs] L. Voinea and A. Telea. CVSgrab: Mining the history ofda software
visualizations: the effort estimation view and the rewiigact o BVOJZeCti- '”P\rfoc- EI_U_VOWS Pf?ges 1981'_t'206' 2006. Evout. Inp

. P . . . . . ZecCKzer. Visualizing software entities using a matayout. In Proc.
view, and used the eX|st!ng HEB visualization in a new an. ACM SOFTVISpages 210-217, 2010.
Examples are shown for industrial and open-source codesbase



