
Visual Clone Analysis with SolidSDD

Lucian Voinea
SolidSource BV, Eindhoven, the Netherlands

Email: lucian.voinea@gmail.com

Alexandru Telea
University of Groningen, Groningen, the Netherlands

Email: a.c.telea@rug.nl

Abstract—We present SolidSDD, an integrated tool for the
extraction and visual analysis of code clones. SolidSDD aims to
simplify and speed up the entire process of clone extraction from
code bases written in C, C++, Java, and C#, and visual analysis
of the extracted results. To this end, we combine several scalable
visualization techniques such as hierarchical edge bundles, table
lenses, annotated text views, and linked views. We demonstrate
SolidSDD for both fine-grained clone analysis and aggregated
report production tasks on several large-scale code bases.

Keywords-clone analysis, clone visualization, bundled graphs

I. INTRODUCTION

Code duplication (clone) detection is a key tool in software
maintenance. Many clone detectors exist, e.g. text-based [1],
[2], [3], token-based [4], [5], syntax-tree-based [6], [7], metric-
based [8], [9], and hybrid [10], [11]. Such tools produce a large
amount of clone pairs annotated with line, file, clone type,
clone metric, and program structure facts. To understand such
data, visualization techniques are crucial [12]. Examples hereof
are flat lists [13], scatterplots [14], Hasse diagrams [15], node-
link views [11], hyperlinked text and metric graphs [4], and
polymetric views [2]. This advocates the construction of tools
that integrate fast-and-easy clone detection with a rich-and-
intuitive multilevel navigation of the detected clones.

In line with the above, we developed SolidSDD (Software
Duplication Detector). SolidSDD finds structural clones from
C, C++, C# and Java code by a token-based method similar
to [4]. Detection is configurable by clone length (in statements),
identifier renaming (allowed or not), gap size (inserted or deleted
code fragments in a clone), and whitespace and comment filter-
ing. Detection creates a compound duplication graph, stored in
an SQLite database. Nodes are cloned code fragments. Edges
are clone relations. Structure is added either from the code
directory data (default) or from a syntax-based code hierar-
chy [16]. Metrics are computed on nodes (code location) and
edges (cloned code percentage, number of distinct clones, and
if a clone uses identifier renaming). For analysis, we use several
scalable information visualization techniques: Annotated text
shows clones in their file context and allows navigating between
all pairs of a clone. Bundled graphs show clones vs system
structure. Table lenses show clone and file metrics. Views are
linked, so we can navigate between text, clones, and system-
structure. Our tool supports the following questions: (a) How
are clones distributed vs system structure? (b) Which subsystems
have high clone percentages? (c) What kind of clones does a
given file contain? (d) Which files are affected by a given clone?
These are explained next.

II. CLONE VISUALIZATION

We illustrate SolidSDD (Fig. 1) by clones extracted from the
well-known Visualization Toolkit (VTK), a class library for
data visualization (3163 C++ files, 1113 C files, 3193 headers,
2.9 MLOC [17]). On VTK version 5.8, SolidSDD found 1124
clones in 220 seconds on a 2.66 GHz PC with 4 GB RAM,

using the default tool settings.
Structure view: This view (Fig. 1 a,b) uses hierarchical edge
bundling (HEB [18]) to show clones atop of system structure.
Its design is similar with the ClonEvol tool [16]. The radial rings
show the system hierarchy (folders and files). Node colors show
the percentage of cloned code in a subsystem on a green-to-red
colormap (green=smallest cloned-code amount; red=maximal
cloned-code amount; gray=files with no clones). Edges show
aggregated clone relations between files (two files are linked
when they share at least one clone), routed along the system
structure, so high-level clone relations show up as bundles.
Edge colors show the percentage of cloned code with respect to
the smaller size of the file-pair they connect on a green-to-red
colormap, i.e., red edges show fully-cloned files. Subsystems
can be opened or collapsed by double-clicking their nodes; and
nodes and edges can be selected, to focus analysis on a specific
set of files or clones. Nodes (files) and clone relations (edges)
can be filtered based on metrics, e.g. to eliminate clones with
few instances or files with small cloned-code amounts.

The structure view helps finding subsystems (strongly)
linked by clones and/or having high cloned-code percentages.
Fig. 1 a shows that our VTK code base has many intra-system
clones (edges linking files in the same folder) but also some
inter-system clones (edge linking files in different folders).
Three subsystems have high clone percentages (red in Fig. 1 a):
examples (S1), bin (S2) and Filtering (S3). Browsing these, we
found that clones in S1 and S2 are in tutorial code and test
drivers, likely created by copy-paste. Such clones are not very
interesting for e.g. refactoring as this would arguably make
sample code harder to read and learn from. Clones in S3, a core
VTK subsystem, are more interesting. In Fig. 1 b, we zoom on
S3 and select the file vtkGenericDataSetAlgorithm (f , marked
black) having over 50% cloned code. This is the baseclass of
all VTK algorithms. Selecting f highlights the files fc sharing
clones with f , i.e. the clone pairs of f . We find five such clone
pairs in the same S3 subsystem: vtkStructuredGridAlgorithm,
vtkDataObjectAlgorithm, vtkUnstructuredGridAlgorithm,
vtkHyperOctreeAlgorithm, vtkPolyDataAlgorithm (Fig. 1 b).
Less expectedly, we find one extra clone pair in the Rendering
subsystem (vtkLabelHierarchyAlgorithm, marked g in Fig. 1 b).
Each such file contains a separate class, as standard in VTK.
When writing these subclasses, developers likely copy-pasted
code between the baseclass and subclasses and/or between
sibling subclasses. Given VTK’s coding guidelines to maximize
code reuse and keep subsystems independent, clone g is a good
refactoring candidate, e.g. by moving the common algorithm
part to a superclass.1

Detail views: SolidSDD offers four levels-of-detail to inspect
clones (Fig. 1). These implement the ”overview first, zoom and

1This clone was removed in a recent VTK release, whose commit log
describes precisely the above design violation and proposed refactoring.

clone pairs view

(shows files f
c
) {

clone view

code
detail
views{

{

a) Overview b) Select file f

c) Examine files f, g

node

colormap

edge

colormap

S3

S1 S2

clone files f
c

file f

file g

file g

file f

clone (f,g)

file h

file f

Color legend for code detail view

non-cloned code

clone shown in both left and right file-windows
clone partner not shown in right file-window
identifier renamed (shown as in right window)

abc cloned code under mouse (both file-windows)

d) Examine files f, h

e) Examine one clone

file f ’

show all files f
c
 sharing

the selected clone

clone c in file f

select a file for detailed

code inspection

{

{

{

file detail view

clone pairs view

(shows files f
c
)

code detail views

structure view

Rendering
subsystem

clone (f,h)

’

file g file f file h

files
folders

Filtering
subsystem

file f’

file g’

file g’

Figure 1. SolidSDD clone visualization with the structure view (a,b) and detail views (c-e). Arrows show interactive workflow with the views (see Sec. II).

filter, then details-on-demand” visualization mantra of Shneider-
man [19], thus making SolidSDD more versatile than structure-
view-only tools using HEB, such as e.g. [16], [20]. The file
detail view shows all files with cloned-code percentage, number
of clones, and presence of identifier renaming. Sorting this table
helps e.g. finding files with most clones or highest cloned code
percentage. This view is linked with the structure view: selecting
file f in the structure view (Fig. 1 b, black) highlights it in this
table (Figs. 1 c,d, red marker). The clone-pair view shows the
clone-pair files fc of f . Here we find our file g which shares
clones with f but is in another subsystem. We select g and
use the two code detail views (Fig. 1 b, bottom panels) to study
all clones between f and g. The left code-detail view shows
code in file f ; the right view shows code in file g. Scrolling
these views is synchronized to easily compare matching code

fragments. Text is color-coded: non-cloned code (white), code in
f cloned in g (light blue), renamed identifier pairs (green in left
view, yellow in right view), and cloned code in f whose clones
are in some other file h 6= g (beige). The last color helps us
to navigate from f to other clone-pair files h: Control-clicking
on a beige code-fragment in f (Fig. 1 c) replaces file g in the
right view by file h, and also selects h in the clone-pairs view
(Fig. 1 d). Repeating this allows us to cycle, for a given clone
instance in a given file f , through all its clone-pair files h.

The previous three views offer a file-centric clone exploration.
The clone view offers a clone-centric perspective, i.e., inspect
a clone over all files where it occurs (Fig. 1 e). The top
list in this view shows all clones in the entire code base.
Selecting a clone c, either in this list or by clicking in the
code view, shows all files fc where the clone occurs in the

{

}
select files having

>80% cloned code

selection

inspector

table lens controls

(e.g. zoom level)

show selected files

in structure view

metric view

cl
on

e
co

de
pe

rc
en

ta
ge

structure view

Figure 2. SolidSDD metric view (bottom) and structure view (top) with high-clone percentage files highlighted (see Sec. II).

clone-view middle panel. In Fig. 1 e we selected a clone in
the vtkGenericDataSetAlgorithm file. We now select a file
f ′ ∈ fc in the middle panel which contains a subclass of
vtkGenericDataSetAlgorithm. The middle panel right view
shows now all files f ′

c sharing clones with f ′. We see here
sibling subclasses of vtkGenericDataSetAlgorithm. Hence,
both our hypotheses are true: Clones exist both between the
superclass and subclasses and between subclasses themselves.
Metric view: This view (Fig. 2 bottom) uses a table where rows
are code files, and columns are file attributes: name, size, clone
code percentage, and clone fan-in (number of intra-file clones)
and fan-out (number of inter-file clones). Tables can be sorted
by clicking on their column headers. A zoom slider allows
changing the level of detail, using the table lens technique [21]:
When zooming out, table cells are shrunk; if their size goes
below a few pixels, cell text is replaced by bars colored and
scaled to show metric values. When zoomed out and sorted, the
table shows the spread of a given metric on the entire system.
Selecting row-ranges allows focusing analysis on a subset of
interest. In Fig. 2, we sort files by cloned-code percentage and
zoomed out the table to see a distribution of this metric (sixth
column from right). We see that around 30% of all files contain
a large amount of cloning. Selecting the top 10% files in the
metric view highlights all files with >80% cloned code in the
structure view in black (Fig. 2 top). We see that every single
VTK subsystem contains such files. Details on the selected files
are shown in the selection inspector (Fig. 2 right). This supports
refactoring planning by giving insight on where recoding work
would need to be done to e.g. remove the largest clones.

III. AGGREGATED CLONE INSPECTION

SolidSDD is written in Python (clone extraction) and C++
with OpenGL (visualization) and SQLite (clone storage). The
HEB is implemented following [18]. Architectural details are
given in [22]. An installer with manual and sample datasets
is freely available for researchers [23]. SolidSDD can be cus-
tomized in various ways: (a) The structure-view hierarchy
(Sec. II) can be specified as an XML file; (b) Custom line-based
filters to exclude parts of the scanned code can be written as
Python scripts; (c) The tool can be run in batch-mode (without
the visual front-end) and its analysis results can be exported in

various formats, e.g. CSV and XML. (d) Users can mark certain
clones as uninteresting (black-listed) or of interest (watchlist).
When running SolidSDD on newer versions of the same code,
the tool hides clones on the blacklist and highlights clones on
the watchlist. This allows monitoring the evolution of interesting
clone relations in a code base in a simpler way than e.g. the
animation-based approach proposed by the ClonEvol tool [16].

Besides fine-grained clone inspection (Sec. II), the IT in-
dustry also needs creating aggregated clone reports. To test
SolidSDD’s scalability, robustness, and ease-of-use for this
task, we selected a set of open-source applications within six
classes: office, enterprise/financial, databases, communication,
networking/embedded, and development tools. In each class, we
selected three popular samples, based on their download count
on SourceForge.net and Google rank. The samples are written
in C, C++, C#, and Java (Tab. I), and have between 30K and
1.8M LOC (Fig. 3 a). For each sample, SolidSDD was used
to measure code-duplication amount and potential size-decrease
by refactoring the top 5% largest clones. These are typical
measurements often present in aggregated clone reports [4].
Other clone-related metrics can be considered equally easily.
Cloning was measured for high (> 35 statements), medium
(> 25 statements) and low clone sizes (> 15 statements). These
metrics, exported from SolidSDD to Excel (Fig. 3 b), show that
the cloning amount is low in four of the six considered classes:
communication, development, office, and databases (under 5% at
medium..high clone sizes). Two classes show larger deviations:
networking/embedded (> 10% cloning) and enterprise/financial
(> 25% cloning). Figure 3 c shows the potential code reduction
upon refactoring the top 5% largest clones, i.e., removal of
all but one copy of each clone. For most of our samples,
the top 5% largest clones account for more than 25% of all
cloning (reaching 40% for networking/embedded). This study
took under 5 hours, including code download, installing and
running SolidSDD from scratch, and making the reports. This
shows that SolidSDD is fast and easy to use to create clone
reports for a wide range of code bases.

IV. CONCLUSIONS

We have presented SolidSDD, an integrated tool for the
detection and exploration of code clones. SolidSDD combines

Application class Class description and selected applications for clone inspection
Communication File-transfer and P2P applications (Apache httpd, FileZilla, Vuze)
Office Productivity applications (KOffice, AbiWord, Scribus)
Entreprise/financial Company resource planning / CRM (Jasper Reports, Compiere, ADempiere)
Databases Database engines (MySQL, SQLite, Hibernate)
Networking/embedded Network management/monitoring (Freesco, Whireshark, net-snmp)
Development tools Software development and maintenance (TortoiseSVN, Notepad++, WinMerge)

Table I
OPEN-SOURCE APPLICATIONS SELECTED FOR SOLIDSDD TOOL ASSESSMENT (SEC. III).

b)

c)a)

Duplicate code percentage

Potential duplication reduction
when refactoring top-5% clones

Figure 3. Producing aggregate clone-amount and clone-reduction potential reports using SolidSDD (Sec. III).

several techniques for clone detection [4] and data visualization
(table lenses, HEB views, linked views, and annotated text)
to make detection, examination, and quantification of clones
faster and easier than when using several separate analysis and
visualization tools. We illustrate SolidSDD with both a fine-
grained clone analysis (Sec. II) and coarse-grained aggregated
analysis of several large code bases from the open-source arena.

REFERENCES

[1] B. Baker, “A program for identifying duplicated code,” Computing
Science and Statistics, vol. 24, pp. 49–57, 1993.

[2] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in Proc. ICSM, 1999, pp.
109–118.

[3] A. Marcus and J. Maletic, “Identification of high-level concept
clones in source code,” in Proc. ASE, 2001, pp. 107–112.

[4] T. Kamiya, “CCfinderX official site,” 2014, www.ccfinder.net.
[5] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for

finding copy-paste and related bugs in operating system code,” in
Proc. OSDI, 2004, pp. 289–302.

[6] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. ICSM, 1998, pp.
368–377.

[7] W. Evans, C. Fraser, and F. Ma, “Clone detection via structural
abstraction,” in Proc. WCRE, 2007, pp. 150–159.

[8] K. Kontogiannis, R. Demori, E. Merlo, M. Gallery, and M. Bern-
stein, “Pattern matching for clone and concept detection,” in Proc.
ASE, 1996, pp. 77–108.

[9] F. Calefato, F. Lanubile, and T. Mallardo, “Function clone de-
tection in web applications: a semiautomated approach,” J. Web
Eng., vol. 3, no. 1, pp. 3–21, 2004.

[10] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using
abstract syntax suffix trees,” in Proc. WCRE, 2006, pp. 253–262.

[11] L. Jiang, G. Miserghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proc. ICSE,
2007, pp. 137–145.

[12] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative ap-
proach,” Sci Comp Program, vol. 74, no. 7, pp. 470–495, 2009.

[13] E. Juergens, F. Deissenboeck, and B. Hummel, “CloneDetective:
a workbench for clone detection research,” in Proc. ICSE, 2010,
pp. 98–107.

[14] Y. Higo and S. Kusumoto, “Code clone detection on specialized
PDGs with heuristics,” in Proc. CSMR, 2011, pp. 75–84.

[15] J. Johnson, “Visualizing textual redundancy in legacy source,” in
Proc. CASCON, 1994, pp. 32–38.

[16] A. Hanjalic, “ClonEvol: Visualizing software evolution with code
clones,” in Proc. Vissoft, 2013, pp. 1–4.

[17] Kitware, “VTK home page,” 2013, www.kitware.com/vtk.
[18] D. Holten, “Hierarchical edge bundles: Visualization of adjacency

relations in hierarchical data,” IEEE TVCG, vol. 12, no. 5, pp.
741–748, 2006.

[19] B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualizations,” in Proc. ACM VL, 1996, pp. 336–
343.

[20] B. Hauptmann, V. Bauer, and M. Junker, “Using edge bundle
views for clone visualization,” in Proc. IWSC, 2012, pp. 86–87.

[21] A. Telea, “Combining extended table lens and treemap techniques
for visualizing tabular data,” in Proc. EuroVis, 2006, pp. 51–58.

[22] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The Solid* toolset
for software visual analytics of program structure and metrics
comprehension: From research prototype to product,” Science of
Computer Programming, vol. 79, no. 1, pp. 224–240, 2014.

[23] SolidSource BV, “SolidSDD clone detector,” 2014,
www.solidsourceit.com/products.

