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Abstract—Dynamic treemaps are one of the methods of choice
for displaying large hierarchies that change over time, such as
those encoding the structure of evolving software systems. While
quality criteria (and algorithms that optimize for them) are
known for static trees, far less has been studied for treemapping
dynamic trees. We address this gap by proposing a method-
ology and associated quality metrics to measure the quality
of dynamic treemaps for the specific use-case and context of
software evolution visualization. We apply our methodology on
a benchmark containing a wide range of real-world software
repositories and 12 well-known treemap algorithms. Based on our
findings, we discuss the observed advantages and limitations of
various treemapping algorithms for visualizing software structure
evolution, and propose ways for users to choose the most suitable
treemap algorithm based on the targeted criteria of interest.

I. INTRODUCTION

Hierarchies play a central role in understanding large soft-
ware systems. Such systems evolve over hundreds of revisions
or more, and can have thousands of elements or more, which
are typically organized hierarchically (e.g. in folders, files,
classes, and methods). Hence, tools for visually understanding
evolving hierarchies are a key component in the program
comprehension arsenal. Treemaps are a well known method for
visualizing hierarchical data. Given an input tree whose leafs
have several attributes, treemaps recursively partition a 2D
spatial region into cells whose area, color, shading, or labels
encode the tree’s data attributes. Compared to other methods
such as node-link [1], [2] or Sunburst [3], [4] techniques,
treemaps use all available screen pixels to show data and thus
can handle trees of tens of thousands of nodes.

Dynamic treemaps leverage the above advantages to show
dynamic, or evolving, trees. Given a tree sequence, they
create an animated sequence of treemap layouts that reflect
how the structure and attributes of the trees in the sequence
change in time. Evolving treemaps have been created both by
using classical static treemap algorithms [5] or by specialized
algorithms [6]—[8].

Evolving treemaps have received great interest in software
visualization [7]-[11]. As many treemap techniques exist, the
question emerged of how to measure their quality. For common
rectangular treemaps, which map tree nodes to rectangles,
visual quality is typically measured by the aspect ratio of
these rectangles. However, the aspect ratio may not capture all
desirable qualities of such treemaps. For example, bad aspect-
ratio cells of a tiny area could influence the overall visual
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quality far less than large bad aspect-ratio cells. Atop visual
quality, evolving treemaps are assessed by measuring their rate
of visual change. However, this metric may not capture all
desirable properties: Large visual changes in a treemap are
expected (and actually desirable) when the underlying tree
changes drastically, but undesired when the tree changes only
slightly.

Although treemaps are used for over two decades in soft-
ware visualization [5], [12]-[14], there are few comprehensive
evaluations of the quality of dynamic treemap techniques
and, to our knowledge, none that focuses on trees capturing
software evolution. The aim of this paper is to fill this gap. For
this, we first review the related work in (dynamic) treemaps
and their quality measurement, with a focus on software visu-
alization (Sec. II). We next refine desirable treemap properties
into 5 quality metrics that capture both spatial quality and
dynamic quality (Sec. III). We measure these metrics on 12
well-known treemap algorithms on 28 tree sequences, ranging
from a few hundred to tens of thousands of elements, all
extracted from software repositories. We next visualize and an-
alyze our results to address questions that practitioners would
like to answer to choose a suitable technique (Sec. IV). We
discuss our findings and proposed methodology in Sec. V. Our
results (datasets, metrics, treemap implementations, evaluation
results, and visualizations thereof) are publicly accessible for
researchers in the software visualization field interested in
evaluating treemap methods for evolving software hierarchies.

II. BACKGROUND

Hierarchies are arguably the central element in most soft-
ware visualizations. They capture the physical (e.g. files and
folders) or logical software (e.g. syntax tree) system structure,
together with static or dynamic attributes, e.g., code size, qual-
ity metrics [15], change requests, or testing results [9]. Both
static and dynamic hierarchies in program comprehension
are typically extracted by mining software repositories [16],
[17]. When small (a few hundred nodes), such trees can be
visualized using classical node-link layouts such as in class
or architecture diagrams [16], [18], [19]. This works well
for architecture-level views on a software system. However,
code-level views, which contain nodes from subsystems all
the way to classes and methods, generate large trees, having
hundreds of thousands of nodes [4]. These require space-



filling methods, such as icicle plots [20], [21] or, the method
of choice, treemaps. The latter are discussed below.

A. Treemap algorithms

Let T = {n;} be a tree with nodes n;, and let a; € R™ be
an attribute defined on the tree leaves. For non-leaf nodes n;,
a; equals the sum of the attributes of the children of n;. A
rectangular treemap algorithm 7'M creates a set of rectangle
cells {c¢;} = TM(T), ¢; C R? for the nodes n; so that the area
of ¢; equals a; and children node cells create a partition of their
parent cell. Several treemap algorithms exist, as follows (for
detailed surveys, see [5], [13], [14], [22]. Slice and dice (SND)
treemaps pioneered the concept but were found to create too
long-and-thin cells which are hard to grasp [12]. Subsequent
algorithms tried to improve this aspect, quantified by the
aspect ratio (AR) of the treemap cells. Squarified treemaps
(SQR) propose a slicing heuristic that achieves, in general,
very good (close to one) AR values [23]. Nagamochi and
Abe refined this idea in an algorithm (APP) that approximates
the optimal AR a given treemap can reach [24]. However,
SQR is not particularly stable — small changes in the input
tree can yield large changes in the treemap layout. Several
algorithms have aimed to improve stability. Ordered treemaps
(OT) [25] and Strip treemaps (STR) [26] layout cells ¢; to
follow a predefined order of the nodes n;. Different algorithms
propose different orderings: Pivot-by-Middle (PBM), Pivot-by-
Size (PBZ), and Pivot-By-Split-Size (PBS) [25]; Engdahl’s
Split algorithm [27]; and laying out cells along a space-
filling curve, e.g., Spiral (SPI) [28], and Hilbert (HIL) and
Moore (MOO) fractal curves [29]. Spatially-Ordered Treemaps
(SOT) [30] extend SQR by ordering sibling nodes so that
the most similar ones are processed in turn. NMap [31] uses
a related idea; cells are placed according to the similarity
of their attributes, using a dimensionality-reduction approach.
Two versions exist: NMap Alternate Cuts (NAC) alternate
horizontal and vertical cuts to subdivide the space (akin to
SND), while NMap Equal Weights (NEW) splits the space to
create similar-size cells of similar. However, NMap was only
applied to single-level trees. Recently, Sondag et al. propose
stable treemaps [6], which aim to improve both the AR and
stability for dynamic treemaps by using non-sliceable layouts.

Other cell shapes can be used besides rectangles. Voronoi
treemaps [32], [33] exploit the properties of weighted Voronoi
diagrams to create organic-looking displays where cells are
convex polygons with, in general, good AR values. Voronoi
methods have also been used, with good results, to con-
struct dynamic treemaps for visualizing software structure
evolution [7], [11]. Hybrid treemaps (HTM) [34] combine
various basic treemap techniques to generate the final layout.
Other variants include jigsaw treemaps [35], orthoconvex
treemaps [36], and bubble treemaps [37].

B. Treemap quality metrics

In practice, the quality of treemaps is measured using two
types of metrics, as follows.
Spatial quality metrics capture how easy one can read the
information shown in a static treemap. Such metrics include
the aspect ratio (AR) of the treemap cells, which ideally

should equal one. For ordered treemaps, the readability
metric measures how often one switches visual scanning
direction while reading the treemap in order [26]; and the
continuity metric measures how often cells for neighbor
nodes (following the given node order) are not neighbors in
the treemap layout [28].

Stability metrics capture how easy one can follow the
changes in a dynamic treemap. Given two treemaps for
two (typically consecutive) time-moments #; and ¢;, Shnei-
derman and Wattenberg [25] define stability as the dis-
tance between the vectors (xi(#;),yx(t:),wi(t;),h(t;)) and
(xk(27),vx(2;), wi(2;), hi(j)), where x and y are the coordinates
of the top-left corner, and w and A, the width, and the height
of a cell ¢, averaged over all cells in the treemap. Hahn et
al. [8] use for stability the change of distance between the
centroids of c¢(f;) and c¢(r;), averaged over all cells. Tak
and Cockburn [29] use the same cell-change metric (top-left
corner, width, height) as Shneiderman and Wattenberg [25],
but aggregate via variance rather than average. They also
propose a drift metric which measures how much a cell
moves away from its average position over a time period.
Two recent metrics measure stability at the level of pairs of
cells rather than individual cells. Hahn et al. [38] propose the
relative direction change, which measures the angle change of
centroids for every pair of cells in a layout. Sondag et al. [6]
measure the relative position change of each cell with respect
to eight planar zones defined by four lines given by the edges
of that cell, averaged over all treemap cells.

C. Software visualization challenges

Summarizing, considerable effort went into designing static
treemap methods and measuring their quality. Less effort went
to evaluating dynamic treemaps. We identify limitations in
several directions, with a focus on our use-case of visualizing
large evolving software hierarchies:

Algorithms: Treemap papers typically compare a few (2..5)
algorithms from the much larger set of available ones. In
particular, it is not clear how most existing static treemap
algorithms perform on the types of dynamic trees extracted
from software evolution analyses.

Datasets: Existing methods are typically evaluated on one or
a few datasets. While in this paper, we cannot (and do not
aim to) cover the full space of all possible trees, we can do
better than current work: For our specific context of software
visualization, we aim to know how treemap methods perform
on a representative collection of software hierarchies capturing
software evolution.

Metrics: As outlined in Sec. II-B, stability is currently mea-
sured by looking at how much two treemaps (typically for
consecutive time moments) do change with respect to each
other. However, when the underlying tree sequence changes a
lot, e.g. by insertions or deletions of many files or classes at
the same moment during a software repository’s evolution (an
event well-known to take place often in software evolution),
the treemap will change a lot, so its evolution will be labeled
as unstable. However, it is actually desirable to have a large
visual change in this case, as this correctly shows the presence



of a large data change. We argue that ways to measure stability
as a function of the data change is needed.
Result exploration: Most evaluations consider only aggre-
gated metrics with one value per technique or per technique-
and-dataset. Analyzing the actual distribution of metric values
over both layout-space and time can give extra insights into
the strengths and weaknesses of specific techniques.
Replicability: Treemap evaluations can be hard to replicate as
datasets and algorithm implementations are not always openly
available or not integrated to make a comparison on different
datasets, and along different metrics, easy. Replicability is a
growing concern in information visualization but with partic-
ular weight in software visualization [39]-[41].

The remainder of this paper is dedicated to addressing the
above points.

Dataset Revisions | Nodes (total) | Average depth
animate.css 50 3454 2.87
AudioKit 22 11178 6.95
bdb 62 2658 3.83
beets 106 9844 3.75
brackets 88 120292 12.85
caffe 44 12969 493
calcuta 50 2882 10.76
cpython 321 584821 6.50
earthdata-search 46 18539 6.82
emcee 64 1746 3.62
exo 97 36436 11.88
fsharp 69 22906 7.89
gimp 72 170418 5.19
hospitalrun-frontend | 38 16759 5.71
Hystrix 61 15530 13.29
iina 74 6849 4
jenkins 137 277185 11.94
Leaflet 84 13381 4.86
OptiKey 36 9782 6.72
osquery 37 14111 5.75
PhysicsJS 20 2022 4.6
pybuilder 53 5457 7
scikitlearn 88 48468 5.75
shellcheck 53 746 2.39
soundnode-app 35 3196 6.88
spacemacs 51 10201 4.96
standard 29 203 2
uws 122 4093 2.76
[ Totals: [ 2132 \ 1458036 | 5.7 |
TABLE T

SOFTWARE EVOLUTION TREE DATASETS USED IN THE EVALUATION.

III. MEASURING THE QUALITY OF DYNAMIC TREEMAPS

To address the current limitations of dynamic treemap eval-
uations in software visualization, we performed an in-depth
study covering the five directions in Sec. II-C, as follows.

A. Algorithms

We consider in our evaluation 12 methods: Approxi-
mate (APP), Hilbert (HIL), Moore (MOO), NMap-Alternate-
Cuts (NAC), NMap-Equal-Weights (NEW), Pivot-by-Middle
(PBM), Pivot-by-Size (PBZ), Pivot-by-Split-Size (PBS), Slice-
and-Dice (SND), Spiral (SPI), Squarified (SQR), and Strip
(STR) treemaps. For NMap, we use as seed layout the one
computed by SQR (for details, see [31]). We do not consider
non-rectangular treemap methods, as their quality is less easy
to compare with rectangular ones, and are also less used in

practice. Also, we do not consider the stable treemaps in [6]
as this method is considerably slower (over one order of
magnitude) than the above-mentioned methods.

B. Datasets

We evaluate all above treemap methods on a collection of
28 datasets (Tab. I). All of them consist of trees describing
the hierarchy of public and well-known GitHub software
repositories (folders, files, classes), one tree per revision,
where leaves (classes) are attributed by their number of lines
of code. The trees and their attributes have been extracted
from the actual repositories by a fully automatic pipeline we
built using libgit2 [42] for repository parsing and Understand
[43] for code analysis. For a more detailed description of the
extraction pipeline, we refer to [44]. The respective software
projects have widely different sizes, tree depths and structures,
durations, numbers of contributors, language (C, C++, Java,
Python), and code type (library, framework, application). This
is seen in the figures in Tab. I and also in Fig. 1 which shows
the union trees U;T'(1;) for the considered datasets. Hence, we
argue that this collection covers reasonably well the space of
tree sequences obtained from software evolution.

C. Metrics

Let wy and hy be the weight and height of cell c¢; and
(W,H) the width and height of the screen space we draw the
treemap in. With these, we consider the following metrics.

1) Spatial quality metric: We first consider the classical
aspect-ratio metric

QR = min(wy, hy) / max (w, h).- (1)

Introduced in [23], this metric has been since then used all
treemap evaluations to capture spatial quality. As such, we
keep it in our evaluation. It is designed to give high scores
for rectangles with sides of similar length, and low scores
otherwise.

2) Stability metrics: Let cx(f;) and c¢(t;) be two cells in
two consecutive versions 7'(f;) and T(¢; =t;() for the same
node in a dynamic tree. Typical stability metrics (Sec. 1I-B)
only measure the visual change 8¢ between ci(t;) and ci(t)).
We use for dc; the average sum of distances between the four
corresponding corners of ci(t;) and c(¢;) [25], normalized
by the treemap diagonal VW2 +H?, so & € [0,1]. We next
define the data change between nodes n(t;) and ng(t;) as
day = |ay(ti) — ax(tj)|, where ay is the relative weight of ny at
time #;. If either of ni(;) or ni(r;) does not exist, i.e., a node
was created or deleted in versions #; or ;, we set the respective
ay to zero, which is as if the respective node was depicted by
a zero-size cell. We normalize a(#;) by the weight sum of all
nodes ny present at time #;, so day € [0, 1]. With this, we define
the stability of a cell ¢ in a treemap in several ways. First,
we define stability as

QO = (1= 8cr) /(1 — day). )

When visual changes are proportional to data changes, since
both are normalized, QRAT'€ goes to one. Note that an analogy
to Eqn. 1, i.e., QfAT10 = min(8cy, day ) / max (dcy, dax) does not
work: Eqn. 1 is symmetric in width and height. For stability
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Fig. 1. Union trees of software evolution tree datasets used in the evaluation. Names correspond to public repositories on GitHub.



(Eqn. 2), we want to assess visual change as a function of data
change, and not conversely.
A second way to define stability is by

OMOP =1 —|8¢; — day . (3)

For proportional visual vs data changes, QﬁmD =1

|y = a4y

old cell ¢,(7) DN new cell ¢,(#+1)
of area a,(7)

Y of area a;(r+1)
\\
/  minimal D(x)

Fig. 2. Computation of unavoidable change metric Q,{,/NAV.

To compare data and visual changes, QfAT[O and QkMOD

must be normalized to the same range, therefore we clip
QRATIO o the [0,1] interval. However, this can introduce
normalization biases, e.g. when the data changes and visual
changes have very different ranges. To address this, we next
propose to define stability purely in visual space. For this, we
consider the actual change dc; of a cell vs the unavoidable,
i.e. minimal, change Acj that ¢; would need to undergo to
accommodate the data change from ai(z) to ai(r+1). If
dcy > Acy, the algorithm is unstable; if 8¢y = Acy, it is fully
stable. We compute Acy as follows (Fig. 2). Let ¢(¢) be a
cell of width w and height h at time step 7. Let cx(r+1) be
the version of ¢ (z), of area ap(r+1), at step r+ 1. We first
note that d¢; is minimal when c¢(t) and ci(r 4+ 1) have the
same center, as visual change is then caused purely by data
change and not by avoidable ‘drift’ of the cell corners. Taking
a xy coordinate frame centered in this common cell center,
the top-right corner of ¢(f) is constrained to a hyperbola
y=ai(t+1)/4x. Hence the minimal change Acy is four times
the minimal distance D from this corner to the hyperbola, i.e.

D(x) =\ (x—w/2)2 + (ax(t + 1) fAx — h/2)%
To find the minimum of D, we solve % =0 for x > 0. This
quartic equation in x has analytic solutions. We obtain x, the
width of the optimal cell ci(z+ 1), and thereby the minimal
Acy.. Finally, we define the unavoidable-motion stability as

QMY =1 — (8¢ — Acy). 4)

Finally, we define stability for a whole tree T as the absolute
value of the Pearson correlation coefficient

L (8cx — 8cy) (8ay — day)
/T (Bex — 86/ T (B — Bap)?

CORR
Q =

®)

of the signals {8c;} and {da;} for all cells ¢; € T, where
8cy and 8a; are the signals’ averages, so QCORR ¢ [0,1]. If
visual and data changes &c; and day are linearly correlated,
QCORR reaches one. Q€K close to zero indicates uncorrelated
changes, i.e., instability.

Compared to existing treemap stability metrics [6], [8], [25],
[29], all our above metrics consider the relation of visual
change dc; to data change &a;. This is a fundamental dif-
ference: A treemap method TM(T) = {c;} is a function from
trees T to cell-sets {c;}, so its stability should be defined akin
to Cauchy or Lipschitz continuity, which relate function-value
({ci}) changes to variable (T') changes rather than measuring
function changes only. Indeed: If a function strongly changes,
the function itself is not necessarily unstable; this can happen
when the input variable strongly changes.

3) Metric weighting: As mentioned in Sec. I, very small but
bad aspect-ratio cells may not strongly influence the overall
perceived spatial quality of a treemap, since they are barely
visible. The same argument could be made for very small
unstable cells vs the overall perceived stability. To model these,
when computing the average value of the metrics Q48 QRATIO
OMOP " and QUM we weigh the respective per-cell values
OF (and the other three ones) by the sizes ay of their cells. We
used such weighted metrics in all experiments described next
in Secs. IV-B-IV-D. However, the obtained results showed that
the aggregated weighted metric values differ only very slightly
from their unweighted versions. As such, in the following we
will only consider the unweighted metric versions.

IV. RESULT EXPLORATION

We measure the five metrics (Eqns. 2-5) on all 28 test
datasets (Sec. III-B) processed by all 12 treemap methods
(Sec. ITI-A). We record metrics at the cell level (except Q€ORR,
recorded at tree level). This yields a high-dimensional-and-
hierarchical dataset, conceptually a table with seven columns
(5 metrics, algorithm ID, dataset ID, time step) and as many
rows as the number of measured cells in all datasets, all
timesteps. Exploring this data space is a challenge in itself.
As noted in Sec. II-C, current treemap evaluations typically
present only a few metrics, aggregated to a single (typically
average) value per algorithm or per algorithm-and-dataset. To
get more insight, we propose several visualizations that present
various aspects of the evaluation data to answer specific
questions concerning the evaluated algorithms. We proceed
in a bottom-up fashion: We first explore the data at the finest
(cell) level-of-detail (Sec. IV-A). This shows subtle differences
between different methods (we show all table rows), but cannot
show all evaluated metrics (table columns). Next, we study the
quality as a function of time, for one given evolution sequence
(Sec. IV-B). Thirdly, we compare the aggregated 5 metrics for
all dataset and algorithm combinations (Sec. IV-C). Finally,
we aggregate all results to present a compact comparison of
all algorithms (Sec. IV-D).

A. How does visual change relate to data change (Q1)?

Before actually evaluating stability, we want to study the
distribution of visual changes created by the tested algorithms
as function of the respective data changes for all datasets,



all timesteps. For this, we show a scatterplot per algorithm
(Fig. 3), where, for all datasets, x maps 8a;(t;), i.e. data change
of all cells ¢; from time step ¢; to tj41, for all time steps
J; and y maps Oc;(¢;) (see Sec. III-C2). A point is thus a
cell in a revision of a dataset. To account for overplotting,
we compute density maps from these scatterplots using kernel
density estimation [45] and color-code the density using a heat
colormap. Ideally, the visual change should be proportional to

APP a=0.04 3=1.18 r=0.07 s, =0.016 HIL a=0.03 3=1.26 r=0.09 s,=0.013

low density high density
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Fig. 3. Correlation of data and visual change per algorithm, all datasets.

data change (Sec. III-C2), so our scatterplots should be close
to a diagonal line. We see that this is not the case. All plots
show an upwards-pointing ‘tail’ close to the origin. This tells
that most cells with small data changes have disproportionately
large visual changes, so instability affects more the small than
the large cells. Shallower tails indicate more stable methods,
e.g. SND. To get a more summarized insight, we also plot
a linear-regression line (red), characterized by the slope (o)
and the y-intercept (), and compute the linear correlation

coefficient (r) and standard error (s.) of the points. Larger r
coupled with small s, values indicate methods which correlate
visual change with data change better, e.g. SND and NAC. We
also find the worst-correlating methods, SQR and PBS, and see
that SQR is about 7 times worse than SND.

B. How is quality evolving in time (Q2)?

Q1 does not show how quality fluctuates over time for a
given tree sequence. Knowing this is important to assess what
one can expect when using a given treemap algorithm for a
sequence of hundreds of revisions extracted from a repository.
To assess this, we show a chart per method, per dataset, and
per metric family (that is, spatial quality Q4% and per-timestep
averaged values of the four stability metrics QFATIO, QMOD,
and QUN). In all charts, x maps time and y shows a box
plot indicating median (black), 25-75% range (green), and 5-
95% range (gray). Since we cannot show this chart for all our
28 datasets (nor can we aggregate them in a single chart), we
select one representative dataset to depict: cpython. The dataset
was extracted from the official Github repository hosting the
source code of the Python programming language [46]. This
is our largest dataset with 321 revisions and an average of
over two thousands tree nodes per revision. Results for other
datasets can be found online [47].

Figure 4a shows the evolution of the QA% metric (Eqn. 1)
for all tested methods for cpython. We see that APP and PBS
deliver overall quite high and constant-over-time aspect ratios
(0.7), so they are the best methods for spatial quality, with
APP being better as it has a narrower Q% spread around
a slightly higher median value. SQR scores higher median
values, but has a larger spread — for every revision, it can
score as bad as 0.05 aspect-ratio, while APP does not drop
below 0.4 (compare the bottoms of the gray bands in Fig. 4
for APP and SQR). SND shows the worst spatial quality, with
a tight spread around a median Q*X below 0.1. The chart also
tells us that most methods deliver consistent spatial quality
regardless of the data changes in the 321 revisions (which we
found to be large by manually examining the sequence). The
quality decrease shown by SND and (less) by HIL and STR
is somehow surprising, as none of the studied methods uses a
‘history’ of the tree-sequence in its layout heuristics.

Figure 4b shows the evolution of four stability metrics
QRATIO - OMOD " and QUNAV averaged per time-step. Compared
to spatial quality, we see now much more variation between
methods and also much more variation (of the stability) over
time. We see that SND is by far the most stable method,
whereas SQR, SPI, and PBM score worst. Long ‘icicle’ like
boxplots indicate revisions where much more visual change
was present than ‘warranted’ by the data change. Interestingly,
these appear at the same moments for different algorithms
(Fig. 4b, red markers shows one example). For such moments
we see large variations across methods: For SPI, this is the
most unstable part of the sequence, both in median and 5-95%
range sense, whereas APP finds earlier sequences (marked in
blue in Fig. 4) which are harder to lay out stably.

C. How do methods perform on different datasets (Q3)?

So far, we presented charts aggregate over all datasets
(Sec. TV-A) or focus on a single dataset, but aggregate all
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Fig. 4. Evolution in time of spatial quality (a) and averaged four stability metrics (b) for the cpython dataset.

stability metrics (Sec. IV-B). We would like to see how
the proposed stability metrics compare to each other, as we
are still in the process of understanding their measurement
characteristics. Also, we would like to see how these metrics
vary over several datasets. For these goals, we use a set of
table views, one per quality metric. In each table, columns are
datasets and rows are algorithms, respectively. Each cell thus
encodes the average value of one quality metric for one dataset
tested by one algorithm. Cells are colored with a luminance-
based colormap, with data values separately normalized per
metric table, so that darkest cells indicate worst cases in all
tables (but with potentially different metric absolute values),
and brightest cells indicate best cases in all tables, respectively.

Figure 5 tells several interesting things. Scanning the first
table row-wise, we see that there are no large aspect-ratio
quality differences between the tested datasets. This tells that
most methods (with the notable exception of SND) achieve
quite good aspect ratios for a wide dataset variation. Over
all datasets, APP is the best method, surpassed by SQR only
for a few datasets. Conversely, we see that SND is the most
stable method with respect to all four considered stability
metrics. Stability-wise, we see that some datasets (hospitalrun-
frontend, Leaflet, and PhysicsJS) consistently score worse than
all others for basically all algorithms. These are also the
datasets yielding the worst stabilities, when PBM, SQR, STR,
and SPI methods are used. This indicates that these methods
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Fig. 5. The five quality metrics for all tested methods, all datasets.

are quite sensitive in stability on the type of input dataset so,
for obtaining higher stabilities, other methods should be used.
At a higher level, we see that the QRATIO QMOD apd QUNAV
stability metrics yield very similar plots. This is an interesting
findings, since the metrics have quite different formulations
(Sec. III), and indicates that the results can be trusted —
the chance of three metrics having such different expressions
yielding so similar values being very small. In contrast, the
QFORR metric has much lower values, which is explained by
the fact it is much more conservative — a good algorithm would
need to yield very well correlated da; and dc; values, and we
have seen in Sec. IV-A that this is by far not the case. We
conclude that visual vs data change correlation is a too strong
quality desiderate for dynamic treemaps handing large real-
world datasets, and advise next to use in practice any of the
QRATIO = gMOD " and QUNAY metrics to gauge stability, or, as
we have done in Sec. IV-C, their average value.

D. How to summarize the comparison (Q4)?

The visualizations so far (Q1..Q3) have given us several
insights: We have seen that APP, PBS, and SQR are the best
methods with respect to spatial quality, while SND performs
poorly for that, but it is the best for stability; different methods
have quite different spreads of quality over a given tree
sequence, some delivering more consistent results than others,
but for most algorithms do not degrade over time; and several
of the proposed stability metrics are strongly correlated. It is
now useful to summarize our findings to present a compact
ranking of the tested methods. For this, we use two stacked
bar charts. Each bar maps one method and is divided into
segments. A segment’s length tells the percent of the total
number of versions (of all datasets) for which that method had
a specific rank regarding spatial quality (Fig. 6a) and averaged
stability metrics (Fig. 6b). We color segments by an ordinal
colormap to show these ranks (1 being the best and 12 being
the worst). Bars (methods) are sorted in each chart to put the
one with highest average rank, weighted by the percents of
the total number of versions for all obtained ranks, at the
top (Fig. 6). From Fig. 6, we first see that spatial quality
and stability are strongly inversely correlated — methods that
score well on one tend to score poorly on the other. We also
see that the top methods in both charts are very good for
most of the tested datasets, i.e., it is easy to find a method
that optimizes either spatial quality or stability, but not both.
Interestingly, APP (a less known method) is better in spatial
quality, and significantly better in stability, than SQR (arguably
the method of choice for creating good aspect-ratio treemaps),
so it should be preferred to SQR. Similarly, for stability, APP
and NEW (two less known methods) are in the top-four most
stable methods, and while worse than SND (very well known
method), they have higher spatial quality, so they should be
preferred to SND.

A disadvantage of the rank charts in Fig. 6 is that they do not
easily allow linking spatial quality and stability. To alleviate
this, we propose a final visualization which uses a start plot
metaphor (Fig. 7). The scatterplot points (circles, categorically
colored) are methods attributed by their average spatial quality
and stability over all datasets, all revisions. Each method
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is linked with the 28 tested datasets by same-color lines; a
line’s endpoint has the average spatial quality and stability
over all its revisions for the corresponding method. The plot
conveys several insights: First, methods follow roughly a
concave curve (Fig. 7, thick dashed curve), telling the trade-
off between spatial quality and stability. Variation in average
spatial quality is much larger (roughly 45%) than in average
stability (roughly 8%). The fan-out of lines from a method
shows how predictable that method is, and here we see large
variation over methods, with e.g. APP being quite consistent in
spatial quality, while MOO, STR, and SND show large dataset-
dependent variations in both spatial quality and stability (see
Fig. 7, thin dashed curves). The latter is especially interesting:
Even though SND has the highest average stability, it can also
score worse than many other methods on certain datasets.

To conclude, it is hard to designate an ‘optimal’ method, as
this strongly depends on which of stability and spatial quality
users see as most important for their concrete use-cases, and
by how much. Still, based on all our insights, we believe that
APP offers a very good compromise — very high spatial quality
and overall stability similar to most methods, surpassed only
(and not in all cases) by SND.

SQR
PBM

Ranking of the 12 methods showing the percentage of times they scored a certain rank with respect to spatial quality (a) and averaged stability (b).

V. DISCUSSION

Let us discuss our results in the light of the dimensions of
evaluating treemap algorithms for software evolution visual-
ization (Sec. II-C):

Algorithms: We consider 12 well-known treemap methods,
in contrast to typically 2..3 techniques in current treemap
evaluations in software visualization papers. We argue that
this gives valuable insights on the suitability of such well-
known methods for handling evolving software trees, so it
makes the choice of a given method easier for the software
visualization practitioner. For instance, our evaluation can tell
the interested user which are the advantages (or limitations)
of a given algorithm vs another given algorithm, from the
perspectives of spatial quality or stability.

Datasets: Our treemap benchmark cannot cover all variations
of trees extracted from software evolution use-cases. However,
it measures in total roughly 1.9-10° treemap cells for 28 tree
sequences up to 321 time-steps (revisions). The size and vari-
ability of tree sequences covered by our study is larger than all
existing similar evaluations of dynamic treemaps in software
visualization. However, we admit that we cannot extrapolate
from this evaluation to draw statistically strong conclusions
concerning the quality of a given treemap algorithm for
the entire space of evolving software hierarchies. Doing so
would require (a) a characterization of this space in terms
of objective metrics (e.g., tree size, depth, type of structure,
type of changes); (b) a targeted search of software repositories
to extract trees which ‘sample’ well all these dimensions;
(c) an evaluation of our metrics on this benchmark; and (d)
most importantly, finding possible correlations between the
measured performance of algorithms and the characteristics
of the tree sequences they work on. We acknowledge these
limitations, and outline them as important directions for future
work.

Metrics: We measure treemap stability by essentially consid-
ering the first derivative of the treemap algorithm function
mapping from tree-node weights to rectangular cell-sets. We
detail four variants for measuring stability this way, and ob-
serve that three of them, while quite different in terms of actual
definitions, yield very similar results. We believe this is an
important finding, as it motivates the idea of defining stability
by relating visual change to data change. The fourth stability
metric (Pearson correlation) showed however to be of limited



practical use, as typical dynamic treemaps exhibit a too low
correlation of the data and visual changes as compared to other
phenomena where this metric is used. This can also indicate
that dynamic treemaps may exhibit a more complex form of
data vs visual change correlation than /inear one. Concluding,
we argue that measuring stability by involving both visual
and data change is desirable, but we acknowledge that more
work is needed to further refine the definition of the proposed
stability metric, so that it avoids potential normalization biases,
and it also captures in a more demonstrable way what actual
users perceive as ‘unstable’.

Result exploration: We present five visualizations of treemap
quality metrics, covering all involved dimensions: cells, revi-
sions, datasets, metrics, and algorithms. As the dimensionality
of this data space is large, we obviously cannot cover all
possible viewpoints. Yet, our visualizations help finding novel
insights on the behavior of dynamic treemaps for evolving
software hierarchies, and also confirm earlier observations, e.g.
the known stability of SND. Our visualizations can be used
to both analyze fine-grained details (at cell level) and present
aggregated conclusions (at algorithm level). They can help the
practitioner in understanding what is gained, and/or lost, by
choosing a certain treemap algorithm instead of another one.
Replicability: All our results (datasets, treemap and visualiza-
tion code, measurements) are available online at [47]. To our
knowledge, this is the first benchmark for (dynamic) treemaps
for applications in software evolution understanding. It can
serve both for practitioners interested in choosing an algorithm
based on specific quality criteria, but also for researchers
aiming to benchmark their new algorithms, with limited effort,
against existing ones.

Limitations: There are several points which can be better
covered better. First and foremost, as mentioned, we need a
more principled sampling of the space of trees extracted from
software evolution to gain more confidence in the obtained
quality results (or how these would differ as a function of
the tree sequences’ characteristics). We argue that our current
work, i.e. the automated set-up of the extraction pipeline of
dynamic trees from software repositories, computation of the
proposed quality metrics, and visualizations that aggregate
these, forms the necessary basis for such extensions, which we
consider as future work. Separately, more treemap algorithms
could be considered, e.g., Voronoi, hybrid, or bubble ones. This
will require an adaptation of the spatial quality and stability
metrics so they can be used for non-rectangular cells.
Threads to validity: Similar to software quality, we measure
treemap quality by a number of ‘proxy’ metrics. While we
argue for these metrics at technical level (see the stability
metric vs function continuity discussion) or, separately, reuse
well-known metrics (see the aspect-ratio metric), we do not
have hard evidence that such metrics truly capture quality as
seen by the eyes of the beholder (end user). The advantage
of using such ‘intrinsic’ quality metrics is that they can
be computed automatically, on a large benchmark, and are
independent on actual tasks, users, or use-cases. This allows
for direct and objective comparisons, parallel to what is done
on the context of e.g. Graph Drawing [48], [49], where
metrics such as number of crossings, angle of crossings, and

distribution of edge lengths are used to rank the quality of
graph drawing algorithms. The disadvantage is that we cannot
directly infer, from such metrics, how fit to purpose a given
treemap technique will be given a specific user, use-case, type
of dataset, and task. We argue for our approach as follows: if
for a given user, use-case, and task, one agrees that a good
treemap algorithm should have the properties captured by our
quality metrics, then one can use our evaluation and related
artifacts (benchmark, metrics, visualizations) to find the best
suitable algorithms.

VI. CONCLUSIONS

We have presented an evaluation of treemap algorithms for
the visualizaton of dynamic tree sequences extracted from the
evolution of software repositories. For this, we proposed a
benchmark formed by 28 datasets extracted from well-known
such software repositories, five metrics that aim to capture spa-
tial quality and stability, and 12 known treemap methods. We
also propose six visualizations aimed at interpreting the mea-
surement results from several angles, covered by four types
of questions. All results (datasets, treemap implementations,
measurement code, and visualizations) are publicly available
and can constitute the basis of a benchmark for treemap
evaluation for visualizing evolving software hierarchies.

Several directions exist for extending this work. First and
foremost, a finer-grained analysis of the space of evolving
software trees can be made to elicit correlations between
characteristics of the datasets and measured quality of the
tested treemap methods. Secondly, and at a higher level,
it would be useful to extend this type of benchmarking to
other application domains that generate dynamic trees and use
treemap methods to visualize their evolution in time.

REFERENCES

[1] D. Harel and Y. Koren, “Graph drawing by high-dimensional embed-
ding,” in Revised Papers from the 10th International Symposium on
Graph Drawing, ser. GD ’02. Springer-Verlag, 2002, pp. 207-219.

[2] A. Frick, A. Ludwig, and H. Mehldau, “A fast adaptive layout algorithm
for undirected graphs,” in Proceedings of the DIMACS International
Workshop on Graph Drawing, ser. GD *94. Springer-Verlag, 1995, pp.
388-403.

[3] J. Clark, “Multi-level pie charts,” 2006, https://neoformix.com/2006/
MultiLevelPieChart.html.

[4] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers, “Extraction and
visualization of call dependencies for large C/C++ code bases: A com-
parative study,” in 2009 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, Sept 2009, pp. 81-88.

[5] H.-J. Schulz, “Treevis.net: A tree visualization reference,” IEEE CG&A,
vol. 31, no. 6, pp. 11-15, 2011.

[6] M. Sondag, B. Speckmann, and K. Verbeek, “Stable treemaps via local
moves,” IEEE TVCG, 2017.

[71 R. van Hees and J. Hage, “Stable and predictable Voronoi treemaps
for software quality monitoring,” Inf Soft Technol, vol. 87, no. C, pp.
242-258, 2017.

[8] S.Hahn, J. Triimper, D. Moritz, and J. Dollner, “Visualization of varying
hierarchies by stable layout of Voronoi treemaps,” in Proc. IEEE IVAPP,
2014, pp. 50-58.

[9] S. Diehl, Software Visualization — Visualizing the Structure, Behaviour,

and Evolution of Software. Springer, 2007.

D. Fisher and A. Sud, “Animated, dynamic Voronoi treemaps,” in Proc.

EuroVis — posters. Eurographics, 2010.

D. Gotz, “Dynamic Voronoi treemaps: A visualization technique for

time-varying hierarchical data,” Computer Science — Research and

Development, vol. 18, pp. 132-141, 2011, also as IBM Research Report

RC25132 (W1103-173).

[10]

[11]



[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

[31]

[32]

(33]

[34]
[35]

[36]

[37]

(38]

[39]

[40]

B. Shneiderman, “Tree visualization with tree-maps: 2-D space-filling
approach,” ACM TOG, vol. 11, no. 92, 1992.

H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of implicit
hierarchy visualization: A survey,” IEEE TVCG, vol. 17, no. 4, pp. 393—
411, 2011.

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner, “Visual analysis of large graphs:
State-of-the-art and future research challenges,” CGF, vol. 30, no. 6, pp.
1719-1749, 2011.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2006.

M. Lanza and S. Ducasse, “Polymetric views — a lightweight visual
approach to reverse engineering,” IEEE Trans Soft Eng, vol. 29, no. 9,
pp. 782-795, 2003.

H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” Software: Evolution and Process, vol. 19, no. 2, pp. 77-131,
2003.

H. A. Miiller and K. Klashinsky, “Rigi — a system for programming-in-
the-large,” in Proc. IEEE ICSE, 1988, pp. 80-86.

A. Telea, A. Maccari, and C. Riva, “An open toolkit for prototyping re-
verse engineering visualizations,” in Proc. Data Visualisation (VisSym),
2002, pp. 241-249.

D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE TVCG, vol. 12, no. 5, pp. 741-748,
2006.

B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk,
and A. van Deursen, “Understanding execution traces using massive
sequence and circular bundle views,” in Proc. IEEE ICPC, 2007, pp.
271-280.

B. Shneiderman and C. Plaisant, “Treemaps for space-constrained visu-
alization of hierarchies,” 2017, https://cs.umd.edu/hcil/treemap-history.
M. Bruls, K. Huizing, , and J. J. V. Wijk, “Squarified treemaps,” in Proc.
VisSym. Springer, 2000, pp. 33-42.

H. Nagamochi and Y. Abe, “An approximation algorithm for dissecting
a rectangle into rectangles with specified areas,” Discrete Applied
Mathematics, vol. 155, no. 4, pp. 523-537, 2007.

B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,” in Proc.
IEEE InfoVis, 2001, pp. 73-80.

B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered and quan-
tum treemaps: Making effective use of 2D space to display hierarchies,”
ACM TOG, vol. 21, no. 4, pp. 833-854, 2002.

B. Engdahl, “Ordered and unordered treemap algorithms and their
applications on handheld devices,” 2005, MSc thesis, Dept. of CS,
Stockholm Royal Institute of Technology.

Y. Tu and H.-W. Shen, “Visualizing changes of hierarchical data using
treemaps,” IEEE TVCG, vol. 13, no. 6, pp. 1286-1293, 2007.

S. Tak and A. Cockburn, “Enhanced spatial stability with Hilbert and
Moore treemaps,” IEEE TVCG, vol. 19, no. 1, pp. 141-148, 2013.

J. Wood and J. Dykes, “Spatially ordered treemaps,” IEEE TVCG,
vol. 14, no. 6, pp. 1348-1355, 2008.

S. Duarte, F. Sikanski, F. Fatore, S. Fadel, and F. Paulovich, “Nmap: A
novel neighborhood preservation space-filling algorithm,” IEEE TVCG,
vol. 20, no. 12, pp. 2063-2071, 2014.

M. Balzer and O. Deussen, “Voronoi treemaps,” in Proc. IEEE InfoVis,
2005, pp. 49-56.

M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” in Proc. ACM SOFTVIS, 2005, pp.
165-172.

S. Hahn and J. Déllner, “Hybrid-treemap layouting,” in Proc. EuroVis
(short papers), 2017.

M. Wattenberg, “A note on space-filling visualizations and space-filling
curves,” in Proc. IEEE InfoVis, 2005, pp. 181-186.

M. D. Berg, B. Speckmann, and V. van der Weele, “Treemaps with
bounded aspect ratio,” Computational Geometry, vol. 47, no. 6, pp. 683—
693, 2014.

J. Gortler, C. Schulz, D. Weiskopf, and O. Deussen, “Bubble treemaps
for uncertainty visualization,” IEEE TVCG, 2017.

S. Hahn, J. Bethge, and J. Dollner, “Relative direction change - a
topology-based metric for layout stability in treemaps,” in International
Conference on Information Visualization Theory and Applications, 01
2017, pp. 88-95.

M. Sensalire, P. Ogao, and A. Telea, “Evaluation of software visualiza-
tion tools: Lessons learned,” in Proc. IEEE VISSOFT, 2009.

A. Seriai, O. Benomar, B. Cerat, and H. Sahraoui, “Validation of
software visualization tools: A systematic mapping study,” in Proc. IEEE
VISSOFT, 2014.

[41]

[42]
[43]

[44]

[45]
[46]
[47]

(48]

[49]

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A systematic
literature review of software visualization evaluation,” J Syst Softw, vol.
144, pp. 165-180, 2018.

P. Steinhardt, “/ibgit2 API for Git repository management,” 2018, https:
/Mibgit2.github.com.

SciTools, “Understand static code analysis tool,” 2017, https://scitools.
com.

R. da Silva, E. Vernier, P. Rauber, J. Comba, R. Minghim, and A. Telea,
“Metric evolution maps: Multidimensional attribute-driven exploration
of software repositories,” in Proc. Vision, Modeling, and Visualization
(VMV). Eurographics, 2016, pp. 54-62.

E. Parzen, “On estimation of a probability density function and mode,”
Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065-1087, 1962.
G. van Rossum, “The Python programming language,” 2017, https://
github.com/python/cpython.

The Authors, “Dynamic treemap for software evolution visualization
benchmark,” 2017, https://github.com/vissoft18/treemaps.

S. Hachul and M. Jiinger, “An experimental comparison of fast algo-
rithms for drawing general large graphs,” in Proceedings of the 13th
International Conference on Graph Drawing, ser. GD’05.  Springer-
Verlag, 2006, pp. 235-250.

G. D. Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu, “An experimental comparison of four graph drawing algo-
rithms,” Computational Geometry, vol. 7, no. 5, pp. 303-325, 1997.



