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Abstract

The visualization of stationary and time-dependent flow is an im-
portant and challenging topic in scientific visualization. Its aim is
to represent transport phenomena governed by vector fields in an
intuitively understandable way. In this paper, we review the use
of methods based on partial differential equations (PDEs) to post-
process flow datasets for the purpose of visualization. This con-
nects flow visualization with image processing and mathematical
multi-scale models. We introduce the concepts of flow operators
and scale-space and explain their use in modeling post processing
methods for flow data. Based on this framework, we present several
classes of PDE-based visualization methods: anisotropic linear dif-
fusion for stationary flow; transport and diffusion for non-stationary
flow; continuous clustering based on phase-separation; and an alge-
braic clustering of a matrix-encoded flow operator. We illustrate the
presented classes of methods with results obtained from concrete
flow applications, using datasets in 2D, flows on curved surfaces,
and volumetric 3D fields.

1 Introduction

A great variety of different approaches for the visualization of
vector field data has been presented in the past. The method-
ology ranges from simple discrete arrow plots applied to steady
two-dimensional vector fields to advanced hardware-accelerated
volumetric techniques for visualizing multivariate data for three-
dimensional, unsteady flow problems and multi-scale feature de-
tection and tracking techniques for complex time-dependent CFD
problems.

The recent increase of the number of flow visualization tech-
niques has been driven by two main factors. On one hand, the ex-
ponential growth in size of datasets produced by CFD simulations
requires flow visualization methods to be able to display more data
in shorter time. On the other hand, specific application fields, rang-
ing from weather simulation, meteorology, and ground water flow,
to automotive, aerodynamics, and machine design, have each their
own particular requirements and questions to be answered regard-
ing flow datasets. As a central and generally accepted high-level
goal, flow visualization should provide intuitively better receptible
methods which give overall as well as detailed views on the flow
patterns and behavior.

Given the above, several classifications of flow visualization
methods have been recently proposed from different points of view.
In their State of the Art report, Laramee et al. [20] have classi-
fied flow visualization into direct, dense texture-based, geometric,
and feature-based methods, following a model of the flow data in
discrete samples, continuous (dense) scalar fields, geometric inte-
gral primitives, and application-specific feature-based representa-
tions. A second overview of flow visualization methods is given by
Weiskopf and Erlebacher [45]. Here, three classifications of flow
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visualization methods are proposed: based on the visual primitive
used (points, curves, or features); based on the density of the pro-
duced image (sparse vs. dense, texture-based); and finally based on
the data structure (2D, 2.5D, and 3D methods) and discretization
(on various grid types). A more recent report of Laramee et al. [21]
presents a comparison of major visualization techniques evaluated
from the point of view of a specific application—the understanding
of swirl and tumble flow data. Here, visualizations are classified
into texture-based methods, clustering approaches, analyses of the
vector field topology, and feature-tracking approaches.

In this paper, we give an overview of flow visualization methods
based on partial differential equations (PDEs) [9, 12, 13]. These
methods use a particular model of the flow data, as follows. The
flow domain is seen as a subset of the continuous IR2 or IR3 space.
The visualization process is described now in terms of a contin-
uous, physical process, such as diffusion, advection, convection,
or phase separation. The particular type of PDE and its boundary
conditions are used as instruments to model different visualization
questions, such as: Which are the laminar, transient, and turbulent
regions? How does the material density vary in time in the dataset?
How does the flow look like on small spatial scales (flow details)
as opposed to a global, coarse scale (flow overview)? Once the
type and parameters of the proper PDE are established, the flow do-
main is discretized, usually by a finite-element or finite-difference
scheme with appropriate solvers for the resulting equation or sys-
tem of equations. Finally, the solution is displayed, thereby answer-
ing the initial set of visualization questions that target the flow data.

The above leads us to an outline of several characteristics of
PDE-based flow visualization methods. For this, we shall use the
terminology employed by the classifications presented in [45, 21,
20]. First, PDE-based flow visualizations are dense methods, by
definition. Second, they work in all dimensions where flow visual-
ization is of interest, i.e. 2D, 2.5D (curved surfaces embedded in
3D), and 3D. Third, they are applicable to both steady and unsteady
(time-dependent) flow datasets. In terms of actual visual represen-
tation, PDE-based methods are naturally closely related to texture-
based methods. Although the results of PDE-based methods can be
displayed using also other techniques, such as slice planes, stream-
lines [12], and iso-surfaces [9], their inherent continuous, dense na-
ture makes them natural candidates for using 2D and 3D texture-
based display techniques. In this sense, PDE-based methods can
be seen as a front-end, that translate a given direct flow representa-
tion (vector field plus additional scalar quantities such as pressure
or concentration) to a second dense, usually scalar, representation,
which is then visualized by a texture-driven back-end. On a high
level, this translation, encoded in the PDE, enriches the data with
application and question-specific semantics, in order to emphasize
the specific aspects of the flow the user is interested in. Conversely,
many texture-based visualization methods implemented using (pro-
grammable) graphics hardware have at their core a model based
on an advection ordinary differential equation (ODE), as described
further in Sec. 2. Finally, in terms of data discretization (grid type),
all PDE-based methods can essentially be used on any grid, given
a suitable underlying finite element discretization implemented on
that grid (cf. Section 8).

From another point of view, PDE-based methods share many
common aspects with multi-scale flow visualization methods.
Overall, the main goal of such methods is to provide a multi-scale



representation of the flow field, such that users can subsequently
navigate between detailed, low-level views of the flow and global,
overview pictures thereof. Several multi-scale methods exist in
flow visualization [20, 45]. Clustering methods [14, 35] group
similar flow dataset points together based on a task or application-
dependent similarity measure, or corelation. Energy minimization
techniques can be used to produce streamline visualizations at sev-
eral levels of detail, represented by different streamline spatial den-
sities [38, 18, 19]. PDE-based methods being several powerful tools
for defining the multi-scale, based on scale space theory (cf. Sec. 3),
and are able to accommodate several scale notion definitions, rang-
ing from continuous to discrete.

Given this close connection between PDE-based and texture-
based flow visualization, we give first an overview of the texture-
based methods in Section 2 followed by a brief introduction to the
basic multi-scale methods in image processing, which motivate the
approaches to be discussed here. Next, in Section 3 we review
the connections to scale-space methodology from image process-
ing. Together with the differential operator defined in Section 4
this leads to the presentation of the anisotropic diffusion method
in Section 5. The extension of this model towards time-dependent
flow fields is discussed in Section 6. In the remaining parts we
review clustering methods based on PDE techniques and we start
with the model based on anisotropic phase separation in Section 7.
A discussion of hierarchical multi-scale clustering using algebraic
multigrid (AMG) methods closes this article in Section 9.

2 Review of texture based flow visualiza-
tion

Texture-based flow visualization is a notion generally used for those
methods that output a full spatial coverage of the flow field to be
described, in the region of interest chosen by the user. By full
coverage, we mean that the discreteness of the output data is lim-
ited to the one inherent to the image, or texture primitives used
in the visualization. Given this dense representation of the flow
field, the texture image will mostly encode some continuous color,
luminance, or transparency variation that conveys insight into the
flow data. Often, the above continuous signal is naturally generated
by physically-based methods. Texture-based methods differ, thus,
mainly in how, and what, they generate and encode in the output
texture. We outline below the most important classes of texture-
based methods, and refer for an in-depth overview to [20].

The spot noise method proposed by van Wijk [40] pioneered the
use of textures in flow visualization. Elliptic splats of intensity
based on a noise function and which are oriented along the field
are blended together on 2D or 3D surface domains. The original
first order approximation of the flow was improved by de Leeuw
and van Wijk in [8] by using higher order polynomial deformations
of the spots in areas of significant vorticity. By animating the inten-
sity, spots appear to move along flow streamlines. Several applica-
tions of spot noise were presented in the context of smog prediction
and turbulent flows [6], non-continuous flow visualization [22], and
flow topology [7].

Line Integral Convolution (LIC) methods represent the second
major class of texture-based visualizations. Introduced by Cabral
and Leedom [4], LIC integrates the fundamental ODE describing
streamlines forward and backward in time at every discrete do-
main point. White noise is convolved, using a Gaussian kernel,
along these particle paths. The resulting value gives the intensity of
the starting pixel. The resulting texture exhibits strong correlations
along streamlines and weak correlation across, giving the percep-
tion of streamline-like filaments of varying intensity. Essentially,
LIC is equivalent to a diffusion process along the vector field. Hege
and Stalling [32] increased the performance of LIC by reusing por-

tions of the convolution integral already computed on points along
a given streamline. Forssell [11] proposed a similar method on sur-
faces, whereas Max et al. [24] approach flow visualization by tex-
turing iso-surfaces. UFLIC [31] extended LIC to unsteady flows.
Interrante and Grosch [16] generalized line integral convolution to
3D in terms of volume rendering of line filaments. Multivariate
flow fields are visualized with LIC using a color mapping technique
called color weaving [39]. OLIC [43] and its fast version FROLIC
[29] add up- and downstream cues to the basic LIC by varying the
intensity along the streamline. Finally, we mention 3D LIC, which
uses texture-based volume rendering to compute and display LIC
visualizations for 3D flow fields [27]. Again, the above is just a
short overview of a wealth of existing LIC techniques. For a more
detailed overview, see [20].

Yet another class of texture-based methods are the ones based
on texture advection. Here, the visualization primitive is directly
supported by the graphics unit or GPU. Consequently, the term tex-
ture in these methods often refers to the graphics hardware term.
GPU-based methods are classified based on the primitive they ad-
vect, or warp (pixel or polygon) and the advection direction (for-
ward or backward). Max and Becker [23] presented one of the first
texture-advection methods using triangles. Image-based flow vi-
sualization (IBFV) proposes an injection of noise (stored as tex-
tures), advecting it by warping a polygon mesh, and blending the
result for smooth visualization, with applications in 2D [41], curved
surfaces [42], and 3D volumes [34]. Lagrangian-Eulerian Advec-
tion (LEA) is another such model, where particle positions are ad-
vected individually (Lagrangian step) and the color texture is up-
dated in-place (Eulerian step) [17, 47]. Recently, the above (and
other) frameworks, were united in UFAC (Unsteady flow advection-
convolution), using an implementation based on programmable
GPUs [46]. Interestingly, the emergence of the ’framework’ for
GPU-based methods as a collection of tightly-woven conceptual,
modeling, and implementational aspects seems to be driven by the
large importance of the implementational aspect in the whole pro-
cess, in contrast to e.g. LIC methods.

Especially for 3D velocity fields, particle tracing is a very pop-
ular tool. However, even relatively many seed particles released by
the user can hardly cope with the complexity of 3D vector fields.
Zöckler et al. [33] use pseudo randomly distributed, illuminated
and transparent streamlines to give a denser and more receptible
representation, which shows the overall structure and enhances im-
portant details.

Most notably every subclass of texture-based method seems to
produce visualizations that carry an easily recognizable visual sig-
nature. For example, it is easy to tell spot-noise from LIC; the var-
ious IBFV and LEA methods have also a distinct visual appear-
ance, probably due to the specific noise functions used; illuminated
streamlines are also a class apart; reaction-diffusion methods cre-
ate regular repetitive patterns which noise-injection methods can-
not replicate. We believe that a perceptual classification of texture-
based flow visualizations would bring valuable insight in the ef-
fectiveness (and limitations) of such methods and lead to a better
understanding of flow data, although we are not aware of any such
classification.

3 A brief introduction to scale space
methods in image processing

Textures used in various flow visualization approaches can be re-
garded as images and thus the type of flow post processing above
discussed can be considered as image processing. In the last two
decades powerful PDE based image processing methods for sev-
eral fundamental tasks in imaging such as segmentation and de-
noising have been introduced. In particular so called scale space



methods introduce a natural scale of image representations. Most
of the methods in flow post processing lack such a perspective of
multiple scales. They have in common, that the generation of a
coarser scale requires a re-computation. For instance, if we ask for
a finer or coarser scale of the line integral convolution patterns, the
computation has to be restarted with a coarser initial image inten-
sity. In case of spot noise larger spots have to be selected and their
stretching along the field has to be increased. To motivate our PDE
based approach let us briefly review scale space methods based on
anisotropic nonlinear diffusion in imaging.

Discrete diffusion type methods have been known for a long
time. Perona and Malik [26] have introduced a continuous diffu-
sion model which allows the de-noising of images together with
the enhancement of edges. Alvarez, Guichard, Lions and Morel
[1] have established a rigorous axiomatic theory of diffusive scale
space methods. The recovery of lower dimensional structures in im-
ages is analyzed by Weickert [44], who introduced an anisotropic
nonlinear diffusion method where the diffusion matrix depends on
the so called structure tensor of the image.

In PDE-based scale-space methods of image processing we con-
sider a function u : IR+

0 × Ω → IR which solves the parabolic
problem

∂tu−A[u] = f(u) in IR+ × Ω ,

u(0, ·) = u0 on Ω ,
(1)

for given initial density u0 : Ω → [0, 1]. Here, the differential
operator A[·] is defined by

A[u] := div (a(∇uε)∇u)

and we prescribe Neumann boundary conditions a(∇uε)∇u · ν =
0. For the sake of robustness and well-posedness a pre-smoothed
version of the current density uε = χε ∗u is used. In our setting we
interpret the density as an image intensity, a scalar grey scale or a
vector valued color. Thus, the solution family u(·) can be regarded
as a family of images {u(t)}

t∈IR+

0

, where the time t serves as a

scale parameter. Let us remark, that by the trivial choice A = 1
and f(u) = 0 we obtain the standard linear heat equation with its
isotropic smoothing and coarsening effect.

In image de-noising u0 is a given noisy initial image and the
goal is to remove this noise while keeping the important content of
the given image. Thus, the diffusion is supposed to be controlled
by the gradient of the image intensity. Large gradients mark edges
in the image, which should be enhanced, whereas small gradients
indicate areas of approximately equal intensity. For that purpose
we prescribe a diffusion coefficient

A = g(‖∇uε‖)

where g : IR+
0 → IR+ is a monotone decreasing function with

limd→∞ g(d) = 0 and g(0) = δ ∈ IR+, e. g. g(d) = δ

1+‖d‖2 .
A suitable choice for the pre-smoothing is Gaussian filtering or the
convolution with the heat equation kernel. I. e. we define uε =
ũ(t = ε2/2) where ũ is the solution of the heat equation with initial
data u. Then ε is the variance of the corresponding Gaussian filter.
The function f may serve as a penalty which forces the scale of
images to stay close to the initial image, e. g. choosing f(u) =
γ(u0−u) where γ is a positive constant. Figure 1 gives an example
of image smoothing and edge enhancement by nonlinear diffusion.

4 A flow aligned differential operator

Above, we have modeled an edge aligned operator A[·], which en-
abled the feature sensitive de-noising of images. For the subsequent

Figure 1: The image on the top left is successively smoothed by
nonlinear diffusion. With increasing scale more and more fine-
scale details vanish while the significant content is retained and
enhanced.

use, let us now define a streamline aligned differential operator for
flow fields. For a given vector field v : Ω → IRn we model linear
diffusion in the direction of the vector field and a Perona Malik type
diffusion orthogonal to the field. Let us suppose that v is continuous
and v 6= 0 on Ω. Then there exists a family of continuous orthog-
onal mappings B(v) : Ω → SO(n) such that B(v)v = ‖v‖e0 ,
where {ei}i=0,...,n−1 is the standard base in IRn (cf. Fig. 2). We
consider a diffusion tensor a(v,∇uε) which we define as

a(v, d) = B(v)T

(

α(‖v‖)
g(‖d‖)Idn−1

)

B(v) ,

where α : IR+ → IR+ controls the linear diffusion in vector field
direction, i. e. along streamlines, and the above introduced edge en-
hancing diffusion coefficient g(·) acts in the orthogonal directions
(Idn−1 is the identity matrix in dimension n − 1). We may either
choose a linear function α or in case of a velocity field, which spa-
tially varies over several orders of magnitude, we select a monotone
function α (cf. Fig. 2) with α(0) > 0 and lims→∞ α(s) = αmax .

The differential operator based on this diffusion tensor is finally
given by

A[v, u] := div (a(v,∇uε)∇u) . (2)

It encodes a strong coupling along the velocity field and in case of
steep gradients in u a weak coupling in directions perpendicular to
the field.

5 Anisotropic diffusion for stationary
flow

Now, we will make use of the differential operator defined in Sec-
tion 4 to define a diffusion process, which generates texture pat-
terns aligned to a flow field. These patterns will grow upstream and
downstream, whereas the edges tangential to them are successively
enhanced. Still there is some diffusion perpendicular to the field
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Figure 2: Top: The coordinate transformation B(v). Middle:
Graph of the velocity dependent linear diffusion coefficient α(·).
Bottom: Graph of the scalar contrast enhancing right hand side
f(·).

which supplies us for evolving time with a scale of progressively
coarser representation of the flow field.

In general it does not make sense to consider a certain initial im-
age for such a diffusion process. As initial data u0 we thus choose
some random noise of an appropriate frequency range. If we run the
evolution (1) for vanishing right hand side f the image contrast will
unfortunately decrease due to the diffusion along streamlines. The
asymptotic limit will turn out to be an averaged grey value. There-
fore, we strengthen the image contrast during the evolution, select-
ing an appropriate continuous function f : [0, 1] → IR+ (cf. Fig. 2)
with

(F1) f(0) = f(1) = 0 ,

(F2) f < 0 on (0, 0.5), and f > 0 on (0.5, 1) .

Neglecting the diffusive term of the evolution at a first glance we
realize that this right hand side pushes values below the average
value 0.5 towards the zero and accordingly values above 0.5 to-
wards 1. An more detailed analysis of the contrast enhancement
including the diffusive term is discussed in Section 6.1. However,
well-known maximum principles ensure that the interval of grey
values [0, 1] is not enlarged running the nonlinear diffusion. Here
the property (F1) is of great importance.

Finally, we end up with the method of nonlinear anisotropic dif-
fusion to visualize complex vector fields. Thereby we solve the
nonlinear parabolic problem

∂tu−A[v, u] = f(u) (3)

starting from some random initial data u(0, ·) = u0 and obtain
a scale of images representing the vector field in an intuitive way
(cf. Fig. 3).

5.1 Enhancing the resulting texture

If we ask for point wise asymptotic limits of the evolution, we ex-
pect an almost everywhere convergence to u(∞, ·) ∈ {0, 1} due to

Figure 3: A vector field from a 2D magneto-hydrodynamics simu-
lation (MHD) is visualized by nonlinear diffusion. A discrete white
noise is considered as initial data. We run the evolution on the left
for a small and on the right for a large constant diffusion coefficient
α.

Figure 4: Different snapshots from the multi-scale based on
anisotropic diffusion are depicted for a 2D MHD simulation vec-
tor field (cf. Fig. 3). Here we consider a two dimensional diffu-
sion problem and interprete the resulting density as a color in a
blue/green color space.

the choice of the contrast enhancing function f . Analytically, 0.5
is a third, but unstable fix point of the dynamics. Thus numerically
it will not turn out to be locally dominant.

The space of asymptotic limits significantly influences the rich-
ness of the developing vector field aligned structures. We may ask
how to further enrich the pattern which is settled by anisotropic dif-
fusion. This turns out to be possible by increasing the set of asymp-
totic states. We no longer restrict the considerations to a scalar
density u but consider a vector valued u : Ω → [0, 1]2 and a cor-
responding system of parabolic equations. The coupling is given
by the nonlinear diffusion coefficient g(·) which now depends on
the norm ‖∇u‖ of the Jacobian of the vector valued density ∇u
and the right hand side f(u). We define f(u) = h(‖u‖)u with
h(s) = f̃(s)/s for s 6= 0, where f̃ is the old right hand side
from the scalar case, and h(0) = 0. Furthermore we select an



initial density which is now a discrete white-noise with values in
B1(0)∩ [0, 1]2 . Thus, the contrast enhancing now pushes the point
wise vector density u either to the 0 or to some value on the sphere
sector S1∩[0, 1]2. Again a straightforward application of the maxi-
mum principle ensures u(t, x) ∈ B1(0)∩[0, 1]2 for all t and x ∈ Ω.

Figure 4 shows an example for the application of the vector val-
ued anisotropic diffusion method applied to a 2D flow field from
a MHD simulation convective flow field. Furthermore, Figure 5
shows results of this method applied to several time steps of a con-
vective flow field. An incompressible Bénard convection is sim-
ulated in a rectangular box with heating from below and cooling
from above. The formation of convection rolls will lead to an ex-
change of temperature. We recognize that the presented method is
able to nicely depict the global structure of the flow field, including
its saddle points, vortices, and stagnation points on the boundary.

5.2 3D flow fields

The anisotropic nonlinear diffusion operator (2) has been formu-
lated for arbitrary space dimension. It results in a scale of vector
field aligned patterns which we then have to visualize. In 2D this
has already been done in a straightforward manner in the above fig-
ures. In 3D we have somehow to break up the texture-volume and
open up the view to inner regions. Otherwise we must confine our-
selves with some pattern close to the boundary representing solely
the shear flow.

Here we can benefit from the vector valued diffusion. Since
for m = 2 the non-trivial asymptotic limits are in mean equally
distributed on S1 ∩ [0, 1]2, we can we reduce the image-content
and focus on a ball shaped neighborhood Bδ(ω) of a certain point
ω ∈ S1 ∩ [0, 1]2 . Now we can either use a volume rendering
to visualize this type of sub-volumes or look at iso-surfaces of the
function

σ(x) = ‖u(x) − ω‖2 .

Then the parameter δ2 allows us to depict the boundary of the pre-
image of Bδ(ω) with respect to the mapping u (cf. Fig. 6).

5.3 Flow fields on 2D surfaces

So far we considered vector fields on domains which are subsets of
the 2D or 3D Euclidean space. It is straight-forward to extend the
methodology to tangential flow fields on surfaces, such as weather-
map wind-fields over the earth, flow fields on stream-surfaces, or
vector fields from differential geometry. We have to replace the
Euclidean gradient ∇ and the divergence operator div by their geo-
metric counterparts ∇M and divM respectively. Here the index M
indicates that we are working with the tangential gradient and di-
vergence on the surface or manifold M. Proceeding as in Section 4
the differential operator describing the given flow field is given by

A[u] := divM(a(∇Muε)∇Mu)

for C2 functions u on the manifold M. As an illustration Figure 7
shows the visualization of the principal directions of curvature on a
minimal surface.

5.4 Flow Segmentation

The above applications already show the capability of the
anisotropic nonlinear diffusion method to outline the flow struc-
ture not only locally. In particular for larger evolution times in the
diffusion process the topological skeleton of a vector field becomes
clearly visible. We will now investigate a possible flow segmenta-
tion by means of the anisotropic diffusion. Let us restrict to the two
dimensional case of an incompressible flow with vanishing velocity

Figure 6: The incompressible flow in a water basin with two interior
walls and an inlet (on the left) and an outlet (on the right) is visu-
alized by the anisotropic nonlinear diffusion method. Iso-surfaces
show the pre-image of ∂Bδ(ω) under the vector valued mapping
u for some point ω on the sphere sector. From top to bottom the
radius δ is successively increased. A color ramp blue–green–red
indicates an increasing absolute value of the velocity. The diffusion
is applied to initial data which is a relatively coarse grain random
noise.

v at the domain boundary ∂Ω. Then topological regions are sep-
arated by homoclinic, respectively heteroclinic orbits connecting
critical points in the interior of the domain and stagnation points on
the boundary. Critical points, by definition points with vanishing
velocity v = 0, may either be saddle points or vortices. Further-
more we assume critical points to be non-degenerate, i. e. ∇v is
regular. Saddle points are characterized by two real eigenvalues of
∇v with opposite sign, whereas at vortices we obtain complex con-
jugate eigenvalues with vanishing real part. Stagnation points on
∂Ω are similar to saddles. For details we refer to [15].

In each topological region there is a family of periodic orbits
close to the heteroclinic, respectively homoclinic orbit. This obser-
vation gives reason for the following segmentation algorithm. At



Figure 5: Convective patterns in a 2D flow field are displayed and emphasized by the method of anisotropic nonlinear diffusion. The images
show the velocity field of the flow at different time steps. Thereby the resulting alignment is with respect to streamlines of this time dependent
flow.

Figure 7: The principal directions of curvature of a minimal surface
are visualized using the anisotropic diffusion equation on surfaces.

first, we search for critical points in Ω and stagnation points on ∂Ω.
We calculate the directions which separate the different topological
regions. In case of saddle points these are the eigenvectors of ∇v.
Next, we successively place an initial spot in each of the sectors and
perform an appropriate field aligned anisotropic diffusion.

Let us suppose that a single sector is spanned by vectors
{w+, w−} where the sign ± indicates incoming and outgoing di-
rection. The method described by equation (3) would lead to a
closed pattern along one of the above closed orbits for time t large
enough. To fill out the interior region we modify the diffusion by se-
lecting an orientation for a “one sided” diffusion (cf. Fig. 8). I. e. we
select a unique normal v⊥ to v and consider the diffusion matrix

a(v,∇uε) = B(v)T

(

α
G((∇uε · v⊥)+)

)

B(v) ,

where α is a positive constant and (s)+ := max{s, 0} . Further-
more we consider a non negative, concave function f : IR+

0 → IR+
0

with f(0), f(1) = 0 as a source term in the diffusion equation. If
the orientation of {w+, w−} coincides with that of {v, v⊥} , then
linear diffusion in the direction towards the interior will fill up the
complete topological region. A segmentation of multiple topolog-
ical regions at the same time is possible, if we carefully select the
sectors where we release initial spots. Figure 9 shows different time
steps of the segmentation applied to a convective incompressible
flow.

v

v
⊥

Figure 8: A sketch of the four sectors at a critical point (indicated
by red disk), the initial spot (blue disk) for the diffusion calculation
and the oriented system {v, v⊥} .

Figure 9: Several time-steps from the nonlinear diffusion segmenta-
tion applied to a velocity field from a Bénard convection are shown.
We have placed the seed-points as close as possible in terms of the
grid size in the sectors spanned by the eigenvalues of the Jacobian
∇v of the velocity. Only to emphasize the evolution process a sin-
gle grey-scale image from the diffusion calculation (cf. Fig. 5) is
underlying the sequence of segmentation time steps.

6 Transport and Diffusion for non sta-
tionary flow fields

So far, the above anisotropic diffusion method generates streamline
type patterns, which are aligned to trajectories of the vector field for



a fixed given time. I. e. for a time-dependent vector field v : IR+ ×
Ω → IRd on a computational domain Ω ⊂ IRd and d = 2, 3, we
have been considering integral lines {x(s) | s ∈ IR} with d

ds
x(s) =

v(t, x(s)) for a fixed time t. Thus, the method intuitively visualizes
the vector field freezed at time t but offers only very limited insight
in the actual transport process governed by the underlying time-
dependent flow field.

To ensure that our visualization actually displays this process we
have to consider the true transport problem and its particle lines.
Hence we take into account the particle motion obeying the equa-
tion d

dt
x(t) = v(t, x(t)) and the induced transport of a given den-

sity u(t, x). The fact that such a purely advected density u stays
constant along particle trajectories leads to the conservation law

D

dt
u :=

d

dt
u(t, x(t)) =

∂

∂t
u+ ∇u · v = 0

which means a vanishing of the material derivative.
In addition to this conservation law, we have to incorporate a

mechanism for the generation, the growth and enhancement of flow
aligned patterns. Here we pick up the previous model (3) and con-
sider a simultaneous anisotropic nonlinear diffusion process with
linear diffusion along the particle line and sharpening in the perpen-
dicular direction. Let us emphasize here, that this diffusion process
acts in forward and backward direction of the particle line. Thus,
a careful control of the parameters is indispensable to avoid an ar-
tificial propagation in downwind direction with the accompanying
visual impression of a wrong velocity. In the next section we will
discuss in detail a suitable balance of parameters.

Altogether our basic transport diffusion model for time-
dependent vector fields looks as follows: On the computational do-
main Ω ⊂ IRd we consider for a given vector field v : IR+ × Ω →
IRd the boundary and initial value problem:

∂tu+ ∇u · v −A[v, u] = f(u) in IR+ × Ω,

(A∇u) · ν = 0 on IR+ × ∂Ω,

u(0, ·) = u0 in Ω,

where A[v, u] is the diffusion tensor (2) already known from the
anisotropic diffusion for steady flow fields. The initial data u0 is
again assumed to be a white noise of appropriate frequency. Still
the role of the right hand side f is to ensure contrast enhance-
ment. Consequently we apply functions f which fulfill the prop-
erties (F1), (F2) mentioned previously.

The new model generates and stretches patterns along the flow
field and transports them simultaneously. The resulting motion tex-
ture is characterized by a dense coverage of the domain with streak-
line type patterns, which do not have a fixed injection point but
move in time with the fluid (cf. Figure 10). The method is applica-
ble in any dimension, in particular on 3D domains and 2D surfaces
as for the static flow case before, although we have not performed
such computations.

6.1 Balancing Parameters

In general, transport and diffusion are contrary processes. Our goal
in mind—the generation and transport of patterns which simultane-
ously diffuse along the flows—there has to be a careful weighting
of the parameters that steer the transport and the diffusion respec-
tively. Otherwise the diffusion may overrun the transport, resulting
in a process that is rather diffusion than transport with some pattern
generating diffusion.

Let us suppose the temporal resolution of the given vector-field
data is of size τ . It is well known that the solution of the heat
equation at a time t corresponds to the convolution of the initial
data with a Gaussian kernel of variance

√
2t. Since the diffusion

Figure 10: Three successive time-steps of the transport diffusion
process generating directed patterns of a Bénard convection (cf.
Section 6.1). The additional coloring indicates the speed of the
flow field. Red colors indicate high velocity, whereas blue colors
indicate low velocity. To emphasize the transport of patterns we
have magnified the marked sections of the images in the lower row.

tensor a(v) invokes linear diffusion with a coefficient α(‖v(x)‖)
in the direction of the velocity v(x) for every x ∈ Ω, we consider
the corresponding variance

D(α(x)) :=
√

2τα(x)

to be a measure for the diffusion within the transport diffusion pro-
cess for the time τ . Of course a measure for the corresponding
expected transport distance is

T (x) := τ ‖v(x)‖ .

Typically T (·) is more or less fixed, since τ is in general pre-
scribed by the underlying CFD data. Thus, we would like to adjust
α locally such that D is balanced with T . To this end we introduce a
balancing parameter η ∈ IR+ and consider the balancing condition

D(α(x)) = ηT (x).

Roughly speaking we then have the following relations:

η � 1 Transport dominates the model,

η = 1 Transport ≈ Diffusion,

η � 1 Diffusion dominates the model.

Hence, choosing η < 1 fixed, and solving the balance condition
for α(x), we get a suitable diffusion coefficient

α(‖v‖)(x) =
η2 ‖v(x)‖2 τ

2

as a function on the domain Ω which instead of the one defined
in Section 4 is inserted into the diffusion tensor a(v,∇uε) of our
transport diffusion model.

Let us furthermore study the amplification of certain frequencies
of the initial image due to the right hand side of our model. Our
focus will be on the influence of the shape of f on the contrast
enhancing property of the model. To this end let us consider a much
simpler setting of a high frequency initial data given by

u0(x) =
1

2

[

sin
(x

ε

)

+ 1
]



and restrict ourselves to a simple diffusion equation along a (1-
dimensional) streamline, which is given by

∂tu− α∆u = f(u) in [0, 1].

We consider the linearization of f around 1
2

f̃(u) = γ

(

u− 1

2

)

,

where γ is the slope of the original f at 1/2. Now let us take into
account the ansatz u(t) = b(t)

(

u0(x) − 1
2

)

+ 1
2

for the evolution
of a one-dimensional image-density. Inserting the ansatz into the
linear diffusion-equation we obtain

1

2

[

b′ +
( α

ε2
− γ

)

b
]

sin
(x

ε

)

= 0

and so
b(t) = exp

[(

γ − α

ε2

)

t
]

.

This means that frequencies above
√

α/γ are damped, whereas fre-
quencies below this threshold are amplified. Given an upper thresh-
old 1/ε for the frequencies which we want to amplify, we choose

γ =
α

ε2
.

Finally, we construct our nonlinear right hand side f(·) in such a
way that the slope at 1/2 equals γ.

6.2 A Blending Strategy for Long-Term Animation

With the anisotropic diffusion model for steady flow fields we have
generated a whole scale of representations. Here, the scale was
identified with the time t of the evolution process. But as proposed
in the last section, the scale parameter is now coupled to the actual
transport process in our transport diffusion model. In particular for
long-time visualization purposes this coupling leads to unsatisfac-
tory results. Because due to the nature of our model, we are unable
to freeze the scale and solely consider the evolution of suitable pat-
terns at that specific scale in time, which would be the optimum
process.

The solution we propose here is a compromise based on the
blending of different results from the transport diffusion evolution
started at successive time-points. First, we select a suitable inter-
val for the scale parameter [s0, s1] with s1 > s0 > 0 around
our preferred multi-scale resolution for the resulting images. Based
on a smooth blending function ψ : IR → [0, 1] having support in
(−1, 1) and such that

ψ(t) = ψ(−t) = 1 − ψ(1 − t),

ψ(0) = 1,

we can construct a partition of unity {ψi} on the real line IR. I. e. we
define ψi(t) = ψ( 2t−(i+1)(s0+s1)

s1−s0
). Now, for all i = 0, 1, . . . we

separately solve the above transport diffusion problem for different
starting times ti = i ( s1−s0

2
) always considering some white noise

of a fixed frequency range as initial data and denoting the resulting
solution by ui. For negative time we suppose a suitable extrapola-
tion of the velocity field to be given. Finally, applying blending of
at least two different solutions we compute

u(t, x) =
∑

i

ψi(t)ui(t, x) .

This intensity function is well defined for arbitrary times and char-
acterized by the initially prescribed scale parameter interval.

Resulting intensity

s0 s1 Time t

Process 1 Process 2 Process 3

Figure 11: The weighting factors in the blending operation together
with the overlapping scale/time intervals of the considered transport
diffusion processes are shown in a diagram over time.

We use this construction for an animation of the flow over a cer-
tain time interval (cf. Fig. 11 for a graph of the blending functions).
Such an animation involves all solutions ui for which the blending
function ψi has a non vanishing overlap with the given time inter-
val. Other constructions of a partition of unity and corresponding
blending functions are near at hand and especially multiple over-
laps can be considered which requires the blending of more than
two intensity functions at the same time. We emphasize that the
application of this blending technique does not introduce any inac-
curacy, because for any time t the resulting image u(t, x) consists
of images ui(t, x) showing streaklines at time t and at slightly vary-
ing scale.

7 Continuous clustering via anisotropic
phase separation

So far, we have discussed the generation of flow aligned multi scale
textures. Let us now look the the hierarchical clustering of flow
data, ranging from small clusters showing strong local coherence
of the flow to large global cluster sets gathering large flow patterns.
As before, we will discuss this task in the framework of continuous
models. Before we detail the application of such a model for the
actual flow clustering let us review the underling physical model
for the coarsening of structures in metal alloys, which goes back to
Cahn and Hilliard [5].

7.1 The Cahn-Hilliard model

The Cahn-Hilliard model was introduced to describe phase separa-
tion and coarsening in binary alloys. Phase separation occurs when
a uniform mixture of the alloy is quenched below a certain crit-
ical temperature underneath which the uniform mixture becomes
unstable. As a result a micro-structure of two spatially separated
phases with different concentrations develops. In later stages of
the evolution on a much slower time scale than that of the initial
phase separation the structures become coarser: either by merging
of particles or by growing of bigger particles at the cost of smaller
ones. This coarsening can be understood as a clustering, where the
system mainly tries to decrease the surface energy of the particles
which leads to coarser and coarser structures during the evolution.
In the basic Cahn-Hilliard model this surface energy is isotropic.
There are no preferred directions of the interfaces. Hence the parti-
cles tend to be ball shaped (cf. Fig. 12).

In the following paragraph we briefly outline the basic concept
of the Cahn-Hilliard model. For more details we refer to the review
papers by Elliott [10] and Novick-Cohen [25]. The model is based
on a Ginzburg–Landau free energy which is a functional in terms
of the concentration difference u of the two material components.
The Ginzburg–Landau free energy E is defined to be

E(u) :=

∫

Ω

{

Ψ(u) +
γ

2
|∇u|2

}

,



Figure 12: Three time-steps of the original Cahn-Hilliard phase
separation.
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Figure 13: Chemical energy as function of concentration

where Ω is a bounded domain. The first term Ψ(u) is the chemical
energy density and typically has a double-well form. In this paper
we take

Ψ(u) =
1

4

(

u2 − β2)2

with a constant β ∈ (0, 1] (cf. Fig. 13). We note that the system is
locally in one of the two phases if the value of u is close to one of
the two minima ±β of Ψ.

Now, the diffusion equation for the concentration u is given by

∂u

∂t
− ∆w = 0

on IR+ × Ω, where w is the local chemical potential difference,
which is given as the variational derivative of E with respect to u

w =
δE

δu
= −γ∆u+ Ψ′(u).

As boundary and initial conditions we request ∂νw = ∂νu = 0,
where ν is the outer normal on ∂Ω, and u(0, ·) = u0(·) for some
initial concentration distribution u0.

Starting with a random perturbation of a constant state ū0, which
has a values in the unstable concave part of Ψ, we observe the
following: In the beginning the chemical energy decreases rapidly
whereas the gradient energy increases. This is due to the fact that
during phase separation u attains values which are at large por-
tions of the domain close to the minima of the chemical energy
Ψ. Since regions of different phase are separated by transition
zones with large gradients of u, the gradient energy increases during
phase separation. In the second stage of the evolution—the actual
clustering—when the structures become coarser, the total amount
of transition zones decreases. Correspondingly the amount of gra-
dient energy becomes smaller again.

7.2 Anisotropic interface energy

Let us now turn to the clustering model for flow data. We introduce
a cluster mapping u : IR+

0 × Ω → IR which will be the solution of
an appropriate evolution problem. Thereby, time will again serve

as the scale parameter leading from fine cluster granularity to suc-
cessively coarser clusters. For fixed scale t our definition of the set
of clusters C(t) is

C(t) = {x |u(t, x) ≥ 0}.

This set splits up into the connected components of C(t)

C(t) =
⋃

i

Ci(t).

The evolution problem steering the clusters via the quantity u
should satisfy the following properties:

• the number of clusters generically decreases in time,

• the shape of the cluster components strongly corresponds to
correlations in the data field,

• the volume fraction covered by C(t) is approximately constant
in t, i. e. |C(t)|

|Ω|
≈ Θ for Θ ∈ (0, 1).

These conditions motivate us to pick up the physical Cahn-
Hilliard model with the double-well separation potential Ψ(u), a
separation energy Es =

∫

Ω
es(u) and energy density es(u) =

Ψ(u). Among all u with
∫

Ω
u = ū0 = const. the energy Es at-

tains its minimum if u has the values ±β only. This leads to a
binary decomposition of the domain into two parts, where one part
corresponds to {x |u(x) = β}. However this set can have many
connected components and may even be very unstructured. Fur-
thermore there is no mechanism which enforces a successive coars-
ening and thus a true multi-scale of clusters.

We remedy this behavior by introducing a term which penal-
izes the occurrence of many disconnected cluster components with
high interfacial area. To this end we choose a a gradient energy
E∂ =

∫

Ω
e∂ with local energy density e∂ that penalizes rapid

spatial variations of u. In order to have flexibility to choose an
anisotropic and inhomogeneous gradient energy, an appropriate
definition of an interfacial energy density is given by

e∂(∇u) =
γ

2
a∇u · ∇u,

where “·” denotes the scalar product in IRn, γ is a scaling coef-
ficient and a ∈ IRn×n is some symmetric positive definite matrix
that may depend on the space variable and other quantities involved.

In the following we will refer to the set ∂{x |u(x) = 0} as the
interface. The orientation of the interface can be described by its
normal which, in the case that ∇u 6= 0, is given by the normalized
gradient

ν =
∇u

‖∇u‖ .

For a = Id all gradients of u and hence, all interfaces are penal-
ized equally independent of their orientation. But with respect to
our clustering intention we consider an anisotropic energy density
which strongly depends on the orientation of the local interface and
thereby on the direction of ∇u.

For a given static vector-field v : Ω → IRn a natural cluster-
ing should emphasize the coherence along the induced streamlines.
Thus, interfaces aligned across streamlines have to be penalized sig-
nificantly by the gradient energy whereas interfaces oriented along
streamlines are tolerated. We choose the diffusion tensor similar to
the ones used above (cf. Section 4)

a(v) := B(v)T

(

1 0
0 α(‖v‖)Idn−1

)

B(v)



Since interfaces that cross streamlines shall have larger energy we
choose a positive function α with α ≤ 1.

Altogether we have defined the energy

E(u) :=

∫

Ω

{

Ψ(u) +
γ

2
a∇u · ∇u

}

and proceed as for the basic Cahn-Hilliard model. We define the
first variation of the energy and arrive at the potential

w = Ψ′(u) − γA[v, u],

where A = div(a(v)∇u) is defined as in the previous sections.
Let us continue as before and assume that the evolution of the

cluster mapping u is governed by diffusion where the correspond-
ing flux linearly depends on the negative gradient of the first varia-
tion of energy. Thus, we choose ∂tu − ∆w = 0 as above and end
up with the following fourth order differential equation:

∂tu− ∆
(

Ψ′(u) − γA[v, u]
)

= 0

with boundary conditions ∂νu = ∂νw = 0 and prescribed ini-
tial data u(0, ·) = u0(·). After an initial short period of phase
separation it is mainly the interfacial energy contribution which is
successively reduced.

As in the texture generation approaches it does not make sense to
consider certain initial data, if no a priori information on the clus-
tering is known. Consequently we choose a constant value ū0 plus
some random perturbations as initial data u0. The constant ū0 de-
pends on the volume fraction Θ of the domain which shall be cov-
ered by the clusters, i.e. by the sets {x |u(t, x) ≥ 0}. Therefore,
we choose ū0 = Θβ − (1 − Θ)β.

During the evolution very rapidly cluster patterns will grow with-
out any prescribed location and orientation. This is in order to de-
crease Es =

∫

Ω
Ψ(u) which forces the solution to obtain values

close to ±β in most of the domain Ω. After this starting phase
the clusters orient themselves in an anisotropic way to decrease the
amount of the anisotropic gradient energy E∂ . In addition they
become coarser and coarser due to the fact that smaller particles
shrink and larger ones grow. In particular one observes that a large
particle being surrounded by smaller ones grows to the expense of
the smaller ones. This implies that as time evolves locally only the
main features of the clusters will be kept.

Finally we obtain a scale u(t, ·) of cluster mappings and induced
cluster sets C(t). They represent a successively coarser represen-
tation of simulation data and continuously enhances coherences in
the underlying simulation data set, where the cluster set C(t) will
cover a volume of approximate size Θ|Ω|.

8 Remarks on the finite element imple-
mentation

So far, we have not yet discussed discretization in space and time
of the above introduced continuous time-dependent partial differ-
ential equations. Hence, we deal with the variational formulation
of the different PDE problems introduced above. We propose to
consider a finite element discretization in space and a semi-implicit
backward Euler scheme in time.

The semi-implicit temporal discretization means that the nonlin-
ear diffusion tensor A and the nonlinear term on the right hand side
f(u) as well as the derivatives of the non convex potential ψ are
evaluated at the old time-steps.

For the spatial discretization we can restrict the numerical con-
siderations to regular hexahedral grids in 2D and 3D. On these grids
we have bilinear, respectively trilinear finite element spaces. How-
ever below we will use triangular elements as well. In any case

Figure 14: Top: Successive stages of the continuous clustering
of a Bénard convective flow field,. Bottom: Effect of increasing
anisotropy α. The computations are based on a grid of resolution
2572.

we can base numerical integration on the lumped-masses product
(·, ·)h [36] for the L2 product and a midpoint quadrature rule for
the bilinear form (A∇ ·,∇ ·).

Finally, in each step of the discrete evolution we have to solve a
single system of linear equations for the vector of nodal values for
the density function u and the chemical potential w, respectively.
In case we need pre-smoothed data, we consider a single discrete,
implicit time-step for the computation of the heat equation with the
density being smoothed as initial data.

9 Clustering based on hierarchical de-
composition of a differential operator

In the previous section we have discussed a continuous physical
model for the clustering of flow fields. Instead of involving methods
adapted from continuum mechanics, we might ask for a direct hier-
archical decomposition of the differential operators A from Section
4, which represent diffusion processes strongly aligned to the flow
field.

9.1 Review of algebraic multigrid

The idea we develop in this section uses algebraic multigrid (AMG)
methodology to decompose the corresponding discrete operator.
AMG methods were first introduced in the early 1980’s [2, 3, 28]
for the solution of discrete linear systems AU = F of equa-
tions coming from the discretization of linear differential equations
A[u] = f on domains Ω with suitable boundary conditions. We
refer to [37] for a detailed introduction. Thereby U is supposed to
be a finite element approximation of the continuous solution u and
A the finite element stiffness matrix corresponding to A. Finally, F
is the corresponding discrete right hand side. The development of
AMG was led by the idea to mimic classical (geometric) multigrid
methods in applications where a hierarchy of nested meshes is ei-
ther not available at all, or cannot reflect particular properties such
as strength of diffusion of the discretized operator appropriately on
coarse grid levels.

Consequently one has to work with the matrix A and its alge-
braic structure. The general procedure is sketched in Fig. 15. AMG
tries to coarsen this matrix independently from any underlying fine
grid discretization, where n is the number of degrees of freedom.
It computes a sequence of prolongation matrices P l which encodes



Figure 15: General AMG construction. From the fine scale ma-
trix A0 input, AMG computes prolongations P l, restrictions Rl,
and coarse scale matrices Al on successively coarser scales l =
1, . . . , L.

how coarse scale (l) basis functions are combined using the basis
functions on the finer scale (l−1). This induces a sequence of corre-
sponding matrices Al, defined by the so-called Galerkin projection
Al := RlAl−1P l, where the restrictionRl is given as the transpose
of the prolongation P l (Rl := (P l)T ). The prolongation matri-
ces {P l}l=1,...,L are computed using information from the matrix
Al−1 on the previous level l − 1 only. The sequence of prolonga-
tion matrices allows for the construction of a problem-dependent
basis {Ψl,i}. One constructs a coarser basis {Ψl,i} which captures
the appropriate features relevant for the approximation of the cor-
responding continuous problem.

9.2 AMG for flow field clustering

The theory and design of efficient AMG tools is rather involved.
However, we emphasize that our flowing clustering requires just ba-
sic AMG capabilities. We perform no specific tuning of the AMG
for flow clustering. Let us apply the method to the concrete dis-
crete finite element matrix A of the differential operator A. This
stiffness-matrix A can be regarded as a description of the structure
of the flow field v, because as in the operator A the flow alignment
is encoded in this matrix. Indeed, the matrix simultaneously rep-
resents dominant flow patterns as well as successively finer, more
detailed flow structures.

With the AMG we find a tool which is able to represent flow
patterns in a hierarchical multi-scale fashion. AMG delivers a set
of descriptions of the flow-induced coupling in terms of matricesAl

for l = 0, . . . , L, ranging from detailed (A0 = A) to very coarse
(AL).

Let us illustrate how AMG works using two simple examples.
Consider the flow fields v1(x) = (−1, 1) and v2(x) = (1, 1) on
the square domain Ω = [−1; 1]2 ⊂ IR2. We can define a simple
diffusion tensor

a(v) = BT

(

‖v‖ + ε 0
0 ε

)

B := BT

(√
2 + 0.001 0

0 0.001

)

B,

where B is a rotation of ∓45 degrees, respectively. We then con-
sider the corresponding differential operator A[u] = div(a∇u) and
apply the AMG method to the matrix which results from the dis-
cretization of A on a regular triangulation. Figure 16 shows the
coupling strengths encoded in the matrices Al for the first three
finest levels l = 0, 1, 2, for the fields v1 = (1, 1) and v2 = (−1, 1),
using a blue-to-red colormap. For the same fields, Fig. 17 shows
selected basis functions on the four coarsest decomposition levels.

For the actual flow field clustering application we consider the
differential operator A[u] = div(a(v)∇u) where the diffusion ten-

Figure 16: Color-coded coupling strength (zoomed in) on the com-
putational grid. Three finest levels (left to right) are shown for the
fields v1 = (−1, 1) (bottom row) and v2 = (1, 1) (top row). The
white arrows show the field direction.

Figure 17: For the two vector fields v1 = (−1, 1) (bottom row) and
v2 = (1, 1) (top row) basis functions on the four coarsest levels are
shown. Obviously the basis functions are clearly aligned to the flow
field (cf. Fig. 16).

sor is

a(v) := B(v)T

(

α(‖v‖) 0
0 Idn−1

)

B(v)

and B(v) is the same rotation as above.
When we apply the AMG algorithm to the matrix A ∈ IRn,n

corresponding to the above differential operator, we obtain a se-
quence of prolongation matrices P l ∈ IRnl−1,nl as output, where
nl for l = 0, . . . , L are the decreasing numbers of remaining un-
knowns and n0 = n. The entries in each column i = 1, . . . , nl of
P l give the coefficients of the linear combination of the finer basis
functions Φl−1,j for j = 1, . . . , nl−1 corresponding to the coarser
basis function Φl,i on level l. In other words, each matrix Al deliv-
ered by the AMG, starting with the initial, finest oneA0 = A down
to the coarsest one AL, approximates the fine grid operator using
the (matrix-dependent) basis {Φl,i}i=1,...,nl

:

Al
ij = AΦl,i · Φl,j =

∫

Ω

a(v)∇Φl,i · ∇Φl,j ,

where Φl,i is the nodal vector corresponding to the function Φl,i,
i. e. Φl,i =

∑

j=1,...,n(Φl,i)jΘ
j where Θj denotes the initial basis

functions.



Figure 18: For the vector field from a magneto-hydrodynamics sim-
ulation (MHD) shown in Figures 3 and 4 the hierarchical decompo-
sition is shown. From top to bottom the clusters on the five coarsest
levels are indicated with a color-coding (left). The origins of the
cluster-corresponding basis functions serve as the starting point for
the integration of trajectories (right).

Hence, the following simple recursive recipe can be used to cal-
culate the multi-scale of basis functions Φl,i

Φl,i :=
∑

j=1,...,nl−1

P l
jiΦ

l−1,j ∀i = 1, . . . , n; l = 1, . . . , L

Φ0,i := Θi ∀i1, . . . , n

Figure 17 already indicates that the shapes of the basis functions
clearly show the strength of the local coupling. The AMG method
clusters vertices along a streamline already on a fine scale, since
they are strongly coupled. Vertices not aligned to the flow are clus-
tered on coarser scales, since their coupling is relatively weaker.

9.3 From basis functions to clusters

But as usual with finite elements, the supports of basis functions
on a given scale are overlapping. Therefore, we need to derive a
multi-scale of domain decompositions from the set of basis func-
tions to partition the domain into disjoint clusters. Such a domain
decomposition

Dl := {Dl,i}i=1,...,nl

can easily be defined for every l = 0, . . . , L as follows:

Dl,i := {x ∈ Ω |Ψl,i(x) ≥ Ψl,j(x) ∀j = 1, . . . , nl}

In other words, a domain Dl,i on level l is the set of points where
the basis Φl,i is dominant on that level.

Now, several observations can be made:

• The domains on different scales need not be strictly spatially
nested – the supports of the shape functions are, but the de-
composition arising from the maximum property is not. How-
ever, the domains are clearly aligned to the flow field.

• All domains on a given level l have comparable sizes and the
average domain size is reduced by a factor, roughly equal to 2,
from level l to level l+1. These properties are inherited from
the bottom-up coarsening scheme used by the AMG method.

• The clustering of the field v1 = (−1, 1) (Fig. 16 top row)
is perfectly aligned with the field (cf. the basis functions
in Fig. 17 top row). However, the clustering of the field
v2 = (1, 1), although very similar, is less regular (Figs. 16,
17 bottom row). This is the unavoidable impact of the under-
lying operator discretization (which is here a mesh containing
triangles). Since v2 is perpendicular to the initial mesh edges,
this is the worst-case scenario. However, even in this case,
the constructed domains are still very much aligned with the
field.

• The supports of the basis functions, respectively the induced
domains on a given level, do not have exactly the same size
(area), since AMG cannot evaluate (integrate) the mass of
the basis functions. Indeed it does not employ any geomet-
ric nodal information, but only a matrix of coupling strengths.
However these restrictions cause no practical problems for vi-
sualizing real-world datasets.

Finally we can show the color-coded domains and in addition
velocity-colored curved arrow icons (cf. [35, 12]). For every do-
main Dl,i, we draw one such icon, using a streamline seeded at
the point where the corresponding basis is maximum. Figure 18
shows the decomposition of a magneto-hydrodynamics (MHD)
flow dataset.



Figure 19: Helix flow, selected domains (top row), half-transparent
domains with arrow icons (middle row). Diagonal flow, selected
domains (bottom row).

9.4 3D Flow Fields

Our method works identically for 3D (volumetric) vector fields.
The only difference is the use of tetrahedral, instead of triangular,
meshes. However, direct visualization of a color-coded domain de-
composition, as in the 2D case, is not effective due to the volumet-
ric occlusion. Hence, we use a few post-processing steps. For every
domain Dl,i on a given level l, we construct a closed triangle mesh
that bounds Dl,i. Next, we smooth these meshes using e.g. a Lapla-
cian filter or a windowed sync filter [30]. As a result, the meshes
become slightly smaller, which allows us to better separate them
visually. Next, we implement an interactive navigation scheme in
which domains Dl,i can be made half or completely transparent by
a mouse click. Users can interactively ’carve’ into the flow volume
to e.g. remove uninteresting areas and bringing inner flow structures
into sight, see Fig. 19. Alternatively, we can visualize the flow at a
given level of detail using the same colored arrow glyphs as in the
2D case. Figure 19 shows the first three coarsest decomposition lev-
els of a 3D helix flow and of a 3D laminar flow with v = (1, 1, 1)
respectively. We use the interactive technique sketched above to
remove the outer domains and to expose the more interesting in-
ner flow structure. The remaining smoothed domains are shown in
the top row of Fig. 19 for the helix flow and in the bottom trow of
Fig. 19 for the laminar flow (compare the latter with the 2D field in
Fig. 16). In the center row of Figure 19 the same domains as in the
top row are shown, but this time half transparent and equipped with
an arrow icon.

Finally, we consider the incompressible flow in a water basin
with two interior walls, an inlet (on the left) and an outlet (on the
right), the same dataset as shown in Figure 6. Figure 20 shows sev-
eral multi-scale levels, visualized with curved arrow icons. These
images show that our method scheme works in 3D just as well as in
2D.

Figure 20: For the water basin dataset (cf. Fig. 6) we show the three
coarsest levels of the hierarchical decomposition.

9.5 Clustering vector fields on 2D surfaces

For the clustering approach we considered vector fields on Eu-
clidean domains so far. Since we have seen in Section 5.3 that we
can extend to differential operator towards surfaces, we can apply
the same generalization to the AMG clustering as well. Again we
replace the Euclidian gradient and divergence operators by their ge-
ometric counter parts and apply the AMG to a discretization of

A[u] := −divM(A∇Mu).

The finite element discretization is now completely analogous to the
above Euclidean case. In fact, we use exactly the same code for all
our applications. We approximate the surface M by a triangulation
Mh and compute in the same way as on flat domains the stiffness
matrix A corresponding to the operator A.



As an illustration, we show the multi-scale decomposition of the
average wind stress field on the surface of the Earth in Fig. 21 (the
dataset is taken from [42]). The flow texture in the bottom row was
produced with the IBFV method described in [42].
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